INFORMATION TO USERS

This manuscript has been reproduced from the microfiim master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are ir: typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with smali overlaps. '

ProQuest Iinformation and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

SOLVING ORDINARY DIFFERENTIAL EQUATIONS

APPLICATION AND PERFORMANCE

Mazen El-Masri

A Major Report
in the

Department of Computer Science

Presented in Partial Fulfiliment of the Requirements
For the Degree of Master of Computer Science at
Concordia University

Montreal, Quebec, Canada

September 2002

© Mazen El-Masri, 2002

il

National Lib Bibliothéque nationale
of Canada a du Cat:\‘gga
Acquisitions and Acquisitions et
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Welington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your fle Votre rélérence
Our fis Notre réldrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-77987-4

ABSTRACT

Solving Ordinary Differential Equations

Application and Performance

Mazen El-Masn

The purpose of this research project is to study performance of mathematical
operations in software applications. Solving ordinary differental equations (ODE) is
the main target to accomplish. Previous work in this field was done but there have not

been intensive efforts to optimize performance.

The research aims on designing an application that can solve general differental
equations using certain algorithms (ODE solvers) and developing the system in
different languages in order to find the best solution that maximizes the application’s
performance. The design is an object-otiented design (OOD) due to the possibility of
future enhancements to the system. The application is developed in two different
ways. One version of the application uses Java as the programming language. This
version is fully implemented and tested. The other version, which can be part of the

future work, uses Java (front-end), Java native interface (JNI), and C++ (back-end).

Engineering Problem solver (EPS) is able to solve any differential equation using one
of three algorithms that are build in to the system and plot the resulted solution as
diagrams. During the development of the application performance is given great
importance and is tested thoroughly. Certain changes are discussed to enhance this

feature.

The outcome of the research is a framework for mathematical applications, a useful
system that solves ordinary differential equations, and a performance study of the

application.

TABLE OF CONTENTS

Abstract
Table of Contents 1
List of figures v
List of Tables v
Glossary vi
Acknowledgments ix
Chapter 1: Introducton 1
Chapter 2: Research and Project Descripton 2
Chapter 3: Mathematical Concepts 4
Equations 4
Algonthms 7
Initial Conditions 10
Chapter 4: Software process 11
Requirement Analysis Approach 11
Performance Optimizaton Approach 12
Implementation Approach 17
Application Design 20
Chapter 5: Design and Code Changes..... 48
Design Changes 49
Coding Changes 50
Chapter 6: The Result. 54
Chapter 7: Future Work 58
Java Natve Interface Descripton 58
The Overall JNI Process 60
Performance Assumption 61
Additonal Algorithms 62
Chapter 8: Conclusion 63
Appendix A: Important Application Functionalities 65
Appendix B — Detailed Description of EPS Classes 88
Appendix C — Detailed Description of Sequence Diagrams 94
Appendix D — UML Symbols Used In The Research Diagrams 99
Bibliography 104

LIST OF FIGURES

Figure 1: Context Diagram
Figure 2: Main Use Case Diagram
Figure 3: Input Data Use Case Diagram
Figure 4: Select Algonthm Use Case Diagram
Figure 5: Calculate Result Use Case Diagram
Figure 6: Display Diagrams Use Case Diagram

Figure 7: Evolunonary development model

Figure 8: Ideal Object Model for main use case and sub use casesco.cveueerecncnne
Figure 9: Input Data (part 1) Sequence Diagram
Figure 10: Input Data (part 2) Sequence Diagram
Figure 11: Start Calculatdon Sequence diagram
Figure 12: Input Data (part 1) Collaboration Diagram
Figure 13: Input Data (part 2) Collaboraton Diagram
Figure 14: Start Calculaton Collaboration Diagram
Figure 15: VarCoefODESolver State Diagram
Figure 16: VariCoefODE State Diagram
Figure 17: VCoefficient State Diagram
Figure 18: The EPS Component Diagram
Figure 19: JNT in acton

20
22
23
24
24
25
27
31
36
37
38
39

.40

41
43

45
47
59

iv

LIST OF TABLES

Table 1. Preliminary classes table 29
Table 2. Additonal classes table 30
Table 3. EPS test results table 56

Table 4. Performance comparison between All-Java versus Java-JNI-C++....... 61

GLOSSARY

NET is a Microsoft set of software technologies designed to connect the world of

information, people, systems, and devices (10)

Algorithm is a set of rules that specify the order and kind of arithmetic operations that
are used on specified set of data. These arithmetic operations could include such things

as rounding rules, a logical decision or a specific formula (10)

Coefficient Is a constant or a varable functon of tme or a mix of both that can

precede theta or any member of its family in the differential equation.

d’6
dr®

Example: tan(t?) +(log(=) =0
t

At (Delta T) Is equal to tr+/ — tawhere tis time and n is the instance number.

F(t) (function of t) T is dme. A function can vary according to tme.

-

Example: F(t) = sin(log(4L)
e

Iterative Process is the act of repeating an operation with successive combinations of

parameters, or the operation itself; automaric sequential operation (10)

JDK or Java Development Kit is a software development kit from JavaSoft, for

producing Java programs (10)

J2SE or The Java 2 SDK is a development environment for building applicatons,
applets, and components using the Java programming language. The Java 2 SDK
includes tools useful for developing and testung programs written in the Java

programming language and running on the Java platform (15)

JNI or Java Native Interface is the bridge between a Java virtual machine (JVM) and
natvely compiled code. Native code can load a JVM and get access to Java objects

through it, or Java classes may have native methods that are loaded by the JVM (8)

ODE or Ordinary Differental equaton is Differential equations that involve only

ONE independent vanable are called ordinary differental equations (10)

OOD or Object Orented Design is a software design method that models the

characteristics of abstract or real objects using classes and objects (10)

Order [s the order of the equation or the number of the largest derivauve of theta.

3
Example: Jr -:11—36 + (log(-T:E)0 + sin(t) = 0 is of order 3
t

0° (Theta Prime) Is the first denvative of 8. Can also denoted by f{—f

Y

0°° (Theta Double Prime) Is the Second dervatve of 6. Can also denoted by ((11 >
.2

ACKNOWLEDGMENTS

To my mother who helped me throughout this research. Without your help and
support, [would have never finished it. You never lost faith in me even when I lost

faith in myself. Thank you Mom.

To my father who inspired me and trusted my abilitv. Your motvadon that never
stopped was the main reason I was able to complete this report. You made me believe

that [can do it.

To my brother and sister for believing in me and assisting me when [needed it. [

thank vou a lot for that.

To professor Alejandro Allievi for his sincere and motivating supervision of my
research project from the beginning. You have been a great asset and without your
help my work would not have been as good as it is. You were professional in every
way. You gave me the flexibility that I needed to make this work as pleasant as

possible.
To professor Peter Grogono for acting as my formal supervisor.

To my girlfriend Genevieve who always understood me and stood by me. For your

presence that was the help that [needed to keep on going; for your encouragement

X

and support, for the coffee breaks and the chats that we shared in the middle of the

nights throughout this research.

Finally to Sandi for her friendship and love. Your comments and inspiration affected

my work and made it better.

Chapter 1

CHAPTER 1: INTRODUCTION

One of the main problems when building an engineering applicaton is performance.
Specific problems can be troublesome when trving to find an optimal solution
especially when they deal with millions or even billions of calculations. These types of
applications are very useful in vehicles, simulators, and varous machineries. The
major mission of the EPS system is to plot diagrams that establish results for general
mathematical equations. The equation solvers (ODE Solvers) or algorithms take an
equation as input and solve it using the built-in algorithms. There should be no

limitations on how the equation is or how difficult it can be to plot its results.

This report is divided into seven chapters. In chapter two, we introduce the research
and explain the workflow. Chapter three contains a detailed mathematical description
of the problem. In this chapter we also identfy the algorithms used to solve the
problem. Chapter four describes the software process used for building the system.
The chapter includes the analysis done on the requirements, the design, as well as
implementation issues. Chapter five discusses all the design and coding modificatons
done for enhancing performance. Chapter six explains what resulted from the
research. In chapter seven we introduce JNI or Java Natve Interface and discuss

future work to bz done. Chapter eight is the conclusion of the research.

Chapter 2

CHAPTER 2: RESEARCH AND PROJECT DESCRIPTION

In this chapter we discuss the reasons behind this research, why is there a need for
such an application, and what is the project goal. We also explain the research and

development iterative process.

Initially, the aim of this project was to find a solution for ocean vessels to secure their
safety against weather and ocean conditions. Small and medium size ships owners
need a simple and cheap method to predict whether the ocean conditions are
manageable and stable for them to control their vessels. These problems can be
simulated using ordinary differental equatdon (ODE). The inputs that are needed for
the ocean vessel situation are ship dimensions, wave dimensions, and additonal ship
moton informatdon such as speed and ume (14). The output is a set of diagrams
showing the reaction of the ship towards these inputs. The main diagrams are the

reactions of roll angle and roll velocity with ume.

ODE solvers are not only used for ocean vessels. Since an algorithm can solve
equations and an equaton can describe the object’s physical situation then we can
target our application to solve any object simulation. By making a generic soluton that

accepts any ODE and can use various ODE solvers, we can produce a powerful

applicadon assisting various users in predicting future movements of their objects with

time.

Therefore, our project’s requirements has changed from helping small to medium
ocean vehicles in answering their sailing problems to helping objects simulate their

movement according to certain conditions with time.

The complexity of the project 1s not in finding a soluton for the problem. Itis to find
the optimal solution that can show the needed results in an acceptable period of tme.
As mentoned before we might need to do a large number of calculations before we
are able to supply the user with the proper answer. We need to keep in mind that the
user might not have the luxury of ime. The answer to our problem is not to develop a
complex applicaton with lots of unnecessary features but to develop a system that

provides solutions with the minimum processing time and memory usage.

Some applications, such as real-time systems, have performance as its highest pnority.
In our situation, we want to establish an optimal solution that can be suitable to the

user in all aspects.

Chapter 3

CHAPTER 3: MATHEMATICAL CONCEPTS

Most mathematicians and people involved in mathematics are familiar with equations,
functons, and dervadves. For others who are not, there has to ke some
understanding of these aspects. In this section, [explin the project in detail. The
reader, though, needs to know the basics of algebra, trigonometry, and calculus. The

project is made up of:
1. Equatons (to be solved)
Algorithms (equation solvers)

3. Ininal inputs and parameters

Equations
An ordinary differential equation is the main input of the project. A general form of

such an equation looks like the following:

n-l
d 6 L P 6

> F"(t) +F" (t)

For a problem like a specific sailing ship, the equation is a fixed formula.

> 49 (VoM (AM ysinown) 8=0
dt- I, 2
Where:
» F=1 [constant],

» F(=0 [constant],

AGM

5)sinQwet)) [function of time]

%4
7 And F(t) =(1—)(GM -(
The above equaton is a differendal equation that describes the roll motion of a ship in
waves. Using the EPS application, we are able to create any kind of differential
equation allowing variable coefficients of function of ume (). Therefore, we can
create an equation as the above one and solve the ship roll moton problem or any

other (7).

A constant coefficient is a2 numeric value that is independent of time that precedes any
member of the theta family (example: 20" — 8 = 0), whereas a variable coefficient is 2

functon that depends on the value of t. For example:
> tan®) 8" + (1og("7e =0

In the above example, the order of the equation is two. This is because of the

existence of theta double prime (8”) in the equation. The minimum order of any

equaton is two. The applicarion can solve equations with the order of five at most.

Example:

d’0 d*6 d*0 d-6
» P)— +F1) — +PF@1) — +F(-
7 PO PPO G +FO s +FO 75

+ F'(1) i + Fo(t)0
dt
=F(t)

Any function attibuted to any member of the theta family can include the following

mathematical operations:

Trgonometric functons Sine (sin), cosine (cos), tangent (tan), cotangent
(cot)

Logarthmic functions Log

Power Pow

Other operatons such as +,5%/

Other constants can also be chosen. These constants include n (3.1416) and e.
Brackets are included in the function builder because they are needed for wrting

proper functions. Functions can be simple. Example:

> sin(t)

re log(3t)

They can also be very complex like:

e’

sin(4t))

~ log(

s log(sin(cot(t)))

The right hand side of the equation can also be a function of dme. The equaton can
have a mixture of constant coefficients and vanable coefficients. Coefficients can be
zero except the coefficient of the highest order. The reason behind this is that if the
coefficient of the highest order is zero then this highest order does not exist implying

that the order of the equation that was initially set s incorrect.

