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ABSTRACT

On the Flows Developed Within the Gap of Two Parallel Discs

Panagiota Tsifourdaris, Ph.D
Concordia University, 2003

Flow development within disc-like domains, is of significant practical importance
since it is often found in a number of technological applications, such as radial diffusers,
centrifugal compressors, air bearings, and VTOL aircrafts with centrally located pointing
jets. The radial flow between two stationary closely spaced discs can be classified into
inflow and outflow.

The inflow, or accelerating, or sink flow, is realized when fluid enters the space
between two flat discs via the periphery and drains through a centrally located outlet. The
flow that is characterized by a monotonically decreasing pressure gradient is known to
remain laminar even at very high Reynolds numbers, or to laminarize if the entering fluid
is initially turbulent. The outflow, or decelerating, or source flow, is the type of flow
where the fluid is admitted through a centrally located inlet and discharged through the
periphery. As a result of the area increase, the velocity decreases, and an adverse pressure
gradient develops.

Analytical and experimental analyses were performed for the inflow and outflow
between two discs both with and without swirl. In the analytical study (with and without
swirl), it was shown that the radial velocity is expressed only as a function of the radial
location and Reynolds number, whereas the static pressure for the swirling flows depends

on the Reynolds number, radial position and swirl strength. The analytical model was
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also validated with present and previously obtained experimental findings and showed
good agreement.

An experimental investigation was also carried out to explore the flow between
two narrowly spaced discs over the range of low and moderate Reynolds numbers. Radial
velocity and static pressure measurements were obtained for the non-swirling inflow and
outflow, whereas for the swirling cases only static pressures were acquired. The
experimental results were then compared with the present theory and showed good
agreement. For the inflow case, the results displayed the characteristics of the
accelerating flow, whereas for the outflow case without swirl, the vena contracta effects,

as well as the phenomenon of the reverse flow at the inlet region were demonstrated.
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Chapter I

Introduction

1.1 The Problem

The flow between two closely - spaced parallel stationary discs is of both
educational and practical importance. Two types of fluid motion can be generated in the
disc-like domain and relaminarization may occur in both flows. [1] Outflow or source, is
one type of flow where the fluid is admitted through a centrally located hole and is
discharged through the periphery. In this case, the streamlines diverge and the static
pressure increases from the center towards the periphery. As a result of the area increase,
the velocity decreases and an adverse pressure gradient develops. Moreover, if the local
Reynolds number decreases sufficiently, the phenomenon of relaminarization takes place
as the laminar sub layer thickens and reverse transition from turbulent to laminar flow
occurs.

Inflow or sink is the second type of motion, where the fluid is admitted via the
periphery and 1s discharged through a centrally locatéd outlet. In this case, the

streamlines converge streamwise, causing an area decrease. As the velocity increases, a



favorable pressure gradient develops. The accelerating flow is characterized by its
stabilizing effects (flow is moving in the direction of a monotonically decreasing pressure
gradient), which tend to laminarize the flow even at very high Reynolds numbers and a
flow that was originally turbulent.

The radial flow between two closely spaced stationary discs has many practical
applications in industry. Outflow can be found in radial diffusers, centrifugal
compressors, air bearings, squeeze film dampers, VTOL aircrafts with centrally located
pointing jets, and in air cushion vehicles. The applications of the inflow can be found in
double disc valves, thrust bearings, face seals and in flows near the exit of a geothermal
reservolr.

Swirling flow can also be generated between the two stationary parallel discs for
both inflow and outflow. The study of swirling motion is very important due to its
presence in a variety of industrial applications such as gas turbines, nuclear reactors, and

in other fields, such as heat exchangers.

1.2 Literature Survey

Previous studies on radial flow under investigation have been conducted
experimentally, analytically and numerically. The literature survey is classified according

to the aforementioned areas for the inflow and outflow.



1.2.1 Inflow

DeSantis and Rakowsky [2] investigated the problem of the sink flow between
two discs with and without swirl. Their experimental analysis using hot-wire
anemometry, was confirmed partially by several analytical studies. For the non-swirling
sink, they found that the flow-field for all cases tested (300<Re<1600) was mainly
laminar. The integral momentum method on a flat disc was modified for the accelerating
flow, and resulted in boundary layer displacement and momentum thickness distributions.
These distributions agreed well with the experimental data, assuming that the radial
velocity follows the 1/r law, the flow is primarily inviscid, and that the boundary layer
development is very thin (accounts for <10% of the flow field). Also, fully developed
velocity profiles occurred at sufficiently small gaps (disc spacihg of 0.060 in) while the
entrance length was well approximated by the analytical solution. The shear stress was
found to increase sharply with decreasing radius, and that was due to the accelerating
flow. For the swirling sink, radial and tangential velocity profiles were obtained, where
the former ones increased monotonically and the latter ones displayed some scatter. The
boundary layer displacement thickness showed that it is not zero at the periphery (due to
the porous coupler), while the momentum thickness displayed similar shape as the one
for the non-swirling case with its maximum occurring at a slightly larger radius.
Moreover, the vortex strength was found to decrease in a linear manner with a decreasing
radius, and with almost the same rate for Reynolds numbers of 300 and 1500, while the

shear stress increased abruptly with a decreasing radius.



Murphy, Coxon and McEligot [3] investigated numerically the laminar sink flow
between two parallel discs taking into account both the inertia and viscous effects. The
results revealed that at large radii, the viscous effects are dominant, thus causing the
velocity ‘proﬁles to shift from a uniform profile at the entry to a parabolic shape. In
addition, the boundary layer thickness became equal to half the spacing, and the pressure
varied logarithmically with the radius. As the radius decreased, the acceleration effects
grew stronger, the velocity profiles were tending toward flat profiles and the boundary
layer became thinner. Conversely, the pressure distribution was well predicted by the
inviscid Bernoulli equation. The numerical results showed a high friction factor at
entrance due to the assumed uniform velocity profile, which shortly merged with the
value obtained from the creeping flow solution at larger entry radii. In general, the results
revealed that the velocity profiles and the friction factor tend to approach downstream,
the values obtained at larger entry radii.

Murphy, Chambers and McEligot [4] studied experimentally and numerically the
inflow between two stationary parallel surfaces. A circular test section was employed to
examine thé laminar flow and a segment of a circle was utilized to test turbulent flow.
For the first case, the experiment agreed well with the laminar analysis for local Reynolds
numbers from 210 to 21000. Beyond that range, there was a change in the flow regime to
a turbulent one. The former findings were also confirmed by employing smoke — flow
visualization techniques.

Lee and Lin [5] attempted to solve numerically a differential equation derived for
the pressure without assuming or developing any velocity profile for the inflow of two

narrowly spaced discs. The Runge — Kutta method was employed to solve the linearized



r-momentum equation. Their results predicted a pressure distribution which agreed with
previous experimental work, indicating the two limiting positions that corresponded to
creeping and potential flow respectively.

Vatistas [6] solved analytically the problem between two narrowly spaced
stationary discs, by deriving equations for the radial pressure distribution, the radial
velocity and the global friction coefficient. He obtained simple closed-form solutions by
considering only the average changes of the radial moﬁentum in the radial direction.
Comparing his results with previous theories, it was concluded that the pressure drop
along the radius must be partly due to inertia and partly due to viscous effects. Moreover,
it became apparent that the maximum velocity in every radial position is 1.5 the local
average. The closed-form solution was found to be in very good agreement with previous
experimental data and the theoretical results of Lee and Lin. [5]

Vatistas [7] also focused on the radial inflow between two discs, and obtained
closed - form solutions of the linearized momentum equations of Lee and Lin. [5] The
creeping and inviscid flows were found to be the asymptotes of the general problem.
From the analysis, it became evident that for high Reynolds numbers (Re;= 100), the
velocity acquired a flat profile, except near the surface of the discs where it revealed the
presence of a boundary layer. For low Reynolds numbers, the flow exhibited the
Poisseuille flow parabolic profile. By comparison with the author’s previous work, it was
found that the difference between the equations for moderate values of Reynolds numbers
is no larger than 12.5% (Re, =0.27). Moreover, the present equations of the pressure

drop were in accordance with his previous equations, as well as with earlier experimental

findings for low Reynolds numbers (0.081<Re;<0.0084).



Singh [8] investigated experimentally and theoretically the inflow between two
discs. For the turbulent flow between two stationary discs with full peripheral admission,
the experimental results revealed that, with increasing inlet local Reynolds number, and a
decreasing gap and diameter ratio the pressure drop increased. Moreover, the Laser
Doppler Anemometry measurements revealed that the velocity profiles were. not
symmetric near the exit, and the maximum radial velocity was shifted towards the disc
with the exit outlet. The turbulence intensity was also measured and was found to
decrease in the direction of flow despite the increasing local Reynolds number.

Zitouni and Vatistas [9] developed solutions for the radial flow between two
parallel discs using infinite power series. The power series was then solved numerically
to obtain results for the radial velocity and the static pressure distribution for the steady,
laminar and radial flow. These results were presented as functions of the non-dimensional
parameter A that combined the dimensionless radial distance and the Reynolds number.
The results were then compared with previous theories and experimental data and were
found to be in close agreement. Also, the two flows, inflow and outflow, were found to
be dramatically different except for A close to zero, where in both cases the velocity
exhibits the parabolic Poiseuille profile. For the inflow, as N increases, the velocity
profile flattens and the boundary layer thickness decreases. As A tends to infinity, the
velocity becomes flat (mid-plane), and the boundary layer thickness tends to zero and a
discontinuity is emerged at the wall. For the outflow, the maximum velocity occurs at the
mid-channel, thus indicating that the bulk of the flow occurs near the center of the
channel. Two critical values of A were obtained for this case. The first one indicates the

point where the pressure changes sign due to the forces interaction, and the second one,



where the derivative of the axial velocity becomes zero. Beyond that value purely
decelerating flows cease to exist.

Ghaly and Vatistas [10] solved numerically the inflow and outflow between two
stationary discs, and obtained the velocity and pressure distributions by solving a 3% order
non-linear differential equation using a shooting method. The equation was written as a
system of a 3 non-linear first order differential equations, which was then solved as an
initial value problem using the shooting method. The Runge-Kutta was used to integrate
the resulting set of equations. The solutions were then compared with previous
experimental work and were found to be in fair agreement. The results were found to be
very similar to the ones by Zitouni and Vatistas [9]. The present solution provided a
simpler method in obtaining results, without the inconveniences encountered by the
power series solution.

Singh, Vyas and Powle [11] examined the inward flow between two discs from an
experimental and a numerical point of view. Both studies revealed that the phenomenon
of relaminarization for the accelerating flow occurs, and that the responsible governing
parameters were the acceleration parameter and the gap ratio. Laser Doppler
Anemometry was used to measure the velocity distributions as well as the turbulent
intensities. The velocity distributions revealed increasing symmetrical profiles as the
fluid approaches the exit. Furthermore, the profiles exhibited an asymmetry towards the
disc that has the exit hole. The turbulent intensities were shown to be maximum near the
disc walls and displayed a decreasing trend towards the core flow region. This indicated
that the accelerating flow has suppressed the turbulent fluctuations. It was also observed

that the presented turbulent k-¢ model predicts well the experimental findings. Moreover,



numerical predictions showed that the turbulent kinetic energy decays faster for smaller
gaps. These findings led to the conclusion that a decreasing gap ratio has a stabilizing
effect on the flow, as does the acceleration parameter.

Wormley [12] developed a momentum integral analysis to investigate the swirling
inflow in a short vortex chamber, by taking into account the interaction between the core
vortex flow and the end wall boundary layers. To determine flow characteristics, he
employed the visualization techniques of air bubbles and the injection of powdered milk.
Wormley defined the switl strength as the ratio of the ideal peripheral tangential velocity
to the radial velocity at r, defined positive in the — r direction. It was observed that at low
swirl strengths, radial flow exists at almost all axial positions in the chamber. A further
increase of the swirl caused the radial flow to penetrate the mid-plane of the chamber. At
very high swirl strengths, the “milky donut” preserved its stable pattern for a long period,
indicating a lack of radial flow through the area in the chamber, and revealing that the
radial flow must be enclosed at the end wall boundary layers. Conversely, the analytical
model considered two flow regions: the developing region, and the developed one, where
all radial flow is contained in the end wall boundary layers. The momentum integral
analysis predicted a trend of the static pressure distribution that was in accordance with
the experimental data. The momentum integral analysis also showed that the non-
dimensional circulation, as well as the pressure in a short vortex chamber, is depended on
a dimensionless parameter boundary layer coefficient.

Savino and Keshock [13] performed an experimental study on swirling inflow
between a flat cylindrical chamber of a medium aspect ratio (aspect ratio £=0. 107). It was

observed that the radial velocity profiles displayed uniform profiles from the inlet to



halfway through the cylindrical chamber and then they were disturbed. Moreover, it was
shown that most of the inflow is directed (or swallowed) along the discs, with the
maximum radial velocity occurring close to the discs” surface. This explains the spikes in
the profiles, which increased with decreasing radius. In addition, the velocities at mid-
channel were very small and were directed in the outward direction. On the other hand,
the tangential velocities displayed uniform profiles and showed some asymmetry at the
surface discs accompanied by a small depression in the center, as they approached the
exit. That could be due to the interaction of the swirl, radial and tangential flow
components and the no-slip conditions at the walls, forcing the tangential velocities to
behave like an inviscid vortex. As air entered the chamber through the vanes, the
centrifugal force field was stronger than its inward momentum, diverted the air axially
towards the walls. The centrifugal effects were smaller close to the walls, and the radial
momentum increased with decreasing radius. It was also found that the degree of swirl
imparted to the flow determines the amount of mass flow that will flow inwards within
the end wall boundaries. Lastly, the measured static pressure distribution matched well
with the calculated pressure, based on the centrifugal and pressure forces, as well as the
tangential velocities.

Kwok et al [14] conducted an analytical investigation on the swirling inflow
within the annular region of a short cylindrical chamber using Wormley’s technique [12],
which was then solved numerically. The aim of this analysis was to study the behaviour
of the apparent viscosity and to determine its magnitude. An empirical expression was
found for the apparent viscosity (sum of laminar and eddy viscosity), and its magnitude

was shown to vary from 7000y at the chamber’s periphery, to 45004 at the exit plane. It



was also found that the apparent viscosity seriously affects the velocity profiles in the
vortex chamber. Specifically, the comparison of the experimental results with the
corresponding analytical ones revealed a very good agreement for the tangential velocity
distributions. However, for the radial velocities, there is a discrepancy in the boundary
layer region, as well as and in the core region. That can be explained by the fact that the
exit axial velocity distribution and the compressibility effects of the flow affect the flow
in the vicinity of the exit plane. On the other hand, the pressure was found to decrease
slowly from the periphery up to halfway along the chamber and then decfeased quickly as
the flow approached the exit. This indicates that the flow moved towards a more
favorable pressure gradient vicinity near the exit, hence the vortex flow accelerated
according to the angular momentum conservation. For the same reasons, it was shown
that the analytical boundary layer distribution increases as the flow moves inward,

reaches a maximum and then decreases towards the exit plane.
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1.2.2 Outflow

McGinn [15] used dye filament techniques to visualize the flow of water between
two stationary parallel discs. He also obtained the static pressure distribution for both
converging and diverging flow. At the diverging or source flow, as the flow rate
increased, axially symmetric vortex sheets were formed between the plates. At high flow
rates, sinusoidal waves were observed propagating downstream over the discs’ surfaces,
generating eddies. Both steady state and transient cavitation was present. The converging
flow displayed a laminar character even at very high flow rates. A stability criterion was
established analytically, revealing that for the converging flow there is a discrepancy
between the experimental and the theoretical data over the entire flow region.
Consequently, the theoretical model is not realized by the converging flow, since it
assumes a parabolic velocity profile and ignores the developing region. For the diverging
case, this effect is less prominent, and for the stability factor (or criterion) less than one,
no boundary layer separation occurs and the experimental pressure data is also in
agreement with the data predicted by theory.

