INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

ProQuest Information and Leamning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI






MULTICASTING ALGORITHMS FOR MESH AND
TORUS NETWORKS

Xi1AoOLIN LIu

A THESIS
IN
THE DEPARTMENT
OF

COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
For THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

JANUARY 2003
© XiaoLIN Liu, 2003



i~l

National Li Bibliothéque national
of Canadabmy du Canadge n N
isitions and itons et
%‘mic Services xqrv?ees bibliggraphiques
395 Wellington Street 395, rue Wellington
Ottawa ON K1A ON4 Otawa ON K1A ON4
Canada Canada
Your fle Votre réldrence
Our Sie Notre réidrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it  Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-77914-9



Abstract

Multicasting Algorithms for Mesh and Torus Networks

Xiaolin Liu

Multicasting is an important interprocessor communication pattern existing in various
parallel application algorithms. Mesh-connected topology is one of the most thoroughly in-
vestigated network topologies for parallel processing. The torus network has been propased
for metropolitan area networks (MAN). It can be divided into several mesh problems.

Time and traffic are the main parameters considered in the multicasting communication
environment. [t is NP-complete in general to find an optimal multicasting algorithm which
minimizes both time and traffic. This thesis proposes two kind of multicasting algorithms
for torus/mesh networks, the VH algorithm with a time complexity of O(kD), and the DIST
algorithm with a time complexity of O(kDN). where k is the number of destination nodes.
D is the maximum distance, and N is the total number of nodes in the network. The VH
algorithm guarantee that every destination node can receive the message from the source
in a minimum multicasting time. The DIST algorithm generates less traffic compared to

the VH algorithm, but at the price of an increased multicasting time.
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Chapter 1

Introduction

1.1 Motivation

Over the past few decades, the tremendous increase made in the communication network
area has been translated into new applications, new devices, and better services, such as
WWW, online shopping, and video conferencing, etc. All these developments have further
driven the network growth at an exponential rate by any measurement, e.g., the number of
users or the amount of traffic. Even though network industries have been working hard on
developing new technologies and building new networks, network capacity has always been
insufficient. Efficient routing techniques and protocols have been playing an important role
in computer network development.

Many new applications require reliable multipoint communications via computer net-
works. Efficient routing of messages is a key to the performance of network communica-
tion. With this increasing amount of communication, traditional simple point-to-point data

transmission is no longer appropriate to satisfy the demand of data communication, and



multicasting has quickly turned out to be a very significant subject in network communica-
tion. It is belived that multicasting will grow substantially in the near future. Multicasting
will enable direct marketing, pay TV, pay per view movies, remote surgery, and many other
services, besides the well known applications, such as video conference, e-class and online

games.

1.2 Multicasting Communication Model

Depending on the number of destinations in the data communication model, there are three
types of communication patterns: unicasting, multicasting and broadcasting. Formally, let
N be any communication network consisting of n nodes. Unicasting is a simple point-to-
point (or one-to-one) communication model, which consists of sending a message from one
processor to another processor within the network. Broadcasting is a one-to-all communi-
cation model, which consists of sending a message from one processor in the network to all
the remaining processors. Multicasting is a one-to-many communication pattern and it is a
generalization of one-to-one (unicast) and one-to-all (broadcast) communication patterns.
It is a very important interconnection communication pattern that exists in various parallel
application algorithms. Multicasting requires sending a message from a source to k distinct
destinations in network N, for 1 < k < n. Obviously, this is the most general type of
communication, while unicasting (k = 1) and broadcasting (k = n — 1) are special cases of
multicasting.

Multicasting is a primitive and powerful communication model that allows for the
communications to be performed more efficiently than when restricting to the unicast-
ing or the broadcasting communication model. Multicasting communication is in high de-

mand in the development of many data parallel algorithms, and used in many applications



[1, 5, 8, 12, 13, 14, 15, 19, 20, 21].

The design and performance of multicasting operations depend on several characteristics
of the network architecture, including the network topology and switching technique. Re-
garding network topology, many systems have adopted hypercube topology, and the easily
constructed low-dimension meshes and tori are also better suited topologies. The hyper-
cube, mesh and torus are good candidates for general-purpose parallel architecture. They
are regarded as graphs and the terms vertices or nodes are used interchangeably in this

thesis for the processors which they represent.

1.3 Switching Techniques

The performance of a parallel computer is largely dependent on the performance of its
communication network. A great deal of research has been devoted to developing efficient
routing algorithms. The message transmission time greatly depends on the underlying
switching technology. Switching is the actual mechanism that removes data from an input
channel and places it on an output channel. Four types of switching techniques can be

applied to the multicast routing algorithm [16].

o store-and-forward: when a packet reaches an intermediate node, the entire packet
is stored in a packet buffer. The packet is then forwarded to a selected neighboring
node when the neighboring node has an available packet buffer.

The network latency is (L/B)D, where L is the packet length, B is the channel

bandwidth, and D is the path length.
e circuit switching:

— circuit establishment phase: a physical circuit is constructed between the source



and destination nodes.

— packet transmission phase: the packet is transmitted along the circuit to the

destination.

— circuit termination phase: the circuit is torn down as the tail of the packet is

transmitted.
The network latency is (L./B)D + L/B, where L. is the length of the control packet.

e virtual cut-through: a packet is stored at an intermediate node only if the next
required channel is busy; otherwise, it is forwarded immediately without buffering.

The network latency is (Lp/B)D + L/B, where L is the length of the header field.

e wormhole routing: a packet is divided into a number of flits for transmission. The
header flit governs the route. As the header advances along the specified route, the
remaining flits follow in a pipeline fashion without delay. As soon as a flit has been
received by a node, it is sent to the next node in its path without waiting for the
remaining flits to arrive. If the header flit encounters a busy chanrel, all of the flits
are blocked until the channel becomes available.

The network latency is (Ly/B)D + L/B, where Ly is the length of each flit.

In circuit switching, virtual cut-through, and wormhole routing, the message transmis-
sion time is almost independent of the number of hops between two nodes if the network is
contention free. Usually L. « L, L, € L, and Ly <« L. Hence, their network latency is
much smaller than that of the store-and-forward technique. Figure 1.1 compares the com-
munication latency of store-and-forward switching, circuit switching and wormhole routing
in a contention free network. In this case, the behavior of virtual cut-through is identical

to that of the wormhole routing, so virtual cut-through is not shown explicitly. The figure
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Figure 1.1: Comparison of Switching Techniques

shows the activities of each node over time when a packet is transmitted from a source node
S to the destination node [3 through intermediate nodes [, and [5.

Although message transmission time may be nearly distance-insensitive in a wormhole-
routed network, it is still desirable to reduce path lengths whenever possible, since messages
that travel on shorter paths use fewer channels. This reduces overall channel loads, which
decreases the frequency of channel contention.

Store-and-forward routing can be seen as a fundamental switching technique. In general,
store-and-forward routing is a simple technique that works well when the packets are small
in comparison with the channel widths. In this thesis, the store-and-forward mechanism

will be considered to develop the multicasting algorithms.



1.4 Multicasting in Hypercube

1.4.1 The Properties of Hypercube

Hypercube has become one of the most attractive multiprocessor structures. It contains
several parallel processors based on the binary n-cube network. A n-cube parallel processor
consists of V = 2" processors (nodes) addressed by n-bit binary numbers from 0 to 2™ — 1.
Each node has its own memory, and is interconnected with n neighbors.

Hypercube topology has been considered an ideal parallel architecture for its powerful
interconnection features. Research on multicast routing in hypercube has received great

attention [12, 13, 14, 20, 21]. Now let us formally define the hypercube.

Definition 1.1. A hypercube (n-cube) consists of N = 2™ nodes (processors) addressed by
n-bit binary numbers from 0 to 2™ — 1. Every node ¢ has n neighboring nodes, where the jth
neighbor’s address differs in ezactly the jth bit position from the node i, for0<j<n-—1,

and0<i< N-1.

One important property of the n-cube is that it can be constructed recursively from lower
dimensional cubes. More precisely, consider two identical (n — 1)-cubes whose vertices are
numbered likewise from 0 to 2"~! — 1. By joining each vertex of the first (n — 1)-cube to
the same vertex of the second one, one obtains an n-cube. In general, an n-cube can be
split into two (n — 1)-cubes so that the nodes of the two (n — 1)-cubes are in a one-to-one
correspondence. It is clear that there is no cycle of odd length in an n-cube. Concsider
a cycle Ay, Ay,..., A;, with A} = A;. As the path travels from node A; to node Aj;i,
1 <7 < t—1, one parity changes. Since A; = A;, there must be an even number of
changes along the path, e.g., the length of the cycle is necessarily even. Another property

of hypercube is that it is a connected graph with diameter n.



Moreover, there are a few simple rules which characterize an n-cube.
Proposition 1.1. A graph G = (V, E) is an n-cube if and only if

- V has 2™ vertices;

- every vertez has degree n;

- G is connected;

- any adjacent nodes A and B are such that the node adjacent to A and those adjacent to

B are linked in a one-to-one fashion.

Let the distance of two processors be the length (number of links) of a shortest path
between them. Obviously, the distance between two processors in a hypercube is equal
to the Hamming distance of their binary addresses. The Hamming distance between two
nodes is defined as the number of corresponding bits differing in their binary addresses. An
n-cube can be represented in n + 1 stages of nodes in incremental Hamming distances from
a given source node s, where stage 0 contains s and stage ¢ (1 < ¢ < n) contains all nodes
whose Hamming distance to s is ¢. In general, assume the source s is at node 0, which
is at stage 0. As a result, the nodes at stage 1 have only one 1 in their respective binary
addresses, and similarly the nodes at stage 7 have exactly ¢ 1’s in their binary addresses.

Given a source s and k destinations dy,ds, ..., d;, multicasting requires sending a mes-
sage from s to d; for 1 < i < k. If we draw the n-cube in stages of incremental Hamming
distances from s to d;, and the route always follow the stage increment order, then the path

between s and d; must be the shortest path.

1.4.2 Heuristic Multicasting Algorithms in the Hypercube Network

It is desirable to develop a routing scheme that minimizes both time and traffic. It is

proven in [14] that the problem of finding such an algorithm in the hypercube network is

7



NP-complete, but several heuristic multicasting algorithms have been proposed [13, 20, 21}.
Lan, Esfahanian, and Ni [13] presented a heuristic algorithm, the Greedy multicast
algorithm. The purpose of LEN’s algorithm was to generate a low amount of total traffic
under the constraints that each destination node can receive the message with a minimum
number of hops. The Greedy multicast algorithm is of time complexity O(nk + n?), where
n is the dimension of the hypercube and k is the number of destinations in the multicast.

Sheu and Su [21] developed a heuristic multicast algorithm with time complexity O(n.N)
in n-dimensional hypercube, where N = 2. SS’s algorithm can be divided into two phases.
In phase 1 a message is transmitted from stage 0 to stage n — 1, in order to calculate
each node’s potential weight, which indicates whether or not the node is proper to pass
the source message to its children. In phase 2 the multicast paths are found by choosing
proper nodes, which have the maximum potential weights, going backwards from stage n to
1. This algorithm guarantees that each destination node can receive the message through
the shortest path, which will reduce communication traffic.

Shen, Evans, and You [20] proposed a fault-tolerant multicast algorithm with time
complexity O(nN) in the n-dimensional hypercube, where N = 2". SEY’s algorithm uses
the lightest node to balance and minimize the traffic, as well as to minimize the number
of intermediate (non-destination) nodes. This algorithm minimizes not only the maximum
number of hops but also the maximum number of active links connected to any node.

These heuristic multicast algorithms use different strategies and approaches. The aver-
age additional traffic, defined as the average amount of total traffic minus the number of
destination nodes &, can be used to evaluate the performance of these algorithms. The SS’s
and SEY’s algorithm generate similar results, but the LEN’s algorithm generates higher

average additional traffic than the others (See Figure 1.2).
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Figure 1.2: Average additional traffic in a 12-cube

1.5 Mesh-connected Networks

Mesh-connected topology is one of the most thoroughly investigated network topologies for
parallel processing. Mesh-connected topology is important due to its simple structure and
its good performance in practice. These types of topologies, also called k-ary n-cube based

networks, have an n-dimensional grid structure with £ nodes in each dimension, which

include:

- n-dimensional mesh,
- torus (a mesh with wrap-around links),

- hypercube.

These topologies have desirable properties of regularity, balanced behavior, and many
alternative paths. (k,n)-meshes (k-ary n-dimensional mesh) and (k,n)-torus (k-ary n-
dimensional torus) are common mesh-connected topologies.

Commonly used torus and mesh networks are:



- (2, n)-torus, also known as n-dimensional hypercubes (Figure 1.3a when n = 3),
- (k,2)-torus, also known as 2-dimensional torus (Figure 1.3b when k£ = 5),
- (k, 2)-mesh, also known as 2-dimensional mesh (Figure 1.3¢c when k = 5),

- (k, 3)-mesh, also known as 3-dimensional mesh (Figure 1.3d when k = 5).

a. 3~-D Hypercube b. 2-D torus
[l S L S
JT L L S
a4 //
V] //
/ //
d //
)/
¢.2-D Mesh d. 3-D Mesh

Figure 1.3: Mesh-connected networks

This thesis focuses on 2- and 3-dimensional meshes and torus networks and will give a
general idea in the n-dimensional network.

Mesh is another simple topology to implement besides the hypercube topology. Multi-
casting can be achieved by explicitly joining interested users with mesh architecture. The
mesh graph interconnection network has been recognized to be an attractive alternative to

the popular hypercube network. One of the most thoroughly investigated interconnection

10



schemes for parallel computation is the m x m mesh, in which m? processing units are
connected by a two-dimensional grid of communication links. Its immediate generalizations
are n-dimensional m X --- x m meshes. Despite their large diameters, meshes are of great
importance due to their simple structure and efficient layout. The m x n 2-dimensional
mesh, m x n x p 3-dimensional mesh, and Ky x K| x --- X K| n-dimensional meshes are
more general cases, and will be considered during this study.