Algorithms
Webster New Collegiate Dictionary defines an Algorithm as “a step-by-step procedure for
solving a problem or accomplishing some end” (5). We use algorithms to integrate
equations and solve them. In order to solve the equations explained in chapter three
we use known algorithms. In the project, we have three algorithms implemented that

are widely used to solve these types of problems and they are the following:

A- Explicit Euler scheme: 0n+1=0n + A8’ »

Where:

- At = te1 — t» The time difference between instance n and

instance n+1.

- 0 (Theta) and all its corresponding derivatives like 6', 6" ...
(Theta prime and theta double prime) are the variables that are
needed to be calculated with time. Since 8 varies with time we
need to calculate each instance of 6 and its available derivatives
with time change. The time change (At) is specified by the user.
It means how often (or how quick) do we need to calculate 8 and
it's derivatives. To further explain, 0. is the n” instance of 6.

The instance at time n*Ar. @’ is the n™ instance of 8'and so on

and so forth.

- The initial values of 8 and its derivatives are also constant inputs

from the user

(39:1 - 6;-/)

B- Crank-Nicolson scheme: 6n+1= 0 + At ()

C- Series of Predictor-Corrector schemes:

k=n
0%%ir =0n + At [;Bmk 9:‘-‘“']

The user can choose one of these three Algorithms to solve an equaton in order to
help figure out all instances of the 0 family with time. We need to provide the start
time, the end time. the time step. and the initial values of the 8 family. In order to
plot a specific equation of theta in 2 minutes (120 seconds) with the time step of

2
10 seconds that means we have to calculate theta and family % = 120*10° =

120 million instances. If the order of theta in the equation is 3, meaning the largest
derivative is 0. that means we have to calculate all instance of 8, 6", and 6". The
sum of all calculations would be 3 * 120 million = 360 million points. These 360
million points have to be plotted in order for the user to see how is his vessel or
object reacting with time. More than 360 million points will be displayed because
we will have to show how 8 changes with time. how 0’ changes with 6, how 6"

changes with 0, and so on.

The above example is just a small example that shows how important performance
is for these types of applications. We will not go to the extreme since the machines
that we will run the application on would be a regular PC and not a multiprocessor.
During the coding-testing iteradon process of the application we realized that plottng
a large number of points slows the applicaton considerably. Therefore, a study was
done to determine the enough number of points that is needed per timeslot in order to
plot a correct result. We tested the application with various timeslots and tmeframes

and we came up with a valid figure (20 points/timeslot).

Initial Conditions
In order to solve a specific equation some inidal conditions need to be inputted.

These inputs are:

1. The dmeframe in which the points to be plotted as output needs to be

calculated in,

)

The ume-step for every single calculagon,

3. The imal values of the theta family members,

4. And the algonthm selected for solving the inputted equation.

When inputting the equation we need to specify the order and the coefficients of every
theta family member in the equaton as well as the RHS (rght hand side) of the

equaton (usually equals to zero).

10

Chapter 4

CHAPTER 4: SOFTWARE PROCESS

In this chapter we describe the software process that we followed in order to complete
the project. It will describe the requirement analysis, the design, and the

implementation.

Requirement Analysis Approach
The Analysis done on the inidal requirements of the system is descobed in this section.
The process we took in order to understand the requirements and the decisions we

made in regards to design a generic application is also explained.

Complex mathematcal applications are not common in the computer science field.
That is why the best way to start analyzing the problem is with a pencil and a piece of
paper. After getting familiar with this type of work we started with simple equations
and the simplest solving algorithm (Euler). We took an iterauve operation to

implement the application:

1. Adding a few requirements,

2. Designing,

11

3. Coding,

4. Tesung,

5. Optimizing the application be finding the performance bottlenecks whether in

the applicaton’s design or in the code,
6. Redesigning and recoding (if necessary),
7. Recoding (if necessary),
8. And testing again (if necessary).

9. After that we go back to step one and add new requirements untl all the

requirements are fulfilled.

After reaching an optimal (or close to optimal) design and coding the only thing left
would be the type of coding language we are using. The following two sections

discuss this point in details.

Performance Optimization Approach
Addressing performance is done while analyzing the requirements. It is also studied
after each development iteration (see chapter five for more details). The approach that

is taken to improve performance was:

1-

12
v

Measure the program’s performance under realisuc conditdons. This

should be done extensively since it is the major requirement.

i We tme every method that is called when the main function 1s

executed.

ii. We verfy that the dme taken by the methods called is short.

[f it meets the requirements then we are done. If not go to next step.

Find the most crtical performance bottlenecks in the specific methods
called and/or in the design and try to optimize them. For example if a
specific loop in a method is taking too long to finish we try to optimize
the code in it. This can be done by verifving that we are not using
more resources and processing time than we are supposed to. To
illustrate, using a varable of ‘long’ datatype when only a short datatype

is needed might slow the process down considerably.

Find out what else could be changed to enhance performance. This
can be a design issue or a coding issue. If a major design problem was

found then redesigning the application is done.

Always time the code before and after making the changes to venfy

that your changes has improved the program performance.

13

Note that simple operation like incrementing a <long> variable when only an <int>
variable is needed can greatly affect performance. Incrementng a long takes 3.5 dmes
the ime needed to increment an <int>. This is because a <long> datatype is 10 bytes
long, whereas an <int> is only 2 bytes long. Let us take a quick example to explain

how a small change like this can considerably enhance performance:

long ITimeStep;
For (long ICount = = 0;1Count < ((IMaxT — IMinT) / iDeltaT); ICount++)
{
ITimeStep++;
[f (TimeStep > 10)
ITimeStep = ITimeStep - 10;

depVar[0]{ICount}=depVar[0][ICount]+depVar{0}[ICount +1}* ITimeStep;

The above for loop takes approximately 30 ps to complete one iteraton on a
Pentum IT 266 MHz with 128 megabytes of RAM. The three lines of code in the loop
take 7, 10, and 13 ps respectvely. In this case, if there are one million iterations in this
loop it will need 30 seconds to complete. If we look carefully at the code we can

notice that ITimeStep can never be greater than 10. There is no need to allocate a long

14

for a variable that cannot grow greater than 10. If we define ITimeStep to be a short
instead of a long we will allocate less memory and less CPU time to work with that
varable. The dme needed for this loop drops considerably. When tesung a method
that is very similar to the above piece of code we found out that optimizing variable
allocations can sometimes cut the processing time in half and sometimes less. In this
specific loop the new time needed to complete one million iteration drops to less than
11 seconds. That is more than 60% improvement. This example is one of the many

studies done to enhance performance.

Object orented technology has proven to be the leading technology in software
development. Recent studies by Microsoft have strengthened this idea by using the
object-oriented methodology especially with their latest NET framework where the
operating system platform framework classes can be used in development. Microsoft
also changed VB (which is now known as VB.NET) to use object orientation as the
infrastructure of the programming application. Since our application is a starting point
for more complex engineering application we wanted it to be generic enough to be a
base framework for future enhancements. Object oriented design and programming is

the best solution for us. This is due to various benefits it provides (12):

1. Use-case driven design: This approach is essental for captunng the
requirements of the system. Use cases and their scenarios speak the
language of the end-users thus providing a way for them to state their

expectations about the desired behavior of the system to its developers.

15

2

Reusability: When using Object orented programming approach we
reduce the coding involved by using inheritance and polymorphism in our

design.

Easier to understand: When we collect the requirements and design our
applicaton we get a better understanding of the applicadon. Witch
diagrams like the use-case diagrams, the class diagrams, and the sequence
diagrams we can view the applicaton easier, especially when we are

developing complex applications or incremental systems.

Separation of concemns: separating objects into class categores and
encapsulating lavers of abstraction provide an ideal basis for dividing up

the staff into project teams.

As for picking up the perfect suitable language we decided that either VC++ or Java
would be the best approach. This is because these two languages are highly supported
and used by big organizatons. Since we are building a framework of such a
mathematical applicadon we wanted it to be used by other researchers. Furthermore,
these two programming languages supply the developers with large librares and

functonalities that make the development process easier and faster.

We mentioned before that reaching a good design and programming EPS
(Engineering Problem solver) efficiently is possible but finding which is the best

programming language for programming the engine for the application can be harder

to reach (VC++ or Java). Nanoseconds per point calculation can make a difference so

16

choosing which is best can be impossible unless we have two versions of the

application and we can compare the performance. A study to determine the best

appropriate programming language is not in this report but can be part of the future

work to enhance the research.
That being said we will have two versions of EPS:

1. One is developed as a pure Java applicaton (GUI and engine). This version 1s
fully implemented and is used to test the design and the performance of the

applicaton.

1o

And the other would be a mix of the two. The engine can done in C++, the
front-end is in Java (same graphical user interface) with a Java-C++ interface
in between. For such interface we can use a new technology known as JNI or

Java Natve Interface. A more detailed discussion about this version is in

chapter seven.

Implementation Approach
This section describes the first phase of development. After fully understanding how
the application run and what is required from it we start the iterauve approach of

designing, coding, testing, and evaluating performance using only Java as the

programming language.

17

There are a few benefits which lead to Java being chosen over C++. Both languages
are very similar; they both follow object orentation and have great syntactic similanty
and a similar semantics. The main benefit in using Java as the designers of Java said is
that they took C++ and removed the features that caused many common bugs, such
as memory leaks. C++ is a very powerful language; vet has dangerous tools such as
pointers and manual memory management one does not have to use in every case.
Java provides garbage collection if we want or we can use references instead of
pointers and we can use vectors instead of manually allocating memory for dynamic
arrays (11). The point is that C++ gives you the choice to program at the appropriate

level of abstraction.

Java forces us to always be safe at the real cost of performance (11). Another benefit
is that managing code in Java is much easier than C++. Add to the fact that Java has
one of the most robust tvpe checking and error-handling systems that has ever been
seen in a programming language. This is because the developers of Java implemented

detailed error-handling libraries and functionalites.

Java is feasible for web development so if we were going to redesign the application to
run as an applet or a web-enabled application Java would be a good choice. Java

applets can be imbedded in HTML or ASP pages easily and affectvely.

Object handling is automatic in Java; initialization of primitive class data members is
guaranteed and defaulted to zeto or equivalent. Destructors are not needed; this is

another benefit in Java. The object’s lifetime is determined by the garbage collector

18

and not by the programmer. The built-in multthreading support is another benefit
that is useful in coding. Java contains standard libraries for solving specific tasks like
networking, multithreading, distributing objects, compression, and database
connection. Thus, the Java language emphasizes accuracy and reliable application

behavior at the expense of performance.

There are lots of benefits in Java that can be very helpful in the process of
development. Slowness is the only drawback of this programming language. The
question is: will these benefits help make the Java-version application run faster than
the C++-version or will the great performance that C++ provide outcome these
benefits. This will be answered after companng the performance of the two

applicatons.

19

Application Design
The context diagram below illustrates the main system and it’s reladonship when the
external entity; the user. The user is any person who needs the applicatdon for
simulaton purposes. The communication berween this endty and the system are

descnbed as inputs and outputs.

Input Dara (inidal, equaton, and Algorithm)
USER

()
Engineering Problem solver

(EPS)
_ Y,

Display Diagrams (result) or Error

Figure 1: Context Diagram

The main functonality of the application is to calculate plotting points for the theta
and family, from the equadon, and to draw the corresponding diagrams. For this

reason we only have one use case for the whole applicaton.

The main use case has one method to use which is <CALCULATE>.

The scenario of the main use case is as follows:

Actor: User.

Stakeholders:

— User: Wants accurate and fast result.

— EPS system: Gives clear information to the user with the best possible
performance.

Preconditions:

—User knows the input that application needs to calculate and plot the graph.
Post conditions:

—N/A.

