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' | ABSTRACT

DYNAMIC RESPONSE AND  OPTIMAL DESIGN OF A LATHE SPINDLE UNDER
EXPERIMENTALLY MEASURED RANDOM CUTTING FORCE EXCITATIONS

JA.M. Sharan, Ph.D.
Concordia University, 1982

This thesis presents the dynam1c response and opt1ma] design of
a 1athe spindle under experimentally measured random cutt1ng force
exc1tat1ons The optimal design is based on minimizing the maximum
mean square displacement response of the workp1ece under the act1on of

random cutting forces.

; The stochastic partial\qifferentia]_equation of motion character-
izing the behavior of a lathe spinqle-workpiece_system is formulated -=
based on.the Euler-Bernoulli equatipn. A finite element method using ‘
‘bqaﬁ elements is used for free vibféfion analysis to tomputg the
..undamped mode shapes and the natural frequencies of the spindle-
wbrkpiece system. The workpiece support at the runnihg center haﬁ
bLen modelled as hinggd or fixed Qupport and the theoretical results
are compared with the laboratory experimen:g to Elassify the nature of
the éupport'condifion. Based on the resu]tS, the end condition at the
running center is classified as hingeq. TheJeffect of vary%ng the
. spindle-bearing stiffness on the natural frequencies and mode shapes

- are also presented.

L]
-

The forced vibration of the spindle-workpiece system is studied
ey first investigating the nonstationary random response of a workpiece

subjected to a constantly varying cutting tool contact in a turning



1

6peration. The results indicate that the workpiece respbnse at the
cutting tool is not significantly influenced.by the ;ooi feéd rate for
normé]yturning operations. A moda1‘ana1ysis 1n.coﬁiﬁnctioh.w1th the
finite element techﬁfque is then used to calculate the mé§n square
displacement of the workp%ece."The‘expérimenta11y calculated power
spectral density of the putting forceé'is used as the 1nbut expitation

to the hathematica]agode1. A parametric study on the effect of bearing

stiffness and damping, bearing spacing, sectional rigidity, and exterﬁaT;
AN

-

AN .
damper on the mean square displacement is presented. “

An optimal design of a lathe spindle using a direct search

optimization technique with béarihg stiffness and spacing, and spindle

cross-sectional diameter as design variq?]es, has been carried out. The

N

effect of chuck'diameter and workpiece sfquetness ratio on the dynamic
. response of an optimized spindle is also studied. Finally, the' influ-
ence of a third-bearing in the spindle on.aﬁ optimized system énd the -

"design of an external damper are also discussed.

113

..’ii- \
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a convergence factor

- matirix eigen vectoré of the modified system

éxperimentaT power spectral density
dummy variable

dummy variable

- xvi -~



; o CHAPTER 1 S i

INTRODUCTION AND LITERATURE SURVEY

1.1 Machining Prodesses L
\ * - . L4 )
~In manufacthring any product, there are usually a number of-

machining’operations performed on a raw workpiece. ‘These machining
processes can be classified into two categories; which are: (1).tra-
dition$1 chip removal processes, and (2) non-traditional machining pro-
cesses. Operations such as turning, shaping, drilling, etc., belong to
the first category, whereas operations such as ultrasonic machining;o
e]ectro-discharge machining (EDM), electro-chemical machining (ECM),

belong to the second category.

In ail these processes, which are necessary for products requiring
close dimensional.accuracy, metal is removed from the raw material in
the form of metal chips. = Such operatiofis are performed on machine tod]s
which opérgte'on either a_reciprocating or é rotary type principle.
That is, eithe} the tooi or the_workpieqp reciprocates or rotates. For .
example, in a lathe, thi workpiece rotates énd the tool is stationary.

Hence in a machine tool, a finished’p?bduct is obtained by removiﬁg

metal chips due to a relative motion between the tool and the workpiece.

A fihished‘product should meet the specifications which are in
Iterms of good surface finish as Qél] as close dimensional tolerance.
Finishing operations are performed to ensure a‘smooth surface finish,
hfgh accuracy, esthetic appearance, ‘etc. In order to achieve goo@ sur-
face finish, the vibration levels in the tools of‘workpiece should be

as Tow as possible. The vibfation can be controiled by proper design

of machine tools.

—
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1.2 Various Consﬁderations in Machine-Tool Design . ’

' 7 Since a machine tool js aﬁ‘éssembly of several machine tompoqents;
) ébod.désign of a machine tool requires that ail of its“ébmponents be
desigﬁed with utmost care and precision. }hjs can only be possible if a
detailed sFatic and dynamic analysis of each of thg components is carried

out. - The present investigation, which is, a study of the dynamic behavior

of lathe spindies, is a step in that direction.

In designing a machine tool, there are several important consid-

erations, such as:
(i) the stability of the ééructure,
(i) naturg of cutting forces,
(iii) the type of damping,

(iv) dynémic response of workpiece under cutting force

excitation, and
(v) selection of optimal design parameters.

In the next section, a literature survey on all the topics mentioned

above are presented.

1.2.1 Stability of the Machine Tool Structure '

-

| A machine tool will deflect from its equilibrium position if a
force is applied between the workpiece and the cutting toof. If the
spectrum.of these farces contain highgr frequencies then not only static
but dynamic stiffness also has to be considered. Since the maching tool
has distributed mass, it will have a number of resongnf ffequenciés.

These may be excited due to the cutting forces.
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The machine tooks strucjures are ﬁ%ua]]y hade of cast iron or mild
steel. For the same-we1ght a mild steel fabrication may be -expected to be -
about twice as stiff as a s1m11ar des1gn in cast iron. In dés1gn1ng the

machine tool frame, wh1ch requ1res qu1te comp]ex mathematlcal ana]ys1sh

-analog and digital computers.are often used. Several researchers [ 1-3 ]

analyzed the machine tool response by représenting the structure by a

number of 1umbed masses which are joiﬁed together by elastic and weight-
less beams. The fesponse calculation is based upon the fact that, under
steady state canditions, the deflected shape ofia structure excited by a

set of oscillating forces may be expressed as the sum of the factored

mode shapes, That is, the response of edch mode is computed separately

as a single-degree-of-freedom system-and then they are added vertiéa]1y
in the complex plane. The response calculation is carried out over the
range of frequencies of interest. Each single degree-cf-freedom mode

in the complex plane gives a circular Tocus.

The most suitable design for any structure may be found by
analyzing each of the possible designs and' comparing the important

criterion such as flexibilities, chatter, stabilities, etc.

The effect of torsional vibrations on the machine 001 stability
was studied by Knight [4]. In his study the torsional oscillations of
the drive system were also included. It was conciuded that the vibrations

suppress the built up edge con the tool, which in turn, directly affects

- .the change in force with the speed; under steady state conditions.

LY

A study of a machine tool drive and structure was carried out on
an analog computer by Cuppan and Bollinger [5]. The machine tool structure

was represented by a system of differential equations and these equations
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"+ were solved -for various va]ues;of system parameters.. The theoretlcal '

" results were then exper1menta1]y verified. T1usty [6] studled the v /)m€§>

' mach1ne too] frame by organ1z1ng severa] tests on a prototype and out- )

Tined a procedure for mach1ne tool frame ca1cu1at10ns

1.2.2 The Cutting Forces (Deterministft Model) . -

For moreé than a/century, tesearchers in‘the fie]d of manufacturing
have been attempting to understand the natare of the cutting forces dUr;
ing a machining operation. Several researchers [7-9 ] cons1dered metal
cutting operati as a steady state process. Merchant [8,9], in order to

study the ‘mechanics of the cutting process, diﬁided it into two parts;.

an orthogona] cutt1ng, and an oblique cutting, depending on the orien-

tation of the cutting edge to the re1at1ve motion of the too1 and the

workpiece. The theory and equations of the cutting process were devefoped,
- by which, with 1ittle approximation, any orthogona] cutting process

%ou]d be analyzed.

Lee [10] studied the machining as a plastic flow of an ideal
plastic material and thereby obtained the stress and strain -distribution
in the syetem. Sabberwall £11,12] studied the cutting process in oilling
operation and through these studies, an optimum configuration of the
milling cutter and the workpiece was proposed. The frictional charac-
teristics of the tool-chip 1hterface was studied by Wa11ece 13]. An

A\ .. .
excellent treatment of the mechanics of the cutting process is given in

[14].

In all of these studies [ 7-13], however, the mathematical models
consider deterministic equations of motion of the system with a harmonic

cutting force excitation. With these models, one can explain the chatter
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1 .2. 3- The ‘Cut'tirig ‘Forces - (Randam Mode1)

-

r

In the area of mach1ne tooI dynam1cs the stochastic approach is

-

fa1r1y new Some of the researchers [15-19] recogn1zed the random
nature of cutting forces in a mach1n1ng operation. Kwiatkéwski and
Bennet '[16] determined receptances of machine tools acted upon by random
forces (using random generator) using correlation techn1que Pek1en1k )
[17] derived the fundamental relationship of linear time invariant
systems usin; spectrai‘density measurements. It was shown [18] that the
dynamic parameters measured during the stgndstill condition are diffe?ent
from‘those at working condition. The importance of s&stem analysis by
means of spectral density measurement compared with” the conventional

. ’ W ! '
deterministic procedures was also demonstrated. \

Field [19] obtained the resonant frequencies of a.vertical miliing
" _ . . . .
machine by using the cutting force as a‘source of random excitation, and
employing the cross-correlation technique. The cutting forces were
+ <

_.measured by a dynamometer. : ‘ -

1.2.4 Damping in Machine Tools

) The “effect of vibration on a machine tool and its effect on the
: qua11ty of the workpiece produced was studied by several authors [20 25].
The overall quality of a machine tool is determined by. mag; d1fferent
factors, one of them is the dynamic stability. Dyn§m1c_stab111ty relates
to the maximum materia] removal rate that can be achieved withouwt chatter.
i This is further related to the djnamic stiffness df the machine tool.
. +

The chatter problem can be solved in part by stiffening the machine tool

structure. This approach is effective up to a point only and further

”~

)
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: stiffening‘leads to excessive weight. The dynamic stiffness depénds both
. o .

_on the static stiffness and on damping of the machine tool structure.,

In ggperal, the damping in a machine can be_due to,

(a)- structural damping, and (b) frictional famping. The energy dissipation

due to structural damping for a2 cyclic stress-

L}

train process, ig propor-
. tional “to the strain dmpﬁitude. This dissipation of energy takes place
due to 1ntérné1 friction. For any solid, the structural damping’co-
efficient is a function o% temperature [26]. Thelfrictionél damping is
. the méin source of energy dissipation in a machine tool. The energy
dissipation due to' friction damp%ng takes place at guideyays; joints,
tc. An excellent treatment of damping can be found in the feferenceg

[27-34].

1.2.5 Flexural Vibration of Rotating Shafts .

There has-been a reasonable amount of literature bub]ished in the
area of. stability of symmetrical and unsymmetrical rotating shaftﬁ [35,36].
However, very little work has been carried out on the stability of maéhine
tool spindlies. The ianrmation’avaiJab1e ffom'the area of*giabi1ity of
rotating shafts, thergfore, can be utilized in assessing thé response of

machine tool spindles. ’

It has beeh reported that fﬁe.instability-of t;gggvé#se motion of
a symmetrical shaft can occur, in the absence of internal damping, oﬁ]y
at certain_iift1ca1 speeds of rotation,'whereas instability can occur,
'iﬁ“tng case of unsymmetrical shafts for a whole range of speegs{/ It was
. suggested by Kimball [37] that the internal friction might be cauged
by elastic hysteresis which acts as a damping force rotating with the

AL
shaft. Robertson [38] summarized the causes of vibration in rotating

~

T N

.
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shafts through several theretical and expgrimenta1 iﬁvestigations;{ He
chailenged the coﬁcept of viscous~1aw of internal friction, and

favored 5 law by which damping forces were a function of change of strain:
Neither of the theories such as those put forward by Robertson nor‘the
rotating yiécous medium have been:found to bg exact, even though sdch
exactness in the mathematical model is not always essential. The rotat-

i . . !
ing viscous medium theory has been utilized in the present investigation.

The coupling of the transverse and the torsional modes of vibration
was studied by Bagci [39] and the natural frequencies of the system were

obtained by using Tumped mass @arametric'techniques.

1.2.6 The Dynamic Response of Machine Tools

The performance of a -.given machine tool can be estimated by |
studying the dynamic'tesponée under actual opefating conditions. The
dynamic response of machine tod]s should include a) spindle, b} drive -
system, .and «c¢) structure. Since it is very tedious to have an investi-
gation of machine!tools that include all the three aforementioned sub-
systems, a practical alternate solution‘wbuld be to consider each system

individually and to carry out the dynaﬁic response study.

In the case of machine structural response, the fundamental
criterion for the performance of a machink tool structure lies in its
ﬁtatic and &yﬁhmic stiffness. To improve the performance of the machine
tool, the response at varjous’points on the structure has to be knbwn.' .
The literature survey, on the analysis of the dynamic re;ponfe and
stability of the machine tool structures by various authors [ 1-6 ],

r

has been carried out in section 1.2.1. °

In this section, a'1iteraturelsurvey on the dynamic analysis of
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fﬁachine tool spindles is presented. Sankar and Osman [40] studied the
spindle-dynamics using‘2 degree-of-freedom (translation and rotation)
undév Stqchast{c excétation.' These equations were solved by Fokker-Plank
technique under the assumptioﬁ that (a) .the power spectral denisty of
"the excitation could be.rebresented by a white noise excitation, and

(b) theré was no cross coup]ing in these two equations.. Thus the two

equations were solved independently.

Rakhit [41] analyzed a lathe spindle-workpiece system by represen-
ting the system by two-degree-of-freadom system. In this work, the
actual cutting forée was measureﬁ'and its power spectral densjty was
experimentally obtained by'uging a frequency analyzer. The poaer spectral
Qens{ty thus obtained was replaced by that of an equivalent white noise
process. His mathematical model did not include the ruhniﬁg center and
the workpiece was held only at the chuck. It was cont]udéd (a) that the
cufting forces in a finish turning operation, are baéica]]y randop in
nature, and they are of wide band nature, and (b) tha; the probabilistic

parameters which characterize the cutting forces and the surface rough- '

ness of the workpeice indicate approximate Tinear mutual relationships.

| The‘multi-degree—o%-freedom analysis of a lathe spindle was
catried odt by Bo]Iinger [42].' The spindle was represented by seven
degrees-of-freedom and the E?rmonic force was assumed to be acting on
the chuck. In this analysis, neither the random cutting forces nor the
boundary condition at the workpiece-running center interface, were
inc]udéd in the mathematical model. It was concluded that the approach
using finite difference technique to formulate the model of the spindie,

aﬁd the solution of the eguations using the analog computer, is an
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effdcient and useful method for analyzing the variables. involved in the
optimal design of the spindle. . It was also concluded that the external

démﬁér should be located at the free-end of the spindle

The dynamic characteristics such as dynamic response and the phase
angle as a function of rotational speed of the spindle were experimentally

studied by Morse [43], and Allemang [44].

Design of lathe spindles based on optimal location of bearings .
was carried out by Chomjakow [45]. In this analysis, the'harmonfc
excitation was assumed to be aﬁting on the chuck, and the optimization
was based on'the minimum response at the chuck. The workpiece was not

included 1in the‘mathematical model.

Based on a review of the exiéting literature, it is found that a
comprehensive analysis on the\dynamic flexural response of a Tathe spindle-
workpiecé system that inc]udés realistic end support§-and actual random
cutting forces is 1aéking. In this thes{s, a methodology for analyzing
lathe spindles is developed that includes bbtima] design schemes for

inimum mean square displacement response of the workpiece. The details

———

of this invest;gétion are discussed in the next section.

\4*3*\,155399' the Investigation

\ The objective of this thesis is to study the flexural response of

the spindle-workpiece system under the action of random cutting forces.

The investigation has been divided into the following sections.

1

1) Ana1yzé.the free vibration characteristics of the system and
experimentally verify the.mathematica] model.
2) To investigate the nature of boundary condition at the running

center that supporﬁs the workpiece.

-~

—
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3) To stué& the effect of bearing stiffness on the natural
frequencies and the corresponding moﬁe shapes of fhe spind1e-woeriece
system. ‘ '

4)1 To study the nonstationary random response of a workpiece
subjecte& to spatially varying cutting forces and fo investigate the
effect of tool feed rate on the dynamic response of the wprkpiece.

5) To measure the actual random cutting forces whije machining
a workpiece on a lathe and to calculate the PSD of thé cutting forces.

6) To calculate the mean square response of the spindle-workpiece
-system under the random cutéing forces by using a new method tha;‘is
deve]ohéd for this ﬁurpose. ' .

« 7) To carry out a parametric study of parameters such-as beafing
stiffnesg, bearing épacing, spingle sectional rigidify,.and damping on
" the forced resﬁonse of thg spindle-workpiece system.

8) To optimally select the system parameters that minimize the~
maxfmum workpiece response;

9) To investigate other design considerations §uch as stiffening
of the spindle due to'a third bedring and the design of alsqueeze film |

damper on the system response..

r

Iﬁ.chapter 2, a mathematical model of a lathe spind]e-workpiecé
system has been formulated. The béarings are represented by a Tinear
spring.and a viscous damper. The merits of the finite element and the
finite difference methods to solve the mathematical model and the
req:ksentafion of fhe workpiece-running center as hinged or clamped
boundary condition has bgen discussed. .
In chapter 3, the;free vibration behavior of the system is

discussed. The nature of the end condition at the workpiece-running .

- .
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center interface is established. The end condition of the workpiece
. supported by the running center can be better regresented by a hlngetc‘izﬂ_5
condition rather than a clamped cond1t1on The effect qf the variation - _

of the bearing stiffness on the undamped natural frequenciee and the

corresponding mode shapes is explained.

- In chapter 4, to study the random resﬁunse of the workpiece acted
upon by a spatié]]y varying random cutting force, the workpiece has, been
modeled as Euler-Bernoulli beam. The cutting force has been modeled as
a white noise excitation and the mean and the variance response of the
workpiece is calculated as a function of»varying feed rates of the too]l
and for different values of the structural damping of the workpiece. ;t'
"is established that for the range of feed rates normat1y used\in the
turning operation, the response does not depend upon feed rate of the-
"tool. The é:;t{zg force is measured experimentally and its power
spectral density (PSD) is obtained usiﬁg a Fast Fourier Transform
anaiyzer. The ‘PSD of the cutting forces wete used to calculate the mean
square response of theyworkpiece. For this purpose a new technique for
the ca]cu1at§on of. response spectral density for linear stationary random
multi-degree-of-freedom system was developed. The method is based on
modifying the stochastic dynamic equations of the systeh by using a set
of auxiliary variables. The-response spectral density matrix obtaired by
using this ne§~approach contains the spectral densities and cross-spectral
densities of the system generelized displacements and ve]oeﬁties. The
new technq1ue requ1re3 significantly less computation time as compared
to the conventional method for calculating the response spectral dens1t1es
A parametric study on the effagt of bearing stiffness, bearing spacing,

spin&]e sectional rigﬂﬂ%ty and damping on the mean square displacement
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of the workpiece is also carried out. ) ' ~t

o !

Chapter 5 describes the optimum selection of parameters and the
optimiiation technique usedY:or the. system under cansideration. The
éystem/is optimized using a direct search method known as complex .
method. Besid?s optimiiéi?ﬁn, the effect of the variation of the dia-
meter of theléhuck and the slendernesélratio of thé workpiece have also

been studied.

In chapter 6, possibility of using a third bearing, and a design
of squeeze'fiﬁm damper is discussed. In designing a damper,‘coﬁsidera-
tions, such as.other methods of vibration control and location of such

controlling mechanism, are also discussed.

Finally, conclusions ‘and recommendations for future work are

présented in chapter 7.

[

)
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CHAPTER 2.

DESCRIPTION OF A LATHE SPINDLE-WORKPIECE

SYSTEM AND ITS MATHEMATICAL MODEL

2.1 ’Introduction

‘ Dimensibnal'accuracy and surface finish' of a machined workpiece
depend upon dynamic characteristics o; the machine tool spindle-workpiece
system. Since the surface finish of a machined workpiece is direcf]y
related to the dynamié flexural response influenced by the nature of the

metal cutting forces, the objective of the present work therefore is to

)

select parameters such as bearing locations and spacing, bearing stiff-

4
ég

ness etc. to control this flexural response.

In other words, the st{ffness and the location of €ach of the

'beariﬁgs should be such that required surface finish can be achieved’

during a machiﬁing process. A first step in achieving this objective
st

would be to formulate an accuratg mathematical model of a machine tool

spindle-workpiece system.

*

2.2 Components of a Spindle-Workpiece System

2.2.1 The Spindle -
Essentially, a lathe is a power tool which causes a workpiece to
revolve so that a cutting tool in contact moves laterally and removes

the metal in the form of chips. A typical lathe is shown in Fig. 2.1.
It is a Mon; No. 821A, 12 hp. Demoor type lathe. A1l lathies are

Aequipped with a motor and the power from the motor §s transmitted to the

spindle of the headstock through belts or gears. This power also

-%g;gentrols the lateral movement or the feed rate of the cutting tools. T

n
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A Typical Lathe.

Fig. 2.1



- 15 -

The spiﬁd]e-wprkpiece syétemjis shown ih Fig. 2.2a and its schematic
nnﬁe] is shown in Fig. 2.2b. -Referring to Fig. 2.2a, the spindle is
hoi]ow_so'tpat_g]endér_and-]ong bars, can be fed for machining,'through
the rear of the spind]e.‘ The mass and the stiffness are n6nuniform1y
distriﬁuted along the ax%s of the spindie. Figure 2.2b shows the )
schematic of the spind]efworkpieée system supported by beariﬁgs which
are represented by a spring and a damper. In Figs. 2.2a and 2.2b the
workpieée is shown és held by the chuck on one end and supported by a
running center on fhe other end. The ch;ck is normally considered as an
intejra] part of the spindle and therefore is to be included in any
mathematical model. During the machining brocess the tool is fed from
the right to the Teft. The spindle is supported by two bearings and
several gears are mounted on the spindle. The rotational speed of the
~spindle is controlled by engaging one of these gears with another gear
mounted on another shaft.which is not_fhc]uded in the above mentioned

figures.

The metal cutting {s performed using a cutting tool which is
usually made of high speed steel or a carbide tip brazed or clamped to
2 éo]id piece. In the turning operation, the metal from the workpiece
is removed in the form of metal-chips therehy continuously reducing its
diameter. In general, there are two groups of machine tool-workpiece
systems that can be classified on the basis of the type of relative

motion between the tool and the workpiece.

