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ABSTRACT

Diagonal Cracking in Reinforced Concrete Deep Beams - An Experimental

Investigation

Marco Rigotti, Ph.D.
Concordia University, 2002

Concrete deep beams with a shear span to depth ratio of less than 2.32[73! will
work as tied arches after flexural cracking, provided there is sufficient
reinforcement. The compression strut formed between the support and the loading

points is under biaxial compressive and tensile stresses.

The current Canadian Code!®! stipulates that deep beams and corbels should
be designed using the Strut-and-Tie Method. This method incorporates the work
done by Collins and MitchellBl®] where the cracked concrete behaves as a new
material and that the compressive strength of concrete is reduced due to strain-
softening. Here-in lies an area of discrepancy. The work done by Collins and
Mitchell utilizes beam theory which requires that plane sections remain plane.
However, deep beams and corbels are classified as “regions of discontinuity”
consequently beam theory does not apply to these structures. An area of the
Canadian code which needs to be examined is the dimensioning of the
compression strut. To date there is no clear explanation as to how the design
guidelines of the compression strut were developed. A weakness of the design
code is that numerous assumptions must be made. The designer first assumes that
the compression strut reaches a maximum concrete strain of 0.002[5], and then

must assume the strains in the tension ties.

The focus of this research has been to investigate diagonal splitting strength of
reinforced concrete deep beams. In conducting this study, twelve deep beams,
categorized in four groups were tested. The test variables included the shear span,
the amount of web reinforcement and the concrete compressive strength.

Surprisingly, no researcher has published measured strain incurred by the



compression strut in deep beams. In our research, a single beam from each of the
four test groups was fitted with strain gauges to measure the tensile strain in the
main tensile reinforcement. As well, the concrete strains along the main diagonal
formed between the support and the loading points as well as perpendicular to the

strut were measured.

The experimental work demonstrated the development of diagonal cracking.
These cracks appeared above the supports and propagated towards the loading
points. The strain gauges on the concrete surface confirmed that the stresses
along the compression strut were under biaxial compression tension stresses. A
finite element analysis determined that the compression stress acting parallel to
the diagonal were uniform in distribution and symmetrical. Perpendicular to the
diagonal, high compressive stresses were seen at the supports and the loading
points. However, the stresses in between these areas were uniformly distributed in
tension. The measured compressive strains were much less than the
recommended value of 0.002, and the compression strut was found to be much
wider than that defined by the Canadian Code. As a consequence of these the
findings, a truss model was defined using a biaxial concrete strength envelope.
This truss model was applied to the test beams of this study as well as too ninety-
nine test beams available in literature. In all cases, the truss model was able to

accurately predict the strength of these test beams.
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NOTATION

Shear span

Area of steel reinforcement

Width of the beam

Compression force of the concrete strut

Compressive force in free body diagram

Effective depth (distance from top fiber to reinforcement)
Modulus of elasticity of concrete

Modulus of elasticity of steel

Concrete compression capacity

Concrete compression stress/capacity under biaxial compression-

tension

Concrete tensile stress/capacity under biaxial tension-compression
Concrete tensile capacity under uniaxial tension
Concrete tensile capacity under biaxial tension
Yield strength of steel reinforcement

Total depth of the beam

Load applied to the beam

Capacity of the tension tie

Tensile force in free body diagram

Shear load corresponding to applied load
Ultimate shear load at failure

Calculated shear load at failure

Width of the support
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1 Introduction

1.1 Introduction

The design of flexural reinforced concrete structures was revolutionized in 1912
when Morschl*9] first introduced a truss design mode! comprised of steel tension
ties with concrete compression struts. Many variations of truss models have been
used over the years, first using allowable stress then later using ultimate strength
design methods.

Zielinskil®70] introduced “economy girders” in 1950. These girders were
designed using the “tied arch” model. The tied arch model differs from truss models
in that the latter have stringent demand on the bond between the steel tension ties
and the concrete. Tied arch models diminish the demand for bond in all locations
except for where the steel tension tie is anchored. Structures designed using this
model usually allow for a reduction of both concrete and steel material and

generally result in a more efficient design.

The current Canadian Codel®! stipulates that deep beams and corbels should
be designed using the Strut-and-Tie Method. This method hinges on the work done
by Collins and Mitchelll®Il®l where the cracked concrete behaves as a new material
and that the compressive strength of concrete is reduced due to strain-softening.
Here-in lies an area of discrepancy. The work done by Collins and Mitchell utilizes
beam theory, which requires that plane sections remain plane. However, deep
beams and corbels are classified as “regions of discontinuity” and that beam theory
does not apply to these structures. Another area of the Canadian code which
needs to be examined is the dimensioning of the compression strut. There is no
clear explanation as to how the design recommendations of the compression strut

were developed. One significant weakness of the design code is that numerous



assumptions must be made. The designer must assume that the compression strut
reaches a maximum concrete strain of 0.002[5], as well, the strains in the tension

ties must also be assumed.

The purpose of this research is to present our findings with new test results, to
propose new comprehensive methods of analysis which reflect the true structural
behaviour, and finally to redefine diagonal cracking strength limits for reinforced

concrete deep beams.

1.1.1 Concrete failure modes

Reinforced concrete, being a heterogeneous material, depends on the strength
of both concrete and steel. Failure will occur when either of these materials fail
separately or if they fail simultaneously. Complications in design arise due to the
tensile strength of concrete being approximately one tenth that in compression.

[71][72][73]

Tests carried out by Zielinski identified four basic causes of concrete

failure. Figure 1-1 illustrates the four cases.

Cause I. Under uniaxial tension, concrete fails by rupture and cracking

perpendicular to tension direction.

Cause ll. Under biaxial tension - compression, concrete fails by rupture
and cracking perpendicular to tension direction. Strength of
concrete under biaxial tension - compression is less than that

under uniaxial compression.

Cause lll. Under biaxial tension, failure occurs by inclined cracking. The

angle of cracking ranges from 45° to 90° from the larger tension

load. In the case of equal tension stresses, failure occurs at an

angle of 450, Strength of concrete under biaxial tension is
approximately 3/4 of the strength under uniaxial tension.

Cause IV. Under uniaxial compression, concrete fails by cohesion loss and

cracking parallel to loading. Under biaxial compression,



concrete strength is greater (up to 1.25f' ;) than under uniaxial
stresses.
Tension failures occur when the strain in the tension direction reaches ¢ =

0.0015 t0 0.0025. Compression failures occur when the ultimate strain reaches ¢,
= 0.0035.
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Figure 1-1. Basic failure modes of concretel”3!

Researchl”®l has shown that after cracking, all beams begin to act as tied
arches. This leads to four strength limits of reinforced concrete beams shown in
Figure 1-2.



Limit I. Appearance of first crack due to flexure. This will result in the
failure of the beam if there is no reinforcement or the

reinforcement is insufficient.

Limit .  The appearance of inclined cracks due to beam action as the

limit strength of combined stresses is reached.

Limit [ll.  Diagonal splitting crack appearance caused by combined beam

and tied arch action or only under tied arch action.
Limit IV.  Ultimate flexural capacity.

Extensive research has been done for Limits I, Il, and 1IV. This research
examines diagonal splitting, or Limit IIl. It is important to remember that tied arch
action is only possible when the reinforcement is extended beyond the support and
is well anchored. Research conducted by Zielinskil”3! demonstrated that diagonal
splitting is the prominent mode of failure when the shear span to depth ratio is less

than 2.32 (i.e. %< 2.32).
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Figure 1-2. Typical crack pattern of a deep beam with two point loading



Flexural cracks are usually the first cracking to appear. They are the result of
the concrete reaching its tensile strength, Cause |. Appearing in the centre of the

beam, these develop vertically and straight (labeled as “1” in Figure 1-2).

The next type of cracking to appear is generally caused by beam action (i.e. due
to moment and shear). These cracks are labeled as “2” in Figure 1-2. They
propagate vertically, until reaching the main reinforcement, they then incline at an
angle of approximately 45°. Generally referred to as shear cracks, they appear as

a result of biaxial compression and tension stresses (cracking Cause lll).

The final cracking to appear is splitting or diagonal cracks, labeled as “3” in
Figure 1-2. Diagonal cracking is directed from the support to the point of loading.
This appears to be due to arch action of the beam and occurs when the stresses
reach fy, which is the ultimate compressive strength of concrete under biaxial

compression - tension (Figure 1-1 Cause ).

1.1.2 Current Research

The focus of this research is to investigate diagonal splitting strength of
reinforced concrete deep beams. In conducting this study, twelve deep beams,
categorized in four groups were tested. The test variables included the shear span,
the amount of web reinforcement and the concrete compressive strength.
Surprisingly, no researcher has published measured strain data incurred by the
compression strut in deep beams. In our research, a single beam from each of the
four test groups was fitted with strain gauges to measure the tensile strain in the
main tensile reinforcement. As well, the concrete strains along the main diagonal
formed between the support and the loading points as well as perpendicular to the

strut were measured.

