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ABSTRACT

A Comparative Study of Faimess in Wireless MAC Protocols

Xiao Zhi Lu

Fairmess in Medium Access Control protocols is a challenging problem because of the
existence of the hidden terminal problem, partially connected network topology and lack
of central administration. In this report, we present a comparative study of fairness in two
MAC protocols, known as Distributed Fair Scheduling (DFS) and Estimation Based Fair
Medium Access (EBFMA). We also compared these two protocols with the [EEE 802.11
Distributed Coordination Function (DCF). Our study shows that in the fully connected
network, although EBFMA has the best faimess index, it has the worst throughput. In the
fully connected network, the faimess index of [EEE 802.11 and that of DFS do not have
significant differences while DFS has better throughput than [EEE. In a partially
connected network, [EEE 802.11 is seen to have the best faimess index and throughput
because of its binary exponential backoff algorithm while DFS and EBFMA have far

worse fairness index and throughput.
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CHAPTER 1

INTRODUCTION

Wireless computing is a rapidly emerging technology providing users with network
connectivity without being always connected by cables. In recent years, there has been a
tremendous growth in the wireless networking industry. With the increasing usage of
mobile and wireless networks in both indoor and outdoor environments, the issue of
providing fair channel access among multiple contending hosts over a scarce and shared
wireless channel has come to the fore. Fairness is an important issue when accessing a
shared wireless channel.

The Medium Access Control (MAC) protocol through which mobile stations can
share a common broadcast channel is essential in a wireless network [4]. At the same
time, to achieve fairness in the Medium Access Control protocol is a challenging problem
[8.20] because of the existence of the hidden terminal problem, partially connected
network topology and lack of central administration. In the past few years, several
Medium Access Control protocols for wireless networks have been proposed
(2,3,8,12,14,20]. In this report, we present a comparative study of fairness in two MAC
protocols, known as Distributed Fair Scheduling (DFS) [8,20] and Estimation Based Fair
Medium Access (EBFMA) [2]. We also compared these two protocols for faimess with
the IEEE 802.11 Distributed Coordination Function (DCF) [10], which is based on the
Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) [4] mechanism

with a rotating backoff window.



(8]

We start with reviewing some background on wireless networks. In the following
sections, we describe the advantages of wireless networks, the physical layer
technologies specified by standards, and the two main models of wireless networks. We

conclude this chapter with a brief description of the contribution made by this report.

A.  Wireless Network
A wireless network is comprised of devices with wireless adapters communicating with
each other using radio waves. A wireless network has following characteristics:

o Lower setting up cost. It avoids the high cost of installing wired lines, and costs
associated with frequent moves, additions or changes of devices.

¢ Flexibility. It does not have constraining wiring infrastructure, so it is easy for
workstations to be added or relocated.

e Mobility. Users can access the network at any time, anywhere without being
bound to a fixed location.

e Faster deployment. There are no site licenses to obtain, cables to run, or trenches
to dig. With a wireless LAN one can be transmitting data in a fraction of the time
needed to install a wired connection.

e Compatibility. It is fully compatible with existing wired and wireless networks,
one can use it to build a complete wireless infrastructure, add to an existing

wireless LAN or add a wireless extension to a wired LAN.

In plain words, the wireless networks have the clear advantage that they do not use wires.
This obviously means that portable devices can be part of a LAN without being

physically connected. In addition, installation of a wireless network causes less disruption



than putting together a wired one. The access point (AP) needs a wired connection to the
LAN and power. Most APs can connect up to 32 users to the LAN. By contrast, wiring an
additional 32 wall points back to patch panels would undoubtedly be more expensive,

more time consuming and cause more disruption than simply adding an AP.

However, wireless networks do have disadvantages. Performance is the main
weakness of current wireless technology. The maximum advertised bandwidth is
currently 11 Mbps, which just exceeds Ethernet at 10 Mbps. In practice, however, actual
bandwidth is 4 Mbps for a single user and peaks at a combined bandwidth of 7 Mbps if
several users are using the same AP simultaneously. The severity of these bandwidth
limitations will depend on what the wireless LAN is used for and what kind of data is
being transferred. If it is employed for Internet surfing, for example, 20 simultaneous
users would get 350 Kbps each, which is more than enough for general Internet use.
However, if intensive flows applications or video streaming are carried out by more than
four simultaneous users, they may experience poor performance, including dropped video

frames.

B.  Physical Layer Technologies for Wireless Networks

Although wireless devices for interconnecting computers and their peripherals have been
available for some years, it is only recently that the adoption of agreed standards by
manufacturers has meant that the wireless LAN can be regarded as a generic system level
component interchangeable with the wired LAN network interface card (NIC). Two
standards in particular have brought this about: the [EEE standard 802.11 and the

European Telecommunications Standards Institute (ETSI) spectrum allocation RES.2 [5].



The I[EEE 802.11 standard specifies the media access control (MAC) protocol, which
forms the lower half of layer 2 of the open systems interconnect (OSI) 7-layer network
reference model, and also the physical layer (PHY) specification for layer 1. Within the
physical layer specification of IEEE 802.11, there are standards covering the use of
infrared optical communications and spread spectrum radio. The spread spectrum radio
standard in turn covers both FH and DS variants. Frequency hopping (FH) spreads the
spectrum by rapidly switching the carrier frequency. The more sophisticated direct
sequence (DS) technique achieves the same effect by multiplying the message data with a
pseudorandom bit sequence (PRBS). Both variants have the same overall characteristics,

but DS typically will allow a higher over-air data rate than FH.

The following are technologies that manufacturers may choose from when they

design a WLAN according to the IEEE 802.11 standard.

e Spread Spectrum Technology. Most wireless LAN systems use the spread
spectrum technology. This technology is a wideband radio frequency technique
developed by the military during the late 1940s as a mechanism to provide a
reliable and secure communication method for the military under battlefield
conditions. More bandwidth is consumed with this technology than with
narrowband technology, but it produces a signal that in effect is louder and easier
to detect. The receiver must know the parameters of the spread spectrum being
broadcast. If a receiver is not tuned to the right frequency, a spread spectrum

signal looks like background noise. There are two types of spread spectrum radio



used in wireless LANs defined under the IEEE 802.11 standard which were

mentioned before: frequency hopping and direct sequence.

a.

Frequency-Hopping Spread Spectrum Technology. Frequency-hopping
spread-spectrum (FHSS) uses a narrowband carrier that changes frequency
in a pattern known to both transmitter and receiver. Properly
synchronized, the net effect is to maintain a single logical channel. To an
unintended receiver, FHSS appears to be short duration impulse noise.

Direct-Sequence Spread Spectrum Technology. Direct-sequence spread-
spectrum (DSSS) generates a redundant bit pattern for each bit to be
transmitted. This bit pattern is called a chipping code. The longer the chip,
the greater the probability that the original data can be recovered;
however, the more bandwidth required. Even if one or more bits in the
chip are damaged during transmission, statistical techniques embedded in
the radio can recover the original data without the need for retransmission.
To an unintended receiver, DSSS appears as low power wideband noise

and is ignored by most narrowband receivers.

Infrared Technology. Infrared (IR) systems use very high frequencies, just below

visible light in the electromagnetic spectrum, to carry data. Like light, IR cannot

penetrate through solid objects; it is either directed (line of sight) or diffused (or

reflective) technology. Inexpensive directed systems provide very limited range (3

ft) and occasionally are used in specific WLAN applications. High performance

directed IR is impractical for mobile users and is therefore used only to



implement fixed sub networks. Diffuse IR WLAN systems do not require line of

sight, but cells are limited to individual rooms.

