INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

Metaball Graphics Package

Liang Du

A major report
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

April 2003

© Liang Du, 2003

i+l

National Lib Biblioth tional
N rary o iothéque nal e
isitions isitions et
gﬁll(’)gmphicaggrvices ::qrv:&s brl‘“ts:liggraphiques
385 Wellingion Street 395, rue Wellington
Ottawa ON K1A ON4 Otawa ON K1A ON4
Canada Canada
Your fils Votre réddérence
Our Sls Notre réédrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-77986-6

ABSTRACT

Metaball Graphics Package

Liang Du

The goal of this project is to design a metaball graphics package for use in
visualization of large object oriented software. In this technique, a metaball is used to
represent a software entity and the relationship between these software entities.
Appearance attributes such as size, color and texture are used to denote properties of the
software entity. The software has been designed as a Java package with a well defined
API to create metaballs of different radius, color and texture. This metaball API package
can be seen as an extension of the Java3D APL The implementation is based on Java
language with J2SDK1.4 and JAVA 3D 1.3. Hence the metaball API package can be
used on any popular platform.

This report first introduces the scope of the project and then covers state of the art in
software visualization, followed by a detailed description of the metaball technique. Then
an overview of Java3D is provided, followed by design and implementation detail of the
metaball package. Finally application to software visualization id discussed briefly and
conclusion. The source code of the metaball API implementation is also enclosed in an

electronic format.

iii

ACKNOWLEDGEMENTS

[am indebted to my supervisor, Professor Sudhir P. Mudur, for his guidance with patience

and valuable time throughout this project.

[am grateful to Professor Juergen Rilling, who provided me the computer environment and

also gave me valuable suggestions.

TABLE OF CONTENTS

LIST OF FIGURES VIl
CHAPTER 1: INTRODUCTION 1
L.1. SOFTWARE VISUALIZATIONoseiereereerevesveeeesseesseasmneeseesessssssmeeeseesseeesaesenesnnees |
1.2. 3D GRAPHICS FOR SOFTWARE VISUALIZATIONc.ueeerumrremreeeereetiecenneeseeserseeesenennns |
1.3. METABALL TECHNOLOGYcuuerereeereereneesessseesenssessessensssssesemsenessnssssssesessesmensasssnes 2
1.4, METABALL APLIPACKAGEooeveeeiieeeeeeeeeeeeeeeeeneeeesseeeeseeseeeseessessseeesssesessssenenneees 2
1.5. ORGANIZATION OF THIS REPORTcoveueeremeteerecseensenseeseeeeesesesesesessesessessssssemesseneneaes 3
CHAPTER 2: A BRIEF SURVEY OF SOFTWARE VISUALIZATION
TECHNIQUES 4
2.1. HISTORY OF SOFTWARE VISUALIZATIONcueeueeumemeemeeneeeeeeeeeeteeeeeeeeee e s eese e enenes 5
2.2. SOFTWARE VISUALIZATION SYSTEMS REVIEWcovuiruiiueeeeeeeeeeeeesseeseseeseseeeesesesens 6
2.2.1. SOtING OUE SOTHINGoouneeneeereeeeeeeeeeeeeteeeeeeeeaeeeeeeeeee et eeeaeesevesesneseassens 6
2.2.20 POIRA-3D ... ees e v et e et s e et seeees e e ees e e e et e s e ee e ens 6
223 ANIM ..ottt ee et e st e eeeeere e e e e e eeean 7
22 TPttt e e et a e rae s seees e s e s e e e e e e e e eenaeens 7
2.2.5. PAVARE. ...t e e e es e 8
CHAPTER 3: METABALL TECHNOLGOGY 9
3.1 WHAT IS METABALL ...cocuiiiiietiteteteceetee et cres s ens e e e e eeeesesese e e s e s e e eeseenennan 9
3.2, MARCHING CUBES ALGORITHM.......c.coverereereneerereesensmeeseoseesesessssessssesesssesseneas 11
3.2.1. Principle of Marching Cubes ALGOFItRM..................coeeeeeeeeemeeeeeeeeeeeeeeeeerenenn 11
3.2.2. Basic principle used to generate isosurface facets...........ueueeeeeerervernn... 12
CHAPTER 4 OVERVIEW OF JAVA3D 15
AL JAVABD GOAL ...ttt ettt e e e e e e e 15
4.1.1. Simplifv 3D graphics application developmentueeoeereeenenn... 15
4.1.2. Make it ideal for intranet and internet visualization applications 15
4. 1.3. PerfOrmance................ouemeeeeeeeececeereeeereeeeesereeeeseeeeeeeseeees e s s ese s enen 16
4.2. FEATURES OF JAVA 3D ..ot 16
4.2.1. High-level scene-graph model:ooeeeeeeeeeeeeeeeeeeseeeesereeeereereeeeenenn 16
B2 2. RUN-TIME [OAAEES: ... eeeee e eee e e 16
4.2.3. GCOMELTY COMPIESSION..........neerereeecrerereeeeeeeereeeeeneeeeeeesseeereeseeses et e e s esessenesenn 16
4.2.4. Takes advantage of existing hardware acceleratorseuee....... 16
4.2.5. Flexible Viewing Modelc.ceeeeeeeeeeeeeeeeeeeeeeereeeeseseeeeeeee e 17
4.2.6.Level of Det@il(LOD)..........oooeeeeeeeeeeeeeeeeeeeeeee e 17
4.2.7.Support fir coRtinUOUS ACIION AEVICES:cuceeeeeeeerreeeeeeereeeeeeeeeseeerereeeee e 17
4.3 SCENE GRAPH STRUCTURE (SHOWN IN FIGURE 4. 1) «....veeeeeeeeeeeeeeeeeeeeoeeee 17
4.3.1. VirtuQlUniverse OBJECEweveeeeeeereeeeeeeeeeeeeeeeeeeeseeereeeee oo 17
4.3.2. LOCALE ODBJECE ... e es e e 17

F.3.3. NOAE ODJECEoonaeeeeeeeeeeeeeeeeeeeeeeeeeerenee e eeteese s s sesee e sresssssaesssassas 18

4.3.4. BERAVIOT OBJECIS........oeeeeeeeeeeeeeeeeeeeereceeeeeeeereeaseseenesesenssessesstssessesseeessenens 18
4.4. CONVENIENT FACILITIES PROVIDED BY JAVA 3D ..o, 19
4.4.1. Simple KeyNavigator BeRAVIOT..............cceuceereeeeeeieeeeeeeeeeeeeree e 19
4.4.2. Interpolators and AIpha OBJectu.uueeeeeeeneeeeeeeeeeeeeeeeeeeeeeeeeveenane 20
4.4.3. Easy expanding and across platform.................uueneeeveeceeeeeveeeneenne. 20

CHAPTER 5 DESIGN AND IMPLEMENTATION OF METABALL PACKAGE 22

5.1. UNDERSTANDING THE REQUIREMENTSevvemeereinreneesessesseeseseesessssemsesssssssesssessena 23
5.2. METABALL PACKAGE CLASSESc.veeeeeururneeessesesesessessssssssesesessrassssesessmssoseseesssoeeaen 23
5.3. CLASS ARCHITECTURES AND IMPLEMENTATIONSouvurmieieraeremniecaceeeeeeeeeeeeeeeneeens 24
5.3 1. PL3A ClASS: ..o eeseesenee et ses st ss e e 24
5.3, 2. TRIANGLE ClASS:cueeeeeeeeeeeeeeereererereeeeeeeeeee e eee e eeeseseseseeeesesese et eseens 25
5.3.3. GRIDCELL ClASS: cunueevereeeeeeeeeeeeneeeeeeeeeeeeeseeneeeseeeseeseee e seeeseeeeanesee e 26
5.3.4. MArchiNGCUBE ClUSS:e.eeeeeeeeeeeeeerereeeeeeeeeeeeeee e eeesee v s s eseessnenns 27

5.4. ALGORITHMS USED IN METABALL API PACKAGE IMPLEMENTATION 30
5.4.1. Marchingcube class design With reCursion.............uuueeeeveeeeeereeeeeeeeeeveneen. 30
5.4.2. Normal vector calculation of metaball surface used in metaball shading 33
5.4.3. Texture mapping of metaball SUITACEeeeeveeveveeseeeeeeeeeeeeeeeeeeeeeeeeeeeren 34
5.4.4. Animation Of Metaballeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesee e e 36
5.4.5. IDBC-ODBC bridge to connect to Access database.......................eeee...... 40
5.4.6. Metaball algebra function used to represent coupling................oeeeee........ 41