(i) In the first group, the workpiece is attached to the machine
spindle and has a rotary motior, whereas the tool is fixed on -the machine

bed and has a translatory motion. The present system (lathe) belongs
)
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to this group.
(ii) In the second-group, the tool is attached to the machine
spindle and has a'rotary motion, whereas the workpiece is-fixed on the
machine bed and has a translatory motion;_ Mil]iné‘machines and drilling -

machines belong to this second grous.
. *
As far as the metal removal is concerned, these two groups of

machine tool-workpiece systems are similar since both involve relative
motion between tool and workpiece. In generai, the tool is fed from
right to left and the machining of a workpiece is normally carried out

in two stages. In the first stages, large amounté of material are removed
in the form of méta] chips and this operation is called a2 "recughing
operation®. In the second stage, .known as "finishing operation" very
small amounts-of material are removed but great.care is taken to achieve
acceptable surface finish, dimensional accufacy angksurface integrity.
The surface integrity js controlled by the flaws in the material of the
workpiece and since it qépends mainly upbn the speed, feed, amount of
coolant, etc. but not on the system itself, this qspect does not enter
into the subject of the present investigation. it should a{so'be noted
that id/; finishing operatidn, in order to achieve a good surface finish,
the deptﬁ of cut is small compared to a roughing oe;ragion but the feed

rate and rotational speed of the spindle are very high.

* In this thesis,~the dynamic behavior, such as the mode shapes,
the natural frequencies and the flexural responsé, of the spindle-work-
piece system is studied in detail first and then approﬁriate measures
such as selection of the stiffne;s of the bearings, location of the

. bearings, location andigeometry of an external damper, for controlling

-
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vibrations are recommended. S

2.2.2 Bearings : ‘ ‘ R

There are several factors which should be qonsﬁdered in the
selection of bearings that support the.lathe spindle. Some of these
factors “are: (1) clearance, {ii) stiffness and ®lasticity, (iii) Tong
service 1ife, (iv) small overall size, (v) simple and convenient assemblj,
and (vi) availability of higher damping. The factors (i), (i), and (vi)
are described brieij here whereas factors {iii), (iv), and (v) are self

explanatory.

" The clearance determines the accuracy of guidance in the radial
as well as in the axial direction. The smaller the clearance, the more
accurate the performanc® would be. Therefore to overcome the problem

due to clearance, the bearings are normally-preloaded.

j . . -
Secondly, the bearings shouéd have sufficient stiffness to with-

;étand the forces tran§Titted thrdﬁgh the spindie: Since a lathe once
designed is used, in addition to turning, for other ‘types 6f machining
proéésses such as dri]ling,.reaming etc., it is desirable to select an
optiﬁum bearing‘efiffness by éna]yzing the spindle-bearing system under
all these q1fferent machining operations. However, since the Tlathe is
mainly used for turnigg operation, it is justifiable to select the

bearing stiffness based on turning opefation as présented in this

thesis.

Finally, there are very small amounts of damping in the form of
friction dahping present in the roiler or ball bearings. .These damping
Tosses increase as the loads on the bearings are increased. This is

caused by the deformation of the rollers or balls. Increased number of

-
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rollers, and sufficient preloading reduce the detrimental effeéts of

+

clearances By increasing the rigidity.

2.2.3 Damping:in a SpindTe-workbiece System

Nﬁen a machine tool system is subjected to dynamic cutting forces,

-1t exhibits external and internal dissipative forces. The source of

external damping exists at the bearing location and at the workpiece
tool interface. The internal damping, arising due to dissipation within
the mate%ial, is in tﬁe form of hysterestic damping. These two damping
effects can be combined wighoutjany gignificant 1055 of accuféﬁy By'
introducing the concept of équivaient viscous damping. The external
damping can represent the effects oﬁfgﬁftationa;y_viscous environment,
while the intgrnal-gan be thought of as being caused by a viscous

medium which rotates with the spindle,

The major part of the damping arising in a machine tool structure

is generated at the inteffaces‘such as bolted connections, slides, etc.

Lowenfield [46] showed that in the gourse of building up a lathe -from its .

elements, starting with the bed, then successively adding the slides,

the headstock, and finally the tailstock, the damping increased in steps
to about eight times its original value (i.e. that oFIthe’]athe bed
above). Peters [47] found that the damping ratio of a lathe spindle made
of steel can be as small as 0.0001, and that Made'of cast iron between
0.0004-0.0001. wh%n the cast iron spindle was MOunteq in its headstock
the damping increased from-0.0Q01 to 0.65. In general, overall damping

ratio of machine tools Tlie between 0.02 and 0.05.
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2.3 External Forces Acting on the Spindle Workpiece System

The dynamic forces present in a machine tool during metal cutting
operation are generated from two sources. The first kind are the forces
which are purg&y externally imbressed due to the metal cutting actiqns.

. The sgcond type ‘are the self generated forces which arise due to any
unbalance in the rotating machinery or due to inherent syste&,dynamic
characteristics. Spindle-workpiece system is normally balanced properly
for both static and dynamic conditions and the disturbances arising from
such dynamic effects of the machine tool can bé usually corrected and
therefore neg]ectéd in analysis. Hence, the predominant forces acting
on the system are the external méta] cutting forces. These forces are

generally made up of a combinatipn of harmonic and random forces»[48].

A recorded plot of a typical cutting force variation is shown in
Fig. 2.3. These cutting forces have a static és well as a dynamic
component. The main cutting force is in the z direction (refer to
Fig. 2.2a). There is a very large fluctuation in the magnitudevof these
cutting fofces in all the three orthogonaT directions. %he dyﬁamic
forces are much smaller in magnitude as compared to the mean static
forces. In this thesis, the flexural response due to the dyngmi; forces
in the z direction wﬁu]d be investigated because it has beéﬁjﬁéjf.estab_

Tished [41] that the dynamic response due to these cutting forces

directly control the surface finish of the machined workpiece.

2.4 Objectives of the Mathematical Anmalysis

In a Tathe spindle, the equivaiént stiffness"of the spindle-
workpiece system is usually considerably less than that of the other

parts of the machine [49]. Several authors [20-24] have developed
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S - feed rate

v - surface velocity of
the workpiece

s - depth:of cut

CUTTING FORCE p; (1)

1/25 Sec.

S =10. 027 m/rev.\b
v % 60 ft/min. \\
=0.075in. -

200 1bs.
.

7 1b.
—

JVWWWW

1/ 1000 sec. ..

S= 0.002 inlrev.
v = 375 ft/min.
s =,0.010 in.

MATERIA:L : AlIS1 1015 STEEL

Fig. 2.3: A Typical Cutting Force in a Turning Operation.

tr‘:
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\mathematical models of the machine tool under self excited and forced

vibrations, and have established stability criterion in terms of the

. rotati onal frequency of the system. g

_]hé dynamic characteristics of the lathe spindle 'were studied by
A]]eméng [44] and' Bo1linger [42]. A1aemang used the method of pulse
testing in which the spindle at different rotational spéed is excited

by a deadblow hammer and the frequency respoﬁse curve is obtained by

using'an_Fvﬂ anaTyzer. Bollinger formulated the mathematical mode]lof
the spindle representing it by the Euler-Bernoulli flexural equation of

motion and used a finite difference approach. In this model the spindle

was divided into equai segments and- each of these segments were assigned

certain values of cross sectioﬁai moments'of inertia and mass. The work-
piece was held by chuck on one end and the‘othqr end of the workpiece was
free. The systemlnatura1 frequencies gnd the response due to harmonic
excitatiop applied at the chuck were 6btained uéing an analog technigue.
The effect of bearing stiffness, bearing location, damping Tocation on
the system natural frequencieg as well as response under harmdﬁ{ﬁ
excitation were studied. An optimfzation scheme was employed and was
based On—fﬁo criteria which were:- (a) the minimﬁm response at the chuck,
and (b) the minimum of jhe average response at several selected locations
a16ng the spindle. The effect of a third bearing on the rigidity ef

the spindle was also studied.

This mathematical model has several shortcomings which are

explained below:

{i) An actual spindle has nonuniform distribution of mass and

stiffness along the spindle axis therefore the assumption bf uniform

;
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variation of these two parameters at equal intervals would lead to in-

accurate results.

(i) In actual practice the workpiece is held by a running center
on the fFée end and also the spindle-workpiece system is acted upon by
rapidly f]qctua?ing cutting'forces. Since these effects have not been
included in- the hathematica1 model, ahy desigﬁ hbased on such a model

would be unrealistic.

Rakhit [41] studied the spindie dynamics ﬁnder the action of the
actual random cutting forces. The dynamjcs of the system was Qased on a
two-degrees of freedom mathematical moge1. ,Actually the entire spindle
.was represented as’'a §ing]e degree-of—freeddm system, and in the same way,
the workpiece was also modeled by a single vibratory mass spriﬁg system. _
The actual cutting forces were measured using a special dynamometer.
-The power spectral density (PSD) of these cutt{ng forces were replaced by
an approximate equivalent white noise power spectrﬁ] density (PSﬁ).
Hith this, the mean square response of the workpiece was calculated and
a linear relationship between surface roughness and workpiece mean
square response was established. Some of the deficiencies of this

mathematical model are: ,

(i} It does not take into account the boundary conditions at
the workpiece;running center interface as a consequence, the computed
mean square respoﬁsé would be much higher than the actual mean square
response. 7

{(ii) The def]ection§ at all-the points anng!fhe workpiece or
_ the spindle are assumed to be equal. ;n aetua1 practice'the deflection

of the workpiece at the tool location is a maximum and there is large
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variation in the-deflection anq-iﬁt pattern at various points along the

spindle-workpiece system.

(iii) The mass and the stiffness along the spindle are taken to
be un1form1y d1$tr1buted which is not true in the actual case and there-
fore there would be a significant discrepancy between the computed and

the actual def]ections:
1

(iv) Thé ﬁower,spectra] density of the machining excitation has
been approximqted by a theoré%ica] wi&;%and process or an equivalent—wﬁite
noise excitation. Suchfan approximation cannot yield the system behavior
on a frequency by frequency basis. Therefore, there can be significant

errors in the computation of the mean square response.

Hence in this chapter a comprehensive mathematical model of the "
tool- sp1nd1e5workp1ece system is formulated to meet the f;H10w1ng¢} e
objectives:
(i) to investigate the nature of the end conditions of the

workpiece supported at the running center. That is to determine whether

- ‘
the end condition can be identified as hinged or clamped support.

(iiy to calcu1ate all the 1mportant undamped natura] frequencies,
and the mode shapes of the system. These are needed in the computation

of f’; mean square response using a moda] ana]ys1s

- (1) to study the effect of the bearing stiffness on the undamped

natural frequencies .and tﬁe»corresponding undamped mode shapes of the
. N )

spindle-workpiece system.

2.5 Assumptions and Justifications

Several assumptions are made in the formulation of the mathematical



model of the systeh. They are:

1) The.workpiece is considered to be rigidly attached to the
chuck and forms-an integral part of the spind1e: This assdmption can be
justified by the fact that there is no relative transliation or rotation

between the chuck and the workpiece at the jaws.

2) The bearings which support the spindle-workpiece system, are
assumed to be rigidly mounted in the housing. This assumption is valid

because there is an interference fit between the bearing and the housing.

3) The inner races of the bearings are considered to exhibit
some viscous damping and stiffness properties and could be represented

by a viscous damper and a ]inear.spring in the mathematical model.

4) The §pind1ébworkpiece system is taken to be statically and

dynamically balanced and to be operating at a constant speed.

) 53 The change in the diameter ¢f the workpiece during the‘cutfing
operation is assumed to be negligible. This is because the depth of cut
in a finishing operation is very small.compared to dimensions of the
workpiece. - |

6) Thg flexural vibration of the spind]e—wo?kpiece system is
considered to be the dominant mode of vibration during a turning -
operation...The torsional oscillations of the system due to the combined
flexural-torsional aption of the metal cutting forces are assumed to be

insignificant, and therefore neglected in the mathematical model.

7) The effects of shear déformation and rotary inertia have been

assumed to be negligible.’
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2.6 Formulation of the Mathematical Modg]

v

The equation of motion of the spindle-workpiece, as shown in.
Figs. 2.2a and 2.2b, using the Euler-Bernoulli formulation can be

written as [50]

2 [El(x) .—K—Llaz";t";t ] = -m(x) LHLLE)

ax? " at?
3 (2.1)
K(x) Wix,t) -c(x) Bt 4 g xe)
where: _ "
'E = modulus of elasticity,
I(x) = diametral mﬁment of inertia,
m(x) = mass per unit length,
w(x{t). = deflectiog along .the system,
K(x) = stiffness coefficient,
c(x) = damp%ng coefficient

fe*t(x,t) = externally impressed force, and

t . = time

A
The solution of the equation (2.1) must also satisfy the associated
]

boundary conditions, which are:

(i) the bending moment and the shear force must vanish at the

free end of the system; , )

(ii} if the workpiece-running center connection is assumed as

.hinged then the bending moment and the deflection must be zero at the

connecting point;: or,
(111} if the above mentioned connection is assumed as g]amped

then the slope of the deflection curve and the deflection must be zero
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at the tonnecting point.

In equation (2.1) the effects of the rotary inertia and shear dg-.
‘_’fgrmatie are neglected aé indicated earlier. The terms on the:right hand

side of equation (2.1) represent the inertia forces, the.spring forces at
the bear1ngs, the damping forces, and the externally applied forces.
The system may now be’ d1V1ded into 12 ]umped elements as descr1bed in
Fig. 2.2. To investigate the dynam1c behav1or of the lathe spindle-work-
piece system, the fourth oraer partial differential quation {2.1) has to
be solved by representing in an appropfidte quhion the random cutting

~

forces f._.{x,t) and with proper boundary conditions.

ext
The nature of the boundary condition at the running center is
unknown. That is, the end condition can'be classified either as hinged .
_or clamped. If a hinged‘condition js assumed, then the boundary

condition at the running center would be [51]

. ) 2
W(x,t) | =0, and EI(x) 3—”3(;"5& =0 (2.2)

x=0 x=0
_ If the workpiece is assumed to be clamped instead of being hinged at the
running center, then the correspoﬁding set of boundary conditions are to
be represented by

Wix,t)| =0, and i"igi‘—ll
X

-0 (2.3)
x=0

x=0

The boundary condition for the free-end of the spindle in either of the

- above mentioned cases would be



(2.4)

1
o

. 2 '
and gl. {FI(X) Q_HLEJEI}
caX . axz

- x=L
where L is the total length of the combined spindle-workpiece system.
It should be noted that in equations (2.2) to (2.4), the variable x is

measured from the running center towards the free end of the spindle.

2.7 Method of Soluticn

The fourth order partial differential equation i2.1) and the
associated boundary conditions represented by equations (2.2) or (2.3);
and {2.4) can be solved by finite difference method as used by Bollinger

[42] or it can be solved by finite element method [51].

2.7.1 The Finite Difference Approach

In the finite difference method, the partial djfferentia] equation
is transformed into a total differential equation. This could be done in
two ways. In the first method, the integration is performed along the
spindle by keeping time t at some constant value. Al] the derivatives 1
ofrw(x,t) are expressed as the differences of displacemént at each
section. The system is solved starting from the section at one of the
boundaries once the displacements of each section are known then these
values are used as'initial condition for the next step. In the second
method, time t 1is considered as an independent vaniaé]e at various
sections along the spind]éfworkpiece system: ?hg;%attér method is pre-"

ferred because in many vibration problems often the displacement-time

relatijonships are needed. However, to'so1ve equation (2.1), the fourth

; >
‘ . -~
/ ‘ S . .
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derivative of W(x,t) as a function of x shou]d exist. Secondly, if
the second method is used, then the various sections need to be 1ocated
at equal spacing. If the spacing between the sections.are not equa1

then this approach becomes computat1ona11yvted10us. .

2.7.2 The Finite Element Method

In c]ass1ca1 continuum mechanics a probiem is usually
described by a set of differential equations with appropriate boundary
conditions or by the extremum of a variational principle, if it exists;

or by some form of variational statement (incomplete yariationa] principle).

The solution soughf for such continuum problems usually possesses
high order differentiability, satisfies thg‘differentia1 equation every-
where, and satisfies all tHe boundary conditions exactly. This
situation is different in finite elementfapproach. The solutions are
defined exc]uéive1y in terms of.a finite number of degrées-of—freedbm
and are only piecewise-smooth functions. The differentiability of these
functions is usually lower than the highesp order of derivatives in the
field equations. The advantage of the finite element method over the
finite-differeqce methods is the relative ease with which the boundary

conditions of the problem can be handled. An exce]]ént discussion about

this particular topic is given by Burden [52].

As an example, 1tlwas suggested earlier that the boundary con-
dition at the‘workpiece-runnfng center can be assumed as hinged or,
clamped. To test the boundary condition for the clamped cendition, it
is requ1red that the deflection and the slope of the deflect1on
curve of the spind]e—workp1ece should be zero. Since deflection and -
slope both are fbrmulated,gs the coordinates in the finite element |

- ‘-’
g



-~ 30 -

ané]ysis, this boundary condition is easily aéconnmdafed in_the finite
element model. In the finite difference method, the conditfon that the
slope equal to zero requires that the displacement of a point spaced
Ax (refer to Fig. 2.2) to thé left of the running center support, also

be zero. Secondly, even if the various element lengths are unequal,

this is easily dealt with in the finite element model because the element
length is explicitly represented.in the element stiffness and inertia
matrices. On the .other hand, this condition imposes considerable

-

difficulties in the finite difference technique.

In vjew of these reasons, finite element technique is preferable
in dthmic analysis as the present case and therefore employed as the

method for obtaining the dynamic response of the machine toel-spindlie-

- * workpiece system.

2.8  The Finite Element Model of the Spindle Workpie€e System

2.8.1 Element Equation of Motion

The finite eJe%gnt model of a shaft in bending is shown in Fig. 2.4,
In this figure w, (t), w,(t) are the joint transiational and rotational
toordinates respectively, whereag; the'generalyzed?fprces along these
coordinates are represented by f, (t) and f, (t). Thus, a joint can
undergo both translational ang rotational displacements. Correspondingly,

there are not only joint forces to consider, but also bending moments.

Expressing the displacements at any point in the system as .

4 ' ‘
Wixg,t) = 20 ¢5(x,) wy(t) (2.5)

i=1 » .

T . i

where, ¢1(x ) is the shape function, xJ@%s local position coordinate,

and wi(t) is the joint displacement function. Assuming the
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Fig. 2.4: Finite Element Model of One of the’
Elements of the System.
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shape functions are given by the static displacement patterns, that is,
the differential equation governing the static bending of a uniform bar
with the inertia term set to zero, the generalized displacement at any

point on the bar is expressed as [51]

' I, 2%, ° 2 2 x,?
)= (1- 20 B Yo« (BB o

(2.6)

. /

' - . _
where & is the length of an element. The equations of motion for the

element can be derived by-writing the expressions for the kinetic energy, .

(43

o a0 I
T*(t:) =5 f m 5 dx, . (2.7a)
0 r
the potential energy,
12‘ ' 2
'] Bzw(xl‘,t) '
Vx({t) = 5 j El | m—————— ‘ (2.7b
z ax? - ' :
0 . ha
I
and the virtual work
. 4 ;
W= fe) aus(t) - (2.7¢)

i=1 \
The details of the derivation of the equation of motion of an
element are given in the Appendix A, and the expressions for the inertia

and the stiffness matrix'as oBtained in Appendix A are:

.

™S, G
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156 220 . 54 -13¢
[;] m 225, | 492 134 .32 , (2.50)
0 lss 13 156 -2 ]
-13% -32% -222 42} ,
and - i _
(12 e a2z 6]
AN f62 - 492 -64 282
(k] = =5 . {2.8b)
_ 2 -12 -6% 12 6%
| 62 . 282 -62 48
;f Th§4;nert1a and stiffness matrices for é]ements 7 and 11 (refer

to Fig. 2.2): where the boundary conditions are different due to the

presence of the bearings, are slightly different. For these elements

the stiffness matrix is given by: F/
etk e -2 62
£1 6% 492 -6% 292
[kl == : (2.9)
7 L 12 -64 12+ke . '-62
' ' 2 2
~ I 62 28 -64 422]

where 2kf is the bearing stiffness at the element in consideration.

In addition, a damping matrix will be present and is given by

@
¢ o o> o] - -
o o 0 0
el = o o0 < o . (2.10)
" 0. 0 .0 0
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where 2c¢ 'is the damping value at the element in consideration.

-

2.8,2 The Equaiioﬁs of Motion for the Complete System

; In the finite e1emeqt method a continuous structure is regarded

as an assemblage of individualdiscrete elements. By .requiring that the
‘displacement be compatible and the %nterna] forces be in balance at the
_ Jjoints, the entirevst ure is compelled to act as one entity. The

displacement compon;;::f:l the joints of any individual element are
chosen in a direction which depends upon the nature of the element
considered. For example, in the case of a slender bar, it is convenient
to choose the di§Placement compbnents of one end so that one of the
coﬁponents is in the axial direétipn and the other two in the orthogonal
transverse direction. But the indiyidual elements can have different
orientation in space. Thisr;;;;aﬁpate system is known‘as the 109&1

Loordinate system.

These coordinatés are related to the global coordinate system by
a matrix of direction cosineé,‘which plays a role of a transformation

matrix. In general

-

{w} = [6] M Lo (2.11)

where [éj is the transformation matrix relating the locdl displaceggnt

vector, {w} to the global disp]aceqent vector, (¥} respectively,

In the previous section, the equationi ofVmotiBn of ;n element
was. derived in terms of the local coordinate system. The reﬁaining
task is to extend Fhese results to obtain the equation of motion of the
complete structure. '

Let a new set of disp]acementsvﬁs (3= 1,2,..ZN} represent the
. «®
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.

. joint displacements of the comp]eté structure in terms of coﬁponenfﬁ
'Jélong the global system'of coordinates. Then, ﬁj.(j=.1, 2, ... N),can{
be represented by a column matrii {W}. Suppose, the structure consists
'of p. elements, and denoting qyantities :Lrtaining to the sth eiement
by the subscript s, the relationship between tﬁe‘vectors {w} and ﬁﬁ}

can be written as -~
W}, = [H]_ (W3, s=1,2, ...p | (2.12) °
s .

where'[H}Siis a rectangular transformation matrik._ fhe matrix [-H]S has

as many rowg as‘{ﬁ}S and as many columns as {W} has‘rows; The elements of
every roﬁ of [H]S are-all zero, with the exception of one element in each
roﬁ which is equal to unity. vfhe position of the unit element in every
row of [H]S is such that equation (2.2) is an identity. - It should be
noted that a given joint displacement can occur in several of the vectors
{ﬁ}s. In fact, it appears in those vectors sharing cofrespgnding joints.
Therefore, the elements of the matrix {W} can be régarded as‘a set of

4

gehera]ized cuordinatesqfor the comp]ete'systém.