C. Infrastructure Wireless Networks
Wireless networks are commonly separated into two broad categories: Ad hoc wireless
networks and infrastructure wireless networks.

An infrastructure wireless network refers to wireless stations connected to a wired
network via access points or wireless hubs much like workstations being attached to a
backbone network via a hub in a wired local area network. In other words, it is an
extension of the wireline network with wireless in the last section of the network, and the
access point acts as the interface between wireless and wireline networks. Figure 1 gives

an example of the infrastructure wireless network model.
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Figure 1. Example of Infrastructure Wireless Network Model

D. Ad Hoc Wireless Network

In areas in which there is little or no communication infrastructure or the existing
infrastructure is expensive or inconvenient to use, wireless maobile users may still be able
to communicate through the formation of an ad hoc network. An ad hoc network is a
collection of wireless mobile hosts forming a temporary network without the aid of any
established infrastructure or centralized administration. In such an environment, it may be
necessary for one mobile host to enlist the aid of other hosts in forwarding a packet to its
destination, due to the limited range of each mobile host’s wireless transmissions. In such

a network, each mobile node operates not only as a host but also as a router, forwarding



packets to other mobile nodes in the network that may not be within direct wireless
transmission range of each other. Each node participates in an ad hoc routing protocol
that allows it to discover multi-hop paths through the network to any other node. The idea
of ad hoc networking is sometimes also called infrastructureless networking [15], since
the mobile nodes in the network dynamically establish routing among themselves to form

their own network “on the fly” . Some examples of the possible uses of ad hoc

networking include students using laptop computers to participate in an interactive
lecture, business associates sharing information during a meeting, soldiers relaying
information for situational awareness on the battlefield, and emergency disaster relief
personnel coordinating efforts after a hurricane or earthquake. Figure 2 gives an example
of the ad hoc wireless network model.
Ad hoc wireless networks are attracting a lot of interest now mainly because of the
following reasons:
e Ad hoc networks are set up on demand and they do not rely on wired base
stations.
e Ad hoc networks are fault tolerant, a malfunction in one node can be easily
overcome through network reconfiguration.
e Ad hoc networks offer unconstrained connectivity in the area, so that if two nodes
are within hearing distance of each other, an instantaneous link between them is

automatically formed.
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Figure 2. Example of Ad Hoc Wireless Network Model

E. Contribution

This report studies issue of faimess related to the wireless MAC protocols [EEE 802.11

[10], the DFS protocol [8,20] and the EBFMA protocol [2]. We investigate the fairness

properties that can be achieved by the above wireless MAC protocols in shared channel

wireless networks in general, and in ad hoc networks in particular. We adopt a "shared

wireless channel” as a communication regime wherein all nodes communicate over the

same logical channel using decentralized control, and there is no concept of a base station

in the MAC layer. Shared wireless channels underlie both ad hoc networks and packet

cellular networks, and most wireless multiple access protocols [3,8,12,16,18,20],

including the basic [EEE 802.11 MAC standard, are designed with these channel

assumptions.
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First we review the existing literature on these protocols. Then we implement two
protocols, DFS and EBFMA, by modifying existing IEEE 802.11 models in the OPNET
Modeler 8.0 simulator. We perform simulations of these three protocols in order to
understand and study their features. We perform experiments in fully connected as well
as partially connected networks, and simulate random as well as fixed flows. In the fully
connected network, although EBFMA has the best faimess index [11], it has the worst
throughput. The fairness index of IEEE 802.11 and that of DFS do not have significant
differences while DFS has better throughput than IEEE. All the simulations show that
there is a tradeoff between throughput and fairness index. However, in the partially
connected network, [EEE 802.11 has much better fairness index and throughput than both
DFES and EBFMA. There is less likelihood of collision in the partially connected network
than in the fully connected network. When the medium is idle, [EEE 802.11 will decrease
the contention window immediately to the minimum size while DFS and EBFMA do not
reduce it so dramatically. This may explain why the [EEE 802.11 protocol’s throughput
is better that of DFS and EBFMA in the partially connected network. The effect of the
topology of the partially connected network on the performance of these algorithms needs
to be studied further.

The remainder of this report is organized as follows. Chapter 2 describes the basic
background details related to Medium Access Control protocols including the IEEE
802.11 standard, the fairness problem, and several fair queuing algorithms. Chapter 3
describes two MAC protocols, the DFS protocol presented in [20] and the basic EBFMA

protocol presented in [2]. Chapter 4 describes the details of the implementing the DFS
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protocol and the EBFMA protocol, and details of the simulation and data collection.

Chapter 5 gives our conclusions.



CHAPTER 2

MEDIUM ACCESS CONTROL & FAIRNESS PROBLEM
In this chapter, first we give a brief background on the medium access control problem
and the [EEE 802.11 architecture. In section B, we describe the hidden terminal problem
that arises in wireless networks, and the [EEE 802.11 solution to the problem. In the
following section, we define the faimess problem, and describe various approaches
proposed to resolve it. In the last section, we give a brief description of basic fair queuing
algorithms used in wireline networks and the centralized Self-Clocked Fair Queueing

algorithm that is inherited by DFS.

A Medium Access Control

The logical architecture of the 802.11 standard that applies to each station consists of a
single MAC and one of several possible PHYs: frequency hopping spread spectrum,
direct sequence spread spectrum, and infrared light. The goal of the MAC Layer is to
provide access control functions, such as addressing, access coordination, frame check
sequence generation and checking, and LLC (Logical Link Control) PDU (Protocol Data
Unit) delimiting, for shared-medium PHY's in support of the LLC Layer. The MAC Layer
performs the addressing and recognition of frames in support of the LL.C. The 802.11
standard uses CSMA/CA (carrier sense multiple access with collision avoidance);
whereas standard Ethernet uses CSMA/CD (carrier sense multiple access with collision

detection).
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At the MAC sublayer, [EEE 802.11 supports both contention-free access to the
medium, the Point Coordination Function (PCF), which is under the control of a single
point coordinator (PC); and contention-based access to the medium, the Distributed
Coordination Function (DCF). As can be seen in Figure 3 [1], the PCF ultimately uses the
contention-based DCF to provide access to the physical layer. It is the responsibility of

the PC to ensure only one of the stations using the PCF transmits at a time.

Required for Contention
Free Services
Used for Contention
- Servicedand basis for PCF

Point

Coordination

Function (PCF)

Distributed
Coordination Function
(OCF)

Figure 3. MAC Architecture

IEEE 802.11 also has provisions for a station to operate in a power-save mode, only
“waking-up" at specified intervals to determine if there is traffic bound for it. Stations
that need to transmit frames to a station that is in power-save mode buffer the frames

until the destination station can receive them.

A.1  The Distributed Coordination Function
[EEE 802.11 prioritizes access to the medium by specifying a time interval between

frames known as the inter-frame space (IFS). By definition, during an IFS the medium is
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idle. The different types of IFSs, along with the binary exponential backoff mechanism
described below, are the core mechanism a station uses to determine whether it may
transmit. This core mechanism is known as the basic access method.