Main Scenario:

1- User Enters the order of the equation (1 = 5)

19
)

User Enters the coefficients of every member of the theta family in the
equation by carefully building the functions from the dropdown box or

just specifying constants

3- User enters the right hand side of the equaton (RHS)

21

4 User specifies the ininal values of theta and it’s family

5- User specifies the inital tme, the stop time, and the ume-step in which the

diagrams are to be plotted
6- User requests the calculaton to take place
7- Svystem calculates the needed points and plots the diagrams

Below is the main use case diagram (M-UCD)

. it
— ——

=" Input Needed Data

T T

S . .-
s’ N S~ e

User T~ Select Algorithm

g T <<include>> RN
\\ /'/‘ - _/

Calculate Result Display Diagrams

<<inciude>>

1
P

R .
N

Handling Errors

Figure 2: Main Use Case Diagram

We will now describe the use case diagram in details and will further divide the main
use case to sub use-cases. There are four operations described in the main diagram
above. Therefore we will have four use cases:

1. Input Data

2. Select Algorithm

3. Calculate Result

4. Display Diagrams

The ‘Input Data’ Use Case Diagram (UC-1):

, N R - s - ing N
User tnput Needed Data. S~

R Build Coefficient functions or
constants (Build Equation)
TN
< P
—_—

Input Initial Values of theta and
Famitly T
LT
PN Input Start Time

. N —
~ ST T e D N

k_‘ 7
R Input Stop Time
__/

Input Time Step

\

Input Time Data - .

Figure 3: Input Data Use Case Diagram

23

The ‘Select Algonthm’ Use Case Diagram (UC-2)

Select Algorithm

The Three Algorithms to select
from are:

1- Euler scheme
2- Crank-Nicolson scheme
3- Predictor-Corrector scheme

Figure 4: Select Algonthm Use Case Diagram

The ‘Calculate Result’ Use Case Diagram (UC-3):

TN

ST

Input Initial Values of theta and

Family
R AT
<<uses>> N
- <<uses>>"""
- = Input Start Time
o~ P R
e L "\\ e _; — AT
- - T I N <<uses>> T =~ ;
A T - S
N e Resul Calculate Theta & Family ™~ \ Stop Ti
User Calculate Resu . <<usesa>. nput Stop Time
<<uses>> e
<<include>> ~';‘_‘ —
: LT Input Time Step
P e
\ .
—

Display Diagrams

Select Algorithm

Figure 5: Calculate Result Use Case Diagram

24

The ‘Display Diagrams’ Use Case Diagram (UC-4):

. /’/—'—‘V\\
\: } A gt
'.\\ ——
Display Diagrams
User play 9

Figure 6: Display Diagrams Use Case Diagram

As mentioned before, the approach we are taking in order to research and develop
such project is an iteradve one. Every phase in this approach will be visited a few
tmes undl all the requirements are sadsfied. We intentonally missed a few
requirements the first ime we started the design and implementation phases. This is
because we wanted to simplify the initial work. The first requirement phase did not

have the following requirements:

» Funcdons as coefficients in the equaton. We only dealt with constant

coefficients for simplicity purposes.

» We only had one algorithm (Euler)

There was only one diagram displayed

25

Error handling was kept to the minimum.

Speed and performance was the main concern

What we did is we built the specificadon for the minimum amount of requirements we
could handle and we designed the applicadon. We will not go into details of that
version of the design since it is not necessary at this point. We followed a software
engineering methodology with the name: “Evolutionary development”. It is similar to
the waterfall model except that the requirement are added one step at a ime keeping
every step as simple as possible. When the whole development phase is finished we go

back to adding new requirements = redesigning = implementing and testing.

The objective of evolutionary development is to evolve a final system from an initial
outline specificadon. Start with well-understood requirements and start building on

them. The problems with this model are:

1- Lack of process visibility

2- Systems are often poorly structured

These problems can be managed and resolved in small to medium-size interactive
systems and with proper documentation. This is the case of our system; we took great

caution in following this model. The benefits are much more than the drawbacks

26

since one tend to understand the system along the way (if i’s complex) as well as

focusing on certain things like performance.

Here is the general evolutionary development model we are following in developing

our system (0):

Evolutionary development

Concurrert
activities

Imbal

Speafication :
verson

[
[

Qutline Irtemmediate
I dsapta I , Developmert v ersions

Valdation

Final
veraon

Figure 7: Evolutionary development model

We discussed what was missing in the first system build. After finishing and fully
testing the design and code of the system we went back and added the functions as

coefficients requirement. This, of course, forced us to modify the specification and

27

the initial design of the system but made us understand why we are redesigning it.
Emphasizing on performance, we were able to pinpoint the bottlenecks and fix them

on the spot. The reason behind that is that the size of application is small and

growing.

After Finishing build IT we started build three by adding the other two algorithms.
Build IV concemned error handling. In build V we focused on major bottlenecks in
performance and we made few coding changes as well as changing the third party
software we were using to display diagrams to a faster one. Build VI was another pass-
thru the design and code to assure optimal performance. All the changes we made will
be described in details in a later section since the design has not been discussed yet.
We will not discuss or show the previous versions of design and code in this paper but

we will explain the changes we’ve done in detail and the reasons behind them.

The revised use case descrptions in the EPS system are used as an input document.
The Use-Case descriptions were reviewed for nouns and noun phrases to identify

potenual classes.

From the potential classes, we develop an ideal object model for each of the use cases.
We begin by creating an interface class to handle the interaction between the use case
and the actor (user) outside the system. Then, we create one or more control classes
to manage the use case. Last, we create entity classes for each of the major things that

the transaction involves.

28

Here is the general class descriptons evolving from the use-case diagrams:

UC-1 (Input Daa)

User selects equation | ODE (Ordinary | Entity
order Differential equaton)
User inputs The vanable | Vcoefficient Enawy UC-1 (Input Datra)
coefficients for the
equation (building the
equation)
User inputs the dme | VarCoefODESolver | Enaty UC-1 (Input Data)
information
User inputs the inital | VarCoefODESolver | Enaty UC-1 (Input Data)
values of the theta family.
User selects the algonthm | VarCoefODESolver Enaty UC-2(Select
required for the | VarCoefODESolverl | Enaty Algornthm)
calculaton VarCoefODESolver2 | Enaty

VarCoefODESolver3 | Enaty
User requests the output | VarCoefODESolverl | Controller | UC-3 (Input Data)
(depending on the | VarCoefODESolver2 | Controller
algorithm requested) VarCoefODESolver3 | Controller

Vcoefficient Enaty

ODE Enaty

Table 1. Preliminary classes table

29

Other classes where added after the preliminary ones to insure proper error handling

and for the graphical user interface. These classes are:

7 MainGu

» Welcome

re DialogError

Reasons

In case of any error | DialogError

Controller | M-UCD
occurring in the
calculadon phase because
of invalid user input
Graphical User Interface | MainGui Interface UcC-3 (Display
result)
UC-1 (Input Data)
Displaying a welcome | Welcome Interface N/A

screen on startup

Tuable 2. Additional classes table

30

From the Classes we defined in the last section we can now structure a class object

model that shows a simulaton of how the classes interact (1). Below is a diagram that

defines the ideal object model.

=z <<Intedace>> <<':t9‘fa°13>> <<extend>> <<control>>
T = = e e s Welcome — - rame e ———-—_ JFrame
User T T T
(tom Use Ca® View) ,"’ . k\\
- ; . 5 S
. — _{[y’/ - — ,,;,;;y. . Tmy» <<entity>> i
<<entity>> <<uses <<enlity>> <<entily>> dialogwaiting |
VarGodODEScher - . VarCoelODE . VCoefcent GdlogEmor AR
— L 5 . ——
—— . g]USES>> T "‘\;\/’7' e N
\\‘ ~. ’_‘,-" o \“
<SUSES>> cesos \\\\ e S <cUsess>> <<exfefld?:
N — .. > .
. << \3> <<extend>>"~. Y . \‘________
e —_ . <<entity>> <<control>> |
<<entity>>) <<entity>> i ODE LinkedList |
. VarCoelODESohvert . VarCoetODESalver3 | e ———
T T T illlopname() —
T ccentitys>
i VarCoetODESolver2

—

Figure 8: Ideal Object Model for main use case and sub use cases

3

All the above analysis was derived from the use cases previously designed. The
potential objects and their behaviors were thoroughly studied and reviewed to come

up with the following decisions (1):

o Create three classes for solving equatons depending on the three specific
algonthms. Class names were called (VarCoefODESolvert,

VarCoefODESolver2, VarCoefODESolver3)

¢ Build a separate class for error handling (DialogError)

¢ Add a welcome interface class.

¢ Enforce weak coupling between classes (entites) for reusability purposes and
future enhancements. Enttes are passes as parameters from once class to

another during executon.

We collected the entity classes together and found the required functionalities that they
need. Some entity classes were redesigned; others were restructured for better use of
inheritance in order to have a framework that can be reused (4). The User interface
classes were added as well. We used the actor (EPS-User) in order to come up with
the proper interface classes. Finally we were able to structure a high-level system

analysis class diagram showing these classes and the relationships between them.

Now we will discuss the details of the architectural classes. Some self-explained classes

are not descrbed in detail. Only the important classes are listed. Some of the less

important classes that are not listed in this secdon will be described in the future

versions. The main classes involved in the applicaton are:

19

MainGui: Which is the main graphical user interface class. It’s mainly derived

from JFrame from the Java libraries.

Welcome: It is another Interface class that represents the welcome screen. It’s

the first screen that the user sees when starting the application.

Veoeficient: It is an endty class used for calculatng the variable coefficients in

the equatdon.

VariCoefODE: It is the used to retrieve and store the values of the coefficients

in the equaton as well as the right hand side value.

VarCoefODESolver: It is used to solve the equation created by the user. Itis

an abstract class for the three algorithm subclasses we included in the project.

VarCoefODESolverl: It is used to solve the equaton according to the Euler

algonthm.

VarCoefODESolver2: It is used to solve the equation according to the Crank-

Nicolson algorithm.

33

8. VarCoefODESolver3: It is used to solve the equation according to the

Predictor-Corrector algonthm.

9. dialogEror: It is used to handle any error that happens during execution time.

10. ODE: It is used to maintain the order of the equation that is to be solved.

The classes are explained in more details in appendix C. The attributes, methods,
subclasses, super-classes, and a more detailed description are all part of the detailed

description of the classes in the appendix.

A sequence diagram shows object interactions arranged in time sequence. It depicts
the objects and classes involved in the use case scenario and the sequence of messages

exchanged between the objects needed to carryout the functionality of the scenario.

In UML an object in a sequence diagram is drawn as a rectangle containing the name
of the object underlined- An object can be named in one of three ways: the object
name, the object name and its class, or just the class name (anonymous object). In this

document we will use the second way (1).

Each object also has its tmeline represented by a dashed line below the object.
Messages are represented by arrows, which point from the client (sender of the

message) to the supplier (receiver of the message).

34

Objects interact by calling methods in other objects. Objects use this mechanism to
send information, request a service, or request information. While messages are

invoked from the calling objects, the implementations are in the receiving objects.

In Object-Orented design methodology we prepare use-case descriptions and
scenarios first. Then we move on to either class diagrams or sequence diagrams (5).

There are two approaches: Problem-centric approach and Data-centric approach. The
former moving from a sequence diagram to a class diagram and the latter moving from
a class diagram to a sequence diagram. In this document, we take the Data-centric
approach. Use Case Diagrams and Class Diagrams from previous sections are used as

inputs (3).

To create a sequence diagram, we begin by identifying a set of classes that will be
involved in a scenado. Once we have identified the objects involved in the scenardo,
we list the objects in a line along the top of a page in the order they are used in the

scenario. The leftmost object should represent an actor who starts the scenario.

The next three pages will show the most important sequence diagrams in the system.

