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ABSTRACT

Some Hybrid Methods in RCS Computation

Lei Wang

The RCS of wires, plates, plate/wire, plate/aperture, and plate/strip combinations
were examined for plane wave incidence. In all cases, a NEC-2 (Numerical Electro-
magnetic Code. which is a Moment Method code) model was possible. Physical Optics
(PO) also was used for RCS computation of the wire. plate/wire, and plate/aperture.
For 2D TM scattering by a strip, Pulse Basis Point Matching (PBPM) and Asymp-
totic Phasefront Extraction (APE) were used to calculate the RCS and surface current
density. Excellent RCS results were found by using only two pulse bases on a 20\ strip

when APE was applied.
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Chapter 1

Introduction

The search for solutions to Maxwell’s Equations (ME) of electromagnetism has contin-
ued for more than a hundred vears. For much of this time only the few relatively simple
problems could be tackled for which analytical methods could be used. Lots of cases
only become tractable if approximations or idealizations were made. In the last twenty
vears, asymptotic methods have been developed for treating scattering objects which
are large in terms of wavelength. During the last decade, thanks to the new efficient
and accurate numerical algorithms and the rapid development of computer hardware,
the field of Computational Electromagnetics (CEM) has been in an expansion phase.
The development of high-speed digital computers has allowed numerical methods to
be applied to problems of almost arbitrary geometrical complexity. The problems
that are treated by a CEM approach include radiation, scattering and Electromagnetic
Compatibility (EMC) problems.

The most common scattering problem is to obtain the Radar Cross Section (RCS)
of objects upon which electromagnetic fields impinge. The incident fields may be
plane waves or non-planar fields from point sources, line sources, waveguides or other
exciting elements. The RCS is calculated in the far field region, based on how much of
the incident field is scattered in certain directions.

A common application of RCS calculations is to investigate how objects such as

aircraft, ships or military vehicles scatter radar signals, and ultimately see how visible



the objects are to an observer. In order to minimize the scattered fields, numerical
calculations can be employed to eliminate or lessen the need for live measurements.

There are two major approaches in CEM which can be identified. They represent
fundamentally different ideas. The first one is Time-Domain (TD) methods which solve
time-dependent partial differential equations at all frequencies, which can be resolved
by the geometry by stepping forward in time and calculating how the fields propagate
in each step. The other principle concerns Frequency-Domain (F'D) methods, where
you solve the fields for one frequency at a time and expand to all time by assuming
they are time harmonic.

Furthermore, frequency-domain computations can be subdivided to two classes:
the ray based methods and current based methods. The ray based techniques examine
the behavior of rays along with their path. These rays are reflected by surfaces and
diffracted by edges, wedges and possibly curved surfaces through various path. Geo-
metrical Optics (GO), Geometrical Theory of Diffraction (GTD) and its modification
Uniform Geometrical Theory of Diffraction (UTD) belong to this category. They are
primarily high-frequency methods because they are used for the problems where the
size of illuminated objects are large compared to the wavelength of the incident wave.
When using current based methods, we first calculate the surface current induced on
the objects illuminated by the incident fields, by solving Electric Field Integral Equa-
tion (EFIE) or Magnetic Field Integral Equation (MFIE). Then we can computer the
scattered fields from the objects. The total field is the sum of the incident fields and
scattered fields. The most common current based method is the Method of Moments
(MoM or MM) which is an asymptotically exact integral equation method. An attrac-
tive alternative to MoM is the Physical Optics (PO) method, which is an approximate
method. The description of all of these methods can be found in Balanis [1}.

In the area of EMC, MoM [2]-[4] has been proved to be a powerful tool for the

numerical computation of shielding effectiveness, coupling, or radiation from interfer-
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ence sources. For plates and wires, the Numerical Electromagnetic Code (NEC-2) (3]
is a widely used general purpose MoM code. However, the application of the MoM is
limited to electrically small to medium sized bodies due to the strong dependence of
CPU time and memory requirements on the frequency.

Hybrid methods combining the MoM with an asymptotic technique for the higher
frequency range are well suited to overcome this difficulty. The application of current-
based hybrid methods offers some advantages as compared to ray-based hybrid meth-
ods concerning the possible continuity of the surface current density at the boundary
between the MoM- and the asymptotic region.

Current-based hybrid methods are usually based on PO [6], [7]. Due to the nature
of the approximation, PO works best for large flat surfaces. It is viable since it is the
one of the fastest method devised so far for simple objects.

Pulse Basis Point Matching (PBPM) method [8] is a solution of MoM. It is especially
suitable for TM scattering by a strip. PBPM use pulse functions as basis functions,
enforce the boundary condition to be true at matching points and use d(z — rIn)
functions as testing functions.

The PBPM solution requires small segments. Following Kwon et al.[9], we tried
the Asymptotic Phasefront Extraction (APE) method, which includes a phase taper in
the basis functions. The results shows the APE is more able to reproduce the rapidly
varying surface current.

In this thesis, we try to gain some insight into the RCS and surface current compu-
tation by using some hybrid methods. Chapter 2 will give some theoretical foundations,
which includes Maxwell’s Equations (ME), Boundary Conditions (BC), the definition
of Radar Cross Section (RCS), the Integral Equation, Moment Method (MoM) and
Physical Optics Approximation (PO). Most of the material in Chapter 2 is described
in Balanis [1}], and it is provided as review and completeness.

In Chapter 3, we want to develop an understanding of what will happen to the



RCS of a large structure when other small obstacles are present. We describe the
PO solution for wires, plates, and a wire/plate combination. This is compared with a
NEC-2 model. We also studied the effect of holes in a plate, using PO. More interesting
effects were observed by looking at a small vertical strip on the plate, which forms a
dihedral reflector, by using NEC-2.

Chapter 4 of this thesis develops the theory and equations involved in the eval-
uation of RCS and surface current for TM scattering by a strip. Numerical results
are presented. Comparisons were made with the results obtained by using PBPM and
APE.

Chapter 3 presents the conclusions.



Chapter 2

Theoretical Foundation

This chapter describes the theoretical foundation and actual implementation of the
Method of Moments (MoM) and the Physical Optics (PO). The topics covered in
this chapter include explanations of basic concepts and derivation of the necessary
equations. The details describing of MoM and PO can be found in Section 2.6 and
Section 2.7. Most of the material in this chapter is described in Balanis(l], and it is

provided here as review and completeness.

2.1 Maxwell’s Equations (ME)

In general, electric and magnetic fields are vector quantities that have both magnitude
and direction. The relations and variations of the electric and magnetic fields. charges,
and currents associated with electromagnetic waves are governed by a set of coupled

equations known as Maxwell’s equations (ME).

VxE=—M—aa—?=—M——u%—I;I (2.1)
VxH=J+%%=J+e%?— (2.2)
V-E=i—e or V-D=p, (2.3)
v H=”7"‘ or V-B=pn (2.4)
v.J -aa”te (2.5)
\v M—-%’ftﬂ (2.6)



where J and M are the electric and magnetic current densities, p. and p,, are the
electric and magnetic charge densities. Equations (2.1) through (2.6) are the ME in
differential form. The differential form of ME is the most widely used representation
to solve boundary-value electromagnetic problems.

The impressed (source) magnetic current density M and magnetic charge density
pm have been introduced, respectively, in (2.1) and (2.4) through the “generalized”
current concept. Although we have been accustomed to viewing magnetic charges
and impressed magnetic current densities as not been physically realizable, they have
been introduced to balance ME. Sometimes, equivalent magnetic charges and currents
will be introduced to present physical problems. In addition, impressed magnetic
current densities also can be considered as energy sources that generate the fields
and whose field expression can be written in terms of these current densities. For
some electromagnetic problems, their solution can often be aided by the introduction
of “equivalent” impressed electric and magnetic current densities. The importance
of both will become more obvious to some specific electromagnetic boundary-value
problems.

ME is used to describe and relate the field vectors, current densities, and charge
densities at any point in space at any time. ME in this form are valid for linear isotropic
material in which the permeability is x4 and the permittivity is €, both constant, and
apply to all space. Field vectors associated with electromagnetic waves possess these
characteristics except where there exist abrupt changes in charge and current densities.
This means that ME can be limited to a smaller section of space by enforcing some
boundary conditions (BC). Thus a complete description of the field vectors at any
point at any time requires both ME and the associated BC.

ME in differential form for general time-varying electromagnetic fields were pre-
sented by (2.1) through (2.6). However, in many practical systems the time variations

are of sinusoidal form and are referred to as time-harmonic. In general, such time



variations can be represented by e’“t. Thus ME in differential form for time-harmonic

fields can be written in terms of the complex field vectors as shown in (2.7) through

(2.12)
VxE=-M - jwB (2.7)
VxH=J+jwD (2.8)
V-D=p (2.9)
V-B=pn, (2.10)
V-J=—juwp. (2.11)
V-M=—jwpn (2.12)

2.2 Boundary Conditions (BC)

As previously stated, the differential form of ME are used to solve for the field vec-
tors provided the field quantities are single-valued, bounded, and possess (along with
their derivatives) continuous distributions. Along boundaries where the media involved
exhibit discontinuities in electrical properties (or there exist sources along these bound-
aries), the field vectors are also discontinuous and their behavior across the boundaries
is governed by the boundary conditions (BC).