There are four types of IFS: Short IFS (SIFS), PCF IFS (PIFS), DCF IFS (DIFS), and
Extended IFS (EIFS). EIFS, which is the longest IFS in terms of time, is used when bit
errors are introduced by the physical medium, which cannot be corrected by the radio
receiver. Transmission after SIFS, the shortest IFS, is reserved for the PC to send any
type of frame required or for other stations to begin transmission of an acknowledgment
(ACK) frame, a clear to send (CTS) frame, to respond to polling by the PC, or to send a
fragmented MAC protocol data unit (MPDU). Similarly, access after PIFS is reserved for
stations to begin transmission of PCF traffic. After DIFS, in general, if a station
determines that the medium is idle, it may transmit a pending frame. If the medium is not
idle after DIFS, a backoff timer is set by selecting a random integer (i.e., a backoff value
(BV)) from a uniform distribution over the interval [0, CW-1], where CW is the width (in
slots) of the contention window range. This BV is the number of idle slots the station
must wait until it is allowed to transmit. For every idle slot detected (after a DIFS), the
timer is decremented by one. If the medium becomes busy prior to the timer expiring, the
timer is frozen until the next DIFS, upon which the timer decrements again. Upon
expiring, the station transmits its frame. If there is a collision, CW is doubled until it
reaches a predefined maximum value, CW_max. Upon a successful transmission, CW is
reset to the default minimum value of CW_min. The backoff mechanism is called binary

exponential backoff. Figure 4 [1] shows the structure of the basic access method.
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Immediate access when
medium is free > DIFS

«DIFS
PIFS
Contention Window -
DIFS SIFS
Busy
/ Medium / / /7Next Frame
Slot Time
Defer Access
Select slot and decrement backoff
as long as medium is idle

Figure 4. IEEE 802.11 Basic Access Method

A.2  Point Coordination Function

The PCF within the PC controls transfers during a Contention Free Period (CFP). Within
[EEE 802.11, CFPs alternate with Contention Periods (CPs) (when the DCF controls
transfers) as shown in Figure 5 [1]. The PC determines the rate at which CFPs are
generated. At the beginning of a CFP, the PC transmits a beacon frame. That beacon
signals the beginning of the CFP and includes a timestamp, beacon interval, and
maximum duration information (CFPMaxDuration) for this CFP. All stations set their
Network Allocation Vector (NAV) with the CFPMaxDuration. During the duration
specified by CFPMaxDuration, stations may only transmit in response to a poll by the

PC, or transmit ACKs in response to frames sent to them.
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Figure 5. CFP/CP Alternation

This continues for CFPMaxDuration or until the PC explicitly declares the CFP
terminated, whichever occurs first. As can be seen in Figure 5, the beacon interval is a
nominal value, that is, it may be delayed due to a busy medium. In those cases, the CFP is

shortened by the amount of the delay. During the CFP, the PC may send unicast or multi-

16

cast frames and/or poll stations that have indicated that they would like the opportunity to

transmit during the CFP.

B. Hidden Terminal Problem

In ad hoc radio networks, due to the limited transmission range of mobile stations,

packets arriving from transmitters who may not know of each other may collide at a

given receiver, rendering the data unintelligible. Consider a simple channel model where

a transmitter has a fixed transmission range, and multiple transmissions in the
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neighborhood of a receiver will cause a collision at the receiver. A successful
transmission precludes any station in the neighborhood of either the transmitter or the
receiver from engaging in another simultaneous packet transmission/reception. In other
words, transmission of packets involves contention over the joint neighborhoods of the
sender and receiver, and the level of contention for the shared wireless channel in a
geographical region is spatially dependent on the number of contending nodes in the
region. This is fundamentally different from the wireline situation, wherein all flows
perceive the same contention. Consider the example shown in Figure 6. A hidden station
is one that is within the range of the intended destination but out of range of the sender.
Station A is transmitting to station B. Station C cannot hear the transmission from A.
During this transmission when C senses the channel, it falsely thinks that the channel is
idle. If station C starts a transmission, it interferes with the data reception at B. In this
case station C is a hidden station to A. Hence, hidden stations can cause collisions on data
transmission. This is the so-called “hidden terminal” problem [3], which is known to

degrade throughput significantly.

Figure 6. Hidden Terminal Problem
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Several medium access control protocols have been devised to address this “hidden
terminal” problem [2,3,4,10]. Among these protocols, [EEE 802.11 Distributed
Foundation Wireless Medium Access Control (DFWMAC) is a proposed standard for
wireless ad hoc and infrastructure LANs. DFWMAC is based on CSMA/CA and
provides also the RTS/CTS access method. The RTS/CTS access method is used to deal
with the hidden terminal problem by allowing stations to acquire the channel before they
transmit the data packets. In other words collisions can occur only during transmission of
short control packets, RTS and CTS, rather than during the transmission of potentially
very long data packets. Thus, through the proper use of RTS/CTS, the performance of a
wireless network would be improved depending on the operating environment. Ideally,
the RTS/CTS access method/handshake can eliminate most interference.

If the RTS/CTS is chosen to be implemented on a particular station, it will refrain
from sending a data frame until the station completes an RTS/CTS handshake with
another station, such as an access point. A station initiates the process by sending an RTS
frame; the access point receives the RTS and responds with a CTS frame. The station
must receive a CTS frame before sending the data frame. The CTS also contains a
timeout value/backoff value that keep other stations away from accessing the medium
while the station initiating the RTS transmits its data.

In the case illustrated by Figure 6, if either Station A or Station C activates
RTS/CTS, the collision will not happen. Before transmitting, Station A would send an
RTS and receive a CTS from the station B. The timing value in the CTS, which Station C

also receives, will cause Station C to hold off long enough for Station A to transmit the
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frame. Thus, the use of RTS/CTS reduces collisions and increases the performance of the
network if hidden stations are present.

The increase in performance using RTS/CTS is the net result of introducing
overhead (i.e., RTS/CTS frames) and reducing overhead (i.e., fewer retransmissions of
large packets). In an environment where there is no hidden node, the use of RTS/CTS
will only increase the amount of overhead while reducing throughput. A slight hidden
node problem may also result in performance degradation if RTS/CTS is enabled. In this
simple case, the additional RTS/CTS frames cost more in terms of overhead than the
increased performance by reducing retransmissions.

The effects of the RTS/CTS mechanism are:
e Increases bandwidth efficiency by reduced collision probability since the ongoing
transmission has been made known everywhere within the relevant range.
e Increases bandwidth efficiency since if collisions occur they do not occur with
the long data packets but with the relative small control packets.
e Decreases bandwidth efficiency since it transmits two additional packets without
any payload.
e Decreases bandwidth efficiency since it reserves geographical space for its
transmission where or when it might not actually be needed.
Due to the above listed trade offs of the RTS/CTS mechanism, the standard allows its
usage but does not demand it. So, RTS/CTS is an optional feature of the standard. Usage
policy is set on a per station basis with the help of a manageable object RTS threshold
that indicates the payload length under which the data frames should be sent without the

RTS/CTS prefix. This parameter is not fixed in the standard and has to be set separately
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by each station. One can enable RTS/CTS by setting a specific packet size threshold (0
— 2347 bytes) in the user configuration interface. If the packet that the access point is
transmitting is larger than the threshold, it will initiate the RTS/CTS function. If the
packet size is equal to or less than the threshold, the access point will not kick off
RTS/CTS. Most vendors recommend using a threshold of around 500. The use of 2347
bytes effectively disables RTS/CTS for the access point.

One of the best ways to determine if RTS/CTS should be activated is to monitor the
wireless LAN for collisions. If a large number of collisions occurred and the users are
relatively far apart and likely out of range, then RTS/CTS can be enabled on the
applicable user wireless NICs. For the access point, after receiving an RTS frame from a
user’s radio NIC, the access point will always respond with a CTS frame.

Although the RTS/CTS access method can alleviate the effects induced by the
presence of hidden terminals, DFWMAC still suffers from a fairness problem that is also

induced mainly by the intrinsic multi hop nature of ad hoc networks.