35

The Input Data Sequence Diagram (first part: excluding functons):

Weicome GUI : Main GUI : Input Data (excluding inputting
Welcome Frame1 functions) : Frame1

start

- - getOrder()

(Y

getinitv()

getTimeSetting()

getAlgorithm()

e,
o

object Framefl is N
-shown twice for clarity
purposes only

Figure 9: Input Data (part 1) Sequence Diagram

36

The Input Data Sequence Diagram (second part: only functions):

': yal “\‘
./‘
’ WelcomeGUI: - MainGul: :
~User Add Functions to
Welcome Frame1 fhicients - VCoefici

start

- start

This method Adds anitem

(function) selected from the

=~ © = - -function drop down combo box

: to the commesponding linked list
(there is a link list for every

jButtonAdd_actionPerformed()

jButton! ctionPerform :

{ButtonUndo_actionPs) >e~d() coefficient + the RHS)

. N) This method removes the last .

1BmtonCIear_actionPedormeg() node from the comresponding
T '> linked list

This method clears all nodes
from the corresponding linked
list

Figure 10: Input Data (part 2) Sequence Diagram

37

)
'
]
1
1
|

<

—,J N o_:..o,_u, -}

wiexderp aouonboag uonemoen) 111G 11 | 28y

t 1])] i i
[' ’ 1 1 ' '
1l] '] 1 ['
1 '] 1 1 ' '
1 A 1]] ']
“ & o wil uoviNouD | " “ ___ !
sweys| | -1 ewindinooy _ < essaiis | |
'] Ll
! - v_ e e . I!fl!_ .
! .q ST ,.J_ .cE:.:::_mo.:on >
. ok I . S
__ ' iepdepiuregies v
" < ?;>aooa_u_:ua9
_ 1
R : “ _
(e wn __.eou-».<a=_a>.oa ' '
! (e Wisdigayb) el noe's ' |
1] 1 . ' +
' ' _ _A ' '
| “ " .>:=.G.:_Eg..ae ©P0)19AIOS H Q0180 DIBA
| | " < '
' ' ' ' (sw ._cOu..ou.o_woo.ooo:a>
b 1 -
_ “ | | L |
, . ' X 1 tenn)Bunite mBojeg
" “ | " : e
" X X " ' OwuyipoBiyied
' ' ' 1 ' ﬂwllltlw
\ . ' ' (JBuiese wjl1eb
I]] 1 1
sesodind Aoy d wys soj ! ' ' o>
weibeip ey vj UMOYS §f X X X (JAluneB
SOSSRID10A0S- WyoBje , . , o>
~ € oeyljo j Auo ' ' ' (JiepiQie8
.t 1 '] N
' LN ' ' ' m
1 1 1 + 1 A
' '] T
b 1 " __ ' {}powiopeguonoe” c.u.:uno..o::m.
TUSTIS50R | TEAISTIUORTINA TISAISE TATISODIVA uaq%a 413.3.33 s
ga.:d .J.qﬂ_.ndq _TXTOATOS TOTTAAUTTEE " TTEETEO TSI ..._.qalqgl..qaﬂz : SLE [oual
. ™ TTTN el R
A) ’
. D () C) R

:wieader(] 2ouanbag vonemope) Lvag ay .

A collaboration diagram is an alternate way to show a scenaro. This type of diagram
shows object interactions organized around the objects and their links to each other.

A collaboraton diagram contains (4):

» Objects drawn as recrangles,

~

» Links between objects shown as lines connecting the linked objects

Messages shown as text and an arrow that points from the client to the supplier.

The Input Data Collaboration Diagram (first part: excluding functions):

. 1_55; Welcome GU! : !
e Welcome
,/'
: User '
g 3: getOrder()
o @ san 4: getlnitv()
,/ 5: getTimeSetting()
e 6: getAligorithm() . I
Main GUI : > input Data (excluding inputting
Framel _ functions) : Frame1

Figure 12: Input Data (part 1) Collaboration Diagram

39

The Input Data Collaboration Diagram (second part: only functons):

N 1: start
- > Welcome GUI :
T T Welcome
: User /;_ start
ey
3: jButtonAdd_actionPerformed()
4 4: jButtonUndo_actionPerformed ()
5: jButtonClear_actionPerformed() _
e - / \\
Main GUI : > -
Framel . K
_rramel N /

Add Functions to
Coefficients : VCoeficient

Figure 13: Input Data (part 2) Collaboration Diagram

The Start Calculadon Collaboraton Diagram:

3: getOrder() 7N
4: getinitV ()
5: getTimeSetting() .
6: getAlgorithm()) T
- stant > _.-- function caiculation :
- T _— . VCoeficient
‘= 2 WelcomeGUI: T
o Welcome T
. User 2: jButtonCaculate_actionPerformadt- Main GUI :
' _Framet1
e - P s A ’
L . 11: getValueAtT(coeff], time)
7 diaidgWaitingtitie) -
e - 15: dispose() ‘ yd
S Y : ’//\-“
In Progress W indow e : .
 dalogwailing 8: VariCoéfUBE (order, coef, ths) L
Abstract :
; VarCoefODES dwer
v
e ’ A
T 13: setData(depVar) \}
Set Cpefﬁcient : 10: caculateHighiestPrime()
VariCoefODE 9: VarCoefODESolver(ode, maxt,mint,dt,initV)
12 caculateDepVara“ :

14: setText{runTime)

‘,Pl_ot charts :
SimpleChart

Set input for solver X:
_VarCoefODES aert

Figure 14: Start Calculation Collaboraton Diagram

41

For a more detailed description in the three main sequence and collaboration diagrams

refer to appendix D.

State and actvity diagrams are very important when designing a system since they
show the object life cvcle (1). We will take every object by itself and study its changes
when different actions are called on it. The state diagram will show the object in its
different states, what kind of action was done on it, and conditdons needed in order for
the state to change. The actvity diagrams will show what kind of actions can be done
on an object as well as the conditions needed for the activity to happen. Since both
type of diagrams show the same thing in different ways we decided to only include the

state diagrams of certain objects. The three diagrams are shown on the next three

pages:

42

VarCoefODESolver state diagram:

. start

VarCoefODESolver(ode, maxt, mint, dt, initV)

New VarCoefODESolver
entry/ maxintTime = maxt
entry/ minintTime = mint
entry/ timeStep = dt
entry/ initValues = initV
do/ caculationNumber = (int)((maxt-mint)/timeStep)
do/ ord = getOrder()
do/ coef = getCoefficients()

do/ hs = getRHS()
do/ depVar=new double[caculationNumber]{ord+1]

caculateDepVar

Update VarCoefODESolver

do/ depVarx][y]=initValues(y]
do/ depVarfi][ord]=caculateHighestPrime(i)
exit/ depVarf][] is set

.
.\ end

~——

Figure 15: VarCoefODESolver State Diagram

43

VarCoefODE state diagram:

‘ start

VariCoefODE(order, coef, rhs)

" new VariCoefODE

entry/ order=ord
entry/ coefficients = coef
~ entry/ ths =rh

LA
W

~—’

Figure 16: VariCoefODE State Diagram

VCoefficient state diagram:

' start

[S,
new VCoeficient T
removelLast

entry/ 1t="1.0" ———= entry/ VCoefficient = LinkedList(items)
entry/ add tt to link list exit/ VCoefficient = LinkedList(items - last item)

e

» removeLast
. add(Selecteditem) T
. g Add VCoefficient
clear
N entry/ VCoefficient = Linklist(items)
T o exit/ VCoefficient = linkedlist(items + Selecteditem)
N N
b ~
NN clear
-
~N. .
=\ v
Clear VCoefficient

entry/ VCoefficient = LinkedList(items)
exit/ VCoefficient = NULL

S

. end
N ¢4

Figure 17: VCoefficient State Diagram

45

A Component Diagram shows the organization and dependencies among a set of
components that are the physical implementation of the system. It is a physical and
replaceable part of a system that conforms to and provides the realization of a set of
interfaces. A\ component typically represents the physical packaging of otherwise

logical elements, such as classes, interfaces, and collaborations (2).

A component diagram shows the organization and dependencies among a set of
components. Component diagrams are essentially class diagrams that focus on a

system’s components.

The diagram on the next page is the EPS component diagram:

The EPS system component diagram:

Userlnterface.Class

Welcome

i MainGui

EPSHandler.class

VCoeffcient.
class

VarCoefODE
Solver.class

I VvarCoefODE

1;5] Solver2.class

==

VariCoefODE.
class

VarCoefODES
olveri.class

VarCoefODE
Solver3.class

Figure 18: The EPS Component Diagram

47

Chapter 5

CHAPTER 5: DESIGN AND CODE CHANGES

This chapter focuses on the design and implementation changes that are done in order
to enhance performance. Some of the issues are discussed in previous chapters but
not in details. When starting a new project it is very common that the first version has
some problems. There are lots of reasons why some applications do not have good
performance. Some of the reasons might be technical; others include ume and

resources.

Due to the compettive environment we live in, some companies rush in developing
applicadon and put them in to the market even though they do not perform well or
the contain certain defects. This is, obviously, because they want to control the
market. This is the nature of most software development companies. Another reason
performance is not seriously taken in to consideration is because there are no resources

available to allocate the time and human power for it.

Fortunately EPS does not have these problems. Enough resources and time are
allocated for the project because the primary requirement is performance. Certain

issues related to the design and coding of the applicaton are encountered.

48

Design Changes
In the original design there were separate classes for constant coefficient and for
variable coefficient. We had two classes: ConstCoefODE and VarCoefODE. So if
the coefficient was a constant we use ConstCoefODE; otherwise we use
VarCoefODE. This made the applicadon run slower because of the existence and
creation of two separate classes. The applicadon must use these two classes if the
equation created had constant and variable coefficients at the same tume. We were able
to join these two classes in one class: VariCoefODE. The methods needed for
variable coefficients and constant coefficients were also combined and we had one

generic class with generic attributes and methods to work with any tme of coefficients.

Another design bottleneck was the equation solver. Since we had three different
algorithms or solvers we initally created three separate classes: EulerSolver,
CrankNicSolver, and PredCorSolver. These three algorithms had some common
methods and attbutes. It was taking more resources to load three similar classes to
the memory and more processing ime. The design was changed to have an abstract
solver class that has the common methods and attributes and the three different
solvers denved from that class. This led us to create an abstract class
VarCoefODESolver and three different classes (VarCoefODESolverl,

VarCoefODESolver2, VarCoefODESolver3).

Error handling was another design modification that was done to enhance
performance. It was also needed to me more generic for future enhancement. Initially

we were handling errors from within class methods. We then created a new class,

49

ErrorHandler, which deals with all types of error thrown out from the application. A
message and an error type are passed to the ErrorHandler class and the error is
established only in that class. This made the error handling code for all the application
generic and centralized in one class. It is also more efficient for future additions to the

application.

Coding Changes
There were a lot of changes done to the code; some were important and made a
noticeable enhancement in performance. Other changes were small but definitely sped
up the calculation dme too. We already discussed why it is important to be careful
while programming such applicatons because a small mistake can make a big
difference. In chapter four we gave an example about how a variable that was defined

as a long instead of a short can make performance drop dramatcally.

After coding every method used in the EPS system we went through the code again

and made sure that:

1. All unused varables were taken out

9

Variables used have the right size

3. The code in loops is kept to the minimum

4. Calculadons done are all necessary

50

5. Calculatons done once and no duplication of processing

We also changed some pieces of code to increase performance. When adding the
coefficients as varable functions we initially used an array. It was taking more
resources and processing time because we did not know how big should it be. It was
also needed through out the processing time so it has to be available from the start ull
the end of the calculation. This azzay was often accessed and manipulated so it was
one of the main bottlenecks of the application. We then found out a better way of
working with coefficients; linked lists. Linked lists can grow dynamically. If a funcaon
is as small as sin(t), a linked list can be 2 nodes big whereas an array would be of fixed
length (initially 100 elements). After calculating how much sin(t) was, the two nodes
(sin, t) would be deleted from the linked list (popped) and the actual value is added.

This made function calculation much faster, easier, and more generic.

