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Abstract

Keyword-based Approaches to Improve Internet Search

Manolo Dulva Hina

Technology keeps on evolving and so must the science of information retrieval. This
thesis presents keyword-based approaches to improve information retrieval from the
I[ntermet. Focused and unfocused queries to search engines are considered, and means of
obtaining relevant documents are presented. For focused queries, techniques are
provided to obtain a high precision score from the hit documents; these documents do
contain the exact answers to the focused query, which is usually a question. User queries
are subjected to ambiguity test to determine if it is ambiguous, and if it is so, provide
direction so as the user’s intended meaning is the one that is actually searched. The
queries are modified to form a new clear and unambiguous. Query is sent to several
search engines at the same time, and hit documents from each of these search engines are
collated and merged. Hit documents to an ambiguous query are analyzed and ranked
based on their actual relevance to the query. Term frequency is used, along with
popularity score, to determine the total score of a relevant document. Every relevant hit
document is classified based on its academic relevance. A few academic categories are
considered — (1) Course Notes, (2) Frequently Asked Questions, (3) Research Paper, (4)
Technical Report, (5) Thesis, (6) Tutorial, (7) Review, and (8) Research Paper/Technical
Report. Once a search is done, a set of relevant documents is presented, along with each

document’s academic relevance category (if any).
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Chapter 1

Introduction

The World Wide Web is growing and as the Internet gets bigger each day, more and
more people get information from the Internet as well. More and more people search
information or transact business online. As far as searching information is concerned,
more and more people, like students and researchers — from all over the world — are

using search engines to help themselves find the information they need.

The design of the present search engines has to improve somehow in order to cope
with the present and future demands of the Internet users — more results to the query,
higher retun of relevant documents to the query, being capable of handling both
focused and unfocused queries, and guiding the user where to go in case of a

confusing query.

The intention of this thesis is to try to move one step higher to the present crop of
search engines. There are proposals of new concepts in improving the design of
search engines, and facts and figures are presented to show that these concepts are

feasible.



1.1 Internet Search Engines

An Internet search engine is a glorified index, a database that contains index terms.
Search engines, in general, rely heavily on software robots to update their indices. A
robot visits an HTML document, finds important keywords that could be considered
as representative of the content of the document, and stores these keywords along

with the Internet address of the document in the database.

The search engine providers keep a large database, such that whenever a user uses
such search engine and inputs a query, the search engine itself finds relevant
document within its database. It displays a list of titles of relevant documents, along
with each document’s Internet address, relevance score, and a short summary, usually

the first few words that appear in the document.

An Internet search engine is an information retrieval tool, very similar in concept to
information retrieval in library science. The only difference is that the scope of the
search for the search engine is global. To keep the search engine database up-to-date,
the robot or the crawler part of the search engine must continue to visit more

documents, usually once or twice a month to keep its database fresh and up-to-date.

One slight variation of a search engine is a directory. In concept, it is very similar to a
search engine except that the entries in the directory are completely entered by

human, usually the one maintaining the directory. In contrast, the index database of



the search engine is machine generated, as it is in general case. When the robot or
crawler visits and analyzes a particular Internet document, the result of this process
becomes an input to the index database, usually without direct intervention from the

search engine provider.

There are pros and cons of using a search engine over a directory and vice-versa. A
search engine does not need, to a certain extent, human intervention to update its
database, but its scoring and ranking of document are occasionally misleading. This is
because usually people find a completely irrelevant document getting a high score
and a very relevant document with a quite low relevance score. A directory, on the
other hand, being subject to human intervention can be biased on one or two
documents in which the directory provider has a vested interest. In effect, it is not
completely remote that a document with lesser relevance could be ranked higher than

one with higher content relevance in a directory.

An index database that comes in between a search engine and a directory is called a
hybrid. That is to say that its index database is partly based on the search engine’s
way of ranking document by a ranking algorithm without human intervention, and

also partly similar to a directory’s way of ranking document with human intervention.

As of now, there are many search engines available in the Internet, but only about 5 to
7 are popular because they are automatically invoked as default search engines by the
[nternet browsers (i.e. Netscape, Internet Explorer) whenever the search buttons in

these browsers are clicked. The popular ones are Google, Netscape, Excite, Hotbot,
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Looksmart, Lycos. and AltaVista. On the other hand, the most dominant directory is

Yahoo!

While the present crop of search engines is helpful in identifying documents relevant

to a user’s query, they have their own pitfalls and limitations to wit:

®)

(i)

(iit)

(iv)

)

Some of the documents presented in the hits list of user’s query are
“irrelevant”, the way an ordinary user applies the concept of “relevance”.
Some of the documents presented in the hits list of user’s query do not deserve
their relevance scores.

Some of the documents presented in the hits list of user’s query are dead or
non-existing documents. This could only be found out when a dead Intemnet
document ts being surfed or downloaded - the user waits for a few minutes,
then he gets a message saying that the document is not responding or non-
existing.

The majority — if not all — of the search engines do not address the problem
associated when the user fields a semantically ambiguous query - a query
keyword that has more than one definition. The results of this is that a greater
majority of the documents in the hits list are irrelevant as far as the user’s
desired intention of the query is concerned.

There is still no way to determine in advance the category of a document --
whether academic, commercial or any other category -- when a document is
presented in the hits list of a user’s query. A user with an academic interest

(e.g. professor, student, researcher, etc.) would have to open and download



every document, read every piece of document in order to determine each
one’s academic relevance.

(vi)  Search engines apply the concept of information retrieval on text documents
alone. There is no search engine at present that indexes documents in other

media format such as audio and video.

1.2 Objective of Thesis Work

The original aim of this thesis is to come up with a multimedia search engine. As time
passed by, we realized that the work is too huge for a single researcher. The scope of
the thesis itself is too huge and the needed tools and facilities are not available. We
first had some restrictions in the computing facilities of Computing Science
Department — limited amount of memory space quota for students, no access to the
server, absence of speech recognition tools available. We then decided to limit the

scope to one media — the HTML text document.

Our frustration on many irrelevant results in our search engine queries inspired us to
conceptualize ways in improving search engines, particularly in order for them to
produce relevant hit documents. Our first problem is that we cannot go to commercial
search engines and ask them to modify the ways they search relevant documents nor
impose upon them whatever we think is the good way of searching relevant
documents. Next, we cannot make our own search engine — we have limited time for

studies, and limited memory space quota to work on. Indeed, we are to find



techniques to improve relevance of search engine hit results, but within the given

constraints.

We eventually come up with our own solution — a front-end, a link between the user

himself on one hand, and the search engines on the other. The objectives of this thesis

work are twofold:

!\J

To have a means that ensures that the user query is clear and unambiguous before
the user’s query is passed to the search engines.

To collect, collate, and find only relevant documents from the set of hit
documents returned by search engines, and return these relevant documents to the

user.

We believe that search engines return irrelevant hit documents due to two reasons:

1.

That the quality of user’s query is bad - either because the user’s query is poorly
constructed, or it is ambiguous. We all do not expect to get good output when the
input is also not good.

That the search engines (or directories or hybrids) themselves have inferior
methods of finding relevant documents - poor ranking algorithm, or bias on a

particular document(s), etc.

We believe that by blocking the user’s query first and analyzing it for some ambiguity

before submitting it to the search engine will ensure that the quality of user’s query is

indeed good. As such, there will be a good possibility that relevant hit documents will



be returned. On the other side of the front-end, we believe that by collating search
engines hit results, then finding only relevant documents among them, and finally
returning these relevant documents to the user will ensure that the user’s time in

surfing the Web is a time spent wisely and productively.
1.3 Thesis Contribution

The aim of this thesis is to present some new concepts that will address the majority

of the search engine limitations presented above.

One aim of this thesis is to present and strictly implement the relevance scoring
policy to Web documents. In doing so, the study intends to give a justifiable
evaluation of document relevance, giving the user more results that could otherwise

be obtained by multiple searches.

The above-mentioned objective can be realized by submitting the user query to
multiple search engines, and collating the results and ranking them accordingly. This
tool is generally called a “metacrawler”. This concept was original until Copernic
came into the scene in year 2000. The researcher of this thesis had this concept since

1997 but failed to submit a complete thesis due to many reasons.

Among the present crop of search engines, it is always possible that one document

could appear in the database of more than one search engine, let us say two. It is



likewise possible that this same document would have different relevance score to
each of these search engines even for the same query. This is due to the fact that
every search engine has its own ranking algorithm that could be different from the

ranking algorithms of other search engines.

There are a few ranking algorithms available in information retrieval. This thesis
intends to present a combination of TF (Term Frequency) algorithm along with Most-
Cited ranking algorithm. To be very specific, a default value of 80% of the relevance
will be based on TF policy, and 20% is based upon Most-Cited policy. These are the
relevance scoring distribution by default. The proposed system does provide,

however, an option by which the user could modify this score distribution.

When merging and re-ranking combined documents that are presented as hits by two
or more search engines, it pays to ignore the relevance scores assigned to the
documents by the individual search engine. This is because it is not wise to merge
documents and retain their scores when these scores are calculated using different
formulas. The search engines themselves are not even informing the users of what
exactly their ranking algorithm is based upon. The best way to deal with this
inconsistent and different ranking algorithms used by different search engines is to

use our own relevance scoring formula and apply it to all hit documents.

To ensure a high probability that only the most relevant hit documents for the query

are obtained, only 10 documents (the default value) per search engine are obtained



among the many documents presented by each search engine in the hits list. That is to
say that if a user submits a query to 3 search engines, at most 30 distinct documents
are going to be generated to be scored and to be ranked for the user. The rationale
behind this is that the 10 highest-ranked documents are the most relevant to the user’s
query as far as the search engine is concerned. And there is a high probability that it is
rightly so. Our reasons for selecting only the first 10 documents are twofold: (1) the
first page of the hit results of the majority of search engines contain the top 10
documents, and (2) we limit the number of documents to 10 because we simply

intend to test if our concept is feasible.

The cons of taking only 10 documents from search engine hits result is that these 10
are not necessarily the highest ranked documents if they are ranked independently.
But no one knows the relevance score of the other documents ranked 11" and
downward. There is a slight probability that a few of these documents presented as
top 10 hits by a search engine are irrelevant. However, once a ranking algorithm is
imposed upon each of these documents, an irrelevant document will obviously find

itself at the bottom of the list or, in the worst case, be discarded altogether.

Many ranking algorithms are used in information retrieval. It is wise to use an
algorithm based on the condition that best suits that algorithm. We used term
frequency because it measures the relevance of a document based on the presence and
the frequency of keywords in the document. These keywords are the keywords in the

user’s query. Usually, term frequency is associated with Inverse Document Frequency



(IDF) which increases relevance score if the term appears frequently in the document,
but decreases when this term appears in too many documents that the term becomes
so common and therefore insignificant. The IDF policy is ignored because the
situation here deals with a very small number of documents, about 30 documents if 3
search engines are chosen to about 50 documents if 5 search engines are chosen. It is
very unlikely that [DF will play a vital role since not a large database is involved to

compare presence of keywords in other documents, as the search engine providers do.

The ranking algorithm used also involves most-cited ranking scheme (a.k.a.
popularity measure). Theoretically, it assigns documents larger scores to a relevant
document that is referenced by another relevant documents. In concept, one relevant
document will not put in its body a link to another document of same subject if the
referenced document is not worthy to be cited. This is viewed as a bonus (20%
maximum) to a document that is well done that other documents in the Web

discussing the same subject do provide link to it in their pages.

In theory, one person practicing a specific field will not be popular among his
colleagues if he is not interesting in their own domain. He becomes popular because
he has done meritorious things. The same principle is used in our most-cited ranking

scheme.

Potentially, the small number of test documents will most likely produce a scenario

that none of these documents is popular among documents listed in the top hits.

10



Hence, the popularity of a document will most likely be zero. In such a case, a
document relevance score will be that of its TF score alone, which will give it a likely

score of 80% as the maximum.

The relative percentages assigned to the TF scheme (80%) and most-cited scheme
(20%) are default values. The user has a way of changing these scores to desired
value in the proposed implementation of this scheme. If the user so desires, popularity
can be omitted altogether (by giving it a 0% weight) and simply the term frequency

may be used to rank documents.

Another aim of this thesis is to categorize documents in the Internet. Only that this is
implemented in a limited scope — academic application. With this in mind, this thesis
would like to contribute to the speedy access of relevant academic documents
available in the Internet. It is hoped that after doing this, some other document
categorization will follow - such as identifying the commercial or economic

relevance of a particular document, just to cite an example.

One benefit of informing a user that a document is a course note or a FAQ document,
or any other category even before such document is downloaded saved time in
identifying document of academic relevance. Having seen the academic category as
list of documents are presented as hits to a user’s query, the user then has the option

of downloading only category of his choice.

11



This contribution is important in the sense that there is too much information on the
Net nowadays that if there is no tool like this, the user might end up spending too
much time just to find too little of subjects of his interest. Some information in the
Net are simply not interesting, some are relevant. This study intends to give users

relevant documents.

One more contribution that this thesis would intend to render is to provide directions
to user’s query whenever such query is ambiguous in nature. This work intends to
identify if the query is ambiguous, and if it is so, then informs the user of available
options (actually, additional keywords) that would potentially lead to a more
meaningful query. That is the query and additional keyword combination will lead to
giving results whose contents are likely to be the definition the user wishes or means

in such an ambiguous query.

The thesis also makes contribution by giving distinction between a focused and
unfocused queries based on query keywords entered by the user. It does provide ways
to come up with meaningful and relevant hits to the queries whether the query itself is
focused or unfocused. By finding a way to find hits to unfocused queries, the search
engines will be more relevant to the needs of people, notably students, who try to find

quick answers based on easy, non-complicated queries.

In summary, this thesis intends to contribute in:

12



(1) Providing a scheme to detect an ambiguous query, and provide user choice of
keywords that when added to the original query will lead to a more
meaningful, non-ambiguous query. It helps in obtaining documents relevant to
the definition the user actually mean.

(i1) Providing relevant hits to both focused and unfocused queries.

(iii)  Providing more hit documents to a user’s Internet query by submitting the
same query to multiple search engines and collating their results.

(iv)  Providing a ranking algorithm that will calculate the relevance scores of the
documents based on term frequency and popularity.

v) Providing a categorization of documents in relation to its academic relevance.

Categories include course notes, FAQ, thesis, technical report, etc.

1.4 Organization of Thesis

The thesis is basically divided into five major parts:

) I[dentifying and providing directions to ambiguous queries,

(i)  Finding relevant hits to focused and unfocused queries,

(i)  Classifying Internet documents as per academic relevance,

(iv)  Ranking and merging documents from several search engines, and

v) Appendix.

Identifying and providing directions to ambiguous queries discusses the theoretical

concepts and implementation details. It discusses how user’s query is identified as

13



ambiguous using a dictionary. Parsing of query and keyword definition is discussed,
together with the tools used in implementing it — lists of stop words and stop symbols.
The user is eventually provided with a list of keywords, and a choice of one keyword
is appended to the original query to form a newer (and more meaningful) query. If
results to this query is significantly low, the user is provided with some choice of
keywords that could possibly mean the same as his original query, but may possibly
produce more hits had it been used instead of the original query word. This is realized

through the use of a thesaurus.

The second part of the thesis is a discussion of how to find relevant documents for
focused and unfocused queries. It discusses an unfocused query as one that generally

ask questions, usually beginning with keywords what, who, when, where, why, and

how, and as such the relevant document should be one that answers the question. A
focused query is one in which user enters some keywords, so the relevant documents
generated by the search engines are those that are related to the keywords that was
entered by the user. For unfocused quenes, the study discusses ways and means to
trim the question into tokens, select meaningful keywords from these tokens, and use
these keywords to search documents from the Internet. The selection of document is
then decided based on the contents of these documents — specifically, if its contents
answers the question posed by the user. The focused query part is basically the same
as that of the unfocused query, except that there is no question to process as tokens of
keywords; hence, all the user’s keywords are accepted as parameters to find relevant

documents.

14



The third part - Classifying Internet documents as per academic relevance — begins
with discussion of what qualifies a document category — course note, for instance.

Eight categories are discussed, namely:

(1) Course Notes,

(2) FAQ (Frequently Asked Questions),
3) Research Papers,

“) Technical Report,

(5) Theses,

(6) Tutorials,

(7) Reviews, and

(8) Research Papers/Technical Reports.

It discusses the methods used in finding relevant keywords ~ (1) in the title, (2) in the
heading, (3) in the body, and (4) a test of scoring a document probabilistically with

reference to keywords associated with a document category in the database.

Along with the methods of searching relevant keywords is an explanation of tools
used in its implementation in Java language — stop words, stop symbols, stop tags,

essential HTML tags, and the term frequency scoring.

The fourth part — Ranking and merging documents from several search engines -
begins with analyzing keywords that appear in user’s query, and the possible Boolean
operation involved. A list of probable Boolean operations are presented along with

their definitions, and how it can be accomplished in the program.



Also presented within this part are some ranking algorithms that are existing in the
field of information retrieval. Each of these techniques is presented in general
concepts. Eventually a choice is made that TF and Most-cited techniques are

combined together and the combination is used as the algorithm to rank a document.

The concept of multithreading in Java programming language is presented as a tool to
realize the task of downloading and analyzing Intermnet documents at the same time.
This is also to say that the usual technique of sequentially processing a task of

retrieving and analyzing multiple documents is not feasible in the Internet.

Finally, the scoring of each document is done, and the hits are presented back to the
user. The proposed final result of this process is a list of relevant documents out of a
non-ambiguous query, taken from multiple search engines, analyzed and ranked

accordingly, with its academic category, if any, attached to it.

The appendix of this thesis contains miscellaneous topics. The appendix on stop list
enumerates stop words and stop symbols that are used in discriminating what

constitutes a keyword that represents a document, and what does not.

The ranking algorithms and their meanings and mathematical calculations are

presented as well. Also, a method and some lists of keywords that identify a course

note, or the other seven more document categories are listed down.
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A list of algorithms (instead of actual Java program codes) is presented in Appendix
D. A few of these algorithms are about the academic categorization of document
based on its title, headings, and contents. An algorithm on how to determine an
ambiguous query is also presented. The parsing of a HTML document is also
presented to show how to manipulate the HTML tags to obtain some useful
information about the document - title, headings, and anchors or referenced

documents.
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Chapter 2

Identifying and Providing Directions to Ambiguous Queries

An ambiguous query is a user query to the Internet search engines that could potentially
lead to producing irrelevant document hits because the query itself has more than one
meaning. In this thesis, we would like to identify if a query is ambiguous, and, if it is so,
provide the proper direction to come up with a more meaningful, non-ambiguous query

that will potentially lead to produce good and meaningful hit results.

2.1 Rationale

It is important that whenever a user inputs an ambiguous query, a search engine should
detect that the query is indeed ambiguous, and provide direction to clearly indicate the
user’s intention. The rationality of such a thing is that Internet is open to everyone -
including primary school kids who may not be well versed in English, or even more
matured people whose mother tongue is not English — who could query for subjects that
may have more than one meaning. We intend that our work should accommodate the
greater majority, whether or not the user could enter a clear query or an ambiguous query.
We would like to suggest that an Internet search engine should include a feature that
would identify when a query is ambiguous. If so, it should provide the most, if not all, of
the possible meanings of such a query. Some choices should be presented to the user to
inform him of the possible meanings or definitions of his original query, then allows him

to select one meaning, and the search engine then returns, subject to the limitation of its

18



User

Query l T Ambiguous query notice/choices

* Non-ambiguous query

Interface
Query

Parse Query
Query terms
Stop List

Non-stoplist terms

Stemming
Hits
v —®| Search Engine #1 »
Local Database Hits
—®| Search Engine #2 [——¥]
Ranked. & Hits
lcl?ttse gorized —®| Search Engine #fn [

Enough Number
of Hits?

. Thesaurus
Categorization of
Documents Alternative query options
(for documents not yet
categorized) User —p User enters new

query

Figure 2.1 Flowchart showing detection and directions for ambiguous queries
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resources, some hit documents whose contents are semantically relevant to the definition

the user has earlier opted.

The flowchart in Fig. 2.1 shows the intended front-end that will address user’s ambiguous
query. The user inputs a query. A one-word query is subjected to ambiguity test. The
ambiguity dictionary is used to determine the query’s ambiguity. If the query is found in
the dictionary, then the query is ambiguous, otherwise the query is considered clear and

unambiguous.

For the moment, an ambiguity dictionary does not exist, and so the online WordNet
system is temporary used to detect the query’s ambiguity. In the event that the query is
ambiguous, the user is given the choices of the query’s senses or definitions, and the user
is expected to choose one definition or another keyword that is not in the list of
definitions that the user wishes to add. The user’s intended definition is added to the

original query forming a new modified, non-ambiguous query.

A query can either be focused or unfocused. Chapter 3 of this thesis discusses focused
queries. In the event that the query is unfocused, the query is fed to the local database to
obtain hits (this is assuming that the query results already exist because the user made
such query in the past). If the query is something new, the query is sent to the search

engines to obtain hit results.



The number of hit results to the query is important. [f the number of hit documents are
enough the documents are categorized, and eventually sent to the user. [f the query hit
results are insufficient, a suggestion is made by the system asking the user to re-enter
query using any of the keywords similar to the original query, or enter a completely new
query. The first option in which the system asks the user to re-enter the query by using

another keyword is made possible using the help of the thesaurus.

2.2 Related Work and Literature Survey

Query ambiguity is a generally recognized problem, particularly in the Web
environments where queries are commonly short, and are only one or two words in length
[, 2]. Some work were done in determining the user’s intention when user enters a
query. The work in [1] investigated a technique for resolving ambiguity by using part-of-
speech pattern. It assumes all one-word query is ambiguous, and uses part-of-speech
pattern to deduce all possible semantic variations of the query, and asks the user to supply
some information. The work in [2] is even more complex because it tried to determine the
user’s activity, like reading some of the user’s Microsoft Word document(s) to deduce the
user’s profession or interests, and then use this infoﬁnation to determine the user’s
intention in case of an ambiguous query. In most of the cases presented in earlier related
work, one or two-word query are often considered ambiguous because there are less
information to the query. As number of words in the query increases, the ambiguity of the

query reduces because the additional words add further clarity to the query.
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In general, a one-word query is likely to be ambiguous. For example, take “bird’” as an
example. [t is ambiguous because there are simply too many topics on bird, and the bird
family itself is huge — is it about a dove, a parrot, a pigeon, or an eagle? We do not know.
However, whether the hit documents deal with migratory bird, or bird of prey, or feeding
bird, or a singing parrot, the fact remains that the document is discussing something
related to an animal with feathers, that have wings and usually could fly. When we take

this thing into account, we could then say that a one-word query like “bird™ is not at all

that ambiguous.