Livesey [16] probed on the effects of inertia on the steady, incompressible,
viscous flow between two parallel stationary discs. The effects of inertia were estimated
by solving the equation of motion in its integral form, as was suggested by von Karman.
He considered the r-momentum equation by including the inertia term and assuming zero
velocities in the y and @ directions. He then assumed a two-dimensional parabolic
velocity profile, which in turn substituted in the r-momentum equation. After integrating

the resulting equation across the film thickness and at any radial distance, the
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contribution to the pressure changes due to inertia was estimated. It was concluded that
for moderate velocities and consequently for low Reynolds numbers, the inertia effects
may be more significant than the viscous effects that could change the sign of the radial
pressure gradient.

Morgan and Saunders [17] performed an experimental study to investigate the
importance of the inertia effects for radial flows between two discs and for low Reynolds
numbers. Previous analysis by Livesey [16] supported that for the same type of flow, the
inertia effects could be considerable even for low velocities. Their experimental results
clearly showed that pressure is better represented by a solution that includes both the
viscous and inertia terms for low flow rates. The results however were insufficient to
confirm Livesey’s theory [16].

Moller [18] investigated the outflow between two parallel, stationary, narrowly -
spaced discs with no swirl. He conducted an experimental and theoretical analysis, from
which he obtained approximate solutions for the radial pressure distributions for both
laminar and turbulent flow, using the integral momentum method. His experimental
results were in agreement with theory for both flows as the radial distance decreased,
especially when the inlet corner was shaped. Reverse transition was detected at a critical
Reynolds number of 2,000, which complies with the flow in circular pipes and 2-
dimensional channels. He also claimed that the phenomenon of relaminarization occurs
because of the thickening of the always-present laminar sub-layer up to half the channel
width. In some instances, separation and reattachment of the flow were observed near the
entry corner. The reattachment distance and minimum bubble pressure were found to

depend only on the channel gap, provided that the diameter ratio is sufficiently large to

12



accommodate the reattachment, and that the local Reynolds number at the reattachment
point is larger than 15,000.

Savage [19] investigated the laminar viscous outflow between two stationary
parallel discs. He obtained a solution by perturbing the creeping flow solution and carried
out an expansion in terms of the downstream coordinate. His solution for the pressure
distribution was in very good agreement with Moller’s experimental data [18], except
near the inlet where it decreased below the experimental results, due to the entrance
effects. Since the inlet pipe diameter is much larger than the disc spacing, the inlet pipe
operates as a plenum chamber, therefore resulting in an almost uniform velocity profile at
the entrance. Savage estimated the inertia contribution to be approximately 30% higher
than the one predicted by Livesey [16]. Livesey’s solution [16] was above the
experimental data due to the assumed parabolic velocity profile, which results in a higher
wall shear stress compared to the one if the inertia terms were considered.

The phenomenon of the reverse transition of radial outflow at low speeds by
direct hot-wire measurements was studied experimentally by Kreith [20] who confirmed
carlier analyses that the point where reverse transition occurs is independent of the
turbulence level at the entry duct. He also concluded that, the necessary condition for
reverse transition to take place is the existence of a laminar velocity profile that does not
have an inflection point.

Jackson and Symmons [21] carried out the experimental study of the pressure
distribution for the radial laminar source flow between two stationary closed spaced discs
with a very small centrally located inlet. The experimental results revealed that for gaps

of 0.01 and 0.02 inches of clearance at all flow rates, and for low flow rates at 0.03 and
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0.04 inches of gap, the pressure distribution implies the presence of a symmetrical flow
through the discs. As flow rates and gap increase, asymmetry and instability emerged in
the flow, thus indicating the presence of flow separation. Moreover, any disturbance at
the entry flow will be carried on as the fluid as it progresses, and will cause non-
uniformity in the pressure distribution. In comparison with theory, it was shown that the
experimental inertia effects are significantly larger than the theoretical ones when the
Reynolds number and radial distance increase. Jackson’s and Symmons’ experimental
investigation indicated the limitations of the existing theory in the presence of substantial
adverse pressure gradients in the central area of the discs where the flow is unstable and
asymmetrical.

Moller [22] following his previous studies on source flow, investigated
experimentally and theoretically the geometrical and flow parameters of a radial, non-
swirling, incompressible flow diffuser, and proposed the development of an efficient inlet
bend from the supply pipe outlet to the radial channel. His experimental results showed
that the pressure recovery of a radial diffuser agree with theory for Reynolds numbers
(inlet pipe Reynolds number - Reqg) > 2%10° and fairly thin boundary layer at the pipe
exit. Moreover, the pressure recovery of the radial diffuser was comparable with a 7°
conical diffuser at high Reynolds numbers, which are likely in internal flow systems. For
Re < 2*10°, the pressure recovery decreased rapidly and deviated significantly from
theoretical predictions. Moller also observed that the pressure recovery decreases, with
decreasing Reynolds number, and with a fully developed boundary layer thickness at the

inlet, for both radial and conical diffusers.
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Boyack and Rice [23] studied the case of steady, incompressible, axially
symmetric, laminar and Newtonian fluid for the radial outflow between two parallel,
narrowly - spaced, stationary discs. They obtained an integral solution in order to
investigate the ranges of Reynolds numbers and radii for which Savage’s expressions for
the velocity and pressure distributions are valid. An 8" order polynomial was derived that
describes the radial and axial velocities, including the velocity profiles that exhibit
inflection points. To compare the integral method and Savage’s solution, the inlet
velocity profiles derived from Savage were used in the integral method since the method
itself cannot generate velocity profiles. The comparison between the two approaches
showed that, as the Re increases, the radius, where there is agreement within 1%, also
increases. For Re > 1.75, the discrepancy is greater than 1% throughout the entire flow
regime, while for Re < 0.075, the difference between the two solutions is less than 1%.
The integral method has also been used for the radial inflow between two parallel co-
rotating discs in a more complicated form.

Kawaguchi [24] investigates experimentally the entrance loss in the turbulent
radial source flow between two stationary parallel discs. He examined the range of the
inlet region, minimum pressure, hydraulic loss in the vicinity of the entrance, and the
entrance form to influence upon inlet loss. He derived an empirical equation using the
Navier-Stokes equations, the velocity profile for turbulent flow, and the dimensionless
quantities related to the spacing between the two discs and the radius of the rounded inlet
corner. The parameters that influence the entrance loss are the following: the irregular
velocity distribution just before the inlet, the contracted flow, back flow on the disc

surfaces and separation. The experimental results showed that the smaller the roundness
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of the inlet corner, the larger the local maximum velocity in the center of the gap
becomes near the entrance. It was also found that the transition from laminar to turbulent
flow takes place near the inlet when the Reynolds is 200 ~ 500, and that the turbulence
expands outward in the downstream direction. Moreover, as the gap gets smaller, the
coefficient of the entrance losses & increases, and if the gap gets larger even with a small
roundness at the entry, the separation and contraction causes an increase of the £. Also,
the pressure difference at the entrance and outlet can be estimated only by the viscous
term without taking into account the inlet boundary shape.

Bakke, Kreider and Kreith [25] conducted an experimental analysis on the
turbulent source flow between two parallel stationary and co-rotating discs. For the
stationary discs, as the fluid flows radially outwards and the Reynolds number decreases,
the velocity profiles obtained a quasi-parabolic distribution with increasing radius. The
flow has not yet become laminar since the turbulent intensity remains quite high at large
radii. Since the flow is decelerating, an adverse pressure is developed, which in turn
produces inflection points in the velocity profiles close to the discs’ surfaces. For the case
of co-rotating discs, the centrifugal forces become larger as the radius decreases, and the
radial velocity profile develops a maximum near the disc for large angular velocities. The
velocity profiles develop an inflection point at the same radial distance as in the case of
the stationary discs. This point later disappears along with the turbulence intensity, due to
the stabilizing effects of the centrifugal force, which increase with increasing speed. A
further increase in the velocity causes an increase of the turbulence intensity. This is due
to the increasing shearing force between the discs and the fluid. The static pressure

distribution increases smoothly for the stationary discs towards the disc rim, whereas for
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the co-rotating discs, the centrifugal effects cause a fast raise in the static pressure near
the disc rim and with increasing rotational speed an inflexion point is being created in the
pressure profile.

Raal [26] solved the Navier Stokes equations for the stream function and vorticity
formulations using Allen and Southwell’s discretization procedure. The following inlet
conditions were considered: a) where the flow is uniform at the entrance assuming no
vorticity, and b) a uniform irrotational flow at a plane r upstream from the entrance,
where vorticity diffusion is allowable. For the first case, it appeared that separation
occurred for Re =60. For the second case, separation occurred at Re = 64 and as
Reynolds increased, the vorticity diffusion increased in the upstream direction, the size of
the recirculation zone increased, and the separation point moved upstream. For Re275, a
small concavity was observed in the radial velocity profiles, thus making evident the
presence of a reverse flow. Near the entrance the centerline velocities revealed the
presence of inflexion points for Re>1, thus departing from the creeping flow profile. The
findings of the second case proved that the assumption in the first case is not a pragmatic
one, thus it should be discarded.

Wark and Foss [27] attempted to develop a lifting device by performing an
experimental analysis that would determine the force acted on the impact disc for the
radial outflow between two parallel discs. For moderate Reynolds numbers, a repelling
force exists for small and large disc spacing, whereas an attracting force will be present
for the intermediate ones. The parameters that influence the presence or absence of the
reattachment location will also affect the force exerted on the plate. The flow regime of

interest can be identified in the following categories: a) where no reattachment occurs 1f
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the ratio of the impact disc diameter to the jet nozzle diameter D,/D;— 1 and/or the non-
dimensional disc spacing h*= o, b) where reattachment always occurs if h'- 1 and/or
D,/D;— o, and c) where Reynolds number plays a qualitative role in the flow field for
intermediate values of the non-dimensional disc spacing and Dy/D;. From the
experiments, it was observed that, for small non-dimensional disc gap (h*ﬁ).2), and
diameter ratio of D/D; > 5.33, the pressure and the force on the impact disc decrease, as
the Reynolds number increases while the flow pattern remains qualitatively unaffected.
At Dy/D; equal to 4, and because of the interaction amongst the geometrical parameters,
the separation stream surface reattaches to the source plate. Consequently, at the path of
the separation stream surface, the intermediate pressures will have a minimum value. In
the regime where h > 0.2 and 533 <D./D; <8, the impact force was found to be
independent of the Reynolds number. It was also concluded that there is an optimum
diameter ratio for a given non-dimensional gap height between the discs and Reynolds
number, where the attraction force is maximum.

Mochizuki and Yang [28] studied the problem of instability for the radial source
flow between two parallel discs. They also solved numerically the unsteady vorticity
transport equation, and provided predictions on the vortex formation and separation,
which were confirmed partly by experiments. The following different flow patterns were
observed for Reynolds numbers between 1.5 and 50: a) for Re<Re (27.5<Rec<30) steady
flow with no separation or re-attachment, b) for Re. Re<Re; self-controlled oscillation
which decays downstream, and c) for Re>Re; (31.4<Re<45.5), a self-controlled flow
oscillation followed by a reverse transition. In the experimental approach, the flow

visualization methods of dye-injection, Hydrogen bubble generation, and parafin mist,
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were employed to both liquid and gas flow systems. For the liquid flow system, hydrogen
bubble and dye injection were used to visualize the flow. The hydrogen bubbles showed
that as the Reynolds number increases up to, or beyond a critical number, flow separation
occurs at the same radial position alternately on both discs, thus creating a vortex sheet.
At further increase of the Reynolds number the flow becomes turbulent due to flow
oscillations. However, when the velocity, which decreases with increasing radius, reduces
adequately, the phenomenon of relaminarization occurs. The dye injection method (for
the liquid flow system) and hot wire measurements using air stream, indicated the
presence of vortices as well as their axisymmetrical periodic formation. The development
of vortices was also realized in the air stream by means of paraffin mists. It was proved
that the vortices develop in an unsteady manner and separate periodically and alternately
from both discs.

Tabatabai and Pollard [29] performed an experimental study on the radial outflow
between two discs emphasizing the turbulent flow regime. Their analysis showed that for
large Reynolds numbers, the flow is similar to the two-dimensional fully developed
channel flow. As the Reynolds number decreases, the velocity profiles transform to
parabolic ones, and the viscous sub-layer thickens. That indicates that it is being
transformed into a laminar-like boundary layer. Moreover, the magnitude of the turbulent
intensity decreases and the point of its maximum value moves away from the wall, thus
making the turbulent decaying process more complicated when compared to the one
observed in the channel flow. Even though the Reynolds number is low, turbulent

characteristics still exist in the flow, thus indicating that relaminarization occurs slowly.

19



Ervin, Suryanarayana, and Hon Chai [30], analyzed experimentally the aspects
and characteristics of the turbulent outflow between two stationary discs, using split film
anemometry (split film probe attached to a micrometer traversing mechanism). Their
results showed that the flow is unsteady near the entrance, and for low Reynolds
numbers, the velocity distribution at the exit approaches a parabolic profile thus
resembling a laminar flow. Also, the universal velocity profile is not applicable at small
radii, but there is an agreement with the experimental data away from the inlet. At high
Reynolds numbers, and for r > 0.5, the results seem to follow the velocity defect law,
except close to the exit (r = 0.93). That might be due to the fact that the phenomenon of
relaminarization has been initiated. This is supported by the fact that, at 0.93<r<1, the
velocity profiles were almost parabolic, turbulent stresses in that region were small, and
lower energies at higher frequencies were observed. Simultaneously, high levels of
turbulence were also present in the flow, which indicates that the turbulence in the flow is
persistent. The criterion for relaminarization of the flow by Kreith {20] was examined,
and a smaller constant in his equation provides satisfactory agreement. Finally, it was
noted that uncertainties related with the employment of the split film anemometer probe

had not been established.
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1.3 The Contribution

The intention of the present thesis was to investigate the study of the radial flow

between two discs. Specifically, the contributions to the subject are the following:

@

(i)

(iii)

(iv)

Development of analytical expressions for the radial and tangential velocities as
well as static pressure distribution for swirling inflow and outflow between two
closely - spaced discs.(such that the axial velocity component to be considered
negligible)

Experimental analysis for the non-swirling inflow for small and intermediate
heights and Reynolds numbers. Present data include gap ratios of 0.0278,
0.01389, 0.01042, and 0.00694 versus 0.03, 0.05, 0.0394, and 0.0197 reported
by previous researchers. The Reynolds numbers presented herein are in the
intermediate range (328.74<Re<657.49) compared to others. Radial velocity
and static pressure measurements were obtained.

Static pressure measurements for the swirling inflow and low swirl strength of
s=2, and for the range of heights and Reynolds numbers reported above.
Previbus evidence pertains to a high gap and very high swirl number [13], or a
low swirl, intermediate gap, but high Reynolds number [2].