In General, BC can be expressed as

—ax(E;—E,) =M, (2.13)
i x (H, — H)) = J, (2.14)
fi- (D2 — Dy) = pes (2.15)
fi-(By — B1) = pums (2.16)

where fi denotes a vector normal to the surface of the interface and oriented from region
1 towards region 2, (M, J;) and (pes, pms) are the magnetic and electric linear (per

meter) current and surface (per square meter) charge densities, respectively.
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Equation (2.13) states that the tangential components of the electric field across an
interface, along with there exists a surface magnetic current density M, are discontin-
ues by an amount equal to the magnetic current density. Similarly, (2.14) states that
the tangential components of the magnetic field across an interface, along with there
exists a surface electric current density Jg, are discontinues by an amount equal to the
electric current density. For normal components, (2.15) [(2.16)] states that the electric
[magnetic] flux density on an interface along which a surface electric [magnetic] charge
density resides are discontinues by an amount equal to the electric [magnetic| surface
charge density.

If there is a source free space, then from BC we know that the tangential components
of the electric and magnetic field intensities across an interface between two media are
continuous. The normal components of the electric and magnetic field intensities are
discontinuous, but the normal components of the electric and magnetic flux densities
are continuous.

The BC for time-harmonic fields are identical to those general forms.

2.3 Radar Cross Section (RCS)

An important parameter in scattering studies is the electromagnetic scattering by a
target which is usually represented by its echo arcz or radar cross section (RCS). RCS is
defined as the area intercepting the amount of power that, when scattered isotropically,
produces at the receiver a density that is equal to the density scattered by the actual
target. For a two-dimensional target, the scattering parameter is referred to as the
scattering width (SW) or alternatively as the RCS per unit length. In equation form

the SW (o2_-p) and RCS (03_p) of a target takes the form of

. |E,|? ) N = Nk _

72-0 = i [27”’ ToNE R T Ve (2.17)
E,|? . H,[?

O3_p = rliglo |:47rr2|lEi|[2] = rl_ljg [47rr2||H—iII2] (2.18)



where p, r is the distance from target to observation point, E,, H, are the scattered
electric, magnetic fields and E;, H; are the incident electric, magnetic fields, respec-

tively. Since |E| = n|H|, then the E ratios and H ratios are the same.

2.4 Electrostatic Charge Distribution

From electrostatics we know that a linear electric charge distribution p(r’) creates an

electric potential, V'(r), which is

/
V) = — 25 gy (2.19)
4meq J source R
(charge)

where r'(z',y', 2} denotes the source coordinates, r(z.y,z) denotes the observation
coordinates, dl’ is the path of integration, and R is the distance from any one point on

the source to the observation point. which is generally represented by

Rr.iY=lr=r|=(z-2)2+@y—y)P+(z-)? (2.19a)

We see that (2.19) may be used to calculate the potentials that are due to any
known line charge density. However, the charge distribution on most configurations of
practical interest is not usually known, even when the potential of the source is given.
It is the nontrivial problem of determining the charge distribution that is to be solved
here using integral equation numerical solution approach.

Consider a straight wire of length [ and radius a, placed along the z axis, as shown
in Fig. 2.1a. The wire is given a normalized constant electric potential of 1V. Choosing

the observation along the wire axis, (2.19) can be expressed as

1 (')
1= dzr’ 0<z<!
4#60/0 R(z,z') * =T= (

(3]
o
o
-

where

R(z,z') = R(r,m")ly=s=0 = V& = 22+ (¥')2 + (¢) = V(z — ')+ (2.20a)



2u

JFI
=

(a ) Straight wire

«

(b ) Segmented wire

Figure 2.1: Constant potential straight wire of length [ and radius a.
and the segmentation of the wire [1].

Equation (2.20) is an integral equation that can be used to find the charge density
p(z’) based on the 1-V potential. The solution may be reached numerically by reducing
(2.20) to a series of linear algebraic equation that may be solved by conventional
matrix equation techniques. To facilitate this, let us approximate the unknown charge

distribution p(z') by an expansion of N known terms with constant, but unknown

coefficients, that is,

N
') =) angal(z’) (2.21)
n=1
Thus, (2.20) may be written as
l 1 N
4 — - 20n(Z') ] dT’ 2.22
reo= [ g [‘é gula )} - (222)

Because (2.22) is a nonsingular integral, its integration and summation can be

10



interchanged, and it can be written as

(™)

23)

tres = Z gn(x') » :

fin \/ (z—z') +a?

The wire is now divided into .V uniform segments, each of length A = [/N. as
illustrated in Fig. 2.1b. The g,(z') functions in the expansion (2.21) are chosen for
their ability to accurately model the unknown quantity, while minimizing computation.

They are often referred to as basis functions.

2.5 Integral Equation

Equation (2.20) for the 1-V potential on a wire of length [ is an integral equation,
which can be used to solve for the charge distribution. Numerically this is accomplished
using a method, which is usually referred to as Moment Method or Method of Moments
(MoM).

Equation (2.20) is valid at every point on the wire. By enforcing (2.20) at .V discrete
but different points on the wire, z = r,,, m = 1, 2, ...n, the integral equation of (2.20)

is reduced to a set of .V linearly independent algebraic equations

["m] = [Zmn][ln] (2.24)
where
dx’ 2.24a
/ vV (Zm — .’L")z + a® ( )
=a, (2.24b)
Vin = d7ee (2.24c)

which is solved for the unknown coefficient a, by using matrix inversion techniques.
Since the system of NV linear equations each with NV unknowns was derived by appiying
the boundary condition (constant 1-V potential) at V discrete points on the wire, the

technique is referred to as point-matching (or collocation) method.
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In general, there are many forms of integral equations. For time-harmonic elec-
tromagnetics, two of the most popular integral equations are the electric field integral
equation (EFIE) and the magnetic field integral equation (MFIE). The EFIE enforces
the boundary condition on the tangential electric field, and is valid for both closed or
open surfaces. Meanwhile the MFIE enforces the boundary condition on the tangential
components of the magnetic field, and is valid for closed surfaces only. These integral
equations can be used for both radiation and scattering problems. Two popular EFIEs

are the Pocklington Integral Equation and the Hallén Integral Equation.

2.5.1 Pocklington’s Integral Equation

Let us assume that an incident wave impinges on the surface of a conducting wire. as
shown in Fig. 2.2a, and it is referred to as the incident electric field E*(r). Part of
the incident field impinges on the wire and induces a linear current density J;. The
induced current density J reradiates and produces an electric field that is referred to
as the scattered electric field E*(r). Therefore, at any point in space, the total electric

field Et(r) is the sum of the incident and scattered fields, or
E'(r) = E(r) + E°(r) (2.25)

According to boundary condition, on the surface of the wire (r = r;), the total

tangential electric field (here it is E.) should vanish. Therefore we have
Eir=rs)=E(r=r)+Ei(r=r,) (2.26)
or
Ei(r=r)=-Ei(r=ry) (2262)

In general, the scattered electric field generated by the induced current density J,

can be expressed as

. 1 D S 5 9~
Ei(r) = —jwA —]mV(V -A) = —]m[sz-f V(V-A) (2.27)

12
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Figure 2.2: Uniform plane wave obliquely incident on a = directed
conducting wire [1].

where A is the magnetic vector potential, and it satisfies

N
[R]
co
Nt

VA + kA = —pd, (2.:

However, at the wire surface, only the z component is needed, so we have

2
EX(r) = —jL (k2.4: 42 i,) (2.29)

WLE
According to the solution of the vector potential wave equations, for a linear current

density J,, we can obtain A like this

p e *R :
- ® d 2.30
IR 230
Then, the z component is

]kR 12 —]kR
// J ds’ = / adg'dz’ (2.31)
47 /2

If the wire is very thin, the current density J. can be written as




where I.(2') is assumed to be an equivalent filament line-source current located a radial

distance p = a from the z axis, as shown in Fig. 2.2b. Thus (2.31) reduces to

{/2 27 —]kR
/ I.(2)- d(b'dz' (2.33)
-2 21

where

R=\(z-2)2+({y—y)2+(z-2)2

= \/p?+a® —2pacos(p — @) + (z — 2')

(V]

(2.33a)

Because of symmetry of the scatterer, we choose @ = 0. Then for observation on

the surface p = a of the scatterer, (2.33) and (2.33a) reduce to

1/2 1 [ e—ikR
A:(p=a)= )u/ I( <_/ d¢l> dz’
-1/2 ( ) 27 0 4T R

12
= p/ I.(2)G(z, 2')dz’' (2.34)
—1/2
where
1 2 e—ij
G do' 2.3
(=) = T o 47R ¢ (2.34a)
R(p=a) = \/4a2 sin’ (—@9—) + (2 —z2)? (2.34b)
Thus, the >z component of the scattered electric field can be expressed as
1 62 /2
Eiljp=a)=—j— <k2 + 9) / I.(z"YG(z,2)dZ' (2.33)
we 0z% ) J_i
which by using (2.26a) reduces to
1 62 12 )
—j— (L2 ,,) I.(2)G(z,2")ds' = ~FE%(p = a) (2.36)
we 022 ) |1

Exchanging integration with differentiation, we can rewrite (2.36) as

12 52 :
I.(Z) [(a— + k2> G(z, z')] dz' = —jweE%(p = a) (2.37)
-2 2

where G(z, 2') is given by (2.34a).
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Equation (2.37) is referred to as Pocklington’s integral equation. By knowing the
incident field on the surface of the wire, (2.37) can be used to determine the equivalent
filamentary line-source current of the wire, and thus current density on the wire.

If we assume that the wire is very thin (a < A) such that (2.34a) reduces to
e—ikR

G(z.) = G(R) =

then (2.37) can be expressed in a more convenient form as

12 -jkR .
/ [:(::')e : [(1 + jkR)(2R? - 3a?) + (kaR)*]| dz' = —jweEi(p=a)  (2.39)
-1/2 4R -

where for observations along the center of the wire (p = 0)

R=\/a?>+(z - 2')? (2.39a)

In (2.37) or (2.39), I.(z') represents the equivalent filamentary line-source current
located on the surface of the wire, as shown in Fig. 2.2b, and it is obtained by knowing

the incident electric field on the surface of the wire.

2.5.2 Hallén’s Integral Equation

Referring again to Fig. 2.2a, let us assume that the length of the cylinder is much larger
than its radius (! > a) and its radius is much smaller than the wavelength (a < \)
so that the effect of the end faces of the cylinder can be neglected. Therefore the
boundary conditions for a wire with infinite conductivity are those of vanishing total
tangential E fields on the surface of the cylinder and vanishing current at the ends of
the cylinder.

Since only an electric current density flows on the cylinder and it is directed along
the 2z axis (J; = 2J,), then according (2.28) and (2.30), A = zA4,(2’), which is only a

function of 2’ for small radii. Thus (2.26) reduces to

2
E! = —jL kA, + O A (2.40)
: WiLe 0z?
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Applying the boundary condition, the total tangential electric field EZ vanishes on the

surface of the cylinder, (2.40) reduces to

24
kA +a’Z

At 55 =0 (2.40a)

The current density on the cylinder is symmetrical, so is the potential 4.. Thus

the solution of (2.40a) is given by
A:(z) = —j/pe[By cos(kz) + Cy sin(k|z])] (2.41)

where B, and C| are constant. For a current-carrving wire. its potential A is given by

A= fm://cle ;Rdl' (2.42)
so we have
1.(z) = ﬁ; _[:// I.()< ;:Rdz’ (2.43)
Equating (2.43) to (2.41) leads to
/ L g - -J'\/E[B1 cos(k=) + Ci sin(k|=])] (2.44)
—12 iTR 7

Equation (2.44) is referred to as Hallén’s integral equation for a perfectly conducting

wire.

2.6 Moment Method Solution (MoM)

Equation (2.37), (2.39) and (2.44) each has the form of
F(g)=h (2.45)

where F' is a known linear operator, h is a known excitation function, and g is the
response function. The objective here is to determine g once F and h are specified.
Moment method requires that the unknown response function be expanded as a

linear combination of /N terms and written as

N
g(zl) = Zangn(zl) (2.46)
n=1
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Each a, is an unknown constant and each g,(z’) is a known function usually referred to
as a basis function. So in other words, g(z’) can be expanded in terms of a finite series
of known basis functions with unknown amplitudes. Substituting (2.46) into (2.43)

and using the linearity of the F' operator reduces (2.43) to

N
Y anF(ga) = h (2.47)
n=1

Expansion of (2.47) leads to one equation with .V unknowns. To resolve the V
constants, it is necessary to have V linearly independent equations. This can be done
by applying boundary condition at NV different points (point-matching), just like we

have done in Section 2.4. Doing this, (2.47) takes the form of

N
> @nF(ga) = hm m=12,..,V (2.48)
n=1
In matrix form, (2.48) can be expressed as
[Zmal[In] = [Vin] (2.49)
where
Zmn = F(gn) (249‘1‘)
I, =a, (2.49b)
Vin=hm (2.49c)

The unknown coefficients a, can be found by solving (2.49) using matrix inversion

techniques, or
[fn] = [Zmn]—l["'l—m] (250)

2.6.1 Basis Functions

One very important step in MoM is the choice of basis functions. The basis functions

gn are chosen so that each F'(gy,) in (2.47) can be evaluated conveniently. They should

17



accurately represent and resemble the anticipated unknown function, meanwhile min-
imizing the computational effort.
There are many possible sets of basis functions. They may be divided into two

general classes: subdomain functions and entire domain functions.

A. Subdomain Functions

Of the two types of basis functions, subdomain functions are the most common, because
they may be used without prior knowledge of the nature of the function that they must
represent. Also, in order to deal with bent wires and arbitrarily shaped wire meshes,
it is more useful to divide the wires up into a series of short segments and define a set

of functions each of which is non-zero over a few segments only.

Xy

(a) Single

anS(x')

{( |
V4 x
X 0 X 1 X H X 3 X N

(b) Multiple

(c¢) Function representation

Figure 2.3: Piecewise linear approximation to current for subdomain
functions in Moment Method solution [1].
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To illustrate the method, overlapping triangle functions are chosen because they
lead to a piecewise-linear approximation to the current and yet are relatively simple.
As shown in Fig. 2.3a, each triangle function, g,, is based on two segments and overlaps

its neighbor by one segment. It is of unit height. Thus, the current is expanded as

N

9(z') =) _ angu(z) (2.51)

n=1

where NV is the number of triangle functions needed to cover the wires. In this way

a piecewise-linear approximation to the currents is obtained, as depicted in Fig. 2.3c.
The amplitudes a,, are the unknowns which need to be found.

Other commonly used basis functions are pulse (step) functions. sinusoidal func-

tions, truncated cosine functions, or a three-term function (consisting of constant, sine

and cosine terms) as used in NEC.

B. Entire Domain Functions

Entire domain basis functions, as their name implies, are defined and are nonzero
over the entire length of the structure being considered. Thus no segmentation is
involved. Because we are constrained to use a finite number of functions, entire domain
basis functions usually have difficulty in modeling arbitrary or complicated unknown

functions.

Entire domain basis functions can be generated using Tschebyscheff, Maclaurin,

Legendre, Hermite polynomials, and sinusoidal, or other convenient functions.

2.6.2 Weighting (Testing) Functions

To improve the point-matching solution, an inner product (w, g) can be defined which

is a scalar operation satisfying the laws of
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(w, g) = (9. w) (2.52a)
(bf +cg,w) = b(f, w) + c(g, w) (2.32b)
(9°.9) >0 if g#0 (2.52¢)
(9°.9)=0 if g=0 (2.52d)

where b and c are scalars and the asterisk (*) indicates complex conjugation. A typical,

but not unique, inner product is

(w,g) = //s w" - gds (2.33)

where the w’s are the weighting functions and S is the surface of the structure being
analyzed. Note that the functions w and g can be vectors.

The collocation (point-matching) method is a numerical technique whose solutions
satisfy the electromagnetic boundary conditions only at discrete points. Between these
points the boundary conditions may not be satisfied, and we define the deviation as a
residual (e.g., residual = AE|, = E(scattered)|ian + E(incident)|;an 7 0 on the surface
of an electric conductor). To minimize the residual in such a way that its overall average
over the entire structure approaches zero, the method of weighted residuals is utilized
in conjunction with the inner product of (2.53). This technique, referred to as the
Moment Method (MoM), does not lead to a vanishing residual at every point on the
surface of a conductor, but it forces the boundary conditions to be satisfied in an
average sense over the entire surface.

To accomplish this, we define a set of .V weighting functions {w,,} = wi, wy, ..., wy
in the domain of the operator F'. Forming the inner product between each of these

functions, (2.47) results in

N
> " an(wm, F(gn)) = (wm, h) m=12..,N (2.54)
n=1
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This set of IV equations may be written in matrix form as

[Franllan] = [hm] (2.33)
where
(wy, F(q1)) (wi, ?(92)) (w1, Fgn))
(Fo] = (wa, 1?(91)) (ws, | (92)) (wa, f‘;(glv)) (255a)
(wNv F(gl)) (wNv F(.q?)) ('LL",v. F(gN))
a) (lwlr Z)
[a.] = a (hm] = (w'z:’ ) (2.35b)
ay (sz h)

The matrix of (2.55) may be solved for the a, by inversion. and it can be written as
[an] = [Fnn] ™' Pm) (2.56)

The choice of weighting functions is important in that the elements of {w,,} must
be linearly independent, so that the NV equations in (2.54) will be linearly independent.
Further, it will generally be advantageous to choose weighting functions that minimize
the computations required to evaluate the inner product. A particular choice of func-
tions may be to let the weighting and basis function be the same. that is, w, = gn.
More generally, w, = g; when g, is complex. This technique is known as Galerkin's

method.

2.6.3 Numerical Electromagnetic Code (NEC)

The Numerical Electromagnetic Code (NEC) is a user-oriented FORTRAN program
developed at Lawrence Livermore National Laboratory. It is a MoM code for ana-
lyzing the interaction of electromagnetic waves with arbitrary structures consisting of
conducting wires and surface-patches. It combines an integral equation for smooth

surfaces with one for wires to provide convenient and accurate modeling for a wide
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range of applications. The code can model antennas, scatterers, as well as nonradiat-
ing networks and transmission lines, perfect and imperfect conductors, lumped element
loading, and perfect and imperfect conducting ground planes.

It uses the EFIE for thin wires and the MFIE for surfaces. The EFIE used is
Pocklinton’s equation (2.37) for perfectly conducting wires. Finite conductivity is
treated by impedance loading. The current expansion function (basis function) used

for wires is, for the jth segment,
Ij(Z) = :'lj =+ B]' sin[k(: - Zj)] -+ Cj COS[k(Z — Zj)] (257)

where z; is the center of the jth wire segment. So the basis function is a three-term
function (constant, sine and cosine) for wires. For surfaces, patches are used as the
basic element and these are specified by their center point, area and normal. The
current is assumed to be a constant over each patch, with components in two mutually
orthogonal directions. Wires can only be attached to patches at their centers. For
both wires and patches, the weighting function used in NEC is delta function, which
necessarily gives an unsymmetrical impedance matrix.

The excitation in NEC can be either an applied voltage source or an incident
plane wave. The program computes induced currents and charges, near- and far-zone
electric and magnetic fields, radar cross section, impedances and admittances, gain and

directivity, power budget, and antenna-to-antenna coupling.

2.7 Physical Optics Approximation (PO)

PO is perhaps the most flexible technique for RCS analysis of conductors. Due to the
nature of the approximation, it works best for electrically large bodies, such as large
flat surfaces. It is viable since it is the one of the fastest method devised so far for
simple objects. The PO method uses the surface currents as obtained from Geometrical

Optics (GO). These currents are integrated to get the scattered field.

(8]
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2.7.1 Physical Equivalence Principle

The problem of Fig. 2.4a, scattering of E and H by a perfect electric conducting (PEC)

obstacle, is of much practical concern. It can be formulated by the physical equivalence

principle.
Sy
A
. PP, n
E. H L- \‘/
l, _El ‘-Hl “.
:1 £,.1, I,/JF:“XH
LoV /Mp:O
R S

(b) Physical Equivalent

(a) Actual problem

Figure 2.4: Physical equivalent for scattering by a perfect electric con-
ducting (PEC) obstacle [1].

In the absence of the obstacle, the fields produced by J; and M; are E; and H;,
which we assume can be calculated or are given. In the presence of the obstacle (PEC
in this case), the fields outside the obstacle are E and H and inside the obstacle are

equal to zero. The fields E and H are related to E; and H; by
E=E;+E° (2.58a)
H=H,+H’ (2.58b)
where E® and H*® are scattered fields introduced by the obstacle.
According to the boundary condition, over the boundary S, of the conductor, the

total tangential components of the E field are equal to zero and the total tangential

components of the H field are equal to the induced current density J. In equation
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form, we have over Sy,

M=-iax(E-E)y=-AxE=-ax(E;,+E*) =0 (2.59a)
J=Aax(H-H)=axH=1nx (H; + H) (2.59b)

or
-ax E; =i x E? (2.60a)
J=fxH +8x H (2.60b)

Therefore, the equivalent to the problem of Fig. 2.4a, computation of E* and H® outside
of Sy, is that of Fig. 2.4b. Remember that E;, H; and E*, H* are solutions to Maxwell’s
equations outside V}, so in the equivalent problems we retain the same medium ey, p;
inside and outside V;. The equivalent of Fig. 2.4b will give ES, H* outside of S; and

E;, H; inside S, because

M=-AxE=-fix(E+E)=—ix [E° - (-E,)] =0 (2.61a)

J=fxH=fx (H +H)=n x [(H - (-H,)] (2.61b)

We call the problem of Fig. 2.4b the physical equivalent. It can be solved since we
assume that J radiates in one medium (e, u; everywhere).

The physical equivalent is used to develop electric and magnetic field integral equa-
tions designated, respectively, as EFIE and MFIE. These integral equations are then
solved for the unknown current density J by presenting it with a series of finite terms
of known functions (referred to as basis functions) but with unknown amplitude coeffi-
cients. This then allows the reduction of the integral equation to a number of algebraic
equations that are usually solved by use of either matrix or iterative techniques. To
date, the most popular numerical technique in applied electromagnetics for solving
these integral equations is the Moment Method (MoM) which was discussed in Section

2.6.



2.7.2 Physical Optics

If the conducting obstacle of Fig. 2.4a is an infinite, flat, perfect electric conductor
(infinite ground plane), then the physical equivalent problem of Fig. 2.4b is that of

Fig. 2.5 where the electric current J is equal to
J=axH=0x (H +H;) =2a x H; (2.62)

since the tangential components of the scattered H* field (H*|.,,) are in phase and
equal in amplitude to the tangential components of the incident H; field (H;|tn). The

equivalent of Fig. 2.5 is referred to as the physical optics (PO).

Sy Sy
o~
=
E\.p, v €K,
AT ELLH, o
’ -
J.=2nXH; J1.=0 J.=2nXH; M
-
e
E..H;
2 - n -
Ny
ta) PO applied to the original problem (b) equivalent problem

Figure 2.5: Physical Optics (PO) and the equivalence principle, applied
to a PEC.

If we apply PO to any surface other than an infinite plane, the currents obtained
from (2.62) are approximations of the MoM currents. PO is a popular approximation.
[t only approximates the surface current. How good the approximation is depends on
the size, curvature, edges and wedges of the surface in relation to the wavelength, and
the angle of the incident field. Generally, PO is only used for large, reasonably flat

surfaces. However, it performs well for all surfaces of low curvature.
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2.7.3 An Example
Supposing a uniform plane wave
E' = §E e’ (2.63)

is incident upon a flat rectangular plate of dimension a =2 m and b = 1 m, we want
to find the scattered fields and RCS by using PO. Assume the incident field lies on the

zz plane (¢; = 0°) and the wavelength A =1 m.

Z

(a) Rectangular plate.

5 \\
[

(b) The xz plane.

Figure 2.6: The geometry of uniform plane wave incident upon a rect-
angular plate in zz plane.

The geometry of this task is shown in Fig. 2.6. Then the electric and magnetic field
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components of the incident uniform plane wave can be written as

Ei — a‘Eoejk-r — éEoejk(zsin0g+:c050.-) (264)
Hi - _qg%ejk(xsinai-f-:cosai) (265)

At z = 0, the magnetic field reduces to
Hi - _ "_El)'e]kzsinﬂi = _y&ejkzsinag (266)
n n
Applying physical optics techniques, the current density induced on the plate can be
approximated by

. Ey . 2E,

J, = 20 x H' = 23 x —g—elkesinbi — g2 0 pjke’sinbs (2.67)
n
or
2Ey
J,=J.=0 and Jy = T2k sind, (2.67a)
n
From (2.30), we have
—jkR JkT
U [ | ] ’ ue kT-r U
A=— [ JJ( ¢,z ds' = — J, e ds 2.68
47rss(Iy)Rs47rr/se (2.68)
where
f = X sin#f, cos ¢, + ¥ sin b, sin ¢ + Z cos b, (2.68a)
r'=r'%x+yy+2% (2.68b)

In zz plane, ¢s = 0°, then £ = Xsinf; + Zcosf,. Thus,

f-r' =1'siné; + 2’ cosb; (2.69)
and (2.68) can be written as
H e—jkr jk(z’ sin0s+3' cosly) gt -
A=— Jsel sTE 8%Ids (2.70)
dr v Js
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On the plate, z' =0, A reduces to

—jkr .
A=FRE / J eiksinbs gy (2.71)
. r Js
and its £ component is
4= 28 / Joelk im0 gt
4T r
_H® e / o2 / o2 % eIk sind, ke’ sin s g1 oy
T r=—bj2 Jri=—as2 N
_ 95#506 —ikr /a T ik (sinitsingy) g,
'17—77 r r'=-a/f2
_ abuEqy e 7 sin(X) (2.72)
2ty r X
where
. ka, . . 5 -
X = 7(sm 0; +sind;) (2.72a)
For the far-field region. Fy = —jwdy. Because of
=A-6=4,% 0= 4,cos0, (2.73)
the scattered E-field is
abpEy e=7* sin(X)
E; = - 0
g = —Jjwcos Sy — ¥
—Jjkr : r
_ __J,aon e cos 6551n(;\) (2.74)
A T X
and the RCS can be calculated by
T Y 2
O3_p = ,ll,r& [er 32
b\? . in(X)]>
= 47 (%) cos’ 6, [sm“(\’ )] (2.75)
where X is given by (2.72a).
In the case of computing the monostatic RCS, 6; = 6,. Thus
. ka, . ) ) -
X = T(sm 0; +sinf;) = kasiné; (2.76)
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then the scattered E-field reduces to

_abEg e~k sin(ka sin §;)
H = — — Y TT
E0 Imono J 2 [C i kasin 91' (...t {)
and the RCS is
ab\®> . [sin(kasin6;) 2
=47 | — | 2.7
03-D lmono = 47 < /\) cos~ @ [ Fasnd. J (2.78)

Using a FORTRAN program plate_rcs.f90, which is listed in Appendix A.1, we can

get the monostatic RCS of a 2\ by 1A plate as shown in Fig. 2.7.

20 v T T - r
a=2m, b=lm, phi=0 ——

10

0

-20 ¥

RCS (dBsm)
]
AR
(o]

-30 F

0 10 20 30 40 50 60 70 80 90
Observation angle theta (degrees)

Figure 2.7: Monostatic RCS gg4(68). PO solution for a 2m by 1m plate.
The incident angle is @ = 0° and A = 1m.



Chapter 3

Some 3D Scattering Results from
MoM and PO

In this chapter, we give the PO solutions for thin wires, plates, and a wire/plate
combination. This is compared with the results from NEC-2, which is a MoM code for
analyzing the interaction of electromagnetic waves with arbitrary structures consisting
of conducting wires and surface-patches. Thus, we developed several NEC-2 and PO
models.

We also studied the effect of holes in a plate, using PO and NEC-2. Finally, some
interesting effects were observed by looking at a small vertical strip on the plate, which

forms a dihedral reflector. This was studied by using NEC-2.

3.1 A Thin Wire

The studies of wires’ RCS has been undergoing for several decades. Analysis techniques
fall into two classes, depending on whether the wires are thin or thick. For thin wires,
the MoM is extremely accurate and reasonably efficient. One also can use MoM dealing
with thick wires, but the wires must be modeled as cylinders by using either wire grids
or patches.

PO is inapplicable to a thin wire; however it can be extended as the eigenfunc-
tion/PO method. The main idea is to use the eigenfunction solution (rather than GO)

to obtain the surface current on an infinitely long cylinder. For plane wave incidence,
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this can be done exactly by using eigenfunction solution, whether the wires are thin or
thick. Then we assume that truncating the wire does not appreciably alter the current,

and obtain the scattered field by using radiation integral.

3.1.1 Detailed Analysis

We begin with a long cylinder of radius a and length —[/2 < = < [/2 as shown in
Fig. 3.1. The incident electric field is a g polarized uniform plane wave, in the z — =
plane (¢; = 0). In this instance. the electric field can be expressed as

Ei = §E,ek(zsinbi+zcosty)

= Fy(% cos @; — zsin §;)elk(zsinbiF=coséy) (3.1)

The corresponding magnetic field is

Hi — _¢?_Er_’£ejk(zsin0,~+zcoso,) (3))

Figure 3.1: A 6 polarized uniform plane wave incidents in the z - 2
plane upon a circular cvlinder of length [ and radius a.

Using the cylindrical wave transformations, the z component of (3.1) can be ex-

pressed as

Ei = —Eosin ;"% %" j"Jo(kpsin §;)e’™ (3.3)

n=-—oc
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From the eigenfunction solution, we can obtain the total magnetic field at the wire
surface. Then, J; = 7 x H!|,—, = p x (H' + H®)|,=, can be used to obtain the surface

current. The current density induced on the surface of the wire can be expressed as

WBo  eeoss, S J"n COS(n0)
.]: = _ - ejk-cosa, . (3.4)
wkansin 6; ; H (kasin 8;)

where ¢ = 1, ¢, = 2 is Neumann’s number. If the wire is thin, we can use just the
0 n

leading term of the series, and the approximation is

2 ,2 YT -
H(z)~1- J;m(—{)—) (3.5)

4

where v = 1.781. Then (3.4) reduces to

J'Eoejlc: cos §;

" awpsin0;{j7/2 + In[(vka/2) sin 6]} (36)

J. =

From (3.6), we can see that the eigenfunction/PO solution for .J. is a traveling
wave. Actually, there should exist two components, e/¥3¢°s% and e=/k=cosbi byt the
first one is strong and the second one is weak.

From (2.43) and (2.32), we can use the radiation integral

2 kR
L= g
47 —i/2 R
—jkr 1/2 e
= HFE Iral. (')’ d’ (3.7)
i r /2

Because f - r’ = z' cos#; in our problem, 4. reduces to

L - Ee--jlcr /1/2 _ onejk:cosai ejk:'cosf’sdz’
2 o Jyy awpsindi{j7/2 + In[(vka/2)sin 6;]}

_ Ey 1 e~ikr /2 oIk (cos 8,+c0s6) 7.1
2wsin; jm /2 + In[(vka/2)sinb;] r J_yp
_ . E 1 e~ 7% sin(U) (3.8)
= J55sin 0; jm/2 + In[(vka/2)sin6;] r U )
where
kl
U= 3(c050,- + cos bs) (3.8a)
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With Ey = —jwAg for the far-field region and 44 = — A, sin §;, the scattered E-field

can be given by

£ Eolsinf, 1 e~k sin(U) (3.9)
™ 2 sin@; jn/2 +In[(vka/2)sin§;] r U )
and using (2.18), the RCS can be calculated by
: 2| B3
p=1 47T —
o1-0= lim [4rr* 2he
.2 - 2/~
_ 25 65 1 sin“(U) (3.10)

sin?; 72/4 + In*[(vka/2) sin6;] U?

3.1.2 Results

We computed the bistatic RCS for a thin wire with radius a = 0.005), length [ = EP
and A = lm, as shown in Fig. 3.2. Comparison was made with the MoM code NEC-2.

The numerical results in Fig. 3.2 for broadside incidence show very good agreement of

eigenfunction/PO and NEC-2.
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Figure 3.2: Bistatic RCS ogygy(0,) for a thin wire with radius 0.005m
and length 4m. Comparison of eigenfunction/PO and NEC-2. The
incident angle is 8; = 90° and A = 1m. The observer is at ;.

In general, for an incident angle §;, the specular scattering occurs at 8, = 7 — 0;.

This can be seen in Fig. 3.3 and Fig. 3.4. We also note that the results deteriorate
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when the incident angle is close to grazing along the wire. This is because the PO

current approaches zero.
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Figure 3.3: Bistatic RCS ogg(8;) for a thin wire with radius 0.005m
and length 4m. Comparison of eigenfunction/PO and NEC-2. The
incident angle is §; = 60° and A = lm. The observer is at §;.
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Figure 3.4: Bistatic RCS ogg(0;) for a thin wire with radius 0.005m
and length 4m. Comparison of eigenfunction/PO and NEC-2. The
incident angle is 6; = 30° and A = lm. The observer is at 6.
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3.2 A Wire on the Plate

It is straightforward to obtain the scattered field of a wire/piate combination. using
PO. The geometry of this problem is shown in Fig. 3.5, a z directioned wire stands on

a rectangular plate in zy plane.

>

\\\\\\\‘
- x

Figure 3.5: Geometry of a monopole illuminated by a uniform plane
wave. The monopole has length L and radius a.

’/ 7

B_

A

/

Since the wire (monopole) is thin, its shadowing effects will be neglected. However,
we must allow for the fact that the incident wave reflected from the plate will illuminate
a portion of the wire. Hence, there are two incident waves (two scattered waves also)
for the wire. They are shown in Fig. 3.6(a). Therefore, by adding these two wire fields
and the field scattered by the plate, we can obtain the total scattered field.

Suppose the incident electric field is a 6 polarized uniform plane wave in the xz

plane (¢; = 0 or 180°). Then it can be expressed as

Ei — 0'"Eloejlc(;x:sin0l cos ¢;+zcosb,) (3.11)

Using the same procedure as described in Section 2.7.3, we can obtain the PO
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Observation Point

[a]

(a) The fields incidents upon the wire include direct
incident wave and reflected wave from the plate
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(b) The reflected field from the plate

illuminate a portion of the wire

Figure 3.6: The fields on the wire when a monopole illuminated by a
uniform plane wave. The monopole has length L and radius a.

scattered field of the rectangular plate as

_ABEg e~3*" sin(.\
Ey |ptate = —J 02 - {cos 0 cos(¢; — &) [ £ )] } (3.12)

A
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where

kA
X = —;(sin 6; cos ¢; + sin 6, cos ;) (3.12a)

In the previous section, we had a solution for thin wire. So the first scattered field

of the wire (caused by the direct incident wave) should be

EyL sin 8, 1 e~I%7 sin(U))
Es |, — Eolsinb; ’ , 3.13
i luwire: 2 sin#; jn/2 + In[(vka/2)sinb;] r U (3.13)

where
k
U= TL(cos 0; + cos 8) (3.13a)

For the reflected field from the plate, from Fig. 3.6(b) we can find that it is still
a @ polarized uniform plane wave in the zz plane (¢; = 0). But when the reflected
field illuminates the wire, the incident angle becomes 180° — §. We also noticed that if
the incident angle is # and the plate has a dimension of 4 in x direction, as shown in

Fig. 3.6(b), then the equivalent wire length L, should be:

4

3.14
2tand; ( )

el

Thus, the second scattered field of the wire (caused by the reflected wave) can be

expressed as

EqL. siné, 1 e~* sin(U) -
5 |wires = - - - 3.1
Eg luwire: 2 sin(m — 6;) jm/2 + In[(vka/2)sin(7 — 6;)] r U (3:.15)
where

kL, -

[= —f [cos(m — 6;) + cos 6] (3.15a)
1 <
Le _ Le[ if Le[ s L. (315b)
L if Lg > L.

Then the total scattered field can be obtained by adding these three fields together
E; |total = E; |plate + E; Iwirex + E; |wire2 (316)
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NEC & PO, L=5 a=.l1 monopole on a 5x5 plate
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Figure 3.7: Bistatic RCS ogg for a [ = 53), a = 0.1\ wireon a 5 x 3
rectangular plate. Comparison of PO and NEC. The incident angle is
8; = —30°.

NEC & PO, Plane Wave Incident upon a 5x5 plate
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Figure 3.8: Bistatic RCS ggg for a 5 x 5 rectangular plate without
monopole. Comparison of PO and NEC. The incident angle is 6; =

-30°.

The FORTRAN program plate_wire.f90, which is listed in Appendix A.2, can be

used to calculate the RCS for a wire/plate combination.
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Fig. 3.7 shows the bistatic RCS for a 5A by 5 plate, with a wire of length 5\ and
radius 0.1\ standing on it. NEC-2 was used for comparison with PO. In NEC-2, we
modeled the plate by using wire grids. The distance between grids are 0.1A. Thus
based on the same surface rule, the wire radius should be 0.1/27 = 0.0159.\.

For comparison, the RCS for a plate without a wire on it are shown in Fig. 3.8. It
is safe to assume the NEC-2 result is more accurate. We can see that the backscatter
at @ = —30° is affected by the presence of the wire. In the bistatic specular direction

6 = 30°, it is obvious that the plate RCS dominates and the wire RCS is insignificant.

3.3 A Plate with Apertures

We developed NEC-2 and PO models for a large plate with holes. When a uniform
plane wave is incident upon a rectangular plate with holes, we can get the RCS with
different hole patterns by using NEC-2 and PO.

We still assume the incident electric field is a 8 polarized uniform plane wave in the

zz plane (¢; = 0 or 180°)
Ei — éEoejk(rsinﬂ,- cos@;+zcosb;) (317)
and the plate is in the zy plane.

Suppose a rectangular plate is centered at (zq, y) with the dimensions as shown in

Fig. 3.9. Then by using PO, we can obtain the scattered field as

—jkr i\
E; = _]_aon € ei¥olcost, cos(®; — Os) Sm(, ) (3.18)
A r X
where
Xo = kzy(sin 6; cos ¢; + sin§; cos ¢5) (3.18a)
k
X = —;)g(sin 6; cos @; + sinf, cos o) (3.18b)

For comparison, we chose no hole, 1 hole, 5 holes and 13 holes on a 5A by 5A plate.
We also let each hole to be a square with size 1A by 1), so we can use (3.18) to computer

its scattered field. The hole patterns under examination are shown in Fig. 3.10.
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EYQ y

Figure 3.9: Uniform plane wave (in the zz plane) incidents upon a a
by b plate centered at (zg, yo)-

In order to solve the plate with apertures problem, first we should calculate the
scattered fields of the plate using (3.18). Then, we calculate the scattered fields of
each aperture. Finally, we can obtain the total scattered fields by subtracting each

aperture fields from the plate fields. In equation form. it is

N

E; Itotal = E; Iplate - Z Eg laperturen (319)

n=1

For a uniform plane wave with an incident angle of 30 degrees, the bistatic RCS
results are shown in Fig. 3.11. In Fig. 3.11 the figures on the left are obtained by using
NEC-2, and those on the right are from PO.

From Fig. 3.11, we found that we needed a hole density of at least 50% to get any
kind of significant effect. The hole and the plate have maximum RCS at the same
bistatic angle. Hence, the hole RCS gets swamped out by the plate RCS, unless there
are a lot of holes. The plate with many holes has the same phase relation between

patches as a plate without holes, so the pattern is not greatly affected.
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Pattern 1 (no hole) Pattern 2 (1 hole)

Pattern 3 (5 holes) Pattern 4 (13 holes)

Figure 3.10: Four aperture patterns (no hole, 1 hole, 5 holes and 13
holes) on a 5\ x 5 square plate.

In fact, we can predict the RCS reduction at the specular direction by using a
simplified RCS equation

47 A?

. (3.20)

RCS =

where A is the area of the target. For instance, the area ratio between pattern 1
(no holes) and pattern 4 (13 holes) is 12/25, so the RCS reduction in dB should be
10log(12/25)% = 6.4dB. The plots in Fig. 3.11 proved this is true.
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Figure 3.11: The comparison of bistatic RCS oy for different hole
patterns when uniform plane wave incident upon a 5\ x 3A square
plate with an incidence angle of 30 degrees. Comparison of PO and
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3.4 A Vertical Strip on the Plate

We developed a NEC-2 model for a large plate with a small vertical strip. The geometry
is shown in Fig. 3.12. We use the word "strip” to avoid confusion with the main plate.

The main plate lies in the zy plane, and the strip lies in the yz plane.

Figure 3.12: Geometry of rectangular plate with a vertical strip of
height h, forming a dihedral reflector.

Again, we assume the incident electric field is a § polarized uniform plane wave in

the zz plane (¢; = 0 or 180°)

Ei — o“Eoejk(a:sin(),-cos¢,+zcos€.) (321)

and we want to computer the co—polarized RCS.

Same as in previous sections, we still use a wire grid to model the plate and strip.
The distance between grids is 0.1\. and so the wire radius equals to 0.0159A.

This structure forms a dihedral reflector. This corner reflector has a substantial
effect, and it can be observed from the results because its RCS does not coincide with
the large specular reflector of the main plate. Fig. 3.13 shows an interesting result. A
strip of height A = 1\ causes a strong RCS in the backscatter direction. The mono

static RCS of this structure is shown in Fig. 3.14. We can see the great effect of the
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strip in this structure when the incident (observation) angle is close to grazing of the

plate.

(dBsm)

RCS

Figure 3.
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13: Bistatic RCS oggg for a 5\ x 3\ plate with and without a
5 long corner reflector. The uniform plane wave incident at
of 8, = 30°. NEC model
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Chapter 4

2D TM Scattering, PBPM and
APE

In this chapter, first of all, we give the formulation of the methods of Pulse Basis Point
Matching (PBPM), and Asymptotic Phasefront Extraction (APE). Then PBPM and
APE were used to compute the surface current for a 2D strip, T M, case. Also, the

RCS was obtained. Our purpose is to compare these two methods.

4.1 Formulation

Supposing a TM uniform plane wave is incident upon a finite width strip with incident

angle @; as shown in Fig. 4.1, the incident field can be expressed as
Ei = eik(zcosoitysine;) (4.1)

and the current induced on the strip can be written as

N
Jo(z) =) anfalz) (42)
n=1
From the incident electric field, we can write the scattered electric field at any

observation point as

k w/2
Ei=— / HP (kR)J.(z')dz’ (+3)
r’'=-w/2
where
R=|r-r'|=(-2)+y? (4.3a)
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Figure 4.1: TM uniform plane wave incident on a strip.

By applying BC on the surface of the strip, we have
_El ) IJ—O = E ( ) |y=0 (4-4)

Substituting (4.2) into (4.3), and applying (4.4) gives us

temson _ "Z [ B - )t (45
w/2
or
N
E'(z) =) angn(z) (4.6)
n=1
where
Ei(z) = elkzcoso: (4.62)
k w/2 ! ' !
gnlz) = _f / . HO (kjz — 2')) fu(2')de (4.6b)

We need (4.5) to be true for all z on the strip’s surface.
We can use the MoM to solve (4.3). Multiplying both sides of (4.6) by weight
function wy,(z) and integrating over —w/2 < z < w/2 leads to following equation:
N

w/2 ) w/2
/ E{(z)wpn,(z)dz = / )" angn(z)wm(z)dz (4.7)

=—w/2 r=-w/2 )
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Note that (4.5) would need to be done as a single numerical integral, but (4.7)

would have a double numerical integral. Putting (4.6a) and (4.6b) into (4.7) gives us

w/?2 )
/ e]lczcoscp.'wm(z)dx
z

=—w/2

N w/2 w/2 ,
=Zan/ [k_n /1:"_ ‘ Hé')(klx—x'|)fn(1:')dl" W (r)dz (4.8)

or
N
Vin = Zaann (49)
n=1l
where
w/2 ) v
Vm — / e_]kzcosoiwm(l-)dg; (4_93)
r=—w/2
k’) w/? w2 (2) ' ! '
Zn = T Hy ' (k|lz — L)) fa(z")wm(r)dz'dr (4.9b)
' r=—w/2J'=—w/2

If we let wy,(z) = f1(z), then (4.9) becomes Galerkin’s method.

m

4.1.1 Pulse Basis Point Matching (PBPM)

We can obtain the conventional PBPM solution by using pulses of width A
fa(@) =u(z —zp +A/2) —u(r — £, — A/2) (4.10)

where u is the unit step function.
We want (4.5) to be true for all x on the strip. We cannot have this, but we can

make it hold at m points, i.e. we let
_'E.l':(l') |I=Im = E:(j) |I=1‘m (411)

where z = T,, is called a “match point”, because the BC is met or “matched” at those

points. Actually, by using “point matching”, it is meant that the testing functions are
Wm(z) =6(z — zm) (4.12)
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Now, (4.5) can be rewritten as

N
k 2
gIkemeeso = Zan T / o HO (Klzm — ')z’ (+.13)
pulse
or
N
V=Y anZmn (4.14)
n=1
where
Vo, = efkamcoso; (4.14a)
Zon = an o HE (Kl — 2'])de’ (4.14b)

pulse

Then, the main task is to evaluate the Z,;,.

For m # n, Zn, can be calculated by

k ki -
T = "H‘Q’ (klom = zal) [ o do' = T”ng’(mm — za))A (4.15)
pulse
For m = n, Z,,» can be expressed as
Znn = ’“4—’7/ H® (k|z'))dz' = / H® (kz')d (4.16)

For small z, we have

Hy'(z) =1 ]—ln( 5 ) (4.17)
and (4.16) reduces to
kn [ 1.781kz’
Znnz_n/- l:]-_]_ln( . )J dz’
2 /o T 2
Ry
kn |, .2, 1.781kz’ 2 '
=35 {x —Jz [ln( 5 ) — 1] }0 (4.18)
Note that
llmxln(aa.) 0 (4.19)
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Thus, we have

Znn = all {:_\-—1—3 [1 (-1—78%]3) 1]}

2
- an [ 1n(1 ’81“)] A (4.20)

After we obtain V}, and Z,,, and put them in (4.14), a, can be found by using the
“Crout Method” to solve the system of linear equations. Then, by substituting (+.10)
and a, to (4.2), we can obtain the PBPM current density on the strip.

According to the 2D T M. inhomogeneous wave equation solution, for a z directed
electric current J, at p’ = Xz’ +¥v/', at an observation point g = Xz + Jy. the magnetic

vector potential A. can be expressed as
,,uJ;(ﬁ' .
4= / —J—,—)H(‘f’(up —
/ HP (k|p - 7)) J-(5)dl' (4.21)
Thus, by using the large argument approximation for the Hankel function

2 2
H (kp) ~ ,/;Ee—ﬂkﬂ-f/*) (4.22)

the E-field produced by the electric current can be approximated by

E. = —jwd. = =5 [ HP (k|5 - §1) J(7)dl

Jklp—pl
~ g [ =
,/ eimlt -}klp le 7)dl! 4.23

In our problem, we have |p — p'| = p — ' cos @ for the phase term and |5 — 5’| = p

for the distance term, and

N

J(P) =) _anfalz) (4-24)

n=1
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so the scattered field can be obtained from

S~ ejrr/4e ke e]lc;r: COS @4 a f

: = V E nJ/n

. 8w \/.5 —-w/?2
— ‘rr/4e ~ike ejlc:r:,. cos ¢ 4.95
=~ Z @A (4.25)

where z, is the position of the n-th segment along the x axis, a, is the current density
induced on the n-th segment, and A is the length of each segment. It is usually

adequate to choose 0.1A < A < 0.2\

4.1.2 Asymptotic Phasefront Extraction (APE)

The PBPM solution requires small segments. Following Kwon et al.[9], we can try

including a phase taper in the basis functions. Thus, we replace (4.10) by
fa(@) = [u(z — To + A/2) — u(z — 2, — A/2)]eI*Ec052 (4.26)

Using point matching, (4.5) becomes

N
e]k:z:m cosQ; _ Z aﬂ_} " Hél)(klxm _ xll)e_]k:z: cos o ./ (427)
n=1 pulse
or
N
Vi = nZumn (1.28)
n=1
where
Vin = glEmmeoses (4.28a)
Zn = kjn o HP (k| — o))l s (4.28b)

pulse

For m # n, Z,,, can be calculated by

Zon = SHD (b — zal)eenee [ o

nth

pulse

/C17 H(2) kll'm _ Inl)ejkz,. cosd. g (4.29)
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For m = n, Z,,, can be expressed as

kn[ 2 1.78lkA
= — 1—]

. = jkIn COS @; A 4.30
Zon = = |1 = j=In(=—=) | & (4:30)

Note that Z,, is a symmetric array in PBPM, but here Z,,, is an unsymmetric
array.

Similar as in PBPM, from V,, and Z,,, we can obtain a,. Then, by substituting
(4.26) and a, to (4.2), we can obtain the APE current density on the strip. But now,
we must divide each segment into small pieces and compute the current accounting to
the phase taper.

By using (4.23) and (4.24), for the APE solution, the scattered field can be expressed

as
N

[k . e-dke [wl2
S~ jw/4 jkz' cos @s ’ ’
T = —87rej 7 e E an fn(z')dz

-w/2 ne1l
k ) e_jkp N '
= — __617"/4___ j2kzn cos s ‘n.A 131
r’V 8 VP nz___:le a ( )

4.1.3 Numerical Integration (INI)

From previous sections, we know that:
For PBPM

k 9
Zonn = Tn/nm Hé")(k|zm — z'|)ds’ (4.32)
pulse

Comparing it with (4.15) and (4.20), we can find that: when we compute Zn,
we assume H”(k|z, — z'|) is a constant inside the n-th segment, and it equals to
H((,z)(klxm — z,|). Obviously, this would be true only when the segments length A is
very small. If we use these equations for large A\, they will introduce significant errors
on the surface current as well as RCS.

For large A\, we must use numerical integration to calculate Z,. Thus, we divide
every segment to J pieces. If the sub-segment length is d, then we have A = J4§. So

for PBPM



k
Zon = [ o H (bl = 2’

4
pulse
1'n+$/2 ,
N
4
Tn—A/2
J
= %72 ; H? (k|zm — /)0 (z; = Tn — A/2 + i0) (4.33)

When we calculate Z,,, if |zm — ;] < A, we note that the Hankel function is

singular. We can use following equation to compute the values of Hankel function

9 - 2 .
H (klzm — ) = H(276) 22 1 - j= In(1.78170) (4.34)

and obtain Z,,.

For APE, we can use same procedure to implement NL.

4.2 Surface Current J;

By using Pulse Basis Point Matching (PBPM) or Asymptotic Phasefront Extraction
(APE) methods, we examined the surface current J; when a TM uniform plane wave
is incident upon a strip. For a 2\ width strip illuminated by a plane wave at an
angle of ¢; = 60°, we can get the magnitude and phase of the induced surface current
density along the strip when N = 8 segments. The results are plotted in Fig. 4.2. It
is important to note that each segment was divided into 100 slices when we calculate
the APE current.

The plots in Fig. 4.2 show that the APE is highly suited to model the rapidly
varyving surface current phase. At the match points, the APE and the PBPM have
good agreements. The phase slope in the APE is dictated by the incident plane wave.
Hence the phase discontinuities seem inevitable. Nevertheless, the APE phase is closer

to the expected physical behavior.



Magnitude of the Surface Current from PBPM and APE
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Figure 4.2: The surface current density along a strip of width 2A.
N = 8. Comparison of PBPM and APE. TM uniform plane wave
incident on the plate at an angle of ¢; = 60°.

We also computed the real part and imaginary part of the surface current of a 2\
width strip. After applying numerical integration, the comparisons of PBPM and APE

are shown in Fig. 4.3.
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Figure 4.3: Real and imaginary parts of the surface current for different
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100 steps per segment. TM uniform plane wave incident upon a 2\
width strip at an angle of ¢; = 60°.

For a 20\ width strip at the same condition, the surface current are shown

Fig. 4.4.
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4.3 RCS

From (4.25) and (4.31), we can calculate the scattered field of a finite width strip by
applying Pulse Basis Point Matching (PBPM) or Asymptotic Phasefront Extraction

(APE) methods. Then we can have the 2D scattering width (SW) by using (2.17).

4.3.1 TM, Plane Wave 60° Incident

For a 2\ width strip, with a 7M., plane wave incident at an angle of 60°, the results are
plotted in Fig. 4.5. When we calculate APE current, we still divided each segments into

100 slices. In the plots, the PBPM with V = 256 is used as the benchmark solution.
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Figure 4.5: The bistatic RCS o044(¢s) of different segment numbers V.
Comparison of PBPM and APE. TM uniform plane wave incident upon
a 2\ width strip at an angle of ¢; = 60°.
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Also, we can get the results for a 20\ width strip at the same condition. They are
plotted in Fig. 4.6. Comparing with Fig. 4.5, we can make a conclusion: APE will give

us better results for the objects with large dimensions.
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Figure 4.6: The bistatic RCS 04,(@;) of different segment numbers V.
Comparison of PBPM and APE. TM uniform plane wave incident upon
a 20\ width strip at an angle of @; = 60°.

From Fig. 4.5 and Fig. 4.6, we can find that, at the specular point, the SW’s at
N = 2 are much lower than them at NV = 256. The reason is that the magnitude of the
current becomes smaller at N = 2 comparing to at N = 256. By applying numerical

integration, we calculated the 2D scattering width (SW) for both 2\ and 20\ width

37



strips again. With a T M. plane wave incident at an angle of 60°, choosing the integral
steps as 100 per segment, the results are plotted in Fig. 4.7 and Fig. 4.8. From these
two figures, we confirmed that APE will give us better results for the objects with large
dimensions.

Comparing Fig. 4.7 with Fig. 4.5 and Fig. 4.8 with Fig. 4.6, we can find the results
in Fig. 4.7 and Fig. 4.8 are much better for large segments. So when the segments are
large (V is small), applying NI to RCS computation is very important.
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Figure 4.8: The bistatic RCS 044(¢;) of different segment numbers
N. Comparison of PBPM and APE applying NI with 100 steps per
segment. TM uniform plane wave incident upon a 20\ width strip at
an angle of ¢; = 60°.

From Fig. 4.7 and Fig. 4.8, we can find that, PBPM can give us good SW results
when segments length A < 0.2\ (N = 10 for w = 2\ or N = 100 for w = 20A). But
for APE, even when A\ = 10, the SW result still looks good.

Now, we increase the strip width to 200\. With a TM; plane wave incident at an
angle of 60°, the SW results are plotted below. We can see APE can give us good SW

results even when segments length A < 40 (V =5 for w = 200)).
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N. Comparison of PBPM and APE applying NI with 100 steps per
segment. TM uniform plane wave incident upon a 200A width strip at
an angle of ¢; = 60°.

4.3.2 TM. Plane Wave Grazing Incident

One interesting question is that: does APE help RCS computation when a T M. plane
wave is grazing incident on a strip (¢; = 0). For a 2\ width strip, by applying NI, the

results are plotted in Fig. 4.10. We still use the PBPM with NV = 256 as the benchmark

solution.
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Figure 4.10: The bistatic RCS o,4(¢s) of different segment numbers
N. Comparison of PBPM and APE applying NI with 100 steps per
segment. TM uniform plane wave incident upon a 2\ width strip at an
angle of ¢; = 0°.

Similarly to the previous section, we can also get the results for a 20\ width strip

at the same condition. They are plotted in Fig. 4.11.
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Figure 4.11: The bistatic RCS 0,4(¢;) of different segment numbers
N. Comparison of PBPM and APE applying NI with 100 steps per
segment. TM uniform plane wave incident upon a 20\ width strip at
an angle of ¢; = 0°.

From Fig. 4.10 and Fig. 4.11, we can find that: comparing to PBPM, the APE does
help RCS computation even the incident plane wave is grazing to the strip, especially
at the forward scattering direction (¢; = 180°). On the other hand, both APE and
PBPM tend to be inaccurate in the backscatter direction, unless the segments length

A <02
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Chapter 5

Conclusion

Studies were made for Radar Cross Section (RCS) computation by using hybrid
methods.

RCS of plates was analyzed with “appendages”. The goal was to develop an
understanding of what happens to the RCS of a large structure (a plate) when other
small obstacles are present. We examined wires. plates, plate/wire, plate/aperture.
and plate/strip combinations. In all cases, a NEC-2 model, one solution of Moment
Methods (MoM) code, was possible. A PO mode! also was used for the wire. plate/wire.
and plate/aperture. The most interesting structure turned out to be the plate/strip.
The strip is a small vertical blade on the flat plate. It forms a dihedral reflector and
has a strong effect.

The Method of Asymptotic Phasefront Extraction (APE) was used to compute the
surface current for a 2D strip, TM. case. The RCS was also obtained. It is proved
that Numerical Integral (NI) is important for RCS computation when the segments are
large. Excellent RCS results were observed by applying APE, using only two segments
bases on a 20\ strip. This is in sharp contrast to conventional Pulse Basis Point
Matching (PBPM), which would require 50 or 100 segments. The APE looks very

promising and should be pursued further.
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Appendix A
FORTRAN Code List

A.1 plate_rcs.f90

PROGRAM plate_rcs

e Uniform plane wave was scattered by a rectangular plane
'c incident wave in x-z plane and E-field in theta direction
e output scattered E-field and RCS

IMPLICIT NONE

REAL, PARAMETER :: pi = 3.141592654 ! pi

REAL, PARAMETER :: dpr = 180./pi ! degrees per radian
COMPLEX :: es

REAL :: theta, rcs

REAL :: aa, bb, fmc, walv

INTEGER :: i loop index

aa = 2.0 length in x direction (in meter)
bb =1.0 length in y direction (in meter)
fmc = 300. frequency f (in MHz)

aa aa / wl length in x direction (in wavelength)
bb bb / wl length in y direction (in wavelength)
DO 1 =0, 180 observation angle theta 0 -> 90

theta = 0.5 * i / dpr degrees -> radians

CALL sfield(aa, bb, wl, theta, theta, es, rcs) ! monostatic

IF (rcs < 1.5E-45) THEN

rcs = 1.5E-45

ENDIF

rcs = 10. * L0OG10(rcs)

WRITE (10, *) 0.5 * i, rcs, es
END DO
END PROGRAM

!
!
!
1
wl = 300. / fmc ! wavelength lambda (in meter)
!
!
!
!

SUBROUTINE sfield(ax, by, wl, thi, ths, efs, rcs)
tc to calculate the scattered E-field and RCS
te Input: AX the length in x direction (in wavelength)
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e BY the length in y direction (in wavelength)

e WL wavelength

Ic THI angle theta of incident field
lc THS angle theta of scattered field
‘c Output: EFS scattered E-field

e RCS radar cross section

IMPLICIT NONE

REAL, INTENT(IN) :: ax, by, wl, thi, ths
COMPLEX, INTENT(OUT) :: efs

REAL, INTENT(QUT) :: rcs

REAL, PARAMETER :: pi = 3.141592654 ! pi

COMPLEX :: cj = (0.0, 1.0)

REAL :: x, sxx, sinx

wls = wl * wl

x =pi * ax * ( SIN(thi) + SIN(ths) ) ! X=k*a*[sin(thi)+sin(ths)]/2
sxx = sinx(x) ! sinx(x)=sin(x)/x

efs = - cj * ax * by * wl * COS(ths) * sxx

rcs = 4. * pi * CABS(efs)**2 / wls
END SUBROUTINE sfield

REAL FUNCTION sinx(arg)
e to calculet sinx = sin(x) / x
IMPLICIT NONE
REAL, INTENT(IN) :: arg
REAL, PARAMETER :: epsilon = 1.0E-30
IF ( ABS(arg) > epsilon ) THEN
sinx = SIN(arg) / arg
ELSE
sinx = 1.
END IF
END FUNCTION sinx

A.2 plate_wire.f90

PROGRAM plate_wire

lc uniform plane wave scattered by a monopole on a rectangular plane
Ic incident E-field in x-z plane and in theta direction

e output scattered E~-field and RCS

IMPLICIT NONE

REAL, PARAMETER :: pi = 3.141592654 ! pi

REAL, PARAMETER :: dpr = 180./pi ! degrees per radian

COMPLEX :: eth, ethp, ethwl, ethw2

REAL :: aa, bb, am, sm, fmc, wavl, phi, phs, thi, theta

REAL :: smp, thip, rcs, rcsp, rcswl, rcsw2, angle

INTEGER :: i ! loop index

aa = 5. | plate length in x direction (in meter)
bb = 5. ! plate length in y direction (in meter)
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sm =5. ! wire length 1 (in meter)
am = .1 | wire radius a (in meter)
fmc = 300. ! frequency f (in MHz)
wavl = 300. / fmc ! wavelength lambda (in meter)
aa = aa / wavl ! plate length ax/lambda (in wavelength)
bb = bb / wavl ! plate length by/lambda (in wavelength)
sm = sm/ wavl | wire length 1/lambda (in wavelength)
am = am / wavl | wire radius a/lambda (in wavelength)
phi = 0. ! incident angle phi
phs = 180. ! scattering angle phi
thi = 30. ! incident angle theta

|

thip = 180. -~ thi reflected angle theta

IF (thi < 1.) THEN

smp = sm ! equivalence length for reflected field
ELSE
smp = ABS( 0.5 * aa / TAN(thi / dpr) )
ENDIF
IF (smp > sm) THEN
smp = sm
ENDIF
WRITE(10,*) " Incident angles theta = ", thi, " degrees"
WRITE(10,*)
WRITE(10,*) " -ANGLE- -RCS- -RCS- -RCS- “, &
&"  -RCS- - - - E(THETA) - - -"
WRITE(10,*) " THETA  TOTAL MONO1 MONO2", &
&" PLATE MAGNITUDE PHASE"
WRITE(10,#) " DEGREES DBsm DBsm DBsm", &
&" DBsm VOLTS/M DEGREES"
DO i = -90, 90 ! observation angle theta -90 -> 90
theta = i

CALL sfieldp(aa, bb, wavl, thi, phi, theta, phs, ethp, rcsp)
CALL sfieldw(sm, am, wavl, thi, theta, ethwil, rcswl)
CALL sfieldw(smp, am, wavl, thip, theta, ethw2, rcsw2)
eth = ethp + ethwl + ethw2
rcs = 4. = pi * CABS(eth)**2 / wavl**2
IF (rcs < 1.5E-45) THEN
rcs = 1.5E-45
ENDIF
rcs = 10. * L0OG10(xcs)
IF ( rcsp < 1.5E-45) THEN
rcsp = 1.5E-45
ENDIF
rcsp = 10. * L0OG1O(rcsp)
IF ( rcswl < 1.5E-45) THEN
rcswl = 1.6E-45
ENDIF
rcswl = 10. * LOG10(rcswl)
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IF ( rcsw2 < 1.5E-45) THEN
rcsw2 = 1.5E-45

ENDIF
rcsw2 = 10. * LOG10(rcsw2)
angle = ATAN2(AIMAG(eth), REAL(eth)) * dpr

WRITE(10, 10) REAL(i), rcs, rcswl, rcsw2, rcsp, cabs(eth), angle
10 FORMAT(1x, 5(£7.2, 2x), 1x, e13.5, 3x, £7.2)

END DO

END PROGRAM

SUBROUTINE sfieldp(ax, by, wl, thii, phii, thss, phss, eths, rcs)

lc to calculate the scattered E-field and RCS of a rectangular plate
e Input: AX the length in x direction (in wavelength)

Ic BY the length in y direction (in wavelength)

lc WL wavelength

te THII angle theta of incident field

'c PHII angle phi of incident field

lc THSS angle theta of scattered field

e PHSS angle phi of scattered field

'c Output: ETHS scattered E-field in theta direction

Ic RCS  radar cross section

IMPLICIT NONE

REAL, INTENT(IN) :: ax, by, wl, thii, phii, thss, phss
COMPLEX, INTENT(OUT) :: eths, ephs

REAL, INTENT(OUT) :: rcs

REAL, PARAMETER :: pi = 3.141592654 ! pi

REAL, PARAMETER :: dpr = 180./pi ! degrees per radian
COMPLEX :: ¢j=(0.0, 1.0)

REAL :: thip, phip, thsp, phsp, wls

REAL :: x, sinx, sxx, ett

thip = thii / dpr ! degrees -> radians

phip = phii / dpr

thsp = thss / dpr

phsp = phss / dpr

wls =wl * wl

x = pi * ax * (SIN(thip) * COS(phip) + SIN(thsp) * COS(phsp))
sxx = sinx(x) I sxx=sin(X)/X

ett = COS(thsp) * COS(phip - phsp)

eths = -cj * ax * by * wl * ett * sxx

rcs = 4. * pi * CABS(eths)**2 / uls
END SUBROUTINE sfieldp

SUBRQUTINE sfieldw(l, a, wl, thii, thss, efs, rcs)

lc to calculate the scattered E-field and RCS of a thin wire
e Input: L the length of the wire (in wavelength)

c A the radius of the wire (in wavelength)

'c WL  wavelength
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'c THI angle theta of incident field

fc THS angle theta of scattered field
lc Output: EFS scattered E-field
lc RCS radar cross section

IMPLICIT NONE

REAL, INTENT(IN) :: 1, a, wl, thii, thss
COMPLEX, INTENT(QUT) :: efs

REAL, INTENT(OUT) :: rcs

REAL, PARAMETER :: pi = 3.141592654 ! pi

REAL, PARAMETER :: dpr = 180./pi ! degrees per radian
COMPLEX :: cj=(0.0, 1.0), cfac

REAL :: thiw, thsw, wls, u, sxu, sinx, rfac

thiw = thii / dpr

thsw = thss / dpr

wls =wl * wl

IF ((thiw < 1. / dpr) .OR. (ABS(thiw - pi) < 1. / dpr)) THEN
efs = 0.

ELSE
u = pi * 1 = (COS(thiw) + COS(thsw))
sxu = sinx(u) ! sinx(u)=sin(U)/U
rfac = L * wl * SIN(thsw) * sxu / SIN(thiw)
cfac = pi * cj / 2 + LOG((1.781 * pi * a) * SIN(thiw))
efs = 0.5 * rfac / cfac

ENDIF

rcs = 4. = pi * CABS(efs)**2 / wls
END SUBROUTINE sfieldw

REAL FUNCTION sinx(arg)
Ic to calculet sinx = sin(x) / x
IMPLICIT NONE
REAL, INTENT(IN) :: arg
REAL, PARAMETER :: epsilon = 1.0E-30
IF ( ABS(arg) > epsilon ) THEN
sinx = SIN(arg)/arg
ELSE
sinx = 1.
END IF
END FUNCTION sinx
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