Tori are the variant of meshes in which the nodes on the outside are connected with
wraparound links to the corresponding nodes at the other end of the mesh. Tori are node
symmetric. All nodes in a torus are identical and no region of the torus is particularly likely
to suffer from congestion. Furthermore, the diameters of tori are smaller by a factor of two
than those of meshes. Numerous parallel machines, such as the Intel Paragon, Cray T3D,
and Cray T3E, have been built with two- and three-dimensional mesh and torus topologies.

For a message delivery in multicasting communication environment, a multicasting al-
gorithm is optimal if it minimizes both time and traffic. It is known that finding an optimal
multicasting algorithm that minimizes both of time and traffic is NP-hard in general [14].

It is difficult to minimize both time and traffic, but which one of these two criteria should
be minimized first? It depends on the situation of the corresponding network. To illustrate,
consider multicasting in a 6 x 6 mesh in which the message is initially at the source node
5(0,0) and {(4, 1), (3, 3), (2, 5)} are the destination nodes. If the network traffic is more
concerned, the message transmission should follow the path: (0,0) = (3,0) = (1,1) =
(3,3) = (2,5) (See figure 1.4 path 1), in which the total number of active links is 10 and
the multicasting time is 9. On the other hand, if the transmission time is more important,
then the multicasting paths become: (0,0) = (0,1) = (4,1), (0,0) = (0,3) = (3,3), and

(0,0) = (0,5) = (2,5) (See figure 1.4 path 2), in which the total multicasting time is

11
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Figure 1.4: A multicasting communication in a 6 x 6 mesh network

reduced to 7, but the total number of active links becomes 14, which is 5 more than the
previous one.

These two parameters are not totally independent and achieving a lower bound for one
may prevent us from achieving the other. This issue will be discussed in more detail in

chapter 2.

1.6 Basic Concept of Gossiping

The gossiping problem is a restricted version of the multimessage multicasting problem.
Among other issues, this thesis also presents a result for the gossiping problem in the
multicasting communication environment.

Gossiping is a fundamental communication problem: initially each node in a network
knows some data, which must be routed so that in the end all nodes have the complete

data (this problem is also called all-to-all broadcast). Gossiping appears as a subroutine in

12



many important problems and is worth studying.

Because of its rich communication pattern, gossiping is a useful benchmark for evalu-
ating the communication capability of an interconnection structure. Gossiping as an em-
bedded operation is needed in many real computations, such as matrix multiplication,
LU-factorization, Householder transformation, direct N-body computation, global proces-
sor synchronization, and load balancing. Gossiping problems have been studied under many
different objective functions and communication models. Qur communication model allows
each processor to multicast one message to any subset of its adjacent processors, but no
processor may receive more than one message at a time. Our objective is to determine
when each of these messages is transmitted so that the communication can be carried out
in the minimum amount of time. In a communication network that contains n processors,
initially each processor holds a message, and requires the remaining n — 1 messages. Under
our communication model, every processor needs to receive n — 1 messages and no processor
may receive two or more messages simultaneously, which implies that n—1 is a lower bound
on the total communication time of gossiping.

If the network contains a Hamiltonian circuit, to perform the gossiping communication,
each processer sends to its clockwise neighbor the message it holds in the first step, and then
in the remaining iterations every processor transmits to its clockwise neighbor the message
it just received from its counter-clockwise neighbor. The total communication time is n—1,
which is the optimal solution. Unfortunately, to find a Hamiltonian circuit in a graph is
an NP-complete problem in general. However, it is not necessary for a network to have a
Hamiltonian circuit in order to solve the gossiping problem in n — 1 steps. The gossiping
problem can be finished in n — 1 time units for other networks as well. The Petersen graph

is one such example [7]. At the end of this thesis we will present a graph on n nodes (called
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H) with n— 1 gossiping time. Then we present a polynomial algorithm to recognize whether

a given network has a spanning subgraph H.

1.7 Thesis Organization

The organization of the rest of the thesis is as follows. Chapter 2 proposes the VH and
DIST multicasting algorithms in 2-dimensional mesh and torus networks, then expands the
algorithms to 3-dimensional mesh and torus networks, and finally explores a general idea
for multi-dimensional mesh and torus networks. The chapter also discusses the relationship
between the VH and DIST algorithms.

Chapter 3 implements the algorithms for 2- and 3-dimensional mesh and torus networks
for VH algorithm and DIST Algorithm. In addition, some comparative results are given.
The VH Algorithm uses less multicasting time, but the DIST Algorithm has much better
average traffic performance.

Chapter 4 analyzes the design issue and explains the complexities of these algorithms.

Chapter 5 designs an algorithm which recognizes a subgraph in an arbitrary graph,
and then proves such a subgraph can perform the gossiping communication in the minimal
possible time n — 1.

Chapter 6 concludes with a summary of this thesis and highlights some future extensions.
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Chapter 2

Multicasting Algorithms in Mesh

and Torus Networks

2.1 Preliminaries

The main problem in multicasting communication is that of determining which paths should
be used to deliver a message from the source to all its destinations. Since there are many
potential paths, different routes can be found, depending on the criteria employed.

In this section, some notation and definitions, and a general model for multicasting
communication are presented. The graph theory terminology and notation will be followed.
Terms not defined here can be found in Harary’s book [9]. Let G(V, E) be a graph with the
node set V(G) = V and edge set E(G) = E. If an edge e = (u,v) € E, then nodes u and v
are said to be adjacent. The term edge and link are used interchangeably.

A path is an alternating sequence of nodes and edges, beginning and ending with nodes,
in which all nodes are distinct. A simple path p from node ug to node u; is represented

by an ordered sequence of nodes (ug, uy,...,ux). The length of path p is measured by the
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number of edges contained in the path. For all algorithms discussed in this thesis, no link
will be traversed by the same message more than once. Therefore the value of total traffic
is equal to the number of links involved in the multicast. Thus the above path has length
k.

When considering communication issues at the system'’s level, the main problem is that
of determining which paths should be used to deliver a message from a node (called the
source node) to some destination nodes. This path selection process is commonly refered
to as routing. Time and traffic are the major routing design parameters considered when
adopting a multicasting communication scheme. Time is measured in the actual time steps
needed to send a message from the source to a destination. Traffic is quantified by the
number of messages traversed in the communication links that are used to deliver the
source message to its destinations. These two parameters are not totally independent of
each other. The V H algorithm delivers the message in the minimal time cost, whereas the
DIST algorithm can reduce the traffic for a price of increasing the multicasting time.

Mesh-connected network topologies are well known network architectures. This thesis
focuses on mesh and torus networks, as they have similarities [3]. Mesh and torus inter-
connection networks are able to support many scientific and image processing applications
efficiently. The following introduces some definitions and notations related to the torus and

mesh networks.

2.1.1 Mesh Network

Definition 2.1. Formally, let us define an n-dimensional mesh (Ko x K; x --- x Kp_1),
where K; 2 2 for 0 < i < n—1. The mesh network contains N = H?___"Ol K; nodes. Each

node in the mesh has a unique label of the form (zg,zy,...,Tn-1), where 0 < z; < K; — 1
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for all i, 0 < i < n—1. In dimension i, 0 < i < n — 1, the connectivily for node

X(zgy.--3sTiy.--yTn-1) 18
(1'07"'7zi+17"'7zn—1)7 ‘ifIi<Ki—1,
X —
(zgy---,zi — 1,...,zp—1), tfz;>0.
In the mesh network, the distance between node (zg,...,Ti,-..,Zn—1) and node
(Yo, - - s Yise--sYn—1) 1S Z?;ol |y;i—z:|. The mazimum degree of the node in the n-dimensional

mesh is 2n, and the diameter of the n-dimensional mesh is Z?_—._ol K;,—n.

Consider an m x n 2-dimensional mesh (2DM). Each node is identified by coordinate
(z,y), where 0 < 2 <m—1and 0 < y < n— 1. The total number of nodes in 2DM is

N = m x n. The connectivity for node (z,y) is:

4

(z+1l,y), fzr<m-—1,
(z—1,y), ifz >0,

(.’E, y) — 9

(z,y+1), fy<n-—1,

(z,y—1), ify>0.

\

In 2DM, every node has at least 2 neighbors and at most 4. Thus, the node of 2-D mesh
has degree at least 2 and at most 4, and the diameter of 2DM is m + n — 2 (see Figure 2.1
(a).

The 3-dimensional mesh (3DM) is another commonly used mesh structure. A 3-D mesh
network has the form of (m x n x p), which contains N = m x n x p nodes. The node of
3-D mesh has maximum degree 6, and the diameter of 3DM is m + n+p — 3. Each node is

identified by coordinate (z,y,2), where 0 <z <m-1,0<y<n—-1l,and0<z<p~-1L
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The connectivity for node (z,y, 2} is:

(z7y:z) — 4

,

2.1.2 Torus Network

The torus network is another commonly used mesh-connected network. It has some ad-
vantages over the mesh graph. In general, a torus network is a mesh with wrap-around
connection in every dimension. Torus networks, which can support a larger number of users
than common linear topology networks, have been proposed for metropolitan area network

(MAN) architectures. The torus network has approximately half the diameter of the mesh

\

(z +1,v,2),
(z - 1,y,2),
(z,y + 1,2),
(z.y—1,2),
(z,y,z + 1),

(.’B, Y.z — 1)~

fz<m-—1,

ifz >0,

fy<n-1,

ify>0,

ifz<p-—1,

if z>0.

network. It can play an important role in the next generation of parallel computers.
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Figure 2.1: 2-dimensional mesh and torus networks




Definition 2.2. The torus is identical to the mesh, except for the connectivity. Let us
define an n-dimensional torus (Ko x Ky X -+ x Kp_), where K; > 2 for0<i<n-1.
The torus network contains N = [[*=y K; nodes. Each node in the torus has a unigue label

of the form (zg,z1,....Zn-1), where 0 < z; < K;—1 for alli, 0 <i < n-—1. In dimension

1, 0 <i<n-—1, the connectivity for node X (zg,...,Tis...,In-1) 15:

(:Eo,. .y (:L'i + 1) mod K;, ... ,.'Bn_[),
X —

(zgy---,(zi—1)mod Kj, ....zq—1).

In a torus network, the distance between node (zg,...,ZTi,...,Zn—1) and node
(Yos -+ +Yir--- s Yn—1) 18 Z;:ol min(|ly; — zi|, Ki — |yi — zi]). The degree of a node in the
n-dimensional torus is 2n and its diameter is 3 1 I_%lj

A 2-D torus networks (2DT) has the form of (m x n), which has N = m x n nodes. Each
node is identified by coordinate (z,y), where 0 <z <m—1and 0 < y < n— 1. Every node
has exactly four neighbors, so each node of a 2-D torus has degree 4, and the diameter of

2DT is | 3] + | §]. The connectivity for node (z,y) is:

((z £ 1) modm, y),
(z,y) —

(z, (y £ 1) modn).
In an m x n x p 3-D torus network (3DT), each node is identified by coordinate (z, y, z),
where0 <z <m-1,0<y <n-1,and 0 £ z < p—1. Every node has exactly six neighbors
in 3-D torus networks, so the node of 3-D torus has a degree of 6, and the diameter of 3DT

is { 3] + [3] + |5]- The connectivity for node (z,y, z) is:
(
((z £1)modm,y, z),
(2,9,2) — § (z, (y £ 1) mod n, z),

(2,9, (2 £ 1) modp).

\
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In n-dimensional torus networks, the link connecting nodes (zg,...,zi-1,Ki — 1,
ZTitly---,Zn-1) and (zg,...,Zi—1,0,Zit+1,-..,Zn—1) are called wraparound links. All of the
links are bidirectional. A transfer is in the positive direction if a packet transfers from a
node (zg,...,ZTi—1,ZLi, Ti+1,-- -+ Tn-1) to a node (zg,...,Ti~1,zi+1mod K;, Tit1,-..,Tn-1),
and transfers in the opposite direction will be refered to as the negative direction.

The mesh and torus networks (K x K| X --- x K;_) have exactly the same number of
nodes N = H;:ol K;. However, the torus network has approximately half the diameter of

the mesh network.

2.1.3 Multicasting Communication Model

Before presenting the multicasting algorithms, let us formally define the multicasting com-
munication model used in mesh and torus networks. Let N be any mesh or torus com-
munication network (or graph). Initially the message holds in the originator and a set of
destination nodes need the message. The multicasting communication model satisfy the

following restrictions:

e During each time unit one processor may transmit the message to only one of its

neighboring nodes.
e During each time unit each processor may receive at most one message.

e During each time unit a message can be transmitted over different links simultane-

ously.

The communication process ends when the set of destination nodes has received the

desired message.
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2.2 2-Dimensional Mesh Network

2.2.1 VH Algorithm in 2-Dimensional Mesh Network

It is easy to see that the multicasting time is equal to or less than the total nmber of links
for any multicasting algorithm.

As discussed earlier, it is desirable to develop a multicasting communication algorithm
that minimizes both time and traffic, although this is known to be NP-hard [14]. The first
approach, the dimension-order algorithm (V H algorithm), will minimize the time first. In
the VH algorithm, a message is transmitted first in the highest dimension in which the
source and destination nodes differ. Routing then proceeds on each required dimension,
in descending order of dimension, until the routing path reaches the source. The routing
paths in the V H algorithm always follow the shortest paths, which guarantees the minimal
multicasting time.

The 2-D mesh (2DM) is a basic structure in a mesh-connected network. Let us de-
fine a 2-D mesh network (m x n), given a source s(0,0) and a set of destination nodes
{(z1, 1), (z2,¥2),-- -, (i, yi)}, where 0 < z; < m ~1and 0 < y; < n— 1. Multicasting
requires sending a message from s to all (z;, ;).

The Vertical-Horizontal oriented algorithm (V H algorithm) uses a backward dimen-
sional approach, which starts from the destination node, and finds a backward path until
reaching the source node s(0,0). The routing follows the vertical dimension (y dimension)
first, then turns to the horizontal dimension (z dimension). Routing in the y dimension is
always complete before routing in the z dimension starts.