Experimental investigation in the outward flow without swirl. The present
analysis is restricted in terms of intermediate gaps of 0.4, 0.2, 0.15 and 0.1 and

moderate Reynolds numbers in the range of 3154.36<Re<9463.08.
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(v) Experimental study on the swirling outflow for four different gaps of 0.4, 0.2,
0.15 and 0.1 and low to intermediate Reynolds numbers 3469.79<Re<6624.15.

Previous experimental data on this particular case have not been reported.
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Chapter 11

The Experimental Apparatus and Procedure

Physical experimentation ought to be the central component of every scientific
investigation. This is the foundation of research and development. Tests on actual models
should be carried out in order to explain, predict, and/or validate analytical results that
have been deduced from physical laws and principles. It also serves as a measure of
comparison with experimental outcomes that have been previously obtained. It is
therefore essential that findings of analytical models be supported by experimental
evidence.

The objectives of the present experiments were to obtain static pressure and
velocity distributions between two stationary parallel discs, while the fluid is admitted
from the extreme periphery or through a centrally located exit. The details of the
experimental apparatus, measurcment techniques, data analysis and treatment, are

discussed in the following sections.
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2.1 Experimental Planning and Procedure

The current experiments were thus made to fulfill the previously mentioned
purpose with respect to the radial flow between two stationary, narrowly - spaced,
parallel discs. The experimental objective was to measure the static pressure and the
radial velocities for both inflow and outflow, with and without the presence of swirl, and

for the gap sizes of 0.125, 0.1875, 0.25, and 0.5 inches between the discs.

Figure 2.1 — Experimental apparatus

In all cases, air at 1 atm and 25 °C was used as the working fluid. The range of the

flow rate values varied from 20 to 60 cfm. The four heights of 0.125 in, 0.1875 in, 0.25
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in, and 0.5in, corresponded to gap ratios (§=2ha/D or &=h/R) of 0.0069, 0.01042,

0.0139, and 0.0278 respectively. (Figure 2.2)

In order to obtain accurate measurements, a set of sensitive inclined manometers,
an accurate rotameter, and a thin Pitot-static tube were used to measure the static and
dynamic pressures, as well as the flow rate of air. The above equipment was available
commercially, and the reasons for selecting them will be discussed in the next sections.
Three flow rates were selected for each of the four heights, and 10 measurements of static

pressure along the radius were obtained.
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Figure 2.2 — Schematic of the discs

Exploratory tests, having theory as a guide, were conducted to identify possible
experimental errors. Prior to the recording of data, we were able to ascertain the time
needed for the system to stabilize. Moreover, while measuring static pressures through

the control panel, it was observed that the manometer liquid took some time to return to
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zero scale. Therefore, it was decided that after each pressure measurement, the

manometer should be zeroed before proceeding to the next reading.

2.2 Instrumentation and Apparatus

2.2.1 Experimental set-up

The experimental apparatus consisted of the following: (i) two parallel discs (one
of which was mounted on a vertical support which controlled the gap between the two
discs, while the other was attached to a tube that was supported by a stationary
mechanism on the wall), (ii) a blower, (iii) a pitot-static tube, (iv) a rotameter, (v) an
assembly of inclined manometers, and (vi) vortex rings for both inflow and outflow. The

schematics of the swirling flow for both inflow and outflow are shown in figures 2.3 and

2.4.
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Figure 2.3 — Schematic of Inflow with Swirl
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Figure 2.4 Schematic of Outflow with Swirl

2.2.2 Plexiglas Discs

The top disc was fabricated from Plexiglas. It had a diameter of 18 inches and a
thickness of 0.5 inches. Eight holes of 0.25 inches diameter were drilled in the disc in

order for it to be attached to the flange of the Plexiglas tube. The bottom disc was made
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from two Plexiglas semi-discs with a thickness 0.5 inches and a radius of 8.625 inches. In

the gap formed by the two semi-discs, an aluminum slider was fitted.
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Figure 2.5 — Schematic of the top disc
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2.2.3 Spacers

8.500

Figure 2.6 — Schematic of the bottom disc

Four sets of cylindrical spacers having heights of 0.125 in, 0.1875 in, 0.25 and 0.5

in, and an inner diameter of 0.5 in were used to fix the gap between the two discs. The

spacers were placed at the outer periphery in four diametrically opposite locations.

2.2.4 Vortex rings

Two sets of four aluminum vortex rings were used to introduce swirl for both

outflow and inflow conditions. For the outflow (figure 2.7), four rings with a thickness of
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0.125in, 0.1875in, 0.25 and 0.5 in, an inner diameter of 1.25 in, and an outer diameter of
2.99 in have been designed. A series of 18 flow guide vanes for the first three heights and
10 flow guide vanes for the ring with a thickness of 0.5 in, introduced high swirl to the

flow of approximate strength of 2.

Figure 2.7 — Vortex Ring for Outflow (Source)

For the sink flow (figure 2.8), four sets of rings with a thickness of 0.125in,
0.1875in, 0.25 in, and 0.5 in, an inner diameter of 16.250 in and an outer diameter of
18.00 in, as well as 50 guide vanes, imparted swirl to the air while entering via the

extreme periphery. The magnitude of the swirl was fixed and was controlled by the vane
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angle of the vortex ring. In both cases, the angle between the radius and the tangent to the

centerline of the vane was equal to 30 degrees.
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Figure 2.8 — Vortex Ring for Inflow (Sink)

2.2.5 Flow Measurement

A schematic of the rotameter used is shown in figure 2.9. It consists of a float and
a tapered tube, in which the float is free to move. As the fluid (air) enters at the bottom of

the vertical tube, the float (or bob) rises, and the area between the float and the tube
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increases. The float then assumes a position in the tube where the weight and drag forces

are balanced, and its position points to the indication of the flow rate.

t Flow

1 /— Tube

Float

\ Flow

Figure 2.9 — Schematic of a Rotameter

There are a couple of advantages for using a rotameter as opposed to other
devices. Firstly, the uniform flow scale over the range of the instrument is ensured, and
secondly, the pressure losses are fixed for all flow rates. A pre-operational check and
calibration had already been made on the instrument therefore no calibration techniques
were applied to the device. The rotameter used was mounted on a wooden support. This
ensured a proper position in order for its accuracy and sensitivity to remain unaffected. A
calibration scale was attached to the glass tube that reads the volume flow rate in CFM

units, with a maximum range of 70 cubic feet per minute.
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To prevent damage to the device, the inlet line was initially purged with a high
flow rate of air in order to prevent the float from bouncing up and down in the metering

tube. Eventually the float was adjusted to the desired flow rate.

2.2.6 Pitot — Static tube

In order to measure the radial velocity, a thin pitot-static tube was inserted into
the flowfield. The probe combined both static and stagnation pressure measurements in a
single unit. Therefore, the values of the dynamic pressure Prowi - Psuic were obtained
directly, and the local velocities were calculated. The pitot-static tube was attached to the
aluminum bar through a micrometer mechanism (figure 2.10) that controlled its vertical
movement.

Alurinumbar

Y Pitot tube

Micrometer

Figure 2.10 — Micrometer assembly

34



A factor that could have affected the accuracy of the pressure measurements was
the misalignment of the pitot-static probe with the flow direction. The angle formed
between the probe axis and the local streamline (yaw-angle) had to be zero, otherwise the

pitot-static tube being sensitive to the yaw would have produced significant errors.

2.2.7 Inclined Manometers

A precise assembly of inclined manometers that consists of two adjustable
manometers of different scale length was used to measure the static pressure as well as
the dynamic head measurements. To acquire the static pressures, 10 holes with a diameter
of 0.0625 inches, equally spaced, were drilled on the top disc and were arranged at a
distance of 0.875 inches across the radius of the disc. The pressure taps were attached
with flexible tubes in a control panel, and the outlet was connected to the manometer.

The manometer was adjusted and zeroed before any measurement was taken.

2.3 Considerations on experimental analysis, data treatment and errors

For the experimental data to have maximum significance, the measurements
should be performed with the utmost degree of accuracy. To achieve that, the limitations
of the apparatus should be fully known and understood, and the various types and sources
of errors that may occur during the experimentation should be anticipated and dealt with.

[31]

35



Once the data was collected, a thorough examination followed to establish any
inconsistencies. The observations that did not follow the general trend of the overall
results were completely eliminated. Subsequently, we examined the results from the
existing theory. That way, we ensured that the trend of the results we got was in general
consistent with the theory. The latter also provided an idea of how to present the results,
and a dimensional analysis was performed (to be discussed later). The assumption
concerning the flow axisymmetry was also examined by taking static pressure
measurements at the angles of 0 and 180 degrees (with respect to the discs’ centreline).
This check revealed that flow is axisymmetric, within 8-10 % of uncertainty.

Types and sources of errors that may be the source of experimental uncertainties
can be of equipment, human, or methodology nature. Equipment errors can result from
inaccuracies in the design, maintenance, and manufacturing, as well as calibration, and
sensitivity changes. During the experimentation, the positioning of a pitot-static probe in
the flow might have caused some disturbance in the flow conditions. Also, because its
inner diameter was so small, it could have been blocked or the yaw angle could have
been different from zero, therefore affecting the results. Care was taken to ensure that the
yaw angle was zero, and that the pitot - tube was aligned with the flow. A preliminary
check was performed to ensure that the probe was not blocked. Some errors could have
been imposed due to instabilities in the flow from the pressurized air, or the blower that
caused the float in the rotameter to slightly oscillate. In these cases, care was taken to
adjust the flow at a constant rate, and the measurements were interrupted when it was not

feasible to do so.
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Chapter 111

Analytical Development Of The Problem

3.1 Dimensional Analysis

In order to reduce the experimental effort, and to present our results in a
generalized form, we performed dimensional analysis. The flow is assumed to take place
within the small gap (h/R;,<<1), formed by two discs placed one on top of the other. The
region of our focus is sufficiently far from the inlet for the source flow and from the
outlet for the sink flow. The theoretical analysis applies for negligible tangential and axial
velocity components, thus only the radial velocity is considered. Furthermore, for the
case of the source flow the analytical model does not apply in the vicinity where the
phenomena of the vena contracta and flow separation might take place. Under these

restrictions, the expected functional relationships for the velocity and pressure are:

V, = fall,,. 010,72, Ry )
and

Ap = fulV, p.pr. Ry, hf
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where r, Z, Rin, Pins P> Ve L, 1, P, are the radius, height, inlet radius, inlet static pressure,
static pressure at radius r, inlet average radial velocity, half the gap size, viscosity, and
the density, respectively. Since we are dealing with small gaps, the axial velocity
component is zero, and the pressure is not a function of the height z. Buckingham’s 7-
theorem furnishes the expected functional relations among the main dimensionless

parameter:

v, :f{r,z,f,Re} and Ap ={r,§,Re}

where,
p(r)_pin h r Z Vr I/’mh
Ap:—W—s éz_;"a n:Ts C.::;a u:V,_ s Re= v

in in

In the case of small gaps, the Reynolds number can be combined with £, thus

transforming it into the reduced Reynolds number Re; = Re &.

3.2 Statement of the theoretical problem

One case of the problem is represented in the schematic of figure 3.1. For the case
of the inflow, the fluid (air) enters from the extreme periphery of the discs and exits
through the centrally located exit. The equations will be solved for steady and

incompressible flow (both inflow and outflow), and under the assumption that the gap

between the discs is very small. Therefore, the ratio —h~will be <<1, and the axial

in
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velocity component V, is also zero since it does not have the space and adequate time to

develop.

2h T r

Rin

Figure 3. 1 — Schematic of inflow between two discs

Since the discs are closely spaced the flow is assumed to be laminar. In case the
flow is turbulent at the entrance, this assumption is still valid, because the flow will
accelerate towards a monotonically decreasing pressure therefore it will eventually

laminarize. Moreover, since the geometry is symmetric, we assume that the flow is

axisymmetric, therefore all changes with respect to § will be zero (i =0).
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3.3 Flow with Swirl

The equations of continuity and momentum are first considered:

Continuity:
10 10 0 10
—ler )+ s L)+ 2 (7)=0 => ——(V,)=0
rar(rVr)+ rae( 6)+aZ( z) = rar(r r)
\—ﬂ——‘—/
=0, axisymmetric =0; ¥,=0

r-momentum:

v, 2
AR GFQV )}Jrla_(V_rr)_
or r p or or r

| = r
ror "

=0; continuity

Lo e, [120)
" or r p O ro oz’

0 -momentum:
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" or orlr or oz*

y oWor) :V{r 0 [1 a(Ver)]+ 52(Ver)}

zZ-momentum:

Z—p =0= p# fulz)= p=fulr) ,only.
4

The non-dimensional parameters are defined as follows:

V. Vy r z
u= 5 V'—"——’ =—, —_

Vr Vem n Rin C-’ h
&—i s—KG'L R V'}'nh

R, Ve , . v

pr _pin
Rer :éRe’ Ap: () 2
pV,

fin

Introducing the above parameters into the continuity, r and f-momentum equations yield:

Continuity:

- v, la(nu) —0= _1_5(71”):0 (1)
Rin T\ an n &n
e

constant

r-momentum:

uVl - =

a(uVr,.n) (vVe,,,,)z 1 5(p(,)—p,-n)+v{ 1 52(uV,,mR,-n)}:>

" dmR,) TR, p o(R,) nR, achy
Jou vt dep) 1 {gaz(uzn)} @
n dn Re, |n &
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O -momentum:

6(nR,.anem)_ ) 1 onR )] 2R, )
o, ‘V{"R"" a(nR,-,,)LRm oR,) } oy |~

ua(nv)_ 1 3’(nv)
on  Re, o

€)

Summarize the non-dimensional equations of continuity and r & 6 momentum:

10omu) _, .

o on (1)

u—aﬁ—sz v _ _d(Ap)+ 1 {l aZ(uzn)} 2)
on Uyl dn  Re, |n &

wo(vn) _ 1_9"(vm) 3)
om  Re, o’
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3.3.1 Inflow and Swirl

A schematic of the coordinate system for the case of inflow and swirl is shown in

figure 3.2.

- (=2
i czo_’

r,7

Figure 3.2 — Schematic of coordinate system for inflow with swirl
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To solve for the radial velocity, first consider the continuity equation (eq.1).

lé(ﬁ”l_) =0= ?_(u_n) = 0. Therefore un will only be a function of {.
n o on

Thus: u = g)—(g—) (4)
n

To linearize the r-momentum (eq.2)

ou_ v __dap), Rl {1 82(%)}

Uu—-—85 —= >
on n dn n &

we use u——l and@i:——%@(@
n m n

Insering the above into the r - momentum it yields :

N G . .

M dqn  mRe, &

The maximum value of the centrifugal force occurs at the mid-channel location, therefore

v? = v ux . Then the above equation transforms into:

(-t 2=t ) 10l

n n dn  nRe, d¢?

If we integrate with respect to7, from 7 =1to 77, we obtain from eq.(6) :

(Il . )CD(Q' J~77v max :——jnd(Ap)dn+ 1 d d)(é')j

L dn Re,

44



2’®(¢) Re, (2—1) _Re, A ) PR
ac? ln(n) (D(g)—ln(n)Ap 1n(,7)j —

A2

LU i) 2 vl 575 122 =

d¢” n’ -1 b -1)*  m
=All(y)
~0(7)
L) ()= 23l o

dc?

Equation (7) is a second order non-homogeneous ordinary differential equation, where

the parameters N, ATI(n) and AZ(n) are represented by the following equations:

2
2 (77 —I)Re 2s°n? v mx(n)a’n ®)

——————277 ln 77) ) (‘—) P ) AH(’?) (77 _1)L .