However, consider a case when a one-word query does have multiple meanings or
definitions, say “java”. The fact that “java” could mean a certain place in Indonesia, or an
object-oriented programming language, or a beverage could make this query word
capable of producing conflicting and confusing hit results — in all possible definitions of
Java. Hence, we do consider a one-word query as ambiguous only when it has multiple

definitions, each definition having no relation to other definitions.

Our concept of query ambiguity is based on keyword, and not on the context. Basically a
keyword is searched in a dictionary to determine if it has one or more different meanings.

Two or more different definitions for the keyword make the keyword ambiguous.

Obviously there are many other ways to check if the query is ambiguous or not. And it is

not limited to one-word query only. Other approaches could be implemented to determine

the context of a two- or three- or more words in the query. For example, a two-word
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query like “interest rate” is ambiguous because there are many kinds of “interest rate”.
But the approach here is contextual, so a tool like a dictionary is not going to detect the
query’s ambiguity. Language expertise is essential to deal with ambiguity on query with
two or more keywords. We believe that this part of our thesis can be extended further to

accommodate two or more-word query, however, we leave it as future work.

2.3 Theories and Concepts Applied

In this thesis, we adopt the dictionary supplied by the WordNet system reference to
decide if a term is ambiguous or not. WordNet is an online lexical reference system
developed by the Cognitive Science Laboratory at Princeton University under the
direction of Professor Georges A. Miller. The single word query is submitted to the

WordNet system for a definition (or “‘senses™ as WordNet calls it). [f the WordNet system

gives back more than one definition (or senses), the query is considered ambiguous.

The WordNet system is a preferred choice as an online dictionary because this system is
a product of work and research of some of the best linguists in the United States. That
being said, our work is flexible enough that an online dictionary other than WordNet

system could be used and still our front-end system is still going to work.

We propose that in the future, the researcher should probably construct his own

ambiguity dictionary. This ambiguity dictionary is a database of words that have multiple

meanings in the English vocabulary. To use the ambiguity dictionary, the user should

supply a keyword. The keyword is searched within the dictionary, and the ambiguity



dictionary will return all possible meanings of such keyword. For example, supplying an
ambiguous word “bat” would return some keywords like “animal”, “bird”, “stick”,
“sports”, and “game”. One of these keywords would be necessary to identify which

“bat” the user really mean — the animal bat or the bat used in sports such as baseball.

The use of ambiguity dictionary is more efficient than using the online WordNet system.
For one, the list of words in this dictionary is limited to ambiguous words only, hence, a
shorter search in a smaller database. Next, the definition words are available right away;
there is no need to take a whole bunch of words and phrase, trim it to find the right

definition keywords, as is presently being done using the WordNet system.

2.3.1 Identifying if a query is ambiguous or not

Terms such as “orange”, “bat”, and “plant” are semantically ambiguous words because
they have more than one definition, more often these definitions are miles apart from one
another. Consider for example the word “orange”. It could mean a fruit, or a colour, or a

tree, or a place such as a specific county or town.

2.3.1.1 What constitutes a non-ambiguous query?

Whenever a user enters a single-word query, such a query will be subjected to a test of
whether it has one or multiple meanings. No such test will be conducted if a query is a

two- or three-word query, or if the query is a phrase. If a user inputs a query that has
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more than one keyword, its meaning is determined by the Boolean operation between the
words. For example, a query like “air pollution” (or “air + pollution™) will mean find
documents that contains topic on “air” or “pollution™ or “air pollution”. A query like “air
& pollution” (or “air and pollution™) will mean find documents that contain both the
keywords “air” and “pollution” within the same document. When a user enters a query in
quotes, like “air pollution”, this will mean find documents that contain the phrase “air

pollution” in the document. A two-word (or more) query will not be subjected to

ambiguity check.
Logical operation Example(s) Meaning
OR “air pollution” Find documents that contain
“air + pollution” topic on “air”, or “pollution”,
“air or pollution” or “air pollution”.
AND “air & pollution” Find documents that contain
“air and pollution” topic both on “air” and
“pollution”.
Phrase “ “air pollution” “ Find documents that contain
the exact phrase “air
pollution”.

Figure 2.2 List of logical operations and their meanings

23.1.2 What constitutes an ambiguous query?
A single-word user query is automatically subjected to an ambiguity test. To determine if

a particular keyword has multiple meanings, we create a Java process that will find online

the definitions (or senses) of the query. Assuming that the user single-word query is
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“query”, then the online definition (or sense) of query in WordNet system is given by the

URL:

http:/ / www .cogsci.princeton.edu/cgi-
bin/webwnl.7.1?stage=2&word=query&posnumber=1&searcht
ypenumber=2&senses=

Figure 2.3 The WordNet system online URL for the definition of a term “query” |

where query should be replaced by any one-word query, such as orange, bat, etc. The
content of the URL is a HTML document that contains the definitions (or senses) of the
word in question. We created a process that opens up a URL, save the content as a local
text file, and is then parsed to obtain the meanings (or senses) of the word in question. In
WordNet system, every meaning of the word in question is always indicated as
“Sense n” where n is a numeric figure. Hence, if there is only Sensel in the text file, it
means that the word has only one definition, hence query is assumed to be clear and
unambiguous. However, if there are many definitions or senses (at least there is Sense 2
in the text file), the query word is considered as ambiguous, and then meanings or senses

are collected. These senses are collated and are presented as keywords to be added to the

query.

If the query is not ambiguous, the search for relevant documents would proceed in the
normal way. If the query is ambiguous, the user will be asked for a specific definition or
sense that he would like to attach to the ambiguous word. With the user’s response, the

extra keyword 1s added to the original query to form a new query. The new query words
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that will be formed will be the original query word ‘and’ the new keyword the user has

just entered. The new query formed will then be resubmitted.

When the part-of-speech category of a one-word query could be either that of a noun or a

verb (e.g. dance), we are likely to end up with many senses of the word — one sense or

many senses of the word as a noun, and another sense(s) as a verb. In such a case, we will

take the sense of the query word as a noun. The reason for this is our perception or

intuition that the user is likely to query on a subject — which is generally a noun - rather

than an action.

To cite an example, let us consider the ambiguous query “orange”. The following steps

will be undertaken:

L.

2.

(V3]

The user enters the query word *“orange” (without the double quotes).
The query, which is single-worded, is subjected to ambiguity test. A process to
obtain the meanings or senses of orange is enabled. Hence, the online URL to

obtain the senses or  definitions of  “orange”  will  be

http:/ / www .cogsci.princeton.edu/cgi-

bin/webwn1.7.12?stage=2&word=orange&posnumber=1&searchtvpenum

ber=2&senses=

The output of the process in step 2 yields a text file showing the definitions of

“orange”, which is given below:



Results for "Synonyms, ordered by estimated frequency" search of noun
"orange"

S senses of orange
Sense 1
orange
=> citrus, citrus fruit, citrous fruit
Sense 2
orange, orangeness
=> chromatic color, chromatic colour, spectral color, spectral colour
Sense 3
orange, orange tree
=> citrus, citrus tree
Sense 4
orange
=> pigment
Sense 5
Orange, Orange River
=> river

Figure 2.4 The WordNet system’s definitions or senses of “orange”

The number of senses is equal or greater than 2 in the text file above denotes that
the query keyword (“orange”) has 2 or more meanings, and therefore ambiguous.
In this case, there are 5 senses, therefore there are 5 meanings.

The definitions or senses are taken and presented to the user. For the above
example, using “orange”, the modified, unambiguous query would be any of the

following:

orange and citrus

orange and “citrus fruit”
orange and “citrous fruit”
orange and “chromatic color”
orange and “chromatic colour”
orange and “spectral color”
orange and “spectral colour”
orange and “citrus tree”

. orange and pigment

10. orange and river

Figure 2.5 List of possible clear and unambiguous queries about “orange”

LXRXNSLU R W=
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We note that athough “citrus fruit” and “citrous fruit” are exactly the
same, we do consider them as two separate possible queries. knowing
fully well that the “citrus fruit” in the query will yield documents that
uses American English, while “citrous fruit” will yield documents that

uses British English.

6. The user selects one of those definitions. Assume that, for the sake of just giving
example, the user enters or chooses “pigment”. The new query formed is “orange
and pigment”. The search is on for documents that contain both keywords
“orange” and “pigment” in the same document. The same logic will be used if for
example the user chooses “citrus tree” instead of “pigment”. The newly formed

query then will be orange and “citrus tree”.

7. Hit documents for this query are then presented to the user.

2.3.2 Searching the Internet for hit results

After the new query is deemed complete, that is, having undergone the ambiguity check
and the user having entered the added keyword if the query was ambiguous, all is set to
submit the modified, more meaningful query to the search engines. The search engines in

which this query will be submitted shall be the following:

1. Excite
2. Hotbot
3. Google
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Why these three search engines? Basically, because these are some of the popular search
engines online, and are usually automatically invoked when we click on the “Search™
button of the Web browser Netscape Navigator. The number of search engines was
limited to three (3) because we primarily wanted to test if it works or not on limited
search engines. Of course, it is always a possibility that we can add some other search
engines to the list later, or modify these default search engines into something else. And
since the Internet keeps growing and changing every single day, it is wise that search

engine tools should be updated often — and that includes changing, adding, or modifying

the default search engines as in this case.

The default of this system, as implemented in the software that is used for the
implementation of the thesis concepts, is that the query will be submitted to three search
engines, namely: Excite, Hotbot, and Google. The user, however, is given a list of search
engines, and hence could change this default and select the search engines of his choice

from the given list.

How is the actual search itself is done? We first determined the necessary URL address
corresponding to the query for a particular search engine. This is determined by doing
some series of tests to find the URL base address of a particular search engine, to which
the keywords in the query will be attached to form a complete URL that will vield some
hit results to the query. For example, if we are to submit the query “operating system”
using Hotbot search engine, we will get the hit results of such a query, and the Hotbot

URL (Uniform Resource Locator, or the document address in the World Wide Web) for



such a page. The URL itself contains the base address of the search engine that was used
and the query words. If we reverse the process -- by taking out the keywords from the

URL -- what will be left will be the base address of the URL for such search engine.

Hence, any query is made by attaching the query words to the base address of a search
engine, and downloading and browsing this address will lead us to the hit results of a
query. Of course, the address formulation of one search engine would always be different
from other search engines. That is to say that the URL address that produces the hit

results of a query like, say “operating system™ in Hotbot would be different from the

URL address for the same query in another search engine, like Alta Vista.

It should be noted that the URL of a particular search engine may change from time to
time. That being said, the URL for some search engine will not stay eternal, and the
software that accompanies this thesis will not work at some period of time in the future
because it is basically dependent to the correctness of the URL of a search engine. To
solve this probable problem, the software must be maintained to make sure that the URL
of search engines used in the software is always correct, and, if necessary, add some more
search engines and take out some search engines that are no longer in existence. This is

basic software maintenance, a part of software life cycle.

31



2.3.2.1 Description of software that searches the Internet for query results

In our Java program that accompanies this thesis, a URL thread is created to submit the
user query online, receive the response to the query online, and save the query response
as a local text file. The online query is applied to all above-mentioned search engines. In
order to query three (3) search engines, we realized that this process should be done in
parallel — submitting the user query to three search engines in parallel - making the

complete process run faster in comparison to the one running as a sequential process.

Since there are three queries, there will be three responses to our query. The query
response from individual search engine is saved as a local file. Each of the 3 local files,
representing query results from the 3 search engines, is parsed and analyzed to get the

URL list of query huts.

2.3.3 Insufficient hits

When the query production is successful, there is a strong possibility that some hit resuits
will be returned by a search engine. However, some search engines are very good to use
in areas concemning technology, while others may be very good for the areas concerning
entertainment. Having said that, it is a possibility that a query will produce some hits

from one search engine, while getting none from another search engine.



There will be rare cases where a query will produce zero result from all search engines

combined. The reasons for the lack of resulting documents are twofold:

(1) The subject is a rare commodity that not even one or only very few documents
on this subject exist in the Internet. It could also mean that some enterprise
may be doing something related to the subject of the query, but the enterprise

itself has no working website.

(2) The query is poorly constructed that search engines databases could not find

relevant documents.

In any case, the output to the query is a limited document hits and probably a suggestion
on the improvement of, or reconstruction of the query itself. When the hits are very few
(less than 50% of the expected number of results), a suggestion is presented. The user is

asked to resubmit the query with different keywords.

The original single-word query is resubmitted to the site “www.thesuarus.com’™ and the

keyword is searched in the online thesaurus. The site www.thesaurus.com is just one of
the many thesaurus available on the Internet. In general, our system can adopt any online

thesaurus with very little modifications. For www.thesaurus.com, if keyword “keyword”,

for example, is to be submitted to the above-mentioned site, the site’s output is given by
the website “http;//www.thesaurus.com/cgi-bin/search?config=roget&words=keyword™.

The bold-faced keyword in the URL is simply replaced by whatever keyword the user is
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intending to search. Consider two cases of keywords that can and cannot be found in the

thesaurus.

Case 1: Kevwords that have some entries in the thesaurus.

Assume that the keyword “evergreen” is submitted to the online thesaurus. It can be
deduced that the result of the query is given by the URL “httpy//wwrw.thesaurus.com/cgi-
bin/search?config=roget&words=evergreen”. The site lists down 4 entries for

“evergreen”. Given below is the resulting document (minus the HTML tags).

Get the top 10 most popular sites for "evergreen"

evergreen found in 4 items.

Newness
Excerpt: "..., fresh, green; young ; evergreen; raw, immature; virgin;
untried..."

[View Entry]
Perpetuity

Excerpt: “..., having no end; unfading, evergreen, amaranthine;
neverending..."

[View Entry]

Diuturnity
Excerpt: "..., macrobiotic, diuturnal, evergreen, perennial;
sempervirent..."

[View Entry]
Continuity

Excerpt: "..; unremitting; perennial, evergreen; constant. continuously;.."
[View Entry]

Figure 2.6 Thesaurus output for query “evergreen”, a sample keyword that has
entries in the thesaurus.

Saving this document on the disk and parsing it appropriately leads to producing four

possible keywords as substitute for “cvergreen™
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1. Newness

2. Perpetuity
3. Diuturnity
4. Continuity

Figure 2.7 Suggested keywords to replace “evergreen”

Case 2: Keywords that have no entries in the thesaurus.

Assume that the keyword “everglade” is submitted to the online thesaurus. Again, it can
be deduced that the result of the query is given by the URL
“http//www.thesaurus.com/cgi-bin/search?config=roget&words=everglade”. The site
lists down no entries for “everglade”. Given below is the resulting document (minus the

HTML tags).

everglade not found.

Try your search for "everglade" at:

= Amazon.com - Shop for books, music and more

« Askfeeves.com - Get the top 10 most popular sites

¢« Dictionarv.com - Search for definitions

» Electric Library - Search thousands of newspapers and
magazines

* Google - Search the Web for relevant results

s  Google Groups - Search Usenet messages back to 1995
Overture - Search the Web

Figure 2.8 A sample keyword query that has no entry in the thesaurus
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2.3.4 Modified query

Since the original query produces very little result, depending on the result of the search
on the online thesaurus, the user is given the option of formulating a new query all by

himself, or choose any of the words suggested by the system as a new query word.

The latter option is realized when the query on the online thesaurus produces some
entries. These entries are synonymous to the original query word, and therefore could be
used by the user as a new query word. The user, if he so desires, could choose one of the

synonymous words, and submit it as a new query word.

When the user re-submits his new query, the same process as discussed above will be
repeated — analysis of query, determining if query is ambiguous or not, and then finding

relevant hits for such a query.

24 Experimental Results

We conducted ten (10) one-word query searches, and each query is ambiguous. We listed
down the different definitions of each of the query, as given by the WordNet system. We
sent the query to three search engines — Excite, Hotbot, and Google — and obtain the first
top ten hits of the individual search engine. Each hit document is analyzed to determine
which definition of the query the document is all about. At the end, a frequency
tabulation is made to illustrate how many documents are dealing with what definition of

the query.
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The tabulation in the experimental results is meant to measure the rate of precision our
front-end tool if the query is ambiguous on one hand, and the rate of precision if the
query is modified and becomes an unambiguous query. We cannot measure the recall

because we fix the number of hit documents to 30.

24.1 Experimental Test Results

The results of our ambiguity tests — one without the use of our front-end tool, and

therefore ambiguous, and another with the use of our front-end tool and hence modified

and unambiguous — are as follows:
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2.4.2 Conclusion from the Experimental Results

We note that sending an ambiguous query to the present crop of search engines will give
one all kinds of results, usually each document deals with a specific definition of the
query word. An extreme example is the query word “mercury” in which we were able to
obtained nineteen (19) possible “meanings” of mercury. We did not expect that mercury
would mean a women’s basketball team, for example. Another extreme example is the
query word “java”. Of the 30 documents that we tested, all of them dealt with only one
meaning of java — as a programming language or software application. We did not get
even a single document that deals with the Java place in Indonesia. Hence, we conclude
that without any tool available on search engines to interpret the user’s intention in case
of an ambiguous query, a user is likely to receive all kinds of documents — most of them

irrelevant.

The use of our tool — the front-end that detects user’s ambiguity query and the user’s
additional keyword entry — is helpful in reducing the amount of irrelevant documents the
user obtained from the Internet. To be specific, out of 20 experimental tests, 93% of the

returned hits are relevant. Only a small 7% of the returned hits were irrelevant.



Chapter 3

Finding Relevant Documents for Focused Queries

A query to find relevant documents could come in two forms - focused or unfocused. We

would like to address both.

3.1 Focused and Unfocused Queries

An unfocused query is one in which the user usually enters one- or two-or-more- word
query or even a phrase to a search engine, and usually expects hit results in a form of
documents whose contents are, to a general extent, dealing with the subject the user has
queried. The contents of the hit documents are of general information to the query just
entered, and as such the user is forced to read the document, and decide for himself which
part of the document is worth gathering. An unfocused query is likely to be asked by an
information seeker or anyone who wants to read or extract information on the subject

being queried. An example of a focused query is a query like: “air pollution™.

A focused query is usually a query that comes in form of a question, whether or not the
query itself is terminated by a question mark. Such query usually needs documents
containing precise answer as the query question itself is precise. Anyone who wants
quick, on-the-spot, exact answer is likely to pose a focused query. An example of an

unfocused query is a question like: “Who is John F. Kennedy?”
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3.2 Rationale

With the Internet being used often as an educational tool, more and more students — from
elementary, up to university level — are using the Internet to find information that are in
one way or another related to their academic work. And so do others like researchers,
entrepreneurs, and many others. Instead of staying too long in a local library finding one
book from one shelve in one floor of the library building, to another book, to another
shelve, to another floor of the same building — a feat that is indeed very exhausting —
people now are more inclined to use the Internet to do just that, researching. And the
research is not limited to a book alone, but on other media as well, such as newspaper,

publications, reviews, and others.

The Internet, or for that matter the search engine, should address this continuing urge of
people to know and get more information. Some of these needs are quest for general
information, but others are quest for specific information. And the Internet should address
both. However, the present crop of search engines are not equipped enough to handle
some precise yet simple query questions such as: “What is the atomic number of
hydrogen?” or “Where is Taj Mahal located?” This may not be very important to those
who already know it, but they are indeed very important to those who are just beginning

to leamn it.
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This thesis would like to contribute by giving some concepts and directions in finding

relevant documents for unfocused queries.

33 Related Work and Literature Survey

Many attempts were made in the past to deal with exact question and to retrieve exact
answer to the question. Most of the earlier work are all related to question answering
category where exact answers rather than the document containing the exact answer is
being retrieved. These work are general on exact answers rather than document retrieval.
MURAX (3] is just one the many work that belongs to this group. It uses an online
encyclopedia to answer the query. Also, it uses the context and linguistic analyses such as
part-of-speech tagger and a lexico-syntactic pattern matcher in finding exact information.
MURAX is not complete and so it can only be evaluated interim. In general, it is 74%

capable of finding the right answer for questions “who™ and “what”.

Our approach in focused query is indeed document retrieval per se because it finds the
documents, yet it is also information retnieval because it highlights the correct

information within the document.

There are cases when document retrieval is preferable for focused query because
although the query itself is precise and clear, the answer to the question may not be
straightforward or may not be exact as the answer itself is relative to time. Take for

example the focused query “Who is the richest man on Earth?” The richest man on earth
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in the year 2002 may not be the richest man in the year 2001. And so, if the hit document
was written in 2001, the richest man would probably be Mr. X and another document
written in 2002 may claim that the richest man on Earth is Mr. Y. Is any of the document
wrong or misleading? The answer 1s no, both documents are correct. Because the answer

1s relative to time, then it is no accident that we have two different answers to the same

query.

3.4 Theories and Concepts Applied

We consider that any query that begins with keywords what, when, where, how and why

are automatically considered as a focused query. A focused query may or may not end
with a question mark (?) but because the sentence or query begins with a question
keyword, it is completely considered a question, and therefore a focused query. Whether
or not the question keyword begins with a capital letter is immaterial. The first step

therefore is getting a query from the user and deciding if such query is focused or not.

Algorithm for extracting keywords from the focused query
assign count « number of words in the query
query «— “” /(nudl)
n<l
while n < count do
begin

word «— word #n
if word # negative word  // (refer to negative dictionary)
then query «— query + “ “ + word
end if
nen+l
end

Figure 3.1 Algorithm for extracting keywords from focused query
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The next step to the process is to find out what the user wants to extract. This is done by
eliminating some unnecessary words in the query, and leaving only the important
keywords. Parts of speech such as linking verb (or the verb to be), preposition, and
articles are taken out, and what is left then are the important keywords. Again, this is
accomplished by parsing every single word (delimited by whitespace). Each of these
words is compared with the words in the stop words list (please see Appendix C), if it is
one of those keywords in the stop list, it is considered irrelevant in the query and is
therefore taken out. The process is repeated until all words in the query are subjected to

negative stop list test. Figure 3.1 shows the algorithm of the preceding steps.

Given below is an example of an unfocused query and the resulting query after the query

is subjected to the algorithm given above:

Oniginal query: Who is the richest man on earth?
Question asked: who
Resulting query: “richest”, “man”, “earth”

Figure 3.2 Sample original query and the resulting modified query

The objective of the algorithm in Figure 3.1 is to edit the original query and come up with
a modified query that includes as much as possible all the most important keywords
contained in the original query. These keywords are essential because they have to be
found in at least one paragraph in the HTML source code of the hit documents. The
concept is that these keywords would not only all appear within the hit document, but

also show up in positions almost adjacent to one another within a paragraph of the HTML



source code of the hit document in order to consider that such document is addressing the
user’s query. Therefore, these keywords are very essential, and the selection of keywords
should guarantee that only non-essential keywords are eliminated, and essential keywords

are kept.

So, once the keywords are chosen, a query is submitted to the search engines, making
sure all keywords appear in the hit document. From the given example in Figure 3.2
above, where we were trying to find the richest man on earth, the query that will be
submitted to the search engines would be “richest AND man AND earth” or “richest &
man & earth”. We make use of AND logical operator within the keywords to make sure
that at least all hit documents would contain these keywords. Once such a query is
submitted to the search engine, we do expect to get some hit documents. These
documents are saved as local files and analyzed almost simultaneously using

multithreading.

The next challenge would then be finding which of these hit documents are relevant and
which are not. It is important to take note that even if the keywords all appear in the
documents, they may appear in different positions. Our hypothesis is that keywords
position that is close enough or adjacent enough to each other (e.g. keywords in the same
sentence) connote that the document is addressing our query, and keywords that are far
enough from each other (e.g. keywords appear in separate paragraphs) are likely to

connote that the document is not addressing our query and is therefore irrelevant.

51



[t is worthy to mention that once those hit documents are saved as local files, the content
of these HTML documents are not subjected to negative dictionary and negative tag test.
This is done in order to keep the entirety of the document because some answers to the
questions contain some less important keywords yet very important in answering the
query. For example, the word “because” is generally not important in the general context
of the document, but when the query begins with “Why”, the presence of “because” is so

important in determining the relevance of a document.

35 Answering the Query

Finding the answers to an unfocused query begins by finding all the keywords within the
same paragraph of the hit document. Hence, the HTML tag pair <P> and </P> for
paragraph are kept to be used as delimiter in finding the keywords and their location
within the paragraph. The ideal condition is to find all these keywords within the same
sentence, and even more ideal than that is finding these keywords within the title of the
HTML document. However, relaxing the rule to finding the keywords within the same
paragraph instead of same sentence will increase the likelihood of finding documents that
answer the query. Failing to find these keywords with the same paragraph of a document

will make such document irrelevant.
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3.5.1 Answering the Query “Who”

When a user comes up with an unfocused query such as “Who is Mahatma Gandhi?” we
know then that the resulting modified query would simply be “Mahatma Gandhi”, and in
all likelihood we will be getting all kinds of answers from the hit documents about
Mahatma Gandhi. Indeed, it is so for there are so many ways to answer the question
“Who is Mahatma Gandhi?” There is no single precise answer to such question as one
can easily come up with answers like “Mahatma Gandhi was the father of I[ndian
nation.” or “Mahatma Gandhi was a rebel [ndian who liberated India from British
colonization.” or “Mahatma Gandhi was a topnotch lawyer”. All of these possible

answers are cotrect.

Therefore, all documents that contain “Mahatma Gandhi” in its contents, or in general all
documents that contain the modified resulting keywords in its contents are relevant. Since
there is likely to be lot of hits to this query, document hits have to be ranked. The
documents ranking would be similar to the way we ranked hit documents on a focused
query, namely: (1) through the appearance of keywords in the title, (2) through the
appearance of keywords in the headings and body, and (3) using our ranking algorithm,

which in general favors documents in which keywords appear the most.
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3.5.1.1 Experimental Results

We tested five (5) experimental queries to test our concept, and to determine if the

concept itself is producing documents that are relevant to our standard. Here are the

results:
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3.5.1.2 Performance Analysis of Experimental Results

In general, a front-end tool that is able to accept “Who™ question from the user and in
return be able to return back hit documents that contain the answer to the question is a
step forward in the improvement of features of a search engine. The tests are limited,
only five of them, yet the concept is working. More tests could be conducted, but may not
be necessary because it is obvious that the future results would be consistent to the results
we had obtained. Although it is based on keywords presence alone, we are able to obtain

an average of 87% relevance hits.

3.5.2 Answering the Query “What”

By using our algorithm on extracting keywords on unfocused queries, a query such as
“What is liquid nitrogen?” would yield a modified query that is “liquid AND nitrogen”.
The resulting modified query is very much the same as a focused query on “liquid
nitrogen”, and that, there can be so many possible answers to such question, and too

many relevant documents.

Our approach to this kind of query is exactly the same as our approach on 3.5.1

Answering the Query “Who™ — collect the hit documents and rank them accordingly.



35.2.1 Experimental Results

We tested five (5) experimental queries to test our concept, and to determine if the

concept itself is producing documents that are relevant to our standard. Here are the

results:
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3.5.2.2 Performance Analysis of Experimental Results

For the focused query "what", the results are a mix of satisfactory and unsatisfactory
results. Based on statistical results, 87% of the documents returned by search engines are
picked up by our system and returned them as relevant. However, not all these documents
are truly relevant. In the first place, relevance here through the presence of keywords.
Although focused questions like "What is the capital of Greenland?" and "What is an
alchemist?" returned hits that are truly relevant, queries like "What elements compose

water?" and "What science deals with the study of plants and animals?" returned hits that

are confusing.

For the query "What elements compose water?", 2/25 = 8% documents considered
relevant by our front-end system deals with water being composed of atoms of hydrogen
and oxygen, and 23/25 = 92% documents deals with the elements present in mineral
water or commercially-bottled water. The reason behind this is that Internet is presently
being used as a marketing tool, more than it is used as an educational tool. Therefore
when we query about water, there are more hit results that concem mineral or

commercially-bottled water than the usual water (H,O) as discussed in chemistry courses.

We can say that water is now an ambiguous one-word query. Also on the question of the
science that deals with the study of plants and animals, only about 7/28 = 25% of the
documents considered relevant deals with biology or ecology. The rest are considered

relevant due to the presence of the required keywords in the documents.
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3.5.3 Answering the Query “Why”

Consider the unfocused query: “Why was [FK assassinated?” Following our algorithm to
extract keywords from the unfocused query, the resulting query would be “JFK AND
assassinated” (also, “[FK & assassinated™) which can be transformed to “JEFK and
assassination” or “[FK & assassination™ by converting the verb “assassinated” to its
present tense form without s (assassinate) and converting the verb into its noun form.
Easily, we would come up with three possible variations of the modified query keywords
that are all correct in substance:

1. “JFK and assassinated”  (also, “JFK & assassinated”)
2. “JKF and assassinate” (also, “JFK & assassinate™)

3. “JFK and assassination”  (also, “JFK & assassination”)

All three would be used as keywords to the query to be submitted to search engines.
Again, we save these hit documents to the query and analyze them so that only those

relevant documents would be selected and returned back to the user.

To answer this kind of query, we begin by finding the presence of the keywords (in our
example, “JFK” and “assassinated” or “assassinate” or “assassination”) within the same
paragraph, or better still within the same sentence. Our search is limited to those contents
bounded by <P> and </P> paragraph tag pair. If any document would not have the

keywords in any of its paragraphs, the document is right away considered irrelevant.
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Once a document contains the keywords within one of its paragraphs, we then begin

searching for the presence of keywords like “reason” or “because” or “due to” or “in

order to” or “so that” or a combination of any of them within the same paragraph. If such

keywords appear within the paragraph, the document has a likelihood of being relevant,

and considered relevant. The contrary would mean the document is irrelevant.

reason, because, due to, in order to, so that, need to

Figure 3.3 Keywords that denote reason for the query “why”

Assuming that some documents meet our selection criteria, the ranking of relevance
would then depend on the position of the keywords within the paragraph. The highest
ranking would be given to the document that contains the query keywords (in our

example, “JFK” and “assassinated” or “gssassinate” or “assassination™) plus any of

selected keywords like “reason” or “because” or “due to” or “in order to” or “so that” or

a combination of any of them within the same sentence.

[f assuming that two or more documents would meet those criteria mentioned above, the
highest rank would be given to the document that has more occurrence of these in its

paragraphs.

The lowest rank is therefore given to documents that have the query keywords plus the

selected keywords, all appearing in the same paragraph but not in the same sentence.
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3.5.3.1 Experimental Results

We tested five (5) experimental queries to test our concept, and to determine if the

concept itself is producing documents that are relevant to our standard. Here are the

results:
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3.5.3.2 Performance Analysis of Experimental Results

The focused query "Why" is more strict than the previous questions in considering
documents that are relevant. For one, apart from the usual keywords in the query, we also
are looking for extra keywords that denote reason, these keywords must be present within
the same sentence or the same paragraph where the query keywords appear. Failure to
have this pattern would mean that some documents are likely to end up being considered
irrelevant. The table of results in the previous page confirm this. For example, for the
focused query "Why did George W. Bush reject the Kyoto Protocol?", 12/29 = 41% of
relevant documents are classified irrelevant by our system because the extra keywords we

are looking for that denote reason do not exist.

We do acknowledge that some document writers (e.g. newspaper editors) do write with
styles that do not usually follow the conventional pattern of answering the question
"why". This is one weakness of a front-end tool that rely on keywords alone, such as our
system. Another approach that could be incorporated in our design is the analysis of

document by context. However, we do consider this as further future work.

The table above shows big discrepancy between the relevant results returned by search

engines and those returned by our front-end system. Our system is more discriminating,

but the ones considered relevant by our system really answer the question.
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3.5.4 Answering the Query “When”

Assume that the unfocused query starts with the keyword “when” such as: “When was
the Canadian Federation founded?” As with the other unfocused queries above, we will
deal with this query by transforming the original query to a modified query using our
algorithm to truncate unnecessary words, which in effect will yield the keywords
“Canadian Federation founded”. This will then be converted into a concatenated
keywords with logical operator AND in between the keywords, giving us “Canadian and
Federation and founded”. We send the query to the search engines and have the hit

documents stored as local file.

The next challenge is to find which documents among our hit results are relevant. By
relevance, we mean a document that really answers this question. We begin our search
for relevant documents by finding all the keywords within the paragraph of each
document. If a document does not contain all of these query keywords within the same
paragraph, then such document is considered irrelevant. If a document does have this,

such document is a candidate to being considered relevant.

The next thing we do is to obtain the sentence(s) within the paragraph where the query
keywords are found. We then look at some keywords that signify or connote time in this

sentence. Obviously, when someone is asking when, the answer must be related with time

or date or period. This is the reason why we look for some keywords that denote time.



We parse every single word in the sentence and match it with our time keywords

database summarize below:

Day: Monday, Tuesday, Wednesday, Thursday, Friday, Saturday,
Sunday (also Mon., Tue., Wed., Thu., Fri., Sat., Sun.)
Month: January, February, March, April, May, June, [uly, August,

September, October, November, December (also Jan., Feb.,
Mar., Apr., May, Jun., Jul, Aug., Sep., Oct., Nov., Dec.)

Day: from 1 to 31
Year: ur digits
Hour: numeric figures from 00:00 up to 23:59
numeric figures from 12:00 up to 11:59
Other AM, PM, day, night, evening, noon, afternoon, night, o’clock
Keywords:

Figure 3.4  Keywords that denote time for unfocused query “when”

Indeed, the most relevant document to the unfocused query is one that contains the query
keywords and any of the keywords that denotes time (see Figure 3.4) within the same
sentence. Other less relevant documents are those that contain the query keywords and
any of the keywords that denote time within the same paragraph, but not necessarily in
the same sentence. All other documents that only contain the query keywords but not any

of the keywords that denote time will be considered irrelevant.

3.54.1 Experimental Results

We tested five (5) experimental queries to test our concept, and to determine if the

concept itself is producing documents that are relevant to our standard. Here are the

results:
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3.54.2 Performance Analysis of Experimental Results

The system on "when" is less discriminating than the one on "why" query. This explains
more why it has less rejection rate than the "Why" focused query. In the case of our

experimental results, the rejection rate is zero.

The reason for good returns on "when" query is that usually the writer of the document is
simply stating a fact. This is not the case for "why" query. For example, on the subject of
President Kennedy's assassination, almost all documents about the subject could state
exactly when was JFK assassinated, but very, very few would dare write about the reason
why JFK was assassinated. And their reason may not necessarily be the fact - it could be

the writer's mere opinion or perception.

Based on our tabulation in the previous page, we have 95% success rate of finding

relevant documents on focused query "when".

3.5.5 Answering the Query “Where”

An unfocused query that begins with the keyword “where” is indeed one searching for

answer that connotes a “place” or “location”. As there are so many possible questions

that could begin with “where”, and so many distinct places within the same house or

building or town or city or country or continent, it is impossible to come up with a
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database that denotes place. And as such, we come up with different approach to answer

the query “where”.

We all know that answers to the question that begins with “where” could be answered by
a place or location, and in answering the question, we generally affix some proposition to
the place or location. Consider a certain query to a little boy: “Where is your mother?”
Let us consider a few possible answers. The little boy could say: “She’s in the bathroom”,
or “She is in the kitchen cooking” or “She’s in the neighborhood gossiping with
everybody”. As we can see, the possible answers are “bathroom” or “kitchen™ or

“neighborhood”. But it is obvious that in the English language, these places are said with

preposttion.

in, on, at to, along, beyond, above, about,
above, across, after, against, along, among, around,
at, before, behind, below, beneath, beside, between,
beyond, but, by, despite, down, during, except, for,
from, in, inside, into, like, near, of, off, on, onto,
out, outside, over, past since, through, throughout,
till, to, toward, under, underneath, until up,
upon, with, within, without

Figure 3.5  Preposition keywords that usually appear with
places or locations for unfocused query “where”

.

Indeed, we will be looking for the occurrence of some prepositions (keywords such as

o” - ”n " ” o’ 4 " ” a” ” {4
at”, “to

in”, “on”, to”, “along”, “beyond”, “above”, “with”, etc.) along with the query

keywords to determine the document’s relevance. As before, we consider a document to

69



be of highest relevance if the query keywords and one or more of these prepositions all
appear in the same sentence of a paragraph. A less relevant document is one in which all
the query keywords and the preposition(s) all appear in the same paragraph, but not in the

same sentence. Other than these two, all other documents are irrelevant.

The steps in getting the user query, eliminating unnecessary keywords in the query, and

submitting this modified query to search engines and getting the hit results stored as local

file — all these processes will be done in here, and its details are all the same as before.

3.5.5.1 Experimental Results

We tested five (5) experimental queries to test our concept, and to determine if the

concept itself is producing documents that are relevant to our standard. Here are the

results:
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3.55.2 Performance Analysis of Experimental Results

The focused query "Where" is supposed to be as discriminating as the focused query
"When", but it is more vulnerable because the extra keywords that it is looking for is the
preposition. Preposition, although more often attached to places, it could also be attached
to other parts of speech such as noun, pronoun, and others. And hence, we do expect to
obtain "noise" here, meaning irrelevant documents being considered as relevant by our

system.

However, with some tough queries like "Where is the office of the President of Russia?"
or "Where can [ buy the cheapest helicopter in Canada?", our system is more likely to
find irrelevant documents rather than relevant ones. The reason is there are very, very few
documents that would answer such questions. On the specific focused query "Where can [
find the smallest fish in the world?" which is not a tough question, our not so strict rule

was able to find 3/10 = 33% irrelevant documents as relevant.

On the specific query "Where is Taj Mahal located?", it is not so surprising that "Taj
Mahal" now is not only a famous landmark in Agra, India. The name also connotes a
hotel, a restaurant, and a casino (and counting). And not so surprising as well is that these
documents exactly tell us where the Trump Taj Mahal is located, as so is the Taj Mahal

restaurant and Taj Mahal hotel. Since the query was simply “Taj Mahal”, all these extra

“baggages” are also considered.



3.5.6 Answering the Query “How”

An unfocused query that begins with the keyword “how” is usually demanding an answer
for (1) some steps or procedures to follow; (2) the condition or situation; (3) the
explanation or detail of something (an event or a mechanism). There are many questions
that fit those patterns, such as: (1) “How to make yogurt?”; (2) “How did the hvins’
operation go?”; and (3) “Houw does the exposure to radioactive material affect a person?” .
There are many ways to answer just one of the three questions presented above. For
example, to make yogurt, one would say: “Step 1: Do this, Step 2: do that, and sc on”.
Another person would probably answer this way: “First, you do this, then you do that,
and so on”. And yet another person would answer the same question by saying, “Get a
measuring glass, a pint of milk, etc.”. Indeed, there is o precise pattern by which human

would answer the question “how” in natural language.

To answer the query “how”, we could not come up with a list of precise keywords that
answers “how” because there are infinite possibilities. The alternative solution then is
finding the modified query keywords in the title or heading or in the same sentence of the
hit document’s paragraph. To answer the unfocused query “How to make yogurt?”, we
will simply be looking for “make” (or its variation, “making’) and “yogurt” in the title, in

the heading, or within the same sentence in the paragraph(s) of the hit document.

The ranking of the hit documents then will be based on ranking as if the query is a

focused query.
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3.5.6.1 Experimental Results

We tested five (5) experimental queries to test our concept, and to determine if the
concept itself is producing documents that are relevant to our standard. Here are the

results:
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3.5.6.2 Performance Analysis of Experimental Results

The experimental results of five (5) focused queries on "how" indicate high retumn of
relevant documents. This is due to the fact that there are no additional discriminating
keywords that are needed, apart from the usual query keywords, that have to appear in
every document. With more lax rules, more hits are obtained. For the specific query
"How to bake a croissant", we obtained 2/30 = 7% relevant documents considered
irrelevant because the documents are written in languages other than English. And since
we could not find the required English keywords in the documents, these documents are

considered trrelevant, although we must admit that their contents are relevant.

It is a very common experience that we obtain documents written in French for focused
quenes written in English. Probably because Canada is a bilingual country that we obtain
most documents in English and a few documents in French. Our front-end tool is not
equipped with French translation so documents written in French that do not contain the

required keywords are automatically rejected and treated as irrelevant.

Other than the above-mentioned problem, the focused query on "how" generally obtains a

good number of relevant documents.
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3.6 Future Direction

The concepts on focused queries mentioned in this chapter address way and means of
finding the relevant documents that answers the question. This, we believe, is a step
forward into making Internet information search an agreeable experience. We can also
implement the query disambiguation in the future. This is possible to do, although we did
not put into reality for this thesis due to the time constraint in our study at Concordia
University. A focused query can also be ambiguous. Consider for instance a focused
query of a non-Canadian individual: “Where can [ find Quebec?”. It is possible that he is
asking “Where can I find Quebec Province” and equally possible that he is asking “Where
can I find Quebec City?”. Another ambiguous focused query from a child could be:
“What is the capital of Georgia?”. Is he asking Georgia, the country or Georgia, the US

state?

The concept of disambiguation of a focused query and obtaining a high precision score of

retrieve documents would truly be a good direction to proceed.
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Chapter 4

Classifying Documents as per Academic Relevance

This chapter proposes that it is possible and feasible for Internet search engines to add
this feature — classifying Internet documents. This work proposes an academic
classification of documents since this thesis is academic in nature. This concept can be
expanded to accommodate other forms of classification, say as per business, commercial,

military relevance, etc.

4.1 Rationale

When one searches documents on the Internet using commercial search engines (e.g.
Google, Hotbot, AltaVista, [nfoseek, Excite, etc.), he/she does enter a query, then gets a
list of document hits, along with every hit document’s title, relevance score, and the first
few words from the document. One has to download each of these hit documents to know
more about the document’s identity since commercial search engines do not “identify” or
“classify” these documents other than those parameters already mentioned above. What is
lacking is a kind of document identification or classification that identifies the nature of
the document. Moving towards this goal, it is suggested that along with the relevance
score and title of the document, a category should be attached to the document. This will

provide Internet users information of the nature of the document even before browsing it.
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It is believed that a search engine that provides document hits to the query, and also each
document’s title, URL address, first few words from the document, and the classification
of a document would give Internet users some idea about the document even before
downloading or browsing it. In effect, this would enhance efficiency and productivity on
the part of the users because they will be spared of the some unnecessary downloading
and browsing time. Time spent on needless browsing of documents is wasted time that
should be minimized, if not downright eliminated. And this work believes that providing
classification of document on search engine hits is a contribution that will reduce these

unnecessary downloading and browsing time spent on undesirable documents.

Assume, for example, a case of a student who would like to browse documents related to
“software engineering”. He enters this query to a search engine, and in return the search
engine provides him hits documents that list down not only the relevance score and title
of documents, but also the classification of documents (i.e. Frequently Asked Questions,
Course Notes, etc.) he would most likely download those documents whose classification
is related to his own academic needs. He would spare himself of time downloading

documents that are not related academically.

This study believes that documents can be classified in many ways based on many
variables. Every document can be classified as to whether or not it is a military
document, a commercial one, an academic one, even a medical or entertainment one.

Inasmuch as this study cannot cover all the above-mentioned classifications on a limited
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time, it is then decided to limit the classification on only the academic nature of the

document.

4.2 Academic Classification of Documents

To make up for our limited stay in the university, our classification of documents is
aimed at purely academic classification only. We have limited the academic classification
to be any of the following:

(1) Course Notes,

(i)  FAQ (Frequently Asked Questions),
(iit)  Research Papers,

(iv)  Technical Reports,

(v)  Theses,

(vi)  Tutorials,

(vil) Reviews, or

(viii) Research Papers/Technical Reports.

The rationale for the choice of the eight classes of academic category above is based on

our perceived importance of these categories to students and academic researchers.

The content of a document categorized as “Course Notes™ is assumed to be written by a

professor or a lecturer of a course. Taken from this perspective, a course note document

should be very important to students and researchers.
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A “FAQ (Frequently-Asked-Questions)” document is kind of lecture in itself, containing
questions that could usually come from someone unfamiliar with the subject, and also
contains answers that could usually come from an expert. Since a student or a researcher
is usually interested in finding information, it would make a lot of sense to include FAQ

as a class within an academic category.

Research Papers and Technical Reports are some of the stuff that a student does in a
college or university. A document categorized as any of the two would definitely be an

important piece of information for students and researchers.

Thesis is a category that researchers in masters and PhD graduate study level would be
interested in. It therefore makes logic to add it as additional academic category. A
tutorial document would be similar to course notes — another important academic piece

of information.

A “review” category may probably be of lesser academic significance as compared to
other categories mentioned above. A review nonetheless is important since some students
in as early as high school are usually required to write some critical review of a book or

film or other media of academic significance.
Of course looking beyond, if the intent is to upgrade this work in the future, further

categorization - perhaps on the field where the document is intended (e.g. commercial

publicity, academic, etc.) — would be added to this work. Likewise, it can be foreseen that
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this document classification would not only be limited to text document, as how it is right

now. [t is always possible to classify documents on other media as well — media such as

audio, video, and still images.

4.3 Related Work and Literature Survey

Previous work on document classification were generally done using Bayesian classifier.
The work of Borgelt, Duda, and Hart, et al [7, 8, 9] made full use of Bayesian classifier
or the naive Bayes classifier to produce comprehensive results in many data analysis

tasks.

Naive Bayes classifiers [2, 8, 9] are an old and well-known type of classifiers. Classifiers,
in turn, are programs that automatically classify a case or an object, i.e. assign it
according to its features to one of several predefined classes. For example, if the cases are
patients in a hospital, the attributes are properties of the patients (e.g. sex, age, etc.) and
their symptoms (e.g. fever, high blood pressure, etc.), the classes may be diseases or
some drugs to administer. The naive Bayes classifiers use a probabilistic approach to
classify data. The classifiers try to compute the conditional probabilities of the different
classes based on the values of the attributes, and then predict the class that has the highest

conditional probabilities.

Our approach is a little similar in concept to the Bayes classifiers because some parts of

our work rely on the frequency of keywords present in a document, and the summation of
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the score of these keywords are used as an indicator to probabilistically infer that such a

document belongs to a particular category.

The training of the corpus of academic documents is very important as the keywords are
essential in determining the classification of a document. Unlike in Bayes classifiers
where everything is based on the calculation of the probability score, our categorization
work is partly based on the probabilistic score, and also on the presence of keywords on
important locations in a HTML document. We infer that some presence of the keywords
in important locations (e.g keywords appearing in the title) does not need calculation to
be categorized in a particular class. Rather, the mere presence of keywords in such a

location is already a confirmation that a document belongs to such a category.

The drawback of this approach is that we always believe in the veracity of the title or
heading of the document’s writer. If the document’s writer or author is poor in choosing
the right title or headings in his documents, that would be reflected in our categorization

of his document as well.

4.4  Theories and Concepts Applied

Classifying a document means figuring out its syntactic content. However, each

document, course notes for example, does not follow a particular format or pattern since

every document of the same nature is unique and different from others. The question that

we could possibly asked now is something like, “among these different documents of the
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same nature, what is their common characteristic so that each one would be classified
accordingly, and they all be classified as belonging to the same class?” Classifying a

document as to its academic use involves finding keywords in the right places.

4.4.1. Keywords in the title

In analyzing HTML documents, there is an utmost importance to the title of the
document. The title of the document, in one way or another, summarizes its content. If

for example, one goes to visit the URL http//iwww.cs.concordia.ca, and open up its page

source, one shall see that it’s document title is “Department of Computer Science”. True
enough, the document itself is nothing but a documentation of Concordia University’s
Computer Science Department. In general, the titles of the HTML documents that one
finds in the Internet do mirror or summarize their contents. Hence, if the title, for
example, is “FAQ on Unix and Other Operating Systems”, then one can believe that it
is a FAQ (Frequently Asked Questions) document even without going through its
content. One can believe that if a document is correctly done, then the document title
indeed mirrors or summarizes the document contents. And so the document title is
important, and this same title will be one factor to consider in classifying a document.
Having that in hand, the challenge now is narrowed down to identifying the rightful
keywords in the title that will assist to correctly classifying a document.

Some documents are very easy to classify as their titles will say it all. Consider for

example titles such as:
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“Programming Course— Course notes”

(http://www.strath.ac.uk/CC/Courses/Ccourse/Ccourse.htmt),

or
“CMPUT 201 Course Notes™
(http:/ / wwwecs.ualberta.ca/~mark/c201 /index.html).

The presence of “course notes™ signifies that these documents are indeed course notes
documents. The rule, therefore, is to find the document category keyword in the title.
However, there are cases when two or more keywords identifying a document appear in
the title. In such a case, the position of the keywords and of the preposition “on” will

assist us in the classification.

Consider, for example, a document with a title “Course Notes on Thesis and Technical
Report Writing”. Is this document a technical report? A Thesis? Or Course Notes? All
three keywords are deemed essential in this case, but the position of the keyword is
equally essential as well. The position of “course notes” and the preposition “on” make
this document logically correct to be classified as a course notes, and not a thesis nor a
technical report. In the presence of the preposition “ON”, the keyword(s) preceding it
becomes important and the keyword(s) following it non-important. It is therefore
important that document title be parsed to determine the presence of the preposition
“ON". In such a case, keywords preceding it have to be taken, while keywords following

it have to be discarded.



It 1s also common to see that two or more keywords appear on the title without a
conflict. Consider the title “Unix Operating System - Course Notes, FAQ . As the title
suggests, it is all about Unix operating system, and in this document, it contains course
notes on the subject, and a FAQ as well on the subject. And so, what is the classification

of this document? It is both a course notes, and a FAQ document.

4.4.2 Finding the Right Keywords in the Right Places

All text documents that we find in the Internet through web browsers like Netscape or
Intermet Explorer do follow a format. This format is called HTML (Hypertext Mark-up
Language). An HTML document is written with text and appropriate tags associated on
the text. The title, for example, of a document is sandwiched within the tag pairs
<TITLE> and </TITLE>. Once the tag pairs are properly identified, the next task is to

find the text within these delimiters and parse the text accordingly.

The parsing begins with a search for tag pair <TITLE> </TITLE>. Anything that is
inside this tag pair is the title of the document. The classification of document by title
will only take place if these tags are present. In the absence of these tags, the document
is considered “Untitled”. Any “untitled” document therefore fails in the classification
test in the title, and will be subjected to the test in the second option — Finding keywords

in the heading.
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The keyword, if it appears as the first word, confirms the document’s category. For

example, a title like, “FAQ on [nformation Retrieval” will be taken that this document is

indeed a FAQ document.

The keyword if it appears anywhere but first, should be taken that the document is
indeed of the expected category provided that it satisfies some prepositional

requirement. For example, a title like “Information Retrieval — Frequently Asked

Questions” will be taken as a FAQ document.

The presence of the preposition ON before the keyword (e.g. Lectures on Thesis
Writing) will be considered as a negation that the document is so even in the presence of
the keyword. The example above contains the keyword “Thesis”, but the document

cannot be considered as a thesis, rather it should be considered as a lecture.

Likewise, it is also possible that two keywords could appear in the title and accordingly,
the document should be classified as both. For example, the document with a title

“Operating System - Course Notes and Frequently Asked Questions” should be

classified both as a course note document and as a FAQ document.

Success in the classification of documents based on its title ends the process, and will

proceed to finding the relevance score of the document. In case of failure, further tests

have to be conducted, the second of which follows.
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4.4.3 Keywords in the headings

There are cases when a document exhibits characteristics of a particular document, yet
failed the first test above simply because important keywords did not appear in its title.
Consider for example a document entitled:

“Department of Computer Science — Cpsc 244 — Don S. Bidulock”

(http:/ / www.cpsc.ucalgary.ca/~dsb/Cpsc244 /).

This document is all about course Cpsc 244 — Introduction to Computer Science II at
University of Calgary under Prof. Don S. Bidulock. Browsing this document, one will
find out that it is all course notes on Cpsc 244, the course title they use to denote
Introduction to Computer Science II in the same university. However, it failed the first
test (Keywords in the title) because its title does not say that it is a collection of course

notes. However its headings say so, hence this second test.

The search for keywords in this regard will be restricted to tag pairs in the following

order:

<H1> and </HI>,
<H2> and </H2>,
<H3> and </H3>
<H4> and </H4>,
<HS5> and </H5>,
<H6> and </H6>.

A priority scheme is established such that tags <H1> and </H1> will be searched for the

keywords. If the keywords are present and enough to classify a document, then the
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parsing is done and the document is properly classified. Only on its failure the search
will go onto <H2> and </H2> pair. The same rule will be applied before the next search

will go onto <H4> and </H4> pair, and so on.

The method of identifying keywords in heading follows the same rule as the first one.

identifying keywords in the title.

4.4.4 Keywords in the body

There are few cases where documents exhibit a category characteristics yet are not
classified simply because their titles or headings do not include the keywords that we are
looking for. In cases like these, we subject the document to the final test — keywords in

its body.

Classifying a document category based on keywords in its body will only be
implemented if finding necessary keywords in the title and in the heading fails to

identify a document.

4.4.5 Identifying keywords that describe the document

The process begins with parsing the HTML document and taking its text, in a way
transforming an HTML document into a text document. The text then is subjected to

stop words list and stop symbol lists. In here, words that are frequent in any document
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but in no way describe a document are taken out. Words such as is, are, in, of, by,
among, which, that, etc. are words that play no meaning to the document, and therefo're
have to be omitted. The same thing applies to stop symbol list like punctuation, and
symbols like $, %, *, ?, ., etc. have to be taken away. When all these things are done, the
leftover of the document are list of keywords that to a certain extent describe a

document.

Let us apply the concept discussed above over statement like:

“The quick brown fox jumps over the lazy dog near the bank of the river”.

Getting rid of common words, the above statement would be left as:

“quick brown fox jumps lazy dog bank river’”.

4.4.6 Eliminate non-essential keywords

Consider a course-notes document in which the word “executable” appears once, the
word “array” appears twice, and the word “computer” six times, and “course notes”
appear 18 times. It is safe to say that although “executable™ is not a common word and
not belonging to stop words, it is a non-essential word in this case. Deleting it will not at
all affect the fact that this document is a course note that discusses among others

computer and array.

It is therefore believed that distinct keywords that appear only once in the document are

non-essential keywords, and omitting them from the list of document keywords would
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not affect that much. After their omission, what is left are distinct keywords that truly

represent the document.

4.4.7 Minimum score requirement

Among the keywords left behind by the series of deleting non-essential words, there is a
keyword that appears the most. Let us call the frequency of this keyword TFi_max. This
is that keyword whose frequency is the highest among all the other keywords left to

describe the document.

Next, we determine the frequency of our search keyword(s), call it TFi_j (see detailed
calculation of TFi_j on section 5.2.6). The ratio of TFi_j relative to TFi_max is the
relevance score, that is:

relevance score = TFi_j / TFi_max.

This study believes that for a document to be classified as belonging to a certain category,
the relevance score should be at least 60%. We then say that this document has a 60%
probability of being in this document category. 60%, therefore, is the cut-off percentage
limit. Lower than this score, the document fails to be classified as belonging to this

document category.
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4.4.8 Frequency of document keywords vs. Keywords in the database

As an ultimate test, if all else fail, we will subject the document keywords to a test of
whether or not they correspond to some of the document category keywords in the
database, and if so whether their frequency in the document is dominant for the document
to be classified as one belonging to that document category. It is to be noted, however,
documents do not need to undergo this test in order to be classified in certain categories.

Please refer to Appendix B - Keywords and Methods Used in Categorizing Documents

By Academic Relevance for more details.

What are then the keywords used to identify a particular document category? Well, we
would have a database of keywords and each HTML document is subjected to this
keyword test. A minimum amount of occurrence of these keywords must be present in a

document for it to be so classified.

The keyword database is based on the most common keywords that usually appear in
documents that belong to a certain academic category. These keywords must appear at
least 60% in the body of the document, and can then be said to have 60% probability of

belonging to this academic relevance category.

The keywords in the database is not based on training but rather based on our perception

or intuition of what common words appear in academic documents that belong to such a

category. For example, irregardless of what the subject matter is all about, a FAQ
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document always contains questions and answers, and the most dominant keywords in a
FAQ document are question, answer or a variation of them such as Q: (for question) and
A: (for answer). We took sample documents that belong to the same category and listed

down common keywords. These keywords are the ones stored in our database.

4.5 Experimental Tests

We subjected our thesis concepts for this chapter in some tests to prove that our idea is
feasible. There were only five (5) subjects we queried about, but each subject is
considered in two ways — one being the subject area itself (e.g. pattern recognition), and
the other being the subject area plus a particular category (e.g. “pattern recognition” and
“research paper”). The reason is because we would like to analyze in which manner
would we be getting more relevant academic documents. We analyzed the results and

suggested ways and means to facilitate retrieval of relevant academic documents.

4.5.1 Experimental Test Results

We have tested a pair of five (5) original and modified queries on subjects related to
computer science, and evaluate the academic category of each of the 30 documents that
were returned by search engines for the query. The table below shows the results of the
test that we had conducted. Although the tests are limited to a pair of 5 original and
modified queries, we do expect to obtain consistent results as the table below should be

conduct more tests, say 10. Here are the results of our experimental test:
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4.5.2 Performance Analysis of Experimental Results

The result of the tabulation of our tests, Table 4.1, indicates important findings: (1) if we
rely on search engines to obtain academic documents based on a mere simple query (e.g.
unmodified query such as “pattern recognition), we are likely not to get enough relevant
documents based on the category that we want, and (2) there is a need for an academic
category to be present in the search engine — ready to be ticked by the user, and the

category itself would be added to the original query.

As cited earlier in this thesis, the Internet is being used for commercial purposes —
publicity, marketing, etc. The academic documents on the Web are usually authored by
university professors and lecturers. If we compare the recall of some documents, there is
likelihood that we are going to obtain more documents written by business establishments
than academic institutions. For sample query like “operating system”, there are more
commercial topics on selling a particular operating system than a lecture or course notes
on operating system. Hence, we hypothesize that there is little chance that we get good

recall of academic documents on such areas as operating system, pattern recognition, etc.

One way to improve recall and precision to obtain academic documents is to attach a
category to the query word (e.g “operating system™ and FAQ). The recall and precision
will be much better than a mere “operating system™ query. Also, it is possible that some
features like this be present in search engines that a user may click or tick off after he

inputs a query. This is one way to revolutionize the present crops of search engines.
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Chapter 5

Focused Queries, and Ranking and Merging Documents from
Search Engines

5.1 Rationale

It is important that user’s query in the Internet gets as much relevant hits as possible.
Different search engines have different databases, so chances are each search engine

provides unique hit results, different from other search engines.

One of this thesis’s goals is to come up with relevant hits to a user’s query, meaning that
each hit that it will provide would have its contents contain among others subject which
the user has entered as his query. To be more specific, the relevance score of each hit
document would be not less than 60%. And this relevance score would be dependent on

the document content, not on the score that the commercial search engines provide.

The 60% relevance score is based on a common perception that a score should not be too
high and not to be too low as well. Minimum score of 80%, for example, would mean
that the discriminating score is too high, and that we are going to take out many
documents from consideration. On the other hand, the score of 50% is very low — it has a
meaning that it is 50% likely that the document is relevant, yet 50% likely as well that the

document is irrelevant. The score 60% is somewhere in between. Besides, this score is
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not fixed at all times; the user could modify the front-end to suit his/her minimum scoring

needs.

Another objective of this study is to come up with as many hits as possible. That is to say
that document hits would not come up one search engine result alone, but rather to three
to five search engines. The results of these search engines are then collated and are

arranged accordingly.

5.2  Theories and Concepts Applied

To begin with, the relevance of a document is a factor of the presence or absence of
important keywords in the document. In all likelihood, such important keywords should
include the query keywords. It is therefore imperative that the researcher should apply TF
(term frequency) document relevance scoring as one component in the document scoring
scheme. The TF method measures the number of appearances (frequency) of a term or
group of terms in comparison to all other terms that appear in the document. As the
nature of documents is evaluated, other component(s) could be added to the relevance

scoring scheme.

5.2.1 Choose the search engines to work on for the query

This work intends to act as an interface between the user searching relevant documents in

the Internet on one hand, and the commercial search engines on the other hand. That is to
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say that users will enter query and the system will find the documents — relevant

documents — for him.

The process begins by determining in which search engines should be used to find
relevant documents. It is decided that the system could have either default values or an

option for the user to choose the search engines to work on.

As a default value, the proposed system has three to five commercial search engines to

work on. They are as follows:

Names Main Site

Excite www.excite.com
Hotbot hotbot.lycos.com
Googles www.googles.com
Webcrawler www.webcrawler.com
AltaVista www.altavista.com

Fully aware that some user’s may not necessarily be satisfied with restrictions on which
search engines to search from, the study has decided to come up with an option of
allowing user to choose search engines to work on. Should the user decide on choosing

the later, all subsequent searches will be based on the list user’s choice of search engines.
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5.2.2 User’s query is analyzed —is it a focused query, an ambiguous query, or an
unfocused, non-ambiguous query?

The user will be allowed to enter query. Based on the user’s query, an action to be done is
decided, which is one of the following:

L. If the query is a single-word query, it is subjected to an ambiguity test. If it is
found to be an ambiguous query, the steps to be done is same as that discussed in
Chapter 2 - Identifying and Providing Directions to Ambiguous Queries.

2. If the query is an focused query, in a form of a question, the steps to be done is
the same as that of Chapter 3 - Finding Relevant Documents for Unfocused
Queries.

3. If the query is a unfocused, non-ambiguous, the steps to be done are further

discussed in this chapter.

The next step involves finding out if the query is a single word, or two or more words
with the necessary Boolean operation, or whether the query is a phase. This is important

because each of them must be treated differently.
A single-word query is complete in itself. A query with more than one keyword will

probably have a one or more boolean operations involved, or probably the query may

come in as a phrase. Consider the following variations of user query:
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Format Example Meaning
1 <keyword1> pollution Searck} will be concentrated on
pollution
) <word]> + noise + z;ir::_uwtdl t?e concenltlrattied on
<word2> pollution (on JUSt noise, or potiution, or
noise pollution.
Search will concentrate on
3 <word]> & operating & | finding keywords operating and
<word2> system system. They may not necessarily
come one word after another
#research Search will concentrate on
4 “<phrase>" aper” looking for the exact match of the
pap phrase in the document.
<word]> OR thesis OR Search will concentrate on -mt.her
5 . word1, or word2, or both. Similar
<word2> review .
to action for format #2.
; <word]> AND research if:.rch concentration and action
<
word2> AND paper similar to that in format #3.
7 <word1> course notes Search will be concentrated on
<word2> either word1, or word2, or both.
Table 5.1 The Boolean operations in users query and their implications in

information retrieval

[t is expected that user’s query will generally fall in any one of the seven formats given

above. The keywords in the query are examined and the boolean operation is determined

as well.

The boolean operator OR or + will be treated as it is — just the presence of one of the

keywords in the query is enough to qualify that the document is a hit, although the

document gets a probable higher ranking if it contains two or all of the keywords in the

query.
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The boolean operator AND or & wiil mean that the search for a matching document for
the user query will concentrate on the presence of both keywords, or in general all the
keywords in the query, but these keywords would not necessarily come one after another
in the sequence. If only one of the keyword in the query appears in the document, then

the document is considered irrelevant.

The phrase notation (* ) will mean that the search will be concentrated in finding exact
copies of the phrase in the document. The absence of exact copy of the phrase in the

document will mean that the document is irrelevant to the query.

Using the queries about “air pollution” and the possible Boolean operations involve, here
are some sample focused queries, and the search engines websites that contains the hit

results to these queries.

No. | Boolean Sample Resulting Hotbot URL
Operation Query
1 OR air OR
pollution | http//www.lotbot.com/?MT=air%2Bpollutio
n& _v=260ps=MDRTP
air +
pollution
2 AND air AND
pollution | http://www.hotbot.com/?MT=air% 26pollutio
n& v=2&0ps=MDRTP
air &
pollution
3 Phrase “air http://www.hotbot.com/?=%22air+pollution
pollution” | & v=2&0ps=MDRTP
4 None pollution | http://www.hotbot.cony/?comefrom=nsparnel-
search&MT=pollution

Table 5.2 Possible combinations of queries about “air pollution” and the Hotbot URL’s
that contain hit documents on the queries
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No. | Boolean Sample Resulting Lycos URL
operation Query
1 OR air OR
pollution | http://www.lycos.com/cgi-
bin/pursuit? cat=dir&maxhits=10&query=air
air + %2Bpollution&npl=
pollution
2 AND air AND
pollution | http//www.lycos.com/cgi-
bin/pursuit? cat=dir&maxhits=10&queryair%
air & 26pollution+npl=
pollution
3 Phrase “air http/fwww.lycos.com/cgi-
pollution” | bin/pursuit?cat=dir&maxhits=10&query=%2
2airtpollution %22 &npl=
4 None pollution | http.//www.lycos.com/cgi-
bin/pursuit?query=pollution&cat=dir&maxh
its=10

Table 5.3 Possible combinations of queries about “air pollution” and the Lycos URL’s
that contain hit documents on the queries

No. | Boolean Sample Resulting Excite URL
operation Query
1 OR air OR
pollution | http://search.excite.com/search.gw ?search=air
% 2Bpollution&itsug=-
air + 1&csug=10&sorig=netscape
pollution
2 AND air AND
pollution | http://search.excite.com/search.gw ?search=air
% 26pollution&sorig=netscape
air &
pollution
3 Phrase “air http.//search.excite.com/search.guw?search="%22
pollution” | airtpollution% 22&sorig=netscape
4 None pollution | http.//search.excite.com/search.gw ?search=poll
ution&irace=1&src=nsl&sorig=netscape

Table 5.4 Possible combinations of queries about “air pollution” and the Excite URL's
that contain hit documents on the queries
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5.2.3 Search engines are searched for document hits; documents’ URLs are
collated.

The query given in 5.2.2 will be searched on using the search engines given in 5.2.1. This

is in effect somewhat like as if the user submitted the query himself to these search

engines simultaneously.

In order to accomplish the task mentioned above, the study involved sampling different
queries of different formats on these search engines and found the URL of the search
engine result. From this, the researcher deduced the necessary URL for any given query
of any format. This is done by truncating the query keywords from the resulting URL

address.

The actual Java program implementation of this concept begins by attaching the query
words and the operation to a fix URL address (each URL address is different for every
search engine employed). The URL is searched online and an HTML copy of this
document is saved as a text file locally. The same thing is applied to the results of the

queries to other search engines.

The actual implementation of this process is noted, and the researcher found out that
doing this process sequentially — submitting query on one search engine and saving the
HTML document as a local file, one at a time — is very slow. To improve this
performance, the researcher has created a thread for each of search engine activity,

making the whole process run in parallel.
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Each search engine would usually provide the first 10 document hits to the query. We
believe that in general, although not always true, the first 10 document hits are very good
representative sample of the hits for that particular query. And since these first 10
documents are the ones with the highest scores as far as the particular search engine is
concerned, the researcher has therefore decided to take the first 10 hit documents from a
particular search engine. Hence, if the query is submitted to three search engines, we
expect to get about 30 hit document results. If it is submitted to 5 search engines though,

then we expect to get about 50 hit document URLs.

The hit document result of one search engine is not mutually exclusive to the result of the
second or third search engine. That is to say that there may be hit document that could
appear in more than one search engine. We intend not to come up with duplicate copies
of the same URL. Hence, we examine each and every hit URL to make sure that it appear
only once before inserting it onto our hit URL vector — an array-based list that grows and

shrinks based on its content.

5.2.4 Each URL is searched online and copied on the local disk

The result in the previous activity presumes that we will have a maximum of 30

documents (for 3 search engines) to 50 documents (for 5 search engines) to work on. That

i1s, these documents must be read online and each one be analyzed.



To do the above, each URL must be read online and once it is read via URL class in the
Java implementation, it must be saved as a local document on the local disk. Reading and
saving 30 to 50 documents will consume quite a lot of time, hence, it is very important
that this whole process be done in parallel. Each thread that comes into completion will

proceed with the next step, without unnecessarily waiting for other threads to complete.

It is also important to mention that it is always a possibility that a particular URL may
exist as a result to a user’s query by one or more search engines, yet in reality such URL
no longer exists. Hence, we should not completely rely on the assumption that once we
read a particular URL online we tend to get something tangible from it. The reasons for
such failure could be that:

1. The URL no longer exists.

2. The computer or the server that contains the URL document is down when the

request is made.
3. The traffic in the Internet is so heavy that it takes so much time downloading

the said URL document.

Considering all these possible scenarios, the researcher implements each process of
reading a URL online and saving its HTML document as local file as a thread. Each
thread runs in parallel with other threads. And each thread runs on a time limit. Once the
time limit is reached, the process is abandoned completely and the thread considered
completed. On the possibility that the URL is no longer existing or the server holding the

document is down, the thread would be considered erroneous and is stopped immediately.
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Assuming that none of these things happen, then all threads will come into completion
sooner or later. Once a thread completes, it is ready to proceed to the next process (step

5.2.5).

5.2.5 Local disk copy of the hit document is examined and its essential keywords
and tags analyzed.

The result of the completed process above assumes that we will have around 30 to 50

local files to examine, these files themselves being HTML documents which are hit

results to the user’s query.

In this process, the following files were created and used in the analysis of HTML
documents:

L. a file containing negative words, also called stop words.

2. a file containing negative symbols, also called stop symbols.

3. afile containing the key HTML tags

4. afile containing tags that are considered unimportant, also called stop tags.

The process of analyzing the HTML document begins by reading one line (usually of
length 80 characters) of the document. This line of characters is analyzed by parsing it
into tokens of words. Each word token is then subjected to a test of whether or not this
word belongs to words in the negative dictionary. Recall that negative dictionary contains

words that are so common that they are not representative word content of the document
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- that omitting them from the document will still make the document content intact. If a
word is part of the negative dictionary, then this word is struck down. If the word is not in

the negative dictionary, then it is added to a string (initially empty) of distinct words.

A line of characters read from the document contains not only words but HTML tags as
well. In the same time that words are analyzed if they are distinct or not (with reference
to the negative dictionary), HTML tags are collected and analyzed as well. HTML tags
are subjected to a test of whether they belong to the key tag file or non-important tag file.
The HTML tag is abandoned right away if it appears in the negative tag file. If the tag
happens to belong to tags in the essential tags file, then the tag, its operands and attributes
are analyzed. Usually, the words that follow the tag are collected until the closing tag is

encountered.

Consider, for example, the HTML tag <title>. The words following this tag are
remembered until the closing tag </title> is encountered. The tags <title> and </title> are
included in the essential tags file. The pair is needed in knowing the title of the document

and is likewise used to categorize document through their title.

The tags pair of <center> and </center>, for example, are included in the non-essential
tags file. When they appear in the document, we outright reject them for we are not
interested, at this point, of whether a word or a group of words, and image or a plug-in

appear in the center or not.
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This process of reading a line of 80 characters one at a time is repeated until all of the

content of the document is fully read.

The results of this process are:
1. A string which contains all the distinct keywords found in the document
2. Essential tag pairs are obtained. The tag pairs are usually used as delimiters
(starting and ending point) to keywords in the document to analyze the

category in which the document belongs.

5.2.6 The document’s relevance score with respect to the user’s query is
calculated.
From the resulting string that contains all distinct keywords found in the document
obtained from step 5.2.5 above, we then proceed to create a list of distinct keywords
within this string. This is accomplished by parsing this string into words separated by
whitespaces. We initially created an empty array-based list. We parse the string to get a
keyword. Then the list is searched whether the keyword is already there or not. [f it is not
in the list, the keyword is inserted in the list, and its count is set to . If the keyword is
already in the list, then the keyword is not inserted into the list, but its frequency count is

incremented by 1. This process is repeated until all the tokens in the string are analyzed.
The result of the process mentioned above is a list containing all the keywords (sorted in

ascending order, the case of the keyword — lowercase or uppercase or a combination of

both - ignored). Another resulting data structure of the above process is an array of
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integer equivalent to the frequency count of the keywords in the document. The array
index of the list of keywords and the frequency count must match for us to find which

keyword is stored in a certain index and what is its frequency count.

In order to calculate the document’s relevance in relation to the user’s query, we have to
find the keyword with the highest frequency count. Let this keyword’s frequency be

TFi_max.

We then determine the user’s term(s) query, and the frequency result, based on the
boolean operation involved, be called TFi_j. Consider the following cases of boolean

operations involved:

Case 1: No boolean operation involved.

We simply determine the frequency count of the keyword involved.

Example: if the user’s query is “eagle”, then we simply determine how many time

“eagle” keyword appears in the document. This frequency count is TFi_j.

Case 2: OR operation

We simply get the higher frequency count of the two or more keywords involved in the

user’s query.
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Example: Suppose that the user’s query is “course notes” (double quotes not
included) or “course + notes” or “course OR notes”. We then find the
term frequency of “course” and “notes”. Assume that the term frequency
of course = 55, and the term frequency of notes = 58. Then, we take the
resulting TFi_j score of the combination as 55, since 55 is greater than 58.

Case 3: AND operation

We simply get the smaller frequency count of the two or more keywords involved in the

user’s query.

Example: Suppose that the user’s query is “information & retrieval” (double quotes
not included) or “information AND retrieval”. We then find the term
frequency of “information” and “retrieval”. Assume that the term
frequency of information = 55, and the term frequency of retrieval = 58.
Then, we take the resulting TFi_j score of the combination as 55, since 55

ts smaller than 58.

Case 4: Phrase

We simply find the number of times the exact copy of the phrase appears in the

document.

Example: Suppose that the user enters “air pollution” as his query. In the parsing of
document in the very beginning, we have to get the frequency count the
phrase “air pollution” (double quote included when the user typed the

query). If no exact copy appears in the document, the value of TFi_j = 0.

We then compute the relevance score using the formula:

Relevance Score = 0.5 + 0.5 * (TFi_j / TFi_max)
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Take note that if the document predominantly contains the user’s query in frequency

count, then TFi_j and TFi_max would be the same, and the document will obtain a

score of 100%.

The relevance score based on the document’s keywords-frequency score in the document
counts 80% (the default value) of the total mark it gets. The other 20% (default value) is
based on its popularity among all relevant documents. Together they account for 100%

total score.

Two or more documents could probably have the same score, say all of them have 100%
scores. In cases like this, a numeric value of TFi_j (which is in this case equal to
TFi_max) are compared to determine which one gets a higher ranking than the other,

even if both have the same relevance score.

Popularity is defined here as whether the document is popular among other documents of
the same content. If other documents (at least one of them) has linked to document X,
then document X is said to be popular, aside from the fact that it is also a relevant one.
Then document X gets a 20% score for popularity. [f, on the other hand, document Y gets
no link from other documents of the same nature, then document Y is said to be not
popular, and obtains a score of 0% in popularity. In effect, popularity score is either 1 or

0, either 20% or nothing.
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[t is important to note that in reality it is very hard for a document to be popular to some
documents that also discuss the same subject. This of course will be possible if such
document is really important and relevant that it is worthy to mention it, let alone have a
link towards it, in one’s HTML document. The popularity score here is an extra bonus
given to a document for making it a worthy and a relevant document on the subject

concemed.

Overall, the total score of a document is given by the relationship:

Total document score = relevance score + popularity score.

As mentioned earlier, the default values for relevance score and popularity score are 80%
and 20%, respectively. In case that a user would like to modify this relative weight, a

graphical user interface is provided for the user to modify it.

5.2.7 Documents are arranged accordingly based on their total score

If only to conclude the results of all these processes, documents must be arranged

accordingly with respect to their overall score.

The listing of hits is arranged based on their overall document score, along with the title
of the document, its document type, and its URL address. The document title is made to
be a clickable link to the document itself. Clicking on the title will open up the document

to the user.
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5.2.8 Measuring Efficiency

There is sufficient evidence that concept presented in this chapter will provide Internet
inquirers with more hits and be assured that these documents hits are relevant to their
queries. It should be noted, however, that using this technique online would be a lot
slower as compared to, say, inquiring on Hotbot about “information retrieval”. The speed
by which the hit results are presented to the user is faster in the latter, because all it does
i1s to look up at its database and present the results right away. Contrast this to the
techniques presented in this chapter where the query is sent to many search engines,
results are collated, each document analyzed, and each document categorized before the

result is presented to the inquirer.

With a big disparity in speed, it is best that the techniques presented in this chapter be
done offline. Instead of having a web crawler taking a snapshot of every indexable
HTML document in the world, the techniques presented here have to be implemented, its
results kept in the database, and the process keeps repeating to the point that a database of
information retrieval system is achieved, most probably similar in size to the database of
a regular commercial search engine. It is through this that it can be said that the concept

presented in this study achieves its aim of efficiency in full capacity.
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Chapter 6

Conclusion

Things are evolving. Technologies are discovered and re-invented over time, and they
keep on evolving because the environment and the society demand them to be. It was not
long ago that Internet was created, yet over time we see the technology re-invented that
we see now wireless communication, telephones being used like computers, and so on.
Due to the higher demand for information dissemination and retrieval, the tools that we
use to speed up information retrieval must also evolve. Internet search engines must

evolve to keep up with the demand of the society for relevant information retrieval.

This thesis present some features that we believe will contribute to finding relevant
information retrieval in the Internet, and proposing categorization of documents in order
to minimize unnecessary browsing of unrelated documents. Qur aim is twofold: to find
real relevant hit documents to the user’s query, and to improve efficiency in information
retrieval by informing the user of the document’s category through which the user could

decide to browse or skip downloading the document based on its category.

We begin by proposing that search engines should be able to detect if user’s query is
ambiguous. This makes sense because many of Internet users are not native English-
language speakers; they do write ambiguous queries unintentionally. By identifying and

providing directions to ambiguous query, we have turned an ambiguous query into a
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clear, non-ambiguous query, and in doing so, increasing the likelihood of finding relevant

documents based on the user’s definition of the ambiguous term.

We also have presented our proposal for finding relevant documents based on focused
queries. We detailed how an focused query is trimmed down into few essential keywords
which are then sent as modified user query to search engines. The hits documents are
individually analyzed to find if they are indeed relevant to the query. We detailed how

focused queries in the form of “what”, “who”, “when”, “where”, “why” and “how"

questions are addressed. This contribution is useful to all Internet users who send precise
query and wanted to get the documents that contains the exact answer to the query.
Students in general will benefit from this feature because they do ask exact question most

of the time.

Unfocused queries are also addressed in this thesis. We then proposed that HTML
documents be categorized. In this thesis, the category is based on academic relevance. By
finding the necessary keywords in the title, or in the heading, or in the body, it is possible
to categorized documents. We conclude that academic categorization is possible and
feasible, and we recommend that future categorization can be made on any HTML

document based on its commercial, or military, or entertainment content.

Over the course of preparation of this thesis, we sampled many queries on many search

engines, and found out that many hit documents are of very little relevance to the query,

and on the average about 13% of the hits are completely irrelevant. With this as a driving
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force, we then find a ranking algorithm that really measures the relevance of a document
based on its content. We looked at many ranking algorithms compare each of them, and
finally picked out TF (term frequency) as one component of the scoring scheme. We
added popularity or cited scheme as another measure of relevance. The choice of term
frequency measure will guarantee that all of the possible hit documents will all contain
the user’s query keywords. This is a guarantee that no hit document is completely
irrelevant to the user’s query. The popularity and cited document score is based on the
notion that relevant document cited by another relevant document based on the user’s

query gets extra points or scores for relevance.

The concept of submitting the user’s query to many search engines at the same time and
collating and merging their hit documents is our way of finding more relevant documents
and giving them back to the user. Our work guarantees that no duplicate documents are

presented to the user as hit documents.

Our work does consider inputs from the user to modify default values in the
implementation of some of the features of the thesis. For example, the user can use the
default search engines provided in our work, or modify it by selecting his desired search
engines from the given list. The user can also modify the weight of the popularity score
in determining the relevance of a document. A default value of 20% is assigned to this

scheme, but the user can minimize or remove this scoring altogether if he wishes to.
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As mentioned earlier, we believe that technology must keep evolving to keep up with the
pace of the demands of the society. That said, the restriction that hit documents are
always in the form of text documents only should cease. It must accommodate other
media as well, such as audio, video and still image. Information retrieval is possible in
these forms of media. Speech recognition technology could be used to convert audio into
text. The “close captioning” feature of a video could also be utilized to find information is
such a medium. Eventually, audio and video content could be translated to text, and the
resulting text could be explored, in the same way we explore HTML text documents to

find information.

We do suggest that for still image, the filename of the image itself be used as a way to
determine its content. That said, we do recommend that the filename of an image should
exactly summarize what the image is all about. With that we mean that the filename will
exact tell what the image is all about. This scheme works well in Unix system, but not in
Windows because of the restriction in naming file in Windows. In order for this scheme
to work under Windows, the naming of an image file in Unix should be implemented in

Windows as well.
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Appendix A

Term Weighting System and Ranking Algorithm

The following term weight schemes are some of the selection from which we based our

ranking algorithm:

. Term Frequency (TF) - is based on the notion that constructs (words, phrases, word
groups) that frequently occur in the test of documents have some bearing on the
content of the text. The weight of term k in document i, WEIGHTj,, might be set
equal to the frequency of the occurrence of word construct k in document I

WEIGHT; = FREQ

The term frequency system makes no distinction between terms that occur in every

document of a collection, and those that occur in only a few items. Since, we are not

going to keep large database, as what commercial search engines do, we basically

have no collection of documents to consider.

2. Inverse Document Frequency - is based on the notion that the usefulness of a term
for content representation increases with the frequency of the term in the document,
but decreases with the number of documents (DOCFREQk) to which the term is
assigned

WEIGHTik = FREQik /DOCFREQk

The inverse document frequency is useless when we consider cases of collection of

documents. This weighting scheme is left aside in our ranking algorithm scheme as

we have no collection of documents to consider.



3. Term Descrimination Theory — depends on the degree to which the assignment of a
term to the documents of a collection is capable of decreasing the density of the
document space (the average distance between documents). The discrimination value
of term k (D[SéVALUEk) is the difference between two measurements of documents
space density, corresponding to the densities before and after assignment of term k.
The weighting function for term k in document i is

WEIGHTik = FREQik * DISCVALUEk
This scheme is not in the nature of the hit documents we consider, so we dropped it

off from consideration.

4. Probabilistic Indexing Theory - states that the best index terms are those that tend
to occur in the relevant documents with respect to some query. When the terms are
assigned to the documents independently of each other, a measure of term value is
obtained from the term relevance, TERMRELK. This is the ratio of the proportion of
the relevant items in which term k occurs to the proportion of non-relevant items in
which the terms occur.

WEIGHTik = FREQik - TERMRELk
This scheme is not in the nature of the hit documents we consider, so we dropped it

off from consideration.

Ranking Algorithm

We have formulated our ranking algorithm based on some information given below:

Definition of Terms:
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Term = keyword
Document = resource
M = the number of query terms
Q; = the j™ query term, for 1 <j <M
N = the number of documents in the database

D; = the i"™ document in the database, for | <i <N

R; 4 = the relevance score of document D; with respect to query q
Li;x =the occurrence of an incoming hyperlink from document Dy to D;
= | if such a hyperlink exist,
= 0 if otherwise
Lo i, « = the occurrence of an outgoing hyperlink from document D; to document Dy
=1 if such a hyperlink exists
=0 if otherwise
Cij = occurrence of query term Qjin document D;
= 1 if document D; contains Q;

=0 if otherwise

TF x IDF (Term Frequency — Inverse Document Frequency) — based on the notion

that constructs (words, phrases, word groups) that frequently occur in the test of

documents have some bearing on the content of the text (TF) and that the usefulness of a

term for content representation increases with the frequency of the term in document but

decreases with the number of documents to which the term is assigned.

WEIGHT ik = FREQik/DOCFREQik
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where
WEIGHTik = weight of term k in document i
DOCFREQk = number of documents containing term k
And the relevance score of document D; with respect to the query q is
Riqg= Ziemjeq( 0.5+ 0.5 TF ij/ TF; max) [DF;j
where TF;,; = term frequency of query term Q; in document D;
TF; max = the maximum term frequency of a keyword in document D;
IDF; = log (N/Z; - N Cj)
where C; = occurrence of query term Q; in document D;
= | if document D; contains query term Q;
=0 if otherwise

N = number of documents in the database.

Hence, our ranking algorithm is
Riq= Ztermjeq( 0.5+ 0.5 TF ;;/ TF;ma:) * 0.8 +0.2 (Li ;g
Relevance score = 80% based on term frequency
+ 20% based on hyperink/popularity
The summation of every query term is obtained by the logical operation involved in the

query.



Appendix B

Keywords and Methods Used in Categorizing Documents by
Academic Relevance

1. Co

1.1

1.2

1.3

urse Notes

if “Course Note(s)” (case insensitive) appear in the title (via HTML tag pair
<title> and </title>), then the document is considered as course notes. If it is not
found in the title, proceed to stepl.2.

If “Course Notes” appear in at least one heading of the document (via HTML
tag pairs <H1> and </H1>, up to <H6> and </H6>), the document is categorized
as “Course Notes™. If it is not found in the heading, proceed to step 1.3.

We treat “course note” like a user’s query. Using our ranking algorithm we find
the score of the query “Course Notes”. If the document’s score is 60% or more,
the document is considered a course notes material. If it is not, proceed to step

1.4.

1.4 The frequency of each of the following keywords are added together and

compared against the keyword that appears the most in the document. If the
ratio of the frequency of all the keywords below against the frequency of the
dominant keyword in the document is 60% or more, the document is considered

a “Course Notes” material.

Here are the keywords that denote that the document is a “Course Notes”

material:
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coitrse, notes, fall, winter, summer, lerm, semester, trimester,
university, college, academy, institute, school, professor, instructor,
teacher, subject, reference, textbook, chapter

Figure B.1 Database keywords that denote “Course Notes”

2. Frequently Asked Questions (FAQ)

2.1

2.2

23

24

if “Frequently Asked Questions” or “FAQ” (case insensitive) appear in the
title (via HTML tag pair <title> and </title>), then the document is considered
as FAQ. If it is not found in the title, proceed to step 2.2.

If “Frequently Asked Questions™ or “FAQ” appear in at least one heading of the
document (via HTML tag pairs <H1> and </H1>, up to <H6> and </H6>), the
document is categorized as “FAQ”. If it is not found in the heading, proceed to
step 2.3.

We treat “Frequently Asked Questions™ or “FAQ™ like a user’s query. Using
our ranking algorithm we find the score of the query “Frequently Asked
Questions” or “FAQ”. If the document’s score is 60% or more, the document is
considered a course notes material. If it is not, proceed to step 2.4.

The frequency of each of the following keywords are added together and
compared against the keyword that appears the most in the document. If the
ratio of the frequency of all the keywords below against the frequency of the
dominant keyword in the document is 60% or more, the document is considered

a “FAQ” material.
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Here are the keywords that denote that the document is a “FAQ” material:

Frequently, asked, questions, faq, FAQ, question, answer,
Q. A:q., a:

Figure B.2 Database keywords that denote “Frequently Asked Questions”

3. Research Paper

3.1 if “Research Paper” (case insensitive) appear in the title (via HTML tag pair
<title> and </title>), then the document is considered as a research paper. If it is
not found in the title, proceed to step 3.2.

3.2 Check if the title of the document appears in an abstract (List of papers
published in different journals). (This is not implemented nor tested in this

thesis) If it does, then it is a research paper. If not, it is not a research paper.

4. Technical Report

4.1 if “Technical Report” (case insensitive) appear in the title (via HTML tag pair

<title> and </title>), then the document is considered as a technical report.

S. Thesis

5.1 if “Thesis” (case insensitive) appear in the title (via HTML tag pair <title> and
</title>), then the document is considered as a thesis. If it is not found in the

title, proceed to step 5.2.
5.2 The frequency of each of the following keywords are added together and

compared against the keyword that appears the most in the document. If the
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ratio of the frequency of all the keywords below against the frequency of the
dominant keyword in the document is 60% or more, the document is considered

a “thesis” material.

Here are the keywords that denote that the document is a *“thesis” document:

thesis, degree, bachelor, master, doctor, university, college, academy, institute,
school, department, faculty, dean, examining committee, chair, examiner,
superuvisor

Figure B.3 Database keywords that denote “Thesis”

6. Tutorial
6.1 1f “Tutorial” (case insensitive) appear in the title (via HTML tag pair <title> and
</title>), then the document is considered as Tutorial. If it is not found in the
title, proceed to step 6.2.
6.2 If “Tutorial” appears in at least one heading of the document (via HTML tag
pairs <HI> and </H1>, up to <H6> and </H6>), the document is categorized as

“Tutorial” document.

7. Review

7.1 if “Review” (case insensitive) appear in the title (via HTML tag pair <title> and
</title>), then the document is considered as Review. If it is not found in the

title, proceed to step 7.2.
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7.2 If “Review” appears in at least one heading of the document (via HTML tag
pairs <H1> and </H1>, up to <H6> and </H6>), the document is categorized as

“Revieww” document.

8. Research Paper/Technical Report

8.1 if “Research Paper” or “Technical Report” (case insensitive) appear in the title
(via HTML tag pair <title> and </title>), then the document is considered as a
research paper/technical report. If it is not found in the title, proceed to step 8.2.

8.2 The frequency of each of the following keywords are added together and
compared against the keyword that appears the most in the document. If the
ratio of the frequency of all the keywords below against the frequency of the
dominant keyword in the document is 60% or more, the document is considered

a “Research Paper/Technical Report” material.

Here are the keywords that denote that the document is a “‘research paper

/technical report” document:

introduction, abstract, methodology, validation, summary, future work, references

Figure B.4 Database keywords that denote “Research Paper/Technical Report”
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Appendix C

Stop Words, Stop Symbols, and HTML Tags

A. Database of Keywords Considered Stop Words or Non-Important Words:

The following words or terms are considered unessential in determining the content

of document:

Part of Speech
Category

Stop Words or Negative Words

1. Preposition

about, above, across, after,  against, along, among,
around, at, before, behind, below, beneath, beside,
between, beyond, but, by, despite, down, during,
except, for, from, in, inside, into, like, near, of, off,
on, onto, out, outside, over, past, since, through,
throughout, till, to, toward, under, underneath,
until, up, upon, with, within, without

2. Pronoun

[, you, she, he, it, we, you, they, me, you, her, him, it,
us, them, mine, yours, hers, his, its, ours, theirs,
this, that, these, those, who, whom, which, what,
whoever, whomever, whichever, whatever, all, another,
any, anybody, anyone, anything, each, everybody,
everyone, everything, few, many, nobody, none, one,
several, some, somebody, someone, myself, yourself,
herself, himself, itself, ourselves, yourselves, themselves

3. Conjunction

and, but, or, nor, for, so, yet, after, although,
as, because, before, how, if, once, since, than,
that, though, tll, until, when, where, whether,
while

4. Adverb also, consequently,  finally,  furthermore,  hence,
however,  incidentally,  indeed, instead, likewise,
meanwhile, nevertheless, next, nonetheless,
otherwise,  still,  then,  therefore, thus, now, today,
tomorrow

5. Verb is, am, are, was, were, has, have, will, would, could, should,
been, must

6. Others a, an, the, hello, hi, goodbye, bye, sir

Table C.1 Stop Words (also called Negative Dictionary)
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B. Stop Symbols

The following symbols are considered unessential in determining the content of
document:

Table C.2 Stop Symbols

C. Essential HTML Tags

The following HTML tags are considered important and so are the terms attached to
them:

<title> and </title> to determine the title of the document
<h1>and </hl1> to determine the headings

<h2> and </h2>

<h3> and </M3>

<h4> and </h4>

<h5> and </h5>

<h6> and </h6>

<p>and </p> to determine the extent of the paragraph
<a href=" “>and </a> to determine the hypertext link

Table C.3 Essential HTML Tags
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Appendix D

Detailed Experiment Results on Ambiguous Queries

1. Ambiguous query word: orange
A. WordNet Senses/Definitions:

(a) orange and citrus

(b) citrus fruit

(c) citrous fruit

(d) chromatic color

(e) chromatic colour

(f) spectral color

(g) spectral colour

(h) citrus tree

(i) pigment
() nver
B. Original Ambiguous Query: orange
Excite, Hotbot and Google Results: 30 documents
Orange as fruit : 15/30
Orange as county: 7/30
Orange as browser/website: 4/30
Orange as electronic company: 2/30
Orange as bicycle store: 1/30
Dead link: 1/30

C. Modified Query:
1. Orange and fruit:

Precision : 30/30 = 100%
2. Orange and color:
Precision: 30/30 = 100%
2. Ambiguous query word: bat

A. WordNet Senses/Definitions:
(a) placental
(b) placental mammal
(c) eutherian
(d) eutherian mammal
(e) tumm
(f) play
(g) racket
(h) racquet
(i) cricket equipment
() club
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B. Original ambiguous query:

Excite, Hotbot and Google Resuits:

Bat as an animal:

Bat as a baseball equipment:
Bat as a softball equipment:
Bat as an email system:

Bat as a tobacco group:

Bat as an Israeli women group:

C. Modified Query:

1. Bat and mammal:

Precision:

2. Bat and “cricket equipment”

Precision:

3. Ambiguous Query word:
A. WordNet Senses/Definitions:

(a)
(b)
()
(d)
(e)
(6
(g)
(h)
(1)
()]

national capital

American state

federal government

general

full general

President of the United States
President

Chief Executive

Educator

Pedagogue

B. Originai ambiguous query:
Excite, Hotbot, and Google Results:

Washington as American state:
Washington as a city in District
of Columbia, USA:
Washington as actor:
Washington as magazine:
Washington as a mountain:
Washington as a university
Washington as a brewery:
Washington as a basketball league
(NBA) member:

bat

30 documents
16/30

10/30

2/30

2/30

2/30

1/30

30/30 = 100%

30/30 = 100%

washington

washington
30 documents

12/30

11730
1/30
1/30
2/30
2/30
1/30

1/30
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C. Modified Query:

1. Washington and “‘President of the United States™

Precision:

2. Washington and “national capital”

Precision:

4. Ambiguous Query word:
A. WordNet Senses/Definitions:

(a) Asian country

(b) Asian nation

(c) Porcelain

(d) Island

(e) Crockery

(f) Dishware

B. Original ambiguous query:

Excite, Hotbot, and Google Results:

China as an Asian country:
China as a dishware:

C. Modified Query:
1. China and dishware:
Precision:
2. China and “asian nation”
Precision:

5. Ambiguous Query word:
A. WordNet Senses/Definitions:

(a) domestic fowl

(b) fowl

(c) poultry

(d) country

(e) state

(f) land

(g) unpleasant person

(h) disagreeable person

(1) flop

(j) bust

(k) gallinaceous bird

(1) gallinaceon

B Original ambiguous query:

Excite, Hotbot, and Google Results:
Turkey as animal/poultry:
Turkey as a country:

[rrelevant hit:

24/30 = 80%

25/30 = 83%

china

china

30 documents
29/30

1/30

27/30 =90%
29/30 =97%

turkey

turkey

30 documents
13/30

16/30

1/30
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C. Modified Query:
1. Turkey and poultry:
Precision:
2. Turkey and country:
Precision:

6. Ambiguous Query word:
A. WordNet Senses/Definitions:
(a) provincial capital
(b) Canadian province

B. Original ambiguous query:

Excite, Hotbot, and Google Results:
Quebec as a Canadian province:
Quebec as a city:

[rrelevant hit:

C. Modified query:
1. Quebec and province:
Precision:
2. Quebec and city
Precision:

7. Ambiguous Query word:
A. WordNet Senses/Definitions:
(a) metallic element
(b) metal
(c) Roman deity
(d) inferior planet
(e) temperature

B. Original ambiguous query:
Excite, Hotbot, and Google Results:

mercury as an insurance business:

mercury as a car dealer:
mercury as car financing agent:
mercury as a car:

mercury as a hotel:

mercury as mortgage network:
mercury as a boat engine:

mercury as an Australian newspaper:
mercury as Washington news bureau:

mercury as a software company:

mercury as Sacramento news bureau:

mercury as Kansas newspaper:

24/30
27/30

quebec

quebec

30 documents
23/30

6/30

1/30

30/30 = 100%

26/30 =87%

mercury

mercury
30 documents
1/30
2/30
1/30
3/30
1/30
1/30
3/30
3/30
1/30
2/30
1/30
1/30
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mercury as San Jose newspaper: 2/30

mercury as music group band: 1/30
mercury as women’s basketball team: 2/30
mercury as US record label: 1/30
mercury as a programming language: 1/30
mercury as a planet: 1/30
mercury as a magazine: 1/30
irrelevant: 1/30

C. Modified query:
1. Mercury and planet
Precision: 30/30 = 100%
2. Mercury and metal
Precision: 29/30 =97%

8. Ambiguous Query word: mouse
A. WordNet Senses/Definitions:

(a) rodent

(b) gnawer

(c) gnawing animal

(d) electronic device

B. Original query word: mouse
Excite, Hotbot, and Google Results: 30 documents
Mouse as a computer peripheral: 11/30
Mouse as an animal: 11/30
Mouse as a music group: 2/30
Mouse as an internet service provider
company: 1730
Mouse as a Spanish newspaper: 1/30
Mouse as a computer learning school: 1/30
Irrelevant: 3/30

C. Modified query:
1. Mouse and rodent

Precision: 27/30 =90%
2. Mouse and computer
Precision: 29/30 =97%
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9. Ambiguous Query word:
A. WordNet Senses/Definitions:
(a) island
(b) beverage
(c) dnink
(d) drinkable
(e) potable

java

(f) object-oriented programming language

B. Original query word:
Excite, Hotbot, and Google Results:
Java as a computer programming
tool/language:

C. Modified query
1. Java and Indonesia
Precision:
2. Java and drink:
Precision:

10. Ambiguous Query word:
A. WordNet Senses/Definitions:
(a) American state
(b) Colony
(c) Asian country
(d) Asian nation

B. Original query word:
Excite, Hotbot, and Google Results:
Georgia as a US state:
Georgia as an Asian country:
Georgia as a search engine:
Georgia as a paper manufacturer:

C. Modified query:
1. Georgia and USA
Precision:
2. Georgia and republic
Precision:

java
30 documents

30/30

29/30=97%

29/30 =97%

georgia

georgia

30 documents
24/30

2/30

2/30

2/30

28/30=93%

27/30 =90%
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Appendix E

Detailed Experiment Results on Focused Queries

1. Focused Query on “Who?”

A. Original Queries:

Who is Mahatma Gandhi?

Who killed John F. Kennedy?

Who is the richest man on earth?

Who is the father of modern chemistry?
Who are the Acadians?

Nk~

B. Corresponding Modified Queries:
Mahatma and Gandhi

Killed and John and F. and Kennedy
richest and man and earth

father and modern and chemistry
Acadians

W -

C. Relevance of Hit Documents
1. Excite: 10/10, Hotbot: 10/10, Google: 10 /10
Relevant Documents: 30/30 = 100%
[rrelevant Documents: 0/30 = 0%

2. Excite: 10/10, Hotbot: 10/10, Google : 10/10
Relevant Documents: 30/30 = 100%
[rrelevant Documents: 0/30 = 0%

3. Excite: 4/10, Hotbot: 6/10, Google :8/10
Relevant Documents: 18/30 = 60%
Irrelevant Documents: 12/30 = 40%

4. Excite: 9/10, Hotbot: 7/10, Google : 7/10
Relevant Documents: 23/30 = 77%
Irrelevant Documents: 7/30 = 23%

5. Excite: 10/10, Hotbot: 9/10, Google : 10/10

Relevant Documents: 29/30 = 97%
Irrelevant Documents: 1/30 = 3%
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2. Focused Query on “What?”

A. Onginal Queries:

What is the atomic number of oxygen?

What elements compose water?

What is the capital of Greenland?

What 1s an alchemist?

What science deals with the study of plants and animals?

NN

B. Corresponding Modified Queries:

atomic and number and oxygen
elements and compose and water

capital and Greenland

alchemist

science and study and plants and animals

SN

C. Relevance of Hit Documents
1. Excite, Hotbot, and Google Results: 30 documents
Relevant Documents: 22/30 = 73%
[rrelevant Documents: 8/30 =27%

2. Excite, Hotbot, and Google Results: 30 documents
Relevant Documents: 25/30 = 83%*
Irrelevant Documents: 5/30 = 17%

(* If the question “what elements compose water?” is asked inside the classroom,
the likely answer would be hydrogen and oxygen, in this case only 2 documents
out of 25 are relevant.

If the question would cover mineral water and other commercially sold water, the
answer would be the added elements in the water. [n such case, the other 23
documents are relevant as well)

3. Excite, Hotbot, and Google Resulits: 30 documents
Relevant Documents: 29/30 = 97%
[rrelevant Documents: 1/30 =3%

4. Excite, Hotbot, and Google Results: 30 documents
Relevant Documents: 27/30 = 90%
[rrelevant Documents: 3/30 = 10%

5. Excite, Hotbot, and Google Results: 30 documents

Relevant Documents: 28/30 = 93% * (see next page)
[rrelevant Documents: 2/30 = 7%
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(* The relevance measure here is deceiving in the sense that majority of the
documents are considered relevance due to the presence of keywords in the same
sentence or in the same paragraph, but only 7/28 contains biology or ecology
which is the right answer if the question is asked inside the classroom)

ocused Query on “Why?”
riginal Queries:

Why is smoking bad to our health?

Why was JFK assassinated?

Why did George W. Bush reject the Kyoto Protocol?
Why is the ocean salty?

Why is the color of the sky blue?

rresponding Modified Queries:
smoking and bad and health
JFK and assassinated
George and W. and Bush and rejected and Kyoto and Protocol
ocean and salty
color and sky and blue

levance of Hit Documents
Excite, Hotbot, and Google Results: 30 documents
Relevant Documents: 26/30 = 87%
Irrelevant Documents: 4/30 = 13%

(Our front-end tool is able to obtain 26 out 30 documents from the hits of search
engines, and after subjecting it to our test 26/26 are found to be all relevant)

Excite, Hotbot, and Google Results: 30 documents
Relevant Documents from search engine: 25/30 = 83%%*
Relevant Documents from front-end: 3/25

Irrelevant Documents: 5/30 = 17%

(* There are many Internet documents about President Kennedy's assassination
but there are very little documents that answers the question why he was
assassinated. Because of our extra keywords requirement, most of the returned
documents 22/25 are rejected because of their failure to answer the question. After
obtaining 3/25 selected documents, we read the full documents and found out that
they did answer the question.

There are 2/25 documents though that answers the question but not in
straightforward manner. Since the documents do not have the right keywords,
they were rejected as irrelevant document, although we admit that their contents
are really relevant)
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3. Excite, Hotbot, and Google Results: 30 documents
Relevant Documents: 29/30 = 97%
Relevant document considered by front-end tool :  6/29
Relevant document rejected by front-end tool: 12/29
[rrelevant Documents: 1/30 = 3%

(It is interesting to note that 12 out of 29 documents that explain why Pres.
George W. Bush rejected the Kyoto Protocol was rejected by our front-end tool
even if they are relevant. The reason is that they lack some extra keywords that we
were looking for. Also, we note that most documents presented the reasons
without saying the word “because”, “reason”, “in order to”, etc. We attribute this
failure of our front-end system to detect these relevant documents to the richness
of natural language — English in this case - in presenting datafinformation

without necessarily following a pattern.)

4. Excite, Hotbot, and Google Results: 30 documents
Relevant Documents: 29/30 = 97%
Relevant documents considered by front-end tool : 28/29
Irrelevant Documents: 1/30 = 10%

5. Excite, Hotbot, and Google Results: 30 documents
Relevant Documents: 27/30 = 90% *
Relevant documents reported by front-end tool : 17/27
[rrelevant Documents: 3/30 = 10%

4. Focused Query on “When?”

A. Original Queries:

When is McGill University founded?

When was JFK assassinated?

When was the Eiffel Tower constructed?

When was the Montreal Summer Olympic Games?
When did Apollo 11 landed on the moon?

S

B. Corresponding Modified Queries:

McGill and University and founded

JFK and assassinated

Eiffel and Tower and constructed

Montreal and Summer and Olympic and Games
Apollo and 11 and landed and moon

NP -

C. Relevance of Hit Documents
1. Excite, Hotbot, and Google Results: 30 documents
Relevant Documents: 26/30 = 87%
Relevant document according to front-end tool : 23/26
Irrelevant Documents: 4/30
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Excite, Hotbot, and Google Results: 30 documents
Relevant Documents from search engine: 30/30

Relevant Documents from front-end: 23/30
[rrelevant Documents: 0/30

Excite, Hotbot, and Google Results: 30 documents
Relevant Documents: 27/30 = 90%
Relevant document considered by front-end tool :  23/27

Relevant document rejected by front-end tool: 0/27
Irrelevant Documents: 1/30 = 3%
Dead link: 2/30=7%

Excite, Hotbot, and Google Results: 30 documents
Relevant Documents: 28/30 = 93%

Relevant documents considered by front-end tool : 28/28
[rrelevant Documents: 2/30 = 7%

Excite, Hotbot, and Google Results: 30 documents
Relevant Documents: 30/30 = 100%

Relevant documents reported by front-end tool : 30/30
[rrelevant Documents: 0/30

. Focused Query on “Where?”
. Original Queries:

>
@)

bl ol o

B. Co

el

C.Re
1.

Where is Taj Mahal located?

Where can I find the smallest fish in the world?
Where is the office of the President of Russia?
Where can [ buy the cheapest helicopter in Canada?
Where is the largest diamond deposit in Africa?

rresponding Modified Queries:
Taj and Mahal and located
find and smallest and fish and world
office and President and Russia
buy and cheapest and helicopter and Canada
largest and diamond and deposit and Africa

levance of Hit Documents
Excite, Hotbot, and Google Results: 30 documents
Relevant Documents: 27/30 = 90%%*
Relevant document of front-end tool : 26/27
Relavnt document missed by fron-end tool : 1/27
Dead link : 3/30 = 10%



W

(There are 27 out of 30 documents are considered relevant, however, 3/27 are
actually about Taj Mahal hotel, 1/27 is about Trump Taj Mahal, and 2/27 are
about Taj Mahal Casino. Howeuver, following our front-end tool, the documents
are actually stating where the Taj Mahak casino is located, and so with taj mahal
hotel and restaurant)

Excite, Hotbot, and Google Results: 30 documents
Relevant Documents from search engine: 26/30

Relevant Documents found by front-end tool: 10/26

Relevant document found by front-end tool that are irrelevant: 3/10
Irrelevant Documents: 4/30

Excite, Hotbot, and Google Results: 30 documents

Relevant Documents: 23/30 = 77%
Relevant document relevant considered by front-end tool : 0/23
Relevant document rejected by front-end tool: 0/23
[rrelebvant document found by front-end tool: 23/23

[rrelevant Documents: 7/30 = 23%

Excite, Hotbot, and Google Results: 30 documents
Relevant Documents: 20/30 = 67%
Relevant documents considered by front-end tool : 4/20
Relevant document considered irrelevant by front-end tool: 1/20
Irrelevant Documents: 1/030 = 33%

Excite, Hotbot, and Google Results: 30 documents
Relevant Documents: 24/30 = 80% *
Relevant documents reported by front-end tool : 18/24
Relevant document considered irrelevant by front-end tool: 0/18
[rrelevant Documents: 1/30 = 3%
Dead link : 5/30=17%

6. Focused Query on “How?”
A. Original Queries:

VAL

How does the operating system work?
How does alcohol affect our judgment?
How does the ship float in water?

How to invest in stock market?

How to bake a croissant?

B. Corresponding Modified Queries:

.LIIAWNV—-

operating and system and work
alcohol and affect and judgment
ship and float and water

invest and stock and market
bake and croissant
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C. Relevance of Hit Documents
1. Excite, Hotbot, and Google Results: 30 documents
Relevant Documents: 28/30 = 93%*

Relevant document of front-end tool : 28/28
Relavnt document missed by fron-end tool : 0/28
Dead link : 2/30 = 10%

2. Excite, Hotbot, and Google Results: 30 documents
Relevant Documents from search engine: 29/30
Relevant Documents found by front-end tool: 29/29
Relevant document found by front-end tool that are irrelevant: 0/29
Dead link : 1/30

3. Excite, Hotbot, and Google Results: 30 documents
Relevant Documents: 30/30 = 77%
Relevant document relevant considered by front-end tool : 30/30
Relevant document rejected by front-end tool: 0/30
Irrelevant document found by front-end tool: 0/30
[rrelevant Documents: 0/30 = 0%

4. Excite, Hotbot, and Google Results: 30 documents
Relevant Documents: 20/30 = 67%
Relevant documents considered by front-end tool : 4/20
Relevant document considered irrelevant by front-end tool: 1/20
[rrelevant Documents: 1/030 = 33%

5. Excite, Hotbot, and Google Results: 30 documents
Relevant Documents: 28/30 = 93% *
Relevant documents reported by front-end tool : 28/28
Relevant document considered irrelevant by front-end tool: 0/28
[rrelevant Documents: 2/30 = 7%%*

(* Documents are considered irrelevant because they are written in languages
other than English, and words like bake does not exist, although croissant is a
general international word which means a kind of bread.)
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Appendix F.1
Algorithm for determining an ambiguous query

//Prompt for user to enter a query, and the user query is stored as a string
”*********************************************************
display “Enter a query: “

read (query)

//Count the number of distinct keywords in the query string.
//1f distinct keyword count is more than one, there is no need to check for its ambiguity
”*********************************************************************
tokenCount € number of distinct keyword;
if (tokenCount > 1)
exit
else
begin
queryString € Result of (WorldNet query (query));

//if there are 2 or more definitions for the keyword, the keyword is ambiguous
”**************************************************************

if ( “Sense 2" is a substring of QueryString)

begin

count € number of distinct senses in queryString
Parse(QueryString)
index € 0
array_of_string strArray[20] € null string
n€1;
while (n is less than or equal to count)
begin

token = n™ sense of queryString

n < n+l

strArray[index] € token

index € index + 1

end while

end if

/! display a message saying that the query is ambiguous and the keywords

// which the user may wish to add to the query
”***********************************************************
display “Your query is ambiguous. It has more than one meaning:”

display “Please choose one (or more) of the following keywords that you wish”
display “to be added to your query”

n€&0
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while (n is less than or equal to index)
begin
display strArray[n]
n<n+l
end while
end if
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Appendix F.2

Algorithm for Obtaining Hit Documents from Search Engines Based on User’s
Query

Begin Algorithm

//display a prompt for user’s query
”***************************

display “Please enter a query:
read (query)

//Parse the query to determine keywords and Boolean operation present in the query
”******************************************************************

string query € the query entered by the user
string operation € NULL

//determine the Boolean operation (if any) in the query
ﬁ*******************************************

if ““ (double quote) is a substring of query
operation €< “Phrase”

integer keywordCount € number of keywords in the query
if (keywordCount is equal to 1)
operation € “none”

if (“AND” is a substring of query) OR
(“&” is a substring of query)
operation € “AND”

if (“OR™ is a substring of query) OR
(*“+” 1s a substring of query)
operation € “OR”

if (keywordCount > 1) AND (“&” is not a substring of query) AND
(“+" 1s not a substring of query)
operation € “OR”

//delete stop words in the query
”************************

array_of_string StopWords[] € the stop words dictionary as entered by the programmer
(see Appendix C for the list of stop words)

integer min € 0

149



integer max € size of array StopWords

//perform binary search to determine if every keyword in the query is a stop word
”****************************************************************
string tempQuery € query

integern € 1

while (n is less than or equal to keywordCount)
begin
string keyword € n™ keyword in tempQuery

/fthis is the binary search part to check if keyword is a stop word
//if a keyword is a stop word, it is deleted from the query
J i S L L
integer mid € (min + max) /2
while (min is less than or equal to max)
begin
if (keyword is same as Stop Words[mid])
begin
query € remove keyword from query
break
end
else
if keyword is greater than StopWords[mid]
max € mid -1
else
min € mid + 1
end if
end if

mid € (min + max) /2
end while

né&n+l
end while

/lafter deleting stop words, the number of distinct keywords in the query is reduced
//all query keywords are stored in an array of string called queryVector
”******************************************************************
keywordCount € number of keywords in query

array_of_ string queryVector[keywordCount] € NULL

integer n € 1

integer indx € 0

while (n is less than or equal to keywordCount)
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begin
queryVector[indx] € n"keyword in query
indx € indx + |
n€¢n+l

end while

/lcreate URL of the search engines on the user query

//determine the complete URL to be passed to the search engine

/lonly 3 search engines (default) are presented, but it can be modified to include
//as many search engines as possible, with the algorithm almost the same
”****************************************************************

/ICaset#1: Excite Search Engine
”*************************

string exciteSearchURL < NULL

string temp1 € "http://search.excite.com/search.gw?search="
string temp2 € NULL

string tempQuery € NULL

//the URL address is dependent on the keywords on the query and the operation involved
”**********************************************************************
if (operation is “NONE™)
begin
temp2 € "&trace=1&src=nsi&sorig=netscape"
else
if (operation is “OR”)
begin
temp2 € "&tsug=1&csug=10&sorig=netscape"
tempQuery € queryVector[0] + "%2B" + queryVector[ 1]
end
else
if (operation is “AND”)
begin
temp2 € "&sorig=netscape"
tempQuery € queryVector[0] + "%26" + queryVector[1]
end
else
if (operation is “PHRASE")
begin
templ € tempi + "%22"
temp2 € "%22&sorig=netscape”
tempQuery € queryVector[0] + "+" + queryvector[1]
end
end if
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exciteSearchURL € templ + tempQuery + temp2

//determine the complete URL to be passed to the search engine
”**************************************************

//Case #2: Hotbot Search Engine

”**************************

string hotbotSearchURL € NULL

string templ € "http://www.hotbot.com/?"
string temp2 € NULL

string tempQuery € NULL

/ithe URL address is dependent on the keywords on the query and the operation involved
”**********************************************************************
if (operation is “NONE")
begin
templ € templ + "comefrom=nspanel-search& MT="
else
if (operation is “OR™)
begin
templ € templ +"MT="
temp2 € "& v=2&0OPs=MDRTP";
tempQuery = queryVector[0] + "%2B" + queryVector[1]
else
if (operation is “AND™)
begin
templ € templ + "MT="
temp2 € "& v=2&O0Ps=MDRTP"
tempQuery € queryVector[0] + "%26" +queryVector{1]
end
else
if (operation is “PHRASE”)
begin
templ =templ + "=%22"
temp2 ="%22& v=2&0OPs=MDRTP"
tempQuery = queryVector[0] + "+" + queryVector[1]
end
end if

hotbotSearchURL € templ + tempQuery + temp2;
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//determine the complete URL to be passed to the search engine

”**************************************************

//Case #3: Lycos Search Engine

J/EFFEEEREEEE KRRk Rk KTk

string hotbotSearchURL € NULL

string temp1 € "http://www.lycos.com/cgi-bin/pursuit?"
string temp2 € NULL

string tempQuery € NULL

//the URL address is dependent on the keywords on the query and the operation involved
”**********************************************************************
if (operation is “NONE”)
begin
templ € templ + "query="
temp2 € "&cat=dir&maxhits=10"
else
if (operation is “OR™)
begin
templ € templ + "cat=dir&maxhits=10&query="
temp2 € "&npl="
tempQuery € queryVector{0] + "%2B" + queryVector{1]
else
if (operation is “AND™)
begin
templ € templ + "cat=dir&maxhits=10&query"
temp2 € "+&npl="
tempQuery € queryVector[0] + "%26" + queryVector[ 1]

end
else
if (operation is “PHRASE")
begin
templ € templ + "cat=dir&maxhits=10&query=%22"
temp2 € "%22&npl="
tempQuery € queryVector[0] + "+" + queryvector[1]
end
end if

lycosSearchURL € temp1 + tempQuery + temp?2;

array_of_string engineAddress[] = {exciteSearchURL, hotbotSearchURL,
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lycosSearchURL}
integer size € size of array engineAddress
array_of_string searchEngineDoc[size] € NULL

//open each of the URL and save the HTML document on the disk
”****************************************************
integer indx € 0
while (n is less than size)
begin
//the following are basically the way to open a URL in Java
//and read the HTML text file of the document online
”***********************************************
URL testURL € engineAddress[indx]
BufferedReader in € InputStreamReader(testURL.openStream())
string text € NULL
string line € NULL
line € in.readLine()

keep reading one line at a time until end of file
”*************************************

while (line is not NULL)
begin
text € text + line
line € in.readLine()
end while

searchEngineDoc[indx] € text

indx € indx + 1
end while

/lout of the string stored in searchEngineDoc[] (one each for every search engine)

/leach has to be parsed in order to obtain the hit results of each search engine
”****************************************************************

/ICase #1: Excite Search Engine
//the Excite result is usually (if not always) 10 hit documents,

/leach of which begins with “http://search.excite.com”
”************************************************

string text € searchEngineDoc[0]

integer textLength € number of words in string text
array_of_string exciteHitResults[10] € NULL
integer indx € 0
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integern € 1
while (n is less than or equal to textLength)
begin
string testString € n"™ word in string text
bool valid € false
valid € ((“href” is a substring of testString) AND
(“ http://search.excite.com” is a substring of testString))

if (valid is true)
begin
integer x € index of “href” in testString
integer y € index of “http://search.excite.com” in testString

//the URL is always enclosed in a pair of double quotes
”********************************************

integer start € index of “(double quote) in testString starting at position x
integer last € index of “ (double quote) in testString starting at position y

string hitdocument € substring of testString from position (start+1) up to
position (last-1)
exciteHitResults[indx] € hitdocument
end

n€én+l
end

//Case #2: Hotbot Search Engine
//the Hotbot result is usually (if not always) 10 hit documents,

//each of which begins with “http://www.hotbot.com”
”************************************************

string text € searchEngineDoc[1]
integer textLength € number of words in string text
array_of_string hotbotHitResults[10] € NULL
integer indx €< 0
integern € 1
while (n is less than or equal to textLength)
begin
string testString € n™ word in string text
bool valid €< false
valid € ((“href” is a substring of testString) AND
(*“ http://www hotbot.com” is a substring of testString)
AND (*/director.asp™ is NOT a substring of testString))
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if (valid is true)
begin
integer x € index of “href™ in testString
integer y € index of “http://www hotbot.com” in testString

//the URL is always enclosed in a pair of double quotes
//********************************************

integer start € index of “(double quote) in testString starting at position x
integer last € index of *“ (double quote) in testString starting at position y

string hitdocument € substring of testString from position (start+1) up to
position (last-1)
hitResults[indx] € hitdocument
end

n€n+l
end

End Algorithm
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Appendix F.3

Algorithm for Parsing an HTML Document to obtain document’s title,
headings and referenced website

Begin Algorithm

/[This algorithm opens an HTML document online and parse the resulting text document
/lto obtain the document’s title, headings and anchors or referenced document
”**********************************************************************

//declare and initialize some variables
”******************************
string filename € “test2.html” /for any HTML document for that matter
BufferedReader buff €
new BufferedReader(new InputStreamReader (new FileInputStream(filename))

//keep reading one line of text from the file
”*********************************

string text € NULL

string line € buff.readline()
while (line is not NULL)
begin

text € text + line

line € buff.readline()
end while

//get the title of the document by finding the keywords

/{delimited by <TITLE> and </TITLE>
”****************************************

integer positionStartTitle € index of “<TITLE>" in the string text
integer positionEndTitle €- index of “</TITLE>" in the sting text

string testString € substring of text from positionStartTitle to positionEndTitle
integer n € position of “>" in testString
string Title € substring of testString from position n+1

text € delete substring “<TITLE>" from text
text € delete substring “</TITLE>" from text
text € delete substring Title from text

Perform Categorization of Document based on its Title
(see algorithm for Categorization of Document based on Title)
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//get the first heading of the document by finding the keywords
//delimited by <H1> and </H1>.
”*************************************************
integer positionStartHeading € index of “*<H!1>" in the string text
integer posittonEndHeading € index of “</HI1>" in the sting text

string testString € substring of text from positionStartHeading to positionEndHeading
integer n € position of “>" in testString
string Headingl € substring of testString from position n+1

text € delete substring “<H1>" from text
text € delete substring “</H1>" from text
text € delete substring Headingl from text

Perform Categorization of Document based on its Headings
(see algorithm for Categorization of Document based on Headings)

//get the headings of the document by finding the keywords
//delimited by <H2> and </H2>
”***********************************************
integer positionStartHeading € index of “<H2>" in the string text
integer positionEndHeading € index of “</H2>" in the sting text

string testString € substring of text from positionStartHeading to positionEndHeading
integer n € position of “>" in testString
string Heading?2 € substring of testString from position n+1

text € delete substring “<H2>" from text
text € delete substring “</H2>" from text
text € delete substring Heading2 from text

Perform Categorization of Document based on its Headings
(see algorithm for Categorization of Document based on Headings)

//get the headings of the document by finding the keywords
//delimited by <H3> and </H3>
”***********************************************
integer positionStartHeading € index of “<H3>" in the string text
integer positionEndHeading € index of “</H3>" in the sting text

string testString € substring of text from positionStartHeading to positionEndHeading
integer n € position of “>" in testString
string Heading3 € substring of testString from position n+1



text € delete substring “<H3>" from text
text € delete substring “</H3>" from text
text € delete substring Heading3 from text

Perform Categorization of Document based on its Headings
(see algorithm for Categorization of Document based on Headings)

//get the headings of the document by finding the keywords
//delimited by <H4> and </H4>
”***********************************************
integer positionStartHeading € index of “<H4>" in the string text
integer positionEndHeading € index of “</H4>" in the sting text

string testString € substring of text from positionStartHeading to positionEndHeading
integer n € position of “>" in testString
string Heading4 € substring of testString from position n+1

text € delete substring “<H4>" from text
text € delete substring “</H4>" from text
text € delete substring Heading4 from text

Perform Categorization of Document based on its Headings
(see algorithm for Categorization of Document based on Headings)

//get the headings of the document by finding the keywords
{/delimited by <HS5> and </H5>
U***********************************************
integer positionStartHeading € index of “<H5>"” in the string text
integer positionEndHeading € index of “</H5>" in the sting text

string testString € substring of text from positionStartHeading to positionEndHeading
integer n € position of “>" in testString
string Heading$S € substring of testString from position n+1

text € delete substring “<H5>" from text
text € delete substring “</H5>" from text
text € delete substring Heading2 from text

Perform Categorization of Document based on its Headings
(see algorithm for Categorization of Document based on Headings)
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//get the headings of the document by finding the keywords
{//delimited by <H6> and </H6>
”***********************************************
integer positionStartHeading € index of “<H6>" in the string text
integer positionEndHeading € index of “</H6>" in the sting text

string testString € substring of text from positionStartHeading to positionEndHeading
integer n € position of “>" in testString
string Heading6 € substring of testString from position n+1

text € delete substring “<H6>" from text
text € delete substring “</H6>" from text
text € delete substring Heading6 from text

Perform Categorization of Document based on its Headings
(see algorithm for Categorization of Document based on Headings)

//get the anchor of the document to determine if it is referencing other related documents
//in the hit list for the purpose of adding popularity score to the referenced document. It is
//delimited by <a> and </a>, but its URL address is inside <a> tag, in parameter “href”.
”**********************************************************************
array_of_string URLAdresses[50] € NULL

integer indx € 0

integer positionStartAnchor € index of “<a>" in the string text

while (positionStartAnchor is not —1)
begin
integer n € position of “>” in testString
string testString € substring of text from positionStartAnchor to n-1

string addressString € 1% substring in testString
if (href is a substring of addressString)

begin
integer m € index of 1** *“ (double quote) in addressString
integer p € index of 2™ “ (double quote) in addressString
string URLaddress € substring of addressString

from index (m+1) to (p-1)

URLAddresses[indx] € URLaddress
indx € indx + |

end

text € delete substring “<a>" from text
text € delete substring “</a>" from text

integer positionStartAnchor € index of “<a>" in the string text

end while
End Algonithm
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Appendix F.4

Algorithm for Categorization of Document Based on its Title

Begin Algorithm :
string Title € title of document obtained from performing parsing of HTML document
string Category € “Unclassified”

//determine if it is a “Course Notes” document
”*****************************************

bool test € false

//determine if “Course Notes™ or its derivative exists in the title of the document
”***************************************************************
if (“Course Notes” is a substring of Title) OR
(“Course Note” is a substring of Title) OR
(“Lecture Notes” is a substring of Title)
begin

//determine if preposition “ON” does exist in the title

/Iwithout it, the document is automatically a “Course Notes” document

”********************************************************

integer n € index of (“ON") in Title

if (n is less than zero)

test € true
else
begin
//determine if “ON™ appears after “Course Notes” or its derivatives
”*****************************************************
integer x € index of “Course Notes™ in the Title
integer y € index of “Course Note” in the Title
integer z € index of “Lecture Notes™ in the Title
if (x less than n) OR (y is less than n) OR (z is less than n)
test € true
end else
end if
end if

if (test is equal to true)
Category € “Course Notes™
end if
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//determine if it is an FAQ (Frequently Asked Questions) document

”************************************************************
bool test € false

//determine if “F.A.Q” or its derivative exists in the title of the document
”**********************************************************
if (“FAQ” is a substring of Title) OR
(“Frequently Asked Questions” is a substring of Title) OR
(“F.A.Q.” is a substring of Title)
begin
//determine if preposition “ON” does exist in the title
/lwithout it, the document is automatically an “FAQ” document
”**************************************************
integer n € index of (“ON™) in Title
if (n is less than zero)
test € true
else
begin
//determine if “ON” appears after “FAQ” or its derivatives
”**********************************************
integer x € index of “FAQ” in the Title
integer y € index of “Frequently Asked Questions” in the Title
integer z € index of “F.A.Q.” in the Title
if (x less than n) OR (y is less than n) OR (z is less than n)
test € true

end else
end if
end if

if (test is equal to true)
if (Category is “Unclassified™)
Category € “FAQ (Frequently Asked Questions)”
else
Category € Category +“, FAQ (Frequently Asked Questions)”
end if
end if
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//determine if it is a “Research Paper” document
”*******************************************

bool test € false

//determine if “Research Paper” or its derivative exists in the title of the document
”*****************************************************************
if (“Research Paper” is a substring of Title) OR
(“Research Papers™ is a substring of Title) OR
begin
//determine if preposition “ON” does exist in the title
/iwithout it, the document is automatically a “Research Paper”” document
”**********************************************************
integer n € index of (“ON”) in Title
if (n is less than zero)
test € true
else
begin
//determine if “ON” appears after “Research Paper” or its derivatives
”******************************************************
integer x € index of “Research Paper” in the Title
integer y € index of “Research Papers” in the Title
if (x less than n) OR (y is less than n)
test € true
end else
end if
end 1f

if (test is equal to true)
if (Category is “Unclassified™)
Category € “Research Paper”
else
Category € Category + *, Research Paper”
end if
end if

//determine if it is a “Technical Report” document
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bool test € false

//determine if “Technical Report™ or its derivative exists in the title of the document
[/ ARk ek sk s ke ke ok ke ke ok e sk ok ok o ook e ok ook ok ok ok ook ok ke ok ok ke ok sk o ok Kok sk sk ok K

if (“Technical Report” is a substring of Title) OR
(“Technical Reports™ is a substring of Title) OR
(“Tech. Rep.” is a substring of Title)

begin
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//determine if preposition “ON” does exist in the title
//without it, the document is automatically a “Technical Report” document
”***********************************************************
integer n € index of (“ON”) in Title
if (n is less than zero)
test € true
else
begin
//determine if “ON™ appears after “Technical Report” or its derivatives
”*#*****************************#********************#***
integer x € index of “Technical Report” in the Title
integer y € index of “Technical Report” in the Title
integer z € index of “Tech. Rep.” In the Title
if (x less than n) OR (y is less than n) OR (z is less than n)
test € true
end else
end if
end if

if (test is equal to true)
if (Category is “Unclassified”)
Category € “Technical Report”
else
Category € Category + *, Technical Report”
end if
end if

//determine if it is a “Tutorial” document
”*************************************

bool test € false

//determine if “Tutorial” or its derivative exists in the title of the document
”***********************************************************
if (“Tutorial” is a substring of Title) OR
(“Tutonals” is a substring of Title) OR
begin
//determine if preposition “ON” does exist in the title

/Iwithout it, the document is automatically a “Tutorial” document
”****************************************************

integer n € index of (“ON™) in Title
if (n is less than zero)

test € true
else
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begin
//determine if “ON’’ appears after *“Tutorial” or its derivatives
”************************************************
integer x € index of “Tutorial” in the Title
integer y € index of “Tutorials” in the Title
if (x less than n) OR (y is less than n)

test € true
end else
end if
end if

if (test is equal to true)
if (Category is “Unclassified™)
Category € “Tutonial™
else
Category € Category + “, Tutonal”
end if
end if

//determine if it is a “Thesis” document
”************************************

bool test € false

//determine if “Thesis” or its derivative exists in the title of the document
”**********************************************************
if (“Thesis™ is a substring of Title)
begin
//determine if preposition “ON’" does exist in the title
/fwithout it, the document is automatically a “Thesis” document
”***************************************************
integer n € index of (“ON™) in Title
if (n is less than zero)
test € true
else
begin
//determine if “ON” appears after “Thesis™ or its derivatives
”***********************************************
integer X € index of “Thesis” in the Title
if (x less than n)
test € true
end else
end if
end if
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if (test is equal to true)
if (Category is “Unclassified”)
Category € “Thesis™
else
Category € Category + “, Thesis™
end if
end if

//determine if it is a “Review” document
”************************************

bool test € false

//determine if “Review” or its derivative exists in the title of the document
”**********************************************************
if (“Review” is a substring of Title) OR
(“Revue” is a substring of Title) OR
begin
//determine if preposition “ON’’ does exist in the title
/Iwithout it, the document is automatically a “Review’ document
ﬁ***************************************************
integer n € index of (“ON") in Title
if (n is less than zero)
test € true
else
begin
//determine if “ON™ appears after “Review” or its derivatives
”************************************************
integer x € index of “Review” in the Title
integer y € index of “Revue” in the Title
if (x less than n) OR (y is less than n)
test € true
end else
end if
end if

if (test is equal to true)
if (Category is “Unclassified™)
Category € “Review”
else
Category € Category + “, Review”
end if
end if
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//determine if it is a “Research Paper/Technical Report” document
”**********************************************************

bool test € false

//determine if “Technical Report™ or its derivative exists in the title of the document
”******************************************************************
if (“Technical Report™ is a substring of Title) OR
(“Technical Reports™ is a substring of Title) OR
(“Tech. Rep.” is a substring of Title) OR
(“Research Paper” is a substring of Title)
begin
//determine if preposition “ON’’ does exist in the title, without it, the document is
//automatically a “Research Paper/Technical Report” document
”****************************************************************
integer n € index of (“ON”) in Title
if (n is less than zero)
test € true
else
begin
//determine if “ON” appears after
//*“Research Paper/Technical Report™ or its derivatives
”*******************************************
integer w € index of “Technical Report” in the Title
integer x € index of “Technical Report™ in the Title
integer y € index of “Tech. Rep.” in the Title
integer z € index of “Research Paper” in the Title
if ((w is less than n) OR (x less than n) OR
(v is less than n) OR (z is less than n))
test € true
end else
end if
end if

if (test is equal to true)
if (Category is “Unclassified’)
Category € “Research Paper/Technical Report”
else
Category € Category + “, Research Paper/Technical Report™
end if
end if

End Algorithm
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Appendix F.5
Algorithm for Categorization of Document Based on its Headings

/[This algorithm is performed only after categorization of document based on its title
//failed to classify the document
”**********************************************************************

Begin Algorithm

string Category € category of document after performing Categorization of Document
based on its Title

string Headingl € first heading of document obtained from performing
parsing of HTML document

string Heading2 € second heading of document obtained from performing
parsing of HTML document

string Heading3 € third heading of document obtained from performing
parsing of HTML document

string Heading4 € fourth heading of document obtained from performing
parsing of HTML document

string Heading5 < fifth heading of document obtained from performing
parsing of HTML document

string Heading6 € sixth heading of document obtained from performing
parsing of HTML document

array_of_string Headings[6] = {Headingl, Heading2, Heading3,

Heading4, Heading5, Heading6}

/ldo all these only if document is still “Unclassified”
”*****************************************
if (Category is not “Unclassified™)
exit
else
//determine if it is a “Course Notes” document
”*****************************************
bool test € false
integer indx € 0
//determine if “Course Notes™ or its derivative exists in the heading of the document
”*******************************************************************
while (indx is less than 6)
begin
if (“Course Notes™ is a substring of Headings[ind]) OR
(“Course Note” is a substring of Headings[indx]) OR
(“Lecture Notes™ is a substring of Headings[indx])
begin
//determine if preposition “ON” does exist in the heading

/fwithout it, the document is automatically a “Course Notes™ document
”********************************************************
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integer n € index of (“ON") in Headings[indx]
if (n is less than zero)
begin
test € true
break
end
else
begin
//determine if “ON’’ appears after “Course Notes™ or its derivatives
”*****************************************************
integer x € index of “Course Notes” in Headings[indx]
integer y € index of “Course Note” in Headings[indx]
integer z € index of “Lecture Notes” in Headings[indx]
if (x less than n) OR (y is less than n) OR (z is less than n)

begin
test € true
break
end
end else
end if
end if

indx € indx + |
end while

if (test is equal to true)
Category € “Course Notes”
end if

//determine if it is an “FAQ (Frequently Asked Questions)” document
”***************************************************************
bool test € false
integer indx € 0
//determine if “FAQ” or its derivative exists in the heading of the document
”************************************************************
while (indx is less than 6)
begin
if (“FAQ” is a substring of Headings[ind]) OR
(“Frequently Asked Questions™ is a substring of Headings[indx]) OR
(“F.A.Q.” is a substring of Headings[indx])
begin
//determine if preposition “ON”" does exist in the heading

/Iwithout it, the document is automatically an “FAQ” document
”**************************************************
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integer n € index of (“ON”) in Headings[indx]
if (n is less than zero)
begin
test € true
break
end
else
begin
//determine if “ON’" appears after “FAQ” or its derivatives
U**********************************************
integer x € index of “FAQ” in Headings[indx]
integer y € index of “Frequently Asked Questions” in Headings[indx]
integer z € index of “F.A.Q.” in Headings[indx]
if (x less than n) OR (y is less than n) OR (z is less than n)

begin
test € true
break
end
end else
end if
end if

indx € indx + |
end while

if (test is equal to true)
if (Category is “Unclassified™)
Category € “FAQ (Frequently Asked Questions)”
else
Category € Category + “, FAQ (Frequently Asked Questions)”
end if
end if

//determine if it is a “Research Paper” document
”******************************************

bool test € false
integer indx € 0

//determine if “Research Paper” or its derivative exists in the heading of the document
”********************************************************************

while (indx is less than 6)
begin
if (“Research Peper™ is a substring of Headings[ind]) OR
(“Research Papers” is a substring of Headings[indx])
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begin
//determine if preposition “ON’" does exist in the heading
//without it, the document is automatically a “Research Paper” document
”***********************************************************
integer n € index of (“ON”) in Headings[indx]
if (n is less than zero)
begin
test € true
break
end
else
begin

//determine if “ON” appears after “Research Paper” or its derivatives

”******************************************************

integer x € index of “Research Paper” in Headings[indx]

integer y € index of “Research Papers” in Headings[indx]

if (x less than n) OR (y is less than n)

begin
test € true
break
end
end else
end if
end if

indx € indx + 1
end while

if (test is equal to true)
if (Category is “Unclassified”)
Category € “Research Paper”
else
Category € Category + “, Research Paper”
end if
end if

//determine if it is a “Technical Report” document
”********************************************

bool test € false
integer indx € 0

//determine if “Technical Report™ or its derivative exists in the heading of the document
”******************************************************************

while (indx is less than 6)
begin
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if (“Technical Report” is a substring of Headings[ind]) OR
(“Technical Reports™ is a substring of Headings[indx]) OR
(“Tech. Rep.” is a substring of Headings[indx])
begin

/{determine if preposition “ON’’ does exist in the heading

/fwithout it, the document is automatically a “Technical Report” document

//***********************************************************

integer n € index of (“ON") in Headings{indx]

if (n is less than zero)

begin
test < true
break
end
else
begin

//determine if “ON” appears after “Technical Report” or its derivatives
//********************************************************
integer x € index of “Technical Report™ in Headings[indx]
integer y € index of “Technical Reports” in Headings[indx]
integer z € index of “Tech. Rep.” in Headings[indx]
if (x less than n) OR (y is less than n) OR (z is less than n)

begin
test € true
break
end
end else
end if
end if

indx € indx + 1
end while

if (test is equal to true)
if (Category is “Unclassified”)
Category € “Technical Report”
else
Category € Category + “, Technical Report”
end if
end if



//determine if it is a “Tutorial” document
//************************************
bool test € false
integer indx € 0
//determine if “Tutorial” or its derivative exists in the heading of the document
//**************************************************************
while (indx is less than 6)
begin
if (“Tutorial” is a substring of Headings[ind]) OR
(“Tutonals™ is a substring of Headings[indx])
begin
//determine if preposition “ON” does exist in the heading
/Iwithout it, the document is automatically a “Tutorial”” document
//****************************************************
integer n € index of (“ON") in Headings[indx]
if (n is less than zero)
begin
test € true
break
end
else
begin
//determine if “ON” appears after “Tutorial” or its derivatives
//************************************************
integer x < index of “Tutorial” in Headings[indx]
integer y € index of “Tutorials” in Headings{indx]
if (x less than n) OR (y is less than n)

begin
test € true
break
end
end else
end if
end if

indx € indx + 1
end while

if (test is equal to true)
if (Category is “Unclassified™)
Category € “Tutorial”
else
Category € Category + “, Tutorial”
end if
end if
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//determine if it is a “Thesis” document
//************************************
bool test € false
integer indx € 0
//determine if “Thesis” or its derivative exists in the heading of the document
//**********************************************************
while (indx is less than 6)
begin
if (“Thesis” is a substring of Headings[ind])
begin
//determine if preposition “ON”" does exist in the heading
/Iwithout it, the document is automatically a “Thesis” document
//****************************************************
integer n € index of (“ON™") in Headings[indx]
if (n is less than zero)
begin
test € true
break
end
else
begin
//determine if “ON” appears after “Thesis” or its derivatives
//***********************************************
integer x € index of “Thesis” in Headings[indx]
if (x less than n)
begin
test € true
break
end
end else
end if
end if

indx € indx + 1
end while

if (test is equal to true)
if (Category is “Unclassified™)
Category € “Thesis”
else
Category €& Category + “, Thesis”
end if
end if
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//determine if it is a “Review” document
//***********************************
bool test € false
integer indx € 0
//determine if “Review” or its derivative exists in the heading of the document
//**************************************************************
while (indx is less than 6)
begin
if (“Review” is a substring of Headings[ind]) OR
(“Revue” is a substring of Headings[indx])
begin
//determine if preposition “ON” does exist in the heading
/Iwithout it, the document is automatically a “Review” document
//***************************************************
integer n € index of (“ON”) in Headings[indx]
if (n is less than zero)
begin
test € true
break
end
else
begin
//determine if “ON” appears after “Review” or its derivatives
//************************************************
integer x € index of “Review” in Headings[indx]
integer y € index of “Revue” in Headings[indx]
if (x less than n) OR (y is less than n)
begin
test € true
break
end
end else
end if
end if

indx € indx + 1
end while

if (test is equal to true)
if (Category is “Unclassified”)
Category € “Review”
else
Category € Category + “, Review”
end if
end if
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//determine if it is a “Research Paper/Technical Report” document
”**********************************************************
bool test € false
integer indx € 0O
//determine if “Research Paper/Technical Report”
/lor its derivative ex..:s in the heading of the document
”****************************************
while (indx is less than 6)
begin
if (“Technical Report” is a substring of Headings[ind]) OR
(*“Technical Reports” is a substring of Headings{indx]) OR
(“Tech. Rep.” is a substring of Headings[ind]) OR
(“Research Paper” is a substring of Headings[indx])

begin
//determine if preposition “ON” does exist in the heading without it, the document
//ts automatically a “Research Paper/Technical Report” document
”****************************************************************
integer n € index of (“ON”) in Headings[indx]
if (n is less than zero)
begin
test € true
break
end
else
begin
//determine if “ON’ appears after
//“Research Paper/Technical Report” or its derivatives
U*******************************************
integer w € index of “Technical Report” in Headings[indx]
integer x € index of “Technical Reports” in Headings[indx]
integer y € index of “Tech. Rep.” In Headings[indx]
integer z € index of “Research Paper” in Headings[indx]
if (w is less than n) OR (x is less than n) OR
(y is less than n) OR (z is less than n)

begin
test € true
break
end
end else
end if
end if

indx € indx + 1
end while
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if (test is equal to true)
if (Category is “Unclassified”)
Category € “Research Paper/Technical Report™
else
Category € Category + “, Research Paper/Technical Report”
end if
end if

end if

End Algorithm
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Appendix F.6
Algorithm for Categorization of Document Based on its Contents

//This algorithm is performed only after categorization of document based on its headings
t=)

//failed to classify the document

”**********************************************************************

Begin Algorithm

string Category € category of document after performing Categorization of Document
based on its Headings

array_of_string CourseNotesKeywords[] = { “course”, “notes”, “fall”, “winter”,
* &6 7 ¢ T <6

“summer”, “term”, “semester”, “university”’, “college”, “academy”, “institute”,
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teacher”, “subject”, “reference”,
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“school”, “professor’, “instructor”,
“textbook”, “chapter”}

array_of_string FAQKeywords[] = { “frequently”, “asked”, *“‘questions”, “question”,
“answer”, “answers”, “FAQ”, “F.A.Q.”, “Q:”, “A:”, “q:”, “a:"}

array_of_string ThesisKeywords[] = { “thesis”, “degree”, “bachelor”, “doctor”, “master™,
“PhD”, “Ph.D.”, “university”, “college”, “academy”, “institute”, “school”,
“faculty”, “department”, “dean”, “examining”, “committee”, “chair”, “examiner”,
*““supervisor”}

A NS

array_of_string ResearchPaper TechReportKeywords[] = { “introduction”, “abstract”,

L AR TS

“methodology”, “validation”, “summary”, “future”, “works”, “references”}

array_of_string Headings[6] = {Headingl, Heading2, Heading3,
Heading4, Heading5, Heading6}

array_of_string textKeywords[] € array containing keywords in the document text
obtained from performing the algorithm to calculate document
relevance score

array_of_string textKeywordCount[] € array containing keywords frequency count in
the document text obtained from performing the algorithm to
calculate document relevance score

integer TFimax € the frequency of the dominant keyword in string text, obtained from
performing the algorithm to calculate document relevance score
//do all these only if document is still “Unclassified”
”*****************************************
if (Category is not “Unclassified”)
exit
else
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//determine if it is a “Course Notes” document
U*****************************************

bool test € false

integer keywordSize € size of array CourseNotesKeywords[]
integer indx € 0

integer score € 0

//determine if the frequency score of each keyword in array CourseNotesKeywords{]
”*******************************************************************
while (indx is less than keywordSize)
begin

integer min € 0

integer max € size of array textKeywords[]

//this is the binary search part to check if a “Course Notes” keyword is
//in the array textKeywords[], if so then determine its frequency score
”*********************************************************
boolean found € false
integer mid € (min + max) /2
while (min is less than or equal to max)
begin
if (CourseNotesKeywords[indx] is same as textKeywords[mid])
begin
found € true
integer position € mid
break
end
else
if (CourseNotesKeywords[indx] is greater than textKeywords[mid]
max € mid -1
else
min € mid + 1
end if
end if

mid € (min + max) /2
end while

//determine the frequency of the keyword if it is found
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if (found is true)
score € score + textKeywordCount[position]
end if

indx € indx + 1
end while

179



float relevanceScore € score/TFimax

if (relevanceScore is greater than or equal to 0.6)
Category € “Course Notes”
end if

//determine if it is a “FAQ (frequently Asked Questions)” document
”***********************************************************
bool test € false
integer keywordSize € size of array FAQKeywords(]
integer indx € 0
integer score € 0

//determine if the frequency score of each keyword in array FAQKeywords(]
”*************************************************************
while (indx is less than keywordSize)

begin

integer min € 0
integer max €< size of array textKeywords{]

//this is the binary search part to check if a “FAQ” keyword is
//in the array textKeywords(], if so then determine its frequency score
”********************************************************
boolean found € false
integer mid € (min + max) /2
while (min is less than or equal to max)
begin
if (FAQKeywords[indx] is same as textKeywords[mid])
begin
found € true
integer position € mid
break
end
else
if (FAQKeywords[indx] is greater than textKeywords{mid]
max € mid -1
else
min € mid + |
end if
end if

mid € (min + max) /2
end while
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//determine the frequency of the keyword if it is found
”*******************************************
if (found is true)

score € score + textKeywordCount[position]
end if

indx € indx + 1
end while
float relevanceScore € score/TFimax

if (relevanceScore is greater than or equal to 0.6)
if (Category is “Unclassified”)
Category € “FAQ”
else
Category € Category + “, FAQ”
end if

//determine if it is a “Thesis” document
”***********************************
bool test € false
integer keywordSize € size of array ThesisKeywords[]
integer indx € 0
integer score € 0

//determine if the frequency score of each keyword in array ThesisKeywords{]
”**************************************************************
while (indx is less than keywordSize)
begin

integer min € 0

integer max €< size of array textKeywords(]

//this is the binary search part to check if a “Thesis” keyword is
//in the array textKeywords[], if so then determine its frequency score
”********************************************************
boolean found € false
integer mid € (min + max) /2
while (min is less than or equal to max)
begin
if (ThesisKeywords[indx] is same as textKeywords[mid])
begin
found € true
integer position € mid
break
end
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else
if (ThesisKeywords[indx] is greater than textKeywords[mid]
max € mid -1
else
min € mid + 1
end if
end if

mid € (min + max) /2
end while

//determine the frequency of the keyword if it is found
”*******************************************
if (found is true)

score € score + textKeywordCount[position]
end if

indx € indx + 1
end while
float relevanceScore € score/TFimax

if (relevanceScore is greater than or equal to 0.6)
if (Category is “Unclassified™)
Category € “Thesis”
else
Category € Category + “, Thesis™
end if

//determine if it is a “Research Paper/Technical Report” document
”*********************************************************
bool test € false
integer keywordSize < size of array ResearchPaper TechReportKeywords[]
integer indx € 0
integer score € 0

//determine the frequency score of each keyword in array
// ResearchPaper_TechReportKeywords[]
N*********************************************
while (indx is less than keywordSize)

begin

integer min € 0
integer max € size of array textKeywords[]



//this is the binary search part to check if a “Research Paper/Technical Report™
//keyword is in the array textKeywords(], if so then determine its frequency score
”*****************************************************************
boolean found € false
integer mid € (min + max) /2
while (min is less than or equal to max)
begin
if (ResearchPaper_TechReportKeywords[indx] is same as textKeywords[mid])
begin
found € true
integer position € mid
break
end
else
if (ResearchPaper_TechReportKeywords[indx] is greater than
textKeywords[mid])
max € mid -1
else
min € mid + |
end if
end if

mid € (min + max) /2
end while

//determine the frequency of the keyword if it is found
ﬁ*******************************************

if (found is true)
score € score + textKeywordCount{position]
end if

indx € indx + 1

end while

float relevanceScore € score/TFimax

if (relevanceScore is greater than or equal to 0.6)

if (Category is “Unclassified™)

Category € “Research Paper/Technical Report”

else

Category € Category + “, Research Paper/Technical Report”

end if

End Algorithm
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Appendix F.7
Algorithm to Calculate Document Relevance Score

/[This algorithm calculates the document’s relevance score based on the user’s query
”*******************************************************************

Begin Algorithm
//declare and initialize some variables
”******************************

string text € the resulting string from doing algorithm for parsing HTML document to
obtain document’s title, headings and referenced website
string query € the query entered by the user

string operation € NULL

//determine the Boolean operation (if any) in the query
J e i e i 2

if “ (double quote) is a substring of query
operation € “Phrase”

integer keywordCount € number of keywords in the query
if (keywordCount is equal to 1)
operation € “none”

if (““AND” is a substring of query) OR
(“&" 1s a substring of query)
operation € “AND”

if (“OR” is a substring of query) OR
(“+7 is a substring of query)
operation € “OR”

if (keywordCount > 1) AND (“&” 1s not a substring of query) AND
(“+” is not a substring of query)
operation € “OR”

//delete stop words in the query
”************************

array_of string StopWords[] € the stop words dictionary as entered by the programmer
(see Appendix C for the list of stop words)

integer min € 0
integer max € size of array StopWords
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//perform binary search to determine if every keyword in the query is a stop word
R et P s
string tempQuery € query

integer n € 1|

while (n is less than or equal to keywordCount)
begin _
string keyword € n™ keyword in tempQuery

//this is the binary search part to check if keyword is a stop word
//if a keyword is a stop word, it is deleted from the query
//***************************************************
integer mid € (min + max) /2
while (min is less than or equal to max)
begin
if (keyword is same as StopWords[mid])
begin
query € remove keyword from query
break
end
else
if keyword is greater than StopWords[mid]
max € mid -1
else
min € mid + 1
end if
end if

mid € (min + max) /2
end while

n<n+l
end while
/lafter deleting stop words, the number of distinct keywords in the query is reduced

J i i et e T

keywordCount € number of keywords in query

//delete unnecessary tags in text
[ %Ak ek ok ek ok ok ek ok ok ok

string token € token in text, each token is separated by whitespace
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while (token is not NULL)
begin
if (“<” 1s a substring of token)
begin
integer m € index of “<” in text
integer n € index of “>" in text

text € remove substring (from m to n) in text
end if
token € next token in string text
end while

//Special Case: Query is a Phrase

Pt e St SE T AL L e e S T

//Note: the stop words in the text are untouched because a query that is a phrase may
//contain some stop words. If stop words are deleted from the text, a phrase that originally

/loccurred may not exit anymore
//**********************************************************************

//inttially the frequency count is zero
”*****************************
integer TFy) € 0
if (operation is “Phrase™)
begin
integer queryLength € length (number of characters) of query
integer textLength € length (number of characters) of string text
integer start € 0
boolean present ¢ false

//determine if the query (a phrase) does exist (a substring) in string text
//keep counting its frequency until no more occurrence is encountered
”*********************************************************
present € query is a substring from index (start to textLength) of string text
while (present is true)
begin

TFiy € TFyj + 1;

integer position € index of query in string text

start € position + queryLength

present € query is a substring from index (start to textLength) of string text
end while

end if
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/Iremove all stop words in the document text
”***********************************

string tempText € text

wordsCount € length (number of words) in string text
integer n € 1

integer min € 0

integer max € size of array StopWords

while (n is less than or equal to wordsCount)
begin

//perform binary search to determine if every keyword in the query is a stop word
”****************************************************************

string keyword € n" keyword in tempText

//this is the binary search part to check if keyword is a stop word
//if a keyword is a stop word, it is deleted from the query
”***************************************************
integer mid € (min + max) /2
while (min is less than or equal to max)
begin
if (keyword is same as StopWords[mid])
begin
text € delete keyword from text
break
end
else
if keyword is greater than Stop Words[mid]
max € mid -1
else
min € mid + 1
end if
end if
mid € (min + max) /2
end while

n€n+l
end while

//after removing the stop words in string text, the string text is leaner
//all the keywords frequency in text will be counted
”******************************************************
integer wordsCount € number of words in string text

array_of stning textKeywords[wordsCount] € NULL
array of integer textKeywordCount{wordsCount] € all zero’s
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integer indx € 0
integer n € 1

while (n is less than or equal to wordsCount)
begin
string keyword € n™ keyword in string text
integer min € 0
integer max € size of array textKeywords

//find if the keyword is already in the array
//if it is not there, put it and its count is 1

/fif it is already there, do nothing, just increment its count by 1
”**************************************************

//this is the binary search part to check if keyword is already in the array
”*********************************************************
boolean found € false
integer mid € (min + max) /2
while (min is less than or equal to max)
begin
if (keyword is same as textKeywords[mid])
begin
found € true
integer position € mid
break
end
else
if keyword is greater than textKeyowrds[mid]
max € mid -1
else
min € mid + 1
end if
end if

mid € (min + max)/ 2
end while

//increment frequency if keyword is already in the array
”********************************************

if (found 1s true)

textKeywordCount[position] € textKeywordCount[position] + 1
else

begin
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/keyword not in the array, create a new entry, its count is |
”***********************************************
textKeywords[indx] € keyword
textKeywordCount[indx] € |
indx € indx + 1
end
end if

né&n+l
end while

//find the dominant keyword, the keyword that has the highest frequency
//the highest frequency is stored in TFimax
U**********************************************************
integer indx € 0
integer TFimax € 0
integer position € 0
while (textKeywordCount[indx] is greater than zero)
begin
if (textKeywordCount[indx] is greater than TFimax)
begin
TFimax € textKeywordCount[indx]
position € indx
end

indx € indx + 1
end

//get all keywords in the query, put them in array, each keyword frequency is initially 0
”*********************************************************************
integer keywordCount € number of keywords in string query (with no stop words)
array_of_string queryKeywords{keywordCount] € NULL

array_of integer queryKeywordsFrequency[keywordCount] € all zero’s

integer n € 1
integer indx € 0
while (n is less than or equal to keywordCount)
begin
string keyword € n™ word in string query
queryKeyword[indx] € keyword
queryKeywordFrequency{indx] € 0
indx € indx +1
n< o+l
end while
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//determine the frequency of every keyword in the query in the string text
/fthis is done by finding first if the keyword is in the list of distinct keywords in text
//if the keyword is found, its location is enough to determine its frequency
”******************************************************************
integer keywordCount € number of keywords in string query
integern € 1
integer indx € 0
while (n is less than or equal to keywordCount)
begin

integer min € 0

integer max € size of array textKeywords[]

//this 1s the binary search part to check if keyword is already in the array
”*********************************************************
boolean found < false
integer mid € (min + max) /2
while (min is less than or equal to max)
begin
if (queryKeyword[indx] is same as textKeywords[mid])
begin
found € true
integer position € mid
break
end
else
if keyword is greater than textKeywords[mid]
max € mid -1
else
min € mid + 1
end if
end if

mid € (min + max) /2
end while

//determine the frequency of the keyword if it is found
”*******************************************

if (found is true)

queryKeywordFrequency[indx] < textKeywordCount[position]
end if
indx € indx + 1

né€n+l
end while
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//calculate the relevance score by determining TFij relative to TFimax

//the score of TFij is also dependent on the Boolean operation involve in the query
”*****************************************************************
integer keywordCount € number of keywords in string query

integern € 1

integer indx € 0

integer minScore € queryKeywordFrequency[indx]

integer maxScore € queryKeywordFrequency{indx]

while (n is less than or equal to keywordCount)
begin

//find the keyword that has the highest and lowest frequency scores

”*****************************************************

if (queryKeywordFrequency[indx] is greater than maxScore)
maxScore € queryKeywordFrequency[indx]

end if

if (queryKeywordFrequency[indx] is less than minScore)
minScore € queryKeywordFrequency[indx]
end if
indx € indx +1
n<n+l
end while

if (operation is “AND”)
TFij € minScore
else
if (operation is “OR™)
TFij € maxScore
else
TFij € queryKeywordFrequency[0]
end if
end if

//calculate relevance score based on term frequency
”****************************************

float relevanceScore € 0.5 + 0.5 * TFij/TFimax

End Algonithm
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