There is an alternative routing approach, which follows the z dimension first, and then

turns to the y dimension until reaching the source s(0,0). The number of links generated
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by these two different routings may vary. For example, in a 8 x 6 2DM, a message is sent
from node (0,0) to nodes {(6,2),(3,4)}. If the Vertical-Horizontal oriented routing is used,
the multicasting time is 8, and the number of links is 12. If the Horizontal-Vertical oriented
routing is applied, the multicasting time is also 8, but the number of links increases to 13.
It is better to compare the results of these two routing, and choose the one which generates
less traffic. Without loss of generality, we only consider the Vertical-Horizontal oriented

approach in this thesis.

Definition 2.3. In a 2DM (m xn), consider the source node s(0,0), and a set of destination

nodes {(z1,y1), (z2,42),--- (i, ¥i)}, where 0 < z;<m—-1and 0<y; <n—1:

Ymaz = maz{yi,-..,Yi}
Doz = maz{D,...,D;}

where Dj is the distance between the source and destination (z;,y;), for 1 < j <1

Algorithm 2.1 (The V Happr Algorithm). In a 2D mesh network (m xn), given a source
5(0,0) and a set of destinations {(zi,y1), (z2,¥2),.--,(Ti, yi)}, where 0 < z; <m—1 and

0 < y; < n— 1. Multicasting requires a message to be sent from s to all (z;, yi)s.
1. Assign distances (D;) for all destination nodes (D; = z; + yj;, for1 < j <1).
2. Construct the multicasting tree.

- Start from the destination with value Tyez, and then ezpand the path backward.

- Follow the vertical dimension (y dimension) until the node (z;,0).

- Continue along the horizontal dimension (z dimension) until the source node s(0,0)
is reached.

- Connect the destination (zj,y;) to node (z;,0) for all destination nodes.
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3. If more than one node has the same z value, choose the one that has the biggest y

value.

Under the multicasting communication model, the minimal multicasting time is equal

to the value of maximum distance Dy,qz OF Dpaz + 1.

Proposition 2.1. In the network communication, consider a source s(0,0) and a set of
destination nodes {(z1,11), (2, ¥2)s--,(Zi,yi)}, where 0 < z; <m—-1and 0<y; <n—1.

The minimal multicasting time satisfies:

Dz, if only one node has value Doy ;
TIME =

Dz + 1, if more then one node has value Dpyqz.

Proof. To reach every destination node in a graph, the shortest path must be followed.
In general, the multicasting time must be equal to or greater than the maximum distance
Dpnaz for any algorithm. In any given algorithm, to send a message from node (0,0) to the
node with distance Dpqz, at least Dyjqr time units is needed. If there is more than one
node having the value Dy, , at least one more time unit is needed to reach all the destina-
tions. Thus multicasting time must be equal to or greater than Dp,, for any multicasting

algorithm. O
Proposition 2.2. The V Hopar Algorithm elways generates the minimal multicasting time.

Dpez, if only one node has value Dpgz;
TI.MEVHQDA\,{ = (2’1)

Diez + 1, if more than one node has value Dpyy.

Proof. In the V Hyppr Algorithm, every destination node follows the shortest path. There-
fore, the V Hopas algorithm generates the minimum possible multicasting time Dyq; when

only one node has value Dyu; or Dyer + 1 when more than one node has value Dypo,. O
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Assume the set of destination nodes are {(z1,4), (z2,¥2),--.,(Zi, ¥i)}, where z; < z2 <

- < z;, and if nodes {(zj,y;),-..,(Zk,yx)} have the same z value assume y; < yj+1 <

- < yk for 1 € 7,k < 1. If only one destination has the maximum distance value, the

multicasting time is equal to the value of maximum distance Dp,z. Otherwise, if more

than one destination has the maximum distance value, the algorithm needs one additional
time unit to finish multicasting {see the example in Figure 2.3, 2.4)

The total number of links also depends on the pattern of destinations. If the = value of

each node is unique, the number of links will count every y value. If some nodes have the

same z value, then only the maximum y value among these nodes is counted.

Example 2.1. In a 2DM network, consider the source s(0,0) and a set of destinations
{(z1, 1), (z2, y2), (3, y3), (T4, y4), (5, ¥s), (z6.y6)}. Nodes (zy,y1) and (Z2,12) have the
same T value, z, = To. When counting the total traffic, y; is not counted in the total.
Nodes (z4,y4), (24, v4), (z6,ys) have the same z value, z4 = 5 = zg. For the same reason,
ya and ys are not counted either. So the value LINKyy = z¢ + ) (y2 + y3 + ys) (See

Figure 2.2).

The total number of links satisfies LINKyvf1,,,, < Zi + Z;-:l y;- To calculate the exact

sum of total y values, the following procedure can be used.

Procedure 2.1. The sum of y values.

Z2DM =0;

do
take node (z;,y;)
if ; is unique,

then include y; in the sum, Y opp = Y opur TYi-
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Figure 2.2: Multicasting in the VH Algorithm

elseifrj=zj1=---=1p
then include only y, in the sum, Y oppr = D opar +¥p-
(do not include the value of yj, yj+1,-.-,Yp—1)

enddo

output Y opar-

Thus the toal number of links can be described as
LINKyHypy =Ti+ ) (2.2)

where T; = ez and Y is the output of Procedure 2.1.

The minimum value of LINKvy,,,, Will be obtained in the case where all the z values
are the same, =, = 3 = --- = z;, then LINKvy,,,, = =i + yi. The maximum value
of LINKvy,,, will be obtained in the case where all z;'s are mutually different, say
zy # T3 # -+ # i, then LINKyy,,,, = ;i + Z;zlyj. This means that the number of

links satisfies: z; + y; < LINKvy,p,, < Ti + Z;’=1 Yj-
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To illustrate how the V Hopys algorithm works, here are two examples:

Example 2.2. In a 2DM network (10 x9), the message is sent from source node s(0,0) to a
set of destination nodes {(2,2), (4,3),(5,4),(6,6),(7,6)}. By using the VHapyr Algorithm,
every destination follows the vertical dimension first, and then turns to the horizontal di-
mension. The actual routing follows,
(0,0) = (7,0) = (7,6),
(6,0) = (6,6),
(5,0) = (5,4),
(4,0) = (4,3).
(2,0) = (2,2).

The mazimum z value iS Tmaz = 7, and Dpez = 7+ 6 = 13. Since only node (7,6) has
the mazimum distance, the multicasting time TIM Ev y,,,, = Dmez = 13, and the total
number of links LIN Ky f,,,, = Ti + Zj-zl yj = 28. The resulting routing scheme is shown

in Figure 2.5.
In the next example, more than one node has the maximum distance value.

Example 2.3. Consider a 2DM network (10 x 9), in which a message is sent from source
node s(0,0) to a set of destination nodes {(2,2),(6,7),(7,3),(7,6),(9,4)}. Applying the
V Hypar Algorithm, every destination follows the vertical dimension first, then turns to the
horizontal dimension. The actual routing follows,

(0,0) = (9,0) = (9,4),

(7,0) = (7,3) = (7,6),

(6,0) = (6.7),

(2,0) = (2,2).
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The mazimum distance is Dy, = 6 + 7 = 13, and nodes (6,7), (7,6), and (9,4) have
the distance value of 13. The multicasting time TIMEvy,,,, = Dmer + 1 = 14. Nodes
(7,3) and (7,6) have the same z value of 7, the y value of node (7,3) doest not count in the
total number of links. The output of procedure 2.1 is Y, = 19 and the mazimum z value is
z; =9, so that the number of links LINKvy,,,, = zi + ». = 28. The resulting routing is

shown in Figure 2.4.

Let us see another approach to reduce the total traffic in the next section.

2.2.2 DIST Algorithm in the 2-Dimensional Mesh Network

It is desirable to minimize the multicasting time, however this does not always guarantee
the best performance. In fact, for certain problems, non-minmal routing algorithms can
utilize more of the available network bandwidth and cause less communication congestion.

The DIST Algorithm uses a different strategy to multicast the message. In the VH
Algorithm, each destination finds the route independently, while in the DIST Algorithm
the route for each destination depends on the existing multicasting tree. Every destination
node finds the shortest path to the existing tree. This algorithm generates less traffic, but

may result in a greater multicasting time as compared with the V H Algorithm.

Algorithm 2.2 (The DIST,pp Algorithm). In a 2DM network (m x n), given a source
5(0, 0) and a set of destinations {(z\,y1), (z2,92),---,(Zi,yi)}, where 0 < z; < m —1 and

0 < y; < n— 1. Multicasting requires a message to be sent from s to all (z;,y;)s.
1. Assign distances (Dj) for all destinations (D; = x; + y;, wherel < j <1).
2. Build the routes to connect all the destinations to the source:

e Start from the destination with the minimal distance.
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e Find the shortest path to the ezisting multicasting tree.

e Repeat the process in ascending order of distance until every destination node is

included in the multicasting tree.

3. If more than one node has the same distance, alternatively take (z;,y;) for which x;

is minimum possible value and teke (zi,yi) for which =y is mazimum possible value.

The total number of links varies and depends on the pattern of destinations, but the
upper bound is given by the expression below. This bound is achieved when the shortest
path from the current node (zj,y;) to the existing tree is the shortest path from node
(zj,y;) to node (zj—1,yj-1)-

LINKpistpy < (z1 +y1) +(Iz2 — 21| + e —1l) + - - + (|25 — ==l + lyj — i)

This means that

]
LINKpisTipy < (@1 + 1) + D _(I25 — T + lyj — i-1) (2.3)
j=2

The minimum value of LINKp;sT,,,, Will be obtained in the case where all nodes have
the same z value, ) = 3 = --- = z;, then LINKpsTy,p,, = Z1 + 41 + Zj»:z(yj -yj-1) =
z; + y;, or in the case where all nodes have the same y value, y; = yo = --- = y;, then
LINKpistpy =Z1+ 51 + Zj':z(xj —zj_1) = =i + yi (See example in Figure 2.5). The
maximum value of LINKp;st,p,, can reach LINKpstypy = Ti + 23':1 y;j (See example
in Figure 2.6).

Here, the total time cost seems greater than that of the V Hapys algorithm. The lower
bound of multicasting time is D,z In the worst case, the value of TIM Epst is close
to that of 3D,pin, which is much greater than that of the V Hapay algorithm. For example,
consider a (10 x 9) 2DM, where a message is sent from source (0, 0) to a set of destinations

{(9,2),(8,3),(6,5),(3,8)}. Allthe four destination nodes have the same maximum distance
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Figure 2.5: The minimum traffic in the DIST Algorithm

value Dy, = 11. If the chosen nodes are in the order (9, 2), (8, 3), (6, 5), (3, 8), the resulting

routing is (0,0) = (9,0) = (9.2) = (8,2) = (8,3) = (6,3) = (6,5) = (3,5) = (3,8).

Multicasting costs 23 time units, which is close to the value of 3Dpe,. If the destination

nodes are chosen in a different sequence, such as (3,8),(9,2),(6,5),(8,3), the resulting

routing becomes (0,0) = (3,0) = (3,8), (3,2) = (9,2), (8,2) = (8,3), and (6,2) = (6,5).

The multicasting time is 12, which is much less than the previous one (see Figure 2.7).

Therefore, the multicasting time in the DIST)pys satisfies,

Dmez S TIMED;ST:py, < min{2m+n-3,2n +m — 3,3Dpaz } (2.4)

To illustrate the DIST,par algorithm, the same examples of the V Hapr algorithm are

used to compare the relationship between these algorithms.

Example 2.4. In a 2DM network (10 x 9), the message is sent from source s(0,0) to a set
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of destinations {(2,2),(4,3),(5,4), (6,6),(7,6)}. Using the DISToppr Algorithm, Dz =
7+6 = 13. Node (2,2) has the minimum distance value of 4, find a path between (0,0) and
(2,2) first, then find the shortest path for node (4, 3) to the existing multicasting tree, which
is (2,2) = (4,2) = (4,3). Apply for node (5,4) nezt, in which (4,3) = (5,3) = (5,4) s
the routing path. Repeat this procedure for node (6, 6) and (7, 6). The resulting routing is
shown in Figure 2.8.

The multicasting time TIM Eprst,py = Dmaz = 13.

The number of links LINKpist,,,, = 13 < z; + Z;=l Yj-

Comparing the parameters time and traffic with those from ezample 2.2, the relationship
between these algorithms in these particular cases can be concluded as:

TIMEvi,n, =TIMEDiSsT,

LINKVH?DM > LINKDISTzoM-
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Example 2.5. In a 2DM network (10 x 9), the message is sent from node s(0,0) to a set
of destination nodes {(2,2),(6,7),(7,3),(7,6),(9,4)}. By using the DISToppr Algorithm,
Doz =6 +7 =13, and three nodes {(6,7),(7,6),(9,4)} have the value of Dpar. The first
step is the same as in example 2.3: find a path for node (2,2), then find the shortest path
for node (7,3) to the existing route, which is (2,2) = (7,2) = (7,3). Since the left nodes
share the same distance, choose node (6,7) nezt, whose path is (6,2) = (6,7). Finally apply
the nodes (9,4) and (7,6), whose paths are (6,4) = (9,4) and (6,6) = (7,6). The resulting
routing is shown in Figure 2.9.

The multicasting time TIM Epist,p,, = 14 > Dz + 1,

The number of links LINKpst,p,, =19 < z; + Z;zl Yj-

Compare the final route with that from example 2.3:

TIMEvg,, =TIMEpDrst,py

LINKVH2DM > L[lVKD[STzDM -

The more general relationships between these algorithms will be discussed in the next

section.

2.2.3 Comparisons of the V Hypy, and DISTrpy Algorithms

The examples above show some ideas about the relationship of the multicasting time and
the total number of links. The two propositions below establish the relationships between

the VHypar Algorithm and the DIST,pyr Algorithm.

Proposition 2.3. In the 2-dimensional mesh network, the multicasting time in the V Hapr

algorithm is equal to or less than the multicasting time in the DISTopps algorithm.