C.  Fairness Problem

While most current non-military ad hoc network test-beds are experimental in nature,
possible future deployment scenarios include deeply networked conglomerations of
embedded devices, emergency rescue operations, “zero conf" meeting setups, and rapidly
reconfigurable metropolitan wireless networks. Migrating from experimental
environments to commercial environments, ad hoc network designers will need to
address critical new challenges, such as "service differentiation” among contending users

for the dynamic and scarce channel resources [14]. In a pay-for-use model, the network
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must guarantee that minimum performance requirements of paying users will be met, at
least in relative terms. Since link layer fairness mechanisms serve as the basis for
achieving network layer quality of service (QoS) [14], wireless MAC protocols in
commercial ad hoc networks must support some notion of "weighted faimess”, wherein
flows with larger weights receive correspondingly better service in accordance with a
systern wide fairness model.

The fairness problem was first pointed out by Bharghavan er al. [3]. This problem
occurs mainly because of the hidden terminal problem as well as the backoff scheme used
in the DFWMAC protocol. This phenomenon can be simply illustrated by the

configuration in Figure 7.

@ Node

\\' —— Communication Link
-------- Interference Link

Figure 7. Fairness Problem

In Figure 7, two flows/links compete for the radio resources: flow 1, established between
nodes A and B and flow 2 established between nodes C and D. Due to the nature of the
RTS/CTS based protocol, in this configuration, node C overhearing the RTS of node B

will not reply to RTSs of node D. Nodes D and B are hidden from each other and thus
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node B would not overhear node D’s RTSs to node C. When the traffic in both flows is
heavy, due to the binary exponential backoff used in DFWMAC, node D’s contention
window would double each time there is collision at C (inferred by D from the absence of
CTS from C) until it reaches the maximum value (CW_Max) specified by the protocol.
Meanwhile, node B’s window would decrease since B would (eventually) receive ACKs
for the data packets sent to node A until it reaches the minimum value (CW_Min)
specified by the protocol. In effect thus node B would have an average contention
window size that is much smaller than that of node D and thus would have statistically
much higher chance of accessing the channel than node D, which is unfair since the two
flows should share the link equally. Even if we define the notion of fairness by
addressing the two issues above, designing mechanisms for achieving such fairness is a
major challenge since there is no centralized control and no station is guaranteed to have
accurate knowledge of the contention even in its own neighborhood [14]. Further,
contention is really "per-flow" (i.e., a sender-receiver pair) rather than per-node, which
makes its estimation harder at the transmitter before it decides to contend for the channel.
Finally, contention resolution must be achieved without assuming any explicit
coordination or handshakes among the contenders in order to preserve the robustness of
multiple access protocols.

Usually, the problem of fairness in wireless ad hoc networks is addressed using a
classic approach inherited from wired networks [9]. The common assumption is that
nodes/flows have pre-assigned fair shares. The task becomes then to modify wired
networks’ fair queuing algorithms to address the nature of wireless networks. Wired

networks have efficient means of allocating fair shares through admission control and



23

additionally, the fair shares remain constant throughout the session duration due to the
static nature of the nodes. In ad hoc networks, it is meaningless to assume statically pre-
assigned fair shares, since on one hand, not only do the nodes move, but also the routers
are mobile. On the other hand, contention is location dependent, such that in terms of
absolute guarantees, fairness would at most mean “avoiding starvation™. Thus applying
rate proportional fair queuing algorithms is beyond the original goal of such an algorithm,
namely, flow isolation/protection and bandwidth guarantees. In a shared channel wireless
network, spatial reuse of the channel bandwidth may be obtained by simultaneously
scheduling transmissions whose regions of contention are not in conflict. While spatial
reuse is very useful for increasing the utilization of the wireless channel, it introduces a
fundamental conflict between optimizing aggregate allocated bandwidth and achieving
fairness, because allocating the channel to a flow with a large contention correspondingly
reduces the channel reuse. Thus, there is a tradeoff between channel utilization and
fairness [4,14,20]. In contrast, wireline and cellular networks do not face this problem
because all flows perceive the same contention.

Luo et al. [13] have proposed a two-phase scheduling scheme to achieve fairness in
ad hoc networks. The algorithm constructs a tree comprising all mobile stations, and then
rearranges the tree so that it becomes conflict-free among the one-hop flows in each level
of the tree. During the process of constructing the conflict-free tree, the stations in each
level of the tree will propagate the tree knowledge so that the stations can perform a
weighted fair queuing (WFQ) scheduling among different levels in the tree. The time
required for constructing the tree can however be very long when there are many nodes

involved in the network. When mobility is taken into account, say if the root station of
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the conflict-free tree moves out of its original location, the tree has to be reconstructed to
maintain the global fairmess among one-hop flows.

Another approach devised by Vaidya and Bahl [19], also called DFS, to address this
problem inherits the virtual clock method used in wired networks to provide fair queuing
[17]. The mobile station broadcasts its virtual clock to its neighboring staticns, using
piggy backing or in a broadcast channel, and updates its own virtual clock from other
stations’ broadcasts. Then the mobile station scales its contention window according to
the updated virtual clock and its flow’s fair share. This approach is good in wireless
networks in which there are no hidden terminals. However in multihop wireless
environments, there is a problem among different regions in the network as contention is
not homogeneous. Two stations that can interfere with each other while being hidden
from each other, may face very different competition (i.e., may hear each a different
number of stations). Consequently, the stations will negctiate different virtual clocks
from their neighborhood; the one that faces heavier competition will have a slower virtual
clock. Thus two stations that can interfere with each other may use different virtual
clocks obtained from their different regions, thus, they cannot schedule fairly.

In [2] a measurement-based algorithm called EBFMA is proposed to achieve fairness
in ad hoc networks. The algorithm replaces the binary exponential backoff (BEB)
algorithm by another backoff scheme where the contention windows are adjusted
according to the stations’ fair shares. Each station in the ad hoc network estimates the
amount of traffic it generates against its fair share and the amount of traffic generated by
other stations it can overhear against other stations’ fair share, and based on this, the

station adjusts its contention window size in order to equalize both ratios. This makes the
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probability of attempting to access the channel proportional to the station’s own traffic
weight. This algorithm is simple and incurs no additional computational overhead.
However, the algorithm has a major drawback when operating in a dense network where
all stations can hear each other’s transmissions. That is, the contention window
adjustment in [2,14] replaces the exponential increment of the BEB without paying
attention to the traffic and stations density. While the exponential increment mechanism
of the BEB of [EEE 802.11 is used to alleviate the frequent collisions when the density of
the traffic and stations increases, the stations in the proposed algorithm become very
aggressive under the same traffic conditions. Each station overhearing other’s successful
transmission will reduce its contention window towards CW_Min, and on average all
contention windows will be much closer to CW_Min, leading thus to more collisions.
The BEB in the same environment would lead to an average window increasingly closer
to CW_Max to alleviate the collisions. In short, while the algorithm addresses very well
the faimess problem in ad hoc networks by overcoming the bad properties of the BEB

algorithm, it fails to conserve the good properties of the latter.

D.  Fair Queuing

In wireline networks, fair queuing has long been a popular paradigm [7,17] for providing
bounded delay access to a shared unidirectional channel, and hence for providing
guaranteed quality of service. All fair queuing algorithms are based on the notion of
approximating the stream model, in which packet flows are modeled as stream that
traverse a shared pipe. Consider a set of flows i € F that share a channel. Let flow i have

a weight r;, where r; is the number of bits of flow i served in a single “round” by the
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stream fair queuing server. Stream fair queuing guarantees that for an arbitrary time
window [z,, 7] during which any two flows i and j are backlogged (i.e., they have bits to
transmit), Wi(t;, 12)/ r; = W; (11, t2)/rj, where Wi(t;, t2) is the service (in bits) received by
flow i in the time window [/, ¢2]. Essentially, stream fair queuing divides the channel
capacity at any instant among backlogged flows in the proportion of their weights. As a
direct consequence of this model, flows that do not have any bits to transmit at some time
cannot be compensated at a later time. Since networks switch flows at the granularity of
packets rather than bits, and since the switching is non preemptive (i.e., all bits in a
packet are transmitted back-to-back), packet fair queuing algorithms must approximate
the stream model. Thus, the goal of a packet fair queting algorithm is to minimize
| Witey, 1)/ ri - Wj (24, 02)/rj |

for any two backlogged flows i and j over an arbitrary time window [z/, r2]. This is
achieved by assigning a “virtual time” start tag and finish tag to each packet, and serving
the packet with the minimum finish tag, where the virtual time of the channel

corresponds to the current round being served in the corresponding stream fair queuing

model. Thus, the kth packet of flow i, p{‘ , that arrives at time A( p,." ), 1s assigned a start
tag S( pf) = max{V (A( p,." N.F( pf“)}, and a finish tag F{( p,.") = §( pf) + L( p,." Vi,
where L( pf ) is the size (in bits) of packet p’and r; is the weight of flow i. V(t), the

virtual time corresponding to time f, maintains the “round number” of the stream fair

queuing model at time 7. Let Zr,. be the bits transmitted in each round, where B(z) is the
€B(t)

set of flows that are backlogged at time ¢. Then, dV/dr = C/ Z r, , where C is the channel

«€B(¢)

capacity.
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The DFS algorithm [20] was designed in an attempt to emulate Self-Clocked Fair
Queuing (SCFQ) [6] in a distributed manner. The following paragraphs briefly describe

the centralized SCFQ algorithm. A virtual clock is maintained by the central coordinator,

and v(z) denotes the virtual time at real time r. Let p’ denote the kth packet arriving on
flow i. Let A*denote the real time at which packet p/arrives. Let L denote the size of
packet p’. A start tag S*and a finish tag F*are associated with each packet pf, as

described below. Let F°=0, Vi.

e On arrival of packet p’, the packet is stamped with start tag S*, calculated as

S =max{v(Af),F"}

4

e Also, F, the finish tag of pis calculated as

F:k = S'L+_1_
9,

e [Initially, the virtual clock is set to 0, i.e., v(0) =0. The virtual time is updated only
when a new packet is transmitted. When a packet begins transmission on the
output link, the virtual clock is set equal to the finish tag of that packet.

e Packets are transmitted on the link in the increasing order of their finish tags. Ties
are broken arbitrarily.

As noted in Step 1 above, in the SCFQ algorithm (and, also in other algorithms, such as
SFQ [7] etc.), the start and finish tags are calculated when a packet arrives in a flow. An

alternative approach is to calculate the start tag when a packet reaches the front of its

flow—that is, for a packet p!in flow i, start and finish tags are calculated only after all
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packets that arrived in flow i before packet p' have been serviced. If this approach were
to be used, then calculation of the start tag above should be modified as follows:

o Let f*denote the real time when packet p; reaches the front of its flow. If
p¥ arrives on an empty flow, then f*= A’;else f* will denote the real time
when P*finishes service. On arrival of packet pfat the front of its flow, the

packet is stamped with start tag S*, calculated as S/=v( £*).

: : . L ... : .
The finish tag is calculated as before, as F* = S*+—-. It is a simple exercise to verify

that, for the SCFQ algorithm, this new procedure and the earlier procedure result in the
same start and finish tags for all packets. In our distributed implementation, however, we

emulate the latter procedure.



CHAPTER 3

TWO MAC PROTOCOLS - DFS & EBFMA

In this chapter, we give an overview of the two MAC protocols — DFS and EBFMA —

that we investigate in our simulation.

A. DFS Overview
The Distributed Fair Scheduling (DFS) [20] protocol is a fully distributed algorithm for
fair scheduling in a wireless LAN. The DFS protocol is based on the [EEE 802.11 MAC
and SCFQ [6]. It can allocate bandwidth.in proportion to the weights of the flows sharing
the channel. The authors of the DFS protocol claim the DFS protocol may also be applied
to wired LANs, as well as be extended to multi-hop wireless networks. The essential idea
is to choose a backoff interval that is proportional to the finish tag of the packet to be
transmitted. The idea of the finish tag is borrowed from SCFQ [6]. The DFS protocol
borrows on SCFQ’s idea of transmitting the packet whose finish tag is smallest, as well
as SCFQ’s mechanism for updating the virtual time. The smallest finish tag is determined
by a distributed approach using the backoff interval mechanism from the IEEE 802.11
standard.

The following is a brief introduction to DFS. Each node / maintains a local virtual

clock, vi(t), where v{0) = 0. Now, p,." represents the kth packet arriving at the flow at

node i on the LAN.

e Each transmitted packet is tagged with its finish tag.
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e When at time ¢ node { hears or transmits a packet with finish tag Z, node i sets
its virtual clock v; equal to maximum(v{t),Z).
e Start and finish tags for a packet are not calculated when the packet arrives.

Instead. the tags for a packet are calculated when the packet reaches the front

of its flow. When packet p! reaches the front of its flow at node i, the packet
is stamped with start tag S* =v(f"), where f*denotes the real time when
packet p! reaches the front of the flow.

e The finish tag F‘ for packet p! is calculated as follows, where an

appropriate choice of the Scaling_Factor allows us to choose a suitable scale

for the virtual time.

k k
F* =S* + Scaling _ Factor* & = v(f*)+ Scaling _ Factor*5

t i

e The objective of the next step is to choose a backoff interval such that a

packet with smaller finish tag will ideally be assigned a smaller backoff

interval. This step is performed at time f*. Specifically, node i picks a
backoff interval B; for packet p;, as a function of F*and the current virtual

time vi( £X), as follows: B, = |F* —v(£*)] slots.

Now, we can get:

B =

k
Scaling _ factor * ;—" (1)
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Scaling_factor allows for the choice of a suitable scale for the backoff intervals. To

reduce the possibility of collisions, the authors propose a randomization of B; as follows,

Bi=p* B 2)

where p is a random variable with mean 1, and is uniformly distributed in the defined
interval. When this step is performed, a variable named CollisionCounter is reset to 0.

Unlike IEEE 802.11, DFS separates the backoff intervals used initially from those
used after collision. When a collision occurs for node i/, it chooses a new backoff interval
as follows.

e Increment CollisionCounter by 1.
e Choose new B; uniformly distributed in |12 ==t % Collision Window |
where CollisionWindow is a constant parameter.

The authors of DFES refer to the scheme presented above for calculating the backoff
interval as the Linear Mapping (or the Linear Scheme). The authors also present two
other mappings known as the Exponential Mapping Scheme and the Square Root
Mapping Scheme that can improve the throughput in the wireless networks compared to
the Linear Mapping. We only consider the Linear Mapping Scheme here.

The DFS protocol allocates throughput in proportion to the weights of the flows. It

accounts for variable packet sizes and variable weights.



B. EBFMA Overview
In the Estimation Based Fair Medium Access (EBFMA) [2] protocol, each station adjusts
its contention window according to the estimated share it obtained for itself and other
stations. For fair queuing, it borrows the idea from wireline networks [17] and defines the
“fairness index” for ad hoc networks to quantify the fairness, so that the goal of achieving
faimess becomes equivalent to minimizing the faimess index. Then it chooses a backoff
scheme that is different from the [EEE 802.11 standard.

The following is a brief introduction to EBFMA. The authors of the EBFMA
protocol introduce the following notations:

@,: A pre-defined fair share that station i should receive. Normally, it should be

determined at admission control, i.e., when the node joins the ad hoc network, and

can be readjusted for example when a node becomes a router.

Wi: The actual throughput achieved by station i.

L;: Station i’s offered load.
According to the authors of the EBFMA protocol, a fair MAC protocol should have the
following properties. When a station’s offered load to the channel is much lower than the
channel capacity, each station’s request for transmission should be met. This means that
for any station i/, W; = L, When a station’s offered load exceeds the channel capacity,

each station i should be able to get its fair share of the channel, i.e., proportional to ¢,.

This means that for any pair of stations / and j, L ﬁ This is just for ideal situations.

i i
. Wi Wi .
In reality, we want to bound the value of | —~— | by the smallest possible value.

i J

Instead of working with absolute values, they defined the fairness index, FI, to be:
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FI = max {Vi.j: max(ﬁ.ﬂ)/min(ﬁ.—uﬁ)} 3)
g 9, g 9,

Therefore, the authors’ goal becomes the design of a distributed MAC protocol that can

minimize FI and thus achieve fairness for all the stations in an ad hoc network.

The following approach can be used to choose ¢ for any station  and in situations
where the ad hoc network is open to everyone without admission control, which can
happen in situations where all the stations are trusted and known not to misbehave. If
each station is considered to be a greedy source and wants to get the same share as all
other stations as a whole, then it can just set ¢ = 0.5 regardless of the number of its
neighbors. As for any station, say i, it requests the same share as all the others in its
vicinity. These stations have a total share of ¢,=1 - @; = 0.5, which equals this station’s
share ¢ ;. This can be interpreted as a per-station fairness. If a station has two active links

(or streams in the terminology of MACAW [3]), which can happen when a station acts as

arouter in an ad hoc network, it can set @ to satisfy:

4 _0
® -9

—] 9

= ¢, =0.67

This shows simply that the station (router) wants to obtain two times as much share of
bandwidth as other stations to function as a router properly. This can be interpreted as
MACAW’s per-stream fairness [3].

The authors propose two algorithms.



Aleorithm 1. Fair Share Estimation

switch (received packet type) {
case RTS:
if (destID '=localID) W,, += T
else {send CTS packet;
Weo 4= (Trg + Teas ) }
case CTS:
if (destID '= locallD) W,, += (Trs + Tty )
else {send DATA packet;
Wei += (Trs + Ters + Taara ) }
case DATA:
if (destID != localID)
Weo += (Tris + Ters + Tdara )
else {send ACK packet;
Wei += (Tots + Teas + Taaia + Taek ) }
case ACK:
if (destID != localID)
Weo += (Trts + Ters + Tata + Tack )
else { Wei += (Trs + Ters + Tuara + Tack ) }

}

Whenever sending an RTS packet, W,; += Tp;.

34
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Here W.; is the estimated share of the estimating station itself. W,, is the estimated share
of other stations. T, is the time to transmit a packet of type fype. For example, Ty is the
time to transmit a “Request to send” packet.

Algorithm 1 shows how estimation works. The basic idea is that from the point of
view of station i, it sees that it is sharing the channel with a group of contentious stations
who are competing with it for channel access. Thus we have the notion of "me, and the
others". Stations estimate dynamically what throughput they get and what throughput
"others" get, and then adjust their contention windows according to the fairness index
defined. In other words the contention window is adjusted in order to equalize the
throughput obtained by the different stations. A station can estimate roughly how much
bandwidth "others" obtain by looking at the packets in its vicinity. For example (the
details can be seen in the algorithm) an RTS packet that station i sends leads to an
increase of its obtained throughput since it used the channel. A received RTS means
"others” are trying to obtain the channel and thus it increases "others” obtained
throughput, etc.

With this estimation, the EBFMA changed the binary exponential backoff scheme

used in IEEE 802.11 DCF. The fairness index is defined to be: FlI, = (Wa)/ (We)and
Pl

i (]

the adjustment of the contention window is shown in Algorithm 2.
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Algorithm 2. Contention Window Adjustment

Switch (FL,) {
case >C:

CW,orwe = min (CWy,,. * 2, CW_MAX)

case (I/C, C):
CWnew = vaald
case <I/C:

CWpeno = max( CWya/ 2, CW_MIN)

}

The variables CW,,.. and CW,; are contention window sizes. In this algonthm, C is a
constant used to adjust the ability of adapting the algorithm. The smaller the value of C,
the more aggressively the contention window size is adjusted and vice versa. However,
the choice of C is rather limited. For example, if we choose C = 2, stations would not
change their contention windows when the estimated F7/ is between (0.5, 2) and
probability of collision may be high when the number of competing stations is large and
load to the channel is high. On the other hand, if C is too close to I, say 1.01, stations
may be busy adjusting their contention windows all the time and the algorithm becomes
unstable. The calculation shows that if a station estimates that it has got more share than
it should get, it will double its contention window size until it reaches a maximum value
(CW_MAX) so that its neighbors can have more chances to recover earlier from the
backoff procedure and win access to the channel and vice versa. If a station estimates that

it has got only its fair share, it will hold onto its current contention window size.
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CHAPTER 4

IMPLEMENTATION, SIMULATION & ANALYSIS
A.  Simulation Tool
We use OPNET Modeler [21] as our simulation tool. OPNET Modeler is the industry’s
leading network technology development environment, which can be used to design and
study communication networks, devices, protocols, and applications with unmatched
flexibility. Modeler is used by the world’s most prestigious technology organizations to
accelerate the R&D process. This report is partially supported by OPNET’s University

Program [22].

B.  Implementation
We implemented two MAC protocols: DFS and EBFMA, by simply modifying the
existing Process Model in OPNET Modeler.

Because both protocols propose backoff schemes different from that of [EEE 802.11,
it is easy to implement these two protocols by modifying the “backoff” part of the
existing Process Model “wlan_mac”. From Figure 8, one can get some details about the

process model “wlan_mac”.
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Figure 8. The WLAN MAC Process Model

For the implementation of the DFS protocol, the following is an explanation of some
parameters [8]:
® Scaling_factor is 0.02. The choice of the scaling_factor governs the trade-off
between aggregate throughput and fairness.
o CollisionWindow is 4 slots.
e There are n nodes with n/2 identical flows of weight 2/n. Since [EEE 802.11 does
not account for weights, equal weights are considered in DFS for its comparison
with [EEE 802.11. For the number n, it can be found in the Process Model as a

variable with the name bss_stn_count.



39

e The random variable p in Equation (2) is uniformly distributed in the interval
[0.9, 1.1].
Without declaring any variables in the state variable block in the Process model, the DFS
protocol is implemented with a simple modification to the [EEE 802.11 standard at state
“BKOFF_NEEDED"” in the Process Model “wlan_mac”.
For the implementation of EBFMA, the following is an explanation of some
parameters:
e received packet type can be found in the function block of the Process Model as a
variable with the name rcvd_frame_type.
e destID can be found with the name destaddress.
e JocallD can be found with the name myaddress.
All parameters in Algorithm 1 and Algorithm 2 can be found in state variable block or
function block in the Process Model except Fl,, W,; and W,,. We declared these three
variables in the state variable block.
After implementing Algorithm | in the Process Model, EBFMA is implemented by
simply modifying the IEEE 802.11 standard at state “BKOFF_NEEDED” in the Process

Model “wlan_mac”.

C. Simulation Environment Setting

We set up two network models in our report. One is an Independent BSS WLAN. A BSS
(Basic Service Set) is a set of stations that communicate with one another. When all the
stations in the BSS can communicate directly with each other and there is no connection

to a wired network, the BSS is called an independent BSS (IBSS). We also call an
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Independent BSS WLAN a fully connected network since every station can communicate
directly with any other station. The other network model is a partially connected network.
In this model, some stations are out of other nodes’ transmitting range, so that some
nodes cannot communicate with each other directly.

To each network model, we apply the three protocols separately. We study the three
protocols performance in the same network model, in the same scenario and with the
same simulation parameters. This means we set up the same Network Model, the same
Node Model and the same scenario for the simulation of the DFS protocol, the EBFMA
protocol and the [EEE 802.11 standard.

Details of the Traffic Generation Parameters of nodes in our network models are
given below:

e Srarr Time (seconds): constant (0.0).

e On State Time (seconds): constant (10.0).
o Off State Time (seconds): constant (0.1).
o Stop Time (seconds): Never.

e Packet Generation Arguments:

1. Interarrival Time (seconds): constant (0.1).

!\)

Packer Size (bytes): constant(1024).

3. Segmentation Size (bytes): No Segmentation.
Here Start Time specifies the distribution name and arguments to be used for generating
random start time across different nodes. On State Time specifies the distribution name
and arguments to be used for generating random outcomes for time spent in the “ON”

state, packets are generated only in the “ON” state. Off State Time specifies the
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distribution name and arguments to be used for generating random outcomes for time
spent in the “OFF” state. No packets are generated in the “OFF” state. Stop Time
specifies time (in seconds) at which traffic generation procedures stop from the node.
Interarrival Time specifies the distribution name and arguments to be used for generating
random outcomes for the time between successive packet generations in the “ON" state.
Segmentation Size determines the size of segments that need to be created before sending
a packet out. If set to “No Segmentation”, then the packet sent is of the size épeciﬁed in
the “Packet Size” attribute.
We list below the Wireless Lan Parameters used in our network models:

® Rits Threshold (bytes): None

e Fragmentation Threshold (bytes): None

e Dara Rate (bps): 1 Mbps

® Physical Characteristics: Frequency Hopping

e Short Retry Limirt (slots): 7

e Long Retry Limit (slots): 4

® Access Point Functionality: Disabled

o Channel Sertings: Bandwidth (Khz):10; Min Frequency (Mhz): 30

e Buffer Size (bits): 265000

® Max Receive Lifetime (secs): 0.5
Here Rts Threshold is to decide whether or not to transmit an RTS frame for a particular
data frame. Where the value is set to “None”, RTS frames are never used regardless of
the size of the data frame. Fragmentation Threshold means that data received from a

higher layer greater than this threshold has to be fragmented. Data rate can be chosen
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from 1Mbps, 2Mbps, 5.5 Mbps and 11 Mbps. Based on the flag Physical Characteristics,
the station sets the appropriate values to the following protocol attributes which are
specific to the physical layer characteristics. Short Retry Limit is the maximum number of
transmission attempts of a frame the size of which is less than or equal to Rts threshold
(provided that Rts is enabled). Long Retry Limit is the maximum number of transmission
attempts of a frame the size of which is greater than Rts threshold (provided that Rts is
enabled). Access Point Functionality enables or disables the access point feature in the
station. Channel Settings specifies the bandwidth for 4 channels. Each channel is
associated with a data rate of (1,2,5.5 and 11 Mbps). Buffer Size specifies the maximum
length of the higher layers data arrival buffer. Once the buffer limit is reached the data
arriving from higher layers will be discarded until some packets are removed from the
buffer. Max Receive Lifetime is the maximum time after the initial reception of the
fragmented MSDU after which further attempts to reassemble the MSDU will be

terminated.

D. Simulations, Data Collection and Analysis
In our report, we analyze the simulation results for the throughput and Fairness Index of
each protocol.

In this report, we evaluate the Fairness Index [10,20] as follows.

(Zij /¢f)2 (4)

Fairness Index = .
numberoffl ows * Z p (T, /o, )'

Trdenotes throughput of flow f, and ¢ denotes the weight of flow f.
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This Fairness Index has the following desirable properties:

¢ [t is dimensionless. The units used to measure the throughput (bits/sec, cells/sec,
frames/sec) do not affect its value.

o It is a normalized measure that ranges between 0% and 100%. The maximum
faimess is 100% and the minimum 0%. This makes it intuitive to interpret and
present.

e [If all 7;’s are equal, the allocation is fair and the fairness index is one.

A station’s throughput, measured in bits/second is the amount of traffic destined for the
station that is received by it in one time period. The aggregate throughput is the sum of
the throughput of each station in one time period. The weight of each flow is considered

equal in this report.

D.l Comparison of Random Flow and Fixed Flow

First, we study the effects of random flows and fixed flows in the fully connected
network. We set up two kinds of flows. One is a fixed flow that is set up from node i to
node i+/. The other one is a random flow: a flow can be set up from one node to any
other node and is set up randomly. In this experiment, in the fully connected network, we
set up one scenario that contains 10 nodes. The simulation time is set to 10 seconds. The
offered station load is set to 80k bits per second. The transmitting range is set to 300
meters. In the partially connected network, we set up one scenario that contains 10 nodes.
The simulation time is set to 10 seconds. The offered station load is set to 80k bits per

second. The transmitting range is set to 60 meters. Figure 9 illustrates the layout of the
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fully connected network. Figure 10 illustrates the layout of the partially connected

network.

Figure 9. A Fully Connected Network: Transmitting Range 300 m, 10 nodes, 10 seconds,

80kb/s

Table 1. Comparison of Fairness Index (Fully Connected Network: 10 nodes, 10 seconds,

80Kkb/s)
IDFS EBFMA [EEE

Fixed Flows 98127 0.99132 0.92461

Random Flows 98928 0.98763 0.98687
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Table 2. Comparison of Aggregate Throughput (Fully Connected Network: 10 nodes, 10

seconds, 80kb/s)

IDFs EBFMA [EEE
Fixed Flows [656999 578354 695502
Random Flows 687310 593103 721714

Table | shows the Fairness Index in this fully connected network scenario for fixed flows

and random flows. Table 2 shows the Aggregate Throughput in this fully connected

network scenario for fixed flows and random flows.

Figure 10. A Partially Connected Network: Transmitting Range 60 m, 10 nodes, 10

seconds, 80kb/s
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Table 3. Comparison of Fairness Index (Partially Connected Network: 10 nodes, 10

seconds, 80kb/s)

IDFS EBFMA [EEE
Fixed Flows 0.83166 0.63122 0.91261
Random Flows 0.83953 0.62186 094144

Table 4. Comparison of Aggregate Throughput (Partially Connected Network: 10 nodes,

10 seconds, 80kb/s)

P)FS EBFMA [EEE
Fixed Flows 45688 39912 90712
Random Flows 46696 40960 100762

Table 3 shows the Fairness Index in this partially connected network scenario for fixed
flows and random flows. Table 4 shows the Aggregate Throughput in this partially
connected network scenario for fixed flows and random flows.

From Table 1 and Table 2, we can see that fixed flows and random flows do not have
a significant impact on the faimness index and throughput in the fully connected network.
From Table 3 and Table 4, we can also see that in a partially connected network, fixed
flows and random flows do not have a significant impact on the fairmess index and

throughput.
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Comparison of Performance in Fully Connected Network and Partially Connected

Network

In this experiment:

In the fully connected network, we set up one scenario that contains 10 nodes.
The simulation time is set to 10 seconds. The offered station load is set to 80k
bits per second. The transmitting range is set to 300 meters. Flows are set
randomly. Figure 9 illustrates the network layout of this scenario.

In the partially connected network, we set up one scenario that contains 10 nodes.
The simulation time is set to 10 seconds. The offered station load is set to 80k
bits per second. It is the same scenario as the above except that transmitting range
is set to 60 meters; this causes the network to be only partially connected. Flows

are set randomly. Figure 10 illustrates the network layout of this scenario.

Table S shows the Faimess Index of the protocols in the fully connected network and in

the partially connected network. Table 6 shows Aggregate Throughput of the protocols in

the fully connected network and in the partially connected network.

Table 5. Comparison of Fairness Index (10 nodes, 10 seconds, 80kb/s)

DFS EBFMA IEEE

Fully Connected Network 0.98928 0.98763 0.98687

Partially Connected Network 0.83953 0.62186 094144
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Table 6. Comparison of Aggregate Throughput (10 nodes, 10 seconds, 80kb/s)

[DFS EBFMA [EEE
Fully Connected Network 687310 593103 721714
Partially Connected Network 16696 40960 100762

From Table 5 and Table 6, we know that in the partially connected network, the
aggregate throughput of all these three protocols is worse than in the fully connected
network as expected. It is interesting that the fairness index of all three protocols is also
worse in a partially connected network than in a fully connected network. In the partially
connected network, [EEE 802.11 has the best faimess index and best throughput, and
DFS has better faimess index and throughput than EBFMA in the partially connected
network. We will give a deeper study of the performance of the protocols in the fully
connected network in the next section. For performance of the protocols in the partially
connected network, we set up another partially connected network scenario that contains
20 nodes. The simulation time is set to 10 seconds. The offered station load is set to 80k
bits per second, random flows are set up; the transmitting range is 60 meters. Figure 11

illustrates the network layout of this scenario.
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Figure 11. A Partially Connected Network: Transmitting Range 60 m, 20 nodes, 10

seconds, 80kb/s

Table 7 shows the faimess index and aggregate throughput of the protocols in the
partially connected network with 20 nodes, where transmitting range is 60 m, simulation

time is 10 seconds and station load is 80kb/s.

Table 7. Faimess Index & Aggregate Throughput (Partially Connected Network: 20
nodes, 10 seconds, 80kb/s)

PFS EBFMA [EEE

Fairness Index 0.46448 0.56877 0.73981

Aggregated Throughput 39,319 37,682 84,377
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The information we get from Table 7 enhances the conclusion that in a partially
connected network, IEEE 802.11 has the best faimess index and best throughput. This
may be because in IEEE 802.11, the contention window size reduces much faster than it
increases. DFS has better throughput than EBFMA in the 20-node scenarios as well;

however its fairness index is worse than EBFMA in this case.

D.3 Performance in Fully Connected Network
In this section, we study the performance of the protocols in fully connected networks.

In the first set of experiments, we set up several scenarios in the fully connected
network. The simulation time is set to 10 seconds and the offered station load is set to
80k bits per second. In the condition, 19 scenarios were set up. In each scenario, the
network contains 10, 12, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 56, 60 and
64 stations in sequence. Flows are fixed. Figure 12 illustrates one scenario of the

network with 64 stations.
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Figure 12. A Fully Connected Network: Transmitting Range 300 m, 64 nodes, 10

seconds, 80kb/s

Figure 13 shows the variation in faimess index with the number of nodes in a fully
connected network with these scenarios. With the increase in the number of nodes, the
fairness index appears to decrease. The main reason may be traffic generating parameters.
In our report, we study the comparison of fairness index between different protocols, so
we ignore trend of the fairness index decreasing with increasing numbers of nodes.
Figure 14 shows the variation in throughput/weight with the number of nodes in the same

scenarios.
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Figure 14. Comparison of Throughput/Weight (10 seconds, 80kb/s)

From Figure 13 and Figure 14, we can know although EBFMA has the best fairness
index, it has the worst throughput. The faimess index of [EEE 802.11 is a little bit better
than DFS when the number of nodes is at least 28, but for a smaller number of nodes,

there is no significant difference in their faimess. However, DFS has the best throughput.
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The poor throughput performance of EBFMA in the fully connected network is because
of its tendency to reduce the contention window size for all nodes in this situation, which
leads to more collisions.

In the second set of experiments, we set up scenarios that contain 10 stations in the
fully connected network. In this network, 8 scenarios were run separately. The simulation
time is set to 4 seconds, 6 seconds, 10 seconds, 15 seconds, 20 seconds, 30 seconds, 1
minute and 2 minutes. In this situation the offered station load is set to 80k bits per

second. Flows are fixed. Transmitting range is 300 meters. Figure |5 illustrates the

network layout of these scenarios.

Figure 15. A Fully Connected Network: Transmitting Range 300 m, 10 nodes, 80kb/s

Figure 16 shows the variation in fairness index with the time in the above scenarios.
Figure 17 shows the variation in throughput/weight with the time in the above scenarios.
From Figure 16 & Figure 17 we verify again that EBFMA has the worst throughput

but the best fairness index. In these scenarios, the IEEE 802.11 has the best throughput
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while the time is short. As the time becomes longer, the DFS has the best throughput.

After 10 seconds, the fairmness index of DFS is better than [EEE’s and is a little bit lower

than

Fairness

Throughput/Weight

EBFMA's.
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Figure 16. Comparison of Fairness Index (10 nodes, 80kb/s)
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Figure 17. Comparison of Throughput/Weight (10 nodes, 80kb/s)
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In the third set of experiments, we set up scenarios containing 20 stations in the fully
connected network. In this network, 8 scenarios were run separately. The simulation time
is set to 4 seconds, 6 seconds, 10 seconds, 15 seconds, 20 seconds, 30 seconds, | minute
and 2 minutes. In these scenarios the offered station load is set to 80k bits per second, and

the transmitting range is 300 meters. The traffic flows are fixed. Figure 18 illustrates the

network layout of these scenarios.

Figure 18. A Fully Connected Network: Transmitting Range 300 m, 20 nodes, 80kb/s

Figure 19 shows the variation in fairness index with the time in the above scenarios,

while Figure 20 shows the variation in throughput/weight with the time.
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Figure 20. Comparison of Throughput/Weight (20 nodes, 80kb/s)
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From Figure 19 & Figure 20 we verify that EBFMA has the worst throughput but the best
faimess index. DFS has the best throughput. With increasing simulation time, the fairness

index of DFS becomes better than that of [EEE.
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CHAPTER 5

CONCLUSION
This report investigates the fairness problem and introduces the wireless MAC protocols
IEEE 802.11, the DFS protocol and the EBFMA protocol. The DFS and EBFMA
protocols are implemented by modifying the existing [EEE 802.11 model in the OPNET
Modeler 8.0 simulator. The analysis of the simulation results shows that in the fully
connected network, although EBFMA has the best fairness index, it has the worst
throughput. In the fully connected network, the faimess index of [EEE 802.11 and that of
DEFS do not have a significant difference while DFS has better throughput than IEEE. The
analysis of the results also shows that in the partially connected network, IEEE 802.11
has the best faimess index and throughput while DFS & EBFMA have far worse faimess
index and throughput. More experiments are needed to study the effect of the topology of
the partially connected network on the faimness index and throughput. Future work should
attempt to find a protocol that has good throughput as well as fairness index in both

partially and fully connected networks.
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