5.5. PUBLIC METHODScoovtturericurrenietneeseensssssesesaesesesesessssnsss s ssmesseseesesteseesseseeseeens 42
CHAPTER 6 CONCLUSION 4
6. 1. SUMMARY ...ttt sttt s ee st ee e e e s s e e e 44
6.2, FUTURE WORKcmeimcmenetneneeeteesae it s s et esese s se s eesees e s s ee s 44
REFERENCES 46
APPENDIX A: EDGETABLE IN MARCHING CUBES ALGORITHM................ 49
APPENDIX B: METABALL API PACKAGE CLASS HIERARCHYeu.eee.... 50
APPENDIX C: SNAP SHOTS USING METABALL API PACKAGE ... 51

vi

LIST of FIGURES

FIGURE 3.1: DIFFERENT ENERGY INFLUENCE FUNCTIONScooovveeeieieeeeeeeceeeveeeeee e 10
FIGURE 3.2: METABALL [SO-SURFACE EXAMPLEScvveeierirerieceeeeee et L1
FIGURE 3.3: FACET DETERMINATION IN MARCHING CUBES ALGORITHMc.c.ccumnnne... 12
FIGURE 3.4: THE 15 CASES OF [SO-SURFACE DETERMINATION WITHIN A CUBE 13
FIGURE 4.1: JAVA 3D APPLICATION SCENE GRAPHoovvemeiineieeeeeeeeeeeeeeeeeeeeseeeeeneeans 19

FIGURE 5.1: METABALL ISO-SURFACES RENDERED AT DIFFERENT RECURSION LEVELS .. 31

FIGURE 5.2: METABALL RENDERING USING FLOAT (RIGHT) OR DOUBLE(LEFT) FOR

GEOMETRY SPECIFICATIONeeeuteeeeeeeeereeseeeeeeeeeseeenseesees e e s e e e s s 36
FIGURE 5.3:MEATBALL COUPLING WITHOUT ANY COLOUR INTERPOLATION ...onooeeoen 41
FIGURE B.l METABALL PACKAGE HIERARCHY ..eeeereeeeeeeeeeeeeeeeeeee e 50

FIGURE C.1: SNAPSHOT OF A METABALL CONFIGURATION OF SOFTWARE ENTITIES AND
THEIR INTERRRELATIONSHPScceveueterenreeserensseseseseoceeesenesetesesesesesesesssensesesssssssssssssns 51
FIGURE C.2: ANOTHER SNAPSHOT OF A METABALL CONFIGURATION IN THE PROCESS OF
SOFTWARE VISUALIZATIONcoueuetueieeereetereneeeseaesessss s seseseesasssesessessesssssssesesssesssessans 52
FIGURE C.3: HEAVILY COUPLED METABALL CONFIGURATION IN SOFTWARE

VISUALIZATION ...ouveneeieeeeeeteeeeeteee e et eeee e e e eeeeeseese e e e e e e e e e e e 53

vii

Chapter 1: Introduction

1.1. Software visualization

For many years the primary and fundamental way to understand a computer program or
its execution was only to examine its source code and utilize a debugger manually. In
recent years, with the rapid development of large OO (object oriented) software, it has
become very hard for designers to maintain and trace the relationships of software
entities. Software visualization can be used to visualize large software and help in
comprehending, debugging and testing of the software. Software visualization is
primarily concerned with the use of computer graphics and animation to help illustrate
and present computer programs, processes, and algorithms. Software visualization
systems can also be used in teaching, to help students understand how algorithms work,
and they can be used in program development as a way to help programmers understand

their code better [5]

1.2. 3D Grapbhics for software visualization

In recent years, most of the systems for visualizing and animating computational process
have been developed as aids for program understanding. These systems have mostly been
restricted to exhibiting 2D graphical imagery such as Rational Rose. 3D graphics could
be used more efficiently to visualize large software. 3D graphics provide an extra

dimension to encode more information. This report describes the design and

implementation of a 3D graphics package known as the metaball API package which can

be used to create 3D visualizations of large software [11].

1.3. Metaball technology

Metaball is a 3D modeling technique that blends and transforms an assembly of spheres
into a complex shape. Metaball is defined by a so-called three-dimensional variable
density field, radiating from a given center point. A point on a metaball surface is
constructed at all points in the field with the same density value, which is given by the
user or derived from the visualization context. The value of the field can vary linearly
with distance from the center, or in any other way expressible via a mathematical
formula. Metaballs, also known as blobby objects, are a type of implicit modeling
technique.[16] Metaball is like equal electric potential of some electric charges or equal
density surface of some density distribution. We have used metaball technology to
implement a metaball package, with a suitable API that can be used to create various

metaball configurations and their visualizations.[13,14]

1.4. Metaball API package

Very simply stated, our metaball package implementation can be considered as being an
extension to the JAVA 3D 1.3 APL. It is implemented using JAVA 3D. The API includes
functions to create meatballs each with the different radius, shading, color, and texture
mapping. The metaball itself is used to represent the software entities (spherical surface)
and relationships among these entities are represented by a metaball of a different shape

(cylindrical surface).

N

1.5. Organization of this report

Chapter 2 gives a state of the art survey of software visualization techniques. Chapter 3
presents the metaball formulation and the marching cube algorithm that is to be sued for
rendering a metaball configuration. Chapter 4 introduces Java 3D package and associated
computer graphics concepts. In chapter 5 we present the design and implementation of
the metaball package. Chapter 6 contains conclusions based on the experience in using
the metaball package and also further extensions of this work. Appendices A and B
include details of the metaball package, while Appendix C includes some snap shots of

the use of this package in software visualization.

Chapter 2: A Brief Survey of Software Visualization Techniques

Software visualization is the use of computer graphics and animation to help illustrate
and present computer programs, processes, and algorithms. Software visualization
systems can be used in teaching to help students understand how algorithms work, and
they can be used in program development as a way to help programmers understand their
code better. Traditional program understanding methods use code tracing and debugging
which is one dimensional, and static. For a software engineer, the most difficult thing is
to know the dynamic aspects of the program. Software visualization can provide
graphical depictions to explain, illustrate, and show how computer software functions. If
a visualization is designed well, software engineers can gain an understanding of the
inherent process that will be extremely difficult to obtain using traditional program
methods such as tracing and debugging.

One approach to build 3D visualizations would be to use an existing 3D graphics
package or library such as OpenGL, DirectX, Java 3D or PHIGS+, as all these packages
provide a suite of graphical shapes including lines, rectangles, circles, polygons, arrows,
blocks, spheres, and text. Furthermore, these graphical shapes are able to undergo
changes in position, size, color, and visibility, providing a dynamic sense of animation.
The metaball APl is a class library built using Java 3D and can be easily used to create

sophisticated 3D animation .[11]

2.1. History of software visualization

Software visualization is by no means a new idea to people. An excellent survey can be
found in the paper by Price, Baecker and Small [1], and much of this material is
summarized from that paper. Back in 1947, Goldstein and von Neumann used flowcharts
and demonstrate its usefulness. Later, in 1959, Haibt developed a system that could draw
them automatically from Fortran or assembly language programs. In 1963, Knuth
developed a system that integrated documentation with the source code and could
automatically generate flowcharts. So in early stages, software visualization was based at
a low level, using flowcharts to represent the source code. At that time all languages were
largely procedure oriented and flowcharts could visually represent the flow of the source
code. All these early approaches to software visualization were static. In 1966, Knowlton
was the first to use dynamic techniques as opposed to static techniques and the first to
address the visualization of the data structure. He showed visuals of list manipulation.
From 1970, software visualization continues to be developed. In 1975 Ledgard describe
the use of spacing, indentation and layout to make source code easier to read in a
structured language. 1980’s, along with the windows GUI technology, saw the beginning
of modern SV(software visualization) research with the introduction of the bit-mapped
display and use interface. The most important and famous system of this era was BALSA
which allowed students to interact with high level dynamic visualizations of Pascal

programs.[1]

2.2. Software visualization systems review

There are many software visualization systems available. But for our brief survey we
chose the systems below based on their historic importance and their diversity and
difference in approaches as described in [1].