TIMEVHzp[u S TIMED[STzD‘\«I

34



Proof. Proposition 2.2 shows that the multicasting time for the V Hapas algorithm is always
the minimum possible value. Then TIMEy-y,,,, < TIME, for any algorithm A. Hence

TIA’IEVHQDM < TIA/IEDIST-_,DM- O
The relationship for the number of links is displayed in the following:

Proposition 2.4. In the 2-dimensional mesh network, the number of links in the VHapar

algorithm is equal to or greater than the number of links in the DISTopar algorithm.

LINK‘,H20,\,[ 2 LINKDIST'_’D.\!

Proof. Assume the V H multicasting tree is constructed. Take node (z,,y;) for which
distance is at a minimum. In the DIST algorithm, node (z,y:) will be constructed in
the same way as in the V H algorithm. Take the next closest node (z2,y2). In the VH
algorithm, only add y, edges to connect (z3,y2) to the multicasting tree. On the other
hand, the DIST algorithm adds the minimum number of edges necessary from (z3,ys)
to the same tree, which is either equal to or smaller than the value y,. Then add node
(z3,y3) and continue in this way until every destination is in the multicasting tree. Thus,

L[NKVH._,DM > LINKD[STZD.\I' =

In the 2-dimensional mesh network, the V Hypys algorithm guarantees that the message
will be delivered in the minimum amount of time, but will generate more traffic. The
DIST,pys algorithm can reduce the total amount of traffic at the price of spending more
multicasting time. In a real time network, in order to deliver the message in the least
amount of time, the V Hopypsr applies. If the traffic is considered more important than the

multicasting time, it is better to use the DIST,p,s algorithm.
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2.3 2-Dimensional Torus Network

A 2-dimensional torus is a 2-dimensional mesh with wraparound links and each node has
exactly 4 neighbors. The symmetry of the torus network leads to a more balanced utilization
of communication links than that of the mesh topology

In an mxn 2D torus network (2DT), we assume multicasting requires sending a message
from the source s(0, 0) to a set of destinations {(z1,y1), (z2.y2),. -, (zi,¥:)}, where 0 < z; <
m~1and 0 < y; < n—1. The destinations in 2DM always follows the positive direction going
back to the source, while the destinations in 2DT may follow in either positive or negative
direction, depending on the position of these nodes. The 2DT graph can be divided into
four sections, and each section forms a mesh graph. Each node (z;,y;) belongs to one of

the four sections below.

- section 1: z; < | %] and y; < [51:
- section 2: z; > | 3] and y; < |3,
- section 3: z; < |3 and y; > [%J,

- section 4: z; > | Zt] and y; > | ).

After dividing the 2DT into four sections, the 2DT becomes four sub-2DM problems,
the routing paths follow in a different direction, based on which section the destinations
are in. In section 1, all the destinations follow in a positive direction for both vertical and
horizontal dimensions, and go back to source s(0,0). In section 2, all the destinations go
toward node (m —1,0), then go back to source s(0,0) following the positive direction in the
vertical dimension and negative direction in the horizontal dimension. Similarly, in section
3, all of the destinations go to node (0,n — 1) first, then go back to source (0,0) following

the negative direction in the vertical dimension and positive direction in the horizontal
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Figure 2.10: 2-Dimensional torus network

dimension. All the destinations in section 4 reach the node (m — 1,n — 1) first , then go
back to source (0, 0) using the negative direction for both vertical and horizontal dimensions.

See illustration in Figure 2.10.

Definition 2.4. In a 2DT (m x n), a set of destinations are {{z1,y1), (Z2,y2),---, (Zi,¥i) }»
where 0 < z; < m—1 and 0 < y; < n — 1. By definition, Dpar ts the mazimum value
distance for each destination node. The Tymgr and ymar are defined as,

Tmazr = maz{z|,...,Z;}

Ymaz = ma:l:{yl, .. '7yi}

2.3.1 VH Algorithm in 2-Dimensional Torus Network

2DT consists of four 2DM problems. Apply the V Hypar to each section.

Algorithm 2.3 (The V Hypr Algorithm). In 2D torus network (m X n), given a source

5(0, 0) and a set of destinations {(z1,y1), (z2,y2),---,(Zi,yi)}, where 0 < z; <m —1 and
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0 < y; < n — 1. Multicasting requires sending a message from s to all (z;,y;)s.
1. Assign distances (Dj) for all destinations.

e If the node is in section 1, Dj = z; +y;, for 1 < j <4,

e If the node is in section 2, Dj = (m — z;) +y;, for 1 <j <4,

If the node is in section 3, Dj =z + (n—y;), for 1 <j <4,

If the node is in section 4, Dj = (m —z;) + (n —y;), for 1 < j <.
2. Construct the multicasting tree.

e Start from the destination with the mazimum z value.

e If the node is in section 1,

— Follow the positive direction in the vertical dimension,

— Follow the positive direction in the horizontal dimension.

If the node is in section 2,

— Follow the positive direction in the vertical dimension,

— Follow the negative direction in the horizontal dimension.
e If the node is in section 3,
— Follow the negative direction in the vertical dimension,

— Follow the positive direction in the horizontal dimension.

If the node is in section 4,
— Follow the negative direction in the vertical dimension,

— Follow the negative direction in the horizontal dimension.

3. All the nodes in section 2, 3, and 4 will eventually go back to the source via the

wraparound links.
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4. Repeat the process for all destination nodes.
5. If more than one node has the z value, select one at random.

In the V Hopys Algorithm, the maximum multicasting time is D,,,-+1 when more than
one node has the distance value of Dypq,, while in V Hypr, if these nodes are in section
2 and 3, they can be reached via a wraparound link; if these nodes are in section 4, they
can be reached via two wraparound links from the source node, which needs two more time

units to transmit the message. The multicasting time now satisfied,

Dmaz: < TIMEVng-p < Dmaz +3 (2~5)

The total number of links also depends on the pattern of destinations. As in the VHaopys
algorithm, if the z value of each node is unique, the number of links will count every y value.
If some nodes have the same z value, then only the maximum y value among these nodes
is counted. The following procedure can be used to calculate the sum of total links in the

V Hypr algorithm.

Procedure 2.2. The sum of total links.

2apr =05
Xmar1 = Xmaz3 = 0;
Xmaz2 = Xmaza =m — 1
N=Y,=Y3=Y,=0;
do
take node (z;,y;)
if node (zj,y;) is in section I,

if T > Xmaz1
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Xmaz1 = Ij,
if T; is unique,
then include y; in the sum, Y| =Y + y;.
else iffrj=zjp 1 =---=1xp
then include only y, in the sum, Y1 = Y} + yp.
else if node (z;.y;) is in section 2,
if T; < Xnaz2
Xmaz2 = Tj,
if T; is unique,
then include y; in the sum, Yo = Yo + y;.
elseifzj=zj41=--=1xp
then include only y, in the sum, Y2 = Y + yp.
else if node (zj,y;) is in section 3,
if £; > Xmaz3
Xinaz3 = Tj,
if z; is unique,
then include y; in the sum, Y3 = Y3 + (n — y;).
elseifj=zjp1=---=1Ip
then include only y, in the sum, Y3 = Y3 + (n — yp).
else if node (z;,y;) is in section 4,
if 2; < Xmaz4
Xmaez4 = Tj,
if z; is unique,

then include y; in the sum, Yy = Yy + (n — y;).
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elseif =z 1= =z

then include only y, in the sum, Yy =Y, + (n — yp).

enddo
.
Xmaz1 + Y1, if any node (z;,y;) is in section 1;
m — Xpazo + Yo. if any node (z;,y;) is in section 2;
2 onT = 22 4
Xmazz + 1+ Y3, if any node (z;,y;) is in section 3;

m — Xmaza + 1 +Ys, if any node (zj,y;) is in section 4.

\

output Y op7-

The total number of links can be described as
LINKvH,pr = Y- (2.6)

where Y represents the output of Procedure 2.2.

The minimum value of LINKy g, will be obtained in the case where all nodes have
the same z value, and they are in one section, then LIN Kv g, = z;+¥; in the case where
all nodes are in section one. The maximum value of LIN Ky g, ,,, will be obtained in the
case where all z;'s are mutually different, then the value LIN K-, ,,, will count every link.

The multicasting time in 2DM and 2DT have a similar relationship, except the upper
bound of 2DT is Dyez + 3 instead of Dyqx + 1, since the torus needs two more time units
to reach the nodes in section 4. Note that the D,,q; in 2DT is smaller than the Dy, value
in 2DM for the same set of destination nodes.

To illustrate the V Hypr algorithm, consider the same data as in the 2DM network.

Example 2.6. In a 2DT network (10 x 9), a message is sent from node S(0,0) to a set of
nodes {(2,2), (4,3),(5,4),(6,6),(7,6)}. By using the VHypr Algorithm, node (5, 4) has the
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mazimum distance value Dpar = 5+ 4 = 9, which is smaller that the Doy value for 2DM
in ezample 2.2. Nodes (2,2),(4,3),(5,4) are in section 1, and their multicasting paths follow
in a positive direction for both vertical and horizontal dimensions. Nodes (6,6) and (7,6)
are in section 4, and their paths follow in a negative direction for both vertical and horizontal
dimensions toward node (9,8), followed by node (9,0) and {0,0) via wraparound links. The
multicasting time TIMEy g, = Dmez = 9, and the number of links LINKvy,,, = 23.

The resulting route is shown in Figure 2.11.

---- g
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[

B e | B B

0

Figure 2.11: Multicasting route for the V Hypr algorithm

Example 2.7. In a 2DT network (10 x 9), a message is sent from node S(0,0) to a
set of nodes {(2,2),(6,7),(7,3),(7,6),(9,4)}. When applying the V Hapr Algorithm, the
mazimum distance is Do = 6, and three nodes, (6,7), (7,3), and (7,6), have the distance
value Dyoz. Every destination follows in the vertical dimension first, then turns into the

horizontal dimension. Node (2,2) is in section 1, and its path follows in the positive direction
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Figure 2.12: Routing scheme for the V Hapr algorithm

for both vertical and horizontal dimensions. Nodes (7,3) and (9,4) are in section 2, and
their paths follow in the positive direction for the vertical dimension, then in the negative
direction for the horizontal dimension. Nodes (6,7) and (7,6) are in section 4, their paths
follow in the negative direction for both vertical and horizontal dimensions. The multicasting
time TIMEyy = Dmar +1 = 7, and the number of links LINKy g = 21. The resulting

routing is shown in Figure 2.12.

2.3.2 DIST Algorithm in the 2-Dimensional Torus Network

The DIST algorithm can also be applied to the 2-dimensional torus network since it contains

four 2DM subgraphs.

Algorithm 2.4 (The DIST:pr Algorithm). In a 2DT network (m x n), given a source
s(0, 0) and a set of destinations {(z1,y1). (z2,y2)s .-, (Ti,¥i)}, where 0 < z; <m—1 and

0 < y; < n — 1. Multicasting requires sending a message from s to all (z;,y;)s-
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e Assign distances (D;) for all destination nodes.

— If the node is in section I, D; = zj +yj, for 1 <j <71,

— If the node is in section 2, Dj = (m — z;) +y;, for 1 < j <4,

— If the node is in section 3, Dj = z; + (n —y;), for 1 <j <4,

— If the node is in section §, Dj = (m — ;) + (n —y;), for L <j <.

o Build the routes to connect all the destinations to the source: start from the destination
with the minimal distance, and find the shortest path to the ezisting multicasting tree
in its own section.

— Start from the destination with the minimal distance.
— Find the shortest path to the existing multicasting tree in its own section.
— Repeat the procedure until every destination is included in the multicasting tree.

e If more than one node has the same distance in a section, alternatively take (z;,y;) for

which z; is the minimum possible value and take (zg,yx) for which T is the mazimum

possible value in its section.

The multicasting time in DIST5p7 has the same relationship as in DIST>par, however

the value of Dyqz is much smaller than the Do of the 2DM network.
Dmaz < TIMEpis7,,r < min{m + g n+ %,313,,,,”} (2.7)

The total number of links depends on the pattern of destinations. In addition, when counting
the number of links, they are counted within each section, and finally added all together.

The path in DISTypr can not cross different sections.
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4
Tmazl + 2 Yjls for (z;,y;) in section 1;
M = Tmaz2 + 2 Yj2s for (z;,y;) in section 2;
LINKpisTypr < ) S (2.8)

Tmazz + 1+ (n—yj3 — 1), for (z;,y;) in section 3;

M — Tmaze + 1+ > (n—yjs —1), for (zj,y;) in section 4;

\

To illustrate how the DIST,pr algorithm works, let us consider the examples used in

the 2DM network.

Example 2.8. In 2DT network (10 x 9), e message is sent from node s(0,0) to a set of
nodes {(2,2),(4,3),(5.4),(6,6).(7,6)}. By using the DISTopr Algorithm, node (5,4) has
the mazimum distance value Doz = 5+4 = 9. Nodes (2,2) (4,3) and (5,4) are in section
1. First find the shortest path for node (2,2), then find the path for node (4,3), followed by
node (5,4). The shortest path is

(0,0) = (2,0) = (2,2) = (4,2) = (4,3) = (5,3) = (5,4);

Nodes (6,6) and (7,6) are in section 4, so apply to node (7,6) first, then consider node
(6,6). The path is

(0,0) => (9,0) = (9,8) = (7,8) = (7,6) = (6,6).

The resulting route is shown in Figure 2.13.

The multicasting time is TIMEvy,pr = Dmoz =9,

The number of links is LINKy,,, = 16.

Compare the results with the ones obtained from ezample 2.6:

TIMEvy = TIMEDpistance

LINKVH > LINKDistance
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Example 2.9. In the 2DT network (10 x 9), a message is sent from node s(0,0) to a
set of nodes {(2,2),(6,7),(7,3),(7,6),(9,4)}. When applying the DISTopr Algorithm, the
mazimum distance value Doy = 6, and three nodes, (6,7), (7.3), and (7,6), have the value
Dinaz. Node (2,2) is in section 1: find the shortest path back to the source node s(0,0).
Nodes (7,3) and (9,4) are in section 2: find the shortest path for node (9,4) first, then apply
to node (7,3) within section 2. Nodes (6,7) and (7,6) are in section 4, since they have the
same distance value: choose node (6,7) first, and then find the shortest path for node (7,6)
in section 4. The resulting route is shown in Figure 2.14.