The experimental work demonstrated the development of diagonal cracking.
These cracks appeared above the supports and propagated towards the loading
points. The strain gauges on the concrete surface confirmed that the stresses
along the compression strut were under biaxial compression tension stresses. A

finite element analysis determined that the compression stress acting parallel to



the diagonal were uniform in distribution and symmetrical. Perpendicular to the
diagonal, high compressive stresses were seen at the supports and the loading
points. However, the stresses in between these areas were uniformly distributed in
tension. The measured compressive strains were much less than the
recommended value of 0.002, and the compression strut was found to be much
wider than that defined by the Canadian Code. As a consequence of these
findings, a truss model was defined using a biaxial concrete strength envelope.
This truss model was applied to the test beams of this study as well as 114 deep
beams and corbels available in literature. In all cases, the truss model was able to

accurately predict the strength of these test beams.



2 Literature Review

2.1 Introduction

This chapter will outline some of the more significant studies conducted on
reinforced concrete corbels and deep beams. The first two sections will outline a
brief research history of both corbels and deep beams. Following these two
sections, the work done by Rogowsky et al. and Schlaich et al. whose works have
led to a “consistent design of structural concrete”®* will be presented. The final

section will examine the current Canadian design practice.

2.2 Corbels - Shear Friction
2.2.1 Kriz & Raths

In 1965, Kriz and Raths[?®! undertook an extensive experimental study into the
behaviour of reinforced concrete corbels. The purpose of the study was directed
towards the development of design criteria for corbels. The existing method of
design given by the ACI code made no distinction between corbels and other

members such as beams or slabs, which are very different from corbels.

For their experimental work, 195 corbels were tested, of which 124 were loaded
vertically while the remaining 71 corbels were loaded both vertically and
horizontally. Details of the corbel test specimen are shown in Figure 2-1 and Figure
2-2. Variables in their study included:

¢ shear span to the effective depth ratio,
e concrete strength,

* ratio of horizontal load to vertical load,



» the amount of main tension reinforcement and stirrups, and

e the detailing of the corbel.

IV [ ——

o

1

h
Range of Variables
a - 275 to 12,5 in.
54" b ~ 8in.
or
" h - 18 to 45 in.
72
h' - 6 to 26 in,
1 -6 to 24in,

fo= 2110 to 6680psi
p—0.21 to 1,86 %
fy— 39.9 to 95.8 ksi

Figure 2-1. Corbel test specimen variables used by Kriz and Raths![28]
In relation to the ultimate load achieved by a corbel, it was noted that:

* the corbel strength was significantly reduced by horizontal forces acting

outward from the column, and

 the strength of a corbel (subject to vertical loads only) can be increased
by adding extra tension reinforcement and/or horizontal stirrups until a

maximum amount of reinforcement is reached



N

(b)

Figure 2-2. Reinforcement details for corbels test specimen Kriz and Raths!28l

Design Method

Empirical design equations were developed by fitting curves to the

experimental data. The design method is expressed by two equations:

for corbels subject to vertical loads only

V, = 6.5bd /f.(1-0.5%)(1000p)""3 Equation 2-1.
u [

corbels subject to both vertical and horizontal load

Equation 2-2.

(1/3+ 0.4(H/V))
V, = 6.5bd,/f (1 _0.5"“‘)(1000p )

1008(H/V)



where

V,, = ultimate load capacity (Ib),

b = width of corbel (in),

d = effective depth of the centroid of the main steel (in),
f'« = concrete cylinder compressive strength (psi),

a = shear span measured from the column face to the resultant of the
applied load (in),

H = horizontal applied load (Ib),

V = vertical applied load (Ib), and

p = reinforcement ratio.

The reinforcement ratio, p, is defined differently in each of the above equations:

H ' _ As + Av) .
for Eq 2.1 (V = O). p = ( bd Equation 2-3.
forEq2.2 (H— #* O) : p = (55) Equation 2-4.
\Y bd
where  Aqis the area of main tension steel, and

A, is the area of horizontal stirrups.

The design method is applicable when:

the shear span to depth ratio is less than one,
the area of tension reinforcement (A) is greater than 0.004bd,

closed horizontal stirrups are provided having a total cross sectional
area greater than 0.5Aq,

detailing measures are undertaken to prevent a premature secondary
failure.

10



The empirical design approach presented by Kriz and Raths was adopted by
ACI318-71[" for corbels where the shear span to depth ratio was greater than 0.55,
but less than 1 (0.55 <a/d < 1.0).

Hagbergl'"! commented that the design formulas presented by Kriz and Raths
do not include the strength of steel which contrary to common reinforced concrete
design. Somervillel®% expressed concern that the different modes of failure were
largely ignored by Kriz and Raths. He also felt that when horizontal forces were
introduced, the design requirements were over conservative. Hermansen and
Cowanl'4l claimed that the diagonal splitting failures described by Kriz and Raths
were in fact compression failures, which would not occur if secondary

reinforcement was provided.

2.2.2 Mast

Mast[38] applied the shear friction theory to the design of concrete connections.
To support his theory, he included the experimental data provided by Kriz and
Raths[?®l. Mast showed that the shear friction theory can predict a safe lower
bound for the strength of a corbel.

In his work, Mast stated that:

* shear friction theory applies directly to corbels with a/d ratios less than
0.7,

 for a/d ratios greater than 0.7, the main reinforcement is controlled by

flexure,

* some tension reinforcement must be placed throughout the upper half of

the corbel to prevent the external corner of the corbel from splitting, and

* a mechanical anchor should be provided to ensure that yield stress can

be developed between the potential crack and the face of the corbel.

¢ though the test data showed that the shear friction model can provide
good results, the research did not prove that the model represents the

true behaviour of the concrete.

11



Mast supported the following shear friction equation:

V, = (A

u - H)(tanay) Equation 2-5.

svfy

where V, = total ultimate shear force,
H = total horizontal force (from creep or temperature changes, etc.),

A, = total cross-sectional area of reinforcement across the corbel-

column interface,
fy = yield strength of reinforcing steel, and

o4 = the angle of internal friction determined from tests; concrete to
concrete (rough interface) o4 =1.4, concrete to steel (composite beams)
oy =1.0, concrete to steel (field-welded inserts) o4 =0.7, concrete to

concrete (smooth interface) o4 =0.7

To use the above shear friction equation, the following conditions must be

ensured:
* reinforcement crossing cracks must be fully anchored,

» additional reinforcement must be provided for any applied external

tension,
 the cohesive strength of the concrete is ignored, and

» the angle of internal friction (oy) is independent of both the concrete

strength and the level of stress applied to the concrete.

12



2.2.3 Mattock

Mattock!37I38I391401141] conducted experimental research relating to shear

transfer in concrete. He showed that

include the case of concrete with rein

the shear friction theory can be extended to

forcement at an angle to the shear plane.

Y

i

_~Interface
shear

L

- A

_ >N

\_.potential

crack

Figure 2-3. Shear friction model with reinforcement as proposed by Mattock!32!

Where the shear friction reinforc

Mattock proposed that the maximum
Vi = Ayfy(usinay + cosay)

where  V =total ultimate shear fo

Ay = total cross-section

reinforcement,

ement lies at an angle to the shear plane,

shear capacity be taken as:

Equation 2-6.

rce,

al area of reinforcement of the vertical

fy = yield strength of reinforcing steel,

u = coefficient of friction used in shear friction calculations, and

o4 = the angle between the shear friction reinforcement and the shear

plane.



In 1974, Mattock also showed that a moment applied over a cracked section
does not reduce the shear that can be transferred across the crack. Mattock

proposed that the a/d limit of 0.5 as set by ACI 318-711'l was unwarranted in

Design applied Io?\

relation to corbel design.

Reactive forces and momen}

Figure 2-4. Flexural model proposed by Mattock!371391401i41]

Mattock proposed a flexural model which considers the corbel as a free body
cut from the corbel-column interface. The corbel is designed to resist a combination
of vertical and horizontal loads using the laws of statics. For static equilibrium, the
reactive forces V, and N, must be equal to the design vertical and horizontal loads

V, and N,,, respectively. Hence, the reactive moment M, must equal:
M, = V,a+N,(h-d) Equation 2-7.

where N, = total ultimate horizontal force,
h = total depth of corbel,

d = distance from extreme compression fiber to centroid of tension

reinforcement, and

a = shear span, distance between vertical load and face of column.