2.2.1. Sorting Out Sorting

Sorting Out Sorting (SOS) is the first major software visualization work in 1980’s. It was
produced at the University of Toronto. In the study of algorithms, sorting is very
important. There are many kinds of sorting algorithms that are described in text and using
diagrams. However, SOS system uses a different technique, which is animated computer
graphics, to explain how nine different sorting algorithms manipulate their data. The data
items are typically represented by different colors, blue or green rectangles, with each
having a different height to allow users to visualize the sorted data. As soon as one or
more data items are being considered by the sorting algorithm, they will be highlighted
and when an element has reached its final position which means it has been sorted
already, it will turn red.[1] Furthermore, SOS system also illustrates the speed
differences of each algorithm. Today, SOS is widely used for introductory computer
science teaching at secondary and post-secondary levels.

2.2.2. Polka-3D

Polka-3D is a 3D animation software visualization system used to support the
development of 3D software visualizations. It is an object-oriented animation
methodology similar to Metaball APL. It contains classes that mode! the entire animation,
individual views of animations and windows, and the entities to help define a view such

as graphical objects and action or motions. Polka-3D is mainly composed of AnimObject

class which provides a simple object modeling capability, Location object which is
simply a user-placed marker sitting somewhere within the 3D coordinate system and a
special Eye or Viewer object which controls the position and direction of the viewpoint.
Polka-3D is implemented in C++ on SGI workstations using the GL graphics library. So
Polka-3D is a straightforward, general purpose 3D animation methodology that could be
used to build many other information visualizations and animations. Polka-3D is also
one of the first systems to bring 3D graphics capabilities to many programmers who
desire 3D views to apply 3D visualization technique for software comprehension.[15]
2.2.3. ANIM

ANIM, which is developed at AT&T Bell Laboratories, is a simple but powerful software
visualization system for producing both animated visualizations on a workstation as well
as static snapshots ready for inclusion in documents. ANIM uses some script commands
to generate animations such as movie or still images. There are only eight commands in
total. For example, line, text, box and circle is for drawing command and view. Click,
erase and clear is for control commands. So ANIM is very easy for users to learn. [1]
224.TPM

TPM(Transparent Prolog Machine) which is developed at the UK’s Open University, was
first announced in 1986. It is one of the most successful automatic systems which is used
as a graphical tracer and debugger for the declarative language Prolog. The most recent
version of TPM is based on the Macintosh. TPM provides two basic views for the user
which is CGV(coarse-grained view) and AORTA diagram(fine-grained view). The CGA
uses the tree to show the execution space of the entire program with each node

representing goals. Each node has different colors which is used to indicate the state of

the goal which represents pending, succeeded, failed or initially succeeded but failed on
backtracking. AORTA diagram is the And/OR tree which allows the user to zoom inon a
particular node to get details of data flow such as variable instantiation. Therefore, TPM
is especially suitable for debugging large programs particularly for large Prolog
programs. TPM and the AORTA notation have been used extensively by students in the
Open University’s distance teaching program as well as interactive classroom teaching.
(1]

2.2.5. Pavane

Pavane software visualization system is designed to provide declarative three-
dimensional visualizations of concurrent programs. Programming and debugging in a
parallel language can be much more complex than in conventional sequential
programming environment because of the greater number of computational elements
interacting each other. Pavane was implemented in five parts which are a parser, run-
time package, a library of routines that is used when visualizing C programs, a second
run-time package and a viewing program which renders the visualization and provides
the user interface. Pavane is an active research prototype and a compelling indication of
the power of 3-D color animations to aid in the understanding of both sequential and

concurrent programs. [1]

Chapter 3: Metaball Technology

3.1. What is metaball

A metaball is an implicit representation defined by a function that takes 3D coordinates
of a point as input, and forms an isosurface with some output value. Metaball is
comparable to an electric potential of some electric charges or equal density surface of
some density distribution. Metaballs, also known as blobby objects, are a type of implicit
surface modeling technique. Implicit surface is the modeling method that represents
objects and their surfaces implicitly with a mathematical function of the form F(x,y,z) =

0.[13,14]

We can think of a metaball as a particle surrounded by a density field, where the
density attributed to the particle (its influence) decreases with distance from the particle
location. So in algebraic function form, if we are using the implicit equation:
flxvz) = R"/((x-a)z-i-(_v-b)2+(:-c)2), where R is the radius of the spherical metaball and
the metaball center is at [a,b,c]. With multiple meatballs, we can define individual
algebraic functions f1,f2,f3...fn. Then the combination of metaballs is the sum of all
these functions:f1+f2+f3+.....+fn. Any point for which the sum of the metaball equation
is less than the given iso surface value is inside the volume. If you are drawing it and
visualize this, you will see that the meatballs now attract and deform each other as you

would expect them to. The more precise metaball algebra function is as below:

a*(1-3r? /b?) 0<r< b/3
D(r) = 3a/2%(1-r/b)? b/3<r<b
0 b<r

25 Linel — 1/r*r
Line2 —~—— Blobby Molecules a=2,b=1
2. Line3 ———— IHeta Balls a=1,b=3

_\ Lined —— Soft Object a=1,b=3

FIGURE 3.1: DIFFERENT ENERGY INFLUENCE FUNCTIONS
In Figure 3.1, you can see that the line 3 shows the metaball algebra function for a
decreasing influence function curve, which shows that (its influence) decreases with

distance from the center of the particle location. [16]

A metaball surface is implied by taking an isosurface through this density field - the
higher the isosurface value, the nearer it will be to the particle. The powerful aspect of
metaballs is the way they can be combined. By simply summing the influences of each
metaball on a given point, we can get very smooth blendings of the spherical influence
fields. An isosurface is a surface in 3D space, along which some function is constant. For
example, all the points that satisfy the function f(x,y,z) = C forms the I[so-surface. C is

the Isovalue.

10

: & ‘\/"»j‘T E‘R

FIGURE 3.2: METABALL ISO-SURFACE EXAMPLES

Figure 3.2 shows some examples of isosurface visualization of metaball configuration.

3.2. Marching Cubes Algorithm

3.2.1. Principle of Marching Cubes Algorithm

It is difficult to render the iso-surface only by the algebra function. To get a perfect
accurate metaball volume, we need to evaluate the above equations for a every pixel on
the screen and for every possible depth value. This will cost us too much calculation
time and take up too much of CPU processing time. One way to simplify rendering is by
using approximations using the so-called marching cubes algorithm. This algorithm
generates a polygonal ‘skin’ around the metaball volume which is very easy and fast to
render. The basic idea is to create a regular 3D grid of points. You interpret this grid as an
array of cubes. If a cube has vertices inside and outside the metaball volume, linear
interpolation is used to estimate where the metaball iso-surface intersects the cube, and a
polygon is generated at that location. The indexing convention cube for vertices and

edges used in the algorithm is shown below:

11

Uertex 3 inside
(or outside) the
2 volume
|sosurface facet
1 0
3
3 2 2

FIGURE 3.3: FACET DETERMINATION IN MARCHING CUBES ALGORITHM

For example, in figure 3.3, if the value at vertex 3 is below the iso surface value and all
the values at all the other vertices were above the iso surface value then we would create
a triangular facet which cuts through edges 2,3, and 11. The exact position of the vertices
of the triangular facet depend on the relationship of the iso-surface value to the values at
the vertices 3-2, 3-0, 3-7 respectively. For that we can use linear interpolation. P = P, +
(isovalue - Vi) (P> - Py) / (V2 - Vy). Py and P; are the vertices of a cut edge and V, and V>
are the scalar values at each vertex. The precise intersection point P is given by the
function above. But it is difficult to derive a consistent triangle facet combination for

each solution so that facets from adjacent grid cells connect together correctly. [17]

3.2.2. Basic principle used to generate isosurface facets

The Marching cube algorithm describes how to derive the triangle facet combination
using edgeTable that describes all kinds of facet combinations. The maximum triangle
facets in each condition is 5 triangle facets. The detailed edageTable is given in Appendix
A. After presenting the basic principle of Marching Cubes algorithm, we discuss now

how the principle can be made to work in 3D space. In the 3D space, we are dealing with

12

cube's that have 8 comers and therefore a potential 256 possible combinations of corner
status. However to simplify the algorithm we can reduce the complexity by taking into
account cell combinations that duplicate under the following conditions:

¢ Rotation by any degree over any of the 3 primary axis

e Mirroring the shape across any of the 3 primary axis

¢ Inverting the state of all comers and flipping the normals of the relating polygons.
Taking this into account we can reduce the original 256 combinations of cell states down
to a total of L5 combinations. With this reduced number it is then easy to create
predefined polygon sets for making the appropriate surface approximation. The image
below gives an example data set covering all of the 15 possible combinations. The
spheres denote comers that have tested as inside the shape and the arrows denote the

surface normals of the relevant triangles.