The multicasting time TIMEyvy = Dpar +1 =171,

The number of links LINKy g = 17.

Compare the results with those found in ezample 2.7:

TIMEyy < TIM Epistance

LINKyvy > LINK pistance-

2.3.3 Comparisons of the VHypr and DIST>pr Algorithms

In the 2DT network, the relationship between V Hopr and DISTspr is the same as in 2DM,

as previously discussed that the 2-dimensional torus consists of four 2DM subgraphs.

Proposition 2.5. In the 2-dimensional torus network, the multicasting time of the V Hapr

algorithm is equal to or less than the multicasting time of the DIST,pr algorithm.
TIMEvu,,r STIMEDiST:pr

Proposition 2.6. In the 2-dimensional torus network, the number of links in the VHapr

algorithm is equal to or greater than the number of links in the DIST,pr algorithm.

LINKvH,,r 2 LINKDIST,pr
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2.4 3-Dimensional Mesh Network

2.4.1 VH Algorithm in 3-Dimensional Mesh Network

Now we extend the algorithms to the 3-dimensional mesh network (3DM). In the 2DM, the
route follows in the vertical dimension first, then turns into the horizontal dimension. We
apply the similar dimension-ordered strategy to the 3DM. Routing proceeds on the depth
dimension (say z dimension) first, then goes to the horizontal dimension (say y dimension),

and finally follows the vertical dimension (say x dimension) back to the source s(0,0).

Algorithm 2.5 (The VH;3par Algorithm). In a 3DM network (m x n X p), given a
source s(0, 0, 0) and a set of destinations {(z1,y1,21),(Z2,y2,22),--..(Zi, Vi, zi)}, where
0<z;<m—-1,0<y; <n—1, and 0 < z; < p— 1. Multicasting requires a message to be

sent from s to all (z;,v;, z;)s.
1. Assign the distances (D;) for all destinations (D; = z; +y; + 2;), where 1 <j <.
2. Construct the multicasting tree.

e Start from the destination with value Tmer and Ymaz, ezpand the path backward.

Follow the z dimension until the node (zj,y;,0).

Follow the y dimension until the node (z;,0,0).

e Along the z dimension until returning to the source s(0,0,0).

Repeat the process for all destination nodes.

3. If more than one node has the same x value, first choose the node that has the greatest

y value.

4. If more than one node has the same = and y value, choose the one that has the greatest

z value.
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In the VH3pyr Algorithm, because each node follows the shortest path, the total mul-
ticasting time is at a minimum. Assume the set of destinations is {(z1,y1, z1), (Z2,¥2, 22),
«ooy (Ti, yi, zi)}, where £y < 29 < --- < x;, and if nodes {(zj,yj,2;):---.(Zk, Uk, 2x)} have
the same r value, say z; = ;41 = -+ = I, and assume y; < yj41 < --- < Yg. Fur-
thermore, if these nodes have the same r and y value, say z; = zj4; = --- = z; and
Yj = Yj+1 = -+ = Yk, then 2; < zj11 < --- < z. If only one destination has the maximum
distance value, the multicasting time is equal to the value of maximum distance Dpqer. If
more than one destination has the maximum distance value, the algorithm may need two
more time units in order to finish multicasting, since any node has three directions (x, y,

or z dimension) to start with, it will possibly cause two time units delay. However, the

multicasting time in the V Hypas algorithm is at a minimum.

Proposition 2.7. The V H3par Algorithm always generates the minimal multicasting time.
Dma:z: < TIMEVH:gDM < Dmaz: + 27 (29)
where Doy = maz{z, +y| + 21,.-.,Zi + yi + 2i}.

The total number of links also depends on the pattern of destinations. If the z and y
value of each node is unique, the number of links will count every z value. If some nodes
have the same z and y value, then only the maximum z value among these nodes is counted.
Consequently, if the z value of each node is unique, the number of links will count every y
value. If some nodes have the same x value, then only the maximum y value among these
nodes is counted. The total number of links satisfies LINKy f,,,, < zi+2;=1 Yi+t ke Zk-

To calculate the exact sum of total y value, the following procedure can be used.
Procedure 2.3. The sum of total links in the 3DM network.

Yapm =0;
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do
take node (z;,y;j, 2;)
if z; is unique,
then include y; and z; in the sum, Y _spy = Dapar +Yi + 25-
elseifr; =z =--=1Ip

fyi=yir1=-"=1y

then include only y, and zp in the sum, > 3par = d3par T¥p + %

otherwise
include every y; and z; in the sum, Y spar = 2 apar T¥i + -

enddo
output ) spar-
The total number of links can be described as

LINKyy,,,, =i + Z.

where r; is the mazimum z value and Y is the output of Procedure 2.3.

(2.10)

The maximum value of LINKy-y,,,, will be obtained in the case where all z;’s are

mutually different, then the value LINKy y,,,, = Ti + Z;-=l yj + Sk zx. The minimum

value of LINKy y,,,,, will be obtained in the case where all nodes have the same z and y

value,say 1, = o =---=z;and yy =ya =--- = y; , then LINKvy,p,\, = Ti +yi + ;-

Thus, the LIN Ky ,,, satisfies: z; +y; + 2: < LINKv g,y < Ti+ 5oy Y5 + Skmt 2k

Here is an illustration of how the VH Algorithm in the 3DM works.

Example 2.10. In the 3D torus network (10x9x4), the message is sent from node s(0,0,0)

to a set Of nodes {(27 110)7 (47310)7(3741 0)1(81310)7 (8’ 7a0)1 (91 01 3)7 (97 77 1)1 (97 71 2)} By

using the V Hapypr Algorithm, node (5,4,1) has the mazimum distance value Dyar = 9 +
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Figure 2.15: Multicast routing in the V H3zpys algorithm

7 + 2 = 18. Start with node (9,7,2) to find the shortest path that follows the z dimension
first, then along the y dimension and r dimension until reaching the source s(0,0,0,). The
possible path is: (9,7,2) = (9,7.0) = (9,0,0) = (0,0,0). Nezt, find the shortest path for
node (8,7,0), which is: (8,7,0) = (8,0,0) = (0,0,0). Then, find the shortest path for node
(9,0,3), (4,3,0), (3,4,0), and (2,1,0). The resulting routing is shown in Figure 2.15.

The multicasting time TIMEyv f,,,;, = Dmaz = 18,

The output of procedure 2.3 is Y, = 27 and the mazimum = value is z; = 9. So that

the number of links LINKv g, = i + Y = 36.

2.4.2 DIST Algorithm in the 3-Dimensional Mesh Network

The DIST algorithm always finds the shortest path connected to the existing multicasting
tree for each node. Hence, it can reduce the total traffic. However, the multicasting time

will not be minimal because the shortest path to the existing tree may not be the shortest
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path between the source and the destination nodes. Therefore, more transmission time may

be needed when using the shortest distance approach.

Algorithm 2.6 (The DIST3pyr Algorithm). In ¢ 3DM network (m x n X p), given a
source s(0, 0, 0) and a set of destinations {(z1,y1,21),(Z2,y2,22),--.,(Zi, Yi,z)}, where
0<z; <m-1,0<y; <n—1, and 0 < z; < p— 1. Multicasting requires a message to be

sent from s to all (z;,y:, zi)s.
1. Assign distances (D;) for all destinations (D = z; + y; + 2;, where 1 < j <1).
2. Build the routes to connect all destinations to the source:

e Start from the destination with the shortest distance.
e Find the shortest path to the ezisting multicasting tree.

e Repeat the process in distance ascending order until every destination node is

tncluded in the multicasting tree.

3. If more than one node has the same distance, alternatively take (zj.yj,2;) for which
z; is the minimum possible value and take (zy, yk, zx) for which ry is the mazimum

possible value.

o [f these nodes have the same z value, compare the y values and follow the same

order.

The multicasting time depends on the location of destination nodes. When several nodes
have the maximum distance value Dy,,;, the multicasting time may be close to the value of
Dipaz, or also close to the value of 5D, , if the nodes with the value of D,,q; are chosen
randomly.

Dpar S TIMEpDsTyp,, < min{2m +2n+p—5,5Dmaz }, (2.11)
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where Doz = maz{z; +y1 + z1,-..,Zi + i + 2}

The total number of links various and depends on the pattern of destinations, but the
upper bound for the total is given by the expression below. This bound is achieved when
the shortest path from the current node (z;, y;, z;) to the existing tree is the shortest path
from node (zj,y;,2;) to node (z;_1,yj—1,2j-1)-

Thus, LINKprstyp, <

(zi+y+21) |z — i +Hlye —wnil Hlza—z2l) +- - -+ (|25 —zj | +Hyj —yj—1] + 25 — z-1)-

This means that

i
LINKpisTypy < (@1 + 31 +21) + (|15 — 21| + g5 — yj-1] #1275 — z-1]) - (212)
=2

The minimum value of LIN Kp;sT,,,, Will be obtained in the case where all nodes have
the same z and y value, say £y = --- = z; and y; = --- = y;, then LINKpisTypy, =
Ty +y + Ej’zg(Zj — zj_1) = T; + yi + z;. The maximum value of LINKpsT,p,, can be
reached when all z;s are mutually different, then LINKpst,,,, = i + Z;-zl y; + Z§=l z;j.

To illustrate how the algorithm works, let us consider an example below.

Example 2.11. Consider a 3DT network (10 x 9 x 4), the message is sent from node
5(0,0,0) to a set of nodes {(2,1,0), (4,3,0),(3,4,0),(8,7,0),(9,0,3),(9,7,2)}. By using the
DIST3par Algorithm, node (5,4,1) has the mazimum distance value Dy = 9 +7+2 =
18, and node (2,1,0) has the minirnum distance vakue. First, find the shortest path for
node (2,1,0)), which is (0,0,0) = (2,0,0) = (2,1,0). Nodes (4,3.0) and (3,4,0) have
the same distance value. Select nodes in the order of (3,4,0) and (4,3,0), the paths are
(2,1,0) = (3,1,0) = (3,4,0) and (3,3,0) = (4,3,0). Afterward find the shortest path for
nodes (9,0,3), (8,7,0), and (9,7,2). The final routing scheme is shown in Figure 2.16(1).

The multicasting time TIM Eprstyp,, = 18,
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The number of links LINKprsT,p,, = 28.

When finding paths for nodes (4,3,0) and (3,4,0), if nodes in the order of (4,3,0) and
(3,4,0) are selected, then the final path becomes Figure 2.16(2).

The multicasting time TIM Eps1,p,, = 20,

The number of links LINKpst,,,, = 28.

When several nodes have the same distance value whenever the nodes have the mazimum
Dpaz or not, the resulting multicasting times and total traffic may vary.

Comparing the parameters, time and traffic, with those from the ezample 2.10:
TIMEv ., STIMEpDist;py,

LINKVH:,DM > LINKDIST;;DM

2.4.3 Comparisons of the V' H3p,, and the DI/ST;p, Algorithms

As in the 2DM network, all nodes in the V H3pa algorithm always follow the shortest path
independently, and this guarantees that the message will be delivered in the minimum mul-
ticasting time. However, the V H3pa algoritm generates more total traffic than DIST3par
algorithm. On the other hand, the DIST;p s algorithm follows the shortest path connected

to the existing tree, which can reduce the total traffic, for a price of extra multicasting time.

Proposition 2.8. In the 3-dimensional mesh network, the multicasting time in the V Hzpar

algorithm is equal to or less than the multicasting time in the DIST3pys algorithm.
TIMEvt,,, <TIMEDisT;py

Proposition 2.9. In the 3-dimensional mesh network, the number of links in the V H3ps

algorithm is equal to or greater than the number of links in the DIST;par algorithm.

LI]VKVH;;DM 2 LINKDIST;;DM
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Figure 2.16: Multicast routing using the DIST3par algorithm
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Because the proofs of these propositions are similar to the proofs of proposition 2.3 and

2.4, they are omitted.

2.5 3-Dimensional Torus Network

The 3-dimensional torus (3DT) has the same properties as in the 2DT. The 3DT can be seen

as a 3DM with wraparound links in every dimension. In general, assuming a 3.DT network

(mxnxp), the multicasting requires a message to be sent from the source s(0,0,0) to a set of

destinations {(xhyl’ zl)v (x27 y2’z2)’ ceey (:I:i7 Yi, Zi)}, where 0 S. ; <m-— 17 0 < Yi <n-— 17

and 0 < z; < p— 1. Unlike the 2DT network, which consists of four 2DM subgraphs, the

3DT network can be divided into eight 3DM subgraphs, and it becomes a 3-dimensional

mesh problem.

Each node (zj,yj,2;) can be distributed into one of these eight sections.

-section 1: z; < | 3], y; < |§]. and z; < L],

- section 2:

- section 3:

- section 4:

— section 5:

- section 6:

- section T:

- section 8:

Zj

Zj

Zj

Zj

> 3],y < 3], and z; < | 5],
S L%Jv Yj > I.%J7 and 25 S I.gjv
> |21, y; >3], and z; < | 5],

> [3) v < 13, and z; > |5,
i <13 y; > | 3], and 25 > [ 5],

P> L%—J, Y > [%J, and z2; > I_g]

2.5.1 VH Algorithm in 3-Dimension Torus Network

A 3DT consists of eight 3DM problems. Apply the V H3pr to each section.