14



The suggested design method was tested using an experimental study of 28
corbels. The study was also directed towards extending the existing shear friction
provisions for corbel design beyond the a/d limit of 0.5 recommended by ACI 318-
7111,

Following his study, Mattock proposed that the design of corbels be based on
“useful ultimate strength” to maintain a safety margin against wide cracking (cracks
widths should not exceed 0.33mm (0.013in) for exterior exposures and 0.41mm
(0.016in) for interior exposures. Useful ultimate strength was defined as the vertical
load at yield of the tension reinforcement, or the vertical load at failure if yielding

does not occur.

The useful ultimate strength of corbels subject to both vertical and horizontal
loads can be calculated by using the lesser of:

« the shear friction provisions as per ACI 318-71[] and

* the vertical load derived from the flexural ultimate strength of the corbel-

column interface.

Additionally, a minimum amount of horizontal reinforcement must be provided

to eliminate the possibility of premature diagonal tension failure.
Design Method
1. Given V, b, ¢ (capacity reduction factor) and assuming that the nominal shear

stress (v) is not greater than 0.2f ; or 5.52MPa, the depth of the corbel is cal-

culated from:

\Y
d=—* ion 2-8.
q)vub Equation 2-8
2. The area of shear friction steel can be determined by:
\
A, =" Equation 2-9.
vf (I)fyu

15



3. Given a, h, and the corbel depth (d) the moment capacity is determined from
Equation 2-7 on page 14. Thus the required area of flexural reinforcement can
be calculated from:

M
A = S Equation 2-10.

(s

where x (depth of the compression stress block) is initially estimated and then

checked using:

_ Ay
~ 0.85f' b

Equation 2-11.

4. The area of reinforcement necessary to resist the applied horizontal force is

determined from:
A = H Equation 2-12,
of,

5. The total area of main tension reinforcement is calculated from the greater of:

2A
(@) Ay = Aj+ A when A2 3Vf Equation 2-13.
2A 2A
(b) Ay = 3Vf + A, when A< 3Vf Equation 2-14.

6. The reinforcement ratio is checked such that:

A fo
p = @ > 0'04(f_) Equation 2-15.
y

7. The area of stirrup reinforcement (A,) is calculated using Equation 2-16, and

distributed over the top two-thirds of the effective depth of the corbel.

16



A, = 0.5(A,-A) Equation 2-16.

8. Recheck the dimensions of the corbel and ensure that the depth of the corbel at
the outside edge of bearing is not less than one-half the effective depth adja-

cent to the face of the support.
Mattock believed that his design method offered the following advantages:
» the concept is simple and avoids complicated empirical equations,

e compared to the existing shear friction method, the model predicts less

conservative results thereby providing reinforcement economy.

2.2.4 Hermansen & Cowan

Hermansen and Cowan['#I'5] presented a modified shear friction design
method, adding a cohesion term into the shear friction equation. The authors based
their design proposal on an experimental study of 40 corbels performed by
Hermansen combined with data from Kriz and Raths!?8l, Hermansen and Cowan
showed that the modified shear friction theory provided greater accuracy than the

shear friction theory, particularly at low reinforcement ratios.

Hermansen and Cowan’s design method called for the design of three main
modes of failure. These modes of failure included shear failure, flexural failure, and

secondary failure (anchorage, bearing).
Shear Failure

The shear failure mode was most likely to occur in an efficiently designed
connection. Push-off tests performed by Mattock!®*®] and Hermansenl'3! have
shown that the ultimate shear stress, v, for a pure shear failure of an uncracked

concrete specimen is:

vy = 4.0+ O.8p1‘y N/mm? Equation 2-17.

The above equation can be written in the form:

17



v, = Cc+pf,tana N/mm? Equation 2-18.
uf y f

where c is an apparent cohesive stress and tan oy is the coefficient of friction.

This equation implies that the amount of tensile reinforcement to prevent a

shear failure in a corbel carrying a shear load, V,,, will be:

_ V,-4.0bd

= Equation 2-19.
sf 0.8f,

Flexural Failure

Flexural failure occurs due to yielding of the main reinforcement or due to
crushing or buckling of the concrete in compression. The load to cause yielding of
the main steel can be calculated with reasonable accuracy for a/d < 2.0. Using

truss analogy, the area of main reinforcement (Ag,,) to resist flexural failure is:

V,a
A = de Equation 2-20.
y

Secondary Failure

Hermansen and Cowan believed that secondary failures (inadequate
anchorage of the reinforcement or crushing of the concrete under the bearing area)
could be eliminated provided that appropriate detailing measures relating to

anchorage, shape and bearing were undertaken.

Mattock!*®! expressed concern that there was no limit on pf,. Therefore, it could
not be guaranteed that the main reinforcement would reach its potential strength.
As well, the shear friction model, where a crack exists in the shear plane before the
concrete is subjected to shear, has been replaced with an empirical equation

based on initially uncracked concrete.

18



2.3 Corbels - Truss Analogy
2.3.1 Franz & Niedenhoff

A photo-elastic study of resin model corbels was performed by Franz and
Niedenhoffl1%l. Their goal was to analyze the behaviour of corbels under shear
loads. Their findings showed that the structural action of a corbel resembles that of
a simple determinant truss. The truss model consisted of compression struts and
tension ties.

Their results revealed that:

the tensile stress at the upper edge of the corbel is relatively constant
from the load to the root of the bracket,

* an approximately straight strut develops at the compressive face where
the stresses are relatively constant,

» stress concentrations were found to develop at the root of the corbel,

both at the top (tensile root) and at the bottom (compressive root), and

the shape of the corbel has little influence on the state of the stress
within the corbel.

Design Method
The proposed truss analogy is one where the corbel is viewed as containing a

strut and tie system acted on by an external vertical force V. Although, the tensile

force Fy, is regarded as being slightly inclined, for design purposes it can be taken
as horizontal.

19



Figure 2-5. Truss model proposed by Franz and Niedenhoff'®}

The tensile force is given by:
Fiy = \% Equation 2-21.

where z = 0.85d
a = shear span, and
V = total shear load.

The required area of main reinforcement (Ag) is given by:

F
A, = : t Equation 2-22.
adm

where f g, is the allowable tensile stress of the reinforcement.

The depth of the corbel and the concrete strength are determined from flexural

considerations at the corbel-column interface.

20



Franz and Niedenhoff recommended that:
» reinforcement be placed in the compression zone of the corbel,

 the area of horizontal or inclined web reinforcement should be greater

than 25% of the main tension reinforcement,

¢ the column reinforcement should be supplemented in the tensile zone

area of the corbel, and

e adistinction should be made as to whether the loading is imposed at the

top or the bottom of the corbel.

While this method has the advantage of simplicity and ease of use,
Somerville!®9] stated that this method does not take into account the cracking which
occurs, as the forces are represented only in the elastic range. He also pointed out

that the above method does not consider horizontal loads.

2.3.2 Somerville

Somenvillel®®! considered several points that had emerged from previous

studies which are summarized as follows:

* evidence exists which suggests that a simple strut and tie approach

provides the best physical model of a corbel’s behaviour under load,
» the main factors influencing the behaviour of a corbel under load are:

- the shear span to depth ratio (a/d)
- percentage of reinforcement
- concrete strength
* many common types of failure are due to secondary failures which can
be avoided through consideration of the:

- corbel proportions
- methods for anchoring the main reinforcement
- provision for secondary reinforcement

21



* horizontal forces can influence both the strength and behaviour of a

corbel.

0.0035
45/ strain 0.4f,,(bxcosp)
xcos B diagram force diagram

Figure 2-6. Truss model as proposed by Somerville!é0]

Design Method

The Somerville design method can be summarized in five steps:
1. With V|, the shear span (a), and the width of the corbel (b), the depth of the

corbel is estimated using the empirical shear provisions in CP110-1972"]. The

code allows the maximum nominal shear stress (v5) to be as high as:

Vimax = Equation 2-23.

where a/d <2 and v, is the maximum compression stress of the concrete.
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2. Calculate the bearing area, with the maximum allowable bearing stress equal

to 0.8f, (compressive strength of the concrete),
3. The area of main reinforcement is calculated using the truss analogy:

- the internal compression force, F., and tensile force, F;, are calculated
from truss analogy

- the location of the neutral axis (x) is calculated from:

\Y
bxcosp(0.4f ) = — Equation 2-24.

sinf

Initially, B is assumed to be tan‘(%) and then the tensile force F, is

calculated from:
V,a

3

4. Tension reinforcement (Ag,) is calculated using stress compatibility (CP110-
1972l7]),

Ft=

Equation 2-25.