CE
=8
kL

The 1S Cube Combinations
FIGURE 3.4: THE 15 CASES OF ISO-SURFACE DETERMINATION WITHIN A CUBE
As we can see the marching cubes algorithm has produced a very close approximation to
the original surface, a sphere. When polygonising a field where the values are known or

can be interpolated in space, we can use the resolution of the sampling grid to control the

13

precision and smoothness of the metaball. The smaller the grid size, the more smooth the

metaball. We will describe this in more detail in Chapter 5. [21]

14

Chapter 4 Overview of Java3D

Our metaball API package is designed and implemented using Java3D v1.3. Java 3D
is a standard extension to the Java 2 JDK which is used to display and interact with three-
dimensional graphics. Java 3D is composed of a bundle of high level API function calls
to support the tasks of creation of imagery, visualizations, animations, and interactive 3D
graphics application. The Java 3D class library provides a simpler and easier interface
than most other graphics libraries, but has enough capabilities to produce good 3D visuals
and animations. Java 3D builds on existing technology such as DirectX and OpenGL and
the programs do not run as slowly as you might expect. Also, Java 3D can incorporate
objects created by 3D modeling packages like VRML models. Java 3D is a high level
API which is implemented above the OpenGL and DirectX, giving rendering hints to the
3D pipeline and controlling the objects in the scene through the data structure of a scene

graph. [19,20]

4.1. Java3D goal

4.1.1. Simplify 3D graphics application development

Java3D is in the high level abstraction layer which is above OpenGL and DirectX. It
supports more complex and advanced APIs to simplify 3D graphics development.
Java3D is easy to use by 3D graphics developers to create sophisticated 3D graphic
visuals.
4.1.2. Make it ideal for intranet and internet visualization applications

Java3D is based on the JAVA platform. It is embedded into JAVA J2EE

architecture. JAVA programming language is widely used in Intranet and Internet

I5

programming. Java applets can be used in Java3D development to create intranet and
Internet visualization applications.

4.1.3. Performance

Java 3D API is the hierarchy of Java classes which serve as the interface to a
sophisticated three-dimensional graphics rendering and sound rendering system. All the
geometric objects reside in a tree (scene graph) tracing from virtual universe, which is

then rendered. This greatly enhances the performance of 3D graphics rendering.
4.2. Features of Java 3D

4.2.1. High-level scene-graph model:

This allows developers to focus on the objects and the scene composition so as to free
the programmer from spending time and effort designing specific geometric shapes and
writing rendering code for the scene display
4.2.2.Run-time loaders:

This allows Java3D to accommodate a wide variety of file formats. The Java3D API
enables a much broader range of developers to create sophisticated 3D applications.
4.2.3. Geometry compression

This allows very large 3D models to be rapidly downloaded over the network for
remote viewing and manipulation, reducing the impact of potential bottlenecks in
network bandwidth.

4.2.4. Takes advantage of existing hardware accelerators

Java3D does this via its use of low-level APIs such as OpenGL and Direct3D. This

allows Java3D implementations to tune and scale the application’s scene graph to the

underlying hardware for maximum performance.

16

4.2.5. Flexible Viewing Model

An application or applet written using the Java 3D API view model can render images
to a broad range of display devices including flat screen displays, stereo displays,
portals/caves, and head-mounted displays, all without modification to the code.
4.2.6.Level of Detail(LOD)

The Java 3D APl includes support for multiple levels of detail, enabling the end-user
to view the nearest or most important objects at increased resolutions, thereby improving
both application performance and the user experience.
4.2.7.Support for continuous action devices:

The Java 3D API can accept input from continuous action devices, such as trackers,

increasing the interactive capabilities of Java 3D applications

4.3 Scene Graph Structure (shown in Figure 4.1)

4.3.1. VirtualUniverse Object

A VirtualUniverse object consists of a name and a list of Locale objects that contain a
collection of scene graph nodes that exist in the named universe. Typically, an
application will need only one VirtualUniverse, even for very large virtual databases.
4.3.2. Locale Object

The Locale Object acts as a container for a collection of subgraphs of the scene graph
that are rooted by a BranchGroup node. A Locale also defines a location within the
virtual universe using high resolution coordinates(HiResCoord) to specify its position.
This HiResCoord serves as the origin for all scene graph objects contained within the

Locale.

17

4.3.3. Node Object

In Jav3D Node Objects includes Group Node Objects and Leaf Node Objects. There
are four kinds of Group Node Objects which are BranchGroup objects, TransformGroup
objects, OrderedGroup objects and SwitchGroup objects. The BranchGroup object is the
only object that connects to the Locale object as its parent. BranchGroup objects are the
root of a subgraph, or branch graph. There are two different categories of scene
subgraphs: the view branch graph and the content branch. The content branch graph
specifies the contents of the virtual universe. The view graph specifies the viewing
parameters such as the viewing location and direction. TransformGroup Objects are the
Group node that contains a transform. The TransformGroup node specifies a single
spatial transformation, via a Transform3D object, that can position, orient, and scale all
of its children. OrderedGroup Objects is the OrderedGroup node which is a Group that
ensures its children render in increasing index order. SwitchGroup Object is the object for
monitoring switches and contains a list of errors, as well as a list of all switches.
LeafNode Objects in JAVA3D are the objects which can not have any child objects. It
consists of Sound object, Light object, Shape Object and Fog Object.

4.3.4. Behavior Objects

Behavior objects are the base for Interaction and Animation in Java 3D. The Behavior

objects provide methods to process keyboard and mouse inputs, react to movements as

well as to enable and process pick events.

18

VirualUniverse
Locake

@ BranchGroup Nodes

Shape3D node § @ TransturmGroup Node

View Platform
Node Components

Physical Body Physical Environment

View 1:2’ Canvas3D [P Screen3D

FIGURE4.1: JAVA 3D APPLICATION SCENE GRAPH

4.4. Convenient facilities provided by Java 3D

Java 3D provides high level constructs for creating and manipulating 3D geometric
objects. Java 3D API is a hierarchy of Java classes, which serve as the interface to a
sophisticated three-dimensional graphics engine.
4.4.1. Simple KeyNavigator Behavior

In the Metaball API package implementation, we need to navigate in 3D space to
change to any random viewpoint to see the different parts of the whole metaball
visualization. All the KeyNavigatorBehavior movements have been already defined in
JAVA 3D inherently. Even in OpenGL, we need to define these using glut function calls.
Without Java 3D, we need to program the KeyNavigator function using windows

keyboard event handlers and change the viewpoint, which will cost extra time because

19

this function is only used to test and check the integrity and correct rendering of the
metaball. With KeyNavigator Behavior, we only need to use several lines to achieve
these tasks in the Metaball API Package implementation:

/* add KeyNavigatorBehavior */

KeyNavigatorBehavior keyNavBeh = new KeyNavigatorBehavior(viewTrans

form);

keyNavBeh.setSchedulingBounds(new BoundingSphere(new Point3d(),1000.0)

);

keyNavBeh.setEnable(true);

objectRoot.addChild(keyNavBeh);
4.4.2. Interpolators and Alpha Object

Animations in Java3D are implemented using Behavior objects. The Java3D API,
Interpolator object together with Alpha object manipulates some parameter of a scene
graph object to create a time-based animation. In the Metaball API package
implementation, some simple animations are required. In Java3D, we can use Interpolator
and Alpha object to easily finish this task. In the implementaion, we use
RotationInterpolator and Alpha classes to let the metaball rotate along the x, y z axis.
Further details are presented in Chapter 5.
4.4.3. Easy expanding and across platform
Java3D is embedded in Java language and is object oriented. By taking advantage of

Java, the Java 3D program is composed of classes and objects that create instances of
Java 3D objects and places them into scene graph data structure which is an arrangement

of 3D objects in a tree structure that completely specifies the content of a virtual universe,

and how it is to be rendered. So every class in this implementation is easy to be inherited
and further specialized by other programmers. Furthermore, this Metaball API package
can not only be used in Windows 2000 OS but also in Unix and other operating systems

without changing or adapting the source code.