Another major modification was in the plotting of the diagrams. Initally we were
plotting every single point with a third party software/library. Plotting the diagrams
was taking about 70% of the total time needed for the whole calculation to finish. It
was not acceptable so we investigated other ways of plotting them. A thorough
research was done on different libraries that are available in the market. Initally we
used a charting library offered by Sitraka (Jclass ServerChart). This library was then
replaced by another since it did not come with the source code, therefore, we don’t
have the flexibility of modifying it to meet our requirements. We looked for open-

source libraries that come with the GNU Lesser General Public License (LGPL) which

51

guarantees the freedom to share and change free software—-to make sure the software

is free for all its users. The most important libraries that were researched mclude:

1. JetChart offered by Jinsight Informatica Ltda,

2. Chart2D offered by sourceforge (17),

3. JopenChart also offered by sourceforge,

4. And JfreeChart offered by Object-Refinery (18).

The library that suited our project the best was JfreeChart. It was fast and contained
all the features that we needed. Small modifications to the library were made and it
was added to the program as part of the same package. This was done for two

reasons:

e To make the application easier to use withourt the need of plugging an extra

library.

e To have the source code as part of the applicadon code for future

modifications.

It is important that the libraries used are not corporate dependent. The initial release
of the application contained Botland libraries since the graphical user interface was
build using Borland’s JBuilder. The layout class included in com.Borland.jbcl library of

JBuilder version six was needed for displaying charts and other GUI elements. A

research was made to find other ways to design the GUI without being dependant on
Borland’s libraries. The requirement was to find free libranes that are available in the
market that can display the graphs quickly and efficiently. The best libraries that were
freely available in the market were the Java swing and awt libranes. We made the
modifications and tested the application thoroughly again for performance and we
found out that with Java libraries the application ran almost as fast as the previous

version.

The current version of the EPS application uses libraries that are free and available in
the market. The only libraries needed to compile the application are included in the

Java™ 2 SDK Standard Edition or simply J2SE by Sun Microsystems.

53

Chapter 6

CHAPTER 6: THE RESULT

Before we discuss the result we will just explain how to run the EPS program. The
main thing that needs to be done is to input the required equaton which include
serting the order of the equaton, the coefficients, the imntal values, the ume settngs,
and the algonthms to be used. Most of the inputs are straightforward except settung
up the coefficients. In order to set a specific coefficient of an equaton the user needs
to select the corresponding radio button and then build the functon from the
dropdown menu. If numercal values are needed the user can simply type the value
needed in the dropdown box and click on the ‘add’ button. If a mistake is done the
‘undo’ button can be use. The user can clear the whole coefficient by clicking on the
‘clear’ button. A snapshot of the main graphical user interface can be viewed in
Appendix A-2.2. A ReadMe.uxt file is available with the program to explain how to

install and run the EPS application.

Designing a high performance mathematical application will always be a challenging
task. After reaching an optmal and generic design it is time for us to test the
performance. An additonal functionality is added to the program to compute the time
needed to calculate the plotting points and draw the diagrams. This time depends on
the hardware that we are running the application on as well as the complexiry of the

equation and the solver (the algorithm). In the current version of the program we

54

limited the number of points we calculate to three million so we do not run out of
memory. Reading the memory available on the machine used and setting the
limitation accordingly can solve this problem. This is recommended for the next

applicaton release.

As mentioned in previous chapters the hardware needed to run the application on
does not need to be powerful. It can range berween a Penoum I, 33Mhz to a
Multprocessor machine. We decided to test the program on a Pentum II, 266 MHz
with 128 megabytes of RAM. We also wanted to test its performance with 2 more
powerful machine, Pentum IV 1.2 GHz with 512 megabytes, to see how much faster

the application can perform.

Moreover, the elements that affect the resulting calculation tumes are:

1. The order of the equation,

1o

The complexity of the coefficients and the right hand side of the equation,

3. The tme-step and the time range,

b

And the algorithm selected to solve the equation.

On a Pentium II, 266 MHz with 128 megabytes of RAM the performance was high.
The table below lists a few test criterion that were performed and the approximate
calculation time each test needed. Each test was performed 4 times and the average

was taken and rounded to the nearest ten milliseconds for more precision.

55

| Order Coefficient Algorithm Time Time Step Result
complexity Range (ms)
2 Constant Euler 0-20 0.1 = 220
2 Constant Crank-Nicolson 0-20 0.1 =220
2 Constant Predictor- 0-20 0.1 =220
2 Constant Euler 0-20 0.0001 = 4050
2 Constant Euler 0-500 0.01 = 10170
5 Constant Euler 0-500 0.01 = 19960
5 Constant Predictor- 0-500 0.01 = 21730
2 Variable-Simple Euler 2-20 0.1 =270
2 Variable-Simple Crank-Nicolson 2-20 0.1 =270
2 Variable-Simple Predictor- 2-20 0.1 = 380
2 Variable-Simple Euler 25 0.00001 =
2 Variable-Simple Predictor- 2.5 0.00001 =
2 Variable-Simple Euler 2-30 0.001 = 19610
2 Variable-Simple Predictor- 2.30 0.001 = 38220
3 Variable- Crank-Nicolson 2-50 0.1 = 1440
3 Variable- Predictor- 2-50 0.1 = 2520
3 Variable- Crank-Nicolson 2-50 0.005 = 21770
3 Variable- Predictor- 2-50 0.1 = 43910

Table 3. EPS test results table

As discussed in chapter three the coefficients of an equation can be constants or

variables. A variable coefficient can be a simple one like sin(t), or 2 more complex one

like cot(log(t)) * t°.

56

The application was also tested on 2 much faster machine, Pentium IV, and the results
were astonishing. The time needed for each test was cut eight to fifteen dmes. Error
handling was also tested thoroughly. The memory needed to solve each equadon
depends on the amount of data that must be temporarily stored for plotung the
diagrams. When there is not enough memory available the application outputs an
error message to notify the user with the problem. The application also notifies the
user if there is any problem with the equation. For example, if one of the coefhicients
was log(t) and t was set to zero the user gets a message that the coefficient are invalid.
The application never failed to work. We did not encounter any problem while doing

the last phase of tesang.

The application has shown very high performance on a Pentium II machine. For

example, the following equation takes less than 20 seconds:

-

> sin(t) d ,6 + log(t*e)ﬂ + 3t0 = cos(t)
dr” dt

We are able to calculate 150,000 points and plot them in less than 20 seconds. This
number drops to 2.4 seconds on a Pentium IV 1.2 GHz computer. The plotting ime
of this equation using Sitraka, a third party software, takes almost 70% of the total
time. Almost three of the four seconds are needed to plot the above equation. This
drops considerable when working with more complex equations since the plotting

time does not vary as much as the calculation ume does.

57

Chapter 7

CHAPTER 7: FUTURE WORK

This secton presents some issues raised by this research, and suggests related

problems we believe need to be addressed.

One of the main issues that need to be discussed is the programming language. As
mentioned before, we are not sure if the applicaton performs best with Java as the
programming language. Earlier we proposed another version that has the same
interface (Java) but a C++ engine. There must be an interface layer between the two;

Java Naave Interface.

Java Native Interface Description

Sun micro-systems describe Java Natve Interface (JNI) as: “the nauve programming
interface for Java that is part of the JDK. By writing programs using the JNI, you
ensure that your code is completely portable across all platforms” [15]. This interface
allows programs written in Java to communicate with other programs written in other
languages like C, C++, and assembly. Programmers usually use this interface in

situations where applications cannot be entirely programmed in Java. In our situation,

58

we want to use this interface because we are predicting that our application run faster

using C++ for compuraton.

JNI is part of the Java Developer Kit (JDK). It is easy to see that the JNI serves as the
glue between Java and native applications. The following diagram shows how the JNI

ties the C side of an applicadon to the Java side [9].

Application
C Side Java Side
d :
9 Exceptions
Functions J k
N f Classes
Libraries L
- VM

Figure 19: JNI in action

JNI adds to the complexity of the application [9]. Certain considerations have to be

taken and this is why programmers only use this functionality when it is a necessity.

59

The Overall JNI Process

In order to embed C++ code and use JNI to call the C++ methods certain process

has to be taken [9]:

)

~l

Wrte a Java class that has a natve method for example this

JNIODEExample.java:

Compile JNIODEExample.java.

Generate the JNIODEExample.h header file containing the prototypes of the

C++ methods you must write with.

javah.exe -jni -0 JNIODEExample.h cmp.JNIExper.

JNIODEExample
Write a C or C++ class for example: [NIODEExample.c

Link that C++ code it calls into a DLL. The dll may contain methods from

many different classes.

Pre-install the DLL on the browser's classpath, e.g. \JDK1.3\jre\bin\ext (for

the JDK 1.4 plug-in), WINNT\java\trustlib.

Use the Java native methods as ordinary Java methods.

60

Performance Assumption

Java Nadve Interface adds a new layer to the applicaton. This layer slows the
performance of the application down considerably. Using C++ for computation will
speed up performance but it might not be enough to overshadow the slowness that the
extra laver adds. This study can only be performed after having two running versions
of the application. Even at that ume it might be difficult to decide which version
performs better since it depends on the complexity of the computation. To ilustrate,

lets take a look at the following two examples:

Version Equaton Computation Interfacing Total
All-Java Simple Eq. X) 150 ms N/A 150 ms
Java-JNI-C++ | Simple Eq. (X) 50 ms 200 ms 250 ms
All-Java Complex Eq. (Y) 5,000 ms N/A 5,000 ms
Java-JNI-C++ | Complex Eq. (Y) | 800 ms 200 ms 1,000 ms

Table 4. Performance comparison between All-Java versus Java-JNI-C++

The All-Java version performs better with the simple Equation X, whereas the Java-
JNI-C++ version performs better with the complex equation Y. This assumption is

valid but the figures given in the example are just for illustration.

61

Additional Algorithms

The algorithms that are provided in the application are not the only algorithms that
can solve such mathematcal equatons though they are some of the most popular.
The application was designed in a way to easily plug in additonal algorithms.
Whenever an additdonal algorithm is to be created certain changes has to be made.

They are the following:

7 Add the solver as an extended class from the abstract class

VarCoefODESolver to the program,

» Add the solver class to the interface in the algorithm combo-box in

the MainGui class,

» Add the solver class to the switch case in the jButtonCalculate

method.

62

Chapter 8

CHAPTER 8: CONCLUSION

In the course of this major report we have discussed the importance of performance in
certain mathematcal applicadons. We defined and analyzed the problem as well as
established 2 solutdon for solving all sorts of equations by constructing an optimal
framework that can be a startng point for future enhancement. Along with the
research we built an application to test our methodology. The iteratuve process that we
followed helped us in understanding the problem correctly, finding the best way to
interpret this problem, as well as testung our findings thoroughly. We also researched

what resulted from the application and discussed what can be done to improve ir.

There are two major themes in this work. The first has been elaborated on extensively
throughout this work which concemns being able to build an applicaton to simulate the
movement of object according to external condittons. This application must perform
rapidly with minimum resources. The conditions can be described in an equation that
is inputted to the application. The output is a set of diagrammatic interpretations of

the result and performance statstics.

The second major theme is the proof that these applications can be done and is
accessible to all who need it. It concems the development of numerical methods to

solve the equations using certain algonithms. Three popular algorithms were

63

implemented and the probability of adding new algorithms to the program is high due
to the generality of the design. Algorithms vary in their complexity and the accuracy of
their outputs. The proof is a running applicaton done using object-oriented design for

enhancement purposes. Java was the programming language thar was used.

The study described the design in details and emphasized on the performance issues
that were encountered and the modificatons that were done in order to solve them
whether they were coding or design changes. The work also includes a general
overview of a different coding approach. This approach uses different programming
language like Java, Java Natve Interface, and C++. The reason behind the inclusion
of this alternative approach is to direct the future enhancers of this work to different

methods for possible performance enhancement.

64

APPENDIX A: IMPORTANT APPLICATION FUNCTIONALITIES

A-1: “welcome.java” description

This welcome class is a graphical interface screen that the user gets when starting
the application. It displays the name of the application as well as two buttons to
either exit the application or enter the main menu.

A-1.1: “welcome.java” source code

// this is the first GUI class (window) we get when we start the application
// it just contains 2 buttons to start or exit the application
public class Welcome extends JDialog {

JPanel panell = new JPanel();

XYLayout xYLayoutl = new XYLayout();

Border borderl;

XYLayout xYLayout2 = new X'YLayout();

JButton jButtonl = new JButton();

JButton jButton2 = new JButton();

JLabel jLabell = new JLabel();

// constructor. just to create the frame/window
public Welcome(Frame frame, String title, boolean modal) {
super(frame, title, modal);
try {
jblnit();
pack();
}
catch(Exception ex) {
ex.printStackTrace();
}
}

public Welcome() {
this(null, "", false);
}
// used to build the fiyst window and set the colors, text, size....
void jblnit() throws Exception {
borderl = new EtchedBorder(EtchedBorder.RAISED, Color.white, new
Color(134, 134, 134));

65

panell.setLayout(x YLayout2);
this.getContentPane().setLayout(x YLayoutl);
panel | .setBorder(borderl);
jButtonl.setFont(new java.awt.Font("Dialog”, 1, 16));
jButtonl.setText("Enter");
jButtonl.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(ActionEvent €) {
jButton1_actionPerformed(e);
}
s
jButton2.setFont(new java.awt.Font("Dialog", 1, 16));
jButton2.setText("Exit");
jButton2.add ActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(ActionEvent €} {
jButton2_actionPerformed(e);

}
H;
jLabel l.setFont(new java.awt.Font("Dialog", 1, 28));
jLabell.setText("Welcome to ODE Solver");
xYLayoutl.setWidth(386);
xYLayoutl.setHeight(308);

this.setDefaultCloseOperation(WindowConstants. DO_NOTHING_ON_CLOSE);
panell.add(jButtonl, new XYConstraints(210, 216, 120, 46));
panell.add(jButton2, new XY Constraints(43, 216, 120, 46));
panell.add(jLabell, new XYConstraints(27, 84, 346, 56));
this.getContentPane().add(panell, new XYConstraints(S, 3, 375, 301));

}

/1 if the Enter button is clicked
void jButton1_actionPerformed(ActionEvent e) {
this.dispose();
}
/1 if the Exit button is clicked
void jButton2_actionPerformed(ActionEvent e) {
System.exit(0);
}
}

A-1.2: “welcome.java” Screenshot

A-2: “MainGui.java” description

The “MainGui” class is the main interface with the user. It is divided in to seven

containers for user friendliness. The containers are either input or output containers

and they are the following:

L.

N

The “Set Order” container where the user chooses an order for the equation.
The order can be 2, 3,4, or 5. A combo-box was used to reduce ambiguity,
so the user can only choose an appropriate input.
The “Set Coefficient” container is used to set the coefficients in the
equation. Depending on the order set in the “Set Order” container, the
coefficients available to set gets activated. For example, if the order was set
to 3 then only coefficients that get enabled are (0, 1, 2, and 3). The RHS
(right hand side) is also activated. Coefficients can be constants, functions
or a mixture of both. When setting up a specific coefficient in the equation
the user builds the function from a combo-box of available operations (For
available operations check chapter three). If the function the user built is
invalid the application throws an error message upon execution. The user
has the capability to:

a. “add” operations to the function

b. “undo” the last add

c. And “clear” the whole function or coefficient.

68

The “Initial Value™ container is where the user inputs the initial values of
theta and its family. The textboxes used in this container to input the values
are also enabled or disabled according to the order of the equation.
The “Time Setting” container contains three text boxes to input the starting
time, the ending time, and the time step.
The “Algorithm Setting” container has a combo-box to select which
algorithm is to be used to calculate the output.
And the last container that consumes most of the screen is the output
container that has up to six diagrams, also depending on the order of the
equation, which shows the resuit of the calculation. The diagrams are:

a. Theta vs. theta prime

b. Theta vs. time

c. Theta prime vs. time

d. Theta double prime vs. time

e. Theta triple prime vs. time

f. And theta quadruple prime vs. time
The “start calculation” button is at the bottom of screen and does not belong
to any specific container since it uses all the inputs of the input containers to
calculate the points needed and plots them in the output container. It also
calculates the time that was needed to find the result and displays it in a

“Calculation Time” text box in milliseconds.

09

A-2.1: Important functions in “MainGui.Java”

// the main function. This starts the process of calculation.

void jButtonCalculate_actionPerformed(ActionEvent e) {
/I get Start Time
Calendar startCalendar = Calendar.getInstance ();
Date date! = startCalendar.getTime();
long startTime = datel.getTime();

// display waiting dialog

dialogWaiting dialogwaiting = new dialogWaiting(this, "In Excecution,
Please Waiting...", false);

dialogwaiting.setLocation(300, 250),

dialogwaiting.setVisible(true);

try |
getOrder();

getInitV();

getTimeSetting();

getAlgorithm();

if(lorder + 1) * (maxt - mint) / dt > 3000000) throw new

Exception("out of memory");

if (coef[order].size()==1 && Double.valueOf (coefl[order].getFirst().

toString().trim()).double Value() == 0)
throw new Exception("the highest coefficient is 0");

VariCoefODE ode = new VariCoefODE(order, coef, rhs);

// we instantiate the odesolver and we decide on which algorithm to

use

// (meaning which class to create VarCoefODESolverl, 2 or 3

depending on

/I the user selection

VarCoefODESolver odesolver = null;

switch(algo)

{
case 1:
odesolver = new VarCoefODESolverl(ode, maxt, mint, dt,
initV);
break;
case 2:
odesolver = new VarCoefODESolver2(ode, maxt, mint, dt,
initV);

70

break;
case 3:
odesolver = new VarCoefODESolver3(ode, maxt, mint, dt,
initV);
break;
}
odesolver.calculateDepVar();
double[][] depVar = odesolver.getDepVar();
// the first three charts are a must
simpleChartl .setData(getArray(depVar, 1));
simpleChart2.setData(getArray(depVar, 2));
simpleChart3.setData(getArray(depVar, 3));
// the rest of the charts depends on the order. max is 6 charts
if(order < 3) {
simpleChart4.setData("Array 1 0");
}
else {
simpleChart4.setData(getArray(depVar, 4));
}
if(order < 4) {
simpleChartS.setData("Array 1 0");
}
else {
simpleChart5.setData(getArray(depVar, 5));
}
if(order < 5) {
simpleChart6.setData("Array 1 0");
}
else {
simpleChart6.setData(getArray(depVar,6));
}
dialogwaiting.dispose();
//get End Time
Calendar endCalendar = Calendar.getInstance();
Date date2 = endCalendar.getTime();
long endTime = date2.getTime();
long runTime = endTime - startTime;
calculationTime.setText(Long.toString(runTime) + “ms");
}
// catches exceptions due to overflow or memory shortage or coefficient
problems
catch (Exception el) {
System.out.printin(e l.getMessage());
dialogwaiting.dispose();

A

dialogError dialogerror;
if(e 1.getMessage() == "out of memory")

else {

dialogerror=new dialogError(this,"Error
Message" true,"System doesnt have enough
memory","Please change time setting and try again!");

if(e 1.getMessage() == "overflow")

dialogerror=new dialogError(this,"Error
Message" true, "Calculation result
overflows","Please check the coefficient and try
again!");

else {

if(e1.getMessage() == "the highest coefficient is 0")
dialogerror=new dialogError(this, "Error
Message", true, "The coefficient of highest
order cant be 0","Please check it and try
again!");

else
dialogerror=new dialogError(this,"Error
Message"”, true,"Something is wrong with
coefficient”,"Please check it and try again!");

}

dialogerror.setLocation(300,250);
dialogerror.setVisible(true),

72

/' If the Add button is clicked the last selection is added to the end of the
// linked list
void jButtonAdd_actionPerformed(ActionEvent e) {
String selectedItem = jComboBox2.getSelectedItem().toString();
selectedItem = jComboBox2.getSelectedItem().toString();
if (selectedItem != null) {
if (Radiolndex ==-1) {
rhs.add(selectedItem);
CoefDisplayArea.setText(rhs.getString());

else {
coef[Radiolndex].add(selectedItem);
CoefDisplayArea.setText(coef[Radiolndex].getString());
System.out.printin("size” + coef[RadioIndex].size());

73

vL

A
TS
Repiise

PO

vk

15A % gudeio

)) Z24oen
A R AT et i o . ,..m..,..fw‘..«

300 §3

10YysuIdIdG , eArlInourepy,, ;7°7-vV

A-3: “Vcoefficient.java”
The “Vcoefficientjava” class is needed to manage and calculate the variable
functions or constants that are added as the coefficients of the equation. There are
two important functions in this class: getTempList and getValue. The former goes
through the linked-list and overrides the constants added to the list with their
values. The later function also goes through the list, evaluates the coefficient, and

returns the value of the function or an error if the function is invalid.
A-3.1: Important functions in “VCoefficient.Java”

// this method is to substitute the values of constants in the linked list
/1 if the variable added to the list by the user is t or e or PI then

// we need to substitute them with the actual value. the actual value of
// t varies according to time so it's passed into the method. the value of
// E and and P1I are fixed and we get them from the math library

private LinkedList getTempList(double t) {
LinkedList templist=new LinkedList();
for(int i = 0; i <size(); i++) {
if(get(i) ="t") {
templist.add(Double.toString(t));
continue;
}
if(get(i) =="e") {
templist.add(Double.toString(Math.E));
continue;
}
if(get(i) == "PI") {
templist.add(Double.toString(Math.Pl));
continue;
}
templist.add(get(i));
}

return templist;

75

private double getValue(LinkedList templist) throws Exception {

int i;

int oldSize;
double des;
double oprl;
double opr2;

oldSize = templist.size();

while(templist.size() > 1) {
i=templist.indexOf("pow");
I/ If pow is found in the list
if (i'=-1){

}

else {

//if there’s no bracket after pow then throw an exception

if (templist.get(i+1)!="(") {
throw new Exception("coefficient wrong");

int flag = 1;
int start = i+1; //starting position of pow(,)

int commaPosition = start; / the position of ","” in pow(,)
int endingPosition = start; // the ending position of pow(,)

i++;

while(flag!=0) {
++;
if(templist.get(i)=="(") {

flag++;

}

if(templist.get(i)==")") {

flag--;

}

if(templist.get(i)=="," && flag==1) {
commaPosition = i;

}

}

endingPosition =i;

LinkedList templistl=new LinkedList();

LinkedList templist2=new LinkedList();

for (int j = start+1; j < commaPosition; j++) {
templistl.add(templist.get(j));

76

}
for (int j = commaPosition + 1; j < endingPosition; j++) {
templist2.add(templist.get(j));
}
for (int j = 0; j < endingPosition - start + 2; j++) {
templist.remove(start - 1);
}
templist.add(start -
Double.toString(Math.pow(getValue(templist1),
getValue(templist2))));
continue;
}
}
/l If "(" is found in the list then we add [to the flag variable, if ")" is found
then we
// subtract 1 from the flag variable
i=templist.indexOf("(");
if (i'=-1) {
int flag=1;
int start=i;
int number=1;
while(flag!=0) {
i++;
number++;
if(templist.get(i) == "(") {
flag++;
}
if(templist.get(i) == ")") {
flag--;
}
}
LinkedList templist]=new LinkedList();
for(int j = start + 15 j < i; j++) {
templist1.add(templist.get(}));
}
for (int j = 0; j < number; j++) {
templist.remove(start);
}
templist.add(start, Double.toString(getValue(templist1)));
continue;

}
// if sin is found then we calculate the value of sin(X), pop both and

77

// add the value to the linked list
i=templist.indexOf("sin");
if(i'=-1{
oprl=Double.valueOf(templist.get(i +
1).toString().trim()).double Value();
des=Math.sin(oprl);
for(intj =0; j < 2; j++) {
templist.remove(i);
}
templist.add(i,Double.toString(des));
continue;
}
// if cos is found then we calculate the value of cos(X), pop both and
/l add the value to the linked list
1 = templist.indexOf("cos");
if(i!l=-1{
oprl = Double.valueOf(templist.get(i +
1).toString().trim()).double Value();
des = Math.cos(oprl);
for(int j=0; j < 2; j++) {
templist.remove(i);
}
templist.add(i,Double.toString(des));
continue;
}
// if tan is found then we calculate the value of tan(X), pop both and
// add the value to the linked list
i = templist.indexOf("tan");
if(i!=-1){
oprl = Double.valueOf(templist.get(i +
1).toString().trim()).double Value();
des = Math.tan(oprl);
for(int j = 0; j < 2; j++) {
templist.remove(i);
}
templist.add(i, Double.toString(des));
continue;
}
/1 if cot is found then we calculate the value of cot(X), pop both and
// add the value to the linked list
i = templist.indexOf("cot");
if(i'=-1){

78

oprl = Double.valueOf(templist.get(i +
1).toString().trim()).double Value();
des = Math.tan(oprl);
if(des == 0) throw new Exception("overflow"),
des = 1.0/des;
for(int j =0; j < 2; j++) {
templist.remove(i);
}
templist.add(i, Double.toString(des));
continue;
}
/ if log is found then we calculate the value of sin(X), pop both and
// add the value to the linked list
i = templist.indexOf("log");
if (i!=-1) {
oprl = Double.valueOf(templist.get(i +
1).toString().trim()).doubleValue();
// the log(0) is - infinity so we cant have that so we throw an
exception
if(oprl <= 0) throw new Exception("overflow");
des = Math.log(oprl);
for(int j = 0; j < 2; j++) {
templist.remove(i);
}
templist.add(i, Double.toString(des));
continue;
)
// if "*" is found then we calculate the value of X * Y, pop both and
// also pop the "*" sign and then add the value to the linked list
i = templist.indexOf("*");
if (i!=-1){
opr =Double.valueOf(templist.get(i -
1).toString().trim()).double Value();
opr2=Double.valueOf(templist.get(i +
1).toString().trim()).double Value();
des=opr!l * opr2;
templist.remove(i - 1);
templist.remove(i - 1);
templist.remove(i - 1);
templist.add(i - 1, Double.toString(des));
continue;

79

/1 if "/" is found then we calculate the value of X /Y, pop both and
// also pop the "/" sign and then add the value to the linked list
i = templist.indexOf("/");

ifd'=-1){
oprl = Double.valueOf(templist.get(i -
1).toString().trim()).double Value();
opr2 = Double.valueOf(templist.get(i +

1).toString().trim()).double Value();
if(opr2 == 0) throw new Exception("overflow");
des = oprl/opr2;
templist.remove(i - 1);
templist.remove(i - 1);
templist.remove(i - 1);
templist.add(i - 1, Double.toString(des));
continue;
}
/f if "+" is found then we calculate the value of X + Y, pop both and
// also pop the "+" sign and then add the value to the linked list
i = templist.indexOf("+");
if (i'=-1) {
oprl=Double.valueOf(templist.get(i -
1).toString().trim()).double Value();
opr2=Double.valueOf(templist.get(i +
1).toString().trim()).double Value();
des=oprl + opr2;
templist.remove(i - 1);
templist.remove(i - 1);
templist.remove(i - 1);
templist.add(i - 1,Double.toString(des));
continue;
}
I/ if "-" is found then we calculate the value of X - Y, pop both and
// also pop the "-" sign and then add the value to the linked list
i = templist.indexOf("-");
if(i '=-1) {
if i==0){
oprl=Double.valueOf(templist.get(i + 1).toString().trim()).
doubleValue();
des=0 - oprl;
templist.remove(i);
templist.remove(i);
templist.add(i, Double.toString(des));

80

else {
oprl = Double.valueOf(templist.get(i - 1).toString().trim()).
doubleValue();
opr2 = Double.valueOf(templist.get(i + 1).toString().trim()).
doubleValue();
des = oprl - opr2;
templist.remove(i - 1);
templist.remove(i - 1);
templist.remove(i - 1);
templist.add(i - 1, Double.toString(des));

}

continue;

}

if(oldSize > templist.size()) {
oldSize = templist.size();

}

else { // wrong coefficient since the size should decrease and not stay the
//same or increase
throw new Exception("coefficient wrong");

}

}

return Double.valueOf(templist.getFirst().toString().trim()).double Value();

}

81

A-4: “varcoefodesolver.java”

This is an abstract class used to determine which of the three solvers is to be used.
It has one common function (calculateHighestPrime) that is used by the three
algorithms.

A-4.1: Important functions in “Varcoefodesolver.Java”
/I An important method. common for all algorithms already built into the project.

// used to calculate the member of the theta family with the highest prime
protected double calculateHighestPrime(int row) throws Exception {

int i = row;
double highestPrime;
if(i =0) {

highestPrime = 0;
}
else {
highestPrime = depVar([i - 1][ord];
}
/1 if the coefficient @ time t of the highest order is not zero then the highest
//prime would be equal to the (RHS - All other Coefficients @ time t)/Coef
of highest order @ t
if (coefford].get Value AtT(minIntTime + i * timeStep) = 0) {
highestPrime=rhs.getValue AtT(minIntTime + i * timeStep);
for (int j = 0; j < ord; j++) {

highestPrime = highestPrime -
coeflj].getValueAtT(minIntTime + i * timeStep) *
depVar(i][j];

}
highestPrime = highestPrime/coef[ord].getValue AtT(minIntTime + i

* timeStep);

}

return highestPrime;

82

A-5: “varcoefodesolverl.java”

The “varcoefodesolverl™ class implements the Euler algorithms. It is derived from
varcoefodesolver described in Appendix A-4. The main function of this class is
calculateHighestPrime which is used to calculate the values of the highest member
of the theta family.

A-5.1: Important functions in “Varcoefodesolverl.Java”

//This method is to create the DepVar array - the logic of Euler algorithm is used
here.
/[The calculateHighestPrime method used is a generic method derived from the
super class
/IVarCoefODESolver and is used to get the value of the highest prime of theta. the
rest of
// theta family are calculated and saved in the array in this method:
calculateDepVar()
public void calculateDepVar() throws Exception {
for(inti =0; i <ord; i++) {
depVar[0][i] = initValues{i];
}
depVar[O]{ord] = calculateHighestPrime(0);
for(int i = 1; i < calculationNumber; i++) {
for(int j = 0; j <ord; j++) {
depVarlil[j] = depVar[i-1][jl+depVar[i-1][j+1]*timeStep;
}
depVar(i][ord] = calculateHighestPrime(i);

83

A-6: “varcoefodesolver2.java”

The “varcoefodesolver2” class implements the Crank-Nicolson algorithms. It is
derived from varcoefodesolver described in Appendix A-4. The main function of
this class is also calculateHighestPrime that is used to calculate the values of the
highest member of the theta family.

A-6.1: Important functions in “Varcoefodesolver2.Java”

public class VarCoefODESolver2 extends VarCoefODESolver {

/[This method is to create the DepVar array - the logic of crank-nicolson algorithm
is used
//here. The calculateHighestPrime used is a generic method derived from the super
class
/l VarCoefODESolver and is used to get the value of the highest prime of theta. the
rest of
/I theta family are calculated and saved in the array in this method:
calculateDepVar()
public void calculateDepVar() throws Exception {
for(int j = 0;j < ord; j++) {
depVar[0](j] = initValues[j];
}
depVar[O][ord] = calculateHighestPrime(0);
for(int j = 0; j < ord; j++){
depVar[1](j] = depVar[0][j]+depVar[O][j+1]*timeStep;
}
depVar[1}[ord] = calculateHighestPrime(1);
for(int i = 2; i < calculationNumber; i++){
for(int j=0; j <ord; j++){
depVarf{i][j] = depVar(i-1][j]+(1.5*depVar[i-1]{j+1]-
0.5*depVar(i-2][j+1])*timeStep;
}
depVar{i][ord] = calculateHighestPrime(i);
}

84

A-7: “varcoefodesolver3.java”

The “varcoefodesolver3” class implements the Predictor corrector algorithms. It is
derived from varcoefodesolver described in Appendix A-4. The main function of
this class is calculateHighestPrime that is used to calculate the values of the highest
member of the theta family.

A-7.1: Important functions in “Varcoefodesolver3.Java”

/fThis method is to create the DepVar array - the logic of Predictor corrector
algorithm is used here.
//The calculateHighestPrime method used is a generic method derived from the
super class
//VarCoefODESolver and is used to get the value of the highest prime of theta. the
rest of //theta family are calculated and saved in the array depVar. What we do is
we get the predicted
/Ivalues of theta and then we uses these values to calculate the correct values and
then //resave them in the array
public void calculateDepVar() throws Exception {

double preParal = 1.0;

double[] corParal = {0.5, 0.5};

double(] prePara2 = {1.5, -0.5};

double[] corPara2 = {(5.0/12.0), (8.0/12.0), -(1.0/12.0) };

double[] prePara3 = {(23.0/12.0), -(16.0/12.0), (5.0/12.0)};

double[] corPara3 = {(9.0/24.0), (19.0/24.0),- (5.0/24.0), (1.0/24.0)};

double[] prePara4 = {(55.0/24.0), -(59.0/24.0), (37.0/24.0), -(9.0/24.0) };

double[] corPara4 = {(251.0/720.0), (646.0/720.0), -(264.0/720.0),

(106.0/720.0), -(19.0/720.0) };

//set initial value: Q0,Q'0,Q"0...

for(inti=0; i <ord; i++) {

depVar{O][i] = initValues{i];

}

depVar[0][ord] = calculateHighestPrime(0);

/lpredict Q1, Q'L, Q"1...

for(int j = 0; j < ord; j++) {

depVar[1][j] = depVar[O][j]+preParal *depVar{O][j+1]*timeStep;
}
depVar[1][ord] = calculateHighestPrime(1);

85

/lcorrect Q1,Q°1,Q71...

for(int j = 0; j < ord; j++) {
depVar[1][j] =
depVar{0](j}+(corParal[0]*depVar[1][j+1]+corParal[1]
*depVar[0][j+1])*timeStep;

}

depVar[1][ord] = calculateHighestPrime(1);

/lpredict Q2,Q2,Q72...

for(int j = 0; j < ord; j++) {
depVar{2][j] =
depVar{1](j]+(prePara2{0]*depVar[1][j+1]+prePara2{1]*
depVar{0][j+1])*timeStep;

}

depVar[2][ord] = calculateHighestPrime(2);

/lcorrect Q2,02,Q72...

for(int j =0; j < ord; j++) {
depVar{2][j] =
depVar{ 1][jl+(corPara2[0]*depVar{2][j+1]+corPara2[1]*
depVar{1](j+1]+corPara2[2]*depVar[0][j+1])*timeStep;

}

depVar[2][ord] = calculateHighestPrime(2);

/lpredict Q3,Q73.,Q73...

for(int j=0;j<ord;j++) {
depVar[3](j] =
depVar{2][j]+(prePara3[0}*depVar[2](j+1]+prePara3[1]*
depVar[1][j+1]+prePara3[2]*depVar[O][j+1])*timeStep;

}

depVar[3][ord] = calculateHighestPrime(3);

//correct Q3,Q073,Q73...

for(int j = 0;j < ord; j++) {
depVar(3][j] =
depVar[2][j]+(corPara3[0]*depVar{3](j+1]+corPara3[1]*
depVar{2][j+1]+corPara3[2]*depVar[1][j+1]+corPara3[3]*depVar[
O][j+1])*timeStep;

}

depVar{[3][ord] = calculateHighestPrime(3);

for(int 1 = 4;i < calculationNumber; i++) {

/predict

for(int j =0; j <ord; j++) {
depVar[i](j] = depVar(i-1][j]+(prePara4[0}*depVar(i-
1](j+1]+prePara4(1] *depVar{i-2][j+1]+prePara4[2]*depVar[i-
3](j+1]+prePara4[3]*depVar[i-4][j+1])*timeStep;

86

}
depVar[i][ord] = calculateHighestPrime(i);

//correct

for(int j = 0; j <ord; j++) {
depVarfi][j] = depVarf{i-
11(j]+(corPara4[0]*depVar[i][j+1]+corPara4[1] *depVar(i-

1][j+1]+corPara4[2]*depVar(i-2][j+1]+corPara4[3]*depVarli-
3]{j+1]+corPara4[4]*depVar(i-4][j+1])*timeStep;

}

depVar(i][ord] = calculateHighestPrime(i);

}

87

APPENDIX B - DETAILED DESCRIPTION OF EPS CLASSES

7 Super _Class

Sub Class

Attributes

algo, order, rhs, algorthm, coef, dt, initV, mathExpression, maxt,
mint, maxTime, minTime, ordersetting, Radiolndex, and other

interface-related attnbutes (combo-boxes, text-fields. . .)

Methods

MainGui(), jbInit(), getAlgorithm(), processWindowEvent(),
getArray2(), getlnitV(), getOrder(), getTimeSetting(),
jButtonAdd_actionPerformed(), jButtonCalculate_actonPerformed),
jButtonClear_actionPerformed(),
jButtonUndo_actionPerformed(),
jComboBox1_itemStateChanged(),
jRadioButton0_focusGained(), jRadioButtonl_focusGained(),
jRadioButton2_focusGained(), jRadioButton3_focusGained(),
jRadioButton4_focusGained(), jRadioButton5_focusGained(),

jRadioButton6_focusGained(), jRadioButtonRhs_focusGained(),

Description

This is an interface class. It's main purpose is the graphical user
interface, getting the input values from the user, calling the action
methods according to the user request, and displaying the result

graphs and statstcs to the user.

88

Supet Ciass | J&lalog

Sub Class N/A

Attributes None (Only interface-related attributes)

Methods Welcome(), jbInit(), jButton1_acnonPerformed(),
jButton?_actionPerformed()

Description This is also an interface class. Its main purpose is the graphical

user interface welcome screen. No input is done on this screen.

.‘S-upe'r Class

Tkl

Sub Class N/A

Attributes None

Methods Vcoeficient() getTempList(), getString(), getValueArT(),
getValue()

Description This class is used to calculate the variable functon of t (tme) of

every coefficient in the equatdon. A linked list is used to contain
the coefficient functions. Methods are performed to go through

the list and calculate the final value at a specific time (t)

89

Sub Class N/A

Attributes VCoeficient, rhs

Methods VariCoefODE(), getCoefficients(), getRHS(), setCoefficients(),
setRHS()

Description This class is mainly used to get and set the RHS (right hand side)

of the equation as well as coefficient array

Sub Class VarCoefODESolverl, VarCoefODESolver2,
VarCoefODESolver3

Attributes calculatonNumber, maxIntTime, minlntTime, umeStep,
initValues, depVar, ord, ccode, rhs, coef

Methods VarCoefODESolver(), calculateDepVar(), getDepVar(),
getlnitValues(), getMaxIntTime(), getMinIntTime(),
setlnitValues(), setlnitValues(), setMaxIntTime(),
setMinIntTime(), calculateHighestPrime()

Description This abstract class is used to solve the equation according to the

90

algorithm selected. The abstract method calculateDepVar() is
the one used to get the values of every instance of theta and
famnily according to time and time-step. Since each algonthm has
its own way of calculating the two dimensional array of theta &
family values the actual code is in separate subclasses
(VarCoefODESolverl, VarCoefODESolver2,

VarCoefODESolver3)

_Class Name::

| VarCoefODESolverf, -

Super Class

VARCOEFODESOLVER
Sub Class N/A
Artributes None
Methods VarCoefODESolverl(), calculateDepVar()
Description This class is extended from the abstract class

VarCoefODESolver.It is used to solve the equation according to
the first algorithm (Euler). The only method that overrides the
one in the base class is calculateDepVar() which is the one used
to get the values of every instance of theta and family according

to time and time-step.

91

Super Class

VARCOEFODESOLVER
Sub Class N/A
Auributes None
Methods VarCoefODESolver2(), calculateDepVar()
Description This «class is extended from the abstract class

VarCoefODESolver.It is used to solve the equation according to
the first algorthm (Crank-Nicolson). The only method that
overrides the one in the base class is calculateDepVar() which is
the one used to get the values of every instance of theta and

family according to dme and time-step.

27

4Super Class

VARCOEFODESOLVER
Sub Class N/A
Attributes None
Methods VarCoefODESolver3(), calculateDepVar()
Description This class is extended from the abstract class

VarCoefODESolver.It is used to solve the equation according to
the first algorithm (Predictor-Corrector). The only method that
overrides the one in the base class is calculateDepVar() which is
the one used to get the values of every instance of theta and

family according to time and time-step.

éuper Ci:;\s‘s

MAINGUI

Sub Class Jdialog

Attributes interface-related attributes

Methods DialogError(), jbInit(), jButton!_actuonPerformed()
Description This class handles any error that occurs while execution

Supet Class

Sub Class VanCoefODE

Attributes Order

Methods ODE(), getOrder(), setOrder()

Description This abstract class is used to maintain the order of the equation

that is to be solved

93

APPENDIX C - DETAILED DESCRIPTION OF SEQUENCE

DIAGRAMS

The Input Data sequence diagram details (first part: excluding functons):

- ST

ix;put D;ta (i)

Involved Objects:

S

: W-elcofné

Incerface —déss (welcome » screen); “No

interaction with the user.

: MainGui

Interface class which interacts between the

user and the EPS system

1: start

2: start (2)

User goes to the main and only GUI used

3: getOrder()

EPS gets the order of the equation from the

user

4: getInitV()

EPS gets the inidal values of theta and famuly

from the user

5: getTimeSertung()

EPS gets the start ime, end time and the time

step from the user

6: getAlgorithm()

EPS gets the user choice

94

The Input Data diagram details (second part: functions only):

Corfesponding Usé Cas

Input Data (2) CGC-I: input Data

Involved Objects: .. . "Description:

::-‘\“‘Ve.léorne\ ' — Interface class (welcom'e’. —vscreen). No
interaction with the user.

: MainGui Interface class which interacts between the
user and the EPS system

: VCoefficient Entity class for the variable coefficients

1: stare

User start the application

2 start (2)

User goes to the main and only GUT used

3: jButtonAdd_actionPerformed()

User chooses to add a specific mathematical
function or value to the function of a specific

coefficient selected

4: jButtonUndo_actionPerformed()

User deletes the last mathematical funcaon
or value that was added to the function of a

specific coefficient selected

5: jButtonClear_actionPerformed()

User deletes the whole function of a specific

coefficient selected

95

The Start Calculaton diagram details:

Start Calculation

Tovohed Objecs:

\Velcome — —I;l.-terface class (\\;;lcome screen).
No interaction with the user.

: MainGui Interface class which interacts
between the user and the EPS
system

: dialogwaiting Control class for the applicaton
error handling

:VCoefficient Control class for calculating the
array of linked lists (function) that is
set for the equation

: VariCoefODE Entty class that is used to set the

coefficients (functons) as well as

the right hand side of the equation

: VarCoefODESolverl, 2, or 3

Control class for calculating the
theta and family two-dimensional
array of instances by tme. This

array will be used to plot the

96

diagrams. (denived from

VarCoefODESolver)

: VarCoefODESolver

Abstract class that calculates the
highest order of the theta family by

time

: SimpleChart

A third party class (library) used for

ploting simple diagrams

1: start-

Us& start the appliééuon

2: jButtonCalculate_actonPerformed()

After inputdng all required data the
user calls the calculaton routine to

get the result

3: getOrder()

Gets the order of the equation

4: getlnitV()

Gets the initial values of theta and

family

5: getTimeSetting()

Gets the tme setting (min-time,

max-time and tme-step)

6: getAlgonthm()

Gets the algorithms selected by user

7: dialogWaiting(title)

Displays a in-progress execution
window to alert the user that the

process is in progress

97

8: VanCoefODE(order, coef, rhs)

Initalizes the coefficents and sets

the RHS and order for the solver to

use

9:

VarCoefODESolverX(ode,maxt,mint,dt,initV)

Note: X here is 1, 2, or 3.
(depending on the algonthm
selected)

Inidalizes the solver to be used to

solve the equation

10: calculateHighestPrime(1)

Calculates the highest member of

the theta family

11: getValueAtT (coef]], tme)

Gets the value of a specific function

at a specific ime

12: calculateDepVar()

Calculates the values of every

instance of theta and it’s family

13: setData(depVar)

Sets the resultng two dimensional

array to plot the graph

14: setText(runTime)

Displays the dme that was needed

to execute the calculation

15: dispose()

Takes off the waiting window

applied in action 7

98

APPENDIX D - UML SYMBOLS USED IN THE RESEARCH

DIAGRAMS

Aggregation: A\ special form of associaton that specifies a whole-part

reladonship between the aggregate (the whole) and a component (the

part).

Association: A structural relationship that describes a set of links, in
which a link is a connection among objects; the semantic relationship
between two or more classifiers that involves the connections among

their instances.

Dependency: A semantic relationship between two things in which a
change to one thing (the independent thing) may affect the semantics

of the other thing (the dependent thing).

Generalization: A\ specializaton/generalization relatonship, in which

objects of the specialized element (the child) are substitutable for

objects of the generalized element (the parent).

99

Frame1

LT

~_//

LinkedList

N -

VCoeficient

<<Interface>>
Frame1 Ui

<<Control>>
_ LinkedList

[con form of Interface class

[con form of Control class

Icon form of Endty class

Label form of Interface class.

Label form of Control class

100

<<Entity>>

VCoeficient
Label form of Endty class
UML Notadon for Object instance in an Interacton

< VCoeficient. Diagram The dashed line is the lifeline of the object, which
- - represents the period during which the object exists.

VCoefODESolver.

Class UML Notation for an Actor in an Interaction

Diagram
> UML Notation for message in an Interaction Diagram

In a sequence diagram, the arrow goes from the sender to
The receiver. The arrow is labeled with the message that is
being sent.

101

UML Notaton for Focus of Control in an Interaction

Diagram

Calculate

UML Nodtfication for an activity in an acavity diagram

> UML Notation for a transition between one actvity

and another in an acuavity diagram
. start

UML Notification for the start of an actvity diagram

'.\\ end

~——

UML Notfication for the end of an actvity diagram

102

Just a ™N
comment

UML Notuficaton for a comment in an activity diagram

I UML Nodficaton for a deciston in an acuvity diagram.
According to some results from previous activites a decision is

to be made to decide on which acavity should be triggered next.

E*Museum

Handler.class UML Notation for a Component

103

BIBLIOGRAPHY

[1] Grady Booch, James Rumbaugh and Ivar jacobson Doe. The Ulrified Modeling
Language User Guide. Addison-Wesley, 1999.

[2] Terry Quatrani. [“iswal Modeling with Rational Rose 2000 and UML. Addison Wesley
Longman, Inc, 2000.

[3] John Paul Fullerton. Benmefits of Object-Oriented Design. 2002. Website:

http:/ /www.rtis.com/ nat/user/j fullerton/benefithtm

[4] Wendy Boggs and Michael Boggs. Mastering UML. with Rational Rose. SYBEX, 2000.

[5] CT Arrington. Enterprise Java™ with UML. John Wiley & Sons, Inc. 2001.

[6] Tom Rodden. Introduction to software engineering. Lancaster University, 1995. Website:
http:/ /www.comp.lancs.ac.uk/computing/users/tam/CS231 /slides-1/s1d001.htm

[7] Rota, Gian-Carlo;Birkhoff, Garrett. Ordinary Differential Equations, 1989.

[9] Roedy Green. [NI, The Java Native Interface, 2002. Website: http://mindprod.com
jni.html

[10] ComputerUser Inc, High-Tech Dictionary, 2002. Website:
http:/ /www.computeruser.com /resources/dictionary/

104

[t1] Jason Caruccl. Java vs. C++. Website: h

/ijavavsc. homl

[12] Martin, Robert C. Designing Object Oriented C++ _Applications Using the Booth Method.
Prentdce Hall, Inc. 1995.

[13] Sitraka Inc. Sitraka [Class ServerChart. Website: htrp://wwwe.sitraka.com/software
/iclass/jclassserverchart.humnl

[14) De La Cruz, J.M. De Lucas, P. Aranda, |. Giron-Sierra, J.M. Velasco, F. Maron. .4
research on motion smoothing of fast ferries. Website: http://www.dacya.ucm.es/giron
/PDF/Gwoverw10.pdf

[15] Sun Microsystems. Juva Native Interface , 2002. Website: http://java.sun.com/docs
/books/tutorial/nativel.1/

[16] Sitraka. Inc. 2002. Website: hetp://www.sitraka.com/
[17] Chart2D 2002. Website: http://www.sourceforge.net/

[18] JfreeChart 2002. Website: http://www.object-refinery.com/jfreechart/

105