N

5. Anchorage and other detailing matters are handled.

Hagbergl!1112l mentioned that Somerville’s proposed formulas were not based

on shear failures, but are instead based on various forms of failures.
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2.3.3 Hagberg
Hagberg!1' 2] devised a truss model using a geometrical method of force
distribution. He felt that the advantages of this model were:
* it can effectively predict the capacity of a corbel,
* it provides a rational basis for corbel detailing, and
e itis suited to computer aided design.
Hagberg's model makes the following assumptions:

 failure is caused by yielding of the reinforcement or by crushing of the

concrete (shear failure is not considered as a failure criterion),
* uniaxial tests are used to determine the strength of materials,
» the concrete strength is equal to the cylinder test strength,
* the strength of concrete in tension is neglected, and
» the geometry of the corbel shall conform with the mathematical model.

The structural model used is based on the model developed by Franz and
Niedenhoffl'®. The concrete is assumed to act as inclined struts between the
cracks, thereby transmitting only compression forces as shown in Figure 2-7. The
reinforcement is assumed to act as a linear tension member. The effect of dowel

action by the reinforcement is ignored.
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Figure 2-7. Assumed internal force distribution for Hagberg's!''['2l mode!

For a corbel with horizontal stirrups the following equations are considered:

Equilibrium Conditions
F.= —— Equation 2-26.
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F, = Vtan

where B = angle of inclination of compression member

Fs = Fs1+Fg
F F
V = N1 + N2 — si s2
tanf, tanf,
Geometry
tanB, = a+ 0.5xcosp

d,—-0.5sinp

a+ 0.5xcosf

1 =
anbz = 3 "0 5sinp

Strength of Materials
F. = f'.bx

F = As1fs1

s

Fsz - AsszZ

where  Agq =the area of the main tension reinforcement, and

Ao = the area of the stirrups.

By equating the basic equations it can be shown that:

2f' 2f' b
(1 - cbd)’tan2[3+ c atanB+1 =0
FS FS

d1 Fs1 + d2F52

here d =
where S S

S S
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Equation 2-27.

Equation 2-28.

Equation 2-29.

Equation 2-30.

Equation 2-31.

Equation 2-32.

Equation 2-33.

Equation 2-34.

Equation 2-35.

Equation 2-36.



F

_ S
andx = & osinB

Equation 2-37.

The strength of the corbel in compression is a function of the concrete strength,
corbel dimensions, and the amount of tension resistance available. The maximum

load that can be carried by the corbel in compression is given as:

' 2 .
Viax = fcbweos ™ (Bmax) Equation 2-38.

a+¥

d

tan(Bpax) = Equation 2-39.

Design Method

Hagberg also considered failure at the balanced condition, i.e. the corbel fails
by simultaneous yielding of the reinforcement and crushing of the concrete.
Formulas were derived to calculate the required area of reinforcement to achieve

a balanced failure. The following design steps were recommended.

1. With the corbel width (b), calculate the minimum width of the bearing plate:

\

T

Equation 2-40.

where f,4 = the concrete strength,

A = strength reduction factor such that A < 1.
2. The effective height (d) is calculated from:

- corbels subjected to vertical load only

> V_V) _Vv Equation 2-
d> (a + 2) [T pw=v quation 2-41.

- corbels subjected to both vertical and horizontal loads
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d> (a + VEV +(h- d)) tana v Equation 2-42.

2f.4 b(g—ttan oc) -V

where t = the thickness of the bearing plate.

The reinforcement area required for the balanced condition using horizontal
stirrups is calculated from:

- corbels subject to vertical load only

i
A, = (fc_:) bW SIN (Byyax) C0S (Bimae) Equation 2-43.
S

- corbels subject to both vertical and horizontal loads

feq w
A = (i—d)Zb(E—ttanoc) N

Equation 2-44,
a+V—V+(h—d)tanoc quation

.. tano + . cosZB

max

where fgq is the yield strength of the reinforcement.

3. The tension force (from the reinforcement) is located a distance “d”, from the
compressive edge. If the capacity of the stirrups is to be taken into account, a

proportion of the main reinforcement (say 25%) should be assumed to consist
of stirrups.

Hagberg believed his design approach to be valid for corbels having a/d ratios
between 0.15 - 1.0, subjected to combinations of vertical and horizontal loads.

2.3.4 Solanki & Sabnis

Solanki and Sabnis[®®! describe their design method as a “simplified approach”
using truss analogy. Based on the results of 398 tests from 16 different

investigations, they showed that their design approach was effective.
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The structural model used by Solanki and Sabnis was based on that proposed

earlier by Leonhardt and Monning!®2l. The following assumptions were made:

¢ concrete acts as inclined struts between cracks carrying compressive

forces only,

» shear transmitted across a crack through either aggregate interlock or

 dowel action is neglected,
* local effects caused by reactions or loads are neglected,
e equilibrium conditions are satisfied,
* failure occurs through yielding of the reinforcement or concrete crushing,
¢ the strength of concrete in tension is neglected,

* the maximum concrete strain is equal to 0.003,

the concrete strength is equal to t he cylinder strength.

The strut and tie action at failure is shown in and is represented by the following

equation:

Dx = V,a+N,Ah Equation 2-45.

w D=DV,+DN,

Figure 2-8. Truss model as proposed by Solanki and Sabnis(®°!
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where  x = perpendicular distance of the force to the inclined strut such that:

X = 0.9ad Equation 2-46.

J(0.9d)? + a°

a = the shear span and Ah is the distance from the horizontal load to the

main reinforcement.

D = assumed to be the compressive force in the strut based on the work

of Leonhardt3% and others, and is equal to:

D = 0.25bd(B,f';) Equation 2-47.

fi,— 30
B1 = 0.85-0.08( =) 2065

Substituting the above two equations into Equation 2-45 yields:

bdf NyAhy
c _ 4.45(1 4+ ) (0.9d)2+a2 Equation 2-48.

Vi B V,a

u

By assuming that Ah/a = 0.3, Equation 2-48 simplifies to:

bdf' 0.3N
c _ 4.45(1 4 u) /(0.9d)2+a2 Equation 2-49.

V, B4 V,a

The effect of the bracketed component in the above equation is small and can

N
be ignored for v—“ <0.2, and thus:

= ——=A(09d)" +a Equation 2-50.

Design Method
Solanki and Sabnis recommended the following design steps:

1. Given V, N, f, a and b; d is estimated using Equation 2-49 or Equation 2-50.
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2. The area of shear reinforcement (A,) is calculated from a free body analysis of

the corbel (as proposed by Mattock37138][39)140141])
N. (h-
A = V”a+. u(h=d) Equation 2-51.
v jaf,
where ‘" is the lever arm between the resultant tensile force and the

compression force acting on the corbel/column interface.

3. The area of tension reinforcement (A,,) is calculated from:

A, = U Equation 2-52.

4. The total area of reinforcement (Ag) is
A, = A +A, Equation 2-53.

5. The corbel is appropriately detailed.
The design method is valid for:
* a/d ratios between 0.1 and 1.0,
e any combination of vertical and/or horizontal loads, and

* combinations of horizontal and inclined reinforcement.

2.3.5 Hwang, Lu and Lee

In 2000, Hwang, Lu and Leel'”] presented a theoretical softened strut-and-tie
model for shear strength predictions of reinforced concrete corbels. The model was
applied to corbels of different concrete strengths, shear span to depth ratios, and
horizontal and vertical web reinforcement. The proposed model originates from the
strut-and-tie concept and satisfies equilibrium, compatibility and constitutive laws

of cracked reinforced concrete. The shear strength predictions of the proposed
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model were applied to 178 corbels available in literature and compared to the ACI
318-95 Codel?],

The strut-and-tie model for corbels is shown in Figure 2-9. As can be seen, the

angle of inclination of the strut can be defined as:
-1 id
0 = tan (E) Equation 2-54.

where: jd = the lever arm

a = the shear span

symm,
a
a i a
F rT
’ ' 1
N Vor V., .
¢ i — Tl ¢
?—-“‘! T'* ——
ﬂ \\

Figure 2-9. Strut and tie model for internal forces

The direction of the principal compressive stress of the concrete is assumed to

coincide with the direction of the diagonal concrete strut.

The maximum compressive stress 64 max resulting from the summation of the

compressive forces shown in Figure 2-9 can be estimated as:
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cos(e - tanq@—dé))
O4, max = A1 D- Fn Equation 2-55.