To solve the differential equation (eq.7), the homogeneous and particular solutions must

be considered. Therefore: ®(&)= @(¢), + @(¢) )

If CD(Q) , = gKZAE(n) and (D(Q)h = Ae™ + Be™, where g, A, and B are constants

then ®(¢) becomes :

®(C) = 4™ + Be™ — AZ(n) = un 9)
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The evaluation of A and B general constants is achieved via the two boundary conditions:

1) z=0, V,=0 = =0 then u=0

i)z=2h, V;=0 = =2 then u=0

If we insert the boundary conditions into equation (9) we obtain the following

expressions:
®)

(=0 u=0 =4=AZn)-B (10 a)
)

() =2 u=0 = 4e™ +Be ™ —AZ(n)=0 (10b)

By substitution of eq.(10 a) into eq.(10 b) constant A is eliminated

therefore B ts found to be :

1_ 827\.
e —e
therefore the constant A is given by :
1_ ez)u
A=AEM) 1 ————— 11b
(n){ i en} (11b)

Back substitution of A and B into equation (9) yields:
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~ _ _ 1- 27 _ 1— 2A B B
®() = A" + Be™ — AZ(n) = Aa(n)[l T e }M ’ Aﬁ(n)[e—u i }e * —az(n)

e M MR g B sinh K(Q 2)] s1nh[M;]
=A=n 5 e - N ) e — = AH( ){ smh[2l] " smh[ZK]
2
) sinh[A(2 - ©)]+sinn[Ag]
()= Au(n){ st 2] 1 (12)

From global continuity, we have:

jV Qulz= -V, @R, N2h)= [ CHE=-2=

In, flow

IAH( ){smh M2 - z;)+smh[xe;] } =2
- sinh[2]

-2

AZ(M) = 57— .
2 ('sinh[A(2 - € )]+ sinh[rc]
[ e
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-2

AZ(n) = 5— . =
2 smh[%(l —C)] 2 Smh(M;) i 2
Oj sinh(2).) @ OI sinh(zx)dC Oj 4
(N Asinh(21.)
AZ(n) - Asinh(21.)— cosh(24) + 1 (13)
Introducing AE(n) from eq.(13) into eq.(12), d)((;) transforms to :
B Asinh(21) sinh[A(2 - )]+ sinh(A5)
()= Asinh(2A) - cosh(21) + 1{ sinh(21.) o a9
where u = %
n
The radial velocity for Inflow and Swirl is given by :
1 Asinh(2)) sinh[N2 — ¢)]+ sinh(\¢)
u=r -1 (15)
1 sinh(2\) - cosh(2N) +1 sinh(2\)

In order to determine the tangential velocity component, the § - momentum must be
considered (eq.3). Linearizing the inertia terms and applying separation of variables, by

letting wvn = (p(n)\v((;) the 6 - momentum becomes:
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11 doln) 1 1 d\u(C) _p (16)

nom) dn  Re y(t) d

where P is the separation constant

The resulting differential equations from (16) will be solved to give :

11 _ <P(n) y
M <p(n) I = [P
B’n’
(p(n)= e * , kisaconstant (17 a)
L dlE) e dw(E)
R vO) 40 =P=n +B* Re, w(5)=0 (17b)

The differential equation described in (17 b) has complex solutions :

= Acos(pyRe¢)+ Bsin(pRe, £) (18)
where A , B are constants
Since vn = (p(n)\v(g), then :
(1725(18)\»11 = keBZZn:Z [A cos(B\/I_{e—,Q)+ Bsin(B\/_lng)]
p’n’
=e ? [A’cos(B\[I{—e,Q)+ B’sin(ﬁ\/l_{gg)]
where /' =kA and B =kB
(19)

= {A’ cos(B\/Eé,' §)+ B sin(B\/l—{;, Q)}eﬁzzn 2

In order to determine the constants in equation (19), we apply the boundary conditions

49



(1) z=0 or =0 then v=0

(i)z=h or _C=1 then ? =0 (maximum velocity at the centerline)

Applying (i) and (ii) into eq.(19) the following is obtained:

9
@i at £=0 v=0 — wm=0=>A"'=0 (20a)

Bln:‘.

dV (19)

iat {=1 —=0 —d—B’sinB Re ). =0 [SinceA'=0ande ? are constants]
& T o

— B'ByRe, cos(ByRe, )=0 (20b)

Since By/Re, is a constant and B’ must be different from zero in order for equation (19) to be valid,

. . 2n+1
it must be : cos(Bw/Rer ): 0.Cosine becomeszeroat — T

cos(B,/Rer ):cos(zanr ! n) =0=pBRe, = 2n2+ 1 T=>p= 22\7% s (21a)

Let3=p, (B varies with n)

B 2n+1

2,Re, "

So, B,

(21b)
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Substitution of , back to equation (19), vn becomes :

B,
o0 n . 2 + 1
vn = ZBne 2 sm( n2

n?;] = Qy (22)

where B'is being replaced by B, since B’ will vary with n. Therefore, eq.(22)

transforms into :

B, 0
w 2
y=_%p° sin(zn +l ng) 23)
TI n=0 T] 2

Application of the initial condition ( n = 1 = v = 1.0) in equation (23) provides:
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w By’
1= B’ sin( 2n+1 ng) (24 2)

n=0

B

LettingE, =B.e ? (241)

then eq.(24 a) becomes:

1= ZE,l sin( 2n2+ ! n) (24¢)
n=0

E, must be expressed so that it becomes the Fourier sine series of v.

== v(Q)sm( )dg == n Jlr - l:cos( (2n2+ 1) H - i e 244d)

2
B, 4 “31
E =Be? == 24 ¢
v (2n+1)n (2n+1)7t (24 e)
. 2n+1
Since: B, = nt ———7 (eq.21b), thus B, becomes :
2\Re,
_{ 2+l ]2
2/Re, i (2n+1)* =2
4 — 4 '{ 8 Re }
= ————— 2 = B _ e " 25
(2n+1)1r " Qu+l)n (25)
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Once Bn has been determined, substitute back to eq.(23)in order to obtain the tangential velocity v :

& 4 Bery (Zn ‘1 )
V—§(2n+1)7r ° ns 2 ™
- (20+1)? 1rl( 2_1)
v _i__e{ sRe, } lsm(zn +1 7@) 26)
o (2n + 1)7r 7 2

The maximum v occurs at the centerline where ¢ = 1. Therefore from equation (26) we have :

~ (20+1)" 2* ( 2—1)
max = Z (;( { e n } (27)
n+lwn
Since v, was defined, AZ(n) can be calculated.
It was found previously (eq.13) that the pressure AE(n) isequal to:
AN A sinh(Zx) ®) 25" (V7 max (n)
AEn) = =A - d
(n) Asinh(2A) - cosh(2A)+1 () (nz - 1) '[1 n n=

. 2.2 2

AH(T]) _ 7\,Slnh(27\.) + 2s n J‘Tl V' max (n)d']'] (28)

Asinh(24)-cosh(22)+1 (> -1)7

from equation (27) the maximum tangential velocity was expressed as :

o (zxf"z(nz-l) © 4 B B fi-r?)

e § 2n+1)ﬂ:n pord 2n+1)nn

In order to evaluate AII(n), the integral I Y e (n)d n must be solved first.

2
Using the property (Z xij = szjxk , v’ ax becomes:

i=0 j=0 k=0

53



23 16(-1)(-1)" Lex_ﬁ_zn_2_ﬂ2m_2 .
Vi = 22(2n+1)(2m+1)7r n p{ 2 b-’) 2 ( n)} @22

n=0 m=0

2
Therefore the '[n Md 1 becomes:

n max o~ 6(—1)"" " m 2
jv zz 2n~1!~1()(231+1) 2 J- n’ ep{ = ;IB )( - )}dn (29%)

=0 m=0

, then the integral becomes:

it g B ;ﬂzm)

['Leetrlay = e [' Lo ay 299)
1 77 1 n

By changing the variables from77° to & and by letting n’ =6 thendd =2ndn < dn = izié
n

R R e ) S Lol
Fromeq.(29c¢): £n3e dn= R dé (294)

- ad

|5

dé we obtain:

Finally by solving <
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e’ "iaid(s - 1{1 _ e_a(lz_UZ) +ae™ {m(nz )+ i ka- r (772" - 1)}} (29¢)

2
Yﬂ(ﬂ—), to obtain the final equation for the

Substitute the above expression into the integral f
n

pressure AH(n). Therefore from equation (29 b) we have that :

V(1) ) N N Ry YA
eq(29b)3r————d ;,;)(Zn+l)(2m+l)n2 I[n3exp : (i-n?)tan =

[V max(n) 33 11 1{1 - e_u(:“:) + ae““[ln(n2)+ > ko.ck! b _l)}}

S 4 2n+1)2m+1)n” 2 n

Therefore the pressure AH(n) (eq.28) becomes :
A sinh(22.)
Allin) =
() A sinh(21)— cosh(Z)») +1 ’

—a(l—n )
1- +
L6’ g U n (30)

ey sy 0T )b

where, a =
2 Re, 24Re,

r

2,,2m12121212 2 2 2
@B.+B ):5{( nr )n} +5{( me )n} :>oc:8§e [(2n+1) +(2m+1)]
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SUMMARY OF EQUATIONS FOUND IN INFLOW AND SWIRL:

Radial Velocity u:

1 Nsinh(2\) {smh[)\(Z O] +sinh(N) }
7 Asinh(2\) — cosh(2N) +1 sinh(2\)

Tangential Velocity v:

Pressure All:

e—a(l—nl)

J.sinh(2)) 165" & Y™ [1_ n
B si "1’
AT = ) - cosh @) 11 (1 z;mZ‘) 2n+1(2m+1)1a64{1n(nz) L3 (o _1)}

+

Other parameters:
+(2m + 1)2]
2n+1 n? —1)Re (2’
= A= L Allln) =
b= e, I infe) =[5 et
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3.3.2 Outflow and Swirl

The same procedure as in paragraph 3.2.1 is followed in order to solve for the
case of outflow and swirl. The diagram of the problem for outflow and swirl is shown

below. The assumptions are the same as in the previous case.

2,6
i

th

'

Figure 3.3 — Schematic of Outflow between two discs

For the case of the radial velocity, the equation of continuity was solved and we obtained

that: u = —(D—(Q Linearizing the r-momentum and letting %‘Li =— —12—CD(Q) yields:
n

(1)t -], 10k o
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Similarly, as indicated in the previous section, the maximum centrifugal effects are

considered. Therefore, at the mid-plane, by letting v’ with v’ max equation (31) results in:

(%j(_ %)cb((;)—sz Vzmz(n) __dap) 1 d'eR)

dn  nRe, dg’

£9), Re b o) Koy o Ko [l

d¢ 2 1n(77) 2n 2 n
\—/—_J

d::igg)”zq)(i):’lz [ & JAP(U)_ Sk J‘Wzmax(n)dn =

(r* -1)

-1 7
=Al(n)
d2®(§) 2 2{ 2S 7] ﬂVzmax(ﬂ) }
+ D) =A< Allly dn (32)
i (¢)=Aa01()- oy =
=az(n)

2

d dd;gg“) + 22®(¢) = 2* AZ(r7) — second order non - homogeneous differentialequat. ~ (33)

where A%, AIl(;7) and AE(n7) were defined in the previous case (inflow and swirl)

Following the same procedure as in section 3.2.1 for the case of inflow and swirl, the

2™ O.D.E is solved. By combining the particular and the homogeneous solutions, €q.(33)

can be written as follows:

®(5) = Acos(AE)+ Bsin(hE)+ AE(M) =un =

Acos(AC)+ B sin(AG)+ AB(n) = un (34)
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Applying the boundary conditions

1 ¢=0 = u=0
i) £=2 = u=90
equation (34) yields:
HC=0 u=0
(34)
= Acos(0)+ Bsin(0)+ AZ(n)=0= 4=-AZ(n) (35a)
@C=2 u=0
(34) (35a)
= Acos(21.)+ Bsin(2A)+ AE(n)=0 =
— cos(2l) -1
B = AZ(n)——F—~— 35b
(ﬂ) Sin(27\,) ( )

Substitute the constants A and B from eq.(35 a) and eq.(35 b) back to eq.(34) to get :

(;) O(L)=- AE(T])COS(?»C)-&- AE(n)%zé%g—l] sin(AC) + AZ(n) =

A= (n)[sin(Zk —g)+sin(Ag) 1]

sin(ZX)

_ AE(n{ZSin(X)cos[X(l -9, 1}

sin(2%)
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Therefore,

CD(C) _ AE(n)[2sin(k)cos[k(l - Q)] N 1} (36)

sin(22.)

From global continuity (as for theinflow case), we have :

2]@(@)4@ =42

}AE(H){%in(k)cos[?u(l -¢)l + 1}d§ =2=

; sin(22)
2
AEn)= 37
) i 2sin(k)cos[k(l -¢)] G7)
j - +1:dC
0 sm(ZX)
Solvetheintegral j-cos[k(l - Q)]d(; from eqn.(37) by changing variables:
Let y =A(1-¢)
Therefore: z_fcos(w{_ d\p) = - 2sinf3) (38a)
¥ A A

Substituting eqn.(38a) into equation (37), we get the following expression for AE(n) :

E(n)z i 2 : 2 sin 2sin A
j;;zﬁ; Jeodu1-0c + :m(z(ﬂ 2x( )}Lz
AE(n) = Asin(2A) (39)

Asin(2A)— 2sin’ (»)

To obtain CD((;), substitute equation (39) into equation (36) :
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o(t)= Aa(n{%in(k)cos[?u(l -&)] . 1} Asin(2) [ZSin(X)cos[K(l -2)] . 1}

sin(21.) Y sin(21) - 2sin* (1) sin(2).)

andsince u= ig(@_) fromeqn.(1),
n

the radial velocityfor outflow and swirlis givenby :

(40)

1 Asin(22) {2sin(7») cos]M1 - ¢)] " 1}

4 Aosin(2n) - 2sin? (1) sin(21)

The tangential velocity is solved (as in section 3.2.1), when the 6 — momentum was

considered (eq.3).

Since  vn=on)y(C) thed - momentum becomes :

11 do(n) 1 1 dE)_ 41
o) " Re w©) ag P oo .

From the two differential equations we get the following:
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(P(T]) =ke 2 , kisaconstant

1 dE) . d(E) | e _
O e y@ dg P T ag P RevE)=0

The solution to the differential eqn.(42 b)is:

\p(@) = Acos(B,/Re, C)+ Bsin(Bw/Rer (;)
where A , B are constants
Sincevn = (p(n)\u(g) then from eq.(43) we get :

-pn’

[A’cos(BJﬁéTQ%B’sin(B@Q)]e 2 =

where A'=kA and B' =kB

Applying the boundary conditions,

(=0 — v=0
(ic=1 — Z—Zzo

equation (44) becomes:

U]

=A'"=0

@) 2n+1 . : .
:cos(B,/Re, )= 0=8,= nt n  [sincef varies withn, f=,]

2\Re,
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(45 a)
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Substituting B back to equation (44), v becomes :

© -B 2112 .
= (2
vn = Z_(;Bne 2 sm( n2+17tC) = QY =
_Bnan
® 2
y=_3p ¢ sin(z”“nq) (46)
n n=0 n 2

By applying the initial condition (n=1 v =1.0) to equation (46) and

-2
byletting E, =B,e > ,weget:

=>1=)E, sin( 2n2+ ! n) (47)

n=0

If E, is expressed as the Fourier sine series of v, it is found to be equal to :
4

E, = m (48)

Blow g . 2n+1
Then,E, =B,e 2 = ————. Sincefromeq.(21b): B, =—==m, B, becomes :
(2n+1)n 2,/Re

r

4 _ 4 8Re, (49)
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Substituting the constant B, back toequation (46) the tangential velocity v transforns to:

“(2n+1)n n
(2n+l)2n:Z 2
o 4 ABEe ) ane
_ : 1 50
i Iy m n( 2 "C) GO

The maximumtangential velocity v occursat the centerline where =1.

Fromequation (50) we obtain:

i ) 1 —{‘i“&ili—“zw-‘)}

51
,,=0 2n+1)11:n G
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Since Vi is known, the pressure AZ(n) for the swirling outflow can be calculated.
Therefore,

Asin(24)

AS(n)=— sin(24) - 2sin® (1)

2.2 2
ZAH(T])—- 2s n L’IV max(ﬂ)d

(772 _1) ” n (52)

and fromeqn.(51)

Z 4(-1)" {(zns—g,i("“l)} _i 4(-1)"

1
(2n+17r77 —n=0(2n+1)7z;e

prr ot 2n + 1)(2m + 1)7[ n

v max 22 16( ) —1—exp{ M(nz—l)} (53)

2
Therefore the Lﬂ —V—"&(n)d 1 becomes:
n

J'rr V2 max (77 dn = Z Z 16(-1)"" ) jn

—= &= (2n+ )2m + )2’ e"p{ M( 1)}6177 (54)

7

And by using the same methodology as in the case of inflow and swirl to solve the above

integral, we obtain:

Lt (2 + 1)(2m + D’ 2

R e e L S Hfor-

ZZ 16(-1) o J-n _13_ e dp | 55)

S ) om )’ g
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Then the integral becomes : "1 e“(”z_l)d n=e” "1 e d 7 (56a
L3 3
7 b

and by change of variables we get :

) ea(l—ﬂz) v e '
Jl —’;Te_aﬁdn :%{1— nz +(_a)eal:1n(n2)+; (k]2| (772k '—1)}} (56 b)
ea(ﬂ —1)
_ +

“*n v? max Z Z " njrm 1 n . (57)
n=0 m= 0(2” 1)(2’" e 2 (—a)ea|:1n(7]2 )+ (_(‘Z). (772k "1)}

2
The pressure can be obtained since the integral of J;ny—&(n)dn was evaluated.
n
Therefore, from eqn(52):
Asin(2) 25277 1V max(n)
Allln) = d
) Asin(z/l)—zsinz(,lf( —1)j g
Asin(24)
Allln) =
tir) /lsin(z/l)—zsinz(/l)+
ea(nz—l)
257 S -1 I
T] —
Yy 5 (58)
—1)=~=2n+12m+1 ©
(’7 )n_Om-o( n+1)2m+ 1)’ 2 a)e‘{ ( )+Z o~ ( 2k_1)
k=1 '
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SUMMARY OF THE EQUATIONS DERIVED FOR OUTFLOW AND SWIRL:

Radial Velocity u :

I asin(2) [ZSin(k)cos[K(l o), 1}

4 sin(2A)— 2sin’ (0 sin(21)
Tangential Velocity v :
" 7{(2n+1)2n2(n2_1)}
4 Tere, 1. (2n+1 )
V= Z e —sin nC
= (2n+1)n N 2

Pressure All:

ea(nz'l)
o hsin@y) 28 &9 -1 1 T
Alln) = Asin(22)-2sin*(A)  (n? —1);;(2;1 +1)2m+)n* 2 . a)e{ln(nz)+ i(_ o) (n _1)}
S kKl

The analytical expressions obtained in this section contain the trigonometric
function of sine, whereas the equations derived in the swirling inflow involve the
hyperbolic function of sine. Consequently, the sign of the equations change (for a

negative angle) in the case of outflow.
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3.4 Some Simpler Flow cases

3.4.1 Inflow without swirl

For this particular case, we let s =00r V,, =0. Therefore, the flow is assumed to be

pure radial. Then, the r-momentum becomes:

u@iz_d(Ap).{_ 1 {162(“211)} (59)
on dn Re (n &

By linearization of the r - momentum equation and substituting u = —(C—) into q.(59) :

azac( 9 _rza()- - ( )Ap(n) (60)
where AIT(n) = f;;bAp(n) (61)

The differential equation becomes :
oD
ag(g) Yo(c) = Ari(n) (©)
If we apply the Boundary conditions and global continuity we obtain the same equation
for the radial velocity as for the case of the Inflow and Swirl.

1 Asinh(2)) sinh[N2 - ¢)]+ sinh(X) ©3)
1 Asinh(2\) - cosh(2N) +1 sinh(2))
where,
2
n° —1JRe AH(n)
_ W -tRe, ) R )L asi)- (64
27 FORALEE
Since we assumed purely radial flow, V,, =0and the tangential velocity v will
be zero.
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The pressure was found to be equal to:

Asinh(2.) ATT(n)
= -
Asinh(2A)-cosh(2n)+1  »°

_ X’ sinh(21.)
Alln) = Asinh(2)— cosh(2W)+ 1 (6)

3.4.2 Outflow without swirl

For the case of outflow and purely radial flow the r-momentum becomes:

ugzi _ _d(AP)+ 1 {_1- az(u:])} - (66)
o dn  Re, |n &

o) ., _ Re,
ot No(g) = —ln(n)Ap(n) (67)

After solving the differential equation the same equation for the radial velocity was

obtained as in the case of the outflow with swirl:

_ _1_ ksin(ZK) 2sin(k)cos[k(1 - Q)] N
' 1 Asin(2)) - 2sin’ (X){ sin(21.) 1} (68)

The pressure was defined as follows:

Asin(21) _ All(n)
Asin(21)-2sin’(A) A2

A’ sin(21)
Asin(21) - 2sin*(1) (69)

All(n) =
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Chapter IV

Discussion Of The Results

The results to be reported herein have been divided into two main categories; those
that pertain to the accelerating (sink-flow), and those that pertain to the decelerating

(source) flow. In both cases, the effects of swirl are also included.

4.1 Sink Flow

Admitting the fluid into the gap by the periphery, and allowing it to exit through
centrally located outlet(s) produces the accelerating or sink-flow. This kind of fluid
motion is characterized by a monotonically decreasing pressure gradient. The stabilizing
effect of acceleration assists the flow to remain laminar even at very high inlet Reynolds
numbers, or to laminarize when the entering fluid is initially turbulent. Because there is a
sustained variation of its velocity, the creeping flow assumption is not valid for the entire

domain, even if the fluid has a low Reynolds number at the inlet.
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I Non — Swirling Flow

The present theory presupposes that the flow is unidirectional. There are however
two regions in the sink-flow where the previous assumption is not valid. The first is in
zone I, shown in Fig. 4.1, located near the inlet of the gap. The other in zone III is
situated in the neighborhood of the exit. As the fluid enters the flow-field, it is
immediately under the influence of two types of forces. The first stfives to transform the
inlet uniform velocity in order to accommodate the non-slip condition on the wall

(entrance region). The other is its variation due to the monotonic acceleration.

% sink -flow

\ zone 11

Y

«—»] zone III

zone I — -

Figure 4.1- Schematic of flow zones

Exploratory calculations using Twaites’ method (Appendix B) have shown that
for the sink flow, the boundary layer development near the entrance is very quick. As it is
evident from Fig. 4.2, the boundary layer displacement thickness increases as the fluid 1s
admitted at the periphery of the discs, and reaches a maximum at about r = 0.8. This

shows that the entrance effects have already taken place at that radius. From that point
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on, the displacement thickness decreases almost linearly as r—0. DeSantis and Rakowsky
[2] also approximated the displacement thickness to achieve a maximum at
approximately two thirds of the distance from the center of the discs to their periphery,
and showed that the momentum integral technique over a flat plate approximates well
with their experimental data over a flow between two discs, provided that the flow is

inviscid.

0.05

g :oog el \Re = 1270

0.04

0.03 e

* / - /-' Re = 2200
&  0.02 .

0.01

N\
=\

-0.01

Figure 4.2 — Variation of B.L displacement thickness versus radial position

As the flow approaches the outlet the streamlines have to curve in order for the
fluid to find the exit port. Consequently, in addition to the radial velocity, an axial
component must be developed. According to Koval and Michailov [33], the extent of the
radial location of this region can be calculated by the experimentally obtained empirical

formula

n. =exp(1.1327n )-1
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that has been plotted in Fig. 4.3. Although we find that the values provided by the above
expression to be conservative, they nevertheless provide at least an order of magnitude of

the size of this sector.

n ats

Ne

Figure 4.3 — Variation of exit zone III versus radial position 77¢

In the case of small gaps, Eq. (7) suggests that both the radial velocity and static
pressure distributions are solely functions of parameter N\, which is a combination of Re,
and 7. For small values of Re, the familiar Poiseuille - like profile is present (see Fig. 4.4
or 4.5, similar to the flow between two flat plates.

As \ increases, the velocity profile levels-out at mid-gap ({=1). The flat region
gradually expands towards the walls ({= 0 and ¢ = 2) where the velocity reduces to zero
via a thin layer. Comparison with the present experimental data with the theory (Eq. 63)

is shown in Fig. 4.6 (a), (b) and (c). Radial velocity profiles were obtained for gap ratios
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of £=0.02778, 0.01389 and Re of 328.74, 493.12 and 657.49. It is evident from the

graphs that the experimental data clearly displays characteristics of the accelerating flow.
The entry effects of the fluid flow into the chamber have been neglected. As the fluid
progresses towards the center of the discs, the area decreases and the velocity increases
for continuity to be satisfied. This results in a pressure drop in the flow direction, to be
shown later.

At the inlet, the flow displayed the parabolic like Poiseuille profiles, as the
viscous effects were as strong as the inertia affects. As the fluid advanced, it started to
accelerate. Consequently, the profiles became more flat at the mid-channel, hence a thin
boundary layer developed close to the disc surfaces. As the inlet Reynolds number
increased, the inertia contribution grew larger, thus prompting the radial velocities to
develop at a faster rate into their flat distribution at the mid-plane. This is also evident in
Singh’s radial velocity profiles [8] through his investigation at no-swirling inflow for
high Reynolds numbers. However, for the largest gap (&=0.02778), a consistent
asymmetry close to the disc surfaces was observed. This was not seen at the smaller
height.

Moreover, for the lowest Reynolds number and gap size (Re=328.74 and
£=0.01389), it is observed that the results are affected by the exit conditions as the fluid
tries to negotiate the turn. The results also tend to deviate from the theoretical
approximation. This occurrence is not detected in the higher gap. Singh [8] also observed
that as the fluid approached the exit, velocity profiles exhibited a maximum towards the

disc that contained the exit hole. This was because only one disc enclosed the outlet. Due
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to insufficient data from the present results, this argument cannot be supported. More
investigation is needed to explore in more detail what is happening at the exit.

It is therefore clear, with the exemption of regions I and III (figure 4.1) where the
analysis is not valid, that the present theory provides reliable approximation for the
velocity in Region II. A similar conclusion can also be derived using the results of Singh
[8] and DeSantis and Rakowsky [2], as shown in Figures 4.7 (a) and (b) respectively. In
Singh’s [8] case, the inlet and exit profiles were neglected, thus the comparison with the
present theory proved to be very good. In the latter study by DeSantis and Rakowsky [2],
the radial velocity was measured using a hot-wire anemometer, and became evident that
it is difficult to resolve the velocity near the walls adequately. This is especially true in
the neighborhood of the discs’ surfaces. Nevertheless, the data does provide some

indication regarding the development of the radial velocity.
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Figure 4.5 — Radial velocity profiles for various reduced Reynolds numbers
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Figure 4.7 (b) — Radial velocity profiles of present theory with experiments [2]

The variation of the maximum radial velocity component as a function of the

radius is shown in Figs. 4.8 (a) and (b).
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Due to flow symmetry, the second derivative of the velocity mid-channel ({= 1) is

zero. Consequently, the viscous effects in the 7 — momentum equation will drop-out, or

ou dAp

i, dn

Uy

which yields Euler’s equation. Therefore, the centerline velocity should approach the

potential solution. The last is evidently confirmed by Fig. 4.1.9.
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Figure 4.9 — Approximation of maximum radial velocity
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As the entering fluid streams towards the center, its radial velocity increases
monotonically. It is therefore anticipated that the static pressure decreases in a similar
manner. Our experimental results, as well the results reported by others, do indicate this

flow behaviour, see Figs. 4.10 (a) — (d).

0 0.2 0.4 0.6 0.8 1

Figure 4.10 (a) — Static pressure profiles from theory [6] and experiments [32]

In figures 4.10 (b) and (c), the present experimental data is presented for the gap
ratios of 0.0278, 0.01389, 0.01042, 0.00694 and Reynolds numbers of 328.74, 493.12,
and 657.49. It is observed that as the inlet Reynolds number increases, the inertia effects,
and consequently the acceleration, are augmented, and the pressure drops in the flow
direction. This is more profound in the largest gap. As the gap ratio further decreases, the
aforementioned observation is not as obvious. Rather, it appears that the pressure drops in

a constant manner. Consequently, the effect of the Reynolds number or gap ratio on the
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pressure distribution is minimal. That further leads to the conclusion that the smaller the
gap, the more stable the flow becomes. It is also noticeable from the graphs that the
theory approximates the present experimental pressure distribution very well. To validate
the theory with previous work, a comparison is done in figure 4.10 (d), where the present
analysis is plotted against Singh’s experimental data and his numerical solution. It was
found that the analysis approximates the experiments better than the more complicated
solution by Singh [8] that contains the turbulence k-& model. Therefore, a simpler
approximation for the pressure that uses the assumption of the laminar flow better
predicted the experimental findings by Singh [8], and marks the behavior of the
accelerating flow, which tends to laminarize if it is initially turbulent. That is further
supported by the fact that the turbulent intensities were found to decrease with increasing
Reynolds numbers, thus reaching the conclusion that the accelerating flow suppresses any

turbulent fluctuations. [11]
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II. Swirling Flow

The analysis, including the effects of swirl, suggests that the radial velocity
distribution is unaffected. It would be interesting to experimentally confirm the
theoretically obtained conjecture about the form of the latter velocity for stationary discs
with swirl flow at the inlet. The only reliable experimental data for the radial velocity in
such geometry is that of Savino and Keshock [13]. Unfortunately, these pertain to
relatively large gaps (#/R;, =0.1), a condition for the radial velocity that is outside the
range of the present study. As the fluid enters the gap through the inlet, a strong
centrifugal force field immediately confronts it. In its attempt to find the outlet with the
least opposition, it flows closely to the discs where the tangential velocity reduces in
order to satisfy the non-slip condition on the solid wall. This in turn produces the
Ekman’s boundary layers, which are characterized by two radial velocity peaks near the
plates. They are however unsuitable for comparisons to the present asymptotic flow
solution.

With their experiments for very high swirl, Savino and Keshock [13] confirmed,
that the bulk of the radial flow was diverted in the neighborhood of the outer walls. As
the fluid progressed to the center of the discs, the radial velocities increased, hence
creating peaks at the end walls, while at the mid section the radial momentum decreased
significantly. This is an indication that the centrifugal effects were dominant in that
region. Wormley [12] also confirmed the lack of radial flow at the mid section by his
milk injection visualization technique. In his experiments, a “milky ring” occupied the

mid region of the chamber for a long time, while the exit areas and next to the walls were
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free of milk. As the swirl strength decreases, the centrifugal forces decrease, and so a
considerable amount of radial flow penetrates the middle section between the two discs.
For considerably smaller gap ratios, the Ekman’s layers are expected to merge,
and approach the conditions of the present analysis. This is the case indicated in figures
4.11 (a) and (b), where the swirl is very weak and the radial velocity is seen to develop a
dimp at the mid-channel, which is the initial stage of the development of Ekman’s
boundary layer. At higher gaps and a stronger swirl, the depression observed in the

middle will grow larger, thus maturing to the phenomenon described previously.

Figure 4.11 (a) -— Radial velocity profiles of present theory with experiments [2] for
s =0.07
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Figure 4.11 (b) — Radial velocity profiles of present theory with experiments {2] for
s =0.05

The development of the tangential velocity component for the case of stationary and
rotating discs with swirl at the inlet is shown in Figs. 4.12 and 4.13 respectively. It is
clearly evident that the tangential velocity exhibits characteristics similar to that of the
radial velocity. For small values of Re, the familiar Poiseuille like profile appears. When
we increase Re,, the velocity profile flattens at mid-gap, progressively spreading towards
the walls. A closer look at the tangential momentum equation reveals that vorticity is
carried by convection in the m—direction, meanwhile in the C-direction it is diffused by

only the action of viscosity. For large Rey values, the diffusion is confined within the

layers near the plates, leaving the rest of the fluid in the C-direction oblivious to the
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action taking place near the solid walls.
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Figure 4.12 — Theoretical tangential velocity profiles for two stationary discs
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Figure 4. 13 — Theoretical tangential velocity profiles for two rdtating discs
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The maximum tangential velocity occurs at the mid-channel height ({= 1). Its
variation with the radius 1 is shown in Figs. 4.14 and 4.15. It is apparent that as Rer
increases, both cases tend asymptotically to a potential vortex distribution. It is also
evident that the rotating disc arrangement tends faster to the potential profile than the
stationary disc case. For the case of stationary discs (fig.4.14), it is observed that for low
Reynolds numbers the tangential velocity decreases considerably as it enters the disc
chamber due to the strong viscous effects. As the fluid accelerates, the radial velocity
increases and further feeds the tangential velocity component, which in turn starts to
grow. For higher Reynolds numbers, the drop at the entrance gets smaller and the
tangential velocity approaches the potential vortex faster. In fact, for Rey values of 12 and
9 for stationary and rotating disc situations respectively, the maximum deviation from the

free vortex is less than 0.1 %. When Re; —> oo, the curvature of Vi—0 at =1, and thus

from Eq. (3) Vmaxn—>1 which is the characteristic property of a potential vortex.
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For low Reynolds numbers, the maximum velocity first undergoes a gradual
decrease, and then recovers, tending to an asymptotic profile for smaller radii. Therefore,
for high Rer values, as it is amply evident from the experiments of Savino and Keshock
[13], and DeSantis and Rakowsky [2] (see Fig. 4.16 (a)), and (b) respectively), the mid-
gap value of the tangential velocity must be close to the free-vortex. In figure 4.16 (a) the
value for n= 0.15 [13] is the exemption to the rule. One has to realize however, that this
point is inside the outlet tube (R, /R;, = 0.2) where the flow is turning towards the exit. In
fact, the diminishing deviations of points n= 2.0, 0.25, and 3.0 from the free-vortex might

also be due to the same effect.
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Figure 4.16 (a) - Maximum tangential velocity for Re=197 and s=15
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Figure 4.16 (b) — Maximum tangential velocity for Re=9.0 and s=0.07

Comparisons between the experimental [13] and theoretical (Eq. 26) tangential
velocity distribution are found in Fig. 4.17. It is well known that in the case of a strong
swirling flow like in the Savino and Keshock [13] experiments, the tangential velocity
dominates the other two components and it increases significantly with a decreasing
radius. It is therefore no surprise to find the theoretical tangential velocity to agree

reasonably well with the experiment, while the radial velocity may not.
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It has been shown previously that in the case of relatively large Rer values, the

tangential velocity at the mid-plane tends towards the free-vortex profile. Consequently,

nvr%mx dn__)nz'l
{ n 27]2

or
AIT(A)= AZ(L) +5°
For this particular condition, the pressure AIT is only a function of parameter 4.
Profiles of the static pressure as a function of A for different swirl ratios (s) are shown in

Fig. 4.18. The majority of the experimental points in the graph pertain to s = 0.

Nevertheless, the pressure reported in Ref. [13] (s =15) correlates reasonably well with

the present theory.
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Figure 4.18 — Pressure AIl versus dimensionless parameter A
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For relatively small Re; values (Re; < 12 for stationary discs and Rer < 9 for

rotating discs) the original pressure equation must be used. Confirmation of its validity is

shown in Fig. 4.19.

2 77v2
a0 (n) = A= (1)~ +SZI 7 dny
1

It is observed that the static pressure profiles follow the trend dictated by the
accelerating flow. The acceleration effects are not so strong at the entrance to the disc
chamber, therefore the pressure drop decreases slowly from the periphery of the discs up
to halfway through the center of the disc chamber. As the fluid strongly accelerates with
decreasing area, the pressure drops significantly as the fluid approaches the exit.
Moreover, it is seen that for the smaller gaps of & =0.01042 and 0.00694, the present
theory approximates the experiments better. As the gap increases in the experimental
results there is a deviation from the theory at the mid level of the discs. This might be due
to the interaction of the radial flow with the centrifugal effects, which has as a result the

beginning of the diversion of the radial flow towards the end wall boundary layers.
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A comparison of static pressure profiles between swirling and non-swirling sink
flow is presented. The reduction of pressure is similar to the condition without swirl, but

due to the presence of the strong vortex, it now becomes more dramatic, see Fig. 4.20.
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4.2 Source Flow

A decelerating (or source) flow unfolds by reversing the flow direction of the
previous case. Three particular flow types are known to occur in the latter fluid motion.
At relatively low inlet Reynolds numbers, a laminar flow emerges throughout the gap.
For intermediate inlet Reynolds numbers, a decaying, self-controlled oscillatory flow
emerges. Finally, for high inlet Reynolds numbers, this condition is replaced by a self-
sustained fluctuating flow that progressively matures into a laminar-turbulent transition.
This is followed by a reverse flow transformation and a condition that bears a
resemblance to laminar flow at larger radii. Because of the enhanced time-dependent
complexity exhibited by this type of flow, it is to be understood that the results presented
here concern the time-averaged flow field effects. A more detailed description should
however consider the dynamic effects that can perhaps be described by the Particle Image

Velocimetry.

I. Non — Swirling Flow

The fluid entering the gap through the inlet pipe must immediately turn. However,
because of the fluid’s inability to negotiate a 90-degree comner, a vena contracta is
formed near the inlet (Region I), as established in Fig. 4.21. In its attempt to respond to
the redubed area of the inlet, the fluid accelerates locally. Since the streamlines are
squeezed at the inlet bend, a secondary flow results and the pressure no longer remains
constant along the curved path. Due to the sharp edge at the entrance, flow separation

causes the formation of a recirculation zone.
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Figure 4.21 — Schematic of flow regions in the source flow

The generated vortex partially blocks part of the gap entrance of the upper disc.
This causes a convergence of the streamlines (marked by an increase in the flow velocity
in the opposite side) which is evident in the data for n = 1.4 to 5.6 (see Fig. 4.22). The
static pressure responds by a sudden drop. Depending on prevailing conditions, the flow
may re-attach further down-stream. The cross-sectional area in a source-flow increases
along the stream and the fluid experiences a deceleration, which is accompanied by a
pressure increase in Regions Il and 1IIL.

From figures 4.22 (a)-(e), it is evident that for a smaller gap ratio (§ = 0.200), the
separation zone is smaller and the phenomenon of reattachment seems to take place
rapidly (at = 4.2). As the gap increases (& = 0.400), the size of the separation bubble
increases up to the radius of n = 5.6, while the flow reattaches at 1 = 7.0. Raal [26]
observed that the size of the separation bubble increases as the Reynolds number

increases. This was not confirmed by the present work. At the radial location of n=4.2
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for £ = 0.200, and n = 7.0 for & = 0.400, the velocity profiles seem to approach laminar-

like profiles.
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This implies that relaminarization or a reverse transition from turbulent to laminar flow
has probably taken place. Bakke et al [25], showed that for & = 0.00909 and £ = 0.01363,
the turbulence intensity remains high even though the velocity profiles have approached a
parabolic distribution. The same observation was made by Ervin et al [30] who measured
high turbulent intensities at the discs’ exit. He also illustrated that the velocity profiles
near the inlet display unsteadiness, and at small radii (close to entrance), the velocities are
skewed towards the lower disc. The vena contracta effects were not reported in [30].
Ervin et al [30] also approximated the velocity profiles with parabolic distributions close
to the exit, thus pointing towards the reverse transition trend from the turbulent to the
laminar flow. Moller [18] also supported that for relaminarization to occur the initial flow
Reynolds number must exceed the lower critical Reynolds number for pipe flow, namely
the value of 2000. The inlet Reynolds number pertaining to the present experimental
work varies in the range of 3154.36 to 9463.31. This confirms that the phenomenon of
relaminarization has occurred, as observed from the velocity profiles. The effects of
instability caused in the flow by the adverse pressure gradient of the decelerating flow,
the separation, and the still present turbulence, are apparent in the radial velocity profiles
of fig.4.22 (a) to (e).

The opposite behavior of the pressure along the flow direction, in comparison to the
sink-flow, is observed in Fig. 4.23 (a) and (b). However, , there is a special flow
phenomenon that occurs here due to adverse pressure gradient, which is absent in the
monotonically accelerating sink-flow. In this case, fluid particles near the walls are

moving within an adverse pressure gradient. Due to the no-slip condition, the particles
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touching the walls will affect the fluid layers above or below them, and cause them to

have a very low momentum.
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The flow particles are being slowed down, and thus do not having the adequate
momentum needed to resist the increasing pressure gradient. As a result, those fluid
layers will be stopped and turned around to develop a reverse flow region.

For a given Reynolds number and gap ratio, the flow may develop a stagnation
point at a specified radius downstream giving rise into a flow reversal near the wall. The
later action produces a series of alternating vortices that are evident in the visualization
experiments of Mochizuki et al [28]. Initially, the relatively powerful positive mid-
channel velocity drags the fluid particles underneath, towards the adverse pressure
gradient, forcing them to move closely to the discs. However, whilst the centerline
velocity gradually declines, it reaches a value, which is insufficient to pull the entire flow
field in the n-axis along the positive radial direction. The two competing actions, i.e. the
pressure and viscous effects, will act together to oppose the flow by decreasing the
momenturm. This causes deceleration, drives the wall derivative of the velocity (du/dn) to
zero, and eventually sets up a back-flow downstream.

As soon as the opposite of the main flow appears, the particles of the outwards
flowing current will be deflected towards the center of the gap and will form a
recirculating zone beyond the separation point. The flow past the separation point is fully
two-dimensional. As the main flow detaches from the walls, the formed recirculation
zone will cause an aerodynamic blockage. In order to satisfy continuity, the fluid will
adjust to the new condition by increasing the centerline velocity to a value that again is
sufficient to drag the layers below. The latter will then force the boundaries of the
recirculatory motion to reduce, thus giving it the appearance of a vortex. Therefore, the

expected local pressure depression, seen in the experimental results of Fig. 4.23, may
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mark its presence in this region. Since the probable vortex is not detected by the probe in
the velocity profile at 7 = 7.0, more investigation for this case is needed. This local
pressure depression is present for all gaps at the same radial location, even though it is
not as evident in the smaller gaps as it is for £ = 0.4. Many features of the present

problem also appear analogous to the classical Jeffrey-Hamel flow field between two

inclined planes.
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Figure 4.24 Test results for the separation point versus Reynolds number [28]

According to the visualization experiments of Mochizuki et al [28] the case under
consideration should produce a flow motion that is detached from both discs along the

entire diameter of the discs, see Fig. 4.24. However, this type of behaviour is not present
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in our results. Instead, our data indicate that there will be a vena contracta near the inlet
and that the flow will slowly reattach downstream (7 = 7.0), reverting to laminar-like
conditions. The conditions may develop a vortex that produces the pressure dip
mentioned before. Yet, it is also important to note that for our case, the inlet Reynolds

number is well beyond the interval of the previous experimental study.

II. Swirling Flow

The importance of study of the swirling inlet flow to a diverging channel between
the discs lies in the many applications it can be found, such as, centrifugal compressors
and gas turbine combustors, which require swirling in the flow entering them in order to
enhance mixing in the combustion process. As previously mentioned, this kind of flow
possesses several complexities, which are absent not only in its accelerating counterpart,
but also in the decelerating no-swirling flow. The complexity of the entire affair is further
exacerbated by the introduction of a centrifugal force field via the imposition of swirl at
the inlet. Guide vanes in the radial direction with a 30-degree swirl angle, controlled the
strength of the swirl.

The variation of the static pressure along the radius is shown in Fig. 4.25 (a) and
(b). Firstly, it was observed that because the flow does not have to negotiate the entrance
corner, there is no indication of a vena contracta. Therefore, the recirculation region that
existed at zone I (figure 4.21) for the non-swirling case is now vanished. Moreover,
because the fluid is guided through the vanes prior to its entry in the diffuser, the

tangential velocity component comes into the picture and give rise to centrifugal effects.
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In addition, we detected that the pressure dip that was observed at  =~7.0 is no
longer present. This further indicates that the manifestation of the pressure dip is due to
the existence of a vortex. Consequently, the centrifugal force acting along the flow
direction has eliminated the second recirculation zone, and has introduced a stabilizing
effect on the static pressure distribution.

In its effort to balance the centrifugal forces, the increasing pressure gradient due
to the decelerating flow, takes more time to recover. For the highest gap £=0.4, the static
pressure profile approaches faster the one corresponding to the non-swirling pressure
distribution. As the gap decreases, the pressure recovery occurs at a slower pace, as it

approaches the non-swirling one for the same flow-rate.
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Figure 4.26 - Comparison of static pressure for swirling and non-swirling outflow

A typical static pressure profile for a swirling source flow is presented in Fig.
4.26. In this case, the trend of pressure recovery is similar to the one in the previous
condition (i.e. source flow without swirl). However, the values of static pressure are
lower in this case (more dramatic), owing to the presence of the centrifugal force.
Because the effective area is increasing, the velocity drops and the radial outflow does
not have enough momentum to penetrate the centrifugal field. As a consequence, the
adverse pressure gradient that is being developed interacts with the centrifugal forces.

Moreover, the static pressure behavior in the swirling outflow could be attributed
to two mechanisms: (i) due to the reduction of the tangential velocity component in the

diverging channel with increasing radius, and (ii) due to the modification in the way the
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radial pressure recovers as a result of the coupling between the radial and the tangential
components. The degree of interaction between the aforementioned flow mechanisms is
not fully known.

For certain condiﬁons (£=0.150) we have identified a peculiar consistent behavior
that does not appear in the other cases. For the previously mentioned situations the
increase of the pressure gradient (at about 10 inlet pipe diameters) is more pronounced
than usual. A local pressure decrease is dictated by the experiments near the exit for all
the Reynolds numbers. We are not certain what triggers this pressure drop. We feel that

more investigation is needed to shed light on this behavior.
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CONCLUSIONS

The analytical and experimental investigation on the flows developed within the
gap of two discs was presented in this thesis. Two distinct flows were manifested, one
where the flow is admitted via the periphery of the discs (inflow), and the other where the
flow enters through a centrally located hole (outflow). The effects of swirl on both cases
were also examined. Based on the aforementioned analysis (presented in chapters one
through four), the following conclusions were drawn:

D). Inflow

1. A theory was developed for a laminar, steady, axisymmetric, and incompressible
flow between two closely - spaced discs. The entrance and exit effects were not
taken into consideration.

2. The analytical development provided expressions for the radial and tangential
velocity as well as for the static pressure distribution. It was shown that the radial
velocity depends only on the radial location and Reynolds number. For the
swirling flow cases, the static pressure was found to depend on the radial location,
Reynolds number and the vortex strength.

3. The theory was found to be a good approximation for the present experimental

results. It was also validated with previous findings.
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4. The experimental findings displayed all the characteristics of the accelerating

flow. As the flow moved towards a decreasing area, it started accelerating and the

radial profiles became more flat at the mid section, thus approximating the

potential solution at the center. As the fluid started to approach the exit, a

discrepancy was observed in the velocity profiles as the fluid sensed the

upcoming turn and tried to negotiate it. The asymmetry in the profiles was more

pronounced for the lowest Reynolds number and gap.

i)

iii.)

The static pressure exhibited an increasing drop towards the flow
direction. At the highest gap, as the Reynolds number increased, the drop
became more dramatic. At the smaller heights, it was shown that the effect
of Reynolds number and gap ratio had a minimal effect on the pressure
distribution.

For the swirling inflow, as the fluid enters through the periphery, it is
immediately confronted by a centrifugal field. As a result, the radial flow
moves towards the end-walls to resist opposition and leaves the centrifugal
effects to dominate in the mid region.

The mid-plane value of the tangential velocity was found to approximate
the potential vortex. This was confirmed by comparing present theory with
previous experimental findings.

The analysis approximated well the static pressure measurements for small
gap ratios. As the gap increased, a small deviation from theory is observed

at the mid region. That could be due to the interaction of the radial flow
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and the centrifugal forces. Moreover, the effects of swirl prdved to be

more dramatic on the static pressure distribution.

II). Outflow

1.

Analytical expressions were developed for the radial and tangential velocity
profiles as well as static pressure distribution.

The vena contracta effects, as well as the phenomenon of separation, were
manifested in the present experimental findings. The flow separates in its attempt
to negotiate a 90-degree turn, and thus creates a recirculation zone at the inlet
region. This was evident at all heights and Reynolds numbers.

i)  For the smaller gap, the separation zone was found to be smaller, and the
reattachment of the flow took place more rapidly (compared to the higher
gap).

ii.)  After the reattachment of the flow, the radial velocities approached
laminar-like profiles. That indicated that the flow experienced a reverse
transition from turbulent to laminar.

The decelerating nature of the flow causes an adverse pressure gradient in the
flow direction. For the non-swirling outflow a local pressure depression is noticed
in the pressure profiles at the radial location of 7=7.0, making its presence more
apparent at the highest gap. The probable cause is the existence of a recirculation
zone, which is not manifested in the velocity profiles.

For the swirling outflow, the flow does not experience the vena contracta effects,

thus the recirculation zone at the inlet region is absent.
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The local pressure depression previously observed at the no-swirling

outflow and at 7=7.0 is also vanished. This justifies our speculation that

the probable cause of the pressure dip is the existence of a vortex.
Consequently, the centrifugal forces have eliminated the vortex and
created a stabilizing effect on the static pressure distribution.

The pressure recovery of the swirling outflow resembled the one in the no-
swirling outflow. It was detected however that swirl had a drastic effect on
the static pressure. A similar conclusion was reached previously for the

case of the inflow.
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Future Work

Many areas of the present analysis can be further explored to acquire a more

complete picture of the flow phenomena. Some of these areas are as follows:

ii.

iil.

iv.

The entrance and exit effects can be incorporated in the investigation. The extent
of these regions can be estimated using analytical or numerical tools. The
boundary layer behavior for both inflow and outflow can also be explored.

For the cases of no-swirling inflow and outflow, velocity profiles can be obtained
for smaller gaps than the ones presented in the present analysis. For the inflow
case experimental data can be obtained in the vicinity of the exit region, while for
the outflow case, the observed pressure dip in the static pressure distribution
needs to be further investigated.

For the swirling inflow and outflow, radial and tangential velocity profiles can be
obtained in order to establish the interacting mechanism between the two flow
components. The effect of various swirl strengths on the radial and tangential
velocity profiles, as well as the static pressure distribution could also be
addressed.

Visualization techniques can be employed to quantify the flow, (i.e. Particle
Image Velocimetry methodology).

Numerical simulation could also shed light to the occurring phenomena and

confirm theory and experiments.
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APPENDIX A - DERIVATION OF THE EQUATIONS

Introducing the non-dimensional parameters into the governing equations, we get:

Continuity:

(1)

e
3=
2
3 |-
2

constant

r-momentum:

a(uVrm) (VVe,,, )2 1 6(p(,) —pm) 1 62(uV,mnRin>
ul, - =—— +Vv - =
' a(an) nRin p a(an) T'llein a(qh)
uV’i%__I_/_ezl_\_}i:_ 1 d(p(r)_pitl)+v Vr,-,,Rin laz(un) —
Rin an Rin T] pRin dn Rinh2 T] ac_,z
multiply each term by — =
uéﬁ_fin_&gf_:_ Rin d(p(r) _pin)+ R,‘,, Vr,-,,Rin v laz(un) —
om v,> R, m  pV R, dn v,? R,p |n oc
ou_ v dlap), v R, [15°m)
n  dn  V,hoh|n &
‘——vl-—‘ i
- %
2 2
Jou v dp) 1 {18 (uzn)} @
on n dn  Re, [n &
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G-momentum:

a(nRianem):v{nR 0 [ 1 a(nRianei" )}+82(nRianem )}3

" a(ﬂRm) nk, a(nRin) 5(Ch)2

y oy W) o] R Vo, )| Rule, 08|
o O an 5]’] h2 agz

udnv) _ v { 0 [Llé@}&?i@}:}

on v, |'on|R,m on | H o

ud(nv) VR, {hz 9 (1 <3(nv))+52(r1v)}:>

VAR enin on ) o

ué‘(nV)_( v Jﬁ_ ézn_a_(La(nV))ﬁz(W) -

m  \Fh) k| omln om )8
=0;82 <<l

ué(nv): 1 Gz(nv) 3)
on  Re, o

Case 1: Inflow and Swirl

From the continuity equation (eq.1), we get:
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Tol) o, ) o o) w=29)
e @(¢) .

Equation 2 is linearized by using:

uz= 1 (for inflow)

DSu—-8§ —= + ~ -
n dn Re, [n &

© o v dlep), 1 {182(un)}

[EDLC_))_Szi:_d(ApL 1 , {azgzgc))}:?

(1)t 201, 1ol

dn  nRe, &

If we consider the centerline value of the tangential velocity to represent the maximum

value of the centrifugal force in the gap, then v = v, -
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n L tn

n’ dn Re, d¢?
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To solve the 2™ order O.D.E, the homogeneous and particular solutions must be

considered. Therefore, ®(¢) will be:

©(5)= (), + (),
To define the particular solution, let () p = gA AZ(n), where g = constant

o(t), =0,2(), =0
Substitute the particular solution and its derivatives into the 2" order O.D.E to obtain the
final form of the particular solution. Therefore:

cp(g)p" -No©), = AAE(n) = 0 - A2 gh? AB(n) = NAE(M) = -NVg=1=>g= L

;
S0, @(0), =~ e astn) = -a=(o)

[ —
=&

The homogeneous 2" order O.D.E has real solutions ®(¢), = 4e™ + Be . Therefore:

®(¢)= 4e™ + Be™ - AB(n)=un=
Ae* + Be™ - AZE(n)=un (5)

Apply Boundary Conditions:

i z=0 , V=0 = =0 then u=0

(ii)z=2h , V,=0 = (=2 then u=0
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(=0 u=0

)

— Ae’ + Be® —AE(n)=0= 4+ B-AE(n)=0=
A=AZ(n)-B

(i)¢=2 u=0

2 de™ + Be ™ — AZ(n) =

substitute 4= AE(n) — Bin the above equation to solve for B.

(AE(n)— Be™ + Be™ — AZ(n) = 0= AE(n)e™ — AZ(n)+ Be ™ ~ Be™ =0=

A

as(fe™ —1)+ Bl —e?]= 0= B=AZ(n) o
€ —e

Therefore the constant A willbe :

_ _ 1_62k N 1_62}» _ 1_62)»
A=AE(n)- Ad(ﬂ)‘e“z—_—eﬁ = Aﬂ(ﬂ){l T g | A= Agn)1 T _ g
Replace the constants A and B into eq. (5) to find ®(¢). Therefore we get:

o
D(g)= 4e* +Be™ — AT(n) = AE(‘W{l e }6“ AR (ﬂ{—l—e——;}e“@ — A=)
e —e — e’

1_627» 1_627\.
= A= e o — | - e ™ —1
(n){ (e‘zx _ezx) o _ g

r(G-2) -ME-2) A AL ME-2) -ME-2) AL -G
—_ e el 4 +e —e — e —€ e’ —e
= A;(n){ - 1} = A.’:‘.(’I’] + -1

-2 - 2 2h -2
PR TR JRETpE) A
2 2
2 2

X —-X

e —e

Use the equation of the sin hyperbolic function: sinhx = 5

() = AH(){ sinh[A(C ~ 2)] smh[xg]_l}

sinh[22] smh[ZX]

Since sinh(-x) = -sinh x
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smh sinh[/l{ ] B
()= A_‘( ){ smh 2/1 + sinh[2/1] 1}

sinh[A(2 — O+ smh[/lé’ ]
) A= -1 6
(- sy AL ©
2
where, A= Re’ , AIl n)z( 2n° jAp n
21 Inr) ( U )
3 2s°n* v ax (77)
(o) = anly)- 257 [T D
From global continuity, we have:
2h 2 V r 7 2
[r.Grr)tz = -V, (2R, Y2h)= [ d(—) =-2= fundg =-2
0 [nflaw 0 Vrin Rin h 0
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To solve for equation (7), we must first solve the integrals:
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2jsinh[x(g -2)}¢ and stinh[xg]dg
a) j sinh[AEJdE = — [cosh(M;)] [cosh(zx) 1]

by [sinhfre-2)s
Let y = M2 ) = dy = —\d§ = dg:-flkE

jsmh(q/

0

>)|»— >)|»—

=~ Lsian(y by = Leosn () =~ eoshp2 -]
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If we substitute the above integrals into equation (7), we have:
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-2
AZ(n) =
inh[M2-¢)] .. 3 smh(kQ ’
; smh(zx e OI smh(zx OI
~ -2
B 1
r nh(ZX){ cosh(ZK) cosh(22) 1}_ 5
A A A A
B 2 -1
) [cosh(Z?L)—l}_ , [ cosh(22)—1-Asinh(22.)
sinh(21.) A Asinh(21)
AE(n) = Asinh(21)

Asinh(21)— cosh(24)+1

From eq.(6), (D(C) becomes :

- Asinh(21.) sinh[A(2 — €)] + sinh(08)
()= Asinh(24) - cosh(21.) + 1 { sinh(22) - 1}
()

n

and u =

The radial velocity u was found to be equal to:

B Nsinh(2)\) {sinh[%(2 —¢)]+sinh(N) 1} @®)

~ 7 Msinh(2)) - cosh(2) + 1 sinh(2\)

To solve for the tangential velocity, the § — momentum must be considered (eq.3).

uolm) _ 1 2°(m)
o Re, &’

3)
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Since vn = (p(n)\u(C) and u= —l , then the 0 - momentum becomes :

( n) [o(mw(©)]= Zrd [cp(n)\v(C)] %“’(Q)a%(nl)bile—@(n)i%ﬁg—)ﬁ

L 1 dofn)_ 1 1 dw()_

= tant 9
nom) | Re, w©) 47 (B =constant) ©)
anz
by LL del) g =>jd(;p((n [ nan = Info(n)]=e > +c

no(n) dn

(cis a constant from integration)

p’n’ B’ B’
o(n)= “—ke? = oln)=ke? ,kisaconstant (10)
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2) Re, \U(C_,) dgz - B = dcz +B Rer W(CJ) =0

The characteristic equation of the 2™ O.D.Eis :p2 +p’Re, =0= p,, = tifyRe,

Therefore, the differential equation has complex solutions :

_ 4cos(pRe, &)+ Bsin(pyRe, ¢) (11)
where A , B are constants
Since vn = (p(n)\v(g), then :

(9),(10) B*n’®

O ke ? [Acos(s\/RT c)+ BsinpyRe, o) =e ? [A'cos(B\/Ee_,_C)-kB’sin(Bﬁ{?,Q)]

where A'=kA and B ' =kB

{A cos(B\/gQ% B’ sm(B\/ﬁe-Q)} —_;_ (12)
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Boundary Conditions:

Hz=0 or {=0= v=0

2)z=h or {=1= %:0 (maximum velocity at the centerline)
(12)

(I)at £=0 v=0 — wm=0>A'=0

dv @ dr,. i , B
2)at £=1 d—C:O—_—>a—C— B sm(BJRe,C) ., =0 [Since A'=0ande *> are constants]

= B'B\/I_I—g cos(B\/f{;): 0

Since B+/Re, is a constant and B’ must be different to zero in order for equation (11) to be valid,

. . . 2n+1
it must be : cos(BJRe, )z 0. Since cosine becomes zero at

nt, then:

cos(BJRer):cos[2n+1n)=0:>B1/Rer =2n+1n:>[5: 2n t1 =0, = 2nt1 T (13)
2 2 2.Re, 2

[B =B, (B varies with n)]

v fromeq.(12) becomes as follows:

2.2

B.m

v = ZOB”e 2 sin(zn;lngj =y =

Let B'=B,_, since B’ will vary withn.

B, n’
) 2
% L 4 =ZB,, ¢ sin(zn_”ng) (14)
L3 I yl 2

From the initial condition ( n=1 = v =1.0) equation (14) becomes:
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B
an:B If E, =B,e? ,then:

o B
1=) Be? sin(zn +l

n=0

- . (2n+1
=1 :ZEn sm( " n)
n=0 2
If E, is written as the sine Fourier series of v, then:

E, - %ZV(C)sin(ﬁLTE cJic-2 :jl snf G

(2n+1)
2

ifo= 7, then

E,= J-sm((xé;}ig = - [cos(ocC)]ﬁ = @%T[COS(MR
S

2

cos|(2n +1)n] - } G 1)1: L _(-1-1)=

2
(2n + 1)11 {Vn cos[(2n+1) ]

s ’ B’ —B,f
E, =B, B,=E.e °
¢’ (2n+1)1t:> e (2n+1)n
e, e e
" (2n+1n " @2n+l)n

2n+1

where P, = n (eq.12),
B, 2\/’@ (eq.12)

(@n+i)n

(15)

Substitute the constant B_ back to equation (14) and the tangential velocity v becomes:
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V=i 4 _%eﬁin 151n(2n+1 ﬂ_i 4 {(2‘;{2 U l)}lsm(2n+1 g_j
&~ (2n+ ) n 2 T &Z(n+w 1
(2n+1)27."2 2
> 4 {*——ske b —‘)}1 .(2n+1 )
_ : L 16
V= o e 6)

Since maximum v occurs at the centerline where { =1, eq. (16) becomes :

(2a+1 1rz(

i ) 1 [e) (7

AtL=1:n=0 ——>sin[2g+1n)=l

n=1—>sin(2-;+lnj=—l

Therefore, for everyn : sin( 2n+1 ) (— 1)

Since v, was defined AZ(7) can be calculated.

When the global continuity was considered previously, AE(?]) was found to be equalto:

(Y Asinh(21) B 25’ v 2 max (17)
A=)~ Asinh(22) - cosh(24)+1 = ai(y) - J': =
Asinh(24) 25202 1 v ()
Attt = Asinh(24) - cosh(24)+ (,, ) j "_“”7 (18)

(2‘;22 - 2 4(- E;—"('f—l) ©  a(—1) —”—;"(1-,,3)
andv,, = Z(Znﬂ)ﬂn { - } _Z) a1y 1 { }:Z 4-1) 1 { }

2
The integral f —v—iax—@d n will be solved first.
n

i=0

2
Using the property (Z xl.) = Zijxk
j=0
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Vs =33 LA Lexp{—ﬂz"(1—772)—%1(1—772)}3

Lt £t (0 1 1) 2m + 1)

) i LV (CRETEY
Vi =22, “(2n+1)2m+ 1)’ n? eXp{ 2 i-n )}

Therefore, o
ny m(n) 16(-1)"" 71 (B2 +B%m)(, .2
I ——dn —ngO(Zn+l)(2m+l)ﬂ2 -[l 773 exp{ 2 ( 7 )}dn
Lot g Bt B
2

Then the integral becomes: In L}e‘“(“'lz )d n=e* J'W —1; e d n
' tn

Change the variables from 7’ to8. Ifn* =6 =>dé=2ndn=dn= %é
n

2 e )
Then the integral becomes: J-q.%_e—a(w )dn =eg“ r—lg o’ dn= € __3__d_ -
b L7 2 4 om
. . ) e e
Use the following properties to solve the integral 5 L —5—2—d5

e (ax)  (ax)
a). j‘———-l()'f‘ﬁ 5. 2‘+—3‘3?+

e™ 1 e™ e”
b). = - + dej, n#l
) j n n— 1( xn—l a j‘xn—l ]

X
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7 ea5
1 52



e e | 1 || -e® ! e
B 52“15:7{5:'1“727‘1 ol

o220 3.3

2! 3
+e® +a

(2
2 n 1a® 1o 1a”
—|0+a+—+-—t+t. ..
220 33 n n
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3 3
1o
n n

5]
I

[1n(772)+ an’ +%(an2)2 +l(0”72)1 +ot—
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2

. L . (A%

Substitute the above expression into the integral _[ —m@ :
n

cq19)= [l max(n 22_16_(—__"1"__1 exp{ (B + Bm Bt ) (1 ﬂz)}dﬂ:

S e ) 2m+ 1)t N 2

© 16(— 1)n+m o 1 a,ll
= —_— g —_— d =
Z:Z(2n+1)(2m+1)7r2 J.l N ¢ i

n=0m=0

2 16 (=)' e e
zoz @n+1)2m+ 1)z 2 Il?da"

© w0 7n+m e~a(l—t]2) 5 o a 2t
S e S b} S -

n=0 m=0

Therefore, the pressure AH(I]) is found by substituting the above expression into eq.(18):

_ /{sinh(2/1) 25°0 7V ma (r]) B
Al(r)= Asinh(24)- cosh(2A)+ 1 ' (72 —I)J.l 7o
e—a(l~r/ )
- +
Asinh(24) L2 Y 61" 1 7’ -
/1 h{24 h2/1 L 2n+12m+1)z* 2 2 af
Sh2) o)1 (77 -1 e o+ sk 52 ]
k=t K
-aft-r)
i h(2/1) 165> 1) et
Asin 27 e
AH(?))— 2 ZZ
Asinh(24 h(24)+1 -1 @n+1)2m+1 2 ok
Sln ( ) cos )+ (’7 }t #=0 m=0 n+ X m+ ) ae_a[ln(nz)+z a.k'(nZk _1):|
k=1 K
where, a—(ﬂ nt f'n) l]:<2’1+1)7Z:| [M:' =>a= +(2m+1)2]
2 2/Re 2| 2Re,

B = 2n+1 Re

’

2./Re, 27] ln(r])

Case 2: OQutflow and Swirl

r-momentum:
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By substituting v’ with v’ max , we get:

n dn  nRe, d¢’

(L}(_J?)(D(g)_sz V() __d(bp), 1 d’0)
n\ 7

(_ J-l ‘—dU](D(C) Jnv max(n) iy = jﬂd(Ap 4 lr d @({)j'l

U n v odn

Re

r

N e o O ol

E R e U U

2’ r

7 v ma (17)

sl el 1)(4 1() 1n(77)I n

it nly) 27

=12

dn=
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L), o) g S
=Al(n)

L), o= 2ot (7, [l

1) m
=A%)
d*o(¢)
Pz + 2D(¢ )=/12AE(7)) — 2" non—homogeneous O.D.E (20)

where 22, ATl(77) and AE(r7) were defined in the previous case (inflow and swirl)
Following the same procedure, the 2 O.D.E has a homogeneous and a particular
solution. Following the same procedure as in section 2.2.1, the particular solution was

found to be equal to: dD(Z;) p = AE(n)

o'®
a5

Its characteristic equation gives p+ N =0=>p, =tk , therefore equation (20) has as

g
> ) + KZCD(C) =0 Thastobesolved.

The homogeneous differential equation

solutions the following :

o) = Acos(AE)+ B sin(AG)+ AZ(n)=un
or
Acos(AE)+ Bsin(AG)+ AE(n) = un 1)

By applying the boundary conditions (=0 = u=0and{=2 = u= 0) from

eq.(21) we have:
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@H¢=0 u=0
(
;) Acos(0)+ Bsm(0)+ AE(n) =0=> 4+ AE(n)= 0=

A=-AE(n) (22)
(@)6=2 u=0

( (
= 4 cos(21) + Bsin(21) + AZ(n) = 0 = AZ(n)cos(2A)+ Bsin(21)+ AZ(n) = 0=

Bsin(22.)- AE(n)cos(2A)-1]=0=
cos(ZX) -1
sin(ZX)
Substitute constants A and B from eq.(22) and eq.(23) back to eq.(21) we get .

B = AS(n) (23)

(2:2 (D(Q) =— AE(n)cos(M;)+ AE(T])[—CO—SS_}%H sin(?»@) + AE(T]) =

A= _[cos(27»)—1] . B
= -AE(n Lcos(k@) f—sin(Zl) sm(?LQ) 1}

siﬂ—k(,)
cos(kQ)sin(27x) — cos(21) sin(AG)+ sin(A8) .
sin(ZK)

=—AZ(n)

_ AE(nL{sin(Zk —AL)+sin(Ag) 1}

sin(2\.)

and from the trigonometric property :sino -+ sinf} = ZSin(

o +B)cos(a ~B]we have :
2 2

Zsin(zx A+ m)cos(zx -\ - xz;-)
2 2 .

sin{(2\.)

= —AZ(n

e {ZSm(k)cos(?» AL) 1] S ({Zsm()u)cos M1-2)] ]

B 81n(2k) sm(27»
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Therefore,

(I)(C_,) AH( {ZSm(?L)cos X(l Q)] l | (24)

sin(21.)
From global continuity (as for the inflow case), we have :
2
I@(c)dc =422
IAH( ){2sm(7»)cos - &)l +1}d§ 5 —

sm(27L

= 2
Au(n) {ZSm(X)cos[x(l C)] + 1} dc (@)

sin(22)

2
First solve the integral J- cos[}»(l - Q)]dg_
0
Lety =M1 —£) = dy = -Adg = d& :'_‘.iﬂ

jcos(w{%j?—;}os(w)dw - L) =~ bin(a(1 - =~ fin-2)-sin)]

- 2sin())
A
Substituting the solved integral into equation (25), we get :

AB(n) = 2 : 2 =— L
2sm(k) 6[ -+ J. c is;?z(?}t)[ 25;n(k)]+ , —2sin K(;lzz);;m(n)
AS(n) = Asin(21) 26)

" Asin(21) - 2sin’ (1)

Substitute equation (26) into equation (24) in order to get <D(§) :
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o(0)= A2 ){25111 cosM(1-¢)] +1}: ).sin(21.) {ZSin(X)cos[X(l—Q)]Jrl}

s1n(2k) A sin(ZX) —2sin*(A) sin(ZX)
3 A sin(ZK) 2s1n(%)cos[?»(1 C)]
®(6)= Asin(21) - 2sin2(7\)t sin(21) ]
and sinceu = (D(C")
n

The radial velocity for Outflow and Swirl is given by:

1 Asin(21) ‘iZsin(K)cos[X(l -o) N 1:\ 27)

" 1 Asin(2A) - 2sin’ (1) sin(21)
The tangential velocity is solved as in the inflow and swirl case, when the § — momentum

was considered (eq.3).

ua(vn)_ 1 az(vn)
on —Re, oc?

3)

£ wm=onw) and  u=

The 0 - momentum becomes :

B
Re, o

(C\ d(P(ﬂ) (T])d \V(C)

11 do(n) 1 1 d’yl(g)_

- —B? = constant
ﬂ(P(rI) dn Re, W(C) dc? f° = constan

Therefore, two differential equations must be considered :
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dg(n) R

11 ‘iq)(T]) 2 2 -
(@) ————rt=—P = |—=5=]"P ndn = Inle(m)]=e * +c

noln) dn J o(n) J o)
(cis a constant from integration)

L -p’n?
on)=e > =ke ?
L
(p(n) =ke ? ,kisaconstant (28)

11 dy(Q) . dE) | o _
O ey @ e PRV

The solution to the differential equation is :

w(©) = AcoslpyRe ¢+ BsinlpRe L) - 29)

where A , B are constants

~pn’

Since v~ glny(©) = m =ke * [cos(pyRe,¢)+ BsinfpyRe, ]

and 4' = kA and B' =kB

2.2

A'cos\By/Re, ¢ )+ B'sin|ByRe, § ei}zn— = (30)
i coslpfRe )+ #'sinfpRe,

Apply the Boundary conditions:

G =0 — v=0
()e=1 — %:o

Therefore from equation (30) we have:
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o)
=A"=0

(i)
= B'B./Re, cos(BJRer )= 0 = Since B’ and p+/Re, cannot be zeroit has to be:

= cos(B,/Re, ): 0= cos(szr1 n) =0

2
Since B =B, (B varies with n)

_ 2n+1
2,/Re,

So, B,

By substituting B, back to equation (30), vi becomes
“B,.ZT]Z

v = Z(:)Bne 2 sin(zn;l ng) =Qy =

and B' is replaced with B, since B' will vary with n.

R 2.2

© >
y=_3p° sin(2n+17tq] 31)
L S n 2

By applying the initial condition(n=1 v=10) to equation (31) and

—B,,Z
by letting E, = B,e * ,weget:

=1= ZEn sin(zn +l n)
n=0 2
If E_ is expressed as the Fourier sine series of v, it is found to be equal to :

4
B =7
" 2n+1n
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L 4
Th 5 E = B 2 =
o Fn T e 2n+1)n

2n+1 ’
(2 Re,"] 4 {£2911)izi}
8Re,
- (Zn + l)n ¢

=G

B
RN W

4
B, =
" niln

159

= Since fromeq.(12): B, =

2n+1

7, B, becomes:
2Re,

(32)



Substitute the constant B back to equation (31), therefore the tangential velocity v becomes :

a2 (2n+1)21t2 2
o B_ LA G e | w 4 ‘{W‘(” “)} 1 . (2n+1
2 2 _ peeed — " -
Z:; @n+1)n nsm( 2 nc) nz:;(znﬂ)n nsm( 2 EC)
. ~ (2n+1)27[2( 1~1)
ZW { gRe, | }%Sintzn;lnC) (33)

The maximum v occurs at the centerline where £ = 1. Therefore from equation (33) we have :

_¥ -0 1 e-{—*—(z?ﬁl,“z (nz—l)} -
S (@2n+1nn
Since Vmax 1s known from equation (34), AE(n)can now be calculated.

Therefore,
_ Asin(24) 2s 7 (1
AZln)= 35
) Asin(24)-2sin*(2) jj n 32)
and
. " _J@a+)x ( ~ } w _{ﬁz_(nz_l)}
v =3 -1 1 . {Te Z 4(-
= (2n + 1)71 n = 2n +1

S o) S (-l Vi M
Y “‘“_Z:O:Z(znﬂ)(zmﬂ)n S eXp{ b 1)}

Therefore, theintegralbecomes:

Y ¥ e

nOmO

and by using the same methodology as in thecase of inflow and swirl to solve the aboveintegral,

we have:

J-nv max ZZ 2n+1)(2m+1 J‘ 3eXD{ (B’ n+,3 m)( 2 1)}0177_

nOmO n
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=ii L) MY 13 e dy

SO ) 2m )

2

Then the integral becomes:: _[1“—13—6“(" _l)dn =e” L —%—e‘m‘ dn
n n
2 dd
Ifn =8:‘>d6:2ndn:>dn=2— andb=-a
M

8
Then the integral becomes: j;n%e‘“sdn = L" 111 Mdn==| ———=—| —db

_ %{1 - ea(l;HZ) +(- Ot)e“{ln(ﬂz )+ C a)k " - 1)}}

n

By following the same procedure as before, we get that :

"V (n) 16(-1)"" 1 = (- a)
= ZZ(2n+1)(2m+1)rc2 { +(_a)e {m( e ,; k- k!

1)

Asin(24) 25’ J-n Vmax(77)

Aml(r) = Asin(24) - 2sin*(1) ¥ (772 - 1) L7

dn =

[———
3 2,2 o o 1+m 2
ALI() = Asin(24) 25 $ 16(-1) n

1
Asin(22) - 2sin’(2) (ff—1)n=0m=o(2"+1)(2m+‘)”22 a)e{ in(r?)+ i .(2" )
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APPENDIX B - TWAITES METHOD

. ]
r——> :
o :
|, |
- '
< » R,
Continuity:
27 Ucho = 21rU(h, — 267)
Yoy sy en-25 =" Yoy
r U r U
28" = h—f"-(—]iha
I8
5 = h, -2 ho) M
2 r U

Evaluation of 8" and 8:

o u A 3y 1
5 = j[l__)dy: 3y 1y
0 U 0

1

= 5—i52 +—0" =6~%5+

45 85°

o' =

3

26 28°

o or

2

y=[y—~——+

3y

26 2

1y
25 4

15 85-65+46 3,
8 8 8
53
5 8
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6

0

X=T,—TI
6= 6(x)
U=U(x)
h = h(x)
r= r(x)



2 ru’”’
4, LU
525{@, —76}%} @)

%u u qu (u)
OU( U)y J{U (U”y

uY [3y 12T 9y 1,° 3y
whete(—j = —-X——y_3 :_ZT__Z?+__)’_4
U 26 28 45 4% 29

_3y 1y 9y 1yt 3yt
N8 28 48 48t 28 [0
Q

2 280

iy2_1£_9_)i+li_3ia__109
206 2 28° 4 48 3 48° 7 28 5

0=1095 L, 6 _-109

280 5 280
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