Representing the kinetic energy of the complete structure by T*

and adding the contribution of each of the elements, one can write .

P . . : -
T = LU YR - -
52% {w}e [m]S {w}s - (2.13)

'|\3|_4':

13

where [ﬁ]s is the inertia matrix of the element: in terms of the global

coordinates;
1 = (61" [ml [6] o (2.19)
._Differehfion of equation (2.12) gives

S [H]s,{ﬁ} s=1,2, ...p (2.15)

r
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-

combining equations (2.15) and (2.13) one obtains

/ .
. 1- < roaT T T :
=5 3, (W [Hl. [m}; [H] W3 (2.16)
s=1 :
= %— il ‘[ﬁ] o . _ (2a7)
where . , - T . _
[M] = >z 1D [A), [H], | (2.18)
s=1 .

represents the inertia matrix of the system. Lo -

The potential energy V, of the complete system can be obtained by
adding'the contributions from each of the é]emeﬁt and mathematically it

can be written as

=l‘ % g1’ [k [T W) ‘(2 19)
2 5= s s s . Mee
‘ Y _ |
= ;— {ﬁ}T/ [R] {W} — . (2.20)
Iwheré, p ‘ ‘
. T . '
[K] = §2=1 (4], [k]S [H]S (2.21)

is the stiffness matrix of the compiete structure.” Similarly [E]! the

damping'matrix of the complete structure can be represented in the form
. p T - : .
[cl1=73% {n] [c]l [H] (2.22)
s=1 - ° s S .
where, [E] is a matr1x of damp1ng coefficients associated with s th

discrete element in the g]oba] coordinates. v

By ﬁsing the formulation of virtual work, the vector of the joint
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non-conservative forces for the complete ;pructure; corfesponding to the

.dispTacement vector {W}, can be expressed as’

- P ; '
(Fto= 3 W), &Y o (e.23) .

s=]

where {?}S is a vector representing the forces interacting between

th

elements associated with the s* element in global coordinates..

Using the formulation of Lagrange's equations of motion in con-
jdnction with the above set of equations, the métrix differential equation

of the complete spind1e~wbrkpiece system is derived in the form
[M] {W} + [C] (W} + [K] (W} = {F} ' . (2.24)

_whe%e [ﬁ], [c], and [R] are the global mass, damping and stiffness
matrices respectively having a size of (26 x 26) obtained by assembling

the elemental matrices.
‘J’ﬂ‘\ .

2.8.3 The Boundary Conditions

: Réferring to Fié. 2.2, the boundary'éonditions‘at the running.
center have to be applied in order to remove thé rigid body mode, and
also to determine the nature of the workpiece connection at this end. -
‘If this connection is to be assumed,ﬁf hinged then the first component
of the displacement vector {W} would vanish. Similarly, if the connec-
tion ‘is assumed to be rigid then the first two components of the dis-
placement vector {ﬁ} would be zero. As %bensequence of this, the size
of the stiffness and the damping matrices would be 25 x25 in the first i

case and 24 x 24 in the second case.
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2.9 Conclusions

In tﬁis chapter, a lathe spindle-workpiece system supported by
elastic bearings with damping and acted upon by random cutting forées is
described and baséd on this an appropriate mathematical modei_of the
system is formulated. A short review of the different methods of
solution for the ébverning equations such as'the finite difference
method and therfinité element method are presehted; The finite element
method is chosen as the betfétxggproach for obtaining a solution to the
" present study.- Usiﬁg the finite'e1ement analysis, the complete system

is represented by a system of matrix differential equation of motion with

stochastic excitation. The boundary conditions existing at the workpiece- .

running center are also explained. In the next chapter the free vibra- -
tion behavior of the system will be preseﬁted, and an appropriate model

of the workpiece-running center boundary will be established.

T



CHAPTER 3

THEORETICAL AND EXPERIMENTAL INVESTIGATION OF THE

FREE VIBRATION OF THE SPINDLE-WORKPTECE SYSTEM

3.1 Introduction

»

In Chapter 2, a lathe spindle-workpiece system was mathematica]]yb
modelled and the equations of motion of the compiete system were presented
1n the form of 2 matr1x d1fferent1a1 equation using a finite e]ement

formu]at1on It was a1so mentioned that the nature of the boundary

" condition.at the running center is unknown and that it can he cons1dered

either as hinged ar c]amped support. In order to.establish accurate]y

the mathematical-model of the system, the first step is to evaluate the

_nature of 'the end condition at the running center. This tan'be achieved

only by carr&ing out an independent theoretical analysis of the spindle-
workpiece system using hinged and clamped conditions respectively and
comparing both the results with those obtained from an experimental

investigation on a test model [53].

3.2 Selection of the System Parameters

In order to éarry out both theoretical and experimental investi-

gations, the spinalebof a 12 hp Demoor type lathe, Model No. 821A as

~ shown previously in Fig. 2.2 was considered. A workpiece of material

AISI 1020 steel with d diameter of 0.05Im (2 in.) and a length of

0. 302m (13 in.) was selected and held between the chuck and a runn1ng
center. The variations in the mass and the stiffness along the sp1nd1e-
workpiece system used in th1s investigation are shown in F1gs 3.1 and
3.2 respectively. It should be noted that in these two f1gures, both

mass and stiffness of all sections have been normalized with respect to
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Fig. 3.1: The variation of Mass Along the System.
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"the ﬁass and the stiffness of the chuck. Also, the front bearing stiff-
ness has been'taken as 3.19 times the rear bearing stiffness. <Other

parameters used in this investigation are listed in Table 3.1.

3.3 The Experimental Investigation
) 4

3.3.1 The Experimental Set-Up

In order to estimate the nature of the boundary conditidns at the
workpiece-running ceﬁter interface, an expmﬁment.dn a 12 hp Demoor type
lathe was carried dut; The object of this experiment was to estimate
the natural frequencies of the-spind]e-workpiece system and compare
these natural frequencies with the theoretically computed natural
frequencies for both'types of end conditions;'that is, the hinged end
condition, and the clamped end condition. This way an appropriate model

to répresent the system at rkpiece-running center interface can

be establishe&.

The experimentation was carried out by holding an AISI 1020 steel
workpiece, 0.05Im (2 jn.) in diameter,'and 0.302m (13 in.) in length,
between the chuck and the ruﬁning center. An electromagnetic shaker
type B&K—4812.having a specification of ﬁaximum force of 445N (100 1bf)
and a displacement limit of 0.013m (0.5 in.}, was empldyed to proyide.a
sinﬁsoi@a] force excitation to the gpind]e—workpiece system, using 2 _
push rod. One end of the push rod was connected to the shaker, and the
other end to the workpiece. A schemaiic diagram of the experimental
set up js presented {n Fig. 3.3 apd the pictorial views of the set up

are shown in Figs. 3.4 and 3.5.

An accelerometer, B&K model 8302, having sensitivity of 10 pc/g

was mounted on the chuck.- The output signal of the accelerometer was

£
A
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Parameter Values of Spindle-Workpiece System

PARAMETERS

VALUES OF THE
PARAMETERS

Modulus of Elasticity

Mass of the'Chuck

Diameter of the Chuck

Stiffness of the Front
Bearing

Stiffness of the Rear
Bearing

206.456 x 10° N/m%
(30 x 105 1bs/inch?) -

34.012 kg (75 1bs)
0.254 m {10 inches)

1530.1 x 105 N/m

-{8.74 x 108 1bslin;h)

479.84 x 105 N/m

~ (2.741 x 108 1bs{inch)

»;

3

4

U
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Fig. 3.5: The Pictorial View of the Shaker and Workpiece
for Frequency Analysis. - .
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condftioned using a B&K quef 2626 charge amp1if%er, and then ampiified
by a KistTer S04E voltage 5ﬁp1ifier. The'amp1ifiéd signal was plotted
on a.H.P. 7004-B x-y p1otfé%, and at the-;ame time it was recorded on
B&K 7000;‘Q;chq2251_tape recorder. An oscilloscope, Tektronix model
201-2 was used to abserve the generated response signal which was being
recorded. One end of the force transducer was Screwed 6n to the push ‘
rod of the exciter and the other end was screwed on to the workpiece.
The output signal from the force transducer 325 cond1t1oned and fed to
the shaker exciter control so as to ma1nt’ n a constant excitation force.
The exciter was 5tat1ca11y loaded at firsZ? and then the spindlie-work-

pidce system was excited within the range of 25z to 1500 Hz w1th a

constant dynam1c force’ of 44.5N (10 Ibf) and at as of

1000 Hz/min.

3,372 Experimental Results

A typica1_experimenta1'record of the acceleration versus -freguency
is shown in Fig. 3.6. The_peaks in the'output response were identified
to be the hatuyql frequencies of the spindle-workpiece $ystem. In this
figure, the output of the acce!erometeé below 25'Hz is notlshown. This
is due to the low frequency limitation of the electro-dynémic‘shéker.

o That 1is, ;o maintain the constant force, tﬁe extiter displacement was

exceeding the designed displacement limit.

3.4 Results of the Analytical Investigation

For the free vibration analysis of the spindle-werkpiece system,
the homogeneous part of the equation (2.1) was sofved numerically on a
CDC Cyber 174 digital computer using the properties given in the previous

section. The undamped natural frequencies and the matrix of the eigen-
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vectors [53] were obtained. Table 3.2 shows the analytically obtained
undamped nqturé1'frequencigs for both: hinged and clamped end conditions
at the runnirg center,. along ﬁ{fh'the experimentaliy obtained natural

frequencies. - These results are also plotted as shown in Fig. 3.7. k

3.5 Comparison and Discussion of the Theoretical and

the Experimental Results

The éxperimenta]]y obtained natural fregquencies as well as the
“theoretically compﬁted natural frequeﬁcies are shown in Tab]é 3.2 and
Fig. 3.7. It can be seen that, the theoretically computed values of-the
natural frequencies 1ie in close proximity of the experiméntally obtained .
values. Based on a comparison of the percentage error in the first five.
natural frequencies, the hinged end condiﬁion for the_workpiece has an
“-error of less thaﬁ 8% in comparison to the clamped end condition which
exhibits a maximum error of 20%. Considering the twelve theoretically
calculated natural frequenc%es, the computation of the root sum sqﬁared .
(RSS) error for hinged and clamped conditions also show that the hinged .

condition has an error of 3.3% Tess than the clamped condition.

"__\

Based on these comparative analyses mentioned;ébove, oné can
conclude that the hinged support at the running center for a spindle-
workpiece system, is a better representation of the actual system and

is considered in the mathematical model in ail further computations.

3.6 The Effect of the Variation of the-Bearing Stiffness on the’

Free Vibration Behavior of the System

After the identification of the proper end condition at the
workpiecg}running center connection, the homogeneous part of the

equation (2\]0) was solved for several values of the.front bearing

*



ar

o~
£°€ £0°6 g6zl - 2sEL 8LLL zl
0L £°0 stol 0SLL " 2801 u
8°02 9°12 986 - 084 2L oL
s 6°02 . GbS ou 659 6
£l L*2 59¢ Iy . 56t 8
£2°0 2Ll 52y " 2y LLE L
501 6L 642 9bZ ez 9
0°02 L1 s . 0Lz 8.1 g
AL 8L . 6 €8 b
© A 85 cuy 55 £
To— - — 1€ g - 2
- — - 82 .f;d 0z L
. «
- 3j40ddng 140ddng ZH ZY “3a0ddns{zy ¢3soddng ;mnELz
padue |9 pabutLy |eauswiaadx] padue |9 pabuLy fausnbadd
dx3 = 40dul % . sLSAleuy juswe(3-a)iuly

00L X (%3-5tsA[euy -3°3)

Emumzm.mcu 40 mmwu:mzmmLm lednjeN paduepup

4

¢’€ 3avl



- 57 -

1200

| | r k=1514x10¢ &
ool / {c]={0]
10001 7 )
,.
| I
900l If
. I/‘-
sool , ; —_ EXPERIMENTAL
: /j —— CLAMPED
N - f —.— HINGED
700L / '
] .
3
> sool
9
(&)
=z
ul
2 soof
uw
v
LL -
agol
00| ":
~
200|-
: 100]- v
]
fs! S SRS N S S R R T S
¢ 4 S5 6 7 8 9 10 N o2 I3 14 i5 18 17 18
- FREQUENCY NO. —e

-

Fig. 3.7: Hinged, Clamped and Expei"imenta] Frequencies Versus
Frequency Number.



-52 -

stiffness. These variations ranged from, the existing design value
which is represented by K in Figs. 3.8 through 3. 13, to eigh
this va]ue In all. of these computations, the ratio of the front'bq\h¢ng '

st1ffness and the rear bearing st1ffness was held constant and equal to

3.19.

W

The free vibrationdehavior of this systeéfis due to the inter-
. action between the inertia forces, the spring fo;les, and the flexural
rigidity of the system. In other words, the de%lection of any.ﬁoint
along the spindle-workpiece ;ygtem depends upon the‘above mentioned
factors. The effect of the variation of the stiffness of the bearings
on the natural frequencies and the mode shapes is discussed in the next

€ .

section.‘

3.6.1 Effect of Variation in Bearing Stiffness

In order to study the influence of bearing stiffness on the free
vibfation of the spindle-workpiece system, the finite element analysis
was repeated considering the variations in the front end bearing stiff- .
ness but keeping the stiffness ratio of the‘two bearings a constant. The
~variation of the ‘natural freduencies as a function of the bearing stiff-
ness is shown in Fig. 3.8. The results indicate that the first natural
frequency increases rapidly at first, that is,_when the.bearing stiff-
ness‘is in the range of K to 4K, but there is very Tittle increase in its
value for bgaring stiffness values between 4K and BK.. It may be seen
- that gﬁe second, the thiéd 'and the fourth-natura] frequencies shdw very
large 1ncrease, 1f the bearing st1ffness is varied between K and 8K.

The effect of bear1ng stiffness rar1at1on‘9n,the\f1fth natura] frequency

as shown 1in thts‘f1gure, clearly™indicates that thede is a very little
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increase in its ‘value.

The effects of varying the bearing stiffness on the undamped mode
shapes of the system are shown in Figs. 3.9 to 3.13.«'Figuré'3,9 presents
the variation of the first mode shape with respect fo the Vqriation of
the front bearing stiffness. In the first mode, for Tow vaTUes of the
 bearing stiffness, there is a considerable variatioh in the ABflection
along the workpiece due to its slenderness and at the same tihe thg
deflection curve of the spindie is linear owing to its high flexural
rigidity. However, as the bearing stiffness is increased, the dgf]ectibn
at the bearing location decreases, and as a consequence, there is g sig-
nificant curvature in the deflection curve of the spindle. These results’
are due to the fact that the natural frequency increases as the bearing
stiffness increaées. Also, in the first mode, due to the large inertia
forces of the chuck, the deflection of the front bearing is larger as
compared to the rear bearing‘even though the front bearing stiffness is
3.19 times greater than the rear bearing stiffness. Referring to thé
first mode,. it can also be seen that increasing the stiffndss of the'
bearings increases the deflection in the workpiece and haséﬂittle
variation in the mode shape for large stiffness values. Based on these
results, it should be noted that the se]ectioa of bearing stiffnéss»based

simply on the first mode alone is not sufficient.

Figures 3.10, 3.11 and 3.12 show that the second, the third aqd
the fourth mode shapes undergo considerable changes as the bearing stiff-
ness is increased. This can be explained by refgrring'to Fig. 3ﬂ8,“where
the co#responding natural frequencies undergo large variation as the
bearing stiffness is increased.‘ As a consequence, there would be 1argé

variation in the inertia forces. ' Since the system has irregular
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. - L 4 . - - .
distribution of the stiffness along its length, the interacting forces
result in the compiicated mode shapes which are quite sensitive to any

change in the bearing stiffness.

It Ean be seen that for the second, the third and the fourth mode
as thé front bearing sfiffness increases, the maximum deflection of the
workpiece increases initially and then decreases with the minimum of
the maxima occuring in the fourth mode. Comparing the dgf]ection at the
bearing 1ocatipns,-the amplitude increases and then decreases in the
third and in the fourth bearing location while for the second mode, the

deflection increases initially énd then decreases. -

The fffth mode, as shown in Fig. 3.13, is almost insensitive to
changes in the Egafing stiffnesé.~ This is due to the fact that the
fifth and the higher natural frequencies change very Tittle, due to in-
crease in the bearing stiffness in the given range.? As a consequence of
this, the inertia forces do not change, therefore the‘cﬁrresponding modes

are not affected. e
3.7  Conclusions

In order to identify the proper end condition at the’ running-
center, estimates of the undamped natural frequencigs were made from the.
experimental acceleration response versus frequéncy cﬁrvé. JIn this
experiment,_tﬁe spindle-workpiece system was acted upon by a-force of
" constant amﬁlitude but variable frequency between the range of 25 Hz
to 2500 Hz, and the acceleration response signal was plotted on a x-y
plotter. The expe}imenta11y obtained natural frequencies were compared
with the theroetically computed natural frequencies, and using minimum

root sum squared error criterion, it was inferred that ‘the hinged end
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cong-i-on is a better rebresentat.ion of the actnal behavior of the
‘system. After-arriving at a spitab1e“mode1 of the spindle-workpiece
system, the, effect of the variation of the bearing stiffness on the

\\\\iiffra] frequencies and the mode §hapes were studied.

~

In summary, the following conclusions are drawn:

1) The éﬁd condition of the workpiece supported by the runnjng T

center can be better represented by a hinged condition rather than a

clamped condition.
. ~

2) The first natural frequency increases rapidly if the bearing
stiffness increases between K and 4K but the-increase-ii~¥?ry Tittle

for higher than this range of stiffness va]ueS.

-

3) There is considerable increase in the values of the second,
\".\x Bk ) '
* the t?f;g;:qﬂd the fourth natural frequencies ifythe bearing stiffness

is increased from K to 8K.

4) THere is very little increase in the fifth natural frequency

values corresponding to the changes in the,bearinﬁ stiffness vaiues.

S



CHAPTER 4 .

DYNAMIC RESPONSE OF A LATHE SPINDLE- NORKPIEdZ}}
- SYSTEM UNDER_RANDOM CUTTING FORCES

4.1  'Introductfon

-

[ i "
. The-uorkpiece experiences .vibratory motions during any turning
operatioq because of the dynamic action of the cutting forces. The

dimensional -accuracy and the surface finish of a machined workpéEce is
1nflu;oced considerably by the vibratory response of the sp1nd1e-work-

" piece system under the direct act1on of the cutting forces During |
the actual mach1n1ng process, the cutt1ng forces are essent1a11y a random

. process and such a random phenomenon as stated ear11er, has been
observed clearly in many experimental investigations such as those by
Bickel [18] and Field [19]. Hence it is essential to carry out a |

rcomp1ete djhamic analysis of the spiudle-workpieoe system under the
octual etochastio force excitation so that results or conclusions can be

drawn and can be applied to the design of the spindle to achieve a better

performance jncluding a better surface finish of the machined workpiece..

For'an analytical investigation of the dynamié'response of the
spindle-workpiece system, the matrix differentﬁ%ﬁ equations formulated
in chapter 2 have to be solved with the random cutting forces as the
forcing function. For this purpose the main cutting force fluctuations
along the z direction was actually measured in the Iaboratory using a
piezoelectric dynamometer and used as an excitation input to the matrix
differential equation of motion of the sj%téh In this chapter, the
experimental procedure for the cutt1ng force measurement calculation

of the Power Spectral Density (PSD}, descriptions of the cutting force

Coa



‘\' (\\ ' ; " compared to a correspond1ng case of stationary random processes, on]y. In

variations, and the procedure for the computat1on of the mean” square

response of the workp1ece are outlined.

~ Since the cutting tool continua]ly moves along the workpiece
during mechining, the excitation end hence the résponse of the workpiece

_‘are to be characterized as a non—stationary random process. In any
genera] dynam1c problem dea]lng with non- 5tat1onary random processes,
ana1yt1ea]1y determ1n1ng the response of the system is h1gh1y complex

and somet1mes not poss1b1e w1thout 1ntroduc1ng certain approx1mat1ons

{ the present case of the spindle- workpiece system, the dynamic response
\, - under the random cutting forces can be evaluated in a simpler manner 1f

the cutting forces are approx1mated by a stat1onary random process if

' o the workp1ece response at the, tt1né tool contact can be assumed to

* have negligible influence on the variation of the tool feed rate. In
'drder to juetify this approach, en independent ane1yg;s on the dynamic'
’ Aresponse of the given system in turn1ng under the action of " spatially
- moving random metal cutting forces, resu]t1ng in a non- stationary type
. - . : of random cutting forces, is carr1ed out [54] and presented in the

L

fol]ow1ng section. . . :

4.2 Aworkp1ece Response Under Spat1a11y Mov1ng Random \

~

sl

" Cutting Forces

The system under cons1derat1on is the chuck- -workpiece-running -
~ center system as shown in Fig. 4.1. The workp1ece 1s supported by the
heavy chuck on one end\énd the running center at the ta1Tstock end.

The.cutt1ng tool is fed from right to left at a constant'feed rate.

-‘Usua]iy this feed rate is much higher,for a finish turning than for a

-
€

-
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roughing operation. Since the cutting tool continuously travels alongd

the workpiece, the excitation on the workpiece is essentially a non-

o

stationary random process.

-~

-

The effect of random moving 1oads on>the dynamic. response of a

beam, using the correlation method, has been studied earlier by Fryba [55].
.A similar method has also been used to tackle the problem of vibration 0f»
bridges caused by random loads generated by the moving vehicles [56]. 1In
these investigations [55,56], the response at a particu]ar‘location, such
as at the mid-point of the bridge, was of particular interest. In the ’
bresent prob]em-of‘WOrkpiecg vibrations involving moving random cuttingj

‘ fdrces,,the respbnse af the insfantaneous Tocation of the moving tool is
o% primary concern, since the.workpiece surface roughness directly

depends on the workpiece dynamic response taking place at.the partibu1ar

cutfing tool location, especially in finish machining.