Chapter S Design and Implementation of Metaball Package

The Metaball-API is similar to Polka-3D which is an animation methodology and
toolkit/class library designed and implemented using an object-oriented methodology. It
can be used to support 3D animation development by programmers who are engaged in
large object oriented source code visualization. Metaball-API is a 3D computer graphics
application with a programmer interface based on the metaball visualization approach to
represent and visualize software entities and the relationship among these entities. It is
implemented in Java on WINDOWS 2000 using the Java 3D graphics library. The
primary software visualization task is encapsulated in a class known as MarchingCube
class. The MarchingCube class mainly defines the marchingcube algorithm to recursively
compute the metaball surface. Similar to Polka-3D which can create a sphere
AnimObject and move it, metaball API can be used to create a metaball object and set it
to any 3D space location. Further more, metaball API can also set different color and
shading for different meatballs.

The Metaball package has been designed using Object-Oriented methodology. Object-
Oriented Design (OOD) centers on finding an appropriate set of classes and defining their
contents and behavior. It involves determining the proper set of classes and then filling
in the details of their implementation. Object-oriented design is fundamentally a three-
step process: identifying the classes, characterizing them, and then defining the
associated actions. It is composed of a number of different classes that can be inherited

and extended.

~
o

5.1. Understanding the requirements

The first step to create an object-oriented design is to understand the problem. This
system is about a package to be used to create meatballs. Hence after a detailed study the
main requirements are concluded as the following:

l. APIfunctions and parameters in each API functions

1o

Easy to expand and inherit

3. Can be used in different platforms

Some problems are complex and they will probably be divided to more sub problems:
such as “parameters in each different API functions” can be grouped by “how to set
default values ”, “what type of parameters”, “how to use constructor”, etc.
For these problems, testing scenarios were created so that they will tell us if the API is
working:

L. This package provides an interface for the people who will do the software
visualization using meatballs

This metaball API can be used to create different size, color and texture

[AS]

mapping for the metaballs
3. Itcan be used to create coupling between two meatballs
4. The metaball API is created as an extension of Java3D API class that can be

called.

5.2. Metaball package classes
1. Pt3d Class:
the point (x,y,z) coordinate in 3D space

2. TRIANGLE Class:

23

contains three point(x,y,z) that forms a triangle
3. GRIDCELL Class:
contains eight points(x,y,z) that forms a voxel used in marchingcube algorithm
4. MarchingCube Class:
the class implementing the marchingcube algorithm and used to cut the voxel grid to
draw the metaball isosurface
5. Metaball Class:
The main test class which is used to call the API functions
5.3. Class architectures and implementations

As part of this report, the implementation was limited to the development of an API
package, therefore no IDE and user interface was required. The relationships between
these classes are not very complicated and each class has its own attributes and
operations. We use Unified Modeling Language(UML) to describe our classes and their
relationships. UML is a standard notation for writing software blueprints and it may be
used to graphically depict, specify, construct and document the artifacts of a software-
intensive system.

5.3.1. Pt3d Class:

Pt3d

B
iy
g7
P t3d()
'S etP t3d()
;S etX()
halS etY ()
'Kllls etz ()
Mg e tX()
Elgety ()
Mlgetz()

In Pt3d class:
e attribute x is the x coordinate value of the 3D point
e attribute y is the y coordinate value of the 3D point
e auribute z is the z coordinate value of the 3D point
e Constructor:
1. Pt3d() { setPt3d(0,0, 0):; } is to set the default 3D coordinate to (0,0,0)

without parameter

2

Pt3d(float a, float b, float ¢) { setPt3d(a, b, ¢); } to set the value of a 3D

point with three float parameter by the programmer

o SetPt3d(float xvalue, float yvalue, float zvalue) is to set the 3D coordinates of
any 3D points

e getX() is to get the x coordinate value of 3D point

e getY() is to get the y coordinate value of 3D point

e getZ() is to get the z coordinate value of 3D points

e SetX()is to set the x coordinate value of the 3D point

e SetY() is to set the y coordinate value of the 3D point

e SetZ() is to set the z coordinate value of the 3D point

5.3.2. TRIANGLE Class:

_ TRIANGLE
EBPt3d pl]

EITRIANGLE()

lsetPt3dArray()
Wl cetPt3dArray()

In TRIANGLE class:

p is the Pt3d array used to represent coordinates of triangles
Constructor:

TRIANGLE() is the constructor to set the 3D point coordinate to (0,0,0)
setPt3dArray() is to initialize the array Pt3d value

getPt3dArray() is to get the array Pt3d value

5.3.3. GRIDCELL Class:

GRIDCELL

P t3d(] p
§float val

MMGRIDCELL()

MlsetPt3dArray()
MlsetValArray()
BEcetPt3dArray()
BElgetValArray()

In GRIDCELL class:

p is the Pt3d array used to represent coordinates of triangles

val is the attribute value after interpolation used to compare with isovalue

Constructor:

GRIDCELLY() is the constructor to set the 3D point coordinate to (0,0,0) and the
val value associated with each value

setPt3dArray() is to initialize the array Pt3d value

setValArray() is to initialize the array Val value

getPt3dArray() is to get the array Pt3d value

getValArray() is to get the array Val value

5.3.4. MarchingCube Class:

— 1

MarchingCube

JBPt3d[] MetaCenter :
IBint NbMeta ‘
Poat(] seuil !
BMaterial[] material
[8String[] text
@8int[] NbTriangles J
Bint NbGenTri |
Bint NbMaxTri

'BBTRIANGLE(] triangles

[Boat IsoLevel

[#;int NbrRecursion

B Connection connection

IlMarchingCube()
CreateMetaBalls()
BliCreateBox()
BlishutDown()
BlconnectDatabase()
BlgetTabie()

P otentiel()

IV ertexinterp()

P olygonise()
liCaicuiMetaBallsCenter()
IliCalculMetaBallsRecursif()
BlCalculMetaBalis()

In MarchingCube, there are nine main methods, one constructor and two methods for
database access.

e MetaCenter is the meatball center coordinates

e NbMeta is the number of meatballs

® Seuil is the distance between the metaball center and the influence point

® material is the meatball material properties which are R, G, B values

® textis the text used to texture mapping to the meatball

® NbTriangles is the number of the triangles generated totally

NbGenTri corresponds to the number of the triangles generated by the
marchingcube algorithm

NbMaxTri is the maximum triangle numbers which can be generated by the
marchingcube algorithm

Triangles are the coordinate of each triangle generated

[soLevel is the isovalue of the meatball

NbrRecursion is the number of recursion used by the marchingcube algorithm, the
larger the number, the more precise rendering the meatball. But the rendering
speed will slow down when the number of recursion is increased

Connection is used to connect to the database

Constructor:

Constructor MarchingCube is used to initialize the default values of the meatballs
l. Initialize contents by creating an array of MetaballCenter with size 300 used

to represent the center of 3D metaball coordinate

[£S)

[nitialize contents by creating an array of text with size 300 used for texture

mapping to the surface of the metaball

3. [Initialize contents by creating an array of Seuil value with size 300 used to
represent the R2 value of metaball

4. Initialize content by creating an array of material with size 300, which
contains the material information(eg. Ambient, Diffuse, Shininess) of each
metaball.

5. Initialize contents of creating an array of NbTri with size 300 which

represents the number of triangles generated by the marchingcube algorithm

6. Initialize the metaid value which is used to separate different metaballs

7. Initialize the NbMaxTri value with size 50000 which represents the maximum
number of triangles generated in the marching cube algorithm

8. Initialize the NbrRecursion value which represents the number of recursion
used in the Octree data structure in marchingcube algorithm

9. Initialize the Isovalue which is used in the iso-function(metabal! algebra
function) at the right hand side

10. Initialize 50000 TRIANGLE objects which contains the 3D coordinate of the
triangles generated by the marching cube algorithm

CreateMetaBalls() initializes the metaball location center of the meatball.

CreateBox() creates a transparent box object in Java3D around the metaball used

to texture mapping the name of the metaball

connectDatabase() is to connect to the Access database through JDBC-ODBC

bridge.

ShutDown() is used to close the database

getTable() fetches the the metaball information which is metaballID, metaball

location, R1, R2, Ambient(R,G,B), Diffuse(R,G,B) and Shineness as well as

metaball name from the Access database

Potentiel(Pt3d p) calculates the Iso-function(metaball algebra function: (Seuilfi]-

D*(Seuil[i]-1)/(Seuil{i])), here Seuil[i] is the R2 value of the metaball, R1 is 0. | is

the distance between the point in 3D space and the metaball centor. The function

is the approximate of the metaball algebra function.