Algorithm 2.7 (The VH3pr Algorithm). In a 3-D torus network (m X n X p), given

a source s(0, 0, 0) and a set of destinations {(zy,y1,21), (2, Y2, 22), - - -, (Ti, Vi, 2i) }, where
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0<z; <m—-1,0<y; <n-1, and 0 < z; < p— 1. Multicasting requires a message to be

sent from s to all (z;,y;,2;)s, where 1 < j <.
1. Assign the distances (Dj) for all destinations.

o If the node is in section 1, Dj = zj + y; + z;-

o If the node is in section 2, Dj = (m — z;) + y; + z;-
o If the node is in section 3, D; = z; + (n — y;) + z;.
o If the node is in section 4, Dj = (m — z;) + (n — y;) + z;.
o If the node is in section 5, D; = z; +y; + (p — z;)-

o If the node is in section 6, Dj = (m — z;) + y; + (p — z;)-

o If the node is in section 7, Dj = z; + (n — y;) + (p — 2;).

If the node is in section 8, D;j = (m — z;) + (n — y;) + (p — z;)-
2. Construct the multicasting tree.

e Start from the destination with mazimum z value, and then mazimum y value.
o If the node is in section 1,

— Follow the positive direction in the vertical dimension (z dimension),

— Follow the positive direction in the vertical dimension (y dimension),

— Follow the positive direction in the horizontal dimension (z dimension).
e If the node is in section 2,

— Follow the positive direction in the z dimension,

— Follow the negative direction in the y dimension,

— Follow the positive direction in the z dimension.
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e If the node is in section 3,
— Follow the negative direction in the z dimension,
— Follow the positive direction in the y dimension,
— Follow the positive direction in the x dimension.
e If the node ts in section 4,
— Follow the negative direction in the z dimension,
—~ Follow the negative direction in the y dimension,
— Follow the positive direction in the z dimension.
e If the node is in section J,

— Follow the positive direction in the z dimension,
—~ Follow the positive direction in the y dimension,

~ Follow the negative direction in the T dimension.
o If the node is in section 6,

— Follow the positive direction in the z dimension,
— Follow the negative direction in the y dimension,

—~ Follow the negative direction in the z dimension.
e If the node is in section 7,

— Follow the negative direction in the z dimension,
— Follow the positive direction in the y dimension,

— Follow the negative direction in the £ dimension.
o [f the node is in section §,

— Follow the negative direction in the z dimension,
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— Follow the negative direction in the y dimension,

— Follow the negative direction in the z dimension.
3. All the nodes in section 2-8 will eventually go back to source via the wraparound links.
4. Repeat the process for all destination nodes.
5. If more than one node has thesame z value, choose any one of them at random.

The multicasting time satisfies,

Dmax S TIME‘/.H:SDT < DmaI + 5 (2.13)

The total number of links depends on the pattern of destination nodes. The following

procedure can be used to calculate the exact sum of total links in the V H3pr algorithm.

Procedure 2.4. The sum of total links.

2apr =0;
Xmazt = Xmaz3 = Xmazs = Xmaz7 = 0;
Xmaz2 = Xmazs = Xmaz6 = Xmazg =m — 15
N=Y=Hh=Y,=Y=Ys=Y=¥=0
Zy=2y=23=204=25=2¢ =27 =23 =0
do
take node (j,y;, zJ)
if node (z;,y;, zs) is in section I,
if £; > Xmazl
Ximaz1 = zj,
if T is unique,

then include y; and zp in the sum, Y1 =Y +y;,Z1 = Z) + z; .
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else ifrj=zj 1 =---=1xp
Fyi=yjir1 ==
then include only y, and 2, in the sum, Y1 =Y, +y;.Z1 = Z1 + z; .
otherwise
include every yp and z, in the sum, Y| =Y, +y;,Z1 = 2, + z; .
else if node (zj,y;,2s) is in section 2,
if z; < Xmaz2
Xmaz2 = zj,
if T; is unique,
then include y; and z, in the sum, Yo =Ya +y;,Zo = 25 + z; .
else ifz; =z =---=1xp
fyi=yjr1 ==Y
then include only y, and 2z, in the sum, Yo =Yoo +y;,Za = Zo + z; .
otherwise
include every yp and 2z, in the sum, Yo=Ya+y;,Zo = 2o +z; .
else if node (zj,y;j,2s) is in section 3,
if 7 > Xmaz3
Xmaz3 = zj,
if ; is unique,
then include y; and zp in the sum, Y3 =Y3 +y;,Z3 =23 + z; .
else iff cj=zj01=---=1xp
Yyi=yjr1 ==Y
then include only y, and z, in the sum, Y3 =Y +y;,Z3 =23+ z; .

otherwise
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include every y, and 2z, in the sum, Y3 =Y3+y;, 23 =23+ z; .
else if node (zj,y;,2s) is in section 4,
if ; < Xmaza
Xmaza = Tj,
if z; is unique,
then include y; and 2z, in the sum, Yy =Yy +y;,Za =24 + z; .
else iff t; =z 1= =1p
fyi=yjr1 ==Y
then include only y, and 2z, in the sum, Yy =Yy +y;, Zs =2y +z; .
otherwise
include every y, and z, in the sum, Yy =Y, +y;, Zy = Zy + zj .
else if node (zj,yj,2s) is in section 5,
if j > Xmazs
Xmazs = Tj,
if T; is unique,
then include y; and z, in the sum, Y5 = Y5 +y;, 25 = Z5 + z; .
elseifz;=zjp 1= =1xp
Y=y ==Yy
then include only y, and z, in the sum, Y5 = Ys +y;, Zs = Z5 + 2; -
otherwise
include every y, and zp in the sum, Y\ =Y1 +y;, Z1 =2, +z; .
else if node (z4,yj,2s) is in section 6,
if £; < Xinazé

Xmaz6 = Zj,
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if T; is unique,

then include y; and z, in the sum, Yo = Yo + y;j, 26 = Zs + 2;
elseiftj =z 1 =---=1xp
fyi=yjirnn=-"=Y
then include only y, and z, in the sum, Ys = Y6 + y;, 26 = Z6 + 25 -
otherwise
include every y, and z, in the sum, Yo = Yo + y;, Zs = Zs + 2;
else if node (zj,y;.2s) is in section 7,
if £; > Xmazt
Xmazr = Ij,
if ¢; is unique,
then include y; and z, in the sum, Y7 = Y; + y;, 21 =27+ zj
elseifrj =z, =---=1xp
fyi=vjiri=--=1%
then include only y, and zp in the sum, Y7 =Y7 +y;, 27 = Z7 + z; .
otherwise
include every yp, and z, in the sum, Y7 = Y7 + y;, 27 = Z7 + z;
else if node (z;,y;,2s) is in section &,
if £j < Xmazs
Xmazs = Tj,
if ; is unique,
then include y; and zp in the sum, Y3 = Yg +y;, Zg = Zg + z;
else ifrj=xzjp =--- =

_xp

fy; =yjr1 =" =yp
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then include only y, and 2z, in the sum, Yz =Yg +y;j, Zs = Zg + z; -
otherwise

include every y, and zp in the sum, Yg =Yg +y;,Zs = Zs + z; .

enddo
.
Xmez1 + Y1 + 21, if any node (zj,yj, z;) is in section I;
m — Xmaz2 + Yo + 2o, if any node (zj,y;,2;) is in section 2;
Xazz + 1+ Y3 + Z3, if any node (z;.yj, 25) is in section 3;

m — Xmezs + 1+ Yy + 24, if any node (z;, y;, 25) is in section 4;

23T = 22 4

Xinazs + Y5 + Zs, if any node (x5, y;, z;) is in section 5;
m — Xmaze + Y6 + Zs, if any node (z;,yj, z;) is in section 6;
Xmaz?r + 1+ Y7 + Z7, if any node (z;,y;, 25) is in section 7;

m — Xmazs + 1+ Y + Zg, if any node (zj,y;, z;) is in section 8.

\

output ) 4 pr-

The total number of links can be described as

LINKvH,pr =Y - (2.14)
where Y is the output of Procedure 2.4.

Example 2.12. In 3-dimensional torus network (10 x 9 x 4), the message is sent from node
5(0,0,0) to a set of nodes {(2.1,0),(4.3,0),(3.4,0),(8,7,0),(9,0,3),(9,7.2)}. By using the
V Hzpr Algorithm, node (9,0, 3), which is in section 6, has the minimum distance value of
2. Nodes (4,3,0) and (3,4,0), which are in section 1, have the mazimum distance value

Doz = 7. First find the path for node (4,3,0), which follows the order of z dimension, y
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Figure 2.17: Multicast routing in the V Hapr algorithm

dimension aend z dimension, then find the path for node (3,4,0), followed by nodes (9,7,2),
(8,7,0), (2,1,0), and (9,0,3). The final routing is shown in Figure 2.17.
The multicasting time is TIM Evf,pr = Dmaz +1 =8,

The number of links is LIN Ky g = 20.

2.5.2 DIST Algorithm in 3-Dimensional Torus Network

The DIST algorithm can also be applied to the 3-dimensional torus network.

Algorithm 2.8 (The DIST;pr Algorithm). In a 8D torus network (m x n x p), given
a source s(0, 0, 0) and a set of destinations {(z1,y1,21), (T2, Y2, 22), - - -, (Ti. Yi, zi) }, where
0<z;<m-1,0<y; <n—1, and 0 < z; < p~ 1. Multicasting requires a message to be

sent from s to all (z;,y;,z;)s, where 1 < j <1

1. Assign the distances (D;) for all destinations.
- If the node is in section 1, D; = zj + y; + z;.

- If the node is in section 2, Dj = (m — z;) + y; + 2;.
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- If the node is in section 3, Dj = z; + (n — y;) + 2;-
- If the node is in section 4, D; = (m — z;) + (n — y;) + z;.
- If the node is in section 5, D; = zj +y; + (p — 2;)-
~ If the node is in section 6, Dj = (m — z;) + y; + (p — 25)-
- If the node is in section 7, D; = z; + (n — y;) + (p — 25)-

- If the node is in section 8, Dj = (m — z;)} + (n —y;) + (p — 25).

2. Build the routes so that all the destinations connect to the source: start from the des-
tination with the minimal distance, find the shortest path to the ezisting multicasting
tree in its own section.

- Start from the destination with the minimal distance.
- Find the shortest path to the eristing multicasting tree in its own section.

- Repeat the procedure until every destination node is included in the multicasting tree.

3. If more than one node has the same distance in a section, alternatively take (z;.y;, z;)
for which z; is the minimum possible value and take (zk,Yk,z;) for which zj is the
mazimum possible value in its section.

- If these nodes have the same z value, compare the y value and follow the same order.

The multicasting time in the DIST;pr algorithm satisfies,
Daz < TIMEpistypr < min{m +n + £,5Dmaz). (2.15)

The total number of links depends on the pattern of destination nodes.

65



LINKprsTispr <

’

Tmazl + 2 Yj1 + 2 Zjls for (z;j,,y;1) in section 1;
M — Tmaz2 + 3 Yj2 + 2 252, for (zj2,yj2) in section 2;
Tmarz +1+ > (n—yjza— 1)+ 23, for (zj3,y;3) in section 3;
Z M = Tmaps + 1+ Y (n—yjs — 1) + 3 zj4, for (zj4,yja4) in section 4;
<
Tmazs + 3 Yjs + 2. (P — 2j5 — 1), for (zj5,y;s) in section 5;
M — Tmaze + 2 Yj6 + 2. (P — 256 — 1), for (zj6,yj6) in section 6;
Tmazr +1+ > (n—yjr— 1)+ (p— 27— 1), for (zj7,y;7) in section 7;

M= Tmees +1+Y.(n—yjs— 1)+ (p— 28— 1), for (z;8,y;8) in section 8.
(2.16)

\

The equations 2.11 and 2.15 are identical, but the value of Dy,4; in equation 2.15 is much
smaller than that from equation 2.11, since the diameter of the torus is smaller than the
diameter of the mesh network by a factor of 2.

Consider the same network as in example 2.12 to illustrate the DIST;pr Algorithm.

Example 2.13. In the 3-dimensional torus network (10 x 9 x 4), the message is sent
from node s(0,0,0) to a set of nodes {(2,1,0),(4,3,0),(3,4,0),(8,7,0),(9.0,3),(9,7,2)}.
By using the DIST3pr Algorithm, node (9,0, 3), which is in section 6, has the minimum
distance value of 2. Nodes (4,3,0) and (3,4,0), which are in section 1, have the mazimum
distance value Dp,ar = 7. First find the shortest path for node (9,0,3), which uses only
two wraparound links (0,0,0) — (9,0,0) — (9,0,3). Nezt find the shortest path for node
(2,1,0), which is (0,0,0) — (2,0,0) — (2,1,0). Similarly, find paths for every destination.
The final routing is shown in Figure 2.18.

The multicasting time is TIMEyp,pr = Dnez +1 = 8.

66



V]

T T T 77777
LT T T T T 7777

0.0.0¢

&
/

Fa oY
N

NN NN N NN

Fa o\
L

/
/
/
/
q
/
|/
7

Figure 2.18: Multicast routing in the DIST3pr algorithm

The number of links is LIN Ky y = 16.
Compare the results with those from ezample 2.12.

TIMEv t,nr = TIMEptst,,r and LINKyv p,pr > LINKprsTypr-

2.5.3 Comparisons of the V H;pr and the DIST;pr Algorithms

The 3-dimensional torus consists of eight 3DM subgraphs. Therefore, the 3DT network has

similar properties to those of the 3DM network.

Propaosition 2.10. In the 3-dimensional torus network, the multicasting time in the V H3pr

algorithm is equal to or less than the multicasting time in the DIST3pr algorithm.

TIMEvy,,r <TIMEpIst,pr

Proposition 2.11. In the 3-dimensional torus network, the number of links in the VH3pr

algorithm is equal to or greater than the number of links in the DIST3pr algorithm.
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LINKVH3DT 2 LINKD!ST3DT

In the 3-dimensional torus network, the V Hypr algorithm uses less multicasting time,

but generates more traffic as compared to the DIST3;pr algorithm.