It'haF'been shown earlier [41], that the finish machining forces
are bqsica]]y broad band in nature and therefore, for mathematical
simplication, théy can be'approximafed b& a whité noise process. Also,
al equivalent .viscous damping is assuméd in-thi s\ﬁﬁalysis for the work-
piece, to‘gccount for the structural damping—in the workpiece material.
The mathematical hodel for the system then is a.Bernoulli-Egler beam
with the chgck end taken as fixed and tﬁe end at the running. center
considered hinged. The mathematical reﬁrgsentqtion and the stochastic

analysis for the response are presentéd-in the following sections.

4.2.1 The Mathematical Model and Analysis

. N : @
Representing the workpiece as a Bérnoulli-Euler beam, the-

equation of motion is given by {57]

h)



Cce6- o
EI Qz_";(.’%ﬁ). +2m(x)8 ﬁ%ﬁ)- +m(x) &"‘;%‘Z—’H = f(x,t) (4.]')
X Cat? :

where . N\

W(x,t) is the transverse deflection of the beam

EI is the constant fexura] rigidity
B is the equivalent viscous damping
m(x) is the mass per unit length of beam

A

and ,
f(x,t) represents the random forces exerted by the cutting

tool on the workpiece

The natural frequencies and the normal modes of the beam are obtained by =
so1€ing for the undamped free vibration of the system and are given by

the solution of
4 2 ' .
o 2Ht) Na X:t) 4 m(x) TH(x,t) wa:zt = 0 (4.2)
X : . . .

b ' ) . . 4 . ‘
with appropriate boundary conditions. Assuming a harmonic solution, of

“the form W(x,t)=¢(x) exp (iut), the equation of motion (4.2} reduces to - .

(-\ o

(w,?-u?) oy(x) =0 with m=1,2,3, ...0= S (4.3)

the characteristic equation

where mm-are the natural frequencies and ¢m(x) are the normal modes of

the beam {57].

The transverse detlection W(x,t) and the excitation f(x,t) ﬁ;; be

examined in terms of the normal modes ¢m(x) as

s

W(x,t) = }f; émfx) gm(t) _ (s

g



-

and . .
flx,t) = - 2 mix) op(x) Q(t)- _ (4.5)
m=1 ;o ,

¢

ﬁt;pe qm(t) are a set of generalized modal coordwnates and Q (t) are
genera11zed_moda1 forces. Substitution of equations (4.4) and (4.5)

into equation. (4.1) yields

d2q_(t) dq.(t)
m + 28 qlTl

+ w? t) = t .. 4.6
e Tt W qm( ) -QW( ) (4.6)

The generalized forces Q (t) are obtained by mu]t1p1y1ng both sides of the
equat1on t4.5) by O (x) and 1ntegrat1ng along the 1ength 2 of the work-
~piece. Using the orthogonality pr1np1p1e for the normal modes, the .
following equations;can‘be written: |
. - [} L ‘
QGlt) = - 7’ Flxt) op(x) dx t>o

\ 0

30 t<o | (4.7)

hd .

The genera]i;Ld mass Mm-of the beam, appearing in‘equation (4.7) is o
defined by '

= , 2 ' : ‘
My f m(x) ¢Z l(x) dx o (4.8)
The response oflthe system in the time domain can be obtained by consid- -

ering the unit impulse response function which-for the m-th mode of the

system is given by [57] i
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. 1 _ .
hmFt) = a exp(-8t) sin mmt tao
' =0 t<o ' : : . ’ (4.9)

———

where m& is the mth damped natural frequency and is

W=t ' (4.10)

‘Theu the solution of equation (4.6) is expressed in the form

N :
W) = [ mylt-n) g o) ar

0

t

- =. f hm('r) Qm(t-'r) dt-

0
m.

= f hm('r) Q!.n(t-'r) dt | - (4.11)

-

. ~ : :
If the: forces are purely deterministic, the response is directly obtained

by combining equations (4.4), (4.9), and (4.11).

4.2.2 Response Under Non-Stationary Random Cutting Forces

Expressing the non-stationary cutting forces f{x,t} in terms of

a mean value E‘k,j) and a centered random value f'(x,tj, one can write
f(x,t) = F(x,t) + £ (x,t) - : (4.12)

The response of the workpiece to such a non-stationary forcelwi11 also be

a non-stationary process and similarly it can also be expressed in the

form:
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H(x,t) = H(x,t) + W (xt) o e

Therefore, by analogy, W will be the response due to F and W' Wil

be the response corresponding to the component - f'.

Once the functional form of the mean value of the excitation,
F(x,t), is known, the response W of the system can be obtained by (4.4)
through (4.11) since~?(x,t) js deterministic. An approximate expression

for the mean value of the response is given later for a particular form

of the mean cutting for C:it is considered.

The covariance Cc g of the random component ' (x,t) of the

excitation, can be expressed as [58]
' Cf.f.££§1,x2,tl,t2).= E [f'(x,.t,) f'{x,,t,)] : . (4.14)

where, E[ ] denotes ensemble averaging. Combining equations.(4.7} and

(4.14), the covariance function for the generalized force Qé is obtained "
(4]

-as
%

. B .
ff ¢m(x1)'¢n(xz) cf(x1 :x;;tl ,tz)'
o .

° dx, dx, (4.15)

1
Carni(t,,t,) =
Uy 2t My

Representing the'generaliz d'djsplacements in the m-th '‘mode due to the
centered random excitation f'(x,t) as qﬁ(t}, the covariance of the
generalized def1ect16n'is written as . ) -

anqﬁ_(t"tZ) = E Dag(ta) gp(ta)] S (4.16)

Substituting for‘qa(tl) and qﬁ(tz) from eﬁuafion (4.11) into equation’

(4.16)’and reversing the order of integration and then averaging, ,j
- . a " R

»
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qmc'n ff (2.~ Ta) g (£ - T2) CQ 2 (t1,72) ded'rz | (4.17)

Using equations (4.4) and _(4.]7), the covariance of the displacement can

be written as

Cwnwl(xlle!tlltz) = Z'l Z bm (x1) ¢n (xz) C 'q! (tntz) {4.18)
' m=1 n=1

- t‘ _\
The centered mean square value or the variance of the deflection is ob-

tained from equation (4.18) as .

o

c.;.(x,t) ='Cw.“.(x,x,t,t) 3. Z O (x) b (x) C ! (t,t)
, _ m=1 n= mn (4.19)

It has be?l shown [59] that in the equation

5o 00 Cquonie > ST 6 (x4, (x) €Ly (E1):
IR L e o (4.40)
m#n - :

. \\
' ]
Therefore, the variance of the displacement can be written as

-cﬁ.(x,t)= Z $2(x) o9 (tt) o (a.21)

4.2.3 Characterization of the Moving Cutting Force

<

The metal cutting forces vary randomly in time and in addition

. they move along the workpiece with a constant tool velocity v *here-

fore, 1t can be descr"lbed through the form,

f(x,t) = 8(x- vt') [?‘+f‘(t)] ‘ - (4.22)l'

%
~

S~

) ke

<,
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where 8( ) def1nes the Dirac delta funct1on and F 1s the mean va]ue of
the cutting. force wh1ch 1s mov1ng at a. cnnstaht rate v along the work-
piece. The response of the workpiece due to the mean force F can be

written using the procedures given in [ 56 ], and Tables [60].

Further, covariance of the centered random excitation f'{x,t) is

" expressed by

E

Cflfl(x]_:xzjltl ,tz) = S(XJ-th) G(Xz-Vtz) Cflf'(tl’tz) (4-23)

As mentioned earlier, since the random part'of the cutting forcé is
essentiallx,g\gjde band process, it is considered, in this chapter as a

" white ndise process having a constant power spectral density, Sf, thrbugh~
out the frequency region. Accordingly, the covariance of the cutting

Y
force is

™~ : _ - ,
Cftf'(tl’tz) = Sf: 6(t2-t1) (4-24)

4.2.4 The Mean and the Variance Response of the Workpiece

at th® Tool Location ' ‘ v

€’

The mean displacement response of the workpiece at the point of
contact is obtained by combining equation (4.4) throu&h\(4.11).and (4.22)

as,

t :

- & tplx) |

ooty = F 3 o f exp [-8(t - 7)] oylvr) -
0

.

sin w!(t-1) dr (4.25)
The response at the tool location is then expressed as
' o o ~ ) zZ
[ ) fexp[s (2= 5 Jogix,) -
JII=] [‘“}n v, -
sin mm (z X ) dx, - (4.26)

¢

-\\ . .
g . L)
. \-\_\ .
A - .
] .
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The rneah. disfp"l'a'cement_ is, ‘then\nama'lized by dividing it by the
midspan aispTacement W, of the workpiecé"défiried' imdef‘jc‘he force F
when applied at the same location. Therefore, the expression for the

normalized displacement may be written as

= 2 2 ¢ (2) o
W(z) _ 192 =« y, m 1 , (4.27)
W 72" o mEl o a m '
\ 0 ! pm e

- where ¢m(z) is the que shape function for hinged-fixed beam and is

given by
. ¢m(z) = (1 -em). sinh z + ('I+6m) sin Z (4.28)
. . ‘ .
with
M =I(sinh Ay *+ sin A1n)/‘(s1'nh Ay - sin Am) (4.29)
and ) . ‘
I, = (1 -am) Im!+(1+em) Im,_ . . : (4.30)
where I = 2 exp{bz) - exp(-kz) {acosaz + (k+b) sin az}
m (k+b)2 + a2 ) )
exp(-kz) facosaz + (k-b) sin az} - a exp(-bz)
¥ ' (k-b)? + a?
[ = kcos bz+(b+a) sin bz - exp(-bz) {k cos az- {b+a) sin az}
Wz (b+a)2 + k2 - [

kcos bz + {b-a} sin bz4exp(-kz) {k cos az+b-a) sin az}
(b-a)2 +k?
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Further, -
W= L F 2l
o ~ 768 El
bm = Am , a = wvwl 5
[ = B/ml s nm = mm/ml >
- %
k = mgfo 3 = m(n? -nz)%/a ,

~ In the expressions for Iml and Imz’ the subscripts‘for-b, a, and n are
dropped for the’sake of convenience. When the feed rate Vv is zero,
the mean ]oéh abp]iéq by the tool is just a sfatic load. Therefore, it
is meaningful to compare equation (4.27) when v is zero-with the
expression for deflection of a beam having the same boundary conditions
as that of the workpiece, at the point of application of a static Toad, -
which is given by [61]
Hgy(2)

s g e (3.31)
0

‘The variance response of the wofkpiece at any location is obtained by

| combining the equations (4.15), (4.17), (4.21), and (4.24) and can be

written. as _ ,
" @ t ot
. 2
PICR D M i Wil h (t-T2) By(t=a) -
) m=1 M~2 ,
Com, o o i | .
< dplcti) ¢p(cta)-8(rz - Ta) duy dra (4.32)

Defining the new variables x, and x, by the relations X; = vT1/%,s and

X, = vra2/% respectively, the equation (4.24 is rewrittén as

Vi
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~9'x1 Exz) v . X
cf’lfl T" 2 _V— v: I - Sf'ﬁ(xz-xl) . (4-33)

Substituting equations (4.9) and-(4.35) into (4.32), the variance of the

displacement at the tool location can be expressed as

=

_ . \ , ‘
bd ¢ (Z) [ ? ZB-Q'

o 3 [ f )
: 2' 1 % 2 | o
sin [“’m v (z-x;):| o {xy) dx: (4.34)

The normalized variance of the deflection at the tool location is given

by
0, 3(2) _ -
W = sz 2 (z) (4.35)
wo LN
where )
2 ! '
] Cf = Sf F'—z (4.36)
. e\t 2 & 6-2(z) |
and  W2(z) =(§-§i) —“——a > mn > " v ) (4.37)
- [ aih; m=1 a -
m
Here, s B
(1-6,) (1+8)° (1-8.)" .
R i e S s (4.38)
wit“ﬁ’ . .
Jo = exp(2bz) 1 __{k+b) +exp(-2bz) {. 1 _ _{k-b)
2 ktb (k+b)2+a?} . k-b  (k-b)2+a2
_ ‘g_' 2k {4 exp(-2kz) (k+b) cos 2az-a sin 2az
lk k*+a%) © (k+b)2+a?
+ (k-b')‘cos 2az -a sin 2az _ 2(kcos az - a sin az _ _2b?
" (k-b)2+at k2 + a2 k(k? - b2)
£ ‘ .

'Y

P
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_ k cos 2bz + {b-a) sin 2 bz , k cos 2bz + (b+a) sin 2bz
(b-a)? +.k2  (b+a)?+k? -
_2(k cos 2bz + b sin 2 b3), ¢ . 2a%
- k? + b* k{k? +a3)

-
z

-éXp(-Zkzj‘ )k cos 2 a%+ (b- a) s1'n‘éi+ kcos 2az - (b.- a)sin2az-
o © (b-a)2+k® (b+a)?+k?

_2{kcos 2az - asin2az}, __2b
k% + a2 . k(k?+b?)

_ exp(bz) {(2k+b) sin bz + (2a -b) ‘cos bz}
(2k+b)® + (2a-b)?

exp{bz) {(2k-b) sin bz -~ (2a+b) cos bz}~ .
(2k+b)2 + (2a+b)?

_ exp(-bz) f(Zk-b) 'sin bz + (2a-b) cos bz}
(2k -b)2 + (2a-b)?

_ e.;.p(-bz) {(2k ~b) sin bz - (2a+b) ctos bz}

+ .. (2k-b)? + (2&+Db)?
+ 2exp(bz) {b cos bz - (2k+b) sin bz} o A
-(2k+b)? + b2 s

l .

+ 2exp (-bi) {(2k - b) sin bz - b cos bz}
(2k - b)2 + b2
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(ck+b)? + (2a-b)?

- ‘(Zai-b)ecos-z az + (2k+b) sin 2 az (.
(2k+b)? + (2a+b)?

_ J(2a-b) cos 2 az + (2k-b) sin & az
(2k - b)2 + (2a - b)?

+ {2k-b) sin 2 az + (2a+b) cos 2 az
(2k-b)? + (2a+b)? ‘

. 2b 2b }
(2k+b)2 + b2 L2k b)? + b?

When the feed rate v 1is zero 'éauation (4.37) cofresponds to
the response of the workplece to a non- mov1ng random load Compering
this case w1th the response of a beam having the same end cond1t10ns as-
.that of the workp1ece ‘at the po1nt of application of a non-mov1ng
statlonary random 1oadg which: can be obtained much more s1mp1y, is

“relevant’at this'po1nt. _The expre§s1on for the response of such a beam

to random 1oad is  given by £581

HZl2) = (-%)2 1 /D |
st - 7 Mag m_] - (4-39)

+ ) i - I

- 4.2.5 Results and Discussion -

Numerical computations were carrﬁed out’for the mean and the

variance of the workpiece défTeetTons The mean va]ue was calcu]ated

oy

us1ng expressions (4. 27) and-(4. 31} and the var1ance was ca]cu]ated

, us1ng expressions (4:37) and (4.39) der1vedhearJ1er. A1l of the
) . . i . ) -
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of 30 Hz.
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response qadculat1ons were carr;ed out at the: tool contact and the re-
sults are-411ustrated in Figs. 4. 2 and 4. 3 In eva]uat1ng the responses,
common]y employed tool speeds+in the range of a = 2x107%to 1 x 107 _
considered. These correspond to v = 0.36mm/s to 1.8mm/s for a typ1ca1
workpiece of 0 cm in Tength and ha¥1ng a fundamenta1 naturatl frequency
%ﬁ: first five modes~are cons1dere% in the computat10ns The
mean def]ect1on of the workpxece at the tool contact was evaluated from

.

equat1on (4.27) and its p1ot for d1fferent contact points along the ,
workpiece, is g1ven in Fig. 4.2. The computed response was)é;;entie]1y-
the same for different feed rates and dffferent damping ratios. This‘
cleaply 1nd1cates that tﬁe feed rate and the damp1ng do not influence the
me d1sp1acement respone:gof the workpiece, Further, this suggeits that
"the complicated ana]ys1s_jb11owed in arriving at'equation'(?;ZT) can be
rep]acedlwith a simp1er form, without including the parameters describidg
the effect of feed rate"and demping "Such ana]ysjs would lead to the
expression given in equat1on (4 31), which conéider; the response only

due to a static load at the po1nt of application. Therefore, equation

when

(4.31) was also evaluated at each peint along the workpiece a
\
compared "these po1nts coincided closely on the curve obt ned from

equation (4.27), 1n wh1ch effects of feed rates and dam ing were ineluded.

The‘var1ance nf the disp]acement of‘the.workpiece at the tool
contact in e?a]uatedéfrom equation (4;373 and is plotted for different
contact Tocations along the workpiece in Fig. 4.3. It is to be noted
that for the feed rates.considered here, 1t is possible to conclude that
the feed rate does not have any s1gn1f1cant influence in the variance of

the displacement response.
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- :;:3 In view of the ébove; it is possible to evaluate the variance of
the disp1acément,respoﬁse by using a simpler expression such as the one
shown in equation (4.39)! In this equation, the values of the variance

* of the response at different points along the workpiece may be evaluted
by substituting the corresponding va]ués of z-, as shown jn Fig. 4.3.'

The effect of dampjng on.the variance of the displacement response is
also shown in Fig, 4.3 and as to be expected, inc}eased value of damping

reduces the variance response.

The aboveé¥esu1ts indicate that for the range of feed rates
normally used in finish turning operations, it is'not necessary to‘
consider the effect of feed rate in obtaining the mean and variance
responses at the tool contact point. This is‘becausé the feed rates
are very Tow comﬁared to the flexural vibrational velocities in the work-
piece material and so the transients'die down sdfficientfy fast and hence
do not inf]uence the. response at the succeeding tool 166at10ns as mach-
ining progresses. This result is very useful because much simpler

" expressions which do not consider the effect of the tool feed rate can be
employed with success to compute the probabilistic responses of the

workpiece. '

r

4.3 Spindle-Workpece Systen? Response Under

Random Cutting Forces

As a f{rst step in the investigation of dynamic résﬁonse of the
spindle-workpiece system, is to.conduct_actual tests to measure and

v record the metal cutting forces. Thé instrumentation set up orgaﬁized

for obfaining such information on the ra;hém cutting forceéois shown in

Fig. 4.4, The cutting forces were measured while a 0.051m (2 in) diametér.
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AISI 1020 steel bar on a 2hp D;moor Lathe. To obtain the force
signals and for recording the éutting forces, a special dynamometer was
employed. This dynamometer had pie;oe]eqtric-forcé transducers which
were §o arranged to measure the cutting forces in éhree mutually ortho-
gonal directions. Three individual Ehhrge amplifiers were used corres-
pondinﬁ to each of the three orthogonal force s%gnals X-Y-Z compensator
was employed to minimize the cross influence<betﬁeen these three signals.
Each of theﬁe thrée.cutting force signals, were then recorded using.a
B&K 7000 magnetic tape recorder on three separate channels. Also,

these signals were oejQrved on a cafhode ray oscillocscope while being

recorded.

4.3.1 The Dynamometer | -

For an accurate measurement of the cutting forces, a special
dynamometer which has quartz.transdu;ers as the sensing elements, was
employed. These transducers have thé property of converting the
mechanical stress amplitudes into electrica{ charges. In the dynamometer
that was used, the crystals are‘arranged in such a way that all»the
three,componenfs 6f the cutting forces can be measured independent of
the point of application of the forces. This,arrangement,a]iows the
cufting force magnitudes to pe obtained accurately although their point
of action is 16cated at the interface between the tool and the chip.
Figure 4.5 describes the cross-section of the dynamometer itlustrating
all the essential feafufes such as the base plate,“the tool holder, thé.'
bb]ts for preloading, the piezoelectric cells and the main.frame. These
components are designed in such a way that the dynamometer possesses &

measurable response over a wide frequency range and also, possesses a
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high resolution.

The loading capaé%fi;s of the dynamometer are specified as 2224N
(500 1bf) in bofh the radial and the feed directions and 4448N (1000 1bf)
in thé direction of the main cutting force. The dynamometer has a natural
frequency of ‘10 kHz in the feed and the main cutting force directions and
along the radial di}ection its nqtura] frequency is 13 kHz, which {re

sufffcient1y hidh'in relation to the cutting force frequencies to be
recorded. . ) (flxx_\

4,3.2 Static Calibration of the Dynamometer '

The static calibration chart of a dynamometeﬁ is heedgd if it is
to be mounted'on a rigid base. In the present case where, the dynamometer'
was mounted on the cross slide of the lathe, the static calibration above
is not sufficient. This is because the dynamic response of the machine

tool also influences the dynamometer sjgnals and thus the recorded

- -

‘signals may not represent only the cutting forces-on a one-to-one basis.’

Therefore, static and the dynamic calibrations of the dynamometer

employed, are essential.

The dynamometer was mounted oﬁ the lathe bed. The schematic
arrangement of the various instrumentation is sﬁowﬁ_in Fig. 4.6, \An
external dead load was applied on fﬁe tool ho]dé:,and this load was then

increased gradually. The corresponding increase in the output voltage

. was observed on the oscilloscope screen. Figure 4.7 represents the
a2

calibration curve obtained. The ordinate represents the electric charge

produced, and the abscissa representé the magnitude.of the applied load,

which was measured by a force transducer.. This sensitivity was used

Tater on to compute the magnitude of the actual cutting forces from their
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Fig.).?: Static Calibpation Chart of the Dynamométer
* (after Rakhi%]).




recorded siéna]s, which were written +1 Volt on the tape.'

4.3.3 The Dynamic Calibration of the Dynamometer

3

- * . . : : - . . .
The purpose of the dynamic calibration -is to obtain a plot from
which the actual force can be evaluafed in the entire frequency range of, )
. . _
interest. This is achieved by applying a known dynamic: Toad and varying

jts frequency over the entire range of interest in this study.

To find the characteristics of thé;dynamometer,.aldynamic Toad
was applied at the tip of* the tool and was kept constant by a feed back
Joop. It wae found that the ratio of the output to the input forces was
<lé;;entia11y unity up to 8 kHz: This confirmed that the static calibration

¢

curve was not distorted in the frequency range of inferest.