-1/
str t _d))
COS( an (za

where Agy, = effective area of diagonal strut

D = compression force in diagonal strut (negative for compression)
F\, = Tension force in horizontal ties (positive for tension)

Cracked reinforced concrete in compression exhibits lower strength than
uniaxially compressed concreted as shown in Figure 2-17 on page 53. The stress-

strain softening curve of cracked concrete is represented as follows.

of B} (Ea)? &4 -
Oy = —CfC_Z(Cso) — (C“?[) ] for Cgo <1 Equation 2-56.
. (~€47CEq— 12 —€4 _

(-88__1 __ 09

< Equation 2-58.
f../1+400e, /1 +400¢,

where o4 = the average principal stress in the d-direction
{ = the softening coefficient
f'c = the compressive strength of concrete
gq = average principal strain in the d-direction
€, = average principal strain in the r-direction
€, = concrete cylinder strain corresponding to the cylinder strength

The softened truss model was applied to 178 corbels available in literature from
such researchers as Kriz and Raths, Mattock et al., Fattuhi and Hughes, Her, Yong
and Balaguru, Fattuhi and Foster et al. The following conclusions were drawn from
this study.
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» The softened strut-and tie model presented was able to accurately

predict the shear strength of 178 corbels available in literature

» The crushing and splitting failures of the diagonal struts of corbels were
found to be identical and could be reliably predicted using the same

analytical model
» The ACI empirical equations are conservative for the selected test data

» For crack control, it is recommended that the vertical stirrups within the
corbels be detailed at a/d>0.5.

2.4 Deep Beams
2.4.1 Leonhardt & Walther

An experimental investigation in 1966 by Leonhardt and Walther®!] clearly
demonstrated the formation of the tied arch in deep beams. Large scale tests were
carried out on nine single span and two double span deep beams. They noticed
that the main flexural reinforcement retained a large proportion of its force close to
the support and therefore required a full strength anchorage. In continuous deep
beams, they noticed that the interior negative moments tended to decrease and the
positive moments increased as compared with the values obtained by an elastic
analysis.

Leonhardt and Walther concluded that for beams with clear span to depth ratios
less than two, vertical or inclined web reinforcement was of no benefit, because the

concrete always failed by crushing under the bearing area.

Their work formed the basis for the European Codel® (CEB-FIP Model Code,

1978) design recommendations for deep beams.
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2.4.2 Kong et al.

Kong et all'8l19]201211[22)[23][24]25] herformed numerous tests

1970’s on reinforced concrete deep beams.

during the
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Figure 2-10. Reinforcement details for deep beams tested by Kong et al[181[191(20](21]{22][23][24][25]

Parameters investigated included:

* span to depth (I/d) ratios,

* shear span to depth (a/d) ratios,

* vertical and horizontal web reinforcement ratios,

» effect of inclined web reinforcement,
* weight of concrete and size, and

* position of web openings, if any.
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Among the various tests conducted, a test to determine the influence of web
reinforcement on the shear strength of deep beams was performed. Thirty-five
specimens were tested, with I/d ratios varying from 1 to 3 and a/d ratios varying
from 0.23 to 0.70. Web reinforcement ratios varied from; light to heavy vertical

stirrups, light to heavy horizontal reinforcement and orthogonal mats.
Findings of the investigation included:

1. The effectiveness of web reinforcement depends to a large extent on the length
to depth ratio (I/d) and shear span to depth (a/d) ratios. For low /d, and a/d
ratios (less than 1.5 and 0.35, respectively), only horizontal web reinforcement
placed close to the bottom had an effect. For larger I/d and a/d ratios, vertical
web reinforcement (stirrups) was more effective than the horizontal web rein-

forcement in increasing the shear strength.

2. Failure occurred most often by diagonal splitting followed by crushing of the
concrete at the bearing blocks or crushing of the compression strut between
the diagonal cracks (occurred in a few beams). Diagonal cracking generally

occurred when the load reached 70-90% of ultimate load.

3. The failure load was compared with the theoretical values obtained from vari-
ous methods available at the time from a number of sources, including those in
the then current editions of the British and American codes. Good agreement

was found with a modified de Paiva and Siess[#8! formula, as follows:
P, = o.oo16bD(1 - 0.6—3—)(1 38 +0.188f _ + 147p,) Equation 2-59.

and with the Ramakrishnan and Ananthanarayana’s!*®! formula;
P, = 2Kf'spr Equation 2-60.

where P, = ultimate load capacity (kN),
a = shear span (mm),

b = width of beam (mm),
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D = depth of beam (mm),

f's = cylinder strength of the concrete (MPa),

f'sp = concrete cylinder splitting strength (MPa),

Pt = bél?_) , where A is the area of the longitudinal reinforcement only,

K= g, a splitting coefficient.
2.4.3 Smith & Vantsiotis

Smith and Vantsiotis{®®! furthered this experimental work by conducting a series
of tests on 52 deep beams. They studied the effects of web reinforcement, a/d

ratios and concrete strength on the strength and behaviour of deep beams.

Smith and Vantsiotis were interested in the shear behaviour of deep beams and
therefore designed their specimens to fail by shear. The shear span-to-depth (a/d)
ratios varied from 0.77 to 2.01 and web reinforcement ratios varied from 0 t0 0.91%
for horizontal reinforcement and from 0 to 1.25% for vertical reinforcement.
Concrete strengths ranged from 16 to 23 MPa.

All beams tested failed by crushing or splitting of the compression strut and all
beams failed in the same way regardless of a/d ratio or amount of web

reinforcement.
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The main findings included:

. a minimum amount of web reinforcement (p,, = 0.18, p,, = 0.23) was found to

reduce crack widths and deflections considerably after inclined cracking,

. inclined cracking occurred at about 40-50% of the ultimate load whether or not
web reinforcement was present, however, less damage at failure was observed

in beams with web reinforcement,
. the amount of web reinforcement had no influence on the cracking load,

. web reinforcement increased the ultimate shear strength, but never more than

30% (compared to beams without web reinforcement).

. vertical web reinforcement had the most beneficial effect; however, the value of

vertical stirrups tended to reduce for a/d ratios < 1,

. horizontal reinforcement appeared to have had negligible influence on the ulti-

mate shear strength, and

. the ultimate shear strength was strongly influenced by concrete strength, par-
ticularly for low a/d ratios.

Smith and Vantsiotis' results indicated strut and tie behaviour and confirmed

that a different set of design rules was needed from those that existed at that time

in the codes.

2.4.4 Besser and Cusens

Besser and Cusens!¥! carried out an investigation on deep beams with depth to

span (d/l) ratios of greater than or equal to 1. They performed seven tests on simply

supported beams with d/I ratios of 1.0 to 4.0. At the higher end of the range,

specimens became very slender and out of plane buckling became a problem.

All specimens had a constant span of 720 mm, constant thickness of 72 mm

with only the height varied. The concrete strength was typically about 50 MPa and

all beams were subjected to 2-point loading at one third span.
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It was found that the beams with depth-to-span ratios of 1.5 to 3.5 all failed in
bearing at the supports. Specimens with a depth-to-span ratio of 1.0, failed by
diagonal splitting, while specimens with a depth-to-span ratio of 4.0 failed by
buckling. Besser and Cusens also reported that a linear relationship existed
between depth-to-span ratios up to 3.0 and the loads which caused the first
diagonal crack. For depth-to-span ratios greater than 3.0, the cracking load

became independent of the d/l ratio.

Besser and Cusens found that for specimens with a depth-to-span ratio of 1.0,
good agreement existed between the experimentally determined cracking load and

that predicted by Kong et al. for deep beam design as follows;

100A, y,sm 9

(1 -0.35= )A/_ 7»22 Equation 2-61.

where the first term is the contribution from the concrete and the second term is
contribution from the reinforcement.

In the above equation:

V, = ultimate shear capacity (kN),

b = panel thickness (mm),

d = effective depth to centroid of the main tensile reinforcement (mm),
a = the shear span (mm),

fou = cube crushing strength of the concrete (MPa),

A, = area of web reinforcement (mm?) at spacing “y” (mm),

Ay = factor dependent on aggregate type (0.44 for normal weight
concrete),

Ao = factor dependent on reinforcement type (1.95 for deformed bars), and
0; = angle between shear crack and web reinforcement.

For specimens with higher depth-to-span ratios, Besser and Cusens defined
the cracking load as:
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Vo = 0.375V1(g + %) Equation 2-62.

where V is the cracking load given by Equation 2-61 for a beam with d/l = 1.0.

Besser and Cusens concluded from this work that a significant enhancement of
the shear strength is available for beams whose depth exceeds their span. Their
study also indicated that the shear strength is dependent on both the web
reinforcement and the bearing area. They also recommended that when sufficient
web reinforcement is provided to resist both the bending moments and shear

forces, the bearing stress at the supports should be limited to 0.4f,.

2.4.5 Mau & Hsu

Mau and Hsul*2l43] proposed a theoretical model for the shear resistance of
deep beams in 1987. They considered that the shear force in a deep beam is
resisted by a shear element bounded by the line of action between the load and
support reactions, and of depth d,, (where d, is the distance between the centroid

of the main longitudinal compressive and tensile forces).

Deep beams tend to have a loading point close to the support point, and so the
shear element is subject to substantial compressive forces parallel to the line
connecting the load and support points, that is the “compression strut’. The
magnitude of these compressive forces tends to reduce as the shear span

increases.

Mau and Hsu proposed the use of a “softened truss model” to represent the
shear resistance of deep beams, in which the material characteristics of the
concrete are represented by the stress-strain curve. The coefficient A is the

softening coefficient, and is given by:

€
A= (0.7 - _r) Equation 2-63.
€4
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where g, = the normal strain in the principle tensile direction (i.e. normal to the

strut), and

g4 = the normal strain in the principle compression direction (i.e. parallel
to the strut).

The softening coefficient was introduced to account for the experimentally
confirmed reduction in compressive strength of struts subject to shear stresses.
They also observed that the magnitude of the compressive stresses in the strut
tends to decrease as the shear span-to-depth ratio increases. This observation

was modeled using the relationship:

A a
=2y for =< 0.
p B or =<0.5
VTihf4 2a a .
= —| - ====||f 52«2 Equation 2-64.
P bh[a(s 3hﬂ oroSsi<
=0 for 2<2
p orh<

where  p = effective transverse compression acting on the shear element,
V = the shear force in the shear span,
a = the shear span,
h = height of the beam, and
b = thickness of beam.

The above equation implies that a parabolic relationship exists for a/h ratios
between 0.5 and 2.0.

Combining the above with equations of equilibrium and compatibility, Mau and
Hsu obtained five simultaneous equations which they were able to solve
numerically to obtain the predicted shear response of an element. Their criteria for
establishing the strength of an element was the attainment of the maximum shear

stress on the stress-strain curve.
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Mau and Hsu compared their results with 64 test results which were available
in literature (Smith and Vantsiotis[®®], Kong!'8], and de Paiva and Siess[*?]). These
results were selected on the basis that the predominant mode of failure was web

shear cracking.

Good agreement was found with the test results. Eighty percent of the test
results fell within 10% of the computer analyzed results. It was further found from
a parametric study, that while varying the shear span to depth ratio had a
significant effect on the maximum shear strength of the element, varying the
longitudinal reinforcement had a more noticeable effect for low a/d ratios only, and
varying the vertical web reinforcement had a noticeable effect only for shear span

to depth ratios above 0.5.

Mau and Hsu performed algebraic manipulations of their preceding theory and
calibrated the resulting equations with the test data. They ultimately derived the

following non-dimensioned formula for the shear strength of deep beams:

K,(wp, +0.03) +

N —

T
fi_

c .
Equation 2-65.

%[JK12(mh +0.03)° + 4(w,, + 0.03)(, + 0.03)] < 0.3

f
where o, = Phiyv  and o, = p—‘]:,ﬂ’ are the horizontal and vertical web
c Cc

reinforcement indices respectively, within the limits 0<®,<0.26 and

0<w,<0.12.

K, represents the effect of the shear span on the shear strength.
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Ky ==Y 0<2<05

' D D
K, = %’[g(g _ 5_3)} 0.5< % <2 Equation 2-66.
K1 =0 —>2

fyv = the yield stress of the web reinforcement,
f'« = the cylinder strength of the concrete,
py = the vertical web reinforcement ratios,

pn, = the horizontal web reinforcement ratios, and

\Y
= the shear stress = —.
K bd

Vv

The resulting formula provided accurate predictions of shear strength for the
experimental test results. However, since it was calibrated with a particular set of
test data, it is only applicable to single span beams subject to point loads at
midspan.

2.4.6 Kotsovos

Kotsovos[?®127] proposed a simple design procedure for deep beams, based
on his concept of the “compressive force path”. Kotsovos theorizes that the shear
resistance of a member is provided by a direct compressive force transmitted to the
supports along a load path. In deep beams, the existence of this direct

compression strut has long been accepted.
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Figure 2-12. Proposed truss model by Kotsovos!26l[27]

Shear failures are associated with the presence of tensile stresses developing
perpendicular to the direction of the compressive force path. These tensile

stresses may be caused by:

¢ changes in the path direction, which in deep beams usually occurs at the
loaded cross section,

* varying intensities of the compressive stress field caused by the

changing trajectories of the compressive forces,
* high stresses existing at the tip of inclined flexural cracks, and

¢ bond failure in the tensile reinforcement causing changes in the stress

conditions in the compressive zones of the beam.

The actual shape of the stress field and the magnitude of the tensile stresses
are difficult to determine without sophisticated nonlinear finite element analysis
programs. To circumvent these difficulties, Kotsovos proposed an idealized model
for the compressive force path which is essentially bi-linear. The model has parallel
sides with a width of one third of the shear span (a/3). However, if a/3 is smaller
than the effective width of bearing, then the bearing width should be used for the
width of the compression strut. The design method then follows from the principles
of statics.
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The results were verified against the experimental results of de Paiva and

(48]

Siess Ramakrishnan and Ananthanarayanal®®, Kong!'8l, Smith and

Vantsiotis!®8 and also the continuous deep beam test results of Rogowsky et
all®Ol51152] The method showed a reasonable correlation with experimental
values, with the predicted values generally on the conservative side. Greater

reliability existed for beams without web reinforcement.

The procedure from Kotsovos does not take into account the contribution of
web reinforcement to the shear strength. The justification for this is the conclusion
made by de Paiva and Siess, Smith and Vantsiotis and Kong et al. among others,
that the presence of web reinforcement has little, if any, effect on the load carrying
capacity of deep beams. The method also assumes that the strut can develop the

full cylinder strength of the concrete in compression.

2.4.7 Siao

Siaol%®I58II57] proposed another model based on a refined strut and tie model
for deep beams. He assumed that the compression strut can be divided into two
components dispersing at angles of 2:1 from the line connecting the load and

support points. At the mid-depth of the member, two tensile ties are required for
equilibrium.

v
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Figure 2-13. Truss model as proposed by Siaol%31[561157]
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On the basis of this model, assuming that the lever arm between the centroid
of the top compression force and the main tension reinforcement is 0.9d, he
derived that the ultimate shear strength of the beam could be represented by the

equation;
vV, = 1.8fbd Equation 2-67.

where b = the thickness of the beam (mm)
d = the effective depth (mm),
fy = the tensile strength of the concrete = 0.52 /f . | N/mm?, and
f., = cube strength in N/mm?

When web reinforcement is present, he proposed the following modified

expression for fy.

fy = 6.96A/ﬂ[1 + n(phsin26 + pvcosze)] Equation 2-68.

where the second and third terms in the brackets are the contribution from the

reinforcement.

In the above equation:

n =the modular ratio E¢/E,

pn, = the horizontal reinforcement ratio,

py = the vertical reinforcement ratio, and

0 = the angle of the compressive strut to the horizontal.

Comparing these equations to the experimental data indicated good agreement

for specimens with shear span to depth (a/d) ratios less than 1.0. However, for a/d
ratios greater than this, the gap between the experimental and theoretical results
widened progressively. For a/d ratios greater than 1.3, the accuracy dropped off
rapidly. Therefore, he suggested the use of a modification factor k4 to account for
this reduced shear strength for higher a/d ratios, where k; =1 for a/d < 1.0, and
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kq < 1.0 for higher values of a/d. No guidance was given for the value of ky beyond
a/d=1.0.

Siao also observed that after cracking, all of the tensile forces would have to be
resisted by the web reinforcement, therefore, he proposed that where web

reinforcement was present, the minimum shear strength of the beam would be:

V, = 1.8fyv(phsin29 + pvsinze) Equation 2-69.

where  f,, is the yield strength of the web reinforcement. This equation assumes
that the web reinforcement has adequate anchorage to develop its full

yield strength.

2.4.8 Rogowsky and MacGregor

Rogowsky and MacGregorl¥l31I52] conducted an extensive experimental
investigation into the behaviour of both simple span and continuous deep beams.
Their work demonstrated that a plastic truss model can provide accurate

predictions of stresses and the ultimate strength of deep beams.

A deep beam is defined as “any beam in which a substantial portion of the load
is transferred to the support by a direct compression strut”. Corbels are included
under this definition of a deep beam and it was proposed that they also be

designed using the plastic truss model.

Rogowsky and MacGregor based their model on work conducted by
Martil33134]  Muellert*8], Thurlimannl®2l63]54] and Nielson et al.[*”]. The basis of
the model is that an applied load is resisted internally by a pin jointed truss (or strut

and tie model), composed of compression (concrete) and tension (steel) members.
The basic assumptions for the model are:
* equilibrium must be satisfied,

» elastic strains are negligible compared to the yield strains,
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 the concrete only resists compression and has an effective compressive

strength f*, = vf’, where v <1.0,
* the steel resists all tensile forces, and

« failure of the truss occurs when either the steel yields or the concrete
crushes.

From the above assumptions, the following can be derived:

* The lines of action of all applied loads must coincide with the centroid of

each truss member,

¢ At ultimate load, concrete struts are in uniaxial compression with a

uniform stress, and

* Bearing plates, support conditions and details must be designed so that
bearing and anchorage failures do not occur.

The basic equations relating to materials, geometry and equilibrium for the
plastic truss model for corbels are:

Materials

Fo = Agfs Equation 2-70.
F. = f*:bd, Equation 2-71.
f*o = vf', Equation 2-72.
Geometry

Q=d- A/d2 —2aw - w? Equation 2-73.
V, = ngzw Equation 2-74.

From materials and geometry:
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fo W
v, = —stst Equation 2-75.
u Q

From materials and equilibrium and noting that d, = w/sin@:
V, = fF.bw Equation 2-76.

Design Method

1. Given f*, estimate the corbel dimensions with:

V, .
g = 0.8,/f*, Equation 2-77.

2. The minimum bearing width of the loading plate, w4, can be calculated from:

V#

W, ... = — Equation 2-78.
min bvac q

3. The depth of the node Q is given by:

Q = d—A/d2—2aW—W232(D—d) Equation 2-79.
4. The area of reinforcement is calculated from:

_vEQ

st fsyW

A

Equation 2-80.

5. Proper detailing including secondary reinforcement is considered.

2.4.9 Collins and Mitchell

Collins and Mitchell8®144] adapted work done by Wagner(®8! in 1929 on steel
beams. Wagner assumed that after web buckling, the thin webs could no longer
support compression. Collins and Mitchell proposed that after cracking, a concrete

beam can no longer carry tension, and that the shear is carried by a diagonal field
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of compression as shown in Figure 2-14. The angle of inclination of the

compression stresses can be found from the following equation.

2 €,— €
tan“g = X2

Equation 2-81.
€~ €

where gg = longitudinal strain at mid-depth of the web,
& = transverse strain, and

€5 = principal compressive strain.

uniform field of diagonal
compressive stresses

s=dy/3tané

Figure 2-14. Diagonal compression field!(®]

Considering a symmetrically reinforced prestressed concrete beam subjected
to shear, five unknowns need to be solved. The stress in the reinforcement, the
stress in the prestressing tendon, the stress in the stirrups, compressive stress in
the concrete, and the angle of inclination. To solve for these unknowns, three
equilibrium equations, two compatibility equations and the constitutive relationship
of the materials. This approach was named the Compression Field Theory.

The design approach used by the Compression Field Theory uses plane
sections theory to consider the resistance and behaviour of beams under shear
load. The cross section of the beam is divided into a series of horizontal layers.
Longitudinal strains, shear stress, and angle of principal compressive stress is

assumed to be constant. At each layer, biaxial stresses are calculated.
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Figure 2-15. Compression Field Theory linked to plane sections!®!

Vecchio and Collins!85186167] in 1986 tested thirty square reinforced concrete
panels measuring 890mm x 890mm by 70mm. The panels were reinforced with two
layers of welded wire mesh placed parallel to the edges of the panels. The smooth
wire meshes had typically 50 mm grid spacing with a clear cover of 6 mm. The
maximum size aggregate used in the concrete mix was 6 mm. Five steel shear
keys were cast into each of the four edges of the test panel and anchored by
concrete shear studs. Thirty-seven hydraulic jacks applied the loading to the test

panel.

Figure 2-16. Test panel after failuref®
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Their results lead to the formation of the “modified compression-field theory”. In
this model, cracked concrete is treated a new material with its own stress-strain
properties. To establish these properties, equilibrium, compatibility and stress-
strain relationships were formulated in terms of average strains and stresses. It
was assumed that the direction of principle strain axes coincides with the direction
of the principle stresses.

The principal compressive stress in the concrete was found to be a function of
the co-existing principal tensile strain. Concrete subjected to high tensile strains
normal to the compressive strain is “softer” and weaker than concrete subjected to

a standard cylinder stress (where the tensile strain is due to the Poisson’s ratio).

fCI f2 4]\-
c
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Figure 2-17, Stress strain relationship for cracked concretel®]

The following equations were derived to describe this effect.

4 €5\2
foo = fc2max[2(872) —(872) } Equation 2-82.

c2max _ 1 <1.0
f -
°  08- 0.34;1

Equation 2-83.
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(g4 +0.002)
4+ —

€1 = & Equation 2-84.

tanzocs
where €' = negative quantity assumed to be -0.002 which corresponds to the

highest point in the stress-strain curve
gs = tensile strain in tension tie due to factored loads
o5 = angle between tension tie and compression strut

Assuming €'; = -0.002, Equation 2-83 can be re-written as:

fl

C <§

f =— ¢ <
°2max ~ 08+ 170, °©

Equation 2-85.

Though the Compression Field Theory has been shown to accurately describe
the strength of reinforced concrete beams, its application to deep beams and
corbels is questionable. Firstly, the theory is based on the use plane sections
theory, which does not apply to deep beams and corbels (and other areas of
discontinuities). Of the panels that were tested, twenty-two were tested in
monotonic pure shear, four in combined shear and biaxial stresses (of which one
failed prematurely due to poor casting), two in uniaxial compression, one in reverse
cyclic shear and one with a changing load ratio. When tested under biaxial
stresses, each side was equally loaded. A shortcoming of the test procedure is that
no panels were tested under unequal biaxial compression-tension stress
conditions. These loading conditions would have reflected the stress state that
exists along the compression strut that develops from the loading point to the
support of deep beams and corbels.

As well, all test panels were reinforced with two layers of welded wire mesh,
other reinforcement configurations, or no reinforcement at all, would have provided
meaningful results, and would have representative of deep beams and corbels with
such reinforcement. The cracking pattern shown in Figure 2-16 on page 52 is not
representative of deep beams or corbels. From this figure you can see that failure

occurred at an angle to the cracks, while with deep beams and corbels, diagonal
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cracking failures occur in the same direction of cracking. The equations are
complex and many assumptions are made; the designer must assume the strain in
the concrete and the strain in the reinforcement. Equation 2-85 shows that the
strain, €1, must be greater than 0.00117 before a reduction of compression strength
is considered. Such a high strain is probably due to the amount of reinforcement

used in the test panels.

2.4.10 Schlaich and Schafer

In 1987, Schlaich and Schafert®3l%4] introduced a design method based on
plasticity theory using a strut and tie model. The model could be used for both
ultimate load and serviceability check. Concrete only allows a limited plastic
deformation. Therefore, the model must be designed in such a way that the rotation
deformation capacity is not exceeded at any point until the state of stress is
reached by the rest of the structure. In areas of high stress, the size of the struts

as well as their direction are designed according to elastic theory.

Design Method

The structure is divided into “B” and “D” regions. “B” regions occur where the
Bernoulli hypothesis of linear strain distribution applies. In these areas, internal
stresses are calculated from statics. “D” (discontinuity, disturbance, or detail)
regions occur where strain distribution is non-linear. Internal forces can be
calculated using strut and tie models. The model proposed by Schlaich and
Schafer has three components, the strut, tie, and the nodes.

Schlaich and Schafer described three strut configurations that should

adequately cover all cases of compression stress fields:
» fan shaped stress field which does not develop transverse stresses,

* the bottle shaped stress field which develops considerable transverse
stresses, and

e prismatic stress fields
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Figure 2-18. D-regions with non-linear strain distributions31(54]

The fan and bottle shaped stress fields are normally found in “D” regions, while
the prismatic stress field is found in “B” regions. The compressive strength of the
concrete in the stress field depends largely on the state of stress. Schlaich and

Schafer proposed a simplified design strength as follows:
f*Cd = 1.0f,q for an undisturbed, uniaxial state of stress

= 0.8f,y where compression cracks are present and parallel to the

compressive stresses
=0.6f;q for compressive stress fields with skew cracks

where f.4 is the compressive strength of concrete.
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Tension forces are carried by the reinforcement. The required area of the
tension tie is calculated from the ultimate tie force and the yield strength of the

reinforcement. Reinforcement is placed uniformly over the tensile zone.

Regions where forces change direction are called nodes. Nodes can be divided
into two main types:

» smeared or continuous nodes in which wide concrete stress fields join
each other, and

 singular or concentrated nodes in which the deviation of the loads is

locally concentrated.
Nodes are designed empirically using the following guidelines:
» the geometry of the node must agree with the applied forces,

» the average compressive stresses in the node must be less than:

f;d = 1.0f.q where only compression struts meet, or

f.q = 0.8fcq in nodes where tensile reinforcement is anchored.

2.4.11 Tan and Lu

In 1999, Tan and Lul®! presented their investigation on the size effect in large
reinforced concrete deep beams. Twelve concrete deep beams varying in height
from 500 to 1750mm were tested and compared to strength predictions from the
ACI Codel?], the UK CIRIA Guide, and the CSA Codel®},

The test beams are shown in Figure 2-19. The width of the beams was held
constant, while the shear span to depth ratio varied from 0.5 to 1.0. All beams with
a height greater than 500mm were provided with a 6mm square wire mesh of
350mm grid to prevent sudden spalling of the concrete. A high percentage of main
steel reinforcement (p=2.60) was used to prevent a flexural failure.
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Figure 2-19. Web reinforcement for beams tested by Tan and Lu(6"]
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Among their findings:

1. Anincrease in height for geometrically similar beams leads to a more extensive

crack patterns at the same shear stress
2. Size effect in diagonal cracking stress is small or negligible

3. There is a pronounced size effect on the ultimate shear stress, however the

size effect seems relatively independent of the shear span to depth ratio (a/h)

4. The ACI Code predictions were generally conservative for all size beams, how-
ever the diagonal cracking strengths for beams with h=1750mm were overesti-
mated.

5. The CIRIA predictions were unsafe for beams with heights greater than
1000mm

6. The Canadian Code predictions provided uniform safety margin for all beams
tested. The strut-and-tie model predictions did not deteriorate with increasing
height of the beam.

2.4.12 Hwang, Lu and Lee

In 2000, Hwang, Lu and Leel'®! presented a theoretical softened strut-and-tie
model for shear strength predictions of deep beams. The model was applied to
deep beams of different concrete strengths, shear span to depth ratios, and
horizontal and vertical web reinforcement. The proposed model originates from the
strut-and-tie concept and satisfies equilibrium, compatibility and constitutive laws
of cracked reinforced concrete. The shear strength predictions of the proposed
model was applied to 123 deep beams available in literature and compared to the
ACI 318-95 Codel?.. The strut-and-tie development for a deep beam is shown in
Figure 2-20.
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|, Flat strut

L~ Horizontal tie

I

(c) Vertical mechanism

Figure 2-20. Strut and tie development in deep beams

After first cracking of a deep beam, the steel reinforcement bars are subjected
to tension and the concrete acts as the compressive struts. The angle of inclination
of the strut can be defined as:

_1 jd
0 = tan (E) Equation 2-86.

where: jd = the lever arm

a = the shear span
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The direction of the principal compressive stress of the concrete is assumed to

coincide with the direction of the diagonal concrete strut.

The maximum compressive stress 64 max resulting from the summation of the

compressive forces shown in Figure 2-21 can be estimated as:

1, -1/0;
cos(e —tan (J—(D) cos(tan (219) - 6)
1 D 2 a

Cdgmax = | D- . h . F,| Equation 2-87.
7 A 1 1
str cos(tan (;——CQ) sin(tan (%d))

where A, = effective area of diagonal strut

D = compression force in diagonal strut (negative for compression)
Fi, = Tension force in horizontal ties (positive for tension)

F, = Tension force in vertical ties (positive for tension)

(Vertical forces not shown)

Legend:
«= = = Compression strut

Tension tie

Coordinate:
v

d r
.NZ.’ h
(Horizontal forces not shown)

Figure 2-21. Strut and tie model for a deep beam
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Cracked reinforced concrete in compression exhibits lower strength than
uniaxially compressed concreted as shown in Figure 2-17 on page 53. The stress-

strain softening curve of cracked concrete is represented as follows.

—84) (—€q)2 &4 :

O4 = “CFC[Z(E) —(a{) } for E <1 Equation 2-88.
' —g4/ e, — 1)2 —€4 _

o4 = _(;fc[1 —(_Z/-E—E)T) } for C_Eo >1 Equation 2-89.

(58 __1 ___ 09

JFo JT+400e, ,/1+400¢,

Equation 2-90.

where o4 = the average principal stress in the d-direction
{ = the softening coefficient
f', = the compressive strength of concrete
g4 = average principal strain in the d-direction
€, = average principal strain in the r-direction
€, = concrete cylinder strain corresponding to the cylinder strength

The proposed design solution is shown in Figure 2-22. The softened truss
model was applied to 123 test beams available in literature from such researchers
as de Paiva and Siess, Kong et al., Smith and Vantsiotis, Fang et al., and Chen.

The following conclusions were drawn from this study.

+ The softened strut-and tie model consistently predicted 123 deep beams
measured shear strengths with a reasonable accuracy. These beams
had a wide range of horizontal and vertical web reinforcement ratios,

concrete strengths and shear to depth spans.

» The ACI 318-95 Code was found to underestimate the contribution of
concrete and overestimated the contribution of web reinforcement on

the shear strength of deep beams.
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« The ACI 318-95 Code predictions are conservative

» The proposed model provides valuable insight into the shear strength

and behaviour of reinforced concrete deep beams.

[ 6 F Ju Jn Ae 4 A E, 5, ]

+
|Cale:. D,F,F,

%% g}m ,8‘ "Ev

§,=8,+4s, Cale. &
¥

Figure 2-22. Flow chart showing solution algorithm[17]
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2.5 Current Canadian Code

The current Canadian Standard (CSA A23.3-94)P° recommends five different

design procedures for shear. These recommendations are outlined in the following

table.

Table 2-1. Shear design methods as recommended by CSA A23.3-94

Method

Applicability

Simplified Method, (Cl. 11.3)

Flexural regions not subjected to significant axial tension

General Method, or the Strut-
and-tie Model (Cl. 11.4 or 11.5)

Flexural regions where traditional beam theory (plane sections
remain plane) is reasonably applicable.

Strut-and-tie Model (Cl. 11.5)

Regions near discontinuity where plane section remaining
plane is not applicable, including affects of axial forces. (deep
beams and corbels)

Shear Friction (CI. 11.6)

Interface shear transfer, situations where failure occurs by slid-
ing along a plane of weakness

Two-way shear or punching
shear (Cl. 13.4 & Cl. 13.5)

Thin slabs and footings with two-way action, subjected to con-
centrated loads

As can be seen from Table 2-1, the strut-and-tie method as outlined by Clause

11.5 of CSA A23.3-94P is applicable to the design of reinforced concrete deep

beams and corbels.

Clause 11.5 states:

“The strength of reinforced concrete structures, members, or

regions may be investigated by idealizing the reinforced concrete as

series of reinforcing steel tensile ties and concrete compressive

struts interconnected at nodes to form a truss capable of carrying all

factored loads to the supports. In determining the geometry of the

truss, account shall be taken of the required dimensions of the

compressive struts and tension ties.”

Strength of the compression strut

The dimensions of the strut shall be large enough that the calculated

compressive force does not exceed:
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C<o0.Afcy Equation 2-91.

where A = the area of the compression strut defined by clause 11.5.2.2,

f :
fo = 08+—:7081 <0.85f, Equation 2-92.

£, = £, + (g4 +0.002)cot?0, Equation 2-93.

¢s = the smallest angle between the compression strut and the adjoining

tension ties as shown in, and

gs = the tensile strain in the tension tie inclined at ¢4 to the compression

strut.
T f
b &
Tension tie 1L, ‘,?
Compression
&t

Figure 2-23. Orientation of tension tie with respect to the compression strut(®!

For regions of the compression strut not crossed by a tension tie, the limit for

compression resistance by the strut is 0.85f' .. The expression for g4 is based on
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the assumption that the principal compression strain in the direction of the strut is

equal to 0.002 (which corresponds to the highest point in the stress-strain curve).

Guidelines for the dimension of the compression strut are shown in the

following figure.

s6ad

£, 8in @

-

RN 6

h,
£y 8in #+ d,cos #

(b) Strut anchored by bearing plate and (c) Strut anchored by
reinforcement bearing plate and strut

Figure 2-24. Guidelines for determining the dimensions of the strut and tiel®]

Strength of the tension tie

The area of reinforcement required for the tension tie, much ensure that the

calculated tensile force in the tie does not exceed:
Tcalc S (I)sAstfy Equation 2-94.

where A4 = area of the tension tie, and
fy = yield strength if the reinforcement.
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Stress limits in node regions

The Canadian code also places a limit on nodal stresses. Concrete

compressive stresses cannot exceed the following limits:
0.85¢.f; in node regions bounded by compression struts and bearing areas,
0.75¢.f'. in node regions anchoring a tension tie in only one direction, and

0.65¢.f'¢ in node regions anchoring tension ties in more than one direction.

The Canadian code seems to contradict itself, on one hand it clearly indicates
that the Compression Field Theory should only be used on flexural regions where
traditional beam theory (plane sections remain plane) is reasonably applicable, yet
the code then uses the equations derived by this theory to define the strength of
the compression strut. The main problems with this are that Equation 2-92 is
applicable only if a tension tie crosses a compression strut. If no stirrups are used,
then there is no reduction of compressive strength at the midpoint of the strut for
example. Other problems are, that the maximum compressive strain is assumed to
reach 0.002 along the strut, that the strain in the tension tie must be assumed, and

that no reasoning is given for the strