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Abstract

Free-Vibration and Buckling of Prismatic and Thin-Walled Composite Beam-
Columns with Stochastic Properties

Vijay K. Kowda

The present thesis considers the beam-columns that have a stochastic distribution
of material and geometric properties, boundary conditions and loadings, and made of
polymer-matrix fiber-reinforced composite material. Both the prismatic and thin-walled
beam-columns are analyzed for their free-vibration response and buckling. In the case of
thin-walled beam-columns, the local buckling occurs before the global buckling and
therefore, the local buckling is considered in the stability analysis. Both the undamped
free-vibration and static stability analyses are conducted based on a probabilistic
approach. In this regard, the perturbation method is employed in the context of stochastic
analysis. The analysis of symmetric composite beam-columns can be conducted based on
the (i) Cylindrical Bending Theory and (ii) One-Dimensional Laminated Beam Theory.
However, the differences between the values of natural frequencies and buckling loads
obtained using these two theories will be significant. In the present thesis, the above-
mentioned differences between the values of natural frequencies and buckling loads are
quantified for different laminate configurations. The differential equations and boundary
conditions for the stochastic response of symmetric beam-columns are written based on
the equilibrium conditions using both the theories. Using the stochastic perturbation
analysis and the second-order moment method of probabilistic analysis, the mean values,
mean square values and variances of the undamped natural frequencies and buckling
loads are obtained. For the thin-walled beams, the bending rigidities are obtained based
on the laminate analysis of flange and web sections. The local buckling analysis is
conducted using the Ritz method in the context of stochastic plate analysis. A detailed
parametric study is conducted to determine the influences of various boundary
conditions, the aspect ratios of flange and web sections of thin-walled beam-columns, the
material, structural and geometric properties, their variabilities, laminate configurations,
and the proximity of the applied axial loads to the critical loads, on the natural

frequencies and buckling loads.
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Chapter 1

INTRODUCTION

1.1  Stochastic mechanics of composites

Composite materials and structures are becoming more and more popular among
engineers, researchers and practitioners all over the world. In recent years, laminated
composite materials have become more important engineering materials in the
development of automobile, structural, mechanical, aerospace, biomedical and marine
structures. The great advantages of using such composite materials outweigh the
significantly increased costs involved. Beam-columns made of polymer-matrix fiber-
reinforced composite materials are increasingly being used in many engineering
industries. Such structures operate in a static and dynamic loading environment and
hence, their vibration and buckling response is of paramount importance in the design

and development of high-performance composite mechanical components.

The composite laminates display significant variability in their material, geometric and
structural properties. This variability is attributed to the variations in the properties of the
fibers, matrices and interfaces, in the fiber orientations, in the void content and in the ply
thickness. These variations are unavoidable and are induced during manufacturing and
service. Therefore, in the design and failure prediction these variations have to be taken

into account.



Considering the randomness in the properties of composite materials and structures, the

stochastic approach to the analysis and design of composite structures is appropriate.

1.2 Literature overview

Deterministic one-dimensional free vibration and buckling analysis of laminated plates
are very well established and are covered in the texts by Whitney [1] and Bertholet {2]. In
those texts, the authors describe the one-dimensional analyses corresponding to the
cylindrical bending and one-dimensional laminated beam theories derived from two-

dimensional laminate analysis.

The analysis of structures, involving deterministic or random material properties,
geometric properties, loads and boundary conditions has been developed mainly under
the assumption that the structure’s parameters are deterministic quantities. For a
significant number of circumstances, this assumption is not valid, and the probabilistic
aspects of the structure need to be taken into account. The necessity to account for
property randomness in determining the response of any system is due, in general, to
random material and geometric properties, random boundary conditions and random
loadings. One of the origins of the treatment of differential equations with stochastic or
probabilistic coefficients can be found in random eigen problems. Keller [3] presented
the problem of wave propagation in random media in which he first solved for the eigen
values in terms of the coefficients of the governing differential equation and then

introduced the probabilistic treatment to the results. Boyce and Goodwin (4] reported the



theoretical results of random transverse vibrations of elastic beams. Determination of
random eigen values for simple cases is summarized by Bharucha-Ried [5]. Hoshiya and
Shah [6] presented the free vibration of stochastic beam-column for metals using the
perturbation method. In their study, the general stochastic equations of the n-th natural
frequency of a metallic beam-column are determined when the material properties, the
geometric properties, axial load and boundary conditions are probabilistic. Lepore and
Shah [7] studied the stability of the systems under stochastic excitations. Shinozuka and
Astil]l [8] extended the work for buckling of stochastic beam-column for metals from ref.
[6]. In their study, the beam-column is supported at its ends by rotational springs. The
spring supports and axial force are treated as random variables; the distributions of
material and geometric properties are considered to be correlated homogeneous
functions. Many other authors like Bliven and Soong [9], Vaicaitis [10] and Collins and
Thomson [11] all considered the case of random elastic beams and beam-columns using
the perturbation methods. Ramu and Ganesan [12] analyzed the free vibrational
characteristics of a beam-column, which is having randomly varying Young’s modulus
and mass density and subjected to randomly distributed axial loading. In their study,
Hamilton’s principle is used to formulate the problem using the stochastic FEM.
Vibrational frequencies and mode shapes are analyzed for their statistical descriptions.
Liaw er al [13] studied the reliability of practical beam-column problems with complex
loadings, realistic boundary conditions, arbitrary geometries, and imperfections, for
which analytical solutions are difficult to obtain. Finite difference method was applied to
the second-moment analysis of beams on elastic foundation with random characteristics

by Grigoriu et al [14]. Ramu and Ganesan [15] considered a beam-column resting on



continuous Winkler foundation and discrete elastic supports. They studied the static
response, free-vibration and stability behaviour of the beam-column. Jensen and Iwan
[16] presented a method for the dynamic analysis of linear systems with uncertain
parameters to stochastic excitation. Liu, Belytschko and Mani [17] studied the application
of stochastic finite element method in elastic/plastic dynamics with random material
properties in details. Ghanem and Spanos [18] proposed a new method for the solution of
problems involving material variability. The material property is modeled as a stochastic
process. Ganesan, Sankar and Ramu [19] developed a stochastic finite element method to
solve the more general non-self-adjoint eigenvalue problems. Ramu et al [21] considered
the Leipholz column, which is having the Young’s modulus and mass per unit length as
stochastic processes. The standard perturbation method is employed. Full covariance
structure of the free vibration eigenvalues and critical loads is derived in terms of second
order properties of input random fields characterizing the system parameter fluctuations.
Ramu er al [22] considered a column whose material property is varying along its length
stochastically and subjected to stochastic loadings in space. They derived the buckling
load statistics, such as mean value and variance, and buckling mode statistics. Ahamadi et
al [23] investigated the dynamic stability of a linear elastic column subjected to an axial
stochastic load. Ramu et al [24] described an effective method for integrating the
concepts of probabilistic structural mechanics with finite element analysis for dynamic

systems.

The successful application of the mechanics of composites for achieving safer and

reliable designs is hindered by the inherent uncertain distribution of material and



geometric properties. In recent years, composite structures involving random parameters
have been studied by some researchers. Nakagiri er al [25] presented a stochastic finite
element methodology and applied to the uncertain eigenvalue problem of linear vibration,
which arises from the fluctuation of the overall stiffness due to uncertain variation of the
stacking sequence of composite laminates. A detailed description of stochastic behaviour
of composite materials is given in ref. [26]. Ganesan [27] considered fibre reinforced
laminated composites, which possess a stochastic variation over mass products. He
conducted vibration analysis for stability of singular non-seif-adjoint beam-columns
using stochastic FEM. Stochastic free-vibration analysis of composite laminated plates
has been conducted by different authors [28-30]. Recently many authors studied the

stochastic buckling of composite laminates [30-34].

There is wealth of literature available on buckling of thin-walled metal beam-columns.
Here the literature overview on buckling of thin-walled composite beam-columns is
provided. Barbero er al [35] investigated the global buckling and determined the critical
loads experimentally for various fiber reinforced composite [-beams of long column
length. Southwell's method is used to determine the critical buckling load about strong
and weak axes. Kolakowski er al [36] studied the influence of modal interactive elastic
buckling on the post-buckling behaviour of thin-walled composite beam-columns. Shield
et al [37-39] presented the buckling of thin-walled composite [-section beams. Almanzar,
and Godoy [40] presented a theory and applications to account for changes in the
fundamental, buckling, and post-buckling states when design parameters of a composite

material are modified. Barbero and Raftoyiannis [41-42] used pultruded composite



structural members with open or closed thin-walled sections as columns for structural
applications where buckling is the main consideration in the design. Local buckling
modes are developed in this work. Krolak and Marian [43] presented the overview of
research done on thin-walled structures at the University of Lodz in Poland for over 30
years. Hancock and Rasmussen {44]investigated the testing of slender thin-walled I-
sections bent about both the major and minor principal axes. All sections tested
experienced local buckling before overall buckling. Very recently Silvestre and Camotim
[45] presented the formulation of a second-order generalized beam theory developed to
analyse the buckling behaviour of composite thin-walled members made of laminated
plates and displaying arbitrary orthotropy. Barbero [46] developed a novel analytical
model to simulate the crippling behavior of thin-wall composite beam-columns. Godoy er
al [47] presented an analytical approximate model, leading to a closed form solution to
account for buckling mode interaction in composite I section columns. Three buckling
modes are considered in the analysis: a global mode (Euler mode about the weak axis); a
primary local mode (rotation of the flanges and bending of the web); and a secondary
local mode (bending of the flanges), which are modeled using analytical functions and
four degrees of freedom. Godoy [48] studied the design sensitivity analysis of thin-walled
columns made of composite materials. Barbero et al [49-52] investigated the gobal and
local buckling of thin-walled pultruded FRP columns. Experimental data are presented
and correlated with theoretical predictions. Kabir and Sherboume [53] presented a
theoretical view of elastic local instability of anisotropic composite beams which are
treated as assemblies of symmetric angle-ply composite plates buckling under nonlinear

varying, uniaxial compressive forces. Reddy and Rehfield [54] investigated the local



buckling and crippling of thin-walled graphite/epoxy I-section beams under axial

compression.

During literature survey it has been observed that there is very limited work available
regarding the stochastic thin-walled structures. Molnar [55] described the static and
dynamic crush tests on a thin-walled prismatic column taking into account imperfections.
The crushing process is regarded as a stochastic process, and the results of measurements
are reduced using probability methods. Tylinkowski [56] investigated the uniform
stochastic stability of thin-walled beams subjected to time and space-dependent broad-
band stochastic loadings. Arbocz er al [57] studied the collapse of axially compressed
cylindrical shells with random imperfections. Poggi et al [58] presented the application
of a probabilistic methodology to the design and analysis of cylindrical shells under axial
compression. Yushanov [59] presented an analytical approach based on the theory of
stochastic processes developed for the stochastic initial failure analysis and reliability
predictions of thin-walled laminated composite structures. Arbocz er al [60] presented
reliability based, probabilistic design procedure for buckling critical imperfect isotropic

shells.

1.3 Scope and objectives of the thesis

In this thesis, the static buckling and dynamic response of beam-columns that have
stochastic material and geometric properties, boundary conditions and external loading,

and made of polymer-matrix fiber-reinforced composite materials, are determined.



In the free-vibration and global buckling problem, we assume that all coefficients of the
governing differential equations and coefficients of boundary conditions have small
random perturbations. Hence, perturbation method [6] is applied with good accuracy.
Finally, in the local buckling of thin-walled composite beam-columns, we consider the
stochastic process that corresponds to the laminate bending stiffness matrix, [D]. Here,

the energy technique, Ritz method [1] is applied.

The objectives are:

(1) To obtain the generalized stochastic equations for the mean value, mean square
value and variance of the n™ natural frequency of the free-vibration of beam-
columns made of polymer-matrix fiber-reinforced composite materials when
damping is neglected and the axial force is less than the critical buckling load.
The material properties, geometric properties and boundary conditions are
random functions. Further, the theory is extended to the application to the
composite thin-walled beam-columns and probabilistic characteristics of natural
frequencies are determined.

(2) To obtain the generalized stochastic equations for the mean value, mean square
value and variance of the critical buckling loads of beam-columns made of
polymer-matrix fiber-reinforced composite materials. The material properties,
geometric properties and boundary conditions are random functions.

(3) To obtain the stochastic equations for the mean value and variance of the critical

local buckling loads of beam-columns made of polymer-matrix fiber-reinforced



composite materials. Here, we consider the stochastic process that corresponds to
the laminate bending stiffness matrix, [D].

(4) To conduct a parametric study on probabilistic free-vibration and buckling of
composite beam-columns for different types of laminate configurations.

(5) To write computer programs in MATLAB® to generate all numerical results in

this thesis.

1.4  Organization of the thesis

The present chapter provides a brief introduction and literature survey regarding the
probabilistic free vibration and buckling response of beam-columns made of polymer-
matrix fiber-reinforced composite materials that were studied using perturbation method,
energy methods, finite element method and finite difference method. Further, in this

chapter, the scope and objectives of the thesis are provided.

In chapter 2, two different types of one-dimensional analysis i.e. cylindrical bending
theory and one-dimensional laminated beam-theory, which are reduced from two-
dimensional plate analysis, are summarized for buckling and free-vibration analysis.
Further, in this chapter, numerical examples are presented to calculate the critical
buckling loads and natural frequencies of the beam-column for different laminate

configurations.



In chapter 3, the free vibration response of composite beam-columns is considered and
probabilistic characteristics of natural frequencies are determined. The standard
perturbation method is employed in the context of stochastic analysis [6]. Further, in this
chapter, calculation of equivalent elastic constants for symmetric and un-symmetric
laminates is described and also calculation of flexural rigidity for symmetrical bending is
summarized. Finally, in this chapter, theory is extended to the application to the
composite thin-walled beam-columns and probabilistic characteristics of natural

frequencies are determined.

In chapter 4, the buckling response of composite beam-columns is considered and
probabilistic characteristics of critical buckling loads are determined. Further, in this
chapter, thin-wall composite beam-columns are considered. In the design of thin-walled
beam-columns local buckling is of very much importance over the global buckling.
Therefore, local buckling response of such composite thin-walled beam-columns is
considered and probabilistic characteristics of critical buckling loads are determined. A
computer program is written in MATLAB® to solve the eigen value problem for the
critical buckling load and also to get the stochastic process that corresponds to the

bending stiffness matrix, [D].

The thesis ends with chapter 5, which provides the conclusions of the present thesis work

and some recommendations for the future work.
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Chapter 2

ONE-DIMENSIONAL DETERMINISTIC ANALYSIS
2.1 Introduction

In the present chapter, we are dealing with two different types of one-dimensional
analysis, which are reduced from two-dimensional plate analysis. The first type of
analysis deals with plates that have very high length-to-width ratio so that deformation of
the plate can be considered to be independent of the coordinate along the length of the
plate. Such a behavior is called cylindrical bending. The second type of analysis deals
with the beam considered to be very narrow in one direction and further, this theory
assumes that length is much larger than the width. Such an analysis is called one-

dimensional laminated beam theory.

Buckling loads and natural frequencies are calculated using both cylindrical bending and
one-dimensional laminated beam theories and further, in this chapter, numerical
examples are presented to calculate the critical buckling loads and free-vibration natural

frequencies for different types of laminate configurations.

2.2 Cylindrical bending theory

Let us consider a laminate that has arbitrary number of layers that are very long in the y
direction as shown in Figure 2.1. The plate is supported along the edges x =0 and x = a.
If the transverse load is a function of only x, q = q(x), such that the plate deformation is

cylindrical, i.e.,

11
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Figure 2.1 A plate with infinite length

u,(x,y,t)=u,(x,t)
v, (X, y,t) = v, (x,1)

w(x, y,t) = w(x,t)

Consider the following one-dimensional equations of motion [1].

d u, d*v d’w N
A, d. 3 Am 3_ - “—dt3 -pwu,=0
d’u, dv, d’w 2
Ag A +A66_dx_1_ 670 -pwv,=0
d*w d’u, d3v0 d w
D,, e - B, 0 - B 0 F -q-p,0° ‘w=0
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In the case of static bending, these equations can be uncoupled by deriving the equations

for u, and v, from Eqgs. (2.4) and (2.5) as follows:

d! 3
=22 @7
dx” A dx
2 3
cl Ll 28)
dx- A dx
Coefficients A, B and C are defined in the following:
A=A Ay — Al26
B=A(B, —AgB 2.9)

C=A, B, —AgB,

Differentiating equations (2.7) and (2.8) and substituting the results into Eqn. (2.6), we

get the differential equation in w:

4
D d’w 2.10)

The coefficient D is defined in the following:

D=D,A-B,B-B,C Q.11)
where,

coefficient A, is the Axial stiffness,
coefficient B, is the Axial-bending coupling stiffness, and

coefficient D, is the Bending stiffness.

13



2.3  One-dimensional laminated beam theory

Let us consider a laminated beam as shown in Figure 2.2.

Figure 2.2 Laminated beam

The 1-D laminated beam theory assumes that length is much larger than the width, i.e.,

{ >>b.

The laminate constitutive equation is given by [1]:

( NX ‘ —All All Alﬁ E Bll BlZ Bl6 ] (S: ’
NY Al?. A”.l Alﬁ E Bl?. B.l BZG 8‘;

INg | _|As Ay Ag [ Bo Bu Be |75l 2.12)
MX Bll 312 Bl6 : Dll Dl?. DIG kx

M, B, By, By iDlz D,, Dy ||k,

LM ) _Bl6 By By 1D Dy De | kay
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In the case of pure bending of a symmetric laminate the constitutive equation reduces to:

Mx Dll Dll Dl6 Kx
M,|=|D, D, Dl «,
M,| |Ds Dy Dgl|x.

The inverted form of the Eqn. (2.13) can be written as:

K.r Dl.l Dl.l DI.6 M x
k, |=|D, D» Di|M,
K, Dy, Djy Dy (M .

(2.13)

(2.14)

The beam theory makes the assumption that in the case of bending along the x-axis the

moments M, and M are zero:

M =M_=0

¥ x¥

Substituting Eqn. (2.15) into Eqn. (2.14), then Eqn. (2.14) reduces to

k.= __aa'\:’ =D\M
X"

X

Further, since the beam has a high length-to-width ratio, it is assumed that

w=w (X)

Combining the equations (2.16) and (2.17), we obtain the following result:

d*w .

4 =-D\M
X

"~

X

The above equation can be written in the form:

d*w M

dx® E®I

x

15
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(2.16)

(2.17)

(2.18)

(2.19)



where,

The effective bending modulus E? of the beam:

(2.20)

The moment of inertia of the cross-section of the beam with respect to the beam (x.,y)

plane:

The bending moment M:

M =bM Q.

X

N
[\S]
({®]
~—

For static bending in the absence of body moments and in-plane force effects the equation

of motion becomes [1],

IM, M, IM,

2 =0 2.23
ax’ * dxdy * dy* T4 (2-23)

Substituting Egs. (2.16) and (2.17) into Eqn. (2.23), we obtain the following relationship:

L'
D/, dx*

=q (2.24)

The above equation is analogous to that of the isotropic beam theory, in the sense

thatL. is analogous to the EI.
8
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24  Buckling analysis using cylindrical bending theory

Considering cylindrical bending theory, neglecting the in-plane inertia effects and
imposing an initial uniform compressive load N; =-N_, Eqn. (2.6) becomes, in the

absence of transverse loading, as,

d*w d’u, d’v d’w

Dy —= B B, —2+N =0 (2.25)
X

Y

11 16 I?
dx’ dx’ " dxe”

for the static case.

Differentiating Eqs. (2.7) and (2.8), and substituting the results in Eqn. (2.25), we get the

following result:

d‘w A d’w
+ [}
de* D dx”

The above equation is used to determine the buckling load.
For simply supported boundary conditions, the following displacements satisfy the

equations (2.7), (2.8) and (2.26) and the following are the geometric boundary conditions

for the simply supported case.

ity o _ 9V 0 atx=04 (2.27)
dx dx dx-

The displacements are

u,=A, cos(ﬁl’—“-J m=12... (2.28)

17



v =B cos(#) m=12... (2.29)

w=C, sin(inlLu-) m=12... (2.30)

Substituting the equations (2.28),(2.29), and (2.30) into equations (2.7), (2.8) and (2.26),

we get the following equations in the matrix form:

[ o _E(m_”)
A ) —A 0
C(mr "
4 .4 2.2 Cm 0
00 MZ _Aymr
i ) D - ]
For non-trivial solution,
Lo -B Mj
Al
0 1 —E(Tﬁ) =0 (2.32)
AL [
4 4 2.2
0o 2Z _AymZ
[ D I
Hence, we obtain,
4.4 2.2
mr_ANTE g (2.33)

For m = I, we get the critical buckling load per unit width for simply supported case:

-

D7’
A}

(2.34)
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The critical buckling load for the beam is

p,="_pP 2.35)
[

For the clamped supports the geometric boundary conditions are:

ua=v0=w=ﬂ=0,atx=0,l (2.36)
dx

The following displacements satisfy the Eqn. (2.36)

u, = A, sin(’"—l’zﬁ) m=12... (2.37)
v. =B, sin(#) m=12... (2.38)
w=C,,(l—cos2$) m=L1.2... (2.39)

4.4 2.2
(4”‘ T_Aymz ]C,n:O (2.40)

A non-zero solution of Eqn. (2.40) is obtained in the case where the coefficient of C,

vanishes, which leads to the following expression for the critical buckling load per unit

width.

y =3 D (2.41)
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In the case of clamped-free support, the following displacement,

w=Cm(l—cosm—7[m—r) m=12.. (2.42)

satisfies the following geometric conditions:

dw 0 dzwl =d3w|

dx?

= = = 43
szo Z). , d.tll 0 (2.43)

=l

=l

Substituting the Eqn. (2.42) in Eqn. (2.26), we obtain:

4.4 2.2

mr_AnMZ |c =0 (2.44)
41 D [

A non-zero solution of Eqn. (2.44) is obtained in the case where the coefficient of C,

vanishes, which leads to the following expression for the critical buckling load per unit

width.

D
— 245
1 (2.45)

2.5  Buckling analysis using one-dimensional laminated beam theory

Considering the equation of motion [1],

2 I*M_ I'M, 2 2 2 2
aA{"+2 2+ ,"+N‘a‘,V+2NnaW+N\,a—‘,v+q=psa—:v(2.46)
dx~ dxdy dy” ©dx’ ¥ dxdy T dy® ar-

Considering the Eqn. (2.46) for one-dimensional static case, we get the following

equation:



d A/fx +N;d'w=

—~=0 2.47
dx de” ( )

Substituting Eqn. (2.19) in Eqgn. (2.47) and taking the in-plane load as uniform
compression, N. = — N, =constant, we obtain the following governing equation:

d*w 12 N d:w_

+ —=0 248
det  EIR O diP (2.48)

The above equation is used to determine the buckling load.

For simply supported case, geometric boundary conditions and displacements are given

in Egs. (2.27) to (2.30) respectively.

Substituting the Eqn. (2.30) in Eqn. (2.48), we obtain:

4.4 2.2
(’"lf’ -D;\N, ’"lf )cm =0 (2.49)

A non-zero solution of Eqn. (2.49) is obtained in the case where the coefficient of C_

vanishes, which leads to the following expression for the critical buckling load per unit

width.

N=T_ (2.50)

For clamped supported case, geometric boundary conditions and displacements are given

in Egs. (2.36) to (2.39).
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Substituting the Eqn. (2.39) in Eqn. (2.48), we obtain:

14 2

4 44 . 2.2
["’” -p;N, 22 JC,,:o @.51)

A non-zero solution of Eqn. (2.51) is obtained in the case where the coefficient of C,

vanishes, which leads to the following expression for the critical buckling load per unit

width.

For clamped-free supported case, displacement and geometric boundary conditions are

given in Egs. (2.42) and (2.43) respectively.

Substituting the Eqn. (2.42) in Eqn. (2.48), we obtain:

4.4 2.2
(”’ ” _pn, 22 )Cm =0 (2.53)

A non-zero solution of Eqn. (2.53) is obtained in the case where the coefficient of C,

vanishes, which leads to the following expression for the critical buckling load per unit

width.

N = (2.54)

N
[{S]



2.6  Free-vibration analysis using cylindrical bending theory

Considering cylindrical bending theory, neglecting the in-plane inertia effects and
imposing an initial uniform compressive load N, =-N,, Eqn. (2.6) becomes, in the

absence of transverse loading, as,

dw d’u, d'v, d*w )
D, i - B, 2o - By 1 +N, R —-p,ww=0 (2.56)

Differentiating Eqs. (2.7) and (2.8), and substituting the results in Eqn. (2.56), we get the

following resuit:

dw A d*w \
+—| N ——p.ww|=0 2.57
dx? D( ¢ dx? P ] ( )

The above equation is used to determine the free-vibration response.

For simply supported boundary conditions, the following displacements satisfy the
equations (2.7), (2.8) and (2.57) and the following are the geometric boundary conditions

for the simply supported case.

2
du, _dv, _ @Y 0 atx =04 (2.58)
dx

= = m

dx dx

The displacements are

u,=A, cos( mm) ,v, =B, cos(-—mlﬂj w=C, sin(g] (2.59)-(2.61)

m=1,2...



Substituting the Eqn. (2.61) in Eqn. (2.57), we obtain:

(2.62)

A non-zero solution of Eqn. (2.62) is obtained in the case where the coefficient of C,,

vanishes, which leads to the following expression for the free-vibration frequency in the

presence of an in-plane load N,, where N is less than N, .

(2.63)

2.7  Free-vibration analysis using one-dimensional laminated beam theory

Considering the Eqn. (2.46) for one-dimensional beam theory, we get the following

equation:

*M
ax*

3w 3 d*w

+Ni— -
*ox® os o’

(2.64)

Substituting Eqn. (2.19) in Eqn. (2.64) and taking the in-plane load as uniform

compression, N. = — N, = constant, we obtain the following governing equation:

d*w 12 d’w 9w
+ —+ N =0
ox*  E.h’ (p "o’ )

o2
. dx

(2.65)



In the above equation, time can be eliminated by assuming

w(x, 1) = w(x)e™ (2.66)

Substituting the above equation in Eqn. (2.65), we obtain:

d*w 12 d*w )
+ N ——p.0w|=0 2.67
dx* th’[ ° dx* Ps J (2.67)

The above equation is used to determine the free-vibration response of a laminated beam.

For simply supported case, geometric boundary conditions and displacements are given

in Egs. (2.27) to (2.30).

Substituting the Eqn. (2.30) in Eqn. (2.67), we obtain:

- (N,, 5 +pxarHC,,, =0 (2.68)

A non-zero solution of Eqn. (2.68) is obtained in the case where the coefficient of C,

vanishes, which leads to the following expression for the free-vibration frequency in the

presence of an in-plane load N,,.

w, =TT | LmT (2.69)
L \p,\I’D;,
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2.8 Numerical examples

Consider a NCT-301 Graphite-Epoxy composite material and consider the material as a
“Transversely-isotropic’ [61] material so that E; = E3, v, =v,, v,, =v,, and Gy =
E2/2(1+v,;). The deterministic material properties of the NCT-301 material [62] are

given as:

E1=129.43GPa, E; = 7.99GPa, v, =0. 021 and G,;= 4.28GPa.

A composite laminate consisting of a total of 36 plies, each having a ply thickness of
0.125 mm is considered, and the dimensions of the composite laminate are shown in the

Figure 2.3.

Figure 2.3 Composite laminate

The critical buckling loads and 1* natural frequencies for the different laminate

configurations were calculated and they are given in the following Tables:



S.No | Type of Cylindrical bending 1-D Laminated

Support theory beam theory

l Simply 869.80N 856.73N
supported

2 Clamped- 3479.2N 3426 9N
Clamped

3 Clamped- 217.45N 214.18N
Free

Table 2.1 Buckling loads for symmetric cross-ply laminate [0/90]qs

S.No | Type of Cylindrical bending 1-D Laminated

Support theory beam theory

l Simply 470.83N 179.31N
supported

2 Clamped- 1883.3N 717.26N
Clamped

3 Clamped- 117.70N 44 829N
Free

Table 2.2 Buckling loads for symmetric angle-ply laminate [+45/-45]s

S.No | Type of Cylindrical bending 1-D Laminated

Support theory beam theory

1 Simply 715.65N 670.48N
supported

2 Clamped- 2862.6N 2681.9N
Clamped

3 Clamped- 178 91N 167.62N
Free

Table 2.3 Buckling loads for quasi-isotropic laminate [0/-60/60]¢s
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S.No | Type of Cylindrical bending 1-D Laminated
support theory beam theory
l Simply 996.89N —
supported
2 Clamped- 3987.5N
Clamped
3 Clamped- 249.22N ———-
Free
Table 2.4 Buckling loads for un-symmetric laminate [0/45]st
S.No | Laminate Cylindrical bending 1-D Laminated
configuration | theory beam theory
l {0/90]s, 491.59 487.70
2 [+45/-45]s 361.61 222.86
3 [0/-60/60]6s 445.88 431.37
4 [0/45] 8T 52628 | eeemee-
Table 2.5 The 1% natural frequency of free-vibration for given P,/ P, =1/4
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S.No | Laminate Cylindrical bending 1-D Laminated
configuration | theory beam theory
1 [0/90]ss 401.38 398.12
2 [+45/-45]0s 295.21 181.82
3 [0/-60/60]6s 364.04 352.11
4 [0/45] 187 429.70 S
Table 2.6 The 1*' natural frequency of free-vibration for given P, /P, =1/2

29 Conclusions and discussions

From the above results, we can conclude that

For symmetric cross-ply laminate [0/90]o; , for any boundary conditions, the

A\

critical buckling loads calculated using cylindrical bending and 1-D laminated
beam theories are close to each other.

For symmetric angle-ply laminate [+45/-45]¢s , for any boundary conditions, the

\Y

critical buckling loads calculated using cylindrical bending theory are 62% more
than that calculated using one-dimensional laminated beam theory.

»> For quasi-isotropic laminate [0/-60/60]¢s , for any boundary conditions, the critical
buckling loads calculated using cylindrical bending theory are 6% more than that

calculated using one-dimensional laminated beam theory.
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The largest difference between the critical buckling loads calculated using both
the theories is observed in the case of angle-ply laminates.

The values of buckling loads and natural frequencies of the un-symmetric
laminate are the largest.

For symmetric cross-ply laminate [0/90]os, the natural frequencies calculated
using cylindrical bending and 1-D laminated beam theories are close to each
other.

For symmetric angle-ply laminate [+45/-45]y;, the natural frequencies calculated
using cylindrical bending theory are 38% more than that calculated using one-
dimensional laminated beam theory.

For quasi-isotropic laminate [0/-60/60]¢,. the natural frequencies calculated using
cylindrical bending theory are 3% more than that calculated using one-

dimensional laminated beam theory.
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Chapter 3

FREE-VIBRATION RESPONSE OF COMPOSITE BEAM-COLUMNS WITH

STOCHASTIC PROPERTIES

i1 Introduction

Composite laminates display significant variability in their material, geometric and
structural properties. This variability is attributed to the variations in the properties of the
fibers, matrices and interfaces, in the fiber orientations, in the void content, in the ply
thickness and so on. These variations are unavoidable and are induced during
manufacturing and service. Therefore, in the design and failure prediction these
variations have to be taken into account. Beam-columns made of polymer-matrix fiber-
reinforced composite materials are increasingly being used in automotive, aerospace,
structural and mechanical engineering industries. Such structures operate in most cases in
a dynamic loading environment and hence, their vibration response is of paramounti
importance in the design and development of high-performance composite mechanical

components.

In the present chapter, the free vibration response of such composite beam-columns is
considered and probabilistic characteristics of natural frequencies are determined. The
standard perturbation method is employed in the context of stochastic analysis [6].

Further, in this chapter, the theory for beam-columns with solid cross-sections is
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extended to the composite thin-walled beam-columns and probabilistic characteristics of

natural frequencies are determined.

In section 3.2, formulation for the free vibration of composite beam-column is developed.
In section 3.3, parametric study has been performed on symmetric cross-ply laminate
[0/90]¢s, symmetric angle-ply laminate [+45/-45]¢s , quasi isotropic laminate [0/-60/60]es,
and unsymmetric laminate [0/45] st corresponding to cylindrical bending and one-
dimensional laminated beam theories. In section 3.4, the procedures for calculating
equivalent elastic constants for symmetric and unsymmetric laminates are summarized.
In section 3.5, calculation of flexural rigidity for symmetric bending is summarized. In
section 3.6, a general formulation for the free vibration problem is stated. In section 3.7, a
parametric study is performed on symmetric [-section with flanges made up of symmetric
angle-ply laminate [+45/-45]os and with web made up of un-symmetric laminate

[0/45]) 5T

3.2  Formulation for the free-vibration of composite beam-column

Let us consider the free vibration of composite beam-columns that have a stochastic
distribution of material properties and geometric boundary conditions. A composite
beam-column with axial compressive force and generalized boundary conditions is

shown in Figure 3.1.
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Figure 3.1 Composite beam-column

The formulation is based on the following assumptions that are customarily made in the
dynamics of continuous structures.

(1) The beam-column is initially straight.

(2) The lateral deflection w(x.,t) of the beam-column axis and the cross-sectional

dimensions are small compared to the length of the beam-column.
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(3) Stresses are sufficiently small to warrant the assumption of linear elasticity.
(4) The shear and rotatory inertia effects are neglected.

(5) The axial compressive load P is less than the critical buckling load.

With the above basic assumptions, the partial differential equation describing the free
dynamic response of a beam-column made of fiber-reinforced composite laminate is

given below [2]:

e a* w(r 1) alw(x,t) o w(x,t)
—_— =0 .
e [b( x)D,,(x) e ] e + p(x)A(x) pYe (3.1)
The generalized boundary conditions are given by
bO)D, ,(0) 9 w(0, 0] o aw(0,r) -0 (3.2)
ox* ox
w(0,2) =0 (3.3)
[b(l)D“(l)a wil, ’)]+a2 Iwdt) _ g (3.4)
dx

w(l,t)=0 @3.5)

In the above, w(x,?) is the lateral displacement as a function of spatial coordinate x and

time t, b(x) is the width of the laminate as a function of x, D ,(x) is the laminate bending
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stiffness coefficient as a function of x, P is the axial compressive force, p(x) is the density
of the material as a function of x, A(x) is the cross-sectional area of the laminate as a
function of x, o, and o are the coefficients of boundary rigidities and [ is the length of

the beam-column.

If oy and o, are zero, Egs. (3.2) to (3.5) become simply supported boundary conditions,
and if oy and o, are infinity they represent clamped end conditions. In fact. Egs. (3.2) to
(3.5) indicate that the moment is proportional to the slope at the end. Therefore they are

generalized boundary conditions.

In the above equations, when the cylindrical bending theory [1] is used, the term Dy is
set to be equal to D/A, where D/A is a function of membrane, coupling and bending

stiffness terms [1]. When the one-dimensional laminated beam theory [1] is used, the

term Dy, is set to be equal to 1/ D,,, where D;, is a bending compliance coefficient [1].

Since the coefficients of Eqs. (3.1) to (3.5) are random or probabilistic, then the natural
frequencies and the modes of vibration are also random. Hence the problem has to be
analyzed using a probabilistic approach. The response can be evaluated in the form of
mean values, mean square values and variances of natural frequencies. Such results give

enough information for engineering interest.

The following assumptions are made on the stochastic coefficients and random variables:

(1) Parameters b(x),D,,(x),pp(x),A(x) are stationary random functions of spatial

coordinate x and can be put in the following forms:
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D, (x)=D,,,[1 +a(x)] (3.6)

b(x)=b,[1 + b, (x)] 3.7
p(x)=p,[1+c(x)] (3.8)
A(x)=A [l +d(x)] (3.9)

where a(x),b,(x),c(x) and d(x) are non-dimensional stationary random functions with
zero mean and very small perturbations (i.e. variance is small compared to 1) and

D,,.b,.p,,and A are the mean values that are independent of x.

(2) The random boundary rigidity coefficients ¢, and &, are expressed as:
a=q,(l+s) (3.10)
a,=a,,(1+u) (3.11)

where s and u« are the non-dimensional random variables with zero mean and small

perturbations, and ¢,, and «,, are the mean values of ¢, and &, respectively.

(3) Pis a random variable with respect to its magnitude but independent of time with the

following property:

P=P(l+v) (3.12)
where v is the non-dimensional random variable with zero mean and small perturbations,

and P,is the mean value of P.

(4) Random functions b,(x) and d(x)are statistically independent of a(x) and c(x)

because of obvious reason that material properties are independent of geometric

properties.
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(5) Similarly s, «, and v are mutually independent variables.

(6) The random variables s, u, and v are independent of the stochastic functions

a(x),b,(x),c(x), and d(x).

Since we are using the perturbation method it is essential that the variances of
a(x),b(x),c(x),d(x),s,uand v are small compared to unity. Due to this assumption, we
can neglect the terms of higher order in the series of power of the small parameters. Due
to stationarity assumption for a(x),b,(x),c(x), and d(x), the probability distribution
functions for these variables are independent of x, and they are distributed over the range

(_°°7+°°) .

Random variable v, which is associated with axial load P, has zero mean and very small
variance compared to unity. Thus, there is almost zero probability that the axial load will

exceed the critical buckling load due to randomness in P.

Let us consider now values of D, (x) at two different locations along the length of the
beam-column. Thus, at x =x,, the value of D, (x)=D, (x;) and at x=x,, the value of
D, (x)=D,,(x,) . Suppose if (x, —x,) is very small, then the two values D, (x;) and
D,,(x,) may be highly correlated. If (x;, — x,)is very large, then the two values D, (x,)
and D, (x,) will be statistically independent. Further discussions about correlation i.e.

high correlation or weak correlation are given in detail in the parametric study.
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3.2.1 General solution to the stochastic equation

The solution for the Eqn. (3.1) is assumed to be of the form
w(x,t) = Y X, (0T, (¢) (3.13)
n=[

where T, (¢) are unknown time dependent functions, X,(x) are the space dependent

normal modes, forming a complete set and satisfying the boundary conditions. These

modes are obtained by introducing Eqn. (3.13) into the governing Eqn. (3.1):

[b(x)D”(x)X,:(x)Tn (z)f + PX ()T, (t) + p(X)A(X) X, (x)T, (¢) =0 (3.14)
In the above equation, the prime denotes differentiation with respect to space and the

overdot symbol denotes differentiation with respect to time.

The above equation can be written as,

beop, X +PXw _ Fw _ . 515)
P(VACOX, (x) T,0 '

n

where @, is the natural frequency of free vibration.

Hence we have the following differential equation for X (x)

(D, (X (.\')I + PX(x) - p()A(X)@2 X, (x) =0 (3.16)

Now let us convert independent variable x to £ using the expression ¢ = x//. Then we

have a non-dimensionalized eigen value problem, which is given by
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bop, (&% (i)f +PI*X (&) - p(E)AEN @} X (£)=0 (3.17)

and the corresponding boundary conditions are given by

b(0)D,(0)X ,(0)~le, X (0)=0 (3.18)
X,0)=0 (3.19)
b()D, ()X, () +la, X (1)=0 (3.20)
X, ()=0 (3.21)

Now substituting Egs. (3.6) to (3.12) in the goveming differential Eqn. (3.17) and
boundary conditions given by Egs. (3.18) to (3.21), we obtain the following stochastic

equation

U4

{1+ RO &)} +BGU+WX(E) = 4,1+ SOIX, (&) (3.22)

where A_ is the non-dimensional function of the natural frequency @, and is given by

-

_pA e,

A,
boDlla

(3.23)

Further,

G= (3.24)
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R(%) = a($) +5,(5) +a()b,(§)
S(&) = c(§) +d(S) +c(5)d(S)

The boundary conditions are given by

. la .
1+ R(0)X _(0) ——22—(1 X (=0
(+()),,()bD(+S),.()

o ™11,
X.(0) =0

l a‘.!u

L+ R)X, (1) + (1+w)X, (1)=0

0™11,
X.(1)=0

where

R(0) = g= a(0) + b,(0) + a(0)b,(0)

R(1)=r = a(l) + b (1) +a(l)b,(1)

(3.25)

(3.26)

3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

R(£) and S(&) are random functions of a(£),5,(£),c(£) and d(&). Therefore for fixed

co-coordinate &, they become random variables. Hence q and r are random variables.

Because of our assumptions, mean values of R(£) and S(£) are zero, so we have zero

mean forq andr.

n

A, is the non-dimensional function of the natural frequency w,. The probabilistic

parameters of A _ will be of interest since the probabilistic parameters of the natural

frequency w, can be obtained from Eqn. (3.23).
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It is assumed that all coefficients of the governing differential equation and boundary
conditions have small random perturbations. Therefore perturbation method can be

applied to the following problem with satisfactory accuracy.

Now let us consider the modified differential equation by assigning parameters for

perturbation analysis, @ and £ to Eqn. (3.22):

”

{t+ar®)x.®O} +LGA+WX (&) =41+ BE)X, (&) (3.33)
At the end of the analysis, @ and S are set to be equal to 1.

Now let us assume the solutions A, and the corresponding modes X, (&) of the above

Eqn. (3.33) and the boundary conditions (3.27) to (3.30) in the following expanded

forms.

A=A, +A,a+A B+ q+ A r+ A s+ A u+A v (3.34)

Xn (f) = Xna(g) + an(f)a+ an(g)ﬂ + XnJ(f)q + Xn-t(:)r

3.35
X )5+ X o @)t X, (€ -3

Now, substitute Eqs. (3.34) and (3.35) in the modified governing Eqn. (3.33) and
boundary conditions (3.27) to (3.30). The coefficients of each power of @,/ ...in the
resulting equations can be clubbed together and considering the linear terms only

(neglecting higher order terms), this gives the differential equations for X (£): i=0,1...7

which are
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X, (&) +PGX (H=1,X,()

R(EX,, () +2R(E)X, (&) + X, (§)+ R X, (&) + P,GX ,,(§)
= /lnl Xna (5) + /1"0 an (f)

X o) +PGX 1(§) = A X, (§) + A, X (DS +4,,X . (&)
X (&) + P,GX 3(§) = 4,, X, (E) + A, X 5(£)

X&)+ PGX, (§) = 4, X, (5) + A, X,.(&)

X (&) + B,GX (§) = AsX ,, () + 4, X .5(£)

X o(&) + P,GX ((8) = 2, X, (§) + 4, X (&)

X0 )+ PG(X,,(5)+ X, (E) = AKX, (§)+4,X 5 (&)

The boundary conditions are

. [ .
X0 -2 x 0)=0
o ™11,
B a,l )
X,(0)- X, (0)=0
0o ™11,
" alal !
X,(0) - X ,(0)=0
0™11,
. . ) .
X (0)+X.,0)—-Z2_x' (0)=0
0o™1lo
B, a,l .
X.,(0)- X.,(0)=0
0o ™11,
- a,l . .
X,5(0)———[X,,(0)+ X 5(0)] =0

011,
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(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)
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(3.48)

(3.49)



al

X,s(0)— X.,(0)=0
o1,
- alal .
X,,0)- X,,7(0)=0
0 1la

X,(0)=X,(0)= X,(0) = X,(0) = X;(0) = X,(0) = X;(0) = X;(0)

=X,(0)=0
. o, l .
X, ()+—2-X_(1)=0
e ™11,
B} a, l .
X, ()+—2—X (1)=0
o ™11,
. o, l .
X,.,D+—X_,1)=0
o ™11,
. a,l .
X (h+—2—X.,(1)=0
0o ™11,

. . L .
X )+ X, (1) +Lb"— X.,(1)=0

0™11,

. a, l .
X DHD+———X .()=0
nS() b D ,.5()

o ™11,

. a,,l . .

X )+——[X, D+ X,,D]=0
o™11,

. o, l .

X ,O)+—X_,1)=0
aDll,

X, =X,()=X,,()=X,,()= X, ()= X;(1)= X,,(1) =

X,(1)=0
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(3.50)

3.51)

3.52)

(3.53)

3.54)

3.57)

(3.58)

(3.59)

(3.60)

3.61)



Now, X (&) and A, can be determined from Eqn. (3.36) and boundary conditions
(3.44), (3.52), (3.53), and (3.61). Multiplying Eqn. (3.37) by X, (£) and then integrating

it from 0 to 1 leads to

[R&X, &%, ©dE+ 2R OX ()X, (©)dE+ | X 1(HX,,()dE
Q 0 1]
+ [R (DX (HX,,(©dE + P,GX (D)X, (E)dE

| i
= A X (©de+ [4,X,(OX,, &) (3.62)
0 ]

The third and fifth terms of the left-hand side and second term of the right hand side are

cancelled out because X, (&) satisfies the Eqn. (3.36). so from Eqn. (3.62) we can get

the value of A, . Hence we have

i i i
[ROX, (&)X, &dE + [2R (X (DX, (5)dE + [R ()X ()X, (§)dE
-0 0 1]

A

nl

1
[ x2&uae
0
(3.63)

Similarly if we solve for other terms A, A,, ..4,, one can get the non-dimensionalized

nl,"“nl,

natural frequencies.



Ay [SOXZ )dE

Ay =2 (3.64)
[x2 &g
0
A, = - X=@0X,0 (3.65)
[x2 &g
0
A= M (3.66)
I X2 (£)dE

el x,OFf 567

1
PP [x2 e
0

n§

_ ) [X,0f (3.68)

n6 ~ b D 1 ,
Tt [x(©de
0

l
o | Xu@Xo©e
A, =—o 0 (3.69)
b,D

e [X(©de
0

Substituting Eqgs. (3.63) to (3.69) into Eqn. (3.34) and substituting & = # =1, after some

simplification the expression for the non-dimensional natural frequency A4, is obtained.

_a,l H,(0)
bDll D,

n

! B, EF E"v+... (3.70)
boDll, D baDllo Dn

n
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where,

{
D, =[x} (d¢ (3.71)
E, = [X, X, &)ds (3.72)
F (&) =X2 (&) (3.73)
H, (&) =X, &F (3.74)
L&) =[X,,&r (3.75)

From Eqn. (3.70), it can be seen that A_ is composed of the following terms. The first
term A, is independent of any random function or random variable and can be obtained

by solving the deterministic eigen value problem. The second and third terms represent
terms of random coefficients contained in the governing differential equation; fourth and

fifth terms are for boundary rigidity and last term is for compressive axial force.

Now taking the expected value of A, from Eqgn. (3.70), we obtain the expected value of

A, in the following form.

1! At a.l H_(0)
E(A)= — [EIR ~ Lo [E[S(E)F.(E)dE + —to° a0
() = A 4= [ELR@L O = 7 [ESOIF. e 37 —=) = E(S)
a, !l H (1) Pl* E
-0 n o nE 3-76
+buD“0 ) E(u)+b0D“° D, ) 3.76)

According to our assumptions the mean values of a(£),b,(&),c(§),d(¢),s,uand v are

zero. Hence we have,
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ETR(£)] = Ela()] + E[b, (€)1 + E[a(£)]E[5,(5)] =0 (3.77)

E[S(O)] = E[c()] + E[d(E)] + E[c(£)IE[d($)] =0 (3.78)

and also

E[s]= Elu]=E[v]=0 (3.79)

Therefore Eqn. (3.76) is simplified into

E[A]1=24, (3.80)

We note from Eqn. (3.80) that the expected value of A_ is independent of any random

inputs.

Now we will find the expected value of @, . Since from Eqn. (3.23), we have

boDll
o, = || == A 381)
pa 0
Let
4
k= 'Z"—g"l— (3.82)
(2 §

Therefore Eqn. (3.81) becomes

_ [ (3.83)
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From reference [63], we have the following relation:

Bz = 5] b b VT —varls, ]

(3.84)

Now by performing expectation operation on both sides of Eqn. (3.83) and using the

above Eqn. (3.84), we obtain the following expected value of natural frequency.

fto,1= [ 2« [\ ita }+ [T, I~

(3.85)

By using Eqn. (3.70), we calculate A;. Then introducing the statistical treatment to A:,

we obtain the following relation for mean square value.

1
D;

EL)=4, +

2

= | [EIS€ISEIF.E)F, (&:)dE g,

oo

S,’,

IQ

j j E[R(E)DR(EDI, (EN,(&,)dEdE,
0 0

Aoy
o

a,l | HX) , [ BI* ) EX
o+ —— =0
b Du D,: baDu,, Dn-

= —

buDll‘,

"~

In obtaining the above Eqn. (3.86), the following equations have been used.

E[sR(§)] = E[sIE[R(£)]=0

E[uR($)] = E[vR(£)] = E[sS()] = E[uS(H)] = E[vS ()] =0

E[su] = E[sv] = E[uv] =
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ETR($)S(E)U,(8)F, (&,)dE ds, +( Zie J

(3.86)

3.87)



The above equations arise due to the property of statistical independence.

The variance of A, is given by

var{4,] = E[A21-[E(4,)}

p—

E[R(S)R(E), (G, (&;)dE dS,

» 9

Y

E[S(£)S(E)IF,(G)F,(&,)déde,

C " C o, ™

(L8]
S P.,

E[R()S(5:)M,(8)F,(£,)dEdE,

a,l H:(0) ol + .l H ) o+ _[i'i E, ol (3.88)
b, B o, > 0, .

O
(B 2
(= —

19 Oty ™ Pl ™ O ™

From reference [63], we have the following relation:

ol )=+ (%] (3.89)

By performing the operations leading to variance values on both sides of Eqn. (3.83) and

using the above Eqn. (3.89), we obtain the following relation for variance of natural

frequency.

A
var{lw, ] = var[\/: :| Y —_— vm[J_ ] (3.90)

Note: According the properties of variance,
var[cX | = ¢? var[X] (3.91)

where c is a constant and X is a random variable

49



In Eqn. (3.88) for variance the terms o ,0, and o are the variances of s, « and v
respectively. Terms E[R(&,)R(£,)] and E[S(£)S(£,)] are auto-correlation functions and

term E[R(&,)S(&,)] is cross-correlation function.

Since we assumed the stationarity property of random processes, the above terms are
functions of (£, —¢&,) instead of & and &,. Using the Egs. (3.25) and (3.26), we obtain

the following equations for the auto-correlation and cross-correlation functions.

ETR(E)R(ED=R, (5, -8+ R, (5, —8)+R (6, - &R, (&, - &) (3.92)

E[S(E)SEI=R(§ &)+ R (G, - 8)+ RS - E)R, (6, - 4,) (3.93)
E[R(E)SEII =R, (5 - &)+ Ry (5 = &) + R, (& - &)

+R, (&~ &) R, (G - &) (3.94)

In which R, (£ —&,) indicates the auto-correlation function of a(£) and term

R (£ - ¢&,) indicates the cross-correlation function of a(£) and c(£) . Other terms can

also be interpreted in a similar manner.

3.3  Parametric study

In the following sections, parametric study is performed on four different types of
laminates i.e. (a) Symmetric Cross-ply Laminate: [0/90]os, (b) Symmetric Angle-ply
Laminate: [+45/-45]os, (c) Quasi-isotropic Laminate: [0/-60/60]¢s. and (d) Un-Symmetric
Laminate: [0/45];sT using both the cylindrical bending and one-dimensional laminated

beam theories.
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3.3.1 Random axial load

First of all, let us consider the composite beam-column that is simply supported at both

ends for which the axial force, P, is random and all other parameters are deterministic.

Governing differential Eqn. (2.1), gives

The corresponding boundary conditions can be obtained by substituting o, =0 and

o, =0 in Egs. (3.2) to (3.5).

3°w(0,1) _

w(0,1) = 0 (3.96)
dx”

wit.ry = 2D g (3.97)
dx”

Eigen value problem is given by the following equation

bD, X (£)+ PI*X (&) - pAl'@ X (£) =0 (3.98)

and corresponding boundary conditions are given by

X,0)=X,(0)=X,()=X,(1)=0 (3.99)
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Using the deterministic counterpart of Eqn. (3.23), the above Eqn. (3.98) can be written
as,

X, (&) +PGX (£)-4,X,(£)=0 (3.100)

Since there exists only one random variable P, it is possible to solve the problem using

two methods: (1) Direct method and (2) Perturbation method.

(1) Direct method:

For simply supported beam-column the following function satisfies the boundary

conditions given by Eqn. (3.99).

X, (&)=w, sin(nxf) (3.101)

Substituting Eqn. (3.101), in Eqn. (3.98), we get the following non-dimensionalized
natural frequency.

A, =n’m*(n’n* - PG) (3.102)

Applying the expectation operation on both sides, we obtain the following expected

value:
E[A,1=n’m*(n’n* - E[P]G) (3.103)
Since
E[P) = E[P,(1+Vv)]|= E[P,]=P, (3.104)
E[A,1=n’m*[n’n* - P,G] (3.105)
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From Eqgn. (3.102), we have

A =n*mln*nr* - 20’7 PG + (PG)*] (3.106)

Applying the expectation operation on both sides, we obtain the following mean square

value:

E[A]1=n'm'[n'nr* -20*m* PG +(P,G)* (L + 67})] (3.107)
Since the vanance is given by the following:

var[4,]1= E[4;]- (E[4,])° (3.108)

var{A, | =n'*7* PGl o} (3.109)

Since from Eqn. (3.85), we have

Elw,] = /zi'; * \E[E[/ln]+\/(5[/ln ]):—var[/ln]] (3.110)

Substituting Eqn. (3.105) and (3.109) in Eqn. (3.110), we obtain the following equation

for the natural frequency.

- 12
., . [bD, 11 PG PG\ P}G%0?
Elw | =n’n? pAl‘; ;{(l_nzﬂz)‘*-\ﬁ_nznl) - } @.111)

Since
”[ﬁ]”é(%j” (.112)
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varfw, | = 22u_BGOr L (3.113)
4pAl" n'rw (l P,,G)
n’m?

(2) Perturbation Method:

The solution can be obtained from Eqgs. (3.80), (3.86), (3.88), by substituting zero for all

terms associated with variance and auto-correlation functions of material and geometric

properties.
E[A,]1=4, (3.114)
o L ED
E[X1=14, +(PG) ST o (3.115)
. EX
A1=(PG) <=0
Var[ n] ( 0 ) D_ v (3.116)

n

A, and X are determined by using Egs. (3.36),(3.44),(3.52),(3.53) and (3.61) in which

no

a,, =a,, =0 for simple supports.

o

The solutions for 4, and X, are as follows:

A, =n'm(n’n’ - P,G) (3.117)

X, (&) =w, sin(nzf) (3.118)
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D, and E, are given by substituting Eqn. (3.118) in Egs. (3.71) and (3.72) respectively.

Thus simplified Eqgs. (3.114), (3.115) and (3.116) are given by

E[A,]1=n*7m*[n’7* - P,G]

ELE]=n'm[n*n* - 22 PG + (B,G) (1 +02)]

var[A, 1=n'*n*[P,G] o}

3.119)

(3.220)

(3.221)

From the above solutions, we can conclude that the perturbation solution exactly

coincides with that of the direct method. However, this is a particular case, and, if more

than one random coefficients are involved, the solutions from these two methods will

differ. By the direct method it is almost impossible to get the solutions, since outputs are

generally non-linear functions of these random inputs. Hence other techniques have to be

followed to solve the problem.

The deterministic free vibration frequency is given by [2]:

For cylindrical bending theory:

‘(Un:ﬂ L‘D—*n”,Z—NI
I \phl A 2

For one-dimensional laminated beam theory:

. nmw 1 nlﬂ':Ef}lJ
w, ="E | 2E2
I \ph| 120
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3.3.1.1 Numerical examples

A composite laminate consisting of a total of 36 plies made of NCT-301 Graphite-Epoxy
composite material, each having a ply thickness of 0.125 mm is considered. The width of
the laminate is 0.025m and length of the laminate is 0.4m as shown in the Figure 2.3. P,

is calculated using the one-dimensional deterministic analysis as explained in chapter 2.

In the present examples, four different types of laminates i.e. symmetric cross-ply
laminate [0/90]¢s, symmetric angle-ply laminate [+45/-45]¢s, quasi-isotropic laminate
[0/-60/60]¢s and un-symmetric laminate [0/45],sT are considered. Results that correspond

to the cylindrical bending theory and 1-D laminated beam theory are obtained.

Tables 3.1 to 3.7 show the deterministic, expected and variance values of first natural

frequency w, for four different types of laminates corresponding to cylindrical bending

and 1-D analysis for given input ¢ and axial load.

Figures 3.2 and 3.3 show the variance of natural frequencies for four different types of
laminates i.e. [0/90]¢s laminate, [+45/-45]¢s laminate, [0/-60/60]¢s laminate and [0/45],s7

laminate corresponding to cylindrical bending theory and 1-D laminated beam theory.
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Cylindrical Bending Analysis I-D Analysis

[nput,
o: ‘o, Elw,] | var(w,] “w, Elw,] var{w, ]
001 491.51 0919 487.66 0.905

0.05 491.61 491.23 4.597 487.90 487.39 4.525

0.09 490.96 8.275 487.11 8.146

0.13 490.68 11.95 486.84 11.76

Table 3.1 Mean value and variance of 1¥ natural frequency for the [0/90]gs laminate with

PI/P =1/4
Cylindrical Bending Analysis 1-D Analysis
Input,
0! ", Elw] | var{w,] , Elw] | varw,]
0.01 400.92 8.264 397.78 8.1357

0.05 401.40 398.87 41.32 398.37 395.75 40.67

0.09 396.77 74.38 393.66 73.22

0.13 394.62 107.44 391.52 105.76

Table 3.2 Mean value and variance of 1 natural frequency for the [0/90]os laminate with

PP, =1/2
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Cylindrical Bending Analysis 1-D Analysis
Input,

o’ ", Elw,] | varlw,] "o, Elw,] | var(w]
0.01 361.56 0.497 222.90 0.189
0.05 361.70 361.36 2.487 223.22 222.78 0.945
0.09 361.16 4.478 222.65 1.702
0.13 360.96 6.468 222.53 2.458

Table 3.3 Mean value and variance of 1” natural frequency for the [45/-45]qs laminate

with P,/ P, =1/4

Cylindrical Bending Analysis 1-D Analysis
Input,

o’ ", Elw,] | varw,] ", Elw,] | varw,]
0.01 294.92 4.472 181.82 1.699
0.05 295.33 293.42 22.36 182.26 180.89 8.499
0.09 291.87 40.25 179.94 15.29
0.13 290.28 58.13 178.96 22.09

Table 3.4 Mean value and variance of 1” natural frequency for the [45/-45}q, laminate

with P /P, =1/2
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Cylindrical Bending Analysis

1-D Analysis

Input,

o "o, Elw,] | var(w,] "o, Elw,] var{w, ]
0.01 44581 | 0.756 43136 | 0.708
0.05 445.93 445.56 | 3.782 431.62 431.12 3.541
0.09 44531 | 6.808 43087 | 6.373
0.13 445.06 | 9.833 430.63 9.206

Table 3.5 Mean value and variance of 1" natural frequency for the [0/-60/60]¢s laminate

with P,/ P, =1/4

Cylindrical Bending Analysis

1-D Analysis

Input,

ol ", Elw,] | varlw,] "o, Elw] | varlw,]
0.01 363.64 | 6.799 351.85 | 6.365
0.05 364.10 | 361.79 | 3399 | 352.42 350.06 | 31.82
0.09 359.88 | 61.19 348.21 57.28
0.13 35793 | 88.39 346.32 | 82.75

Table 3.6 Mean value and variance of 1 natural frequency for the [0/-60/60]¢s laminate

with P, /P, =1/2
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PIP =1/4 PP, =1/2
Input,

o; "o, Elw] |varlw] | "o, Elw] | varw,]
0.01 526.19 | 1.053 42920 | 9472
005 | 52685 | 52590 | 5269 | 43039 | 42702 | 4736
0.09 525.60 | 9.484 42477 | 85.24
0.13 52531 | 13.69 42277 | 1231

Table 3.7 Mean value and variance of 1¥ natural frequency for [0/45];st laminate

using cylindrical bending analysis
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Figure 3.3 Variance of 1* natural frequency vs o for P,/ P, =1/2

v

Observations:

It can be observed from Tables 3.1, 3.3, and 3.5 that the expected values of natural
frequency @, are almost the same as the deterministic natural frequency ‘@, , whereas in
Tables 3.2, 3.4, 3.6 and 3.7 it can be seen that the expected values of natural frequency
w, are slightly different from the deterministic natural frequency “@, and their values
decrease as the input random variable v and axial load increase. Also it can be observed
from Eqn. (3.111) and Table 3.2 that the input variance term & has more effect on the

expected value when axial load reaches the critical buckling load.
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It can be observed from Tables 3.1 to 3.7 that the variance value increases quite
significantly and this significant increase was observed when the axial load reaches the

critical buckling load. Also we note that the variance of natural frequency @, takes on

quite a big value compared to the small variance of the input o7 .

The mean square value and variance of @, are linear functions of the variance of v. The

variation of the variance of @, with the given input o} is illustrated in Figures 3.2 and

3.3. The graphs show that they are linearly related.

It can be observed from Figures 3.2 and 3.3 that an un-symmetric [aminate possesses the
highest variance values of natural frequency whereas symmetric angle-ply laminate has
the lowest variance values of natural frequency. It can also be seen that the expected and
variance values of natural frequency corresponding to both the theories are almost same
in the cases of symmetric cross-ply laminate and quasi-isotropic laminate, and that the

largest difference occurs in the case of symmetric angle-ply laminate.
3.3.2 Ratio of the coefficients of variation of input and output

Coefficient of variation is defined as the ratio of standard deviation to the mean value.
Input coefficient of variation is given by

Op

V, = EP (3.124)
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Expected value of P is given by using Eqn. (3.12)

E[P] =P E[l+v] (3.125)
and since according to our assumption

E(v)=0 ' (3.126)
The expected value of P is given as follows:

E[P]=P, (3.127)
Mean square value is given by

E[P*]1=E[P(1+V)]* =B (1+0] +2v) (3.128)

According to the assumption of Eqn. (3.126), mean square value simplifies to
E[P’]=P(1+0)}) (3.129)
Variance is given by the following equation:
var[P] = E[P*] - (E[P))* (3.130)

var[P] = P}o?} (3.131)

Thus the coefficient of variation of P is given by substituting Eqgs. (3.127) and (3.131) in

Eqn. (3.124)
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V, =2t =g, (3.132)

Output coefficient of variation is given by

v, = (3.133)
" Elw,]

n

Expected value and variance of @, are given by Eqs. (3.85) and (3.90) respectively.

The coefficient of variation of @, is given by substituting Eqgs. (3.85) and (3.90) in Eqn.

(3.133)

/1 —
v = P M: Vva:;_“'l"] (.134)
i i 7 E[JA ]

___E /1 n

JE [ n]

Thus the ratio of coefficient of variation of input and output is given as follows:

o] el AT - wd iz
A v i L (JH"]J o G159
2 E[4,]

The coefficient of variation quantifies the degree of variation of a random variable.
Therefore the ratio given by Eqn. (3.135) indicates the comparative degree of variation

between the input and output parameters. It can be observed from Eqn. (3.135) that the

ratio is independent of material and geometric properties and depends on P, and o .
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Tables 3.8 and 3.9 show the ratio of coefficients of variation of input and output when n
=1and n = 2. Figure 3.4 shows the ratio of coefficients of variation of the 1* and i

natural frequencies.

put, | Voo B L | Veg B L | Ve B
o, A P, 4 V., P, 2 w, or
0.01 51.258 13.945

all values are
0.05 51.229 [3.874 almost zero
0.09 51.201 13.801
0.13 51.172 13.726

Table 3.8 Ratio of the coefficients of variation of input and output whenn = 1

[npl,]t’ Ve for , =L Ve for b L Ve for L7 =1
o} w P, 4 v, P, 2 i, .
0.01 205.126 55.826
all values are
0.05 205.012 55.541 almost zero
0.09 204.897 55.249
0.13 204.782 54.950

Table 3.9 Ratio of the coefficients of variation of input and output when n =2
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Figure 3.4 Ratio of the coefficients of variation of P and w, for given P,/ P,

Observations:

It can be observed from Eqn. (3.135) and Tables 3.8 and 3.9 that the input variance v has
almost negligible effect on the ratio of coefficients of variation and further, it can be
observed from Figure 3.4 that the ratio of coefficients of variation significantly decreases

when P, /P, >1/2.
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3.3.3 Random material and geometric properties

Now let us consider that the composite beam-column is simply supported at both ends
and further the axial force, stiffness term, material properties and geometric coefficients

are random.

For simply supported ends substitute ¢, =,, =0 in Eqn. (3.70), which gives

5

1! Al Pl* E
A=A — |R(E) -2 IS(EF (&) 2 4 3.136
\ n,.+DMI O (E)DE Dnof (OF,©)df + —o—Tv (3.136)

01l n

Applying the expectation operator on both sides, we have the following expected value of
non-dimensionalized natural frequency.

E[A]1=4, (3.137)

From Eqn. (3.85), we have the following expression for the expected value of w, .

Elw,]= z"i‘; *\/-71-[5[,1,,%,[(5[/1" ) —var[/ln]] (3.138)

oo -~

From Eqn. (3.86), for simply supported case, we obtain the following expression:

E[2]= A +—

I IE[R(f, )R(fg I (fn )", (62 )déldél
0 0

D;
/12 11
+ 7 [ [EISE)SENF,(&)F,(£,)dEdeE,
n 0 0
24, [ pi ) E .
- e [[EIRE)SE, E)F, (£)dédé, +| —— | Zx0]
D, §; baDu, D, (3.139)
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Therefore variance of A_ is given by the following expression:

varlA, 1= == [ [EIRGORENL (L (&g e,
+fj; [ [EISCE)SENF, (D, (&)dEdE,
n 0 0
2/1"0 (g 1)012 2 EZ ,
-5 j (;[E[R(f;)S(fz)lln(fl)Fn(fz)dfldfz+[baD“n] o

(3.140)

We obtain the following expression for the variance of @, from Eqn. (3.90).

varlw, ] = var[\/%:} _ 5D, var[\/z ] (3.141)

p,4Al

3.3.3.1 Case 1: Uniform auto-correlation and cross-correlation functions

Let us consider the case where all auto-correlation and cross-correlation functions have
uniform distribution and their constant values are equal to the variance or product of
standard deviations respectively. In other words, we have complete statistical dependence

between random functions at any two arbitrary locations.

Hence we have the following equations:

R,(& -&) =0, (3.142)

R, (& ~-&) =0, (3.143)
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R.( -&) =0
R,& -&) =03
R, (& -&)=0,0,
R, (& &) =0,0,

R, ¢ -¢,)=0,0,

Thus, the correlation coefficient is given by the following equation:

Coc
0,0

a c

Yo—

where C,_ is the covariance.

But according to our assumption
Ela]l= E[c]=0.
Therefore we can equate covariance to correlation.

y = Ela(&,)c(&,)] _ 0,0, _

1
“ c,0. 0,0,

It can be shown from [64] that —1<y <1.

(3.144)

(3.145)

(3.146)

(3.147)

(3.148)

(3.149)

(3.150)

(3.151)

Correlation coefficient y,. measures the degree of linear statistical dependence between

random functions a and c.
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Similarly

V™ }’b,b,=ycc=7,u=ybld=yad=l (3.152)

Substituting Egs. (3.142) to (3.148) in Eqn. (3.140) and after simplification, we obtain the

following equation for the variance of A, .

var[A, 1= n*7’ (0} + 0, +0.0,) + 4,[0] +0; +0l0;]

-24,n'7* (0,0, +0,0,+0,0,+0,0.0,0,+n'n*(P,G)0; (3.153)

333.1.1 Numerical examples

Laminate dimensions and configurations are the same as explained in section 3.3.1.1

Tables 3.10 to 3.16 show the deterministic, expected and variance values of first natural

frequency w, for four different types of laminates corresponding to cylindrical bending

and 1-D analysis for given input 0. =0, =0;=0;=0,=0" and axial load.

Figure 3.5 shows the variance of 1® natural frequency when material and geometric
properties have uniform correlation for [0/90]os laminate, [+45/-45]g; laminate,
[0/-60/60]ss laminate and [0/45];sr laminate corresponding to cylindrical bending theory

and [-D laminated beam theory.
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Note: 0=

-

1_ 2 2 2 2
0,=0.=0,=0,=0

Cylindrical Bending Analysis 1-D Analysis
Input,

o’ ‘o, Elw,] | varlw,] "o, Elw] | vare,]
0.01 491.38 2.76 487.68 2.72
0.05 491.61 490.54 14.0 487.90 486.84 13.8
0.09 489.67 25.5 485.98 25.1
0.13 488.77 374 485.08 36.8

Table 3.10 Mean value and variance of 1" natural frequency for the [0/90]¢s laminate

with P,/ P, =1/4

Cylindrical Bending Analysis 1-D Analysis
Input,

o’ ‘o, Elw] | varw,] “w, Elw] | var(w,]
0.01 390.91 24.87 396.89 24.48
0.05 401.40 393.39 126.0 398.37 390.42 124.0
0.09 386.06 229.8 383.14 226.2
0.13 377.67 336.2 374.82 331.0

Table 3.11 Mean value and variance of 1" natural frequency for the [0/90]qs laminate

with P,/ P, =1/2
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Cylindrical Bending Analysis 1-D Analysis
Input,

o’ ‘o, Elw] | varlw,] ", Elw] | varlo,]
0.01 361.53 1.497 223.10 0.56
0.05 361.70 36091 7.587 223.22 222.72 2.88
0.09 360.26 13.83 222.32 5.25
0.13 359.60 20.24 22191 7.69

Table 3.12 Mean value and variance of 1* natural frequency for the [45/-45]qs laminate

with P,/P, =1/4

Cylindrical Bending Analysis 1-D Analysis
Input,

o* ‘o, Elw,] | varlo,] "o, Elw,] | var{w,]
0.01 294.22 13.46 181.57 5.116
0.05 295.33 289.42 68.20 182.26 178.61 25.92
0.09 284.03 124.3 175.28 47.27
0.13 277.87 181.9 171.47 69.16

Table 3.13 Mean value and variance of 1¥ natural frequency for the [45/-45]os laminate

with P,/ P, =1/2




Cylindrical Bending Analysis [-D Analysis

Input,
o’ ‘o, Elw,] | varlw,] o, Elw,] | varle,]
0.01 445.72 2.276 431.42 2.131

0.05 445.93 444.96 11.53 431.62 430.68 10.80

0.09 444.16 21.03 429.68 19.69

0.13 443.35 30.78 429.13 28.81

Table 3.14 Mean value and variance of 1 natural frequency for the [0/-60/60]¢s

laminate with P,/P_=1/4

Cylindrical Bending Analysis 1-D Analysis
Input,
o’ ‘o, Elw,] var{w, ] ‘o, Elw,] var(w, ]
0.01 362.74 20.46 351.11 19.16

0.05 364.10 356.83 103.6 352.42 345.38 97.07

0.09 350.18 189.0 338.95 177.0

0.13 342.58 276.6 331.59 259.0

Table 3.15 Mean value and variance of 1 natural frequency for the [0/-60/60]s

laminate with P,/ P, =1/2
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Figure 3.5 The variance of 1" natural frequency vs o
P/P =1/4 P/P =1/2

Input,

o ‘o, Elw] | varw,] ", Elw] | varlw,]
0.01 526.47 3.172 428.46 28.510
0.05 526.85 525.57 16.07 430.39 421.47 144.44
0.09 524.63 29.30 413.62 263.41
0.13 523.69 42 .87 404.64 385.41

Table 3.16 Mean value and variance of 1% natural frequency for [0/45],gT laminate

corresponding to cylindrical bending analysis
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It can be observed from the Tables 3.10 to 3.16 that the expected values of natural

frequency w, vary more from the deterministic natural frequency when the input random

variable v and axial load increase.

The Figure 3.5 represents that the variance of @, increases linearly with . It can also

be observed that the variance of natural frequency w, takes on quite a large value

compared to small input of &°.

Further, it can be observed from the Figure 3.5 that an un-symmetric laminate possesses
the highest variance values of natural frequency whereas symmetric angle-ply laminate
has the lowest variance values of natural frequency. It can be seen that the expected and
variance values of natural frequency corresponding to both the theories are almost same
in the cases of [0/90]os laminate and [0/-60/60]¢s laminate. The largest difference occurs

in the case of [45/-45]¢s laminate.

3.3.3.2 Case 2: Exponential auto and cross-correlation functions

Let us consider the case where all auto-correlation and cross-correlation functions have
exponential distribution. Hence we have auto-correlation and cross-correlation functions

as
R, (& —&,) =ole b4l (3.154)

R, (& &) =ope bl (3.155)
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R.(& -&) =cle ™ol (3.156)

R (& —&)=0le (3.157)
R, (& -&) =00 (3.158)
R, (& &) =0,0,e " (3.159)
R, (& ~&) =006l (3.160)

where k,'s are positive constants. The constants k,'s govern the interval over which
appreciable correlation occurs. If we introduce a correlation length &€, for each k, in such
a way that auto-correlation and cross-correlation functions are negligible for
Ifl -le > €, , then the correlation length &, describes the degree of the input randomness.

Suppose that the auto-correlation and cross-correlation functions are reduced to 5% of

their maximum values within the distances ¢, , then we have the following equations:

R (¢,) =0.050" (3.161)
R, (£,)=0.050, (3.162)
R_(&,) =0.050" (3.163)
R,(g,)=0.050; (3.164)
R, (g,)=0050,0. (3.165)
R,,(£)=0050,0, (3.166)
R, (&) =0050,0, (3.167)
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Now equating (3.154) and (3.161), we have

ole™™% =0.0507 (3.168)

which gives

k&, =2.99 (3.169)

In a similar manner the values of k,&,.k;&;,k,€,,ksE5 . k€, and k,€, can also be

obtained.

Let us assume that the correlation length ¢ is the same for all random inputs, then we

have
E=E =E, =E=E, =& =& =¢, (3.170)
k=k =k, =k, =k, =k; =ks =k, @G3.171)
Hence
ke=299 (3.172)

Now substituting Eqn. (3.171) in Egs. (3.154) to (3.160) and then introducing the results

into Eqn. (3.140), we obtain the variance of 4, .
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1
var(4, ] =4n’7* (0, +0;) j I el sin® nze, sin® nze,dEdE,
00

It
2 =kl -6 - 2 -2
+4n'*mtolo, .”e l5-el 5in® ne, sin® ne,d&dé,
00

2

1
+44; (02 + O"f)jj‘e'klf""l sin” nze, sin® nze,d&dé,

00

]

P

[N}
: 22 -2%k|g-6] -2 .2
+44, 0.0, I Ie ‘" sin” nre, sin” nwe,dé dg,
00

no - c

-kg -]

|3
-84, n'rt (0,0, +0'blad)”e sin® nre, sin® nze,dé,d&,
00

U1
-84 n'r'o,0, J' Ie"‘""“' sin® nzg, sin® nze,d& d&,
00

[ S8
-84,n'r*c,0.0,0, j je"‘""‘ll sin® nze, sin* nze,d&d&,
00

+n*r*(P,G)* o} (3.173)

3.3.3.2.1 Numerical examples
Laminate dimensions and configurations are the same the as explained in section 3.3.1.1.

Figures 3.6 and 3.7 represent the variance of 1* natural frequency when material and
geometric properties have exponential correlation for [0/90]os {aminate, [+45/-45]
laminate, [0/-60/60]¢s laminate and [0/45];s7 laminate corresponding to cylindrical

bending theory and 1-D laminated beam theory.

Figures 3.8 to 3.11 show the variance of 1™ natural frequency vs correlation length for

given P,/P corresponding to cylindrical bending theory.
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The Figures 3.6 and 3.7 show that the variances of natural frequencies increase in a
piecewisely linear manner. Further, It can be observed from these figures that the
[0/45]1sr laminate possesses the highest variance values of natural frequency whereas
[+45/-45]¢s laminate has the lowest variance values of natural frequency. It can also be
seen that the expected and variance values of natural frequency corresponding to both the
theories are almost same in the cases of  [0/-90]ys laminate and [0/-60/60]¢s laminate.

The largest difference occurs in the case of symmetric {+45/-45]¢ laminate.

In Figures 3.8 to 3.11, it can be observed that the variance of @, increases exponentially
as the correlation length, £, decreases. The variance of @, is almost infinity when the

correlation length is very small. This means that if the inputs at any two locations are

almost uncorrelated, the variance of output becomes infinity.

34  Equivalent elastic constants

In the following sections, the equivalent elastic constants for symmetric and

un-symmetric laminates are presented. The following section follows that of ref. [65] and

ref. [66].

3.4.1 Equivalent elastic constants for symmetric laminates

The laminate constitutive equation is given by [65]
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F N, —Au A,
N, Ay Ay
) _A{x_y Ay Ay
M, B, B,
M, B, B,
LMry ) | By By

where,

A= Z[Q,, L(he —hy )
k=1

n

5L
2%

1

n
D, =
k=l

G| -

[0,).(h —h)

[Q—ij ]k (h: - th_l )

B, B
: B, By
i By By
: Dy, D,
’ D, D,
D, Dy

(Axial stiffness)

(Axial-Bending coupling stiffness)

(Bending stiffness)

(3.174)

(3.175)

(3.176)

@.177)

For symmetric laminates, all the coupling terms B, will be zero. As a consequence, the

full laminate constitutive equation can be uncoupled, that is, with coupling terms equal to

zero, the force intensities will induce membrane strains only without an associated

coupling of any curvatures and in a similar manner, moment intensities will induce

curvatures only without any coupling of membrane strains. Thus Eqn. (3.174) can be

simplified as
Nx All All
N,o=lA, Ay
Nxv Al6 A’.’6
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M.r Dll Dll DIG kx
M,}t=|D, Dn Dylk, (3.179)
Mxy Dl6 Dlﬁ D66 Xy

The Egs. (3.178) and (3.179), give the laminate constitutive equation for a symmetric

laminate, that is load-deformation expression related by the A, and D, terms, which are

extensional and bending stiffnesses, respectively.

[nversion of Egs. (3.178) and (3.179) gives

£; ‘ a, a, agl||N,
£ r=|a, an axfjN, (3.180)
Ve A Ay g [|N,
k. ’ d, d, dgl||M,
k, p=|d, dyn dy{M, (3.181)
ko) dis d,, dg||M,

where [a] is the membrane compliance matrix, which is the inverse of the corresponding

stiffness matrix, as given below

(al={A]" (3.182)

and [d] is the bending compliance matrix, which is the inverse of the corresponding

stiffness matrix, as given below.

(d}=(D]" (3.183)
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Considering a symmetric layered laminate of arbitrary length in the x-direction, unit

width in the y-direction and thickness h, subjected to membrane direct force intensity N

only, as shown in the Figure 3.12, then membrane force intensities can be simplified as

follows

N,#0 and N,=N_ =0 (3.184)

AR Y

Figure 3.12  Laminate subjected to N, only

In the above, N, is the membrane direct force intensity in x-direction, N, is the
membrane direct force intensity in y-direction and N, is the membrane shear force

intensity in xy-plane.

Substituting the Eqn. (3.184), in Eqn. (3.180), we obtain the following strains:

g’ =a,N, (3.185)
£’ =a,N, (3.186)
Vo =aiN, (3.187)
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Considering the average direct stress [65], which is given by

N
=—= 3.188
fe== (3.188)

Substituting N _ from Eqn. (3.188) into Eqn. (3.185), we obtain

f_ b (3.189)
£} ha,

x

By definition of Hooke’s law, we have

L _g (3.190)
E

X

Therefore substituting f, /€, for E_, we obtain the equivalent Young's modulus in x-

direction in membrane mode, which is given by

E = (3.191)

ha,
In the above, a,, is the extensional compliance term and h is the thickness of the

laminate.

In a similar manner, an equivalent Young’s modulus in y-direction in membrane mode is

given by
E = L (3.192)
* ha,,
Equivalent shear modulus in x-y plane in membrane mode is given by
1
G, =— (3.193)
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Now, considering a symmetric layered laminate of arbitrary length in the x-direction, unit

width in the y- direction, and thickness h, subjected to moment intensity M, only, as

shown in the Figure 3.13, then bending moment intensities can be simplified as follows:

My
1 Mx
2 /y
2
X
Figure 3.13  Laminate subjected to M, only
M, #0 and M =M, =0 (3.194)

In the above, M, is the moment intensity about the y-axis, M, is the moment intensity

about the x-axis and M is the twisting moment intensity.

Substituting Eqn. (3.194) in Eqn. (3.181), we get

k,=d M, (3.195)
k,=d,M, (3.196)
kxy =d M, (3.197)
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From engineer’s theory of bending {65], we have

—=FI (3.198)

where [ =h’/12 per unit width across the y-axis and so moment about the y-axis is

given by

h]
M,=kE, I (3.199)

Substituting Eqn. (3.199) in Eqn. (3.195), we get

E =12 (3.200)

" hd,,

where E_is the equivalent Young’s modulus in x-direction in bending mode, d,, is the

bending compliance term and h is the thickness of the laminate.

In a similar manner, an equivalent Young’s modulus in y-direction in bending mode is

given by
12
E =2 . (3.201)
Equivalent shear modulus in x-y plane in bending mode is given by
G, = 31 2 (3.202)
T hidg
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3.4.2 Equivalent elastic constants for un-symmetric laminates

[n symmetric laminates since the coupling terms are zero, it is easy to get the equivalent

engineering constants, whereas in un-symmetrical laminates, coupling terms, B, are not

equal to zero, and therefore the calculation of equivalent engineering constants becomes

complicated. However the same basic procedure is followed as for symmetric laminates.

Considering an un-symmetric layered laminate of arbitrary length in the x-direction, unit
width in the y-direction, and thickness h, subjected to membrane direct force intensity

N_ only as shown in Figure 3.12, then the membrane force and bending moment

intensities can be simplified as follows:

N,#0and N,=N_=M =M =M_=0 (3.203)

Substituting Eqn. (3.203) in laminate constitutive Eqn. (3.1), we obtain

) [ : J( po
(Nx Au Al: Al6 Bu BIZ BIG £,
0 Alz Aez A"’.6 : BlZ B.: st 5;
' B, B, o

<~Q-f= fq_'ﬁ__ﬁé__‘i“iﬁ_;.-_“i-ff__.B_ﬁﬁ <Zf-‘.> (3.204)
0 Bn BlZ Blﬁ : Du Dlz Dl6 k.:
0 B, B, By: D, D, Dy ky

L 0 _Bm B:s B66 i Dl6 Dzs Dsaj \kxyi

Using the Cramer’s rule to solve for &;, we obtain
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(3.205)

e 8 8§ =2 98 %
R QQQ
o8
Q QA Q
Tl Qq
e =8 2 3
L Ld S
8 8
0

> o © © o ©

B66 D16 D26 D66

BZG

16

Q

To obtain the solution of Eqn. (3.205), cofactor expansion can be used in the numerator

for simplification, and then the Eqn. (3.205) can be simplified as follows:

(3.206)

Dlﬁ

Considering the average direct stress [65], which is given by

(3.207)

90



Substituting N_ from Eqn. (3.207) into Eqn. (3.206), we obtain the equivalent Young's

modulus in x-direction in membrane mode:

A“ Al:‘. "4‘16 Bll Bll Bl6
All ["" A”.6 BIZ Bl.. B.'!ﬁ
Alﬁ A’l6 A66 B|6 B'.'ﬁ B66
Bl 1 BIZ Bl6 Dl 1 Dl'.’ Dlﬁ
Bll Bll BZG Dl'l D.Z Dlﬁ
L.: E( = Bl6 Blﬁ 366 Dlﬁ DZG D66 _l_ (3.208)
8.: - Ay Ay B B,, By h
A’lﬁ A66 Bl6 B'.!6 B66
Bll Blﬁ Dll Dl?. Dl6
BZZ 326 Dll DZZ DZG
326 B66 Dl() D'.’ﬁ 066

In a similar manner, an equivalent Young's modulus in y-direction in membrane mode is

given by
All Ai'l Al6 Bll Bll Blﬁ
Al?. A"l A‘ZG Bll BZZ’. BZ6
A(6 A'l6 A()G Bl6 Blé 366
Bll BlZ Blﬁ Dll Dll Dlﬁ
BIZ BZ’.‘.’ B 26 Dll’ DZZ D 26
ﬁ.: E = By By By D Dy Dg _l_ (3.209)
6‘: ' Al l Aiﬁ Bl 3 BlZ Blﬁ h
A’lﬁ A66 Bl6 BZG 366
Bll Bl6 Dll Dl?. DI6
BlZ 826 Dll DII DZG
Blﬁ B66 Dl6 D26 D66
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Equivalent shear modulus in x-y plane in membrane mode is given by

A, A, A, B, B, Bg
A, A, Ay B, B, By
Ay Ay Ay By By Bg
B, B, By, D, D, Dy
B, B,, By D, D, Dy
ff,\' =G“ — Blﬁ 826 866 DIG Dlﬁ D66 l (3.210)
Yo ’ A, A, B, B, Bg h
A, A, B, B, By
B, B, D, D, Dy
B, B,, D, D, Dy
B By Dy Dy Dg

Now, considering a un-symmetric layered laminate arbitrary length in the x-direction,

unit width in the y- direction, and thickness h, subjected to moment intensity M _ only, as

shown in the Figure 3.13, then bending moment intensities can be simplified as follows

M_#0and M =M_ =0 3.211)

Substituting Eqn. (3.211) in laminate constitutive Eqn. (3.1), we obtain

( 0 ] —All All’ A16 E Bll Bl.’. BIG ] ‘:
0 A, Ap Ay :B, B, By 5:
JOU | A A iBi By Bo |[Vol (3.212)
MJ: Bl 1 312 Blﬁ : Dl 1 DIZ Dl6 kx
0 B, B,, By t D, D, Dy k_v
[ 0] [Bs By B Dy Dy Dg | \kx)"




Using the Cramer’s rule to solve for k_, we obtain

(3.213)

e 8 8 ° 8 3
QM QAR
o8 8 o o 8
d5dqqq|d
OOOM..OOBu

2 8 2 8 8
<<d o o

~t 7n -]

< < <

<< < g G a

Bl6

12

B-n

S
Q< <

B,

D 16 D 26 D66

866

To obtain the solution of Eqn. (3.213), cofactor expansion can be used in the numerator

for simplification, and then the Eqn. (3.213) can be simplified as follows:

)
)
g/
2 8 8§ . 2 8 8
D“BBBDDD
A 5 o F &
S m QA QQ
Q
L daaq
ol 2 8 2 8 8
B:A.A Q M o
° g o8 o o 8
BT T < & @
< < < d |
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From engineer’s theory of bending [65], we have

—=Ek (3.215)
where [ =h’/12 per unit width across the y-axis and so moment about the y-axis is

given by

M,=kE,— (3.216)
12

Substituting Eqn. (3.215) in Eqn. (3.216), we obtain the equivalent Young’s modulus in

x-direction in bending mode.

Ay Ay A B, B. B
A, A, Ay B, B, By
A Ay Ay By By By
B, B, B D, D, Dy
B, By By, Dy, Dy, Dy
E = B|6 B‘.’ﬁ Bea Dls D:s D66 E (3.217)
) Ay A A By, Bw h’
A, Ay, Ay By, By
Ae A A By By
B, B, B D,, Dy
By By By Dy, Dy

In a similar manner, an equivalent Young’s modulus in y-direction in bending mode is

given by
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A“ sz Aus Bu Bll Blﬁ
A, A, Ay B, B, By
Aus A'zs As-s Bl6 Blﬁ 866
B, B, B, D, D, Dg
B[: Bz: st Dll Dll DIG
E = By By By D Dy Dgj12 (3.218)
’ A, A, A¢ B, By h’
A, A, Ay B, By
Ag Ay A By By
B, B, Bg D, Dy
B, By By D, Dg

Au All Am Bu Bll BlG
A, A, A, B, B, By
As Ay Ay B By By
B, B, By D, D. Dg
sz Bz: sz Dl:’. DZZ D26
G _1Bs By By Dy Dy Dyl12 (3.219)
? A, A. A B, B, h’
A, Ay A, B, By
Ag Ay Ay By By
Bu Bu Bw Dll Dlz
B, B, By D, Dy

3.5 Calculation of flexural rigidity for symmetrical bending

In the following section, calculation of flexural rigidity for symmetric bending is

presented. The following section follows that of ref. [65] and ref. [67].

95



Symmetrical bending of a section is said to occur when the section has single (C-section)
or double (I-section) axis of symmetry and for this case, the neutral planes lie along the X
and Y-axes, for the corresponding moments about X and Y-axes, respectively as shown

in the Figure 3.14.

Laminate I, h;

M,
X (X-axis —p neutral
axis direction)

Laminate 4, h

Figure 3.14 Symmetrical bending of a composite section

Overall flexural rigidities of a structure in x and y axes are given by the following
equations [67], by assuming the bending mode for the flanges and axial mode for the web
since the web bending mode is in the orthogonal direction to the bending mode of the
overall beam:

EJdy=E I, +E I, +E I, +. +E, Iy (3.220)

Eyly =E, Iy +E, Iy +E, Iy +..+E, I, (3.221)
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In the above, E, is the equivalent Young’s modulus in x-direction, E, is the equivalent
Young’s modulus in y-direction, /_ is the centroidal moment of inertia about the x-axis

of the section and /, is the centroidal moment of inertia about the y-axis of the section.

3.6 Formulation for thin-walled beam-columns

Considering the beam-column as shown in Figure 3.1, making the conventional
assumptions as given in section 3.2, one obtains the following governing differential

equation and boundary conditions:

a‘ | B¢ )a w(x,t) 8'w(:r,t)+ (DA )8 w(x,1) -0 (3.222)
ax’ ox* or®

EQO)0) 2200 |, 300 (3.223)
ax* dx

w(0,0)=0 (3.224)

ey LD | g WD (3.225)
dax* Jx

w(l,1) =0 (3.226)
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where a;, =, =0 for simple supports and &, =, = for fixed supports. The motion
of vibration is assumed to be simple harmonic with circular frequency @, so that the term

d*w/dr” is replaced by —w*w.

The assumptions regarding the statistical properties of the beam-column can be restated

as:

(1) a(x), bi(x),c(x), and d(x) are non-dimensional stationary random functions with
zero mean and very small perturbations.

(2) s and u are non-dimensional random variables that correspond to spring constants
with zero mean and very small perturbations.

(3) v is non-dimensional random variable that corresponds to axial load with zero
mean and very small perturbations.

(4) All random variables and random functions, except a( £ ) and ¢( £ ), and by( £ ) and

d( £ ), are considered to be statistically independent.

Further, with the following substitutions,

x=4 (3.227)
E()=E,[l+a(f)] (3.228)
(&) =1,[1+5(5)] (3.229)
P(&)=p,[1+c(8)] (3.230)
AG)=A,[1+d(4)] (3.231)
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o=q,(l+s)

a,=a, (l+u)

P=P(i+v)

4, .2

ln = poAal w’l
EDIO

R(§) = a(§) +b(5) +a(5)b()
S(&) = c(§) +d(&) +c(£)d($)

The differential equation and boundary conditions reduce to,

ll
EL

o

1+ ROXE} + B ——A+v)X (&) = A[L + S@E)X, (&)

[L+ RO)]X_ (0) —g—"}i(l +5)X.(0)=0  X,(0)=0

o" o

[1+ R(1)1X . (0) —%’;—l(lﬂc)x,’,(l) =0 X, (1) =0

o~ o

(3.232)

(3.233)

(3.234)

(3.235)

(3.236)

(3.237)

(3.238)

(3.239)

(3.240)

The solution to the above problem is given by using standard perturbation analysis [6] as:

1! At a,l H (0)

A=A R (E)dE - [S(EF (E)dE + e —1-

\ ""+D,OI (N, (&)dE D.,of (&)F, (£)dE £l b
a,l H() Pl*E,
+—= u+ —
E,I, D, EI, D,

Terms D_,E,,F,,H,, and I, are given in Egs. (3.71) to (3.75).
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Using the assumptions made with regard to statistical independence of the random

variables and random functions and by taking the expected values of A, and A’ using

Eqn. (3.75), we obtain

E[/ln] = /lno (3'242)
l 11
vartd, 1= — | [ELREIREI )L, €6 e,
/12 . n 0 0
s [ [ELSE)SENNF, (&)F,(£:)dé dE,
2,;”0‘?
o j j EIR(E)SEDN, (E)F,(&:)dEdE, (3.243)
alol : H:(O)o.l_*_ a‘.’ol ’ H’ll(l)o-l + P“'—lz : E':. 0’2
Eala D: ' Eulo D: ’ E'llﬂ D: '

Now by performing expectation operation on both sides in Eqn. (3.235) and using the

Eqn. (3.84), we obtain the expected value of natural frequency.

pAl

E[wu=Jﬂi*J§[E[Aul+ﬂE[Anl)2 —varli 1] (3.244

Now by performing the operation for variance on both sides in Eqn. (3.235) and using the

Eqn. (3.89), we obtain the following relation for variance of natural frequency.

E,I
var{w, ] = ﬁ varly 7, | (3.245)
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3.7  Parametric study

In the following sections, parametric study is performed on symmetrical I-section with
flanges made up of symmetric angle-ply laminate [+45/-45]¢; and web made up of un-

symmetric laminate [0/45] igT.

3.7.1 Random axial force

First of all, let us consider that the composite beam-column is simply supported at both
ends and all coefficients in the governing differential equation are deterministic except

for the compressive axial force, P.

After performing the standard perturbation analysis, we have non-dimensionalized

expected value and variance value given as,

E[A1=n’m*(n’7* - PG) (3.246)

var[A, ] =n'*z*(P,G) o} (3.247)

Substituting Eqn. (3.246) and (3.247) in Eqn. (3.110) and Eqn. (3.112), we obtain

expected value and variance value of natural frequency w,, which are given by,

101



(3.249)

Deterministic free vibration frequency for the beam-column with compressive axial load

is given by [68]:

"y =% ELf__PL (3.250)
F oA\  nizEl

3.7.1.1 Numerical examples

A composite laminate consisting of a total of 36 plies made of NCT-301 Graphite-Epoxy
composite material, each having a ply thickness of 0.125 mm is considered. The length of

the laminate is 1.2 m and the cross-sectional dimensions are as shown in Figure 3.15.

NE)

0.1 ﬁ
|

|19}

Flanges (1) and (3) [+45/-45]os
Web (2) [0/45] 8T

/"—"_"‘<
*
x

0.091

All dimensions are in meters
2>

D ]

Figure 3.15 Symmetric [-section
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The flexural rigidity is given by,
ExIx = (Ex‘ [II )bending_mode + (Ex: Ix! )membrane_mode + (Er, 1.(} )bending_rnode (3’251)

where, (1) and (3) corresponds to flange and (2) corresponds to web, and Z = x.

The calculated values of EI, for the [-section is given in the following:
E[I, =11.49x10° N-m® and E [, =53.41 x10° N-m’
One of the interesting problems in engineering applications is the calculation of the

lowest frequency and critical buckling load. Therefore the lower value of El is considered

for the following parametric study.

P is calculated using the one-dimensional deterministic analysis as explained in chapter

2.

Table 3.17 shows the deterministic, expected and variance values of first natural

frequency w, for given input o and axial load.

The graph of the variance of @, for given input ¢ is illustrated in Figure 3.16.
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P/P =1/4 P /P =1/2
Input,
g, Elw, ] var{w, ] ‘o, Elw,] var(w, |
0.01 456.94 0.794 372.72 7.143
0.05 456.69 3.973 373.19 | 370.82 35.71
0.09 456.43 7.152 368.87 64.28
0.13 456.18 10.33 366.86 92.86
Table 3.17  Mean value and variance of 1* natural frequency for given P,/ P,
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Figure 3.16

—e— Po/Per=1/4
—~ Po/Per=112
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Observations:

It can be observed from Table 3.17 that the expected values of natural frequency w, are
almost the same as the deterministic natural frequency “@, when the given input axial
load is %4 of the critical buckling load and it can be seen that the expected values of
natural frequency w, are slightly different from the deterministic natural frequency ‘@,

when the given input axial load is Y2 of the critical buckling load. The expected value

decrease as the input random variable v and axial load increase. Also it can be observed
from Eqn. (3.248) and Tables 3.17 that the input variance term o, has more effect on the

expected value when axial load reaches the critical buckling load.

It can be observed from Tables 3.17 that the variance value increases quite significantly
and this significant increase was observed when the axial load reaches the critical

buckling load and also we note that the variance of natural frequency w, takes on quite a

large value compared to the small variance of the input & .

The mean square value and variance of @), are linear functions of the variance of v. The

Figure 3.16 shows that they are linearly related.

3.7.2 Random material and geometric properties

Now let us consider that the composite beam-column is simply supported at both ends
and further the axial force, stiffness term, material properties and geometric coefficients

are random.
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3.7.2.1 Case 1: Uniform auto-correlation and cross-correlation functions

Let us consider the case where all auto-correlation and cross-correlation functions have a
uniform distribution and their constant values are equal to the variance or product of
standard deviations respectively. In other words, we have complete statistical dependence
between random functions at any two arbitrary locations. After performing the standard
perturbation analysis [6], we have non-dimensionalized expected value and variance

value, which are obtained by solving equations (3.242) and (3.243),

E[A)=n*m*(n’7* - P,G) (3.252)
var[4, ]| = n*n® (0} + 0} +ol0}) +n'nt ('’ - B,G)[o) + 0} +0l0]]

-2n°7%(n*n* - PG)0,0. + 0,0, +0,0,0,0,)+n'nr* (P,G)* 0} (3.253)

Substituting Eqgs. (3.251) and (3.253) in Eqn. (3.110) and Eqn. (3.112), we obtain

expected value and variance value of natural frequency @, , which are given by,

Elw,]= \/—El— * \E[E[/ln [+ J(EA, ) - varl4, ]] (3.254)

P,AL"

E,l
v, | = —Z2e var|y7Z, | (3.255)

[/ 2]
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3.7.2.1.1 Numerical examples

Laminate sectional dimensions and configurations are the same as explained in section

3.7.1.1.

Table 3.18 shows the deterministic, expected and variance values of first natural

frequency @, for given input 0 =0, =6.=0,=0,=0" and axial load.

Figure 3.17 shows the variance of 1% natural frequency when material and geometric

properties have uniform correlation.

Note: 0; =0, =0.=0,=0,=0"

PP, =1/4 P/P, =1/2
Input,
o’ ", Elw,] | varo,] "o, Elw] | varlw]
0.01 456.81 2.3921 371.77 21.500
0.05 457.01 456.03 12.119 373.19 365.71 108.93
0.09 455.22 22.100 358.90 198.64
0.13 454.38 32.336 351.10 290.65

Table 3.18 Mean value and variance of 1 natural frequency when material and

geometric properties have uniform correlation
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Figure 3.17 The variance of | natural frequency vs ¢

Observations:

It can be observed from the Table 3.18 that the difference between the expected value of
natural frequency @, and deterministic natural frequency is more when the input o

increases and also when the axial load approaches the critical buckling load.

The Figure 3.17 represents that the variance of @, increases linearly with o* and also it

can be observed that variance of natural frequency @, takes on quite a large value

compared to small input of &*.
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3.7.2.2 Case 2: Exponential auto and cross-correlation functions

Let us consider the case where all auto-correlation and cross-correlation functions have

exponential distribution. After performing the standard perturbation analysis [6], using

the auto-correlation and cross-correlation functions given, the non-dimensional expected

and variance values are obtained as follows:

R,(& ~&)=ale™ 8l o R (& &) =0
Rc(fl —52) = a:e‘k)lfl‘g-:l : Rd (él _52) — O,;_e—k‘lg'l-g’d

Rac(fl -4:2) = aao-ce-kslfl—f:l s Rb,d (fl —52) = abl O'de-k"lé_ézl
E[4,1=n’n* (0’7" - P,G)

| S

2 2 —k|eg &) o 2 =2

var(4, ) = 4n’n® (o +be)J. J.e € sin? nze, sin® nze,d& d&,
0 0

=2kle -6,

sin® nze, sin® nze,d&dé,

4

+4ntrtc’o

a

e
O e, ™
Oty ™ Ol ™ © e ™

1
2 2 -He-e] - . 3
+44,,(0] +0;) Ie el sin® nre, sin® nze,dédé,

0

+412, (0202 [ [e79% sin® nze, sin® nze,dédE,

0

(3N

© ey —

11
-84, n'n'(0,0,+0,0,) I I e 1972 sin® nae, sin® nre,dé déE,
0 @

1t

44
~84,n"n0,0.0,0, I I e
0 o

~2k|e -6

sin® nzg, sin® nze,d & dé,

+n*r*(P.G) o}
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Substituting Eqn. (3.259) and (3.260) in Eqn. (3.110) and Eqn. (3.112), we obtain

expected value and variance value of natural frequency w, as follows:

\F G \/é[zf[/ln]ﬂ/(li[/i" ) - var[4, ]} (3.261)

var{w, ] = p var[J— ] (3.262)

3.7.2.2.1 Numerical examples

Laminate sectional dimensions and configurations are the same as explained in section

3.7.1.1.

Figure 3.18 provides the variance of 1* natural frequency when material and geometric

properties have exponential correlation.

Figure 3.19 shows the variance of 1* natural frequency vs correlation length for given

input variance and Py/P,,.
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Figure 3.18 The variance of 1* natural frequency vs ¢ for given correlation length and

P / P_ when material and geometric properties have exponential correlation
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Figure 3.19 The variance of 1" natural frequency vs € for given variance and

PP, =1/2
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Observations:

The Figure 3.18 shows the relation between input variance v and output variance @, and

the graph shows that the variances of natural frequencies increase in a piecewisely linear

manner.

In Figure 3.19, it can be observed that the variance of @, increases exponentially as the
correlation length, £, decreases. The variance of @, is almost infinity when the

correlation length is very small. This means that if the inputs at any two locations are

almost uncorrelated, the variance of output becomes infinity.

3.8 Conclusions and discussions

In this chapter, the formulation for the free vibration of composite beam-columns with
stochastic properties is developed using standard perturbation analysis. Three cases are
considered i.e. (1) Random axial load (2) Random material and geometric properties
having uniform correlation, and (3) Random material and geometric properties having
exponential correlation. Expected, Mean square and Variance values of 1% natural
frequency for [0/90])¢s, [+45/-45]es, [0/-60/60]¢s, and [0/45];sr NCT-301 composite
laminates are determined corresponding to cylindrical bending and one-dimensional
laminated beam theories. Further, the formulation is extended to the composite thin-

walled beam-columns and the probabilistic characteristics are obtained.

112



From the results, it is observed that the expected value of natural frequency @, differs

more from the deterministic natural frequency when the input random varable v

increases and also when the axial load approaches the critical buckling load. Also it can
be seen that the variance of @, and given input o’ are linearly related when random

properties have uniform correlation, whereas the corresponding graph for exponential

correlation shows that the variation is piecewisely linear.

It can be observed that the ratio of coefficients of variation of input and output is

independent of material and geometric properties and depends on P, and o7 .

Comparing the results for various composite laminates, it is observed that un-symmetric
laminate possesses the highest mean and variance values of natural frequency whereas
symmetric angle-ply laminate has the lowest mean and variance values of natural

frequency.
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Chapter 4

BUCKLING OF COMPOSITE BEAM-COLUMNS WITH STOCHASTIC

PROPERTIES

4.1 Introduction

In recent years, the applications of composite materials in various automotive, aerospace,
structural, marine and mechanical engineering industries have increased tremendously.
The main advantages of composite materials over the conventional high strength metals
are: high strength, high stiffness, low cost, low density, wear resistance and, thermal and
acoustic insulation. Composite laminates display significant variability in their material,
geometric and structural properties. This varability is attributed to the vanations in the
properties of the fibers, matrices and interfaces, in the fiber orientations, in the void
content and in the ply thickness. These variations are unavoidable and are induced during
manufacturing and service. Therefore, in the design and failure prediction these
variations have to be taken into account. Beam-columns made of polymer-matrix fiber-
reinforced composite materials are increasingly being used In many engineenng
industries. The buckling is of paramount importance in the design and development of

high-performance composite mechanical components.

In the present chapter, the buckling of such composite beam-columns is considered and
probabilistic characteristics of critical buckling loads are determined. Further, in this
chapter, thin-walled composite beam-columns are considered. In the design of thin-

walled beam-columns local buckling is a priority over the global buckling. Therefore, the
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theoretical view of elastic local instability of anisotropic composite beam-columns, in
which they are treated as assemblies of generally laminated composite plates buckling
under uniaxial compressive forces, is presented, and probabilistic characteristics of

critical buckling loads are determined.

In section 4.2, the formulation for the buckling of composite beam-column is developed.
In section 4.3, parametric study has been performed on symmetric cross-ply laminate
[0/90]gs, symmetric angle-ply laminate [+45/-45]qs, quasi isotropic laminate [0/-60/60]¢s,
and unsymmetric laminate [0/45] 37 corresponding to cylindrical bending and one-
dimensional laminated beam theories for various boundary conditions. Further, in this
chapter, in section 4.4, deterministic local buckling of thin-walled composite beam-
columns is described for various boundary conditions. In section 4.5, stochastic local
buckling of thin-walled composite beam-columns is considered. Further, in this section,
stochastic simulation of laminate bending stiffness matrix is described. Finally, in section
4.6, parametric study is performed for various types of laminate configurations by

changing the aspect ratio and loading edge boundary conditions.

4.2  Formulation for the buckling of composite beam-column

Let us consider the buckling of composite beam-columns that have a stochastic
distribution of stiffness properties and geometric boundary conditions. A composite
beam-column with axial compressive force and generalized boundary conditions is

shown in Figure 4.1.
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Figure 4.1 Composite beam-column

Making the basic assumptions, as mentioned in previous chapter, the partial differential
equation describing the response of a beam-column made of fiber-reinforced composite

laminate is given below:

92

[b(x)D“( x) =0 4.1)
x

3*w(x, 1) azw(x,t) 9 w(x,1)
ox* :| ax* T AEAX) 35— ar®
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The generalized boundary conditions are given by

b©O)D,,(0) a'w(?,t) —a ow(0,¢) -0 @)
dx dx
w(0,1) =0 4.3)
b(l)Du(l)KW(f_’t) +QZM=O 4.4)
dx” dx
w(l,t)=0 4.5)

In the above, w(x,?) is the lateral displacement as a function of spatial coordinate x and
time t, b(x) is the width of the laminate as a function of x, D;|(x) is the laminate bending
stiffness coefficient as a function of x, P is the axial compressive force, o and o are the

coefficients of boundary rigidities and ! is the length of the beam-column.

In the above equations, when the cylindrical bending theory [1] is used, the term Dy, is
set to be equal to D/A, where D/A is a function of membrane, coupling and bending

stiffness terms [1]. When the one-dimensional laminated beam theory [1] is used, the

term D, is set to be equal to 1/ D,'l , where Dl' . is bending compliance coefficient [1].

Since the coefficients of Egs. (4.1) to (4.5) are random or probabilistic, then the buckling
load is also random. Hence the problem has to be analyzed using a probabilistic

approach. The response can be evaluated in the form of mean values, mean square values
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and variances of buckling loads. Such results give enough information for engineering

interest.

The assumptions made about the stochastic coefficients and random variables except
assumptions 4 and 6, in the previous chapter, for the free-vibration case, are again made
here. Hence the coefficients in the governing differential equation and boundary

conditions are given by

D, (x)=D,, [1+a(x)] (4.6)
b(x)=b,[1+b,(x)] 4.7)
o= a,(l+s) (4.8)
a,=a,,(1+u) 4.9)

4.2.1 General solution to the stochastic equation
The solution for the Eqn. (4.1) is assumed to be of the form
w(et) =D W, X, (x) (4.10)
n=|

where X, (x) are the space dependent buckling modes, forming a complete set and
satisfying the boundary conditions, and W, are the amplitudes. For buckling problem W,

will be set to be equal to 1.
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These modes are obtained by introducing Eqn. (4.10) into governing Eqn. (4.1):

lbx)D, ()X (0] +PX (x)=0 @.11)

In the above equation, the prime denotes d/dx.

Now let us convert the independent variable x to £ using the expression & = x/[. Then

we have a non-dimensionalized eigen value problem, which is given by

[b(f)D.l(e‘)X ;(f)r +PI*X (£)=0 4.12)

and the corresponding boundary conditions are given by
b(0)D,,(0)X .(0) -l X ,(0)=0 ; X,(0) =0 (4.13)

b()D,, (VX (D) +la,X.(1)=0 ; X, (1) =0 (4.14)

Now substituting Egs. (4.6) to (4.9) in the governing differential Eqn. (4.12) and

boundary conditions given by Eqgs. (4.13) and (4.14), we obtain the following stochastic

equation:
{ie RO @} +—x©) =0 @.15)
boDll,,
Let
P’
=— 4.16
u, b,Dyy (4.16)

where u is the non-dimensional function of the static buckling load P .
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Now, Eqn. (4.15) can be written as

4

fi+r&EXE} +ux &) =0 @.17)

and the boundary conditions are

(l+R(0))X,:(0)—la—"‘(l+s)X,',(O) =0 ; X,(0)=0 4.18)
o™,

(l+R(l))X,:(l)+ la,, (l+u)X,',(l)=O ; X, (=0 “4.19)
o™11,

where

R(&) = a(§) +b,(§) +a(£)b,($) (4.20)

R(0) = g = a(0) + 5,(0) + a(0)b,(0) “4.21)

R(1) =r = a(l) +b,(1) +a(l)b,(1) 4.22)

R(£) is a random function of a(£) and b,(£). Therefore for fixed co-coordinate &, it

becomes a random variable. Hence q and r are random variables. Because of our

assumptions, mean value of R(£) is zero, so we have zero mean for q and r.

It is assumed that all coefficients of the governing differential equation and boundary
conditions have small random perturbations. Therefore perturbation method can be

applied to the following problem with satisfactory accuracy.

Now let us consider the modified differential equation obtained by assigning a

perturbation parameter & to Eqn. (4.18):

120



4

fi+ear@®X. &} +u,x & =0 4.23)

At the end of the analysis, & is set to be equal to |.

Now let us assume the solutions g, and the corresponding modes X, (&) of the above

Eqn. (4.23) and the boundary conditions given by Egs. (4.18) and (4.19) in the following

expanded forms.

M, =W, YU, O+ [ .q+ [, r+ U, S+ [ u 4.24)

Xn (f) = Xna (5) + an(f)a-i- an(f)q + Xn3(§)r

(4.25)
+X,,(8)s+ X, 5(E)u

Now, substitute Egs. (4.24) and (4.25) in modified governing Eqn. (4.23) and boundary

conditions given by the Egs. (4.18) and (4.19).

The perturbation procedure followed from here onwards is similar to that followed in the

free-vibration problem. Further, substitute # =0 in the procedure followed in the

free-vibration problem.

After some simplifications, the expression for the non-dimensional static buckling load

M, is obtained as follows:

! H,O a,,l H"(l)u

(4.26)
bo Dl 1, Dn bo Dl ly Dn

l 1
Hy = oy ¥ 5 f RO, (E)dE+
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where

D, = [[x.&fas (4.27)
(&) =[X,r (4.28)
H (&) =[X, &P (4.29)

From Eqn. (4.26), it can be seen that x, is composed of the following terms. The first
term 4, is independent of any random function or random variable and can be obtained

by solving the deterministic eigen value problem. The second term on the right hand side
represents the effects of random coefficients contained in the governing differential

equation, and the third and fourth terms are for boundary nigidity.

Now applying the expectation operator on both sides in Eqn. (4.26), we obtain

@l H,O o, @l HO)
bo Dl 1, D bo Dl 1, Dn

n

Elu, |= 0., +— [ELRG, ) + E(u) (430)

n 0

Using the assumptions made with regard to statistical independence of the random

variables and random functions, we obtain

Elul=u, 4.31)

We note from the above equation that the expected value of u, is independent of any
random inputs and coincides with the solution of the corresponding deterministic
buckling problem.
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Substituting the value of g, from Eqn. (4.16), we have

PI*
E| — =F 432
[boDll,:| Ul"] ( )
b,D
E[Plllzﬂ’w "l:”v (433)

By using Eqn. (4.26), we calculate 4. Then introducing the statistical treatment to e,

we obtain the following relation for mean square value.

a,! ) HiO) .

ELu;]=ﬂ;a : 5D, — 0,

al ) H: M
+ M
b,D, | D

j j R(EDRED (N (E,)dEdE, + ( -
. i (4.34)

In obtaining the above equation, the following assumptions of statistical independency

have been used.
E[sR(&)] = E[uR(&E)] = E[su] =0 4.35)

The variance of 4, is given by
var{u,] = E[u;]- Elu, 1*

l
"D;

l.,lJ H} (O)a,{ 2, } HW “36)
b,D b,D, ) D

Ot~

[EIRE)REN (E)I,(£)dEdE,
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Now by using the Eqn. (4.16), we obtain the variance of buckling load P, .

1
DZ

n

R ] e .|l &,D :
L[ @t | A, EO) ol+ %l | H, (1) o || 2t (4.37)
b,D,, D; b,D,, D,

1
var(P,] =[ [ [ELRCEOREN, (&)1, (£.)dEdE,
(1]

In the above Eqn. (4.37), the terms o and o are the variances of s and u respectively,

and the term E[R(£,)R(&, )] is the auto-correlation function.

Since we assumed the stationarity property of random processes, the above terms are
functions of (£ —¢&,) instead of £ and &,. Using the Eqn. (4.20), we obtain the

following equation for the auto-correlation function.
E[R(fl )R(fz )1=R, (fl _52 )+ Rb, (fl _51 )+ R, (gl - 52 )Rb, (él - é: ) (4.38)

In the above, R (£ - £,) indicates the auto-correlation function of a(&).

4.3 Parametric study

In the following sections, parametric study is performed on four different types of
laminates i.e. (a) Symmetric Cross-ply Laminate: [0/90]os , (b) Symmetric Angle-ply
Laminate: [+45/-45)os , (c) Quasi-isotropic Laminate: [0/-60/60]¢s , and (d) Un-
Symmetric Laminate: [0/45],st using both the cylindrical bending and one-dimensional

laminated beam theories.



4.3.1 Random stiffness and geometric properties

Now, let us consider that the composite beam-column is simply supported at both ends

and further the stiffness term and geometric coefficient are random.

As explained before the expected value of 4, is independent of any random inputs and

coincides with the solution of a deterministic buckling problem.

Elu,]=u,, (4.39)

For simply supported ends substituting &,, =&, =0 in Eqn. (4.36), we obtain

L
D;

var{,] = — [ [EIR(E)REN, ()L, (£,)dE dE, (4.40)
00

4.3.1.1 Case 1: Uniform auto-correlation function

Let us consider the case where all auto-correlation functions have uniform distribution
and their constant values are equal to the respective values of variance or product of
standard deviations. In other words, we have the same(or comparable) statistical

dependence between random functions at any two arbitrary locations.

Hence we have the following equations:

R (& -¢&) =0} (4.41)

R, (& &) =0, 4.42)
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Now, let us determine the expressions for the expected value and variance of buckling

loads for three types of support conditions.

(a) For simply supports, as mentioned in chapter 2, the following displacement

function, X (&) = sin(nxf), satisfies the geometric boundary conditions.

Since from Eqn. (4.33), the expected value of buckling load P, is given as

b,D
E[P ]='u’w allll., (443)

Substituting the above mentioned displacement function X (&) =sin(nzg) in the eigen

value problem of Eqn. (4.12), we obtain

b.D
E[P])=n'n" "lz“" (4.44)

Substituting the displacement function X (&) in Egs. (4.27) and (4.28) and simplifying,

we obtain
1 1.2
D, = [[x,@fas="2 (4.45)
; 2
I(&)=[X_(E] =n'n'sin’ nré (4.46)

Substituting Egs. (4.41), (4.42), (4.45) and (4.46) in Eqn. (4.40), we obtain the variance

of buckling load as follows:

varlp, | =n'n*(0} + 0, +0l0}) (4.47)
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Applying the variance operation on both sides in Eqn. (4.16), we obtain the variance of

P, as follows:

] 1 s baD :
varlP,|=n*z* (02 + o, +0.0, ){ lz“" J (4.48)

(b) For clamped-clamped support, as mentioned in chapter 2, the following displacement

function, X, (&) =1-cos(2n7zE), satisfies the geometric boundary conditions.

Substituting the above mentioned displacement function X (£) in the eigen value

problem of Eqn. (4.12), we obtain

22 baDll
E[P]=4n*7? = (4.49)

Substituting the displacement function X,(£) in Eqs. (4.27) and (4.28) and simplifying,

we obtain
D, =[x, @[ ag =2n*z* (4.50)
1]
[(&)=[X,(&)] =16n*7* cos*(2n7E) 4.51)

Substituting Egs. (4.41), (4.42), (4.50) and (4.51) in Eqn. (4.40), we obtain the variance

of buckling load as follows:

2

varl, |=16n*7* (o)} + 0, +0}0;) (4.52)

127



Applying the variance operation on both sides in Eqn. (4.16), we obtain the variance of

P, as follows:

6,0, T
varlP, | =16n*7* (o] + 0} + 00, )[ "lz“"j| (4.53)

(c) For clamped-free support, as mentioned in chapter 2, the following displacement

. n . . ..
function, X (&) =1- cos(—_)—f—) , satisfies the geometric boundary conditions.

Substituting the above mentioned displacement function X, (&) in the eigen value

problem of Eqn. (4.12), we obtain

n‘r? bDn
[?

(4.54)

E[P ]-

Substituting the displacement function X _(£) in Eqgs. (4.27) and (4.28) and simplifying,

we obtain
D, = [[x;&fa¢ = nz (4.55)
L&) =[X, &N = "176[ cosl(g) (4.56)

Substituting Egs. (4.41), (4.42), (4.55) and (4.56) in Eqn. (4.40), we obtain the variance

of buckling load as follows:



n.‘”-‘ 2 2 22
var[u, | = = (0: +0, +0.0;) 4.57)

Applying the variance operation on both sides in Eqn. (4.16), we obtain the variance of

P, as follows:

4 .3

s 2 a2 |bD
var[P, ] = 1:5[ (0; +0; +0';0',;[){ =

= J | (4.58)

4.3.1.1.1 Numerical examples

A composite laminate consisting of a total of 36 plies made of NCT-301 Graphite-Epoxy
composite material, each having a ply thickness of 0.125 mm is considered. The width of

the laminate is 0.025m and length of the laminate is 0.4m as shown in the Figure 2.3.

In the present examples, four different types of laminates i.e. symmetric cross-ply
laminate [(0/90]os, symmetric angle-ply laminate [+45/-45]q,, quasi-isotropic laminate [0/-
60/60]¢s and un-symmetric laminate [0/45],gt are considered and results that correspond

to the cylindrical bending theory and 1-D laminated beam theory are obtained.

Tables 4.1 to 4.7 show the expected and variance values of critical buckling load P, for

four different types of laminates corresponding to cylindrical bending and 1-D analysis

2

for given input 0, =0, =0

Figure 4.2 shows the variance of critical buckling load when stiffness and geometric

properties have uniform correlation for four different types of laminates.
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LI R
Note: o, =0,=0";

E[P,] is given in N units.

Input Simply supported Clamped-clamped Clamped-free
o’ E[R] | var[B]x10* | E[P] | var[R]x10° | E[P] | var{P]x10’
0.01 1.520 2.432 0.950
0.02 | 869.75| 3.056 3479.0 | 4.889 21743 | 1910
0.03 4.607 7.371 2.879
0.04 6.172 9.876 3.858

Table 4.1 Mean value and variance of critical buckling load for the [0/90]ys laminate

corresponding to cylindrical bending theory

Input Simply supported Clamped-clamped Clamped-free
c* E[P] | var[R]x10* | E[PR] | var[P]1x10° | E[P] var(P]x10°
0.01 1.473 2.357 0.920
0.02 | 856.18 2.961 3424.7 4.738 214.04 1.851
0.03 4.464 7.142 2.790
0.04 5.981 9.570 3.738

Table 4.2 Mean value and variance of critical buckling load for the [0/90]ys laminate

corresponding to one-dimensional laminated beam theory
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Input Simply supported Clamped-clamped Clamped-free
o’ E[P] | var[P]x10* | E[R] | var[R]x10’ | E[B] | var{B]x10’
0.01 0.445 0.712 0.278
0.02 | 470.65 | 0.894 1882.6 1.431 117.66 | 0.559
0.03 1.349 2.158 0.843
0.04 1.807 2.892 1.129

Table 4.3 Mean value and variance of critical buckling load for the [45/-45]¢s laminate

corresponding to cylindrical bending theory

Input Simply supported Clamped-clamped Clamped-free
o’ E[P] | var[P]x10° | E[R] | var[R]x10* | E[R] | var[B]
0.01 0.643 1.029 40.20
0.02 | 178.88 1.292 715.52 2.068 44.72 80.80
0.03 1.948 3.118 121.80
0.04 2611 4.178 163.20

Table 4.4 Mean value and variance of critical buckling load for the [45/-45]¢s laminate

corresponding to one-dimensional laminated beam theory
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Input Simply supported Clamped-clamped Clamped-free
o’ E(P] | var[R]x10* | E[R] | var{B] x10° | E[P] | var[B] x10’°
0.01 1.029 1.646 0.643
0.02 | 715.54 2.068 2862.18 3.309 178.88 1.292
0.03 3.118 4.989 1.948
0.04 4.178 6.684 2611

Table 4.5 Mean value and variance of critical buckling load for the [0/-60/60]es

laminate corresponding to cylindrical bending theory

[nput Simply supported Clamped-clamped Clamped-free
o’ E[P] | var[R]x10* | E[P] | var[P]x10° | E[P] | var[R]x10’
0.01 0.902 1.443 0.563
0.02 | 669.89 1.813 2679.5 2.900 167.47 1.133
0.03 2.733 4.372 1.708
0.04 3.661 5.859 2.288

Table 4.6 Mean value and variance of critical buckling load for the [0/-60/60]es

laminate corresponding to one-dimensional laminated beam theory
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Input Simply supported Clamped-clamped Clamped-free
o’ E(P] | var[P]x10* | E[P] | var[P]x10° | E[R] | var[P]x10’
0.01 1.997 0.319 1.248
0.02 4.014 0.642 2.509
996.83 3987.32 249.20
0.03 6.051 0.968 3.782
0.04 8.108 1.297 5.067

Table 4.7 Mean value and variance of critical buckling load for the [0/45]sT

laminate corresponding to cylindrical bending theory

x 10

>

—— cylindrical bending ; symmetric cross-ply laminate '
—e— cylindrical bending ; symmetric angle-ply laminate |:

811 —s— cylindrical bending ; quasi isotropic laminate
—+— cylindrical bending ; unsymmetric laminate
—— 1D-Analysis ; symmetric cross-ply laminate

| —— 1D-Analysis ; symmetric angle-ply laminate

—— 1D-Analysis ; quasi isotropic laminate

0 0.005

0.01

0.015

-
0.03

1
0.035 0.04

Figure 4.2 The variance of critical buckling load vs ¢* corresponding to simply

supported boundary conditions for uniform correlation
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Observations:

[t can be observed that the expected value of P, is independent of any random inputs and

coincides with the solution of the corresponding deterministic buckling analysis problem.

The Figure 4.2 indicates that the variance of P, increases linearly with o’ and also it can

be observed that the variance of buckling load P, takes on quite a very large value

compared to small input of o°.

Further, Figure 4.2 shows that symmetric angle-ply laminate has the lowest variance
values of critical buckling loads. It can also seen that the expected and variance values of
critical buckling loads corresponding to both the theories are almost same in the case of
symmetric cross-ply laminate, whereas small percentage of error occurs in quasi-isotropic
laminate and further, the largest difference occurs in the case of symmetric angle-ply

laminate.

It can be seen from variance Eqgs. (4.48), (4.53) and (4.58), that the variance value
corresponding to the clamped-free support condition is equal to 1/ 16™ of that of the
simply supported condition, whereas the variance value corresponding to the clamped-

clamped support condition is equal to 16 times of that of the simply supported condition.

From Eqn. (4.44) and Eqn. (4.48), we can say that the coefficient of variation is

independent of material and geometric properties and it depends on input variance of Py
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4.3.1.2 Case 2: Exponential auto-correlation function

Let us consider the case where auto-correlation function has exponential distribution.

Hence we have auto-correlation functions as

R, (& ~&,) =ole el (4.59)

R, (& —&)=0pe el (4.60)

where k,'s are positive constants. The constants k,'s govem the interval over which

appreciable correlation occurs. If we introduce a correlation length &, for each &, in such

a way that auto-correlation function is negligible for |¢'l -¢,|> €, then the correlation

length &, describes the degree of the input randomness. Suppose that the auto-correlation
function is reduced to 5% of its maximum value within the distances &, , then we have the

following equations:

R, (&) =0.050; 4.61)

R, (£,) =0.050; (4.62)

Now by combining Egs. (4.59) and (4.61), we have

ole™ =0.0507; (4.63)
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which gives

k& =2.99 (4.64)

In a similar manner the value of k,£, can also be obtained.

As explained before the expected value of buckling load is independent of any random
inputs and coincides with the solution of the cormresponding deterministic buckling
problem. Therefore the expected values of buckling loads for three different types of

supports are the same as in case 1.
Now, let us calculate the variance equation for three types of support conditions.

(a) For simply supported conditions, the displacement function, and the terms D, and
[,(£) are the same as explained in case . Now, substituting the displacement

function, D, and /,(£) in Eqn. (4.40), we obtain the variance of 4, as follows:

11
var[u, | = 4n*n* (o] + ;) J'j‘e'klt‘—f’l sin® n7e, sin® nze,d& d&,
00

11
+4n*n*(0l0,) _[ I e a7l sin® ng, sin® nne,d € dE, (4.65)
00

Applying the variance operation on both sides in Eqn. (4.16), we obtain the variance of

P, as follows:
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var[P, | = var[y, [%DL} (4.66)

(b) For clamped-clamped support conditions, the displacement function, and the terms

D, and [ (&) are the same as explained in case 1. Now, substituting the displacement

function, D, and [, (&) in Eqn. (4.40), we obtain the variance of y, as follows:

L1
var[y, | = 64n*n* (072 +0}) I I e ™57 cos? 2n e, cos® 2nme,dE dE,
00

[JS
+64n*n* (020, ) [ [e719% cos® 2n e, cos® 2nme,dE d¢, (4.67)
00

The variance of buckling load, P, , is calculated from Eqn. (4.66).

(b) For clamped-free support conditions, the displacement function, and the terms D,
and [ (£) are the same as explained in case 1. Now, substituting the displacement

function, D, and I,(£) in Eqn. (4.40), we obtain the variance of x, as follows:

4.4 11
nwo. 2 k|-, 1 NTTE 2 NTTE,
var[un]=—4—(0'a +0',,l)”'e el cos > Lcos 5 dédé,
00 i

n'‘z 22 T -2k|g -6, » NTTE, 2 NTE,
+ 3 (O'GO'bl)a"Je cos 5 cos 5 dédE, (4.68)

The variance of buckling load, P, , is calculated from Eqn. (4.66).
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4.3.1.1.2 Numerical examples

Laminate dimensions and configurations are the same as explained in section 4.4.1.1.1.

Figure 4.3 represents the variance of critical buckling load when stiffness and geometric

properties have exponential correlation for four different types of laminates.

Figures 4.4 to 4.7 show the variance of critical buckling load vs correlation length

corresponding to cylindrical bending theory.

x10*

14 r T T r
T —»— Cylindrical bending ; Symmetric cross-ply laminate

—e— Cylindrical bending ; Symmetric angle-ply laminate

—e— Cylindrical bending ; Quasi isotropic laminate

12 o eylindrical bending ; Unsymmetric laminate

—o— 1D-Analysis ; Symmetric cross-ply laminate

—o— 1D-Analysis ; Symmetric angle-ply laminate :

10} —— 1D-Analysis ; Quasi isotropic laminate . E

*%

: > : ? .
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
2
a

Figure 4.3 The variance of critical buckling load vs o’ corresponding the

simply supported boundary conditions for exponential correlation
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x10°

Figure 4.4 The variance of critical buckling load vs o for [0/90]gs laminate

corresponding to cylindrical bending theory

4
181:10 :

a2=0.04 : 2 }
: : g =c g .
14+ ; . . : a ’n : . -

~N
~N

o i

Figure 4.5 The variance of critical buckling load vs o for [45/-45]9s laminate

corresponding to cylindrical bending theory
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x 16°

35+

Nbﬂ» 2

1.5+

Figure 4.6 The variance of critical buckling load vs o for [0/-60/60}e laminate

corresponding to cylindrical bending theory

x 10°

Figure 4.7 The variance of critical buckling load vs o* for [0/45],g7 laminate

corresponding to cylindrical bending theory
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Observations:

The Figure 4.3 shows that variance of P, increases linearly with o*. It can be observed
from this figure that symmetric angle-ply laminate has the lowest variance values of
critical buckling loads. It can also be seen that the expected and variance values of critical
buckling loads corresponding to both the theories are almost same in symmetric cross-ply
laminate, whereas small percentage of error occurs in the case of quasi-isotropic

laminate. The largest difference occurs in symmetric angle-ply laminate.

The Figures 4.4 to 4.7 indicate that the variance of P, increases exponentially as the
correlation length, &, decreases. The variance of P, is almost infinity when the
correlation length is very small. This means that if the inputs at any two locations are

almost uncorrelated, the variance of output becomes infinity.

44  Deterministic local buckling of thin-walled composite beam-columns

In the present section, theoretical view of elastic local instability of anisotropic composite
beam-columns, which are, treated as assemblies of generally laminated composite plates

buckling under uniaxial compressive forces is presented.

The following assumptions are introduced for the thin-walled elements:

(1) The beam-column is initially straight.
(2) The lateral deflection of the beam-column axis and the cross-sectional

dimensions are small compared with the length of the beam-column.
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(3) Overall failure of the entire structure does not occur before local buckling of the

plate elements.
(4) The shear and rotatory inertia effects are neglected.
(5) Stresses are sufficiently small to warrant the assumption of linear elasticity.

(6) Equilibrium conditions are written based on the undeformed configuration of the

structural element.

Consider a thin-walled composite I-section beam-column as shown in Figure 4.8. Local

buckling of flange and web can be considered as an individual plate buckling.

top flange

/
A\

o*

—

Figure 4.8 I-section beam-column and coordinate system



The variational principle for an anisotropic rectangular plate under uniform compressive

loading is given as follows [1]

L b
5{% [{D W 42D W, o ADW, o +4D\ W, _ +4D W . 4D W . o +N W, }irdz} =0
00

(4.69)

where W(x, z) is the flange out-of-plane displacement, b = b¢2, and D, is the laminate

bending stiffness term [1]. The subscripts preceded by a comma denote differentiation
with respect to the corresponding coordinates. Similarly an equation is formulated for the

web by replacing W with U, and x with y, where U(y,z) is the web out-of-plane

displacement.

By virtue of symmetry of cross section, two plates, i.e., upper half flange and web, are

treated herein.

4.4.1 Flange buckling

In the following sections, different types of flange support conditions are discussed.

4.4.1.1 SCSF flange support conditions

The boundary conditions for the half flange are assumed as: one free edge, and one
clamped joint with the web, and the other two edges are simply supported (SCSF), which

are given as follows:
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W=0 atz=0,-landx =0 (4.70)

W.=0 atx=0 (4.71)
M;=D W +Dpn Wi +2Dig W=0 atz=0,-/ 4.72)
Mi=D13 W, +D2s Wy + 2D W =0 atx=b¢/2 4.73)

Qx =D6W zz + (D2 - 2D66)Wm +3D5s W zxx+ D2 Wax = OQatx=be/2 (4.74)

The deflection function which satisfies the above geometric boundary conditions is

assumed of the form:

ES
Z

Wzx) =YY A,Z,(9X,(x) 4.75)

m=1 n=l

where Z_(z) and X, (x) are characteristic shape functions along the z and x axes

satisfying the boundary conditions along these axes, respectively. The shape functions are

given by the following:

Z,(2)= sin(ﬂl’g] (4.76)

The characteristics shape function in the x-direction satisfying the different boundary

conditions can be expressed in general form as:

o) 2
24,0 | | csinbl 225 | + £ cosh| 2* @.77)
bf bf bl

where A, B, C and E are the constants obtained by substituting the appropriate boundary

5
X (x)=A sin( 'ﬂ"'r] +B cos{
b,

conditions [69].
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Now, the substitution of the conditions W = W_, = 0 at x = 0 into Eqn. (4.77) yields

A =-Cand B =-E;

Substituting M, =0 at x = b¢/2 gives

X, «+DNX=0
where
I
IZ,: Zd;
D=Dy3/Dyp; N =4—
IZZdz
0

and also substituting Q=0 at x = by/2 gives
X, xx+DINX ¢ =0

where

Dy =(D12+ 4Deg)/ D22

Solving Eqn. (4.78), shape function of X(x), is obtained as follows:

2 o) 9
X, (x)= Sin( 2/1,,.\:] - sinh( 24, x] + 5, (cos[ "l"'tj - cosh[ "Il"xﬂ
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where

sinA, +ysinh A 4 — DNb’
= et |y | DL (4.83)
cosA, +ycoshA, 44, + DNb;

Solving Egs. (4.78), (4.80) and (4.82), the frequency equation is obtained as follows:

41> - D,Nb; 44 — DNb’
cos A, +| —————= |cosh 4, sinA_+| ————~ |sinh 4,
44, + D\Nb; 44, + DNb; 4.84)
47 — DNB: o 47 - DNb? '
sin A, —| ————=- |sinh 4, cos A, ~| —————~% |cosh 4,
44, + D\Nb; 44, + DNb;

The above equation is dependent on material and geometric properties of the plate.

The Eqn. (4.84) is complicated to solve and therefore the following procedure is used to

get the solution for A,. For example consider symmetric angle-ply laminate [+45/-45]os

with aspect ratio of 12. Now Eqn. (4.84) becomes,

. o) B
cosd, + (M] cosh A, sind, + (M) sinh 4,

422 -0.28 442 =005

Y + = =0  (4.85)
sind, — —%ﬂ sinh A, cosAd, - 4—’,‘+2E cosh A4,

47 -0.28 42 -005

Now, let us say that the left hand side of the above equation is f (4,) and now plotting f
(4,) vs. A, gives the solution for 4, .
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Figure 4.9 Solutions for A, corresponding to [+45/-45]¢s laminate

4.4.1.2 FCFF flange support conditions

75

8.5

The other type of the flange boundary conditions are assumed as: one free edge along the

longitudinal direction, one clamped joint with the web, and the other two edges are free

(FCFF), which are given as follows:

=0 atx=0

=0 atx =0

¥ =

M,=Dy W.zz + D W.xx + 2Dy W.zx= 0 atz=0,-/

M, =D;» W'zz + D7 W.xx + 2D W'zr: 0 atx=bg/2
Q. =D Wz + (D12 - 2D66)W zxx + 3D 16 W zx+ D26 Wixx =0 at 2 =0,/

Qx =D16 Wz + (D12 - 2D66)W zzx + 3D26 W pxx+ D22 Wik =0 at x = bg/ 2
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The characteristic shape functions, which satisfy the above boundary conditions, are

given as follows [70]:

where

where

Z,(0)= cosh(-/%'—z) + cos( /1'1"21 - ﬂz(sinh(/l’; Z) + sin( A';ZD (4.92)

_cosh A, —cosd,
*  sinhA, —sind,

X, (x)= cosh[ilb—"fi] - cos(%} - ﬂ{sinh[ /il;’;t) - sin( /Z":]J (4.94)

_cosA, +coshd
sin A, +sinh4_

c A =@2m+1)/2 (4.93)

B, A, =C2n+1)/2 (4.95)

The Ritz method is applied to the problem using the above shape functions, and

geometric and natural boundary conditions. The resulting equilibrium equation is given

as follows [1]:

{ b { b { b
ii {D,, [2..2,.-d2 jx,xndwnu[ (2,2, a2 [X X, dx+ (22, dz[X, X, dx
0 0 0 0 0

o

i=l j=l
Joxx " moxx

+Dyy ljz,.zmdzbjx X, dr+4Dg ljz,..:zm‘:dzbjx X, dx
0 [ Q [

+ 2D16 _ ]Zi.:zm.:dz]'xjxn.xdx + ‘J‘Zi.:zm.zzdz]‘X/Xn.xdx]
0 0 0 0

+2D, —]‘Z,.Z,,,_:dzl]XWXm“dx + IJ‘Z‘.ZM.:dz]'XwXudx:'
L O Q 0 0

+N, l[zi':zm‘:dzbjxlxndx + ljz,zm.:dzl_’[xn x,,,dr}fg, =0 (4.96)
0 0 1} 0

wherem=12..M;n=1.2...N
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Setting the determinant of this system of equations to zero, a set of M x N linear
homogeneous simultaneous equations is obtained. By using a standard eigen solution we
extract the minimum eigenvalue and its corresponding eigenvector to give critical
buckling load N and its mode shapes respectively. A computer program is written in

MATLAB® to solve the eigen value problem for the critical buckling load.

442 Web buckling

In the following sections, different types of web support conditions are discussed.

4.4.2.1 SCSC web support conditions
The boundary conditions for the web are assumed as: simply supported at two edges and

clamped at the two longitudinal edges (SCSC), which are given as follows:

U=0 atz=0, -/ and -hy/2 <y<h,/2 (4.97)
U.=0 at y = -hu/2, ho/2; 0<z<-1 (4.98)

M, =Dy Uz, +Dja U +2D16 Wx=0 atz=0, -/ and -hy/2 <y<h./2 (4.99)

The deflection function, which satisfies the above geometric boundary conditions, is

assumed of the form:

M N
Uzy) = 2. ALZ ()Y, (y) (4.100)

m=l n=1
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where Z (z) and Y, (y) are characteristic shape functions along the z and y axes

satisfying the boundary conditions along these axes, respectively.

The characteristic shape functions, which satisfy the above boundary conditions are given

as follows [70]:
Z,(2)= sin(i"lﬁ) (4.101)
Y, (y)= ,B{cos( A, y) - cosh( A0 )] + sin(i’i) - sinh( A y) (4.102)
h, h, h, h,
where

_cosA, —coshd,

= A, =Qn+)m/2 4.103
' sind +sinh 4, " ( ) ( )

4.4.2.2 FCFC web support conditions

The other type of boundary conditions for the web is assumed as: free at two edges and

clamped at the two longitudinal edges (FCFC), which are given as follows:

U=0 aty = -hu/2, hy/2, 0<z<{ (4.104)
U,=0 aty = -hw/2, hu/2; 0<z<- (4.105)
M, =Dy Uz + D1z Uyy +2D1 Wyy=0 atz=0,-l (4.106)

Q:=Dy Uz + (D12 - 2D66)U 2yy + 3D 16 U yyz+ D26 U yyy =0at z=0,-1 (4.107)
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The characteristic shape functions, which satisfy the above boundary conditions are given

as follows [70]:

Z,.(2)= cosh(’l’;z) +cos(i’;z) - ﬁs(sinh(l’;z) + sin(/l’l"zn (4.108)

where
= :’::j: :::’:j: LA, =@m+1)/2 (4.109)
Y, (y)= ﬂs(cos( ’Zy ] _ cosh( ’Zy ]J + sin( /}1" J - sinh( ’ZV J (4.110)

where
_cosd, —coshd . e yri2 @.111)

® sinA_+sinh A, ’

Now, web critical buckling load N, and its mode shape are calculated in a similar manner

as explained in flange buckling case.

4.5  Stochastic local buckling of thin-walled composite beam-columns

Most modern mechanical systems possess high degree of structural complexity. In the
case of composite laminates, significant randomness is present. This is due to the
stochastic spatial variations of the properties of fibers, properties of the matrix material

and properties at interfaces. In addition to the above, several variations exist in the fiber
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volume fraction, void contents, fiber orientation angles in various plies, and thickness of
a laminate, etc. due to the significant variabilities that are introduced during the
manufacturing process. As a result, tests on a single material specimen provide a specific
value for each material parameter and mechanical property. However, when a number of
specimens are tested, different randomly distributed values are obtained for the same
material property. Therefore, the analysis of laminates has to be performed based on a
probabilistic approach. For the present case Ritz method is used based on a stochastic
approach such that stochastic description can be provided for the laminate bending

stiffness.

Consider a laminate in (x, y) plane. The spatial variation of laminate bending stiffness Dj;
is considered to constitute a two-dimensional homogeneous stochastic field. The

fluctuating component a(X) corresponding to bending stiffness D;; has a zero mean.
D,=D,1+aX)] : Ela(x)]=0 (4.112)
The auto-correlation function is given by

R, (&) = Ela(X)a(X +£)] 4.113)

[n the above, X =[x, y]T indicates the position vector and & = [§x,§y]1 represents the

separation vector between two points X and (X +¢). In practical cases each stiffness

value is considered to vary at each Gauss point of numerical integration. Thus, if n

represents the number of regions present in the structure, and m represents the order of
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Gauss quadrature, then there are N equal to nxm stiffness values associated with the

structure.

Consider only the fluctuating component of the homogeneous stochastic field, which is
used to model the stiffness varations around the expected value. These N values

a, =a(X;) (i=123,.,N), are comelated random values with zero mean. Also X,
corresponds to the location of each Gauss point. Their correlation characteristics can be

specified in terms of the covariance matrix [CM] of order NxN , whose ij* component is

given by
¢, =covla,,a,]= Ela,.a,|=R,(¢,) ; i=123,...N (4.114)

in which &, = (X ,—X ‘.)= the separation distance between the Gauss points / and j.

Now a vector {a} =[a; a> as... ay]* can be generated by
{a}=[LKz} @4.115)

in which {Z} = [Z; Z, Z; ... Zy |" is a vector consisting of N independent Gaussian

random variables with zero mean and unit standard deviation, and [L] is a lower

triangular matrix obtained by the Cholesky decomposition of the covariance matrix

[C,.]. Thus,
[LIIL] =[C,,] (4.116)

Once the Cholesky decomposition is accomplished, different sample vectors of {a} are

easily obtained by generating samples for the Gaussian random vectors {Z }
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The correlation properties of the stochastic field representing the fluctuating components
of material properties are expressed using the Markov correlation model, also known as

the First-order autoregressive model, which is given as follows [71]:
R,(¢)=0, eXP[— [gﬂ @.117)

where o, is the standard deviation of the stochastic field a(X), dis the correlation

length such that when it is large the correlation disappears more slowly and & is the

separation distance between the Gauss points. Using the N values of [D], the averaged

value of [D] is obtained using Gauss quadrature rule.

Now applying the expectation operation on Eqn. (4.96), we obtain the following:

M N

ZZ {E[Dl t [}Z,,:Zm_:dzljxl X, dx

=l =l

+E[D, []‘ZMZL:dz bjx X, . de+ ljz,. Z, _dz bjxn X mdx]
0 0 0 0

Jxx“* noxx

{ b { b
+E[D,])(2.2,d: [X, X, (dc+4E[D ][z, 2, d2 [X X, dx
0 0 [} 0

+2E[D, {lj’z,.,xzm.xdz"jx,xudx + ]Zi.:Zm.xdz]‘X/dex}
] 0 0 0

+ 2E[DZ6 1: ]‘Zizm.:dz]'xj.xx Xn..udx + IJ‘Z’ Zm.:dZ l:[X/..m:Xn..rde
0 0 0 0

{ b { b
+EN )z, 2, dz[X X, de+ (22, dz[X, X “dx}A,i =0 (4.118)
4] Q [1} 0

From the above equation, we obtain the expected value of critical buckling load N, .
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Now applying the variance operation on Eqn. (4.96), we obtain the following equation

after neglecting the terms that correspond to the covariances between D;; terms:

Y

l b
i [Var[Du{IZu_-Zm,de IXIX,‘d.\:]
=l a o

+var[D,,{jzm Z, _dz jx X, ‘i”J‘Zme—d‘IXnderJ-

2

2 i b
+ var[D,, j zZZ, d’ (X,wdx] + var[D, {4 [z.2,.dz XMX,,_‘dx]
0 0

-

l"' m. 2

{ b -
+ var Dm{ Z, dz j XX, d+ 2.2, d IX]X“dxH
0 0

2

+ var[D, | 2 jzz dvjx X, dx+jZZ dzjx X, dxﬂ

! 2
+var[N, ( [z..2,.4d: Xandx] ]»A,, =0 4.119)
0 ]
From the above equation, we obtain the variance value of critical buckling load N .
4.5.1 Stochastic simulation of laminate bending stiffness matrix

Using the test data of the material properties [62] as shown in the Table 4.8, the
stochastic process that corresponds to the laminate bending stiffness is determined from
Eqn. 4.112 and further, sample realizations at each Gauss point are obtained. Using the
generated sample realizations of material properties at each Gauss point the stochastic
bending stiffness matrix, [D], is calculated for each Gauss point. A computer program is
written in MATLAB® to get the stochastic process that corresponds to the bending
stiffness matrix, {D]. This program is given in the Appendix.
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euaralesora] | e JouGeal i B T
Mean 1294 | 80 | 0021 |0332| 43 18617.1 1257.9
(Sl‘a'.“";"d 29 | 033 | 0002 | 0032| 024 2789.1 169.3
eviation
Coefficient | , 5 | 415 | 1043 | 955 | 552 14.98 13.46
of variation

Table 4.8 Mean values, standard deviations and coefficients of variation of various

material properties of NCT 301 graphite-epoxy composite material {62]

Using the test data on elastic constants of the composite material as shown in Table 4.8,
the stochastic field realizations of bending stiffness matrix are obtained at each Gauss
point using the Eqn. (4.112). In the present work, a three point Gaussian numerical
integration is used as it gives most accurate results. Considering 12 regions in the present
structure, nine different sample realizations of each of the stochastic process are
generated corresponding to nine Gauss points in each region. Therefore there will be a
total of 108 coordinate points that will be generated. Here each coordinate point is
considered to be a Gauss point. Considering a particular set of sample realizations
generated for the entire structure, a sample realization for Gauss points in regions 2 and

10, for the [45/-45]¢s laminate, is shown in Figure 4.9.
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2103 1821 2534 2139 1852 2573

Figure 4.9 A set of sample realizations of the stochastic bending stiffness matrix at

different Gauss points in regions 2 and 10

4.6 Parametric study

In the following section, parametric study is performed on composite beam-column with
[ shaped cross-section by varying boundary conditions, laminate configurations and

aspect ratio.

A composite beam-column with I-cross-section as shown in Fig. 4.10 consisting of a total
of 36 plies made of NCT-301 Graphite-Epoxy composite material, each having a ply
thickness of 0.125 mm is considered. The same material properties considered in earlier

chapters are also used in this chapter. The length and width of the beam-column is
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changed according to the aspect ratio, R. Since the cross-section is symmetric, only half
flange is considered in the analysis. Therefore aspect ratio for the flange is 2//bf and
aspect ratio for the web is I/h,,. Three different types of laminates i.e. [0/90]q,, laminate
[+45/-45]¢s laminate, and [0/-60/60]¢s laminate are considered for the two flanges and web
respectively. Buckling load is presented in non-dimensional form, K, which is given by K
= N.b*D;;. A 9-terms solution is used to obtain critical buckling load. The boundary

conditions are denoted by S for simple supports, C for clamped supports and F for free

!
; ;

supports along the edges.

h =0.0045m

P <

—» ¢— 1 =0.0045m

Figure 4.10 [-section beam-column with dimensions

Table 4.9 shows the deterministic, expected and variance values of critical buckling load
for (a) [0/90]¢s laminate with free boundary conditions on loading edge, (b) [+45/-45]os
laminate with free boundary conditions on loading edge, (c) [0/-60/60]¢s laminate with

free boundary conditions on loading edge, (d) [0/90]gs laminate with simply supported
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boundary conditions on loading edge, (f) [+45/-45]os laminate with simply supported
boundary conditions on loading edge, and (e) [0/-60/60]ss laminate with simply

supported boundary conditions on loading edge.

Figure 4.11 shows the deterministic and expected values of critical buckling load for
[0/90]ss laminate with free boundary conditions on loading edges and completely

clamped flange-web connection.

Figure 4.12 shows the deterministic and expected values of critical buckling load for
[+45/-45]9s laminate with free boundary conditions on loading edges and completely

clamped flange-web connection.

Figure 4.13 shows the deterministic and expected values of critical buckling load for
[0/-60/60]¢s laminate with free boundary conditions on loading edges and completely

clamped flange-web connection.

Figure 4.14 shows the variance of buckling load for different laminate configurations

with free boundary conditions on loading edge.

Figure 4.15 shows the deterministic and expected values of critical buckling load for
[0/90)ss laminate with simply supported boundary conditions on loading edges and

completely clamped flange-web connection.

Figure 4.16 shows the deterministic and expected values of critical buckling load for
[+45/-45]9s laminate with simply supported boundary conditions on loading edges and

completely clamped flange-web connection.
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Figure 4.17 shows the deterministic and expected values of critical buckling load for

[0/-60/60]¢s laminate with simply supported boundary conditions on loading edges and

completely clamped flange-web connection.

Figure 4.18 shows the variance of buckling load for different laminate configurations

with simply supported boundary conditions on loading edge.

* R= 2I/b¢ (flange); R= l/h,, (web);

Flange_ Web

FCFF FCFF FCFE FCFC FCFC FCFC

R Deterministic Mean Variance Deterministic Mean Variance
0.5 48.38 49.44 2738.6 44.56 45.04 1794.6
1 25.1 26.21 1305.5 20.77 21.2 339.79
1.5 27.79 28.4 1340.3 23.37 23.9 451.34
2 30.39 31.37 1484.5 25.95 26.28 505.36
2.5 31.51 32.4 1498.1 26.97 27.1 560.23
3 34.58 35.61 1686.1 29.97 30.24 701.6
3.5 39.68 40.8 2064.1 35.02 36.2 1123.5
4 46.45 47.3 2642.8 41.77 42.1 1653.9
4.5 54.68 55.2 3828.5 49.98 50.5 2632.2
5 64.22 64.81 47447 59.52 59.31 3756.1

Flange Web

FCFF FCFF FCFF FCFC FCFC FCFC

R Deterministic Mean Variance Deterministic Mean Variance
0.5 127.22 123.91 14654.9 82.11 81.01 3488.2
1 106.6 104.1 13258.3 59.33 58.12 2050.1
1.5 110.33 108.2 13412.2 61.61 60.4 2014.2
2 115.44 112.5 13578.5 65.22 63.1 2295.1
2.5 121.35 118.2 13742.3 68.96 65.3 2380.2
3 128.75 125.3 13945.5 74.21 72.65 2565.5
3.5 137.64 135.8 14523.1 81.16 79.1 2945.5
4 147.86 145.4 15226.4 89.7 87.5 3676.8
45 159.29 155.5 16423.2 99.71 97.67 4895.1
5 171.91 168.03 17709.9 111.12 108.6 6112.1
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Flange Web
FCFF FCFF FCFF FCFC FCFC FCFC
R Deterministic Mean Variance Deterministic Mean Variance
0.5 72.04 72.22 6324.5 55.73 55.81 2304.3
1 50.03 49.5 4901.3 31.89 31.87 848.15
1.5 52.79 52.1 4982.3 33.87 33.1 926.21
2 55.9 55.1 5127.1 36.74 36.62 1021.3
2.5 58.47 58.55 5274.2 38.5 37.5 1089.2
3 62.49 62.39 5363.5 41.74 41.53 1222.7
3.5 68.11 67.2 5805.2 46.76 45.5 1645.6
4 75.15 74.84 6330.3 53.33 52.88 2135.2
4.5 83.45 82.2 7121.3 61.28 60.8 3032.5
5 92.93 92.31 8371.5 70.48 69.71 4153.1
Flange Web
SCSF SCSF SCSF SCSC SCSC SCSC
R Deterministic Mean Variance Deterministic Mean Variance
0.5 53.19 53.86 6918 53.76 54.31 1876.9
1 53.66 53.92 6914.4 53.76 54.3 1875.7
1.5 44.4 449 9886.1 45.12 45.45 1147.9
2 44.48 45.07 10073.5 44.76 45.19 1088.8
2.5 46.18 46.63 18368.8 47.39 47.6 1384.4
3 53.66 53.96 33802.2 56.03 56.12 2346.9
3.5 65.02 65.11 59321.9 68.75 69.1 4059.2
4 79.45 79.3 98505.7 84.75 84.36 6732.9
4.5 96.54 96.15 155506.1 103.65 104.5 10641.2
5 116.4 115.14 235037.2 125.23 124.23 16103.3
Flange Web
SCSF SCSF SCSF SCsC SCsC SCSC
R Deterministic Mean Variance Deterministic Mean Variance
0.5 108.9 107.22 30907.2 108.49 106.83 4074.5
1 108.43 106.82 23951.4 108.44 106.76 4074.8
1.5 105.72 103.78 30893.8 102.91 100.94 3434.5
2 104.58 102.58 44082.6 101.59 99.73 3333.7
2.5 110.06 107.79 58536.8 106.43 104.34 3727.2
3 120.76 118.21 78604.9 117.49 115.15 4857.9
3.5 135.19 132.34 109176.3 132.91 130.27 6846.7
4 152.75 149.57 155040.8 153.9 151.92 9943.2
4.5 173.17 169.63 221275.2 175.12 171.76 14466.2
5 196.3 192.36 313453.2 200.37 197.58 20787.1
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Flange Web

SCSF SCSF SCSF SCSC SCSC SCSC
R Deterministic Mean Variance Deterministic Mean Variance
0.5 71.2 71 15725.1 69.48 69.45 2528.7
1 70.48 70.14 15512.9 53.76 52.1 2528.4
1.5 61.82 61.62 15719.8 60.55 59.1 1780.9
2 61.92 61.78 21014.6 60.35 60.5 1731.5
2.5 63.62 63.5 29861.7 62.69 61.1 2004.1
3 70.87 70.38 45035.1 70.91 69.1 2923.9
3.5 81.83 80.4 69693.98 83.1 82.2 4565.9
4 95.73 94.75 107388.8 98.46 96.3 7131.7
4.5 112.21 110.2 162150.1 116.62 114.2 10883.1
5 131.06 129.44 238521.7 137.37 134.57 16126.3

Table 4.9 Deterministic, mean and variance values of critical buckling loads: (a) [0/90]qs

laminate with free boundary conditions on loading edges, (b) [45/-45] ¢s laminate with

free boundary conditions on loading edges, (c) [0/-60/60]¢s laminate with free boundary

conditions on loading edges, (d) [0/90]¢s laminate with simply supported boundary

conditions on loading edges, (e) [45/-45] o5 laminate with simply supported boundary

conditions on loading edges, and (f) [0/-60/60]¢s

boundary conditions on loading edges

65

- Flange (FCFF) ; Determinstic |
~-  Flange (FCFF) ; Mean .
60H -~ Web (FCFC); Determinstic ;
- Web (FCFC); Mean i

] &

Non-Dimensional buckilng load,K
o]

ol a

aspect ratio,R

laminate with simply supported

Figure 4.11 Deterministic and mean values of critical buckling load for the [0/90]os

laminate with free boundary conditions on loading edges

162




180 ) 8 T T T ki T
-+ Flange (FCFF) ; Determinstic 1
—3—- Flange (FCFF) ; Mean LA
- Web (FCFC); Determinstic L
160H —— Web (FCFC) ; Mean - -~ E
5 190f .
[
K]
o £+
£ ]
3 120p: g
a AN
k|
& *
° -
[] L
€ 100 - A
£ el
a e
§ -
z 80t B2 g
.-’.'/.//
g} e -
‘o . 1 L 1 . L - 1
05 1 15 2 25 3 35 4 45 5
aspect ratio,R

Figure 4.12 Deterministic and mean values of critical buckling load for the [45/-45] o

laminate with free boundary conditions on loading edges
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Figure 4.13 Deterministic and mean values of critical buckling load for the [0/-60/60]¢s
laminate with free boundary conditions on loading edges
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Figure 4.14 Variance values of critical buckling load for different laminate configurations

Figure 4.15

with free boundary conditions on loading edges
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Figure 4.16 Deterministic and mean values of critical buckling load for the [45/-45] o

laminate with simply supported boundary conditions on loading edges
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Figure 4.17 Deterministic and mean values of critical buckling load for the [0/-60/60]¢s
laminate with simply supported boundary conditions on loading edges
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Figure 4.18 Variance values of critical buckling load for different laminate configurations

with simply supported boundary conditions on loading edges

Observations:

It is observed from Figure 4.11 and Table 4.9(a) that the local buckling can occur due to
web buckling. Further, it shows that the expected values of buckling loads are slightly
less then the deterministic values. It is also observed that for the aspect ratio between
0.5 — 1.0 there is maximum drop in the buckling load. For aspect ratio values greater than

1.0, critical buckling load increases continuously.

It can be clearly observed from Figure 4.12 and Table 4.9(b) that local buckling can

occur due to web buckling.
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It is observed from Figure 4.13 and Table 4.9(c) that local buckling can occur due to web
buckling. Here also we can observe that maximum drop in buckling load occurs when the

aspect ratio is between 0.5 - 1.0.

It is observed from the Figures 4.11- 4.13 that the buckling load is the lowest when the
aspect ratio is 1. Further, it can be seen that cross-ply laminate with free boundary

conditions on loading edge possesses the largest buckling load.

It can be observed from Figure 4.14 that cross-ply laminate web (FCFC) possesses the
highest variance over the other laminates. Further, it can be seen that variance value

increases quite significantly as the aspect ratio increases.

[t is observed from Figure 4.15 and Table 4.9(d) that the local buckling can occur due to
flange buckling. Further, it shows that the buckling load is almost constant within the

aspect ratio range 0.5 - 1.0.

It can be observed from Figure 4.16 that the change in the buckling load with increasing
aspect ratio is quite different from the previous cases. It can be seen from Figure 4.16 and
Table 4.9(e) that the local buckling may well be triggered initially in the web when the
aspect ratio is between 0.5 - 3.5 and after that local buckling may occur in the flange.
This is the significant observation. Further, here also it shows that the buckling load is

almost constant within the range 0.5-1.0.
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Observation from Figure 4.17 shows that buckling is somewhat similar to the previous
case i.e. the local buckling may initially occur in the web when the aspect ratio is

between 0.5 - 3 and after that local buckling may occur in the flange.

[t can be observed from Figure 4.18 that the variance value increases quite significantly

as the aspect ratio increases.

4.7 Conclusions and discussions

In this chapter, the formulation for the buckling analysis of composite beam-columns
with stochastic properties is developed using the standard perturbation analysis. Two
cases are considered i.e. (1) Random stiffness and geometric properties having uniform
correlation, and (2) Random stiffness and geometric properties having exponential
correlation. Expected, mean square and variance values of critical buckling loads for
[0/90]es, [+45/-45]os, [0/-60/60]ss , and [0/45];sr NCT-301 composite laminates are
determined corresponding to cylindrical bending and one-dimensional laminated beam

theories.

It is observed that un-symmetric laminate possesses the highest expected and variance
values of critical buckling load whereas symmetric angle-ply laminate has the lowest
expected and variance values of critical buckling load. Further, it is observed that the
expected and variance values of crtical buckling load corresponding to cylindrical

bending and one-dimensional laminated beam theories are almost same in symmetric
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cross-ply laminate whereas small percentage of difference is seen in quasi-isotropic

laminate and further, the largest difference occurs in symmetric angle-ply laminate.

In the second half of the chapter, deterministic local buckling of thin-walled composite
beam-columns is discussed. Further, the stochastic local buckling analysis of thin-walled
composite beam-columns is developed. Program is written in MATLAB® to generate
stochastic laminate bending stiffness matrix and to solve the eigen value problem for the

critical buckling load.

From the results, it is observed that the local buckling occurs in the web in all the three
different types of laminates when the loaded edges are free boundary conditions. Further,
it is observed that the local buckling occurs in the flange in symmetric cross-ply laminate
when the loaded edges are simply supported. Whereas in the cases of symmetric angle-
ply laminate and quasi-isotropic laminate local buckling is first triggered in the web when
the aspect ratio is between 0.5 -3.0 and 0.5 - 3.5 respectively, and after that local buckling
occurs in the flange when the loaded edges are simply supported. Further, it can be seen

that variance value increases quite significantly as the aspect ratio increases.
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Chapter 5

CONCLUSIONS AND RECOMMENDATIONS

In the present thesis, the free-vibration and buckling of prismatic beam-columns made of
polymer-matrix fiber-reinforced composite materials are considered first. The mean
values, mean square values and variances of the natural frequencies of undamped free
vibrations and that of the buckling loads of the beam-columns are determined based on
the perturbation method that is employed in the context of stochastic analysis. The
equations that quantify the relationships between the natural frequencies, and the
laminate configurations, fiber orientations, geometric parameters and material properties
of the laminate, and boundary conditions are derived. Similar relationships for the

buckling loads are also determined.

The thin-walled beam-columns made of polymer-matrix fiber-reinforced composite
materials are considered next. Equations for the mean values, mean square values and
variance values of the natural frequencies are derived in a form that is similar to the
corresponding equations derived for prismatic beam-columns. In addition to the
relationships mentioned in the above for prismatic beam-columns, the relationships
between the natural frequencies, and the laminate configurations and aspect ratios of the
flange and web sections of the thin-walled beam-column are also quantified through
relevant equations. For the thin-walled columns, the local buckling loads are also

determined. In this regard, the Ritz method is applied in the context of stochastic
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analysis. A program is written in MATLAB® to generate the stochastic laminate bending

stiffness matrix and to solve the eigenvalue problem for the mean value and variance of

the critical buckling load.

A detailed parametric study is conducted using the above mentioned theoretical

developments to determine the influences of the material, structural, and geometric

properties, and applied axial loads on the natural frequencies and buckling loads for the

[0/90])¢s laminate, [+45/-45]¢s laminate, [0/-60/60]ss laminate, and [0/45];gr laminate.

The principal conclusions obtained in the present study are:

-
”~

A\

N/

The mean value of the fundamental natural frequency differs more from the
deterministic fundamental natural frequency when the mean value and variance of
the input random variable that corresponds to the axial load increases and also
when the axial load approaches the critical buckling load.

Un-symmetric laminate possesses the highest mean and variance values of natural
frequency and critical buckling load whereas symmetric angle-ply laminate has
the lowest mean and variance values of critical buckling load.

Expected and variance values of natural frequency and critical buckling load
corresponding to cylindrical bending and one-dimensional laminated beam
theories are almost same for symmetric cross-ply laminate whereas small
percentage of difference is seen in quasi-isotropic laminate and further, the largest

difference occurs in symmetric angle-ply laminate.
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Local buckling occurs in the web section for [0/90]es laminate, [+45/-45]os
laminate, and [0/-60/60]ss laminate when the loaded edges have free boundary
conditions.

Local buckling occurs in the flange section in symmetric cross-ply laminate when
the loaded edges have simply supported boundary conditions.

Local buckling first triggers in the web section when the aspect ratio is between
0.5 - 3.0 and after that local buckling occurs in the flange section when the loaded
edges have simply supported boundary conditions.

Cross-ply laminate exhibits higher mean value and variance over other laminate

configurations.

The following works are suggested for future studies:

v

\ 74

\ Y

Considering the damping effect, a generalized stochastic equation for the n"
natural frequency of the free-vibration of composite beam-column can be
developed.

In the thin-walled prismatic composite beam-columns, stochastic analysis can be
extended to un-symmetrical sections.

The theoretical development provided for uniform composite beam-column in this
thesis can be extended to the tapered composite beam-columns.

Stochastic local buckling analysis of thin-walled composite beam-columns
presented in this thesis can be extended to different types of symmetric and un-

symmetric cross-sections.
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Appendix
Programs used in the local buckling analysis

%% Program for the local buckling of expected value of flange fcff boundary conditions

close all;
clear all;
clc;

M = input(‘enter the value for M: );

N = input('enter the value for N: );

a = input(‘enter the value for Length of a plate a: );
b = input(‘'enter the value for width of a plate b: );

symsxymn

%% Replace the functions here according to the boundary conditions

forr=1:M
lam = (2*r+1)*pi/2;
Gama = (cosh(lam)-cos(lam))/(sinh(lam)-sin(lam));
X(r) = cosh(lam*x/a)+cos(lam*x/a)-Gama*(sinh(lam*x/a)+sin(lam*x/a))
end
forr=L:N
lam = (2*r+1)*pi/2;

Beta  =(cos(lam)+cosh(lam))/(sin(lam)+sinh(lam));
Y(r)  =cosh(lam*y/b)-cos(lam*y/b)-Beta*(sinh(lam*y/b)-sin(lam*y/b))

end
D11=315.44;D12=242.26;D16=17.1;

D21=242.26;D22=310.30;D26=23.01;
D61=17.1:D62=23.01:D66=253.80;

p=0:
for m=1:M
for n=1:N

mn=(m-1)*M+n;
for u=1:M
for v=1:N

p=p+l
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uv=(u-1)*M+v;

Al=DI I*((int((diff(X(u).’x".2)*diff(X(m).'x’,2)).x,0.a))*(int((Y(v)*Y(n)),y,0,b)));

A2=D [2*[int(X(m)*diff(X(u),'x'.2).x.0,a) *int( Y (v)*diff(Y(n),'y’.2),y,0.b)+int(X(u) *diff(X(m).x'.2).x,0.2)*
int(Y(n)*diff(Y(v).'y".2).y.0.b)];

A3=D22*int(X(u)*X(m),x,0.a)*inu(diff(Y(v).'y",2) *diff(Y(n).’y’.2).y.0,b);
A4=4*D66*int(diff(X(u).'x’, 1)*diff(X(m),'x",1).x,0.a) *int(diff(Y(v),'y". [ ) *diff(Y(n).'y',1).y.0.b):

A5=2*D16*[int(diff(X(u),'x",2)*diff(X(m).'x’".1),x,0,a) *int(Y(v)*diff(Y(n).'y".1).y.0.b)+int(di ff(X(u), x".1)*
diff(X(m),’x’,2).x,0,a) *int(Y (n) *diff(Y(v),'y'.1).y.0,b)}};

A6=2*D26*[int(X(m)*diff(X(u),'x".1),x,0,2) *in(diff(Y (v),'y". 1 Y*diff(Y(n).'y",2),y,0.b)+int(X(u)*diff(X(m).’
x,1).x,0,a)*int(diff(Y(v).'y".2)*diff(Y(n),'y".1).y.0.b)];

AT7=int(diff(X(u),'x".1)*diff(X(m),'x’,1),x,0.a)*int( Y(v)*Y (n).y.0.b);
A8=int(X(u)*diff(X(m).'x’,1),x,0.a)*int(Y (n)*diff(Y(v).y".1).y,0.b);
Q=A1+A2+A3+A4+AS5+A6+AS;
EG(mn.uv)=Q;
B(mn,uv)=A7;
end
end
T l=numeric(EG);
T2=numeric(B);
end

end

Nx=eig(T1.T2) %% Buckling load

K=(Nx*b*2)/DI1 %% Non-Dimensional Buckling load

%% Main program has been given using which we calculate the D matrix. Subroutine, which calculates the
D matrix, is also given. All other subroutines pertaining to finite element analysis is not relevant to present
D matrix calculation.

clear all;
%close all;
Geclc;

tic;

format long;
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dummy=0; % To pass a dummy variable to GETDAT & GETARR

nelem=0;
%% % G %o Te o To Fo To To Fo To To %o To To To Fo Fo o Yo Te Fo To To e Fo To To To Fe o Fo Yo Yo Te e To Go Fo T o Fo Fo Fo To

%o % To %o To Te Fo To Fo Fo To o Fo To o To Fo

ndofn=0; % %
nnode=0; % I[nitialize all the relevant variables which are %
ngaus=0; % %
ntype=0; % passed to the data functions so that all the relevant %

nmats=0; % %
numnp=0; % data is passed back througn the same variables. %
nstre=0; % %

nstrl=0;

Go%e %o % To Te Te To Te Fo To Fo To Te To Fo To o To Te Te Fo Fo Yo Te To Fe Te Fo Fo To To Fo To Fo To To To To To o o T Fe Fo % Fo
Ge %o T To %o Te Fo Fo Fo To To To Fo o Yo Fo T

props =0;
Inods =0;
coord =0;

nlami = [;

DII = zeros(108.1);
D12 = zeros(108,1);
D16 = zeros(108,1);
D21 = zeros(108,1);
D22 = zeros(108,1);
D26 = zeros(108,1);
D31 = zeros(108,1);
D32 = zeros(108,1);
D36 = zeros(108,1);
j=0:

o % Fo %o To Fo Fe To Fo To Fo Fo Fe Fe o To o Fo Fe o Fo Fo To Fo To To Fo Fo T

Go %0 To %o Fo To %o o Yo o o To GETDAT - Get are relevant scalar variables %% %% % % % % %% % %
Yo% % Te o Te e Te Te T o Fo Fo o To To e o Fo To o To To To To To e Fo T Fo o Fe e Te To Yo Fo Fe To Fe Fe Te To % To Go To e %o e Fe
kgaus=0; % Keep track over the gauss points in each entire structure.

% HERE STARTS THE PROGRAM FOR TENSILE ANALYSIS

for ilami = | : nlami

fprintf(' \n RESULTS CORRESPONDS TO TENSILE ANALYSIS \n);

fprintf(\n Spatial values of the Material are stored in "propg.m” FILE \n *);

o %0 %o ToTe To Fo To Fe To e Fo To Fo To To o To Fo To To To Yo To To Yo o Fo Fo Fo To Fo To To To To Fe Fo Fo Te To Fo Fo Fo To Fo Fo Fo Fo Fo Fo
for ilami = [ : nlami

o %o Fo FoTo Fo Fo Ge To T Fe Fo To Fo To To Fo Fo Fo To Fo Fo To To Yo To To To T Fo To %o To o Fe Te To Fo Fo Fe Fo To Fo T To Fe %o e Fo o Fo
e %o % %o %o To T To Fo %o e Fo GETDAT - Get are relevant scalar variables %% % % % % % % % % % %

%% T % To o Fo Te To To To Fo o To To Fo To Fo %o o Fo o Fo To To To T Fo o T To T To To To Fo o Fe Fo T e To o Fo Fo To o ToFe Fo Fo
kgaus =0; % Keep track over the gauss points in each entire structure.
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Go %o Yo Yo %o o %o o To Yo To To Fo To To Te To To To Yo Ye T Vo To Fo Yo %o Fo To Yo To o To To Yo Yo To Fe To o Fe Fo To o Yo To Yo Fo Yo To Fe
ToToFo Yo o %o To Fo Voo ToTo GETDAT - Get are relevant scalar variables %% % % % %0 % 90 % % %o Yo
%% % To %o To To Fo %o %o To %o To Yo To To To To To o To Te To To Te To T To Te o To Fo To To Ve Fo Fe Te To To Fo Yo o To To To Yo e To Fo Te

(nelem,ndofn.nnode,ngaus,ntype,nmats,numnp,nstre.nstr i ,ntotg,aW_Ratio, WL _Ratio.ctnode]=GETDAT(d
ummy);

0% P To %o %o %o Te To To To %o Fo %o o %o To Yo To To Fo e Fo Fo Fo Fo Fo Fo %o To To To To Yo Fo To Fo Fe To Fo Fo Fo %o To Yo To Fo Yo o Fo o
%% %o % %% % %% % %%  GETARR - Get all relevant data in Array from Yo %o %o To %o %o Te Fo Yo Fo Fo To
% %0 %o Yo %o %o To To To %o To %o To e To To o Fo To To Fo To Fo e Te Fo To Fo Fo Yo To Fo Te To Fo To Vo To Fo Fo To %o To To %o Fo Yo Fo To Fo o

fg = fopen('propg.m','w');

fprintf(fg,\n\n\t\t\t \n');
fprintf(fg,’ \t properties at each and every gauss point’);
fprintf(fg,\n\t\t\t \n\n’);

%fori =1 : nelem

%fprintf(fg,\n\nELEMENT # %d'",i);
Jofprintf(fg,\n-——-—---\n");

Gforj=1:9
% fprintf(fg,\ngauss point : %d\t ,j);

[props.tetag,plytk,matno,propg,Inods,coord, ThetaPly] =
GETARR(nelem,ngaus,ndofn,nnode,ntotg,aW_Ratio, WL_Ratio,ctnode);

fprintf(fg,' E1 g values\n");
fprintf(fg,\n\t \t%E',propg(:.1));
fprintf(fg, \n E2 g values \n’);
fprintf(fg,\n\t \t%E' propg(:.2));
fprintf(fg, \n V12 g values \n');
fprintf(fg,\n\t t%E"propg(:.3));
fprintf(fg, ' \n G12 g values \n');
fprintf(fg,\n\t t%E',propg(:.5)):

%fprintf(fg,\n %d\t ".propg(:,1:7));
%end
%end

save all;

fclose(‘all');

%% % To %o %o % % %o %% % % % % % % o o %o %o % % % Fo %6 % % o %o %o %o % %o %o %o %o %o To % To %6 % %o %o %o %o % %o %o %

%% % Te Fo %o Fo Fo %o %o % %o %o Yo %o %e%e %%  ESTABLISH THE NODAL CONNECTIVITY
% %o Te Fo Fe o To To To o o %o Fo Fo T o o %o Fo To To To To o To To Fo Fo T To Fo To Fo To Fo To To To o %o o Fo To %o o Fo T Te o %o To

nevab = ndofn*nnode;
globK = zeros(numnp*ndofn); % Initialize the Global "K" matrix for each element

[Im,id] = ELCON(ndofn,nnode,nelem,numnp,lnods);
Go %% Fo To %o To To To Te To %o %o To To To T To To To o o To Fo %o To Fe To Fo To To To To To To To To o o Fo Fo To To %o To To Fo Go Fo To Fe

%% % %o %o %o o T % %% %o %% START COMPUTING THE STIFFNESS MATRICES
Yo% FoFo Fo o Te To Fo %o T To Fo To To Fo To To Fo To To Fo To o Te To To To o Fo Fo o To Fo Yo Fe To To e Fo o Fo To %o To Fo T o Fo To Yo
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for ielem = | : nelem % Loop over NELEM

Yo Y Fo %o %o o To Fo Fo To To To o Yo To To To Fo Yo To Fo To T Fo To Te To o Fo Fo To Fo Fo Te Te o To %o Fo Te To o Fo Fo To o Fo Fo To Fo Fo
%o %0 % %o %% %o %o %% % Get the coordinates of each node in the element %% % % % % % % % Yo %o T Fo
Go % %o Te To % Fo Yo To Fo Yo Fo Vo To Yo To To T To Yo To Fo T o To e Fo o Fo To Te Fe To To Te To Fo To Fo Te e Fo To To o To To Fo To %o %

for inode = 1 : nnode
Inode = round(abs(Inods(ielem,inode)));
for idime = 1 : ndofn
elcod(idime,inode) = coord(Inode,idime);
end
end

shape = zeros(8,1):;

deriv = zeros(2,8);

xjacm = zeros(2,2);

cartd = zeros(2,8);

estif = zeros(nevab,nevab);

%o To %o To e To To Fo T To e To Fo To To Te To Fe o Te To e To T Fo Fo Fo To To Fo Te Fo To To To To Fo T Fe To Fo To To To %o To Yo To T T To

Do %o Fo %o %o %o To Fo Fo o Fe Te o To To Te o Fo To To To %o To Start GAUSSIAN INTEGRATION
Yo% Fo % Te o To Fo To To Fo To Fo To Fo To o %o To To Te

%o T To % To %o To To To Te To To Te Yo To Te To Te To Te e To Fe o Fe To Fo To To To %o Fo Fe Fo To Te Fe Te o To Yo o To T To Fe To To Fo T Fo

kgasp=0; % Keep track over the gauss points in each element.
{posgp,weigp] = GAUSSQ(ngaus);

for igaus = | : ngaus % Loop over each Gauss point along "ZETA" axis
% i.e., horizontally, starting from left.
for jgaus = | : ngaus % Loop over each Gauss point along "ETA" axis
% i.e., vertically, starting from bottom.
kgasp = kgasp + ;
kgaus = kgaus + 1;

Iprop = matno(kgaus);
ThetaPly = tetag(kgaus,:);
thick = sum(plytk(kgaus,:));

T %0 %o Yo %o ToTe Fo Yo Yo To Te Fo Fo Yo Fo %o %o Yo Yo To To Yo Yo Fo To T Fo Yo Fo Yo Yo To Fo Fo T o Fe To To To o To To Fo To Yo To Yo Fo To
%% %0 %% %% % %% Evaluate the Shape functions, derivatives, dvolu.. etc. %% % % % %o % % Te %o %
Te %o %o Fo %o %o Te o Yo To Te To Fo To Fo To Te To Yo Te Fo To o Fo To To To To To To Fo Fo Fo To To Fo Te Fo To To Fo Fe To To Te To Fo Yo To Fo Yo

exisp = posgp(igaus);
etasp = posgp(jgaus);

[dmatx,matxD] = MODPS(ntype,nstre,nmats,|prop,propg. ThetaPly kgaus);

matxD

j=i+ls

D11(j) = matxD(1,1);
D12(j) = matxD(1,2);
D16(j) = matxD(1,3);
D21(j) = maxD(2,1);
D22(j) = matxD(2,2);
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D26(j) = matxD(2.3);
D31(j) = matxD(3.1);
D32(j) = matxD(3,2);
D36(j) = matxD(3.3);

% fprintf(’elasticity matrix’);
% disp(ielem);
% disp(dmatx);
[shape.deriv] = SFR2(exisp,etasp);
[xjacm,djacb,gpcod.cartd]=JACOB2(ielem.kgasp,ndofn,nnode.shape.deriv.elcod);
dvolu = djacb*weigp(igaus)*weigp(jgaus); % volume calculation : t*j*ds*dt
if thick>0.0
dvolu = dvolu*thick;
end
%% % To % To %o %o To Fo To Yo To o Te o %o To T Yo To o Fo o Fo To o To Fo Te Fo Te T Fe To Fe Fe To o Fo To Te To e To %o Te To e Jo T

%% %% %6 o % %o % Yo o %o %% Evaluate the ‘B’ matrix and ‘DB’ matrices %% % % %o %0 %o To %o Fo Ge Fo Fo Fo % To
%% %090 %o Fo %o Te Fo Yo Fo Te To To To To To To o To Te Yo Fo Fo Fo e Fo To Te e To To Fo Fo To Fo T To Yo Fe To To Fo Fo Yo Go Fo Vo To Fo Yo

[bmatx] = BMATPS(nnode,cartd);
[dbmat] = DBE(dmatx,bmatx);
%% % %6 To Fo Fo Yo To To To To Fo To Yo Fo Fo Fe T %o Fo To To T To Te Fo Fo Fo To To To Fo Fo Fo Fe Fo Fo To Fo Fo Fo To Fo %o Te Te Yo %o Jo Fe
%% %% o % %o % %o %o %% % Calculate the element stiffness matrices %% 0% % Yo So To %o %o %e Y6 %e %o % Te
%% Ge %o %o Fo Fo %e Fo e To Fo To To e Fo Te Te Fo To T Te Te Fe To To Fo Te To To e Fo Fo Fo Yo e Fe Te Fe Te Fo e Yo Fo Fo Yo Fo Te Go Go Te
estif = estif + transpose(bmatx)*dbmat*dvolu;
%% % Ge %o Fo Fe Fo Fo To Fo Fo To o To Fo Fo Te T %o %o To o Fe To To To To Fe Te To o To To To To %o Fe Fe Fe Te Fo Fe e Fe Fe To Fe e Fo T
%% %o To %o Fo Fo Fo Fo Fe To To Fo Fo To To T %o %o % % To %o Endof GAUSSIAN INTEGRATION
%% % %6 Fo Fo Fo T To Fo Fo Fo Fo Fo Te To Fo To To %o Fo T o To Fo To Te Fo Fo o Te To To Fo T ToFo To Fo Fo Fo Fo To Fo Yo Fe Fo To %o Fo Fe

end

end

%% %6 %o % Fo Yo To %o Fo To To Fo Fo Fo Fo To To To o Fo T Fo Fo Fe To To Fe To To T o To Fo Fo To Fo Fo To Te Fo o To Fo Fo T Fo %o To % To

%% % %% Fo %o e Fo % %o % Assemble the element stiffness matrices

%% %% Fo To To To Te To To To To To Te Yo Fo Yo e To Yo Te Fo Fo To Fo To Fo To Fo Fo To Yo Ve Yo To To Fo Fo To To Fo Fo T To Yo Fo Yo Yo Yo T
[globK] = ASMBLK(ielem,nevab,Imestif,globK);

end

% %% %o % Fo o % %o % %o %o Fe % %o END OF ASSEMBLY FOR "estif” OF "ielem” %% % %
%% Fe To %o To Fo Te To Fo % To To To o %o To o Te Fo o To o T To Te To Fo To Fo o To To To Fo Fo %o %o To o To Fo Fe Fo o To To To To T To

foriRuns=1:3
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G T %e Yo Yo %o %o Te Fo To Fo Fo %o Fo Yo Yo Yo To Te Te Te o Fo Te To Fo Fo To To Fo o To T To Fo Yo Fo To Yo To To o Yo Fo To To Fo Yo To Fo Yo
Yoo Fe o o % Yo %o To % Read the nodal loads and assemble into G To %o To To % To To Fo e
Do So %o %o o %o To %o %o Yo Global Force Vector Yo% To %o Fo Yo %o %o To %o
Go%0 o To o %o To Fo To Fo To To To To o Fo Te e Fe To To Fo Yo Yo Fo Fo To To Fo To Yo To Yo Fo To Go e Fo o Fo Te To Yo Fo o Te Yo G To Fo Fo

[eload] -
LOADPS(nelem,numnp.nnode,nevab,ndofn.ngaus,posgp.weigp,coord.lnods,matno.props,iRuns);

[asmblF] = FORCE(nelem,nevab.!m. eload);
Do %% To Te o %o T To % To To To To To Yo To To To Fo To Go Fo %o To Te To To Fo To Te To T o Fo To To Fe Yo Fo To To Fo To To Fo To e Fo Fo T
Y0 % Yo %o %o %o %o To Solve for Displacements Do % Te %o %o %o To %
%0 %o %o To Fo %o % To To %o To To %o o To Fo Te To o To o Fo To To o Fo To To Fo To Fo Fo To Fo To o Fo To To Fo Fo %o Fo To To Fo Fo To Fo o o
[displ.eldis] = BCSOL VE(ndofn,coord.asmblF,globK.Im.nelem.nevab,numnp,nnode,iRuns);
%o % %o %o %o To %o To %o %o o To T o To To Yo To Te To o Fe Fo %e e % Fo To Fe To To Fo To Fo To o To To Te %o Fo e Fo Te o Fe Fo To Fo Fo o
%o % %0 Yo %o %o %o % Solve for GAUSS POINT STRESSES %0 % %o % %e o Te To
Go %o %o Te ToTo To T To %o T Fo o To To To Fo To Fo Te o Fo Fo Fo Fo % Fo %o Fo Fo Fo To To o Fo Fo To Fe Fo Fo To Te To Fo Fe To Fo o Fo To To
strsp=zeros(nstre,ngaus*ngaus,nelem);

sgtot=zeros(nstr | ,ngaus*ngaus,nelem);

[sgtot.strsp|=STREPS(nelem.matno,props,propg,tetag,ntype,nmats,nnode,ndofn.coord,ngaus,nstre.nevab,ns
trl.eldis,Inods,iRuns);

end % End of "foriRuns=1:2"

end
RunTime =toc

end

function [propg,tetag,plytk] = RNDPROPS(nelem,ndofn,nnode,ngaus,ntotg,coord,lnods, ThetaPly,props)

format long;

%% %o % %% % %o %o T To Fo Yo Fo Fo To %o Fo Yo o To To To To To T Fo o To To Fo To o To To To Te To Fo Fo To %o To Fo Fo Fo Fo Te Ve Yo To
o %o %o %o %o %o %o % %o Sample data for Covariance matrix. o % o Fo To %o T T
%% %o To o Fo %o % To %o To To o To To Fo Fe Yo To o %o o Fo Yo Fo To To Fo o Fo Fo To o Fo Fo Te To Fo Fo Fo Fe To T Fo Fo To %o To Fo Yo Yo

sdEl =0.022188;
dEl =500;

sdE2 = 0.041248;
dE2 =500;

sdV21 = 0.1043;
dv2l =500;
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sdG12 =0.05523;
dGI12 =500;

sdangl = 0.05;
dangl =500;

sdtply =0.1;
dtply =500;

Do %o Fo T To o Fo To To Fe To Fo Te To o To Fo To To Te %o To Te %o To o To To To Fo Fo Te To To To Fo To Fo T Fo o o Fo To To %o Fo T %o %o o

xgcod = zeros(ntotg, 1); % X co-ordiante of each gauss point.
ygcod = zeros(ntotg, 1); % Y co-ordiante of each gauss point.
gdist = zeros(ntotg,ntotg);

Go o %o To To Fo Fo o To Fo Yo To Yo Te Te Fo To To e Fo Te Fo To Fe To T Fo o To Yo To To Te Jo Fo To To To Fo Vo Y To Fo To Fe o Fo To Fe o To
kgaus = 0;
for ielem = 1 : nelem

for inode = | : nnode
Inode = Inods(ielem.inode);
for idime = 1 : ndofn
elcod(idime,inode) = coord(Inode.idime);
end
end

[posgp.weigp} = GAUSSQ(ngaus);
kgasp = 0;

for igaus = | : ngaus
for jgaus = | : ngaus

kgaus = kgaus + [;
kgasp = kgasp + I;

exisp = posgp(igaus);
etasp = posgp(jgaus);

{shape,deriv] = SFR2(exisp.etasp);

for idime = | : ndofn
gpcod(idime,kgasp) = 0.0;
for inode = 1 : nnode
gpcod(idime,kgasp) = gpcod(idime kgasp) + elcod(idime,inode)*shape(inode);
end
end

xgcod(kgaus) = gpcod(1.kgasp);
ygeod(kgaus) = gpcod(2 kgasp);

end
end
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end

% %% % %o %% %o % %% % % e o % %o %o T o % % % % o % %o To % T % T %o %o e % To % %% %o T % % % % % % %o o %o

for itotg = | : ntotg
for jtotg =1 : ntotg
gdist(itotg,jtotg) = (1.0e3)*sqrt( (xgcod(itotg)-xgcod(jtotg)) 2 + (ygcod(itotg)-ygcod(jtotg))*2 );
cvmE I (itotg,jtotg) = (sdE 172)*exp( -(abs( gdist(itotg,jtotg) )/dE1) );
cvmE2(itotg,jtotg) = (sdE22)*exp( -(abs( gdist(itotg.jtotg) )/dE2) );
cvmV2l(itotg,jtotg)= (sd V2 1°2)*exp( -(abs( gdist(itotg.jtotg) )/dV21) )
cvmG 1 2(itotg jtotg)= (sdG 12°2)*exp( -(abs( gdist(itotg.jtotg) )/dG12) );
cvmangl(itotg jtotg)= (sdangl"*2)*exp( -(abs( gdist(itotg.jtotg) }/dangl) );
cvmtply(itotg,jtotg)= (sdtply*2)*exp( -(abs( gdist(itotg,jtotg) )/dtply) );
end
end

{uprEl.ecEl] =chol(cvmEl);
{uprE2.ecE2] = chol(cvmE2);
{uprV21,ecV21] = chol(cvmV21);
{uprG12,ecGl2] = chol(cvinG12);
[uprangl.ecangl] = chol(cvmangl);
[uprtply.ectply] = chol(cvmtply);

IwrEl = transpose(uprEl);
IwrE2 = transpose(uprE2);
lwrV21 = transpose(uprV21),
IwrG12 = transpose(uprG12);
lwrangl = transpose(uprangl);
lwrtply = transpose(uprtply);

randn('state’ sum(100*clock));

templ = randn(ntotg,1);
temp2 = randn(ntotg,1);
temp3 = randn(ntotg, 1);
temp4 = randn(ntotg, 1);
temp5 = randn(ntotg,1);
temp6 = randn(ntotg, 1);

avect = lwrEi1*templ;
bvect = IwrE2*temp?2;
cvect = lwrV21*temp3;
dvect = lwrG12*temp4;
evect = lwrang!*temp5;
fvect = lwrtply*temp6;

for itotg = | : ntotg
propg(itotg,1) = props(1)*( 1.0 + avect(itotg) );
propg(itotg,2) = props(2)*( 1.0 + bvect(itotg) );
propg(itotg.4) = props(4)*( 1.0 + cvect(itotg) );
propg(itotg,3) = propg(itotg,4)*propg(itotg, I )/propg(itotg,2);
propg(itotg,5) = props(5)*( 1.0 + dvect(itotg) );
propg(itotg,6) = props(6):
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propg(itotg.7) = props(7);
end

gvect = randn(props(7));

for itotg = 1 : ntotg
for iply = 1 : props(7)
tetag(itotg,iply) = ThetaPly(iply)*( 1.0 + sdangl*gvect(iply));
plytk(itotg.iply) = props(6)*( 1.0 + sdtply*gvect(iply));
tetag(itotg,iply) = ThetaPly(iply)*( 1.0 + sdangl*gvect(iply));
end
end

function [props,tetag,plytk.matno,propg,inods.coord, ThetaPly| =
GET ARR(nelem.ngaus,ndofn,nnode,ntotg,aW_Ratio, WL _Ratio,ctnode)

format long;

To % TeTe o %o To %o %e o To To e To Fo %o o Te %o Fo To To Fo To Te To Fo To To o To Fo %o %o Te Te o Fo o Fo Fo T To %o e To To To Fe To Te
%o % %o %o Fo %o Fo Fo %o To Fo o Fo PROGRAM CHECK

%o % Te Fo %o %o Fo o %o To Fo Te Fo T

%o % ToToTe %o Fo%e %o %o FoFo%  Give arbitrary values to the function arguments %% %% %o % %o % % e % % T %
o T ToTo %o To Te %o Fo To Fo Fo o To %o To To T Fe Fe e Fe To o Te Fe e Te Yo o Te To Fo %o %o Fo Te Fo To o To To Fo To o Fe To To To %o Fo

Go %o %o % Te %o o Fo To Fe Fo Fo T Array having the Properties of every Element
o % Fe %o Te To Fo Fo T To To o Fe Fe

% In the order E1 E2 vi2  v21 GIi2 t(ply) Num.ofPlies

% These are the Mean(average) Values of E1, E2, v12, v21, G12 and tply).

% laminate is considered thin if the thickness is less than 3 mm

% Grapite-Epoxy Composite AS4/3502 page 117 : table 5.1 : seng ¢ tan : stress concentration in laminated
composites

props = [ 129.43e9 7.99e9 0.3322 0.0205 4.28¢9 1.25e-4 36];

ThetaPly = [ 0 -60 60 0 -60 60 0 -60 60 0 -60 60 0 -60 60 0 -60 60 60 -60 0 60 -60 0 60 -60 0 60 -60 0 60 -
60 0 60 -60 0];

ThetaPly = ThetaPly*pi/180;
% NCT-301 Grapite-Epoxy Composite "{0/90]6s"
for itotg = | : ntotg

matno(itotg) = itotg;
end

Yo% o To %o %o To Yo To Fo To Fo Fo o To Fo Yo Te Te Fe Fo Te To Te Fo o o Fo Fo To To T To Fo o Te T To To Go To Yo To Te Yo Fe o % To Go %o
To0%0% To % %% %o %% %e% Relate the Local Node numbers to Global Node Numbers
lnods={1317152111610

3519174121811
5721196132012
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7923218142213
2123373522283627
192135332027 3426
17193331 18263225
15173129 16253024
2931454330394438
3133474532404639
3335494734414840
3537514936425041};

%% %%%% Co-ordinates of Each node in the Global co-ordinate System %% %% %%
width=0.0379; % width of the plate

dia=0.0051 ; % dia of the hole

radius=dia/2 ; % radius of the hole

length= 0.0379*2; % length of the laminate

{coord] = MESHTrefine(length,width,dia,radius.Inods):;

Go %0 To Yo %o Fe Te Te Te To Te Fo To Fo To Fe Fe Yo Te To Te Fe Go Fe To Fe Te Fe Fe Fo Fo To To To To o Te Fe To Fo To To Fo Te Fe To Te To Fo o Fo
%[coord] = AUTOMESH(ctnode,coord,aW_Ratio, WL._Ratio);

Go %0 % Fo Fo Te Fo To To Fo Fo %e To %o To Fo To Fo To o e Fo To Fe Fo e To o Fo Fe Fo T Fe Fo o Fo Fo To T Te Fo %o e Fe To Fo To Te Fe Fo Fo

{propg.tetag,plytk] = RNDPROPS(nelem,ndofn,nnode.ngaus,ntotg,coord.Inods. ThetaPly,props);

%% % %o % % %o o %o T % %o %o % %o % % Fo %o e % % T % % o % % %o o %o % Te % o % % %o To % %o % % e % o % % % G %o

function [dmatx,matxD] = MODPS(ntype.nstre.nmats.lprop.propg. ThetaPly kgaus)
format long;

Do o %o To Te Fo To To Te Yo To Te Fo % Fo Fo Vo o To Fo Fe Fo To To Fo Te Fe Fo To To Fo To Fo To To Fo o o Yo To Fo Te Fe Fe %o Fo o o %o Fe Fo

% %
% Calculate the matrices :- (A}, [B] , [D] %
% %

%% %o % % %o %o % %o To T %6 % %o %o % o % % % % %o % %o %o % o % o T % %o o % % Fo o %o e % %o % % %o %o % %o % % % %

qm126 = zeros(nstre,nstre);
qmxys = zeros(nstre,nstre);
matxA = zeros(nstre,nstre);
matxB = zeros(nstre,nstre);
matxD = zeros(nstre,nstre);

props = propg(kgaus,:);

yungl = props(1l);
yung2 = props(2);
nuel2 = props(3);
nue2l = props(4);
shrl12 = props(5);



plytk = props(6);
nplys = props(7);

%% %% %o T0Te %o % %% T %% %%  On-Axis Stiffness Matrix %% % %% Ge % To%e % %o Fo e %e To To

qm126(1,1) = yungl/(1.0 - nuel2*nue2l);
qm126(2.2) = yung2/(1.0 - nue12*nue2l);
qm126(1,2) = nuel2*yung2/(1.0 - nuel2*nue2l);
qmi26(2,1) = qm126(1,2);

qml26(1,3) =0.0;

qm126(2,3) = 0.0;

qml26(3,1) =0.0;

qm126(3,2) =0.0;

qm126(3,3) = shrl2;

for iplys = | : nplys
theta = ThetaPly(iplys):

m = cos(theta);
n = sin(theta);

qmxys(1l,1) = m*4*qmi26(1.1) + n*4*qm126(2,2) + 2*m"2*n"*2*qm126(1.2) + 4*m"2*n*2*qm126(3.3);

gmxys(2,2) = 0**qm126(1.1) + m**qml26(2,2) + 2*m"2*n"2*qm126(1.2) + 4*m"2*n"2*qm126(3,3);

qmxys(1,2) = mA2*n A 2*(qm126(L.1)+qm126(2.2)) + (m*4 + n*4)*qm126(1.2) -
4*mA2*n 2*qm126(3,3);

gqmxys(2,1) = qmxys(1.2);

qmxys(1,3) = mA3*n*qm126(1.1) - m*n 3*qm126(2,2) + (m*n"3 - m*3*n)*(qm126(1.2) +
2*qm126(3.3));

qmxys(3.1) = qmxys(1,3);

qmxys(2,3) = m*n*3*qm126(1.1) - m*3*n*qm126(2.2) + (m"*3*n - m*n"3)*(qm126(1.2) +
2*qm126(3,3));

qmxys(3.2) = qmxys(2,3);

qmxys(3,3) = m 2*n2*(qmi26(1.1) + qm126(2.2)) - 2*m*2*n"2*qm126(1,2) + (m"2 -
n"2)A2*qm126(3.3);

botom = -(nplys/2)*plytk;

hitel = botom + iplys*plytk;
hite2 = botom + (iplys-1)*plytk;

matxA = matxA + qmxys*( hitel - hite2 );
matxB = matxB + (1/2)*qmxys*(hite[*2 - hite22);
matxD = matxD + (1/3)*qmxys*(hite 13 - hite23);

end

dmatx = matxA/(nplys*plytk);
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