4.4 Cutting Force Measurenents

Iﬁ ofder to measure the actual cutting forces, the dynam0meter
, was mounted on the cross s]ide‘of ?%e 1athe.. The ouéput signal of the
dynamometer was fed to three charge amp]ifiers corresponding to each of ~
. the three mutually orthogone1 cutting force signals. ‘An X-Y-Z compen-, =
sator was employed to Tinimize the cross 1nf1eence between these three’
orthogona] s1gnals A workpiece of 0. 051°m (2“15£Qaméter was machined
using a 0.0794 um (1/32“) nose radius tool with a feed rate of
0.0152 um (0.006") per revolution. The turning operation was performed
w1th a sp1n91e speed of 300 rpm. The sensitivities of the dynamometer
along the x,¥ and z*d1rect}ons were set at 3. 08 8.77 and 7.71 pc/N
respectively. The cutt1ng force signals were visually observed on a
cathede ray oscilloscope, and_at the same time pecorded on a B&K 7000
four channel F.M. megnetic'tape recorder. The gain of these three

charge amplifiers were selected as 22.241: 8.896, and 2é.24] N/volts
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'respect;ver;\in order th;t its output signals corregponding'to tﬁz
magnitude of the cutting forces were no more tﬁan within +1 vq]t‘at the
input of the tapg recorder. The signqls were recorded on a B&K-7000, .
4 channel tape recorﬁer, at a tape speed of 0.381 m/sec (15"/sec). A

~typical sign;lrrecord of the cutting force, is, ;hown in Fiq. 4.§. The 7
cutting force fluctuations as indicated in Fig. 4.8 may be seen_to occur
quite rapidﬁy with time. Boﬁp_Maragos [48],,and Rakhit [41] stu&ied the
cutting foﬂge generated during rohghing and finishing operations for '
various feed rates and depths of cut. A typical plot of these cuttjné
forces and their spectrallgeﬁsitieg-are shown'in Fig. 4.9. They concluded
that theée cutting forces, for finishiﬁg operation, can be approxiﬁated

.by a stationéfy random_préceéé; and their pfobabi]ity deﬁsity function

can be taken as one of Gaussiah‘djstribution. With these approximations,
thé-sb]ution bf the brobaﬁ}iigtic differentia] équations for the variances
of’ the response, becomes easiep. This is because, for 11near systems,

as in the present case, if the\\thtat1on probab111ty density has’ a
Gaussian d1str1but1on then, the response probab111ty dens1ty function 1s

D

also Gauss1an. For the processes having such a Normal distribution, -

A

mean and variance values are sufficient to characterize the progess s

completély [51].
¢

: . - e
//’\ In the mext sg;tipn,'the computakion\of the power spectral

- density of the measured cutting forces is d%;éussed.

4.5  Ppower Spectral Density (PSD) of the Cutting Force

-~
1

The experimenta]Lx measured cutting force'signa1s, such as_the
one shown in Fig. 4.8, ‘have been recorded by setting the d.c. component

or its mean equal to a zero value. ~ This was achieved by éetting the

— 1

s
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.nﬁ."lil I. Main Cutting Force Cémp;anent
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.'...-. Feed F‘o?ce Component \
TR T R
A

T T |
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Radial Force. Component .

X

.Static For-'ce.= _31.5 lbs

Fig. 4.8: A Typical Record of Cytting FO/‘CGS {after Maragos [487).
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;ime constant of the charge amplifier to a small value. Since cutting
forces in a turning operation can be charectegjzed by a ﬁorma] probabilityr
density fucntion, the responee of the spind]e-eorkpiece system modelled
in chapter 2 under random cutting forces, would also be normally distriﬁ—
uted thh a zero mean, because of the linear behav1or of the system.
Hence, the mean square value is the_only 1nformat10n that wou]d be needed
to charpcter1ze the response of the'system. The mean square value of
the response can be calculated using the‘cut%ing force.signa1 in the
time domain or in the frequency domain. In the time domain approach,
the equation relating tHe meaﬁ square response and autocorrelation

. function of the excitation‘at zero time lag as shown below in equation

© (4.40) is utilized. That is,

rf’, EL(W 2)] w(°) = ff h(Az) R ( ) di; dA; | (4.40)

where A, and X, are dummy variables, h(x,) is the  impulse response
function of the system. - In the case of frequency domain analysis, the
relationship between the mean square response and, excitation Power

Spectral Density (PSD) is given by the expression a

E[(W2)] = le(J'U&;Jﬁ‘ S¢lw) dw B l‘ . (4.41)

where H{jw)} is the frequency fesponse function for the system under con-
‘ sideration, and Sf(w) is the Power Spectral Density (PSD) of the

excitation. In this thesis, the frequency domain approach as given by

equation (4.41) is .employed to compute all -the mean square responses,

The PSD Gf(m) of the cutting force signals f'(t) is now needed in the
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calculation of the mean square responses and is obtained by using the

relationship [48]

61 {w) = Lim 2

Toea

Fr(t) o7t 4t C ot (4.62)

»

, 5
rj\J-—d\
nj—

The§recordéd gy#ting force signals, which are in the analog form, are
coﬁ;ggiéd into tﬁéﬂdigitai form by passfng through an analog/digital e
converter. The digitized time series signals are then transfonned by a
Four#%r Synthesis into the fréquency domain. The Goodman-Enochson-0tnes
(GE0) spectral window is applied to the; raw Fourier transform quantities.
Then the raw power'estimates are computed using equation (4.42). These -

raw estimates are normalized and smooth estimates are obtained by an

averaging process. The details of these procedures are provided in [48].

With the recenthdevelopment of Fast Fourier Transform (FFT)

algorithms, the power estimates can be calculated much more efficiently

J[62]. In the present work, a narrow ban&-spectrum analyzer was used

)

. obtained using the set-up shown in Fig. 4.10.

-

for the calculation of the Power Speétra] Densities of the measured

cutting forces, the frequency spectrum of the cutting forces were
A

The cutting force'signa1s recorded were played back and analyzed
on a B&K 2031 narrow band spectrum ana]yzer. This analyzer operates by

a Fourier transformation of records of signal samples of the inpd% into

- the frequency domain using a Fast Foufier algorithm. The frequency

spectrum of the cutting forces are displayed on 400 channels in this

analyzer.
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The ca11brat10n of the frequency ana]yzer was carried out by
feed1ng a 1 volt signal at 1000 Hz from the tape recorder to the
e ana]yzer.‘ Then the recorded cutting force signals were played back and
S gggéhgntia11y averaged. An average of 32 spectra of the cutting forces
were used to represent the stationary random excitation and the Hanning's
windod%ﬁés used for the reduction of the frequency leakage. The highest

;n‘frequency analyzed was 5 kHz using 1024 samples of the cutting force

signals. .

The output of this analyzeF, which was the root mean square (RMS)
value of the amplitude of the cutting forces, was further processed on
a CDC.Cyber 174 digital computer to obtain the power spectraj density
t‘of the cutting forces. The power speidra1 density of an analyzed
cutting force signal is shown in Fig. 4.11. In this figure, the experi-
mental power spectral-density varies quite significantlyawithin the
frequency range of 0-5000 Hz, and observing this figure ome can c]ear!y

J' see that the spectrum is wide band in nature.

i
i

4.6 The Mean Square Response of the Spindle-Workpiece System

In a finish turning process, there is a continuous relative dis-
placement between the tool and the spindle-workpiece system.” This
continuous variation of this relative displacement takes place along
the entire length of the system and is due to.the variation in the
compliance of the system. The compliance of the system continuously var-
ies because the tool and the werkpiece contipuously change their relative

position during machining. The cutting force varies because the depth of

. | . v
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cut varigs and this variation in the depth of cut is due to off-
cylindrical shape of the workpiece at the beginning of the cutting pro-

cess due to initial errors in the rough work.

_ A typical lathe spindle-workpiece system was described in Fig. 2.2
in chapter 2, whege the spindle is divided into seven elements and the
workpiece into five elements. The workpiece is held in a chuck on one
end and supported by the running center on the other end. The boundary
condition at the workpiece-running center interface has been established
as hinged and the bearing propefties are represented by a spring agd a

damper.

Based on conclusions drawn in section 4.2.5, that is, the
variation of feed rates in a turning process has negligible infiuence on
the regponse of the workpiece, the stochastic matrix differential equation
of motion for the spina1é-workpiece system can now be written as

] W} + [E]
25

Wy + [K] @} = (P (4.42)
25 % 25 5

X2 25x 25 25 x 25

In equation (4.42) [M], [C], and [K], are the mass, damping and the stiff-
ness matrices respectively. ‘The size of eaﬁh of these matrices is 26 x 25

rather than 26 x 26 because it has already been estiablished in chaptér 3,

that the workpiece-runn{ng center connection is better represented by a:

hinged end condition, This‘ results in a constraint that the displacement

at the joint number 1, which is the first component of the joint displace-

ment vecetor {ﬁ}, be zero for all times.

The relationship between the PSD of excitation [S(w)], and the
response [Sﬁ(m)] for a linear system has been derived in Appendix B and

also in [63,64]. This relationship can be written as
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[530)] = [aGo)] [spl)] [atg)*] " o . (4.83)

" In the above equation [A(jw)] is the matrix of the transfer functions,
and as derived in the Appendix B, can be evaluated by using the relation-
ship \

[A(jw)] = [¢] [Gwy [m] + [K*]]"[¢]T o (4.44)

where [¢] has its columns as the-eigen vectors of the modified version

of matrix differential equation (4.42) obtained by using a state vector

|
l

}', and the matrices [M*] and [K*] are given by the relationships

] o] b ) [‘;] | | (4.45) (\

and | . .
o] - LI TR R[] SR

Partitioning the matrix [Sw(mjj is given in equation (4.43) into four

£

1]

equal submatrices, one can write

splw) = _______}__%____-___3_ (4.47)

The submatrices Esﬁ(w)]1 and [Sﬁ(m)]u represent the PSD of the velocities
and the displacements respectively. Represehting E[W2] as the mean square
displacement {MSD} response, then

O

B[R] = f sz(0) do | (4.48)°

-
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4.7 The Parameters of the.Spindle-Workpiece System

4

In a spindle-workpiece system, parameters such as bearing stiff-
ness, damping, bearing Tocations, croés-sectiona] area of the spindle,
etc., exeét considerable influence on the dyﬁamiq response of the system.
In order to study-their individual e%fects, a brief quaiitatiﬁe discussion’
on these parameters and their influence on the dynamffc response are

. presented in the sect1ons 4.7.1 through 4.7.4.

4.7.1 The Bearing Stiffness \JT"/’

. The static and the dynamic behavior of lathes are influenced

significantly by the design of the spindle and its bearfngs. The factors

which inflbence the static deflection of the spindle aré: (i) the

<r

rigidity of the spindle; (ii) the stiffness of the bearings; -and
(1i1) the location of the'beaﬁingﬁ. A spindle design based merely on
sfatic considerafions is not sufficient Beﬁause the dynamic cutting

' forées contain ﬁigh fréquency components.. Thué‘the inertia and the '
damping forces also become important. Consequently, the bearing stiff-

ness selection must include the effects due to all of the fdrces men-

tioned above.

£

4,7.2 Bearing Location

The Tocations of the Bearings exercise considerable influence on
 the effective stiffness of“the spindle. A lathe spindle can be regarded.
as a beam on fwo flexible supports with dambing and this beam has an
overhanging end. Several researchérs [42,45] have studied the effett of
the bearing spacing on the overall rigidity of the spindle system.

Terman [65] proposed two important static approaches for arriving at the

optimum bearing .spacing. In -the first approach, a preliminary design of
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a shaft may be completed in which the selection of shaft diﬁensions

and bear1ng st1ffness is based upon the boundary cond1t1ons "Then the
bear1ng span is varied so that an optimum spacing is found. <\Ihe optimum
.criterion was based on keeping the deflection at the pdint of application
of the force a minimum. In the second approach Ehe various spindle cross-

sect1ona1 areas are chosen in certain proport1on and ‘then the bear1ng

'spac1ng is var1ed until the optimum bearing span is arrived at.

The overall idea in all these apprgaches is to have a balanced
desian so that the stiffness of the bearings as well as that of the shaft
is fully utiTized. For & given cross-sectional area at the shaft and the
bearing span, if the optimum bearing span is less than the starting span
value, then it indicates that in the original deaign the full load
capa&ity of the bearings are not fully utj]ized. Therefore by reducing
the span, the loading on the bearings is increased at the same time as
the flexibility of the shaft is reduced. This process is reversed if
the optimum bearing spacing is found to be greater than the starting span

dimension.

In the present work, both the presence of a workpiece and the
dynamic cutting forces have been included in the mathemati¢a1 modef and
a search for the optimal bearing span is based on the minimum of the

maximum wbrkpiece displacement response.

4.7.3 Cross-Sectional Area of the Spindle "

There are three important criteria in the_design4z? shafts. These

criteria can be based on one or a combination of the following:

(1) . Teast weight of the shaft,
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<
(2) minimum rotary inertia of the shaft, and

'(3) minimum response of the shaftf.

The firgt criterion is very common in the design of sh;fts for aerosbace
applications where great care is taken to minimize the weight of the
system‘: The second criterion is important in the design of machinery
which has very high rotational speedé. Since the surface finish of a
workpiece is directly related to thé response, the third criterion.has
been used in work so as to obtq%n an optiﬁai design of the spindle based

[N

on minimum workpiece response.

4.7.4 Damping .- .

There are several parameter§ which, if’propérly se1ected; can
decrease the mean square displacement (MSD).at varfous locations of the
spindle-workpiece system. Three of these parameters, have already been
discussed in sections 4.7.1, 4.7.2 and 4.7.3. 1In this—sectioﬁ, the effect
of damping on the MSD along, the Spind]e-wérkpiehe system will be briefly

explained.

»

In order to evaluate the effect 0% damping on the resﬁonsé of the
spind]e-workpjecé system, the first step will be to estimate the actual
amount of damping available in the system. An approximate idea of the '
overall damping of the spindle-workpiece system can be obtained by exciting
the system-with a shaker and measuring the viscous displacement amplitude
as a function of the excitation frequency. This recorded‘plot is .a form
of the displacement transmissibility curve which when compared~with a .
transmissibility curve 6f a single-degree-of-freedom system can provide
the equivalent viscous damp{ng of the overall system. Another methed -

would be to use the logarithmic decrement method where the envelope curve
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of the amplitudes of the decaying natural vibration i$ used [51].. ) q‘

After estimating the damping in the system) the ‘effect of any
externally applied damping and the Tocation of such a damper on the 4

displacement response can be studied. Thesé studies should be carried

“out with an objective to find out, if there is any value of damping

cbrresponding to which there is a minimum MSD response. Also, is there

a best location of a damper for“such a minimization.

in the,next.sebtion, a parametric study for the optimal design

of the lathe spindle has been carried out. The parameters used in the

study are: (1) the bearing stiffness, (2) the bearing 1pcatﬁon,

(3) flexural rigidity of the spindle, and (4) damping.

4.8 Results and Discussion I P

4.8.1 The Effect of Tool Location on the Mean Square
s :
Displacement (MSD) of the Workpiece

The MSD response at each of the joints was .computed by combining
equations (4.41) and (4.43). The size of each of the complex matrices
in the equation {4.41) is 50x50. Referrin; to Fig. 4.10, the PSD of
the cutting forces decreases as the frequency increases. Therefore, jnu
this section, the computations were carried out by including the PSD of

cutting forces up to 1200 Hz. This frequency range includes contributions

of.the first twelve free vibration modes [53].

To study the effect of tool location, the MSD response at yarious
joints were calculated for different cutting tool locations, and the

result obtained is shown in Table 4.1. It is to be noted that the dis-

" placement is always zero at the joint 1. The graphical representation of '
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the results presented in Table 4.1 is shown in Fid. 4,12, Referriﬁg'go
Fig. 4.12, the MSD responseqiﬁcreases from zero at joint 1‘to.a max imum
near the center of the workpiece and Qhen reaches a minimum somewhere
near the mid-span of the sﬁind1e. The MSD respons%lat the free end is -
- higher than at the mid-span of thé spindle. It can also be seen that the {2
" maximum MSD occurs at thé joint 3 for 511 tool 1oca?ions fjoints 2,3,

.

“and 4) except for tool location at joint 5.

4.8.2. The Effect of the Bearing Stiffness on the
' MSD of the wdrkpiece

The effect of the variation of bearing stiffness on thé MSD of thé
workpiece is given in Table 4.2, Referring to- Table 4.2, it can be seen
that the maximum MSD occurs at joint 3 for all values of the bearing |
stiffness considered. Furthermore, it should be noted that all the MSD
values in Table 4.2 correspond to a joint where cutting forces are aiso

"located. For increasing values of front bearing stiffnegs, the MSD
decreases at first and then increases in the cases of joints 2 and 3,
however at joints 4 and 5, the MSDLgecreases monotomica]lyzy'This indicates
that there exists an optimum beafi&g stiffness for which the maximum MSD e

»
of the workpiece is a minimum.

\ : ’
» 4.8.3 The Effect of the Bearing Spacing on_the Workpiece MSD
=
The effect of bearing spacing on the spindle response has been

studied by several researchers [42,45,65]. In their study, using a
deterministic model of the spindle-chuck system, the varfation of the
maximum deflection of the spindle was-presente&_due to changes in the »
bearing spaétpg. However, in the present inﬁest1gation, the location of

the rear bearing wa§‘f1xed and only the Tocation %f the frgnt bearing
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Fig. 4.12: The Effect of Tool Location on the MSD of the Spindle-

Workpiece System.
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TABLE 4.2

The.Effect of the-Bearing Stiffness on the

‘MSD Response of the Workpiece

22.328 x 10% N.3€C

Cg . 7 m
K. = 1530.6 x 105 N c = 28.632 x 10° N3e¢
f : . m e o . m
Kl"
% = 0.3135 Lg = 0.4699 m
Tool Location Mead&ég?are Response
‘ -1y 2
Eront MSD x 1.355 x 107'%, m
Beqring
Stiffness Joint #2 | Joint-#3 |- Joint #4 | Joint #5
Ke 0.118 0.503 0.342 0.100
2 K ' 0.107 0.452 0.298 t*d 0.074
3 K¢ 0.104 0.434 0.288 0.070
4 Ke 0.109 0.449 0.263 0.046
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was varied. The results obtained are shown in Table 4.3. It can be seen
from Table 4.3 that the MSD decreases and increases as thé bearing épacing
js increased. There are three local minima that'can be identified with the

the global miniﬁﬁ occurring at higher values.

4.8.4 The Effect of the Sectional Rigidity of the Spindle on

the Mean Squaré Displacement (MSD) of the Workpiece

The spindle qf'the pbesent system has been divided into 6 elements.
The schematic of the stiffness distribution of the sp1nd1e-workpie§e

system is shown-ifr Fig. 3.2.

In order to study the effect of sectional rigidity, the diameter®
of each of the e1eménts can be varied one at s time within a range between
the minimum ;nd the maximum allowable values.. From Figs. 2.2a and 2.2b,
it can be seen that the bend1ng mement at elements 7,8,9 and 10 is higher
than at elements 11 and 12 Therefore h1gher elemental r1g1d1ty is
//’_JSEggjred for the portion containing elements 7 :to 10 to minimize the work-

piece respbnse. Hence in this study, the diameters of the elements 7 to
/ .

— -

10 are kept constant at the-maximum allowable value while the variations
/\ .~

\‘“?-Jii42222222931 sections are carried out independently one at a time.

\ The results obtained are presented in Table 4.4. The maximum.
cutting force frequeqcy used in all these comﬁutafions, was 187.5 Hz.
This frequency range considered included thé contributions of all the

* free vibration modes up to the sixth mode. Referring to this Table,
it can be seen that for a given pércentage change ih the diameter of any
of the elements, the greatest change in the MSD response is due to the
variation in element 7.' In other words, the chanQe in diameter of

element 7 has the greatest influence. This influence decreases as the

*In ;his.thesis, reference to diameter of an element represents its
equivalent diameter.
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* TABLE 4.3

The Effect of Bearing ‘Spacing on the Maximum

MSD Responsé of the Workpiece

= ‘ 3 l = 3 M
Kf = 1530.6 x 10 m Ce = 22.328 x\lO n
Kr ) Nsec - ¢
roli 0.3135 c. = 28.632 x 10 ——

£ LT m
L)
Tool Location at Joint 3
Bearing Spacing | Maximum Workptece Mean Square'Response.
mo _ MSD x 1.355 x 10-'*, m?

4" :

0.059 | 6.723

0.13 - 3.841

0.211 . 5.600

0.287 7.929

”
0.325 v 4.801
"~ 0.364 0.866
0.439 0.965
0.4699 0.503
© 0.508 ' ., 0.925
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element number increases, that is, the farther the eleméht is.frbm the
chuck, the lesser is its influence on the MSD of the workpiece. It may.
be noticed that elements 11 and 12 have 1ittle effect on the workpiece

MSD respbnse. This can be explained due to the fact that for thepres;Eg

_system, the bending moments at these Tocations also decrease as_the

element number increases. Thus thé(elements at which the bending moments
are small, the change in the diameters of those elements does nat
inftuence any significant changgs ih the workpiece MSD response. In view
of the above, the elements, depending upon their influence on the work-

‘ , J
piece MSD response, can be easily classified into two groups. Elements

7 to 10 can be grouped together'as the first group, and elements 11 and

12 into the second group.

The first group of elements (element numbers 7 to iD) Were varied
in diameter between 75% to 125% of the:existing desfgn values. The
corresponding variations jn ihe MSD response are shown in Table 4.5. Thé'
resu1t; obtgﬁqed indicate that there could be signif%tant variation in

the MSD response by varying the’diameters'of various elements in a group-

wise manner. In fact, the minimum response as obtained in Tables 4.4 and

4.5 are quite close. Thus, an effective improvement in the'épindie design

can be brought about by adopting any one of the twolwayé mentioned above.
In addition to this, the actual design modification would be based on

other constraints such as intershaft distance, cost etc.

4.8.5 Effect of Damping on the MSD of the Workpiece

The effect of damping on a lathe spindle has been studied by
various authors [42,66,67]. The determination of dampiﬁg_coefficient

or a spindie-workpiece system is a difficult task. An approximate
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method is to excite the system by a sinusoidal signal of constant

amplitude and variable frequency w and to record the. frequency response
curve. By noting the response ampiitude X over the/frequency range,

the damping ratio can be calculated by assuming a single degree-of-freedom
system for the spindle [41]. From this experimentally ca1cu1ated‘dampin%‘
ratio, the equivalent viscous damping coefficient was calculated to a value
of 98.159x 102 NS/m (275 1bf ?./in.) [41]. Using this value as a guide-
line, the damping coefficients at the rear and front bearings were

selected.

In order to study the influence of damping at the bearing locations
on the MSD response, additional- dampings were applied separately at these
two 1ocat1ons and the results are presented in Tables 4.6 and 4.7. It
can be seen from these two tab1es that the maximum MSD remained constant

& decreased only slightly for any addition of damping in the bearings.
Hence, it can be concluded that the effect of additional damping at the

|
bearing locations, on the naximum MSD response is negligible.

In order to find the best possible location for app1ying external
damping, an additional damping equal to 2.5% of CC was applied at joints
8 to 13 separately and the results obtained are shown in (ab1e 4.8, As
can be seen from the table, the free end is the best possible location
for applying external damping. Thene js an 11% reduction in the maximum

MSD response if 2.5% Cc js applied at the free end of the spindle.
4.9 Conclusions
In this chapter, the dynamic response of the spindle-workpiece

system under random cutting forces is investigated. Since the cutting

tool moves along the workpiece, the response of the workpiece is
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TABLE 4.6

Additional Damping at the Front Bearing Location

Versus MSD of the Workpiece

- - 1n3 N sec - ; s N
cf 22.328 x 10 ﬁ_jﬁ_i' Kf 1530.6 x 10 m
K
c, = 28.632 x 1g® Nsec L= 0.3135
m Kf
= = 5 Nsi
Cy ].25% Ce . CC. 14.08 x 10 _—

Tool' Location Mean Square
Additional _ Response at Jointhumber
. -14 .2
Damping at Front MSD x 1.355 x 10 o M
Bearing Location 2 3 4 5
0 0.118 0.503 ' 0.342 0.100
Ca 0.118 0.502 0.342 0.100
2c, ° 0.118 0.502 0.342 ©0.099
3 C, 0.718 . 0.502 0.341 0.099
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TABLE 4.7

‘The Effect of Additional Damping Applied at the

Rear Bearing Location on the Maximum MSD Response

of the Workpiece

¢, = 22.328 100 Asee g - qs30x700 3
y 3 N sec Kr
c. = 28.632 x 10 — rotia 0.3135
. . f A
¢, = 1.25% c, c, = 14.08x10° L3eC
LB = 0.4699 m
Tool Location Mean Square
Response at Joint Number
Additional
Damping at MSD x 1.355 x 107'%, m?
Rear Bearing 2 3 T 5
0 0.118 0.503 0.342 0.100
iR 0.118 0.501 0.340 0.098
2 ¢ 0.118 0.500 0.338 0.096
3¢, .17 0.498 0.335 0.094
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. TABLE 4.8

. The Effect of Damping Location on the

MSD Response of the Workpiece

[ad

3 N sec
Ce 22.328 x 10 —n

o
H

28.632 x 10° %.56¢

' N
- [ AR
Ke = 1530.6 x 108 &
K
o = .0.3135
f
c = 14.08 x 105 Nsec
C m

a8

Addition Damping,
(2.5% c.) Applied
at Joint Numbers

Maximum MSD Response
x 1.355 x 10°1%, m?

11

13

12 N 7

0.502
0.501
0.501

o501

N

0.498

0.480
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essgntially-a non-stationary réndom‘process. Hence as a first step in thé
analysis, the dynamic response of the system in turning due to spatially
moviné random metal cutting‘¥orces (non-stationary random cutting forces)
is carried out in detail, The workpiece was modeled as a Bernouili-Euler
beam with the chuck end assumed as fixed and the tailstock end as hinged
at the ruﬁning ceﬁter. The mean and the variance response at the tool

Tocation, as a function of structural damping and the velocity of the

tool, was calcualted.

T~

The results indicate that for the range of feed rates normally
used in finish turning operations, if is not necessary to consider the
effect éf feed‘rate in obtaihing the mean and variance responses at
the_too% cbntact. Since the feed rates are very low compérqd-to the
flexural wave velocities in the workpiece material, the transients die
down fast enough ?Td do not influence the response at the succeeding
tool locations. \Jhis result is ve#?jzsefu1 since much, simpler expressions
without éonsidering the effect of tool féed rate can be used to compute

the responses of.the workpiece. ~

The stdachastic partial differential equation ;h;;stterizing the
behavior of the system was then solved using modal analysis. The actual
cuttiﬁb forces were measured while machining on a lathe using a special
piezoelectric dynamometer, Then using a narrow band spectrum analyzer,
B%K 2031, andra digital computer, the power sbectra] density of the
cutting forces was determined. The_FSD of the cutting forces were used
to calculate gﬁ! mean square response of the workpiece. For thfs purpoge
a new technique for the calculation of response spectral density for a
linear multidegree-of-freedom system subjected to stationary random

Excitation has been developed. fhe method is based on modifying the

R
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stochastic dyhamic equations of the.systéh by using a-set of auxiliary
variables. The résponsé”speﬁtra] dehsity mat}ix obtained by usinQ

this approach contains the spectral densities and cross-spectral densi-
ties 6f the system generalized disp1aqements and velocities. The new
technique requires significantly less computatioﬁ time as compared to

the conventional method for calculating the response spectral deﬁg2ties.

. A parametric study on the effect of bearing stiffness, bearing.
spacing, spindie sectional rigidity and damping on the mean square dis-,
placement 6f the workpiece was carried out. Based on this, the following

conclusions are drawn:

(1) The MSD véries quite significantly along the spind1e-workp1eée

. system irrespective of the location of the tool.

(2) There exists an optimum bearing stiffness and span for which

the maximum workpiece MSD is a minimum.

(3) The MSD along the spindle-workpiece system decreases with

the increase in the sectional rigidity of. the spindle.

(4) The MSD at the too]'location'decreases significantly as the

damping at the free end of the spindle is 1n§reased.

. In the next chapter, the optimal design of the lathe spindle is
cafriéd.out. The parameters used in this optimization study are:
(1) the bearing sitffness, (2) the bearing locations, and (3) the

9
sectional rigidity of the spindie.
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CHAPTER 5
Vi
OPTIMIZATION OF THé LATHE SPINDLE-WORKPIECE
(/ . -
SYSTEM UNDER STOCHASTIC CUTTING_FORCES “
5.1 Introduction . )

In chapter 4, the effect of tool location, bearing stiffness qu
spacing, bearing damping, crossrsecfiona] area, and that of additiongl
démping at various joints on the MSD response of the workpiece was
presented. It was also concluded that there exist optimum values of the
bearing stiffness and the spacing for a minimum MSD résponse of the
workpiece as either the bearing stiffness or the"bearjng spacing is
varied: From TabTes 4.6 and 4.7, it was concluded that a variation of

the bearing daﬁﬁ?ng individually has negligible influence on the maximum
| MSD response. Consequently it can be postulated that a set of optimal
bearing stiffness and bearing spacing must exist for which the maximum
MSD of the workpiece will be a minimum. 'In this chapter, this problem
of finding an optimal set of bearing stiffness and spacing is carried
out using a non-ifnear programming technique. The optimal results are

compared with ‘the existing design and conclusions are drawn.

5.2 Formuiation of the Problem

The present work deals with the problem of determining the
optimal deﬁign parameters so as to minimize the maximum mean square
displacement response of the workpiece. The first taék is to select
the design variables for the optimization scheme. In chapter 4, the
effect of parameters, such as bearing stiffness and spacing, dampfng,

diameters of the different elements which make up the spindle, on the
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‘mean square displacement was presented. It was also shown that of all

possiblé locations of the cutting tool, the tool located at joint number

3 yiélded.the‘ﬁaximum dynamic response of the work. Therefore, by this
N lagic, the objective would be to minimiie'the‘response of the workpiece‘
‘ at the jo{nt number 3 with the tool also located at the same joint. In
the parametric study presented in chapter 4, the‘ﬂSD respénse decreased'
menotonically as the damping {ncreased. Therefd4e, it can be eliminated

as one of the pos§ib1e design variables for achieving an optimal design.

Since the MSD reSpénse was unaffected by any variation;bf_diameters
of elements 11 and 12, they are also eliminated as design varigphies for
- the optimization, \Then the parameters remaining for the optimization
afe the diameters of elementg_of the first group, that 15,'e19ment

numbers 7,8,9 and 10; the bearing stiffness; and the bearing spacing.

Since the main objective of this investigation is to minimizé the
maximum mean square displacement of the workpiece, for any given set of

design parameters, it i

essen ial to solve the stochastic matrix diff-
erential equation out]ined.' chapter 4. This required a large computing
//4;\\\;#time. When-the search for the optfma] desjgn parameters are carriéd out
using non—]inear optimization techniques, the obqutive function evaluation
has to be carried out several times.and this dbviously increases the
comﬁuting time by several folds. In ad&ition; the computer time increases
probortional]y with an increase in-the number of design parameters. o
> Therefore, in order to reduce the‘computing time, only a limited set of
important design parameters are to be considered for the 6ptimifffjfn'
Based on this Idgic, two separate optimal design-schemes are carried out.

In both schemes, the bbjective_function remained the same, except that in
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the first scheﬁe only_the bearing stiffiesses and bearing spacihg are |
selected as design parameteés, with all other parametéks kept at their
nominal values. In the second scheme, in agdition to the béaring stiff-
nesses and spacing, Athe diameter o% the element number 8 s inc]uded as-
a design variab]e/ In chapter 4, it was shown that the mean' square ’
response of the system detreases when the diameters of the elements 7 to
10 are kept at their maximum a1lowab1e values for a constant set of 3
bearing stiffnesses and spacing. However, in order to study the effect

of variation in the diameter of elements, when the bearing stiffnesses

and spacing are not kept a constant, a second optimization scheme is
formulated wherein the diameter of eiement 8 has been selectéed also as a
design variable. In this éase, the upper bouﬁ&/values of the diameters/of

other elements 7,9 and 10 are Spnsidered.' - T

Mathematically the objective function together with the constraints

can be formulated in terms of two optimization schemes. They are:

5.2.1 First Optimization Scheme

mlnimzze [max E(2)] , the mean square displacement - (5.1)
£ B _ . .
of the workpiece
. A ' u '
. #Subject to: ke € ke s kg .\
) u 4
k < kr < .k

‘: L Ly s L

kr/kf = 0.3135

where subscripts £ and u represent the lower and the upper bound values
7]

of bearing stiffnesses and spacing.

-
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5.2.2 Second Optimization Scheme

In addition to equations (5.1) and (5.2}, a limit constraint on the

diameter of e]ement'B is to be included. That is,

»

dg ¢ dg s dg _ (5.3)

In equation (5.1}, in addition to ke and Lg, dg will be included

as the third design variable.

it should be noted that the ratio of the rear bearing stiffness

to the front bearing stiffness is kept a constant. The selection of
" lower and upper bounds on bearing stiffnesses is based on the commercial

avai]abjiity of these bearings. “For the selection of Tower and upper
boundéfén the'bearing spacing, the rear bearing was cqnsideré& to be
fixed at the mid-point of the element 11. Then the Tower 1imit on the
bearing spacing can be based on the distance between the rear bearing
and the front pearing located at juncfion 11. Similarly, the upper limit

on the bearing'spacing is estimated on the.basis of the distance between

.the rear bearing and the front bearing located at jdﬁctﬁon 7.

'5.3  The Opfimizhtion Algorithm

The optimization ﬁfocedure Pas been carried cut by using the
modjfied sequential simp]ex'optimization method [68]. This method uses
a flexible rather than é rigid geometric simplex of points. The basic
idea in the sequentiqlrsimplex method is to start with some arbitrary
initial values for the -parameters to be.optimized. In a mutti-parameter
optimization with n 'varjables, at Teast a set of n+1 initial va1u§s

should be arbitrarily selected. These (n+1) values will represent (n+1)

points in the:n-dimensional space and, if these points are connected by
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~

. straight lines, then a geometric figure will.result. "This geometric
figure is known as simplex. For example, in two-diménsional optimization,
a set of 3 initial values are selected and they form a triangle {Fig. 5.1).
' The objective function is evaluated at the points formed by the vertices

,; of the geometric figure. One vertex is then rejected as being inferior

¥

in*value to the others. The géneral direction of search may then be
. taken in a direction away from the worst point. It is chosen so that the
movement passes through the center of gravity of the remaining points.

A new point is then selected along the direction so as to preserve the
H

geometric sense of the figure, and the function is evaluated ahead at
this point. The method proceeds by this process of vertex rejection and
regeneration until the figure "straddles" the optimum. The flow chart

\_ of this method is given in Fig. 5.2 and the steps .inpvolved in the optim-

PR

ization are given below: ) - Sos

(i) Minimize F(X), {X} = {X,, Xz» ..es X, ) (5.4)

where {X} is a vector of variables X,, X, ..., X, to be optimized

subject to =

a; € X5 € bi 3 i=1,2, ...sn

g;(x) 2 0 5-3=1,2,...,q

:‘(11)_ The method reéuires the use of k > n+1 vertices, each of
wh{ﬁh must satisfy all the imposed constraints. These vertices may be
initially found by starfiﬁg at a point that sqtisfied all the constraints
The remaining k-1 points in the first comp]ex'are obtained by the use

of pseudorandom numbers r in the relation

!

X_i=a1-+ri-(b.i-a.-l) ;'i:.], 2, ...,k . (5.5)

whefe r; are uniformly distributed over the interval [0,]]_ These points
c : .

LR
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PICK A FEASTBLE STARTING VERTEX

1

|

GEHERATE A COMPLEX |
. |

—

MOVE VERTEX
HALF -HAY
TOWARDS CCHTROID
OF REMAITIENG VERTICES

CHECK EXPLlClT
CONSTRAINTS

VIOLATED

—— RELOCATE VERTEX

0 THE

1 HOT VIOLATED
— -

. , VIOLATED

YES

CHECK IMPLICIT
CONSTRATNTS

NOT. VIOLATED

BOUHDARY

CALCULATE OBJECTIVE FUNCTION
AT EACH COMPLEX VERTEX

Y

CHECK CONVERGENCE
CRITERION

Y
£ STOP

’ino

REJECT COMPLEX VERTEX
CORRESPONDING TO MAXIMUM OBJECTIVE

FUNCTION- VALVE, &Y

[3

-

FIND THE CENTRIOD )
OF THE REMAINING CERTICES, X,

)1

—

TAKE o = 1.3
REFLECT LOMEST VERTEX AND
FIND NEW VERTEX X"

] CHECK F(X™) < F(X")

HO

[47 ‘ a = all

I

[ CHECK a > 107°

t NO

REPLAGE A" by XY
TAKE @ = 1.3
SET THE SCCOMD LOWEST VERTEX
T0 BE THE 'WORST VERTEX'

Fig. 5.2: Flow Chart of the Complex Optiwization Method.

-
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satisfy the lower and upper bound constraints. If some implicit con-
straints are violated, then the trial point is moved halfway toward the
centroid of the already accepted points. The centr‘oid'ic is given by

the expression

- 1 k . i .
Xe - ry kgﬁ X ‘ (5.6)

where X', %%, ... X° are available feasible vertices.

(ii1) The objective function F(Xx) to be minimized is evaiuated

v

at each vertex and the vertex ‘X' at which the function F(x) assumes the

~

largest value is reflected by computing

s 0+ - %, with o 32 0 ’ (5.7)

-

where x° is the centroid of the remaining vertices and is calculated

from

K : . . '
X0 = —]-, DI S (5.8)
- k ] 1'=] .

—t
<

7

(iv) If the function value (F(ir) < F(XY) and X" is feasible,
the point X' is replaced by %" and step (ii) is repeated. If
F(X™) 2 F(xY), the overreflection coefficient is reduced to %-,
and new x' computed and tried. This is repeated until a < B where
B = 107° is a satisfactory valﬁe; If the relation F(X") does not hold
‘even for that small value of o, then the projected point - % is re--

placed by the original value XV

and the second worst vertex is re-
flected instead. This process keeps the complex moving toward the

‘minimum unless the centroid is very close to it.

(v) For a nonconvex function, the centroid of all feasible

-
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points may not itse]frbe feasible. In this case all the points of the

complex are discarded except %%, the point at which the objective

function has the Towest value. Then the new coﬁp]ex is generated by

using

Xs o = xie +rs (xio -8 i=1,2, ..., (5.9}

where [io : x1°, xzo, cees xn°] is the previous'infeasib1e centroid.

(vi) The process is terminated when tﬁe complex shrinks to an

acceptably small size. Such a termination criterion can be expressed as

A k 2 3 ’ : . :
'.|I<' Z’ [F(XO) - F(Xk)] ) £ € . (510)

i=]

where ¢ > 0 is a predetermined, small convergence number.

5.4 Results and Discussion on the Optimized Systeh

The constrained optimization results of two and three parameters
optimization schemes are shown in Tables 5.1 and 5.2 respectively. The
results given in both tables indicate that-the optimal bearing stiffness

should be closer to its upper limit.
. rd

The optima] bearing spacing for the two optimization schemes have
been found to be different, however, they are in the same proximity.
Referring to Table 5.2, it can be concluded that the diameter of the

element'8 should also be near the higher limit.

The.results of the optimization indicate that the maximum mean
square Eesponse of the workpiéce’%;n be reduced by about 23.33% if the
optimal va]ue; of the bearing stiffness and the bearing spacing are used

in placg of the existing design values. A reduction of 28.39% in the
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B

TABLE 5.2

Highest frequency =

Cg

»

22.328 x 10 N sec

187.5 Hz

'Too] Tocated at joint #3

m
c. = 28.632 x 103 Nsec D; = Dy = Dy = 0.254m
r ) m T
D =
Kf 11
K;' = 3.190 D,, =
. PARAMETERS
Ke ’LB- Max. [E(W?)]
De -15
7 x 10
N/m x 10 m . n2
Lower Limit 76.526 0.0587 © 0.0762 —
"’/‘ Ky
Upper Limit 535.71 0.531 0.254 -
Values in the 153.06 0.470 0.2285 3.198
Existing Design~o A
Optimum Va]uif 532.56 0.4200 0.2539 2.290
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maximum MSD is possible if in addition to optimal bearihé and spacing,
the optimal diameter for elemenf 8 is used. This shows thaﬁ an additional
" reduction of approximately 5% is attributed to the selection of optimal

diameter for element 8.

5.5 Effect of Chuck Diameter on the Mean Square>

Response of the Optimized’SystemA

»  The chuck in a lathe is used for holding a workpiece and its size

‘__(diameter) is normally dictated by the size of the workpiece to be machined

’
”

and by the swing of the lathe.

In this investigation, the lower and. upper limit on the diameter of
the chuck are fixed at 0.102m (4 inches) and 0.330m (13 inches) respec-
tively. In order to study the effect of the chuck diameter on the mean
square response of the system, the chuck diameter on the 0pt1m1zed system
presented in chapter 4 was varied between ﬁhe lower and upper limits and
the MSD at the cutting tool location was calculated. The resh]ts are
" shown in Table 5.3. From.this table, it can be seen that - the maximum
.workpiece MSD decreased rapidly for increase in the chuck diameter from
its Jower limit. However, the MSD reached almost a constant minimum
value for a chuck diameter'greater than 0.203m (8 inches). Hence it
can be concluded that -the size of chuck in the existing design is itself

near the optimal value for a minimum dynam1c response.

5.6 Effect of the Size of workpiece on the Mean Square

Response of the Optimal System

In order to study the effect of the various sizes of workpiece on
the response of the system, workpieces of constant length but with

different,diameters'were simulated on the optimized system and the MSD



- 129 -

TABLE 5.3
: B
The Effect of the Diameter of Chuck on
T Workpiece Response
Ke = 532.558 x 107 N Tool at joint #3
',Kf D, = Dg = Dg = Dy, = 0.254 m
(S _ 0% = 0.188m
¢, = 22.328 x 107 N sec b, = 0.170 m
ér = 28.632 x 100 €€ ~gaz20m
p ]
Maximum cutting force frequency = 187.5 Hz
t’ ﬁ
Diameter of , - Max.[E(W?)]
Chuck _ x 1.355 x 1071
m ! me ..
0.1016 (4 inches) 0.217
0.127 (5 inches) 0.187
0.1524¢Ms) 0.177
0.1778 (7 inches) 0.173 _
0.2032 (8 inches) 0.170
0.2286 (9 inches) . " 0.169
0.254 {10 inches) ‘ 0.169
0.2794 (1 inch;;s) 0.168 -
o.‘h%a (12 inches) 0.168 :
0.3302 (13 inches) 0.168

£
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at the cutting tool -location were calculated. The results are presented
in Table 5.4, It can be seen from the table that the max imum MSD de-
creés;q with an increase in the workpiece diameter or a decrease in the
slenderness ratio. Based on this result it can be concluded that for
‘ dynamic %ensidérations, a spindie-workpiece system should be designed
( for the smallest diameter of the workpiéce_which has its l&ngth equal to
| the maximum center to center distance of the lathe so that the maximum

MSD is below the allowable limit.

5.7  Conclusions

A

v{’as bearing stiffness, bearing spacing, and the diameter of the element 8,

In this chapter, the effect of the variation of parameters such

js discussed first, and then an optimization study, using these parametéfs
as ‘'design variables is carried out. This study'indicates that for the
optimally designed spindle, bea?%ng stiffness and the diameter of the
element 8, should be at the upper limit, but the bearing spacing should bufr/
be towards the higher 1imit. This study is followed by & study on the
effect of the variation of the.diameter of the chuck and the s]enderneﬁf
ratio of the workpiece on the maximum MSD response of the optimally
designed spindle. This study shows that the maximum MSD response of the
system decreases with the incréase in the diameter of the chuck whereas

it increases with the increase in the sienderness ratio of the workpiece.

Based on this study, the conclusions that can be drawn are:

\

The_greatef the diameter of the spindle, the Tower would be the ’

maximum MSD reponse of the workpiece.

, There could be a significant decrease in the maximum MSD of the

workpiece if the optimal design vector is used instead of the existing
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TABLE 5.4

L

The Effect -0f Workpiece Slenderness Ratio
1

_on_the Workpiece Response

N

Ke = 5.397 x 10° A © Tool at joint # 3
ke D, =Dy =Dy =Dy =0.254m
g, - 3190 D, = 0.18m
¢r = 2.328x10° 85 p - gazgm
c = 28.632 x 103 Nsec Lz = 0.420m
r m
Maximum cutting force frequency = 187.5 Hz

Length of the workpiece = 0.330 m (13 inches), a constant

Diameter of STenderness Max. Workpiece
Workpiece Ratio MSD x 1.355 x 10-**
| x 0.0254, m. 2
2.0 ‘ 6.50 0.168 "
2.285  5.688 5 0.062
2.666 4.875 " 9021,
: 3.200 ' - 4.063 0.0064
- o -
4.000 3.250 ., 0.0018
5.332 . 2.438 0.00043
8.000 1.635° : 0.000049
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design vector. . *

At first, the MSD response decreases as the diamétér of the chuck:
increases then it qégéﬁés'a constant value above 0.203m (8 inches)

diameter of the -chuck.

1

_The maximum MSD response decreases with the decrease in the

-

slenderness ratio.

In the next chaptef, additional design considerations such as
stiffening of the spindle due to a third bearing and the design of a

squeeze film damper, is discussed.

Y S :
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_CHAPTER 6 '

EFFECT OF ADDITIONAL BEARING AND EXTERNAL DAMPER ON THE

RESPONSE OF A SPINDLE-WORKPIECE SYSTEM

6.1 Intréﬁuction

In chapter 4, the PSD of a sb%nﬂje-wﬁrkpiece system under
different design parameters of the system are bresented. The parameters
considered are stiffness and damping of front and rear beariﬁgs, bearing
spéciné, workpiece slenderness ratio, croSs;secfiona] area of the spiﬁdle,
size of chuck, and additional dampfng in the spindle. In this chapter,
the effect of incprborating a third bearing in the spindle on the PSD
responée of the system is presented. In add{tion, the effect of an
external damper at. the free‘end‘of the spindle is presented together -
with the_design procedure for fﬁis damper. o
6.2 Effect of Introducing a Th}rd Bearing in the Systen1/'

. < . b

The possibility of increasing the overall stiffness_of the system
by introducing a third bearing, was studied by Bollinger [42]. In this
work the third bearing was incorporated between' the front and the rear

bearing. This resulted in the increase in the first natural frequency

and decrease in the static deflection at the chuck.

In order to investigate the effect of a third bearing on the
. spindle-workpiece ﬁystem, in the presenf investigation an optimized
| spindle-workpiece system presenfed in chapter 5 is selected. Then the
paraﬁeters considered in the.study would be (af the magnitude_of the
stiffness.of the fhird bearing, and (bf the spacing-between the bearings.
The results due to the variation of these parameters are shgwn in Tab]é

6.1. "Referring to this table, one .can see that there is no significant
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"TABLE 6.1

7
[

Ws

pvt

MSD Response at Joint #3 with Third Bearing

MSD Response of the Optimized System

Tool Located at Joint #3

K =

— =

5.325 x 10° KN/m

3.190

Highest cutting force frequency = 187.5 Hz

Spacing between the front and the rear bearing = 0.4200 m

MSD response of the three parameter oﬁt%mized system without
third bearing = 2,29 x 10-!S, m?

_ N g ‘ :
c; = '22.328 x 103 B3&€ D, = Dy =Dy =D, = 0.254 m
¢, = 28.632 x 107 fsec D), = 0.188 m
- ' D,, = 0.170 m
Third WX, Normalized MSD response at joint mumber 3 with
Beari tﬁe‘third bearing spacing (distance between rear and
Stiffﬂgss third bearing) equal to
[ ’ . -
X 107, KN/m 0.058 0.130 0.202 0.274 0.347
/m m m 113 m
1.531 10.994 1.130 1.118 1.118 1.065
2.231 1.006 1.071 1.071 1.071 1.041
Cr,2.932 , 1.029 1.030 1.047 . 1.036 1.024
3.632 1.047 1.012 1.024 1.018 | 1.012
4.333 1.059 1.000 1.006 1.006 1.006
5.033 1.065 0.988 1.000 0.994 1.000

; -
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decrease in the MSD response due to either of the parametric variations.
In faﬁt, for the third‘ﬁearing stiffness values 2.231x 108 KN/m-4.332x
10% KN/m, the presence of a third bearing increases the MSD responseﬁcom-
pared to 'an optimized system with only two bearings. It can be seén that
sTlight Improvement in the MSD response 1s possible by using either a very
low or -a very h1gh value of<ﬁ2ar1ng stiffneSs. In order to estimate the
best combination of bearing stiffness and bearing spacing, an optimization
was carried out. The results obtained by this optimization are shown

in Taﬁ]e 6.2. Referring to this ﬁab]e, once can infer that there is

only an improvement of 1.8% in the design of the system by incorporéting '

a third bearing.

6.3 External Damping in the Spindle-Workpiece Syétem

6.3.1 Introduction

- <
. .

The influence of stiffness on the response of a lathe spindle- '
workpiece system has been.studied extensively and presented in chapters '
-4 and 5. - The purpose of this section is to provide detailed information

on the influence of external damping on the spindle-workpiece sys

The static stiffpess of a méchine fool is defined as the Yatio of
the force to displacement. In the machine tool design, the congideration
of the static stiffness only is not sufficiant because thé utting forces,
which are wide band in nature, act on the spindle-workpigcte syﬁtem.
Therefore, due to the presence of high inertia forces, the dynamic stiff-
ness also has to be considered. The dynamic stiffness can be

mathematically written as

; = k-mw?+ juc (6.1)



lJ

- 13-

TABLE 6.2

a

Optimal Values for the Third Bearing

- Maximum cutting force, frequency = 187.5 Hz

MSD response of the three parameter optimized system without third
bearing = 2.29 x 10-!5, m?

Ke = 5.325 x 105 Ki/m
X
Kf = 3.190

.

W* = MSD response of the optimized system with the third hearing
0 MSD response of the optimized system without the third-bearing

Distance between the front and the rear bearing = 0.4200 m (16.535 inches)

3 N sec : o
cg = 22.328 x 10 — . .

Cp

28.632 x 10° E—%EE
Tool 1océted at joint #3
D, =Dy =Dy =D,, = 0.254m

Dy, = 0.188 my¢; Dy, = 0.170 m

PARAMETERS
Stiffness Spacing Objective Function
*
x 105, KN/m m Wg
Lower Limit 0.765 0.058" L —
Upper Limit 5.357 .|. 4.064 —
Optimum Value 5.357 0.1667 0.982
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b

The equat1on (6 1) has been based on the fact that a machine tuo] is a

_s1ng]e degree- —of- freedom system and that the various modes can be

uncoupled whereby the ‘system resgonse can be analyzed on a mode to mode

basis.

Similarly, the dynamic impedance can be mathematically writfen -
» .

as
J

F .
v

X

= o+ ilem - 8 (6.2)

In equation {(6.1)y 1f w =0, then F = kx 1i.e., the existing force is

~ balanced by the elast1c restor:ng force. On the other hand, when

W= W, i.e. the natural frequency of the system, then the rastoring
elastic force and the inertia force are iﬁ quadrature with the driving
force and only the aamp1ng force is the only one to balance the driving
force. This exp1a1ns why just an increase in stiffness is not suff1c1ant

for controlling the vibrations in the range of resonance frequencies.

.6.3.2 Dynamic Damped Vibration Absorbers

One of the ways of reducing the response of a spindle-workpiece
system is to use an external damped vibretibn absorber. The principle
behind en absorber design is to attach a secondary mass, spring and a
damper to the ma1n mass or structure in such a way so that the
receptance of the main mass or the structure is considerably reduced in
a particular frequency range. For systems excited with a constant
frequency distrubance, the problem of controlling the vibration.is
relatively easy to solve using an absorber which is tuned so as to shift
the resonance peak of the main system. The dieadvantage.in'using an
absorber is that instead of one peak in the receptance versus fre-

quency diagram, two peaks occur but both of these two new peaks are

LN
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. . ) ,
far away from the original peak [51]. Thus the receptance can be

suppressed only in-a narrow frequency rénge. These absorbers could be
passive or active with feedback control [69]. The'e]ectromagnetic based
active absorb%fs are complex and expensive devicés. Their pra;ticéﬁ
applications is limited to simple machine tool systems and considerable’
difficulties arise dealing with multi-degree-of-freedom systems. In
these cases, some of the modes become unstable. Some interesting results

have been- obtained by Umback [70] and Van Herck [71]. "Figure 6.1 shows

" the. effect of varying damping ratio on the dynamic amp1itude of a two

degree-of-freedom system.” The damping ratio is shown along the abscissa

and the ratio of the maximum displacement to the static displacement

amplitude is shown ajong the ordihate.‘ The ratio of the secondary to '
the primary,mass is represented by u. The damping of the maih system
Has been taken equal to zero. It can be seen from Fig. 6.1 that g% the
mass increasgs, the dynamic displacement of the main mass decreases and
aiso there is a corresponding in;rease in the optimé] d;mping ratio.
This problem has also beeﬁ solved graphica]ly by Van Herck'[71]. " He
used dynamic resistance, which is the ratio of the externally applied

force amplitude to the velocity response ampiitude, as the criterion for

" the optimization. The optimum parameters'resu1t1ng from Van Herck's

graphical solution were quite close tqfthat of Umback's.

Stone and.Andrew [72] designed aifwo dimensional vibration
absorber for a horizontal milling machine aﬁd is shown in Fig. 6.2.
This ahgprber incorporated a po1ymer{c material as a damping element,
and wés véry effective against chatter.' The optimal design of this
absorber was based on_minimizing the maximum negative in-phase component

of the chatter receptance. ‘The chatter receptance of the milling machine

kA
B
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Fig. 6.1: Decrease of the Resonance Amplitude
. by Means of an Absorber in Relation
to-its Frequency and Damping {after

Umback '[70]).
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Fig..6.2: Two-Dimensional

N
L

Absorber for a Milling

Machine (after Stcne and Andrew [72]).
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ﬁithout'and with the absorber are shown in Fios; 6.3 and 6.4 respectively.
Ic can be seen from these two figures that the negative in-phase com-
ponent can be reduced by a factor of.six if this‘optima11y designed
absorben:is used. The forced vibration behavior of fhe milling machine
. with and without the absorber is also shown in Fig. 6.5, which is a
plot of modulus of forced yibration receptance versus frequency. It is
'evident fron this figure that the absorber is very effective in reducing

the receptance near the natura] frequencies. The peak receptance is

reduced by a factor of approx1mate1y three.

The V1brat10n absorbers have not been very .successfully app11ed
in the ‘case of 1athe spindles because workpiece of various s1zes are
he]d by a chuck wh1ch is an 1ntegral part of the sp1nd1e. Therefore,
vthe pr1mary mass 1tse1f changes consequent]y, the tun1ng of the
';absorber is not poss1b1e un11ke %ﬁ ‘the case of m1111ng machines where

the cutter, 1nstead of the workp1ece, fs mounted on the spindle. +-The
second unfavorab]e reason is that of the 11m1t t1on of the size of the‘“
secondary mass wh1ch can be attached to the spindle. If this secondary
.mass is sma11 then-the effectiveness ‘of the absorber is minimal and as a
~result, the tun1ng becomés d1ff1cu1t F1na11y, the cutt1ng forces in
“turning operat1ons are w1de band in nature, therefore, the absorbers are
not very effective in contro]11ng the vibrations over a wide frequency
reg1on Thus, fluid dampers which are quite effect1ve in such situations,
have to be used and a des1gn of such a damper is discussed in the next

section.

6.3.3 Fluid Damper

The principle of operation of a fluid damper is to squeeze a
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a.liquid film between two plates or in a cylindrical gap. There are
certain requirements for these kind of dampers to be effective and they -

are [73]:

1. The fixed member should be rigid and not move with the element
po be clamped. This is because the externally applied force is damped
Qﬁi]e being transmitted tﬁrough a visc0u§ medium and enérgy.is dissipated
due to the squeezing of a film of a liquid. If the Fixed member moves,

then the squeezing action doeé not take place.

2. The gap bétween the transmitting and the transmittéd bodies
should be wide enough to prevent their mutual contact.’ This can be ex- '
plained by the fact that squeeze film effect would cease if the two bodies

touch each other. ~

3. The damping constant must be adjustab]é ffom case to case.
For too high a value of the damping constant, the fluid medjum acts like
a rigid body or support. Similarly if the damping constant is tco low,
then fﬁé transmissibility of the force will be high due to the Tight

damping.

Figure 6.6 shows a fluid damper used by Peters [74], for a lathe
spindle. In this damper the oit-flows continuously, and the vibration of
the spindle is damped due to the oil film squeézed between the spindle |

and the bushing.

.

6.3.4 Theoretical Formulation of a Damper

The theoréfica] formulation of a damper can be-obtained by dsing

‘Newton's laminar flow theory.

For a rectanguiar liquid film with unidirectional flow (refer to

Fig. 6.7), the expression for the force required to move the fluid with

-

Pl
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Fig. 6 6: Relative Viscous Damper of Spmd]e of a Lathe
- {after Peters (7417
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a velocity V4 Can be given by Peters [73].

L b3\ /12 n jw p ‘ '
. d d d -
Fd- _Vd (]2> ( éa + " ) . B (6.3) .

) »

Iwhere;
‘ Fd _is the force,

V4 is the velocity,
Ly is the length of plates,
b. is the.width of plates,
hd is the dynamic viscosity dqéfficient of the f{uid,
e s the gap beEgsen the plates,
| Py is the specific mass of the quTS}\

w is the frequency.

For rectangular liduid fiim with free f]oﬁ iﬁ two directions:

- "3
12 1 jo 4-L. b
‘ el e m?

m=o n=o mn?(b*m* + LIn?)

(6.4)

where m, and n are odd integers. For a circular liquid film damper:

-

o TRV, [12n,  joo '
Fy o= - d d ( d d ) . (6.5)
. 8 e? e .

where, Rd is the radius of the circular plate.

For a cylindrical damper with tangential flow:

. s 12 Ng Ju pd
;Fd = -7 Rd V4 Ld ; + )
e e

{6.6)
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For a. cylindrical damper with only axial

® L3R,V 120, - joop . .
- - ddd( d , dy / (6.7)
12 ed . . e ; S

For a cylindrical'damper with axial and tangential flow:

“ 12 nd N J Pd w - eLd/ZRd_ 1
Fa =2y \ 3 ) R R TIam,
o . J+e
S + (6.8)
L4/2R
-R E__E_d"_] - Eﬂ
d -Ld/R 2
“T+e d
\
A1l of these equations have a common form and can be expressed as

In equation (6.9) one can see that the force needed to move the film has
two components: one in phase with the veiocity and one in phase with the

acceleration. . '

In a1T of these equations, the term containing vy give§ fhe
component of the force to overcome viscous resistance. Thigjforce is
praportional to the viscosity of the fIﬁid and s inversé{;/propértional
to the cube of the gap-width. The coefficient Cq in the equation (6.9)
hds the dimensioﬁs of damping coefficient. .The séconq term in §11 these
equations® contains p and the corresponding'fofce s in phase with the
acce]eration.\ This component.of the force is diygecly proportional to

the frequency and the specific mass. Surprisiﬁg]y, 1 'is alsq a function
| of the gap-width and'is inverfe1y propgz;inngl\fovit. The coefficient Mg

. . . cL . L .
has a dimension of a mass and?qg‘lg,/ﬂn reality, jthe equivalent mass of
T
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the moving fluid. Separating the.real and the imaginary parts in
equation (6.8) we can write

. Rea](Fd) b . \ ‘ o i
¢y = ——— , and - | (6.10)

Vd

: Imaginary (Fd) , Coe

* ad (/\ -

»

Finally, the expressions for C, and M, can be written in a unified

‘way as: ' C _ .
b* ' ' :
Cd .= Hd']d ;: , and | ' FG.]Z}
_ b | |

where, Hd is a coefficient which depends uppn the shape of a damper.
Depending upon the geometry, Hd can be evaluaFed by using the following

expressions: ‘- .

For flat démpers:“

(i) For circular cross-section damper: -
"n' ‘ - . Tl
Hd =3 = 0.29453 : q(6.14a)

(ii) For rectangular damper with unidirectional flow in the

L R oo -
Hd = F , - (6.14b)

b direction:

(iii) For rectangular damper with free flow:

L.\ = @

Hy = 6.7988(3‘1) )IDIE 1 - (6.74¢c)
m=0 n=0 m2n2[m2 + (Ld/b)znz]
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For cy]indriéaT démper§: E
(i) For pure axial flow:
Hy = % (Ly/b) | . (6.15a)
(ii) For pure.tangentia1 f]oﬁ:
Yoy = 3 (L) | (6.15b)

(iii) For free flows in the,axial as well as tangential directions:

L L,
d d
T tanh '-6—) (5.]5C)

-

6.3.5 Location of the Fluid Damper

oy

fhe Tgcation of the fluid damper has been studied by Van Hefck [75]
and the results obtained are presented in Fig..6.8. In Fig. 6.8, the ratio
of the static deflection at the chuck to the resonant amp1ithde at the
chuck has been plotted against the damper location. From F{g.76.8 one

can conclude that the best effect of an external damper can bé achieved

if it has high damping coefficient Cd. and 16cated near the front
bearing. The author however recommended that fhe damper be located in

the midd]e‘of the bearings where the -effect of damper is insensitive to
'fhe frequency changes of the sfiffness of the bearings énd of the
frquency. Similar studies were carried out by Bollinger [42] who found
_that the best resﬁ]ts are obtained if the damper is located at the free
end. The studies in chaptér 4 also confirmed that the %ree end is the

most effective location for the external damper. Therefore the damper

-
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Fig. 6.8: inﬂuence of Location of Damper (after Peters [741).
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design is based upon locating the damper at the free end:

"6.3.6 Design of a Squeezé Film Damper for the o ,

Spind]g-workpiece System

The external damper would be of cylindrical shape as shown in
Fig. 6.9. The deéign of the damper is based on the following setAof
formula [73]:

bh

Cqy = Hd g o3 ‘ (6.16)
: b . ‘

My = Hy e Toe "énd o ' (6.17)

Hy = %g: (%?— - tanh %;i) l. ~ . (6.18)
where,

b = diameter for cylindrical slieeves,

e = width of the damper gap, S

UM - dynamic viscosity, l

Py -= specific mass, )

Hd = a coefficient depending upon the shape of the damper,

Lé = Tlength of the cylindrical damper,

Gy = damping constant, and

My s equﬁva]enf mass of the ojl. - .

The damper design-is based on minimizing the dynamic amplification at the
first mode. "The following numerical values for the various parameters

of the'damper are selected:

; T ) ')\
Ly =+ 7.62x107%m (i;}"\-/) . ‘ 3

b
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Jon “«

© 0.169672m (6.68")

b =
ng = ~0.563 Nm~? sec
Py = 890 kg/m?

O.SxCt , half of the critical damping constant = 19.185x 105 .N sec/m

Using the afore mentioned values of fhe parameters in equation
(6.15), the value of Hd can be'founq as 0.130358. Substituting this

value of Hd in equation (6.16), one obtains e = 0.000317m.

Peters [72], in_order to reduce the discrépency in the computed
natural f?eqﬁency and the experimentally obtainéd naturail frequency when

a squeeze fiim damper as qutlined in this Ehapter was used, suggested a

. modification to equations (6.16), (6.17), and (6.18). He used a new

* parameter bm’ in place of b 1in all these equations. The relationship
between " b_ and b is given as

b . = b + 2e ' . - (6.19)
This modification as suggested by Peters was due to the addition
of boundary ?ffects in the damper design. Now, combining the equations

(6.16) and (6.18), and (6:19) one can write

d d b+ 2e
- tanh 6.20
b+2e b+2e> nd_ el ( )
Substituting the numerical values of all the parameters as before, the
equation (6.20) was solved for e, by an iterative procedure. The new

value of € aw obtained, was equal to 0.000318m .

Thus, -all the parameters necessary to design a squeeze film

damper have been calculated and the necessary details of this damper are

]
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shown in Fig. 6.9. .

In order to estimate the order of magnltude of 1mprovement in the
mean square response of the sp1nd1e—workp1ece -system when a f1u1d damper
of different dampIng coefficient is 1ncorporated at the free end. The
normalized maximum mean square response on an;optimized spindie, (optimal
bearing stiffness an spacing, and diameter of the spindie) is shown in
Table 6.3. This table shows that there could Be 36.8% reduction in the
maximum MSD response'if the designed fluid dampér is used. Figure'6.9

shows the various dimensions of this damper.
6.4 Conclusions

In this chapter, the effect.of a third bearing aé-d means of
stiffening the spindle-workpiece system is studied. As a first step, .
a parametric study 1nvo1v1ng jts stiffness and its 1ocat10n is carried
out and followed by an optimization §tudy. The study 1nd1cates that
there is no significant improvement in the performance of the system by
incarporating a ‘third bearing on an optimally designe& spiﬁd}qr(optimal

bearing stiffness and shacing of a two bearing spindle-workpiece system).

Introduction of additional damﬁing,.gs another.ﬁeans of improving
the system performahqe is studied next. The effect of vibration .
absorbers and fluid dampers on the response‘of the spﬁnd]e-workpjece
system is also studied. It is concluded that the fluid damper is the:
most suitable candidate for improving the system response. The equat10n§
for the design of the damper are discussed and the geometric configuration
of'the dampef is_computed; Finally, the effect of aﬁ external dampef
located at the free end on the MSD response of an optimal system is

discussed. ¢«
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TABLE 6.3

Ihe Effect of Additional Damping Applied at the
Free-End on_the MSD Re§ponse-of the Three

Parameter Optimized System

Ke = 5.325 x 10° N/m
K
Kf' = 3.190

r

Highest cutting force frequency = 1250 Hz
Spacing between the bearings = 0.4200

o N sec
Cp = 27.328 x 10° —
- s N sec
C. = 28.632 x 10 —n
D, =Dg=Dy=D,,=0.254m
D,; = 0.188 m '
D,, = 0.170m
Norma]izing value for the Max. MSD response = 6.030 x 10-15, m?
= x 05 N.sec
C. = ”38.371.x 10 -
Damping Applied at
the Free End of Normalized Max. MSD Response
the Spindie , '
(% c.)
0 1.0
0.25 : 0.782
0.30 0.739
0.35 0.703
0.40 ‘ _ .674
0.45 .649
0.50 .632
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Based on these studies, the following conclusions are drawn: ° ,,/>/

Inclusion of the third bearing does not lead to any significant

stiffening of the spindle-workpiece system.

It is possible to design a fluid film damper which can significan-

i . A s
tly decrease the maximum MSD response of the system. o~

"
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CHAPTER.7 . }

CONCLUSIONS AND RECOMMENDATIONS

‘ &
This is a computer based analyt1cal 1nvest1gat1on of a des1gn of

Tathe sp1nd1es. In designing Tathe sp1ndle§, there are severa] 1mportant
factors which have to be.taken into account. Some of these factors are,
fbr example, location of .the bearings, stifquss of the bearings,
sectional rigidity of the sbind1e, possibility of using an external damper
etc. The various parameters should be seiected in such a manner so that
the maximum displacement response of the Qorkpiece-spindTe sy§tem, be as -

small as possible.

A mathematical model of the spind1élworkpiece system acted upon
by random cutting forces have been formulated USing finite element analysis.
The theoretica]ly.obtgjned natural frequéncies have been compared with
the experjmenta11y oBtained natural frequencies in order to estap]ish the
boundary condition at the workp1ece1runn1ng center interface. The |,

variation of the natura1 frequencies and the undamped mode shapes as a

function of the bearing stiffness have also been éna]yzed.

The forced vibration behavior of.the‘system has been analyzed
¥ .
- using modal analysis. The dynaaic displacement response ‘of the systeﬁé
" has been studied by varying the parameters such as tool feed rate, bear-
ing stiffness, bearing spacing, structural damping and the sectiona]
_rigidity of the spindle. The optimal design of the system has been
obtained by simultaneously varying parameters such as bearing stiffness,

beaping spac1ng,.and the sect10na1 r1g1d1ty of the sp1nd1e

Finally, the'poss1b111ty of using a third bear1ng has been
analyzed and the design of an external fluid damper has also been

N .
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discussed. ) : ~

7.1 Major High]ights'

‘7.1.1 The Mathemat1ca1 Mode1 of the System Response Acted Upon

by Random Excitations of Arb1trar1]y Varx1ng Power

Spectral Densuty

A new method for the ca]cu]at1on of the response power spectral
dens1ty of a 11near multi- degree-of—freedom system has been proposed

Thé method 15 based on modifying the govern1ng equat1ons of motion of the

'system w1th a set of auxiliary var1ab]es As a first step in the calcu-

Tation of the response, power spectra1 density matr1x, the natura1
frequenc1es, and the modaT matrix of the modified system were obta1ned
These matrices %hgneﬁthen,used to obtain the transfer function of the

modified'system. This procedure complete]y e]iminatés any matrix inver-

" sion correspond1ng to the system transfer function and it requ1res s1g-

. n1f1cant1y less computat1on time for 'the computer of the response as

compared- to the conventional method. Two numer1ca1 examples have been

used to demonstrate the usefu]ness of th1s techn1que

7 1.2 workp1ece Response due to Spatially Mov1ng}Random

Cuttirg Forces ] ' \

e

The dynam1c response of the sp1nd1e—workp1ece at the m0v1ng tool
tocation due to random cutt1ng forces has been obta1ned The ensemb]e of

the random cutting forces have heen taken to form a wh1te no1se process.

_An equ1va\Ent viscous damping to account for the structural damping in

, ‘q\‘

the method of the workpiece has been assumed. The 1nvest1gat1on indicates

that for the range of feed rates normal]y used in’ f1n1sh1ng operatlons,

it is not necessary to cons1der the effect of ‘feed rate in obtaining the

~

\ -
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the ‘mean and the variance responses at the tool dontaét.‘

©7.1.3 Dynamic Behavior of Lathe Spindles with Elastic

SupportevInc]Uding'Damping

" Tﬁe'free vibration behavior~of a lathe spindle-workpiece system'
usfng finite element ana1yeis has been presented. The investigation hae
been carried out in three parts, which are: (1) the classification of -
the end'c;;dition at the running cen%er, k2)~the determination of the . -
undamped natural frequencies and the mode shapes, and (3) the effect of :
bearing stiffness on the natural frequencies and the mode’shabes. The
results show that the workpiece supdetVat the running cedfer can be.

'ﬁbetter represented by hinged condition as compared to the c]amped

condition; the first. four natural frequenc{%i and the correspond1ng

mode shapes are quite sensitive to any changes‘?h the bear1ng stiffness.

7.1.4 Dynam1c Analysis and 0pt1ma] Se]ect1on of Parameters of a

Lathe Spindle Under Random Cutting Forces N

The dynamic anal}igﬂ of an elastically supported 1athe spindle-
~workp1ece systeanubJected to stochastic cutting forces has’been presented.
“The stochastic partial differential equation characterizing the behavior
. of the system was formulated from the Euler-Bernoulli beam equations. A

finite element techn1que in conjunction with the medal ana]ys1s techn1que,
were used to calculate the mean square d1sp1acement of the workpiece. -
- The exper1mena11y calculated power spectral ‘density of the cutting forces
was used ;§ the 1nput excitation to the mathemat1ca1 model. The effect of
bearing stiffness, bearing 1ocation, secitonal rigidity of the spindle,

and damping on the mean square d1sp1acement were studied. Two-parameter

(bear1ng stiffness and bear1ng spac1ng), and three- parameter (bear1ng
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stiffnééé, bearing spaciné. and f]eiura] rigidity) optimization have
been carried out. The resu1ts‘indicate.that if the spind]g {s designed
based on. optimal parameters theﬁ,'there cou1d be a reductioh of 23.33%
and 28.39% in the maximum mean Square response corresponding to the -
twozparameter and-tﬁree-paraheter optimization, respéﬁfiveiy. The
results aiso ihdfcate that an.additional thifd bearing does not signif-
jcantly stiffen the optimally designed spindle and that an external fiuid
film damper mounted at the free end of.the spindle can be‘effective1y
used to reduce thé maximum mean square displacement response of the work- -
piece. | '

A step-by-step prqcedure for ‘designing sqdeeze film damped\is a1so

outTined.

7.1.5 Other Applications

The technique adopted in this imvestigation is fairly general.
The technique can be extended to other machine tool spindleélwithout

any change in the methodology.
E

° . .
Based on these studies, the following conqlusions can be drawn:

1) A comprehensive mathematical model ‘'of the spindle-workpiece

system -is developed which utilizes finite element technique in conjunction

‘with modal analysié.

2) The end condition of the workpiece-running center connection -
1§.better represented by hinged end condition as compared to the clamped '

end condition. oo
A

c. W : :
3) The first qugral frequency is sensitive to any changes in the

Tow bearing stiffnéﬁs at lower range but reaches a constant value at’
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higher bearing stiffness range.
4) The second, the third‘and the fourth natural frequencies are

. very sensitive to any changes in the bearing stiffness.

' -5) 'hg fifth and. the higher natural frequencies are insensitive

to.any charffes in the bearing stiffness.

6) ‘For the range of feed rates normally used in machining operations,
it is not ﬁecéssary to consider the effect of_feed rate in obtaining the

mean and mean square response of the work-piece system. -

7) The mean Square response of the workpiece decreases with the

increase. in the structural damping of the workpiece materfal.

8) The mean square response varies quite significantly along the

spindle-workpiece sy§£em irrespective of the location of the tool.

9) The free end of the spindle is the most effective location fqr

the reduction of the workpiece mean square response.
‘ s

10).- The MSD decreases with Tncrease in the_exterﬁETTy applied

damping. - ' e

11} There exists an optimum bearing\span and bearing stiffness
for wh{ch the maximum MSD is a minimum. . '

12) The maximum MSD decreases as the sectional rigidity of the
spindle increases. - B ¢

13) \_There is_insibnificanf decrease in the maximum MSD of an
optimally designed spindle-workpiece system due to.an optimally ée]éctgd

_ and located third bearing. o/

}y 14} The maximum MSD of the workpiece decreases withithe decrease
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in the slenderness ratio of the Qorkpiece.

15) An external fluid damper can be designed and very effectively
used to-reduce the workpiece maximum mean square response by mounting it

at the free end of the spindle.

7.2 Limitations of the Investigation

The approach used in the present investigation in optimally

“designing a spindle, has the following Timitations:

1} The stochastic excitations process have been treated as a
- stationary process, and described through their power spectral density

variation in the frequency domain.

~

2) The spindle-workpiece system has been assumed to exhibit a
linear behavior. .'_
3) . The bearing stiffness and damping values have been assumed to

be independent of frequency. T .

A

4) The effect of shear deformation and rotary inertia have been

assumed to be negligible.

7.3 Recommendations for Future Work

- A

The basic purpose of this investigation was to'study the flexural -
’ N
response of the spindle-workpiece system due to-the cutting forces in a
finish turning operation. The system was assumed to be linear. Thiiq"

work can be extended into several areas dﬁich‘are Iisted below.

ng\\ﬂ) The bearings ggh‘ﬁavé non-linear stiffness characteristics.

2) The damping of the bearings can be a function of frequency.

- 3) The mathematica1 model can bé refined to include the effects

o~

»

‘ » . .
s )
i ' y — :
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shear deformation and rotary inertia.

4) The mathematical model of the spind]e-woﬁkpiébe system can be

.formu]ated to-inc]udé all the nonlinearities and thg dynamic analysis

further carried out on a linearlized model based on the statistical

Tinearization approach. | : ' .

w

§) The cutting force spectrum of different materials can be
ané}yzeg with a possibility of correlating machinability and some of

the statistical parameters of the stochastic cutting forces.

| 6) The cutting forces, for variaus depths of cut, feeds and

speeds, can be used as the random inputs Sﬁd using finite element ' .

. analysis, the life and reliability of the jcutting tools can be aﬁtennined.

7) An apbroach simiTar to this thesis can be used to study the

spindle dynamics of other machine tools such as hobbing, milling,
shapiné, etc.

¢
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APPENDIX A *

MASS AND STIFFNESS MATRICES QF AN ELEMENT

o

. In order to generate the mass and st1ffness matr1ces of an e1ement
the Lagrange s equation of motwn for the e]ement must be derwed For
this purpose, the kinetic energy, T* and the potential energy, V*
“are derived-as follows [51]: '

Kinetic Energy .
L -

we) [ ]
0
-1 B _[155 () + AL ()7 + 156 el (t) +

. 4w, (t) + 2x 220w, {t) wal )]
+ 2% 54 w (t) ws(t) - 2x 132w (t Wu(ﬂ
2x229.w3(t) wy(t) - . ('A.l)

Potential Energy

o
V*(t)=-;-‘[l 1 [t a§2t| dx

0 .
-3 L [ mt(e) + anmat(t) +12 wi3(6) - 422w,2(t)

+ ZXGR,Wl(t) Wz(t) -2x12 W](t)_ W3('t)
ot 2x62W(t) wi(t) = 2x 62w (L) wa(t)
| *2x 2%, (1) wo(t) - 2X51W3‘(t)_wu(t)] (A.2)

The Lagrange's equation of motion for thié system can then be

rewritten as:

4 fare)) e L - :
£ = Q =1, 2,3, 4 (A.3)
dt ( Wi ) W 4 i=he

where,



- -~ -

- L*(t) = T*(t) --V*(t) | - .
. v S ‘
Combining equations A.1; A.2, A.3, and-A.4, one can write the matrix

differential equation of motion as

oy _
. 1w L ’
L W2 1 W2\
-7 Im], Wa + [k] Ywaf © 0 o
N \";"‘ wlo ‘ ’ . r
where, |- . -
. |56 22¢  s4 13 ‘
A : C’\ .
\ . , 442 ™2 =322 '
[m] = 0 - is the mass matrix,
. _ . sym 156 =221 '
' 4z2
. - R \4\. -
and . . ' BN
' [0 6 2 6]
| - 422 .68 292
[kl = = > - is the stiffness matrix.
2 sym 12 -6%
‘ N 421
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APPEND;X B
‘B.1 Introduction
For a n degree of freedom mechanical sy;tem; the governing
dynami;a] equation can be written as

[m] B(t) + [c] d(t) + [K] w(t) = £(£) -

(nxn) {nx1) (nxn) (ﬁx]) Lnxn),(nx]).(nxl)-
where {m], [c] and [k] are the mas@% damping and stiffness matrices
‘respectively,

and f(t) is the vector-of random‘excitatidn-forces:

CIf [¢f(m)] is the nxn excitation spectral density matrix of the

excitation force f(t), then the response spectré] density is given by

4

[4,() = [H(5) 106 ¢(0) 10+ (3e) 1" |  (.2)

where [H(jw)] is a (nxn) matrix of the transfer function of the
.~ system in equation {B.1),
-[H*(jw)]T is the transpose of the coﬁp]ex conjugate of [H(jw)]
and [¢w(w)] is an nxn response spectral matrix consisting of diagonal
: elements repfesenting the spectral density of generalized

displacement and off-diagdnal'elémén;s representing

cross-spectral density of generalized displacements.

[H(jw)] can be found by ‘calculating the Fourier Transform of
equation (B.1) and can be represented as .

-1 . .-

(Mgl = [20%n] + do [l + OKT] (5.3)

o



B.2

The .calculation of the résponse spectral deh;igy [¥w(m)] in
ggnera1lis carried out over all fréquencies of'iptereésgand it involves
matrix addition, mhltip]ication and 1nvérsion. In'particular during
- the calculation of [¢w(m)],'the matrix inverstion is usually a time
.consuming operation in a computerf Further, if the degrees of freedbm'

or the frequencjes gf‘ipterest are large in number, then the Ebmputek

CPU time for the_eva]uation of [¢w(m)] also becomes large.

Here,=a new method for the ca]culat1on of the response spectral
dens1ty [¢ ()] is introduced which eliminates any matrix inversion.
Further this method provides in addition to [¢ (m)], the response

\-‘
spectral dens1t1es [¢ (w)], [¢ -(w)] and [¢ (w}] in a s1ng1e ca]cu]at1on.

B.2 Mathematical Formulatjon

., .

Using a new set of variables, Y(t) and Y(t), equat{on (B.1) can

be rewritten as

[¥] Y(&) * [K] ¥(t) = F(t) ' (8.49)

where, . [to] .[m]

(2nx2n) ~ [mj [c]

[-m] [0]
(k] . ' .
(2nx2n) ro] [k
( { Nt i - ‘?.(t)}
w(t) (2nx1) w(t) A
and ( 2 ?f t)l \ & |

e



B.3 - :

Let_tV] be the modal matrix (2nx2n) consisting of the eigen-

-~

vectors of equation (B.4).

Defining ¥(t) = [v]z(t) ,
and  Y(t) = [VIi(x) ,
and premuTtiplying each term in eduation (B.4) by [\f]T gives ' -y
Ded 20e) + kel z¢t) = DT F(e) | (8.5
where )
M¥] = [vIT[MILV]
T (B.5a)
and  [K*] = [Vv]'[KI[V]
aré diagonal matrices of size (2nx2n).
Assﬁming‘the initial conditions are-zero and faking the Laplace
Transformation of equation (B.5) gives '
2(s) > TS + [k 170 (V1T E(s) - (8.6)
Premultiplying by [V], equation (B.6) becomes’ '
Y(s) = [A(s)] E(s) ‘ (B.7)
where tA(s)] = [Vj[G*(s)][VjT' ' (B.72)
= [sfw] + [k€1]7 - (B.7b)

" and [6*(s)]

The matrix [6*(s)] a diagonal matrix with its diagona]'e]emeﬁts
being the rgcipfoca] of the diagonal elements of the matrix [s{M*T + [K*1].
From equatibn (B.7)-it is evident that [A(s)] represénts the transfer
function 6f the system given in eqhation‘(8.4). Then the expression for
rédsponse spectral density of the system (governed By equation (B.4} is

given by
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<

A0 [8p()] ("

[oy(e)] =
(B.8)

(2nx2n) (2nx2n) (2nx2n) (2nx2n)
where - 0 o o

(po(w)] =- S NS is the excitation spectram matrix

] 0 ! ¢:(w)| Tcorresponding to the force vector F(t)

[ (Ge)T s the transpose of the complex conjugate of A(jw)

and ’

[¢Y(m)] is a 2nx2n resppnse spectral matrix

If [¢Y(w)] is partitiohed, then - | _ '
L O e R - (B.9)

From equation (B.9) it is evident that the calculation of

: [¢Y(m)] provides ;esponse-spectra1 matrices [¢w(m)], [¢&(m)], [¢wﬁ(m)]
and [¢Qw(m)]' The procedure outlined in this section not only:provides
4 times the inforhation as compated fo the solution obtained using
equation (B.2) but also avoids the necessity of inverting the.matrix._

corresponding to the system Transfer Function.

B.3 - Step-by-Step Procedure of the New Method

1) Formulate the modified governing equation of the system as
shown in equation (B.4). ' X |

2) Obtain the modal matrix [V], and the corresponding natural
frequencies of the system represented by equgtion (B.4).

3) Ca]cd]ate‘the diagonal $atrices [M*] and [Kf] given by the
'equation (B.5a). ’ -

4) Calculate the matrices [A(s)], and [6*(s)] given by the

-



B.5

.. equation (B.7a) and (B.7b) respectiyely.

5) Calculate the spectral density of response matrix [¢Y(m)]

- . using the equation (B.8).

The required computations for each of the steps, starting from step 2,
were done using.a package written in FORTRAN language. The modal matrix
[V} and thé'coﬁresponding'natura1 frequené%es were obtained by .using a

sub-routine EIGC@ from the IMS Tibrary of sub-routines.

B.4 aNumeriEai Examples

]

B.4.1 The Inertia Matrix Diagonal, and the Stiffﬁess and

)

The system chosen in Fig. B.1, and the details of the-yariohsr-

the Damping Matrices, Nondihgona]

parameters are given in Table B.1. In pracﬁice,'far mechanical systems;

the matrix [¢f(m)] can be determined experimentally.

Numerical computations were carried ouz with the ﬁarameter set
as in féb]e B.1 to obtain, é) the matrix [¢w(m)] usi%g‘equétion (8.2),
and b) the matrix E¢Y(w)] usi#a equation (8.8) regpectivefy. The
calculations were repeated with the.maximum frequency limit of 2009,
3000, and 4000 H;. in all cases the lowest frequency was.selegted as
5 hE\Witb frequency step gl§b chosen as S‘Hz. The com;utations were
carried Aai‘on a CDC Cyber 174 digital computer. For a pre-selected
maximum frequency limit, the matrix [¢w(m)] calculated using the con-
ventional apprpaéh (equation (B.2)) was 1deﬁtia]'to that obtained using
the method propdsed in this paper (equafion (B.8)). The c&ﬁputation

time for each of the three sets mentioned above Ere given in Table B.2.

o<
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Fig. B.1:

Three-degrees of freedom system.
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B.7

" TABLE B.1

Various'Matrjces of the Mechanical System

Inertia Matrix (kg)

. [ss.as g
m] = 0 45.454
. a .0

Stiffness Matrix {N/m)

[k] = 176.458x10° . |-1

3

Damping ‘Matrix (N.sec/m)

3.3644
-0.3747
-0.0581

[c] = 1750.1

0
0

90.509

-0.3747
3.3337
-0.4079

. [-10.0 1og w+100
' =9.5 log w+100

Toplw)] = 0
| 0

~

-0.0581

.~0.4079

Vel
6.3788

‘Excitatfon Spectral Density Matrix (N2/Hz)

0

0

0
0
9.0 Tog w+100

-

"y
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* B.9

" B.4.2 The Inertia Matrix Nondiagonal, and the Stiffness

and the Damping Matrices, Diagonal

-

The system undeh consideration is phown in Fig. B:2. This
system repreeents'an active suspension system of a tractor cab [76].
This problem'inyo1ves the sp]ution of a four degrees of freedqm systéem.
The four suspension units under Each'cprner of the cabebase plate,

1so1ate %he v1brat10ns in the vert1ca] pitch and ro]I modes. The

fIfth suspens1on unit parallel to the cab base plate provides isolation

in the side-to-side or the .lateral direction. " The forces are present
¥

'a]ong each of the coordinates 21, X2, Xz, and xy. The system is sub- .

jected to the base excitation. This system can also be represented by

the matrix differential equation (B.1) [76]. The details of the var1ous

'parameters of this system are given in Table B.3. The response spectral

dens1ty matrices [¢N{m)], and [¢Y(m)] mentioned in section B.4.1 were

computed in a s%mi]ar manner.” Once aga1n there was no complex. matr1x
\__,,/

1nvers1on involved in the computation of the matrix [¢ (@)]. The deta1Is

of the results of these’ computations are given in Table B.4. It should

be noted that the elements of [¢w(m)] calculated using the conventional

approach (equation (B.2)) was identical to that obtained -using the

proposed method. -/

~

B.5-  Results and-Discussion .

”

Referring to Tables B.2 and B.4 it can be seen that there is a

significant reduction in the -computation time in obtaining the matrix

[¢'(aJ] if the new apprbach is used instead of using.equation-(B.2).

-Therefore one ¢an 1nfer that the reduction in computer t1me rea11zed

in us1ng the new approach woqu become 1arge as the size of the matr1x
a ' )

(
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B.11 Tg?
. - TABLE B.3
' Various Matrices‘;f the

LY
Tractor Cab Suspension System [76] -

1. Inertia Matrix (kg) .
| 681.82 0 0 - 0
[n] = 0 . 7%.67 0 0
. 0 0 395.9 519.5
0 0 519.5  681.82
[
2.

Stiffness Matrix (N/m)

26844 0 o - 0

. 0  5606.37 0 0

L L B 5606.34 0
r 0 0 0 9843.0

A
Y

3. Damping Matrix (N.sec/m)

-
2042.8 0 0 0
. T o 426.63 0 0
[el = 0 0  426.63 0.
o 0 0 0 729.51
Excitation Spectral Density Matrix (N2/Hz)
(assumed) ' .
-10.0Togw+100 ' O 0 0
C 0 -9.5Tog w00 0 "0
[og(w)] = 0 0. -9.0loguwtics / 0
0 0 0

-8.5 Tog w+100
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, ‘ . B.I3 /
[¢w(m)] increases. As.a poin of clarification it should be pointed
out that the matrix [9,(©)] in equation (B.9) has been computed without
actually computing the matrix [¢Y(w)]. This was possible by partitioning

the matrices inyolved in the calculation. - >

L)

In this new method when [¢w(w)]lis'¢a1cu1ated, the natyfal
frequencies and the corresponding mode shapes of the system gre autdmat-
jca]iy obtgined‘as a by-product. In some vibrating systems sucH/as the

éﬁghenin secqun.8.4.2,‘the mode.shapes and natural frequencies character-
ize the rig%d body motion of the vehicle under consideration and thus -
provide very valuable in%grmation in the overall suspension design of
the vehicle. In these situa;ions ﬁsing the method proposed hefe, one
can obtain the vehicle response to random road surface Undulatiqns,
‘ [¢w(w)], ahd vehiclé'natura] frequencies and mode shapes in one single-
calculation. Further it is posSibIe using this new method propogeg to

obtain sp?ctra]-dénisty [92], and cross-spectral densities [¢wgfhand'

[¢ng without any added'computational difficulty.