L. if lis less than Seuil[i] fx += (Seuil[i]-1)*(Seuil[i]-1)/(Seuil[i]);

2. if lis larger than Seuil{i] then 0, which means this point has no effects with
the metball algebra function

e VertexInterp() linearly interpolates the position where an isosurface cuts an edge
between two vertices, each with their own scalar value

® Polygonise() is using a grid cell and an isolevel(isovalue), calculate the trianguiar
facets required to represent the isosurface through the cell. Return the number of
triangular facets, the array “triangles” will be loaded up with the vertices at most
5 triangular facets. 0 will be returned if grid cell is either totally above or totally
below the isovalue

¢ CalculMetaBallsCenter() is used to calculate the center position of the metaball

e CalculMetaBallsRecursif() is used to recursively cut the cubes with octree data
structure.

e CalculMetaBalls() initializes the cubic length and to call the

CalculMetaBallsRecursif function.

5.4. Algorithms used in Metaball API package implementation

The main algorithm used in Metaball API package implementation is the
marchingcube algorithm, which is used to render the isosurface of the metaball algebra
function.
5.4.1. Marchingcube class design with recursion

In marchingcube algorithm, we use octree to recursively cut the voxel grid into 8

parts. The more level of recursion, the more precision the isosurface is. Figure 5.1 shows

30

the same isosurface generated at different increasing levels of recursions by reducing the

X ¢

Gnd size=10 Grid size=5 Grid size=2 Grid size=1 Gnd size=0.5
70 Facets 220 Facets 1700 Facets 6800 Facets 27000 Facets

grid size.

FIGURE 5.1: METABALL [SO-SURFACES RENDERED AT DIFFERENT RECURSION LEVELS

Shown below the is source code of CalcuiMetaBallRecursif function:
public void CalculMetaBallsRecursif(float xmin,float xmax,float ymin,float
ymax,float zmin,float zmax,float cz,float cx,float cy,int n,int id)
{

GRIDCELL gc = new GRIDCELL();

int j,flagl flag2;

float[] m = new float[3];

gc.setPt3dArray(0, xmin, ymax, zmax);

gc.setPt3dArmay(|, xmax, ymax, zmax);

gc.setPt3dArray(2, xmax, ymax, zmin);

gc.setPt3dArray(3, xmin, ymax, zmin);

gc.setPt3dArray(4, xmin, ymin, zmax);

ge.setPt3dArray(5, xmax, ymin, zmax);

gc.setPt3dArray(6, xmax, ymin, zmin);

31

gc.setPt3dArray(7, xmin, ymin, zmin);
if(n!=0) {
flag2=flagl=0;
for (j=0;)<8;j++) {
ge.setValArray(j, Potentiel(gc.getPt3dArray(j)));
if(gc.getValArray(j)>IsoLevel) flagl|=1<<j;
if(gc.getValArray(j)<IsoLevel) flag2|=1<<;j;
}
/* if the grid cell is either totally above or totally below the isovalue then exit the
recurstion
if((flagl==255)||(flag2==255)) return;
}
if(n<NbrRecursion) {
m[0]=xmin+(xmax-xmin)/2;
m[1]=ymin+(ymax-ymin)/2;
m[2]=zmin+(zmax-zmin)/2;
/* recursively to cut the voxel grid according to the isovalue */
CalculMetaBallsRecursif(xmin,m[0],ymin,m[1],zmin,m[2],cz,cx,cy,n+1,id);
CalculMetaBallsRecursif(m[0],xmax,ymin,m[1],zmin,m[2],cz,cx,cy,n+1,id);
CalculMetaBallsRecursif(m[0],xmax,m[1],ymax,zmin,m[2],cz,cx.cy,n+1,id);
CalculMetaBallsRecursif(xmin,m[0],m[1],ymax,zmin,m[2],cz,cx,cy,n+1,id);
CalculMetaBallsRecursif(xmin,m[0],ymin,m[1],m[2],zmax cz,cx,cy.n+1,id);

CalculMetaBallsRecursif(m[0],xmax,ymin,m[1],m[2],zmax,cz.cx,cy,n+1,id);

32

CalculMetaBallsRecursif(m[0],xmax,m[1],ymax,m[2],zmax,cz,cx,cy,n+1,id);
CalculMetaBallsRecursif(xmin,m[0],m[!],ymax,m[2],zmax,cz,cx,cy,n+1,id);
}
else {
if (NbMetaTri < NbMaxTri-5)

NbGenTri += Polygonise(gc,IsoLevel NbGenTri,id);

}

5.4.2. Normal vector calculation of metaball surface used in metaball shading
The meatball visualization is created by using the marchingcube algorithm, normal

vector needs to be calculated. This is different compared to OpenGL sphere function
whose normal vector is already calculated inherently. Here we use ngfi] = new
NormalGenerator() function call to automatically generate the vertex normal vector in
Java3D. The NormalGenerator included with the Java 3D utilities generates normals
when specifying visual objects using GeometryInfo objects. To generate normals, we use
the visual object geometry into a Genetrylnfo object and call
NormalGenerator.generateNormals(). Below is the source code of normal vector
calculation.

ng[i].generateNormals(gi[il);

gi[i] = new GeometryInfo(Geometrylnfo. TRIANGLE_ARRAY);

gi[i].setCoordinates(metaballdatas[i].metaballdata);

gi[i].recomputelndices();

ng[i] = new NormalGenerator();

33

ng[i].generateNormals(gi[i]);

st(i] = new Stripifier();

st[i].stripify(gi[i]);
5.4.3. Texture mapping of metaball surface

In this project, it was required to create texture map texts onto the front box surface of

the meatballs. The text2D function that creates the texture map directly to the isosurface
of the metaball will generate reflections of the text. Here we use text2D class in Java3D.
Text2D objects are rectangular polygons with the text applied as a texture. A Text2D
object is a representation of a string as a texture mapped rectangle. The texture for the
rectangle shows the string as rendered in the specified color with a transparent
background. Then we use function call below to automatically generate the texture
coordinate.
tcg[i] = new TexCoordGeneration(TexCoordGeneration.OBJECT_LINEAR,TexCoord
Generation.TEXTURE_COORDINATE_2);

Here we use TextCoordGeneration.OBJECT_LINEAR attribute and its texture
coordinates are generated as a linear function in object coordinates. Below is the source
code of the texture mapping. Figure 5.2 shows the effects of texture mapping on the front
surface of box surrounding the metaball.

/* create a Java 3D box object surrounding the metaball */
public Box[] CreateBox() {
Box[] box;
box = new Box[NbMeta];

Appearance ap;

34

ap = new Appearance();

for (int i=0;i<NbMeta;i++) {
float xdim = Seuil[i];

float ydim = Seuil[i];

float zdim = Seuil[i];

box[i] =new Box(xdim, ydim, zdim, ap);

return box;
}
/* create texture image and texture coordinates */
text2d[i] = new Text2D(result, new Color3f(0.9f, 1.0f, 1.0f), "Courier", 12,
Font.BOLD);
text2d[i].setString(result);
text2d[i].setCapability(Shape3D.ALLOW_GEOMETRY_READ);
text2d[i].setCapability(Shape3D.ALLOW_GEOMETRY_WRITE);
text2d[i].setString(result);
appearancel[i] = text2d[i].getAppearance();
tcg[i}J=newTexCoordGeneration(TexCoordGeneration.OBJECT_LINEAR,
TexCoordGeneration. TEXTURE_COORDINATE_2);
tcgfi].setEnable(true);
appearancefi].setTexCoordGeneration(tcg[i]);
appearanceli].getTexture().setBoundaryModeS

(Texture. CLAMP_TO_BOUNDARY);

35

appearance(i].getTexture().setBoundaryModeT

(Texture. CLAMP_TO_BOUNDARY);

FIGURE 5.2: METABALL RENDERING USING FLOAT (RIGHT) OR DOUBLE(LEFT) FOR
GEOMETRY SPECIFICATION

5.4.4. Animation of Metaball

During debugging large objected oriented software, we need to apply 3D graphic
animations. In this project we used Java3D Alpha value to code the animation of
metaballs. An alpha object in Java3D represents a value called the alpha value which is
between 0.0 and 1.0, inclusive. The alpha value changes over time as specified by the
parameters of the alpha object. Alpha is the class in Java3D for creating time varying
functions. Most of the time, Alpha is used with RotationInterpolator together to create
Java3D animation, such as

RotationInterpolator(Alpha alpha, TransformGroup target).

In this function, alpha is the time varying function to reference and target is the
TransformGroup object to modify.
The source code part of animation is shown below(also included is the main function of
Java3D):

public static void main(String[] args) {

36

GraphicsConfigTemplate3D tmpl = new GraphicsConfigTemplate3D();

GraphicsEnvironment env =

GraphicsEnvironment.getLocalGraphicsEnvironment();

GraphicsDevice device = env.getDefaultScreenDevice();

GraphicsConfiguration config = device.getBestConfiguration(tmpl):

Canvas3D canvas = new Canvas3D(config);

// Build the view

PhysicalBody body = new PhysicalBody();

PhysicalEnvironment environment = new PhysicalEnvironment();

View view = new View();

view.addCanvas3D(canvas);

view.setPhysicalBody(body);

view.setPhysicalEnvironment(environment);

/[create the universe

VirtualUniverse universe = new VirtualUniverse();

Locale locale = new Locale(universe);

/l Create the view branch

BranchGroup viewRoot = new BranchGroup();

TransformGroup viewTransform = new TransformGroup();

viewTransform.setCapability(TransformGroup. ALLOW_TRANSFORM_READ
);

viewTransform.setCapability(

TransformGroup. ALLOW_TRANSFORM_WRITE);

37

Transform3D transform = new Transform3D();
transform.set(new Vector3d(0,0, 15));
viewTransform.setTransform(transform);

ViewPlatform vp = new ViewPlatform();
vp.setCapability(ViewPlatform. ALLOW_POLICY_READ);
vp.setCapability(ViewPlatform. ALLOW_POLICY_WRITE);
vp.setViewAttachPolicy(View.NOMINAL_HEAD);
view.attachViewPlatform(vp);

viewTransform.addChild(vp);

viewRoot.addChild(viewTransform);

viewRoot.compile();

locale.addBranchGraph(viewRoot);

/I Create the object branch

BranchGroup objectRoot = new BranchGroup();
TransformGroup objectTransform = new TransformGroup();
transform.set(new Vector3d(0,0,0));
objectTransform.setTransform(transform);
objectTransform.setCapability(

TransformGroup. ALLOW_TRANSFORM_READ);
objectTransform.setCapability(

TransformGroup. ALLOW_TRANSFORM_WRITE);
objectRoot.addChild(objectTransform);

createMetaball();

38

for (int i=0:i<NbMeta;i++)
objectTransform.addChild(metaball[i]);
Alpha rotationAlpha = new Alpha(-1, 50000);
RotationInterpolator rotator =
new RotationInterpolator(rotationAlpha, objectTransform);
/* a bounding sphere specifies a region a behavior is active
create a sphere centered at the origin with radius of 1 */
BoundingSphere bounds = new BoundingSphere();
rotator.setSchedulingBounds(bounds);
objectTransform.addChild(rotator);
/I Create the light
AmbientLight ambLight = new AmbientLight(new Color3f(1.0f,1.0f,1.0f));
ambLight.setInfluencingBounds(new BoundingSphere(new Point3d(0.0, 0.0,
0.0),1000));
objectRoot.addChild(ambLight);
DirectionalLight dirLight = new DirectionalLight(new Color3f(1.0f, 1.0f, 1.0f
).new Vector3f(1.0f, 1.0f, 1.0f));
dirLight.setInfluencingBounds(new BoundingSphere(new
Point3d(0.0,0.0,0.0),1000.0)):
objectRoot.addChild(dirLight);
objectRoot.compile();
locale.addBranchGraph(objectRoot);

// Create the Ul

39

Jjavax.swing.JFrame frame = new javax.swing.JFrame("Metaball Universe");
frame.getContentPane().setLayout(new java.awt.BorderLayout());
frame.getContentPane().add(canvas, "Center");
frame.setSize(new java.awt.Dimension(500, 500));
frame.addWindowListener(new java.awt.event. WindowAdapter() {
public void windowClosing(java.awt.event. WindowEvent e) {
System.exit(0);

}

b

frame.setVisible(true);

}
5.4.5. JDBC-ODBC bridge to connect to Access database
We store all the metaball information such as radius, material R,G,B information,
shineness value, as well as R1,R2 value of the metaball in the Microsoft Access database.
In this project we use JDBC-ODBC to access database. Below is the source code for this
part.
public void connectDatabase() {
String url = "jdbc:odbc:metaball”;
String username = "anonymous";
String password = "guest";
try{

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

40

connection = DriverManager.getConnection(url,username,password);
}
catch (ClassNotFoundException cnfex){
System.err.printin("Failed to load JDBC/ODBC driver.");
cnfex.printStackTrace();
System.exit(1);
}
catch (SQLException sqlex) {
System.err.println("Unable to connect");
sqlex.printStackTrace();
}
getTable();
}
5.4.6. Metaball algebra function used to represent coupling
There are many versions of metaball algebra function used currently. In this project
we use a potential energy function as below:
fx = (Seuil[i]-1)*(Seuil[i]-1)/(Seuil[i]);
Seuil[i] is the distance between the metaball center and the influence point. Figure 5.3 is

the effect of the metaball coupling with different colors.

FIGURE 5.3:MEATBALL COUPLING WITHOUT ANY COLOUR INTERPOLATION

41

5.5. Public Methods

This application package includes public methods to draw different radius, shading,
texture of meatballs. All the API methods are all included in the Metaball class.
Public Methods:
Metaball()
Default constructor. This method will create a white shading metaball with radius 1.
Metaball(float radius,int r, int g, int b)
Constructor used to create a metaball with radius and color
Metaball(float radius,int r, int g, int b,float x float y,float z)
Constructor used to create a metaball with radius, color and location.
Setradius(float radius)
This method sets the radius of the metaball.
SetColor(int r, int g, int b)
This method sets the RGB color of the metaball, attribute r.g,b is the percentage of the
red, green and blue
SetMaterial(int Ambr, int Ambg, int Ambb,int Diffr, int Diffg, int Diffb ,int shininess)
This method sets the metaball material qualities such Ambient light , Diffuse light as
well as shiness, Ambient light is the light that’s been scattered so much by the
environment that its direction is impossible to determine because it seems to come from
al directions. The diffuse light is the light that comes from one direction. The attribute
shininess is the material's shininess, in the range [1.0, 128.0] with 1.0 being not shiny and

128.0 being very shiny.

Setlocation(float x ,float , float z)
This method sets the center of the metaball
SetTras(float x, float y, float z)

Sets the translation parameter of the metaball

43

Chapter 6 Conclusion

6.1. Summary

The Metaball API package was designed and implemented as part of this project
providing a set of function calls that can be used to draw the metaball without the user
having to know the details of metaball implementation and technology. Users call these
functions in the same way as calling any Java3D API classes. The Metaball API package
can be seen as the extension of the Java3D API package.

Fundamentally this package is based on the MarchingCube algorithm and Octree
recursion which is used to approximately represent the isosurface of metaball algebra
function

This package is written in Java and uses the Java 3D package extensively. The Java 2
platform provides Java Virtual Machine(JVM) that enables Java programs to run on any
OS. Java Application Programming Interface(API) is a large collection of ready-made

software components that provides many useful capabilities, such as GUI widgets.

6.2. Future Work

The entire system can be used to model and visualize metaball configuration. There is
considerable scope for interesting work what can be performed. We only list a few of the
important work items to be addressed as soon as possible for making the package even

more effective.

. When the number of metaballs is increased, the rendering time is slow. It is

because all the metaballs are within one cube. We can optimize the algorithm by

o

incorporating a mechanism to terminate a recursion when there are no more
metaball surface parts in a cubic sub part of the Octtree structure. .

Texture mapping of the metaball is not very elegant. Right now we texture map
the text to a transparent cube outside the metaball and not directly to the surface
of metaball. This is due to a problem in the Java 3D API, because of which, there
is a reflection of the text if mapped on the surface of the sphere. It can be
improved in the future.

When the metaballs are coupled together, and the metabal colors are not the same,
then color is not interpolated smoothly across the connection. The effect of color
blending must be incorporated when displaying two meatballs that are coupled
together.

The metaball coupling process is static. We can add the animation of Metaball
coupling process.

The actual application to visualization of large software has to be studied and

analyzed in depth.

45

References

(1]

[2]

(31

(4]

(3]

(€]
(7]

(8]

(9]

(10]

Blaine A. Price, Ronald M. Baecker and Ian S.Small, *“ A principled Taxonomy
of Software Visualization”, Joumnal of Visual Languages and Computing 4,
p211-266.
Bloomenthal, Jules and Bajaj, Chanderjit “Introduction to implicit surface”, San
Francisco, CA.: Morgan Kaufmann publisher, Inc., 1997
Claire Knight and Malcolm Munro “Visualizing Java Uncertainty”, Visualization
Research Group, Research Institute in Software Evolution. Department of
Computer Science, University of Durham, Durham, DHI 2LE, UK
Deitel Paul J., “Java How to Program”,Third Edition, Prentice Hall, 1999
Georgia Institute of Technology, “ Software Visualization” website:
http://www.cc.gatech.edu/gvu/softviz/SoftViz.html
[an Sommerville, “Software Engineering”, Fifth Edition, Addison Wesley,1995.
James Sharman, “The Marching Cubes Algorithm”, website: http://kom.auc.dk/
~zeek/kowd/mcubes/ind.html
James Sharman, “The Marching Cubes Algorithm”, website:
hup://www.exaflop.org/docs/marchcubes/ind.html
Jeurgen Rilling and S. P. Mudur, Department of Computer Science, Concordia
University, Canada “On the Use of Metaballs to Visually Map Source Code
Structures and Analysis Results onto 3D Space”, in Proceedings of [EEE
WCRE 2002
John Hunt and Alex McManus, “Key Java-Advanced Tips and Techniques”,

Springer, 1998

46

[11]

[12]

[13]

(14]

[15]

[16]

[17]

(18]

[19]

John T. Stasko, “Three-Dimensional Computation Visualization”, Georgia
Institute of Technology Atlanta, GA 30332-0280

Jonathan I. Maletic, Jason Leigh and Andrian Marcus, “Visualizing Software in
an Immersive Virtual Reality Environment” , in Proceedings of ICSE'Ol
Workshop on Software Visualization, Toronto, Ontario, Canada, May 12-13
2001, p49-54.

Kuroda Dycoon, *“Metaball ™ website: http://www.ceres.dti.ne.jp/~dycoon/
program/meta/emeta.html

Matthew Ward, “ An overview of Metaballs/Blobby Objects *, website:
http://www.cs.wpi.edu/~matt/courses/csS63/talks/metaballs.htmi, WPI CS
Department

Neville Churcher, Lachlan Keown, Warwick Irwin *“Virtual Worlds for Software
Visualization”, Software Visualization Group, Department of Computer
Science, Unversity of Canterbury, Private Bag 4800, Christchurch, New
Zealand

Paul Bourke, “Implicit surfaces”, website: http://astronomy.swin.edu.au/
~pbourke/modellig/implicitsurf/

Paul Bourke, *“Polygonising a scalar field”, http://astronomy.swin.edu.au/
~pbourke/modeling/polygonise/, May 1997

Steven P. Reiss, “A Practical Introduction to Software Design with C++", John
Wiley & Sons, Inc., 1998

Sun Corporation, “Getting Started with the Java 3D API", website:

http://java.sun.com/products/java-media/3D/collateral/

47

[20] Sun Corporation, “JAVA™ Foundation Classes (JFC)”, website:

http://java.sun.com/products/jfc

[21] Tom Nuydens, “ Delphi3D ", website: http://www.delphi3d.net/articles/

printarticle.php?article=metaballs.htm

[22] William E. Lorensen and Harvey E. Cline, “Marching Cubes: A High Resolution
3D Surface Construction Algorithm”, Computer Graphics(Proceeding of SIGG
RAPH ’87), Vol. 21, No. 4, p163-169

[23] Wim De Pauw, Richard Helm, Doug Kimelman, and John Vlissides

“AnArchitecture for Visualizing the Behavior of Object-Oriented Systems”,

IBM T.J.Watson Research Center, P.O. BOX 704, Yorktown Heights, NY
10598 USA

48

Appendix A: EdgeTable in Marching Cubes Algorithm

static int edgeTable[256]1=(

0x0 , 0x109, 0x203, 0Ox30a, 0x406, 0xS0f, 0x605, 0x70c,
0x80c, 0x905, Oxa0f, 0Oxb06, Oxcla, 0xd03, 0xe09, O0xfO00,
0x190, 0x99 , 0x393, 0x29%a, 0x596, 0x49f, 0x795, 0x69c,
0x99c, 0x895, O0xb9f, 0xa%96, 0xd9a, 0xc93, 0xf99, 0Oxe90,
0x230, 0x339, Ox33 , O0xl3a, 0x636, 0x73f, 0x435, 0xS3c,
Oxa3c, O0xb35, 0x83f, 0x936, 0Oxe3a, 0xf33, 0xc39, 0xd30,
0x3a0, 0x2a%, Oxla3, Oxaa , 0x7a6, 0Ox6af, 0x5a5, Oxdac,
Oxbac, 0Oxaa5, 0x9af, 0x8a6, Oxfaa, Oxeal, 0xda%9, 0Oxca0,
0x460, 0x569, 0x663, 0x76a, 0x66 , 0x1l6f, 0x265, 0x36c,
Oxcéc, 0xd65, Oxe6f, 0xf66, 0x86a, 0x963, 0xa69, 0xb60,
0x5f0, 0x4f9, 0x7£3, Ox6fa, 0x1f6, Oxff , 0x3f5, 0x2fc,
Oxdfc, Oxcf5, Oxfff, Oxef6, 0x9fa, 0x8f3, 0Oxbf9, 0xafo,
0x650, 0x759, 0x453, 0x55a, 0x256, 0x35f, 0x55 , Oxl5c,
Oxe5c, 0xf55, Oxc5f, 0xd56, OxaSa, 0xb53, 0x859, 0x950,
0x7c0, 0x6c9, 0x5c3, Oxdca, 0x3c6, 0x2cf, 0xlc5, Oxcc ,
Oxfcc, Oxec5, Oxdcf, Oxcc6, Oxbca, Oxac3, 0x9c9, 0x8cO,
0x8c0, 0x9c9, Oxac3, Oxbca, Oxccé6, Oxdcf, Oxec5, Oxfcc,
Oxcc , 0x1lcS, 0Ox2cf, 0x3c6, Oxdca, 0x5c3, 0x6c¢c9, 0x7cO,
0x950, 0x859, O0xb53, 0Oxab5a, 0xd56, 0xcS5f, 0xf55, 0OxeSc,
0x15c, 0x55 , 0x35f, 0x256, 0x55a, 0x453, 0x759, 0x650,
Oxaf0, Oxbf9, O0x8£3, 0x9fa, Oxef6, Oxfff, Oxcf5, Oxdfc,
O0x2fc, O0x3f5, Oxff , Oxlf6, Ox6fa, O0x7f3, 0x4f9, O0xS5f0,
0xb60, 0xa69, 0x963, O0x86a, 0xf66, Oxe6f, 0xd65, 0xcéc,
0x36c, 0x265, O0x16f, 0x66 , 0x76a, 0x663, 0x569, 0x460,
Oxcal, 0xda9, Oxea3, Oxfaa, 0x8a6, 0x9af, 0OxaaS, Oxbac,
Ox4ac, 0x5a5, Ox6af, 0x7a6, Oxaa , 0xla3, 0x2a?, 0x3ao0,
0xd30, Oxc39, 0xf33, Oxe3a, 0x936, 0x83f, 0xb35, Oxa3lc,
0x53c, 0x435, 0x73f, O0x636, 0xl3a, 0x33 , 0x339, 0x230,
0xe90, 0x£f99, O0xc93, O0xd9a, 0xa%6, O0xb9f, 0x895, 0x99c,
0x69c, 0x795, O0x49f, 0x596, 0x29a, 0x393, 0x99 , 0x190,
0x£f00, 0xe09, 0xd03, OxcOa, Oxb06, 0xalf, 0x905, 0x80c,
0x70c, 0x605, 0x50f, 0x406, Ox30a, 0x203, 0x109, 0x0 Y

49

Appendix B: Metaball API Package Class Hierarchy

Pt3d
<<US<V:
TRIANGLE .
<<uses>>
<<uses>>
MarchingCube . GRIDCELL
<<uses>> ”
o
™ ~N
~
<<uses>> N
N

Metaball

FIGURE B.l METABALL PACKAGE HIERARCHY

50

Appendix C: Snap Shots using Metaball API Package

FIGURE C.1: SNAPSHOT OF A METABALL CONFIGURATION OF SOFTWARE ENTITIES AND
THEIR INTERRRELATIONSHPS

51

FIGURE C.2: ANOTHER SNAPSHOT OF A METABALL CONFIGURATION IN THE PROCESS OF
SOFTWARE VISUALIZATION

gl U

&

FIGURE C.3: HEAVILY COUPLED METABALL CONFIGURATION IN SOFTWARE
VISUALIZATION

53