2.6 n-Dimensional Torus/Mesh Network

All the algorithms developed so far can be used with n-dimensional mesh and torus networks.
The n-dimensional mesh network has the same properties as those from 2- and 3-dimensional
mesh network. When applying the dimensional ordered routing algorithm (V' H algorithm)
to n-dimensional mesh, the message is first routed in the highest dimension, and routing
then proceeds to each dimension, in descending order, until the routing path reaches the
source node. Routing in a particular dimension is always complete before routing in the
next dimension begins. The dimension ordered routing algorithm is simple and easy to
implement, but it may generate more traffic than the shortest path approach. The Distance
routing algorithm (DIST algorithm) can reduce the total traffic, which enable finding the
shortest path to the existing multicasting tree for each destination. However, it may take
more multicasting time, and be more complex to implement, especially for the n-dimensional
mesh.

The n-dimensional torus is identical to the n-dimensional mesh, except that the torus
network has additional wraparound links in every dimension. All algorithms for mesh are
also suitable for the torus network. The only difference is that the torus network use less
multicasting time and traffic than the mesh network, since the diameter of the torus is
smaller by a factor of two than the mesh network.

In the n-dimensional mesh or torus network, the multicasting time in the V' H algorithm
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is equal to or less than the multicasting time in the DIST algorithm. On the other hand,
the number of links in the V H algorithm is equal to or greater than the number of links in
the DIST algorithm.

TIMEyy <TIMEp;st

LINKyg 2 LINKpyst
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Chapter 3

Implementation and analysis

3.1 System Requirements

This chapter deals with the problem of translating design models into an implementation
for the multicasting communication system. Based on the design model representation
discussed in the previous chapter, I will restate this problem as that of transmitting a
message from the source node to a set of destination nodes. The solution entails constructing
a communication network to model the application and implementation for the multicasting
problem.

The implementation is based in both the V H and DIST algorithms developed for 2DM,

2DT, 3DM, and 3DT networks.

3.2 Software Technology Used

There are many different approaches to the software development. Object-oriented tech-
nologies do lead to a number of inherent benefits that provide advantages at the technical

level. Object-oriented systems are easier to maintain because the objects are independent.
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They may be understood and modified as entities which work independantly of one another.
Changing the implementation of an object or adding services will not affect other system’s
objects. Due to the advantage of object-oriented systems, an object-oriented strategy is
used throughout the process in the development of the multicasting communication system.
Object-oriented analysis (OOA) is used in requirement analysis and object-oriented design
(OOD) is used in design phases.

There are three different mechanisms in OOD, which are inheritance, composition, and
aggregation. The inheritance mechanism supports class hierarchies (the “is-a” relation). On
the other hand, the composition mechanism is a concept that leads to aggregate objects, and
the aggregation mechanism relation (the “has-a” relation) supports the part-whole concept.
Inheritance supports the generalization-specialization relation, whereas aggregation is useful

in depicting relations involving containment and sharing.

3.3 System Implementation

In the implementation, C++, as OO programming language, is used to realize the de-
sign and implement the multicasting communication model, because the object-oriented
programming (OOP) languages make an object-oriented design easier to implement.

The mesh and the torus networks have similar properties, both of them contain nodes
in their netowks. Create the “node” class to store the node’s information such as its

coordinator, its distance cost from the originator, and its previous node in the routing, etc.

3.3.1 Implementation in 2-Dimensional Mesh Network

We implemented the VH and DIST algorithms and evaluated their performance in the

metrics of time and traffic respectively. Clearly, the average additional traffic, defined as
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Figure 3.1: Data flow diagram for the V H,pys Algorithm

the average amount of total traffic minus the number of destination nodes, is a reasonable

measure for the amount of traffic for the multicasting algorithm. [21]

VH Algorithm in the 2DM Network

In the V Hopys algorithm, the multicasting path follows the vertical dimension (y value)
first until y = 0, and then turns to the horizontal dimension (z value) going back to the

source node (0,0). The data flow is described in Figure 3.1.
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We study the performance of the proposed V Hopjs algorithm for a 20 x 20 2DM. A large
number of randomly generated multicasting sets with a different number of destinations are
tested to measure the time and average additional traffic generated by these algorithms.
The number of destination nodes, k, is chosen from 50, 100, and up to 350. For a given
k, a random number generator generates k nodes between the range of (0,0) and (19, 19),

which represents k destinations. The results are shown in Table 3.1.

DIST Algorithm in 2DM Network

In the DISTspys algorithm, a List class is used to store the active nodes included in the
multicasting tree. Initially, only the source node is in the List class. Start from the node
with minimum distance, find the shortest path to the active List, and set the previous node
for all nodes in the path. Meanwhile put every node within the shortest path into the active
List. Repeat the process until the paths are found for all destination nodes. The data flow
is described in Figure 3.2.

We study the performance of the DIST5par algorithm in a 20x20 2DM, and the same set
of constraint for the DISTypys algorithm is used. Many randomly generated multicasting
sets with a different number of destinations are tested in order to measure the time and
average additional traffic generated by the algorithm. The number of destination nodes, k,
is chosen from 50, 100, up to 350. For a given k, a random number generator generates k
nodes between the range of (0,0) and (19, 19), which represent k& destinations.The results

are shown in Table 3.1.
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Figure 3.2: Data flow diagram for the DIST;pss Algorithm
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Multicasting Time || Average Additional Traffic
nodes | VHaopar | DISTopur || VHopu DIST,pum

50 | 35.45 37.3 211.95 71.25
100 | 36.8 37.25 234.95 64.55
150 | 37.1 37.95 207.7 46.65
200 | 37.1 37.95 167.8 22.7
250 | 37.15 374 125.2 14.25
300 | 37.7 37.75 82.45 6.175
350 | 37.5 37.8 33.5 2.15

Table 3.1: Results in a 20 x 20 2DM network

Analysis of 2-dimensional mesh

According to Table 3.1, the V Hopys algorithm spends less multicasting time than the
DISTypy algorithm. However, the DISTypys algorithm reduces a great amount of traffic
as compared with the V Hopys algorithm. In addition, the gap between the TIM Eyv g, ,,
and the TIM Ep;sT,p,, narrows when the number of destinations k& grows. The comparison

of the multicasting time is shown in Figure 3.3. Figure 3.4 illustrates the comparison of the

average additional traffic.

3.3.2 Simulation in the 2-Dimensional Torus Network

VH Algorithm in the 2DT Network

Consider a 20 x 20 2DT network, and assume initially that the message is at the originator
and a set of destination nodes is randomly generated within the network. In the VHypr

algorithm, first decide the section number for every destination node, after which each node
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Figure 3.3: The multicasting time in a 20 x 20 2DM network
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Figure 3.4: The average additional traffic in a 20 x 20 2DM network
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performs the routing strategy in its own section, except when using the wraparound links.

e If the node (zj,y;) is in section 1, its routing follows the vertical dimension towards
the node (z;,0), then turns to the horizontal dimension until it reaches the source

node (0, 0);

e If the node (z;,y;) is in section 2, its routing follows the vertical dimension towards
the node (z;,0), then turns to the horizontal dimension and towards the node (19,0).

Finally, it uses the wraparound link to get back to the source (0,0).

e If the node (z;,y;) is in section 3, its routing follows the vertical dimension towards
node (zj,19), then turns to the horizontal dimension and towards the node (0, 19).

Finally, it uses the wraparound link to get back to the source (0,0).

e If the node (z;,y;) is in section 4, its routing follows the vertical dimension to node
(z;,19), then turns to the horizontal dimension and towards the node (19, 19). Finally,

it uses the wraparound links to get back to the source (0,0).

We study the performance of the V Hopr algorithm in a 20 x 20 2DT network. A large
number of randomly generated multicasting sets with a different number of destinations
are tested to measure the time and traffic generated by the algorithm. The number of
destination nodes, k, is chosen from 50, 100, and up to 350. For a given k, a random
number generator generates k nodes within the range between (0,0) and (19, 19), which

represent k£ destinations. The results are shown in Table 3.2.

DIST Algorithm in the 2DT Network

In the DISThpr algorithm, we use an active List class to store the node included in the

multicasting tree. Unlike the 2DM network, the destination node needs to perform the
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Multicasting Time || Average Additional Traffic
nodes | VHopr | DISTopT VHypr DIST>pr

50 | 18.4 18.75 146.85 91.65
100 | 18.9 19.9 182.8 94.15
150 | 19.45 20.1 175.55 79.85
200 | 19.2 20.2 149.55 62.15
250 | 19.8 20.2 114.3 40.35
300 | 19.3 19.8 74.1 17.45
350 | 19.6 19.7 32.45 8.95

Table 3.2: Results in a 20 x 20 2DT network

routing strategy within its own section. Initially, only the source node is in the List class.
Start from the node with a minimum distance, find the shortest path to the active List in
its section, and set the path. Meanwhile put every node within the shortest path onto the
active List. Repeat the process until it finds the shortest paths for all of the destination
nodes.

To illustrate the DISTypr algorithm, consider the 20 x 20 2DT. A large number of
randomly generated multicasting sets with a different number of destinations are tested to
measure the time and traffic generated by the algorithm. The number of destination nodes,
k, is chosen from 50, 100, and up to 350, based on the average of ten times at each spot.
For a given k, a random number generator generates k¥ nodes between the range of (0,0)

and (19, 19), which represent k destinations. The results are shown in Table 3.2.
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Figure 3.5: The multicasting time in a 20 x 20 2DT network

Analysis of 2-dimensional torus

According to Table 3.2, the VHopr algorithm spends less multicasting time than the
DISTypr algorithm (Figure 3.5). However, the DISTypr algorithm can reduce a great
amount of traffic compared to the V Hypr algorithm (Figure 3.6). The relationship is simi-
lar to that of the 2D M network, but the multicasting time and traffic in the 2-D torus are

much smaller than those from the 2-D mesh.

3.3.3 Simulation in the 3-Dimension Mesh Network

We assume initially that the message is at the originator, and a set of destination nodes
is randomly generated within the network. The data flow for the V H3pas algorithm is
described in Figure 3.7 and the data flow for the DIST3pas algorithm is described in

Figure 3.8.

To illustrate the performance of the proposed 3DM algorithms, a 20 x 20 x 20 3DM was
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Figure 3.6: The average additional traffic in a 20 x 20 2DT network

considered. A large number of randomly generated multicasting sets with a different number
of destinations are tested to measure the time and traffic generated by the algorithm. The
number of destination nodes, k, is chosen from 100, 200, and up to 1000. For a given k, a
random number generator generates k nodes between the range of (0,0,0) and (19, 19.19),

which represents k& destinations.
The V H3pys algorithm spends less multicasting time than the DIST3pys algorithm
(Figure 3.9). However, the DIST;pys algorithm reduces a great amount of traffic compared

to the V H3pys algorithm (Figure 3.10).

3.3.4 Simulation in 3-Dimension Torus Network

In a 3DT network, we first decided which section the destination node was in, and then
performed the routing strategy in its own section. The routing can not cross different

sections except by using the wraparound links:
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node generation

sorted destinations

set prevnode as (x, y.z~1)

-,

put node into active List

set prevnode as (x, y—-1.,z)

.

put node into active List

set prevnode as (x-1.y,z)

L

put node into active List

Figure 3.7: Data flow diagram for the V Hzpar Algorithm
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find shortest path to the
existing active List

E put node into active List l‘—

ket prevoode (X, y.z—-1)

set previiode (X, y.z+1)

leuz node into active List |<——

de (x.y—~1.0)

set previode (x.y+1.0)

[puz node into active List I‘—

set prevnode (x-1.0.0)

set prevnode (x+1.0.0)

Figure 3.8: Data flow diagram for the DIST3par Algorithm
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Figure 3.11: The multicasting time in a 20 x 20 x 20 3DT network

The program was run in the 20 x 20 x 20 3DT by using 100, 200, and up to 1000
destination nodes, as well as running the program ten times for each set of destination nodes,
where all destination nodes are generated randomly. The multicasting time is illustrated in

Figure 3.11, and the comparisons of average additional traffic is displayed in Figure 3.12.

3.4 Comparing the VH and the DIST algorithms with the

heuristic algorithms for hypercube

The hypercube network is one of the most important interconnection structures. The al-
gorithms developed in this thesis can also be applied to the hypercube network. In an
n-dimensional torus (m X --- x m), when m = 2, it becomes an n-dimensional hypercube.
The paths of the V H algorithm are the shortest paths between the source and destination

nodes and the multicasting time is minimal. Applying the V H algorithm to the n-cube,
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Figure 3.12: The average additional traffic in a 20 x 20 x 20 3DT network

the multicasting time is optimal, which is the same as the heuristic algorithms for the hy-
percube discussed in Chapter 1. However, the average additional traffic generated by the

V H algorithm is similar to the SS’s and SEY’s, but it is much smaller than that of LEN’s.

Average additional traffic

6 ‘_ LEN's algorithm: ~ ............

SS and SEY’s algorith

VH algorithm: —

DIST

Number of destination nodes k

Figure 3.13: The average additional traffic in a 6-cube
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In addition, the V H algorithm has the time complexity of O(kn) for the n-cube, which is
much less than the complexities of each of the three algorithms for the hypercube, com-
pared to the time complexities of LEN’s (O(nk + n?)), SS's (O(nN)), and SEY’s (O(nN)).
When applying the DIST algorithm to the hypercube, it can reduce the average additional
traffic further. However, the multicasting time in the DIST algorithm is greater than those
of other algorithms. The comparison of average additional traffic in a 6-cube is shown in

Figure 3.13.
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Chapter 4

Algorithm Complexity

4.1 Complexity of 2DM Network

The Running time of V Hypys Algorithm

In the 2DM network (m x n), assume N = m x n is the total number of nodes, & is the
number of destination nodes in the multicasting communication network, and the maximum
distance is D = m + n. The worst case running time of each step is analyzed as follows:

- destination generation: O(k),
- finding the path: O(k(37 (%) + X1z zi)) = O(kD),

Hence the overall worst case running time of the V Hypar algorithm is O(kD).

The Running time of DISTypyr Algorithm

The worst case running time of each step in the DIST,pys Algorithm is analyzed as follows:

- destination generation: O(k),
- finding the shortest path: O(Dk(N + >_yi + 3 z;)) = O(DkN}),

Hence the overall worst-case running time of the DIST,pyr algorithm is O(DkN).
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If the 2DM has the same number of nodes in each dimension, say m = n, then the total
number of nodes is N = m xm = m2, and the maximum distance is D = m+m = 2m. Thus
the complexity of the V Hopar is O(kD) = O(k2m) = O(km), and the complexity of the
DISTspar is O(DkN) = O(2mkm?) = O(km3). Clearly, the complexity of the DISTapar

algorithm is much greater than that of the V Hapyr algorithm.

4.2 Complexity of 2DT Network

The Running time of V Hopr Algorithm

In the 2DT network (m x n), assume N = m x n is the total number of nodes in the
2-dimensional torus network, k is the number of destination nodes in the multicasting
communication network, and the maximum distance is D = ™32, The (worst case) running
time of each step is analyzed as follows:
- destination generation: O(k),

m/2

- finding the path: O(k(X"2y; + Y 2:)) = O(kD),

Hence the overall worst case running time of the V Hypr algorithm is O(kD).

The Running time of DIST>pr Algorithm

The worst case running time of each step in the DIST,pr Algorithm is analyzed as follows:
- destination generation: O(k),
- finding the shortest path: O(Dk(X + ¥ yi + 3. zi)) = O(DkN),
Hence the overall worst case running time of the DIST,pr algorithm is O(DEN).

If the 2DT has the same number of nodes in every dimension, say m = n, then the
total number of nodes is N = m x m = m?, and the maximum distance is D = ﬁzﬂ =rm.

Thus the complexity of the VHspr is O(km), and the complexity of the DISTpr is
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O(DkN) = O(mkm?) = O(km?3). The complexities of 2DT are identical to those from the

2DM network.

4.3 Complexity of 3DM Network

The Running time of V H3;p,s Algorithm

In the 3DM network (m x n x p), N = m x n x p is the total number of nodes in the
3-dimensional mesh network, k is the number of destination nodes in the multicasting
communication network, and the maximum distance is D = m + n + p. The worst case
running time of each step is analyzed as follows:

- destination generation: O(k),

- finding the path: O(k(3_0_,(2,) + Yim (wi) + Yoiz; i) = O(kD),

Hence the overall worst-case running time of the V H3par algorithm is O(kD).

The Running time of DIST;p)r Algorithm

The worst case running time of each step in the DIST3par Algorithm is analyzed as follows:
- destination generation: O(k),

- finding the shortest path: O(Dk(N + 3"z Y. +vyi + Y zi)) = O(DkN),

Hence the overall worst case running time of the DIST3p)s algorithm is O(DkN).

If the 3DM has the same number of nodes in every dimension, say m = n = p, then
the total number of nodes is N = m x m x m = m3, and the maximum distance is
D = m+m+m = 3m. Thus the complexity of the V Hoppr is O(kD) = O(k3m) = O(km),
and the complexity of the DISTypar is O(DkN) = O(3mkm3) = O(km?). Evidently,
the complexity of the DIST;pss algorithm is much greater than those from the VH3par

algorithm.
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4.4 Complexity of 3DT Network

The Running time of V H3pr Algorithm

In the 3DT network (m x n x p), N = m x n X p is the total number of nodes in the
3-dimensional torus network, k£ is the number of destination nodes in the multicasting
communication network, and the maximum distance is D = &;*‘2 The worst case running
time of each step is analyzed as follows:

- destination generation: O(k),

- finding the path: O(k Zp/z z + Ef_/f yi + Zm/[ z;)) = O(kD),

Hence the overall worst case running time of the V H3pr algorithm is O(kD).

The Running time of DIST;pr Algorithm

The worst case running time of each step in the DIST3pr Algorithm is analyzed as follows:
- destination generation: O(k),

- finding the shortest path: O(DE(§ + 3 zi + Y v + Y z:)) = O(DkN),

Hence the overall worst case running time of the DIST3pr algorithm is O(DAN).

Assume the 3DT has the same number of nodes in every dimension, say m = n = p,
then the total number of nodes are N = m x m x m = m?, and the maximum distance is
D = mtBEMm — 1.5m. Thus the complexity of the V Hzpr is O(km), and the complexity of
the DIST3pr is O(DkN) = O(1.5mkm3) = O(km?).

It is clear that the VHopar, VHopr, VHapar, and VHzpr all share the same time
complexity of O(kD). Meanwhile, the DISTypar, DISTopr, DIST3par, and DIST3pr
have the same time complexity of O(kDN). In addtion, the above concepts can be extended
to the n-dimensional mesh or torus network. In general the VH algorithm has the time

complexity of O(kD) and the DIST algorithm has the time complexity of O(kDN). If we
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consider the n-dimensional mesh or the torus network (m x m x --- x m), the worst case
running time of the V H algorithm is O(knm), and the worst case running time of the DIST
algorithm is O(knm™*!). Thus, the DIST algorithm can not be used in high dimensional

mesh and torus networks.
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Chapter 5

Gossiping in the Multicasting

Communication Environment

Gossiping is a fundamental communication problem. Initially, each node in a network holds
some data, which must be routed so that in the end all nodes have the complete data (this
problem is also called all-to-all broadcast). Gossiping is worth studying since it appears as

a subroutine in many important problems.

5.1 Concept of Gossiping

Let N be any communication network (or graph) with n > 4 processors (nodes or vertices).
The broadcasting problem defined over N consists of sending a message from one processor
in the network to all the remaining processors. The gossiping problem over N consists
of broadcasting n messages, each originating from a different processor. The gossiping
communication model allows each processor to multicast one message to any subset of its

adjacent processors, however no processor may receive more than one message at a time.
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In the gossiping communication problem which contains n processors, initially, every
processor holds one message and requires the remaining n—1 messages. Because a processor
may receive only one message at a time, it is desirable to receive all messages in n — 1 time
units, which is the optimal lower bound of gossiping time. However, it is NP-complete to
develop an algorithm for an arbitrary network, which can finish gossiping in n — 1 time
units. There are some special networks that can finish gossiping in n — 1 time units. It
is known that an n processor network with a Hamiltonian circuit can finish gossiping in
n — 1 time units (See Example 5.1). A circuit zo,Z1,...,Zn—1,Zn,Zo (With n > 1) in a
graph G = (V, E) is called a Hamiltonian circuit if V' = {zo,z1,-.-sTn-1:Zn} and z; # T;
for 0 < i < j < n. For the gossiping problem, it is not necessary for a network to have a
Hamiltonian circuit to be solvable in n — 1 steps. T.F. Gonzalez has proposed two networks

that can achieve the gossiping problem in n — 1 steps for n =6 and n = 10 [7].

Example 5.1. There are eight processors (n = 8) in network N (Figure 5.1), which includes
a Hamiltonian circuit. The optimal schedule is for each processor to send its anticlockwise
neighbor the message it holds, and then in the nezt siz iterations, every processor keeps
transmitting in an anticlockwise manner. It is simple to verify that all the communications

can be carried out in n — 1 steps, which is the best possible result.

Figure 5.1: Network with a Hamiltonian circuit.
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5.2 Communication Model

Now, I will formally define the communication model of the gossiping problem. Let N be
any communication network (or graph) with n > 4 processors (nodes or vertices). Initially
each processor P; holds one message in its hold set and needs to receive the remainingn —1

messages. The multicasting communication model must satisfy the following restrictions:

1. During each time unit, each processor P; may transmit one of the messages it holds,

but such a message can be transmitted simultaneously to a subset of processors adja-

cent to P,.

2. During each time unit each processor may receive at most one message.

The communication process ends when each processor has the complete n messages.

Our problem consists of constructing a communication schedule with the least total com-

munication time.

Figure 5.2: Network without a Hamiltonian circuit.
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5.3 Gossiping Algorithm

The goal of the algorithm is to find a graph without a Hamiltonian circuit, which can also

finish gossiping in n — 1 time units. Let us first consider this example.

Example 5.2. There are five processors (n = 5) in the network (Figure 5.2). Processor 1
and 5 are both connected to process 2,3,4; processor 2,3.4 are only connected to processor
1 and 5. This network does not contain a Hamiltonian circuit. A communication schedule

with a total communication time equal to four is given in Table 5.1.

time Message: Processor — Processors

Tl M]_ : P1 - P2,3,4 ]\/[2 : P2 — P1,5

Tz M2 : P1 — P3'4 A/[3 : P3 - P1,5 M5 : P5 — Pg

T3 1W3 : P]_ — Pz‘.; 1\/[4 : P.l -3 P1,5 1\/[5 : P5 — P3

T4 M4:P1—)P2’3 M5:P2—)P1 M1:P3—)P5 1\/[5:P5—}P4

Table 5.1: Gossiping Schedule in a Network without Hamiltonian Circuit

Based on the example, a 5-processor-network can finish gossiping in 4 time units. Extend
this example to a general case network, which has n processors in the network, and it can
finish gossiping in n — 1 time units. Now the algorithm is described in the following.

Let us define a network H. There are n processors in the network H. Processor 1 and
n are connected to processors 2...7n — 1, and processor n is also connected to processor

2...n—1; processors 2...n — 1 are only connected to processor 1 and n.

Proposition 5.1. If a network contains a subgraph H, then this network can finish gossip-

ing inn — 1 time units.
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Proof. We will prove the proposition by describing an algorithm which finishes gossiping in

n — 1 time units.

Algorithm 5.1. In a subgraph H, the communication schedule with a gossiping time equal

ton — 1 is given in Table 5.2.

time Message: Processor — Processors
T1 1\/[1 : P1 s P2.._n—l A/Ig : Pg — Pl,n
T My : P — Pz‘_,n_l(e:z:ceptPg) M;:. Py — Pl,n M,:P,—- P

T; M;: P, — P, ,_i(exceptP;) | Mt : Py = P | My : Py 2 P

Tn_1 Mn_1 : P1 — Pz,__n,_z Mn : Pz — P1 Mn : Pn e Pn_1

A/I[ :P3 —)Pn

Table 5.2: Gossiping slgorithm schedule in subgraph H

In the gossiping problem, any processor P; will receive all given messages m;. Divide

this problem into six different cases.

Case 1: Ifi =1, and 2 < j < n — 1, then the processor p; will receive m; at time ¢, from the

processor Pj.

Case 2: If i = 1, and j = n, then the processor p, will receive m; at time ¢, — 1 from the

processor Pj.

Case 3: If i =n, and 2 < j < n — 1, then the message m, will be sent to the processor P at
time ¢9, the message m, will be sent to the processor P; at time ¢3, so the processor

P; will receive the message m, at time ;.
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Case 4: If i = n, and j = 1, then the processor p, will receive the message m, at time ¢, — 1

from the processor Ps.

Case 5: If2<i<n-1,and j = 1,n, then the message m; will be sent to the P, and P, at

time £;_;.

Case 6: If2<i<n-—1,and 2 <j <n-1, in case 5 the processor P; will receive the message

m; at time ¢;_;, then the P, will send the message m; to the processor P; at time ¢;.

Overall, the above analysis can guarantee that any processor P; will receive any given

message m;, and receive them within n — 1 time units. O

If there exists such a subgraph in an arbitrary graph, evidently, it can finish gossiping
in n — 1 time units. How would we find such a subgraph in a given graph? Let us use the
adjacency matrix to solve this problem. The adjacency matrix is the n x n zero-one matrix
with 1 as its (¢, j)th entry when v; and v; are adjacent, and 0 as its (%, j)th entry when they

are not adjacent. In other words, if its adjacency matrix is A = [a; j], then

1, if {v;,v;} is an edge of G,
a1’J =

0, otherwise.

Algorithm 5.2. Consider an arbitrary graph with n nodes. Using the adjacency matriz to

represent this graph.

1. Find a row i, which contains at least n — 2 Is.

2. Find another row j, which contains n — 2 1s except in column i.

If these conditions are satisfied, there must be such a subgraph.
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Figure 5.3: Network containing subgraph H

Example 5.3. Let us consider an arbitrary network with 6 nodes as shown in Figure 5.3.

First contruct the matriz.

011001

011001

\110110)

The second row has four 1s, but there is no other row which has the same pattern as row 2.
As we continue searching, row 3 and 6 have four s, and the 1s are in columns 1, 2, 4, and
5. Thus, there is a desirable subgraph. As a result, this network can finish gossiping in five

time units.
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Chapter 6

Conclusion and Future Work

This thesis presents multicasting algorithms for 2- and 3-dimensional mesh and torus net-
works. In general, the V H algorithm follows the dimension ordered routing. Routing in
a particular dimension is always complete before proceeding to the next dimension. The
DIST algorithm follows the shortest path to the existing multicasting tree to reduce the
total traffic. The V H algorithm has a worst case time complexity of O(kD) for any dimen-
sional mesh and torus networks. The DIST algorithm has a worst case time complexity
of O(kDN) for any dimensional mesh and torus networks, where k is the number of des-
tination nodes, D is the maximum distance for any destination node, and N is the total
number of nodes in the network.

Time and traffic are two important parameters used when evaluating the performance
of multicasting algorithms. The V H algorithm delivers the message in the minimal time,
while the DIST algorithm generates less traffic than the V H algorithm.

Not only can the VH and the DIST algorithms be used in the mesh and the torus
networks, but also can they be applied to the hypercube network.

Gossiping communication is an important communication model. It is desirable to finish
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gossiping in n — 1 time units for a n node network. However, it is NP-complete to develop
such an algorithm for an arbitrary network. A special type of a network is shown, which
can finish gossiping in n — 1 steps.

The emphasis of this thesis is on the theoretical aspect of the multicasting communica-
tion. There are many more issues which certainly require further investigation. First, the
upper bound of DIST algorithm should be more tight. The upper bound of the DIST>p s
is 3Dmq. in this thesis, which can be reduced in future study. Second, other better heuristic
routing algorithms should be studied, which minimize the time while keeping the traffic at
a minimum. Third, the deadlock issue should be concerned that may be caused by the mul-
ticasting communication. Fourth, the faulty node in the communication network should be
considered when developing a routing algorithm because the faulty-tolerant routing scheme
is a key to the performance of reliable network communication. Finally, we should study
other evaluation criteria based on different underlying switching techniques, such as the

multicasting algorithm in wormhole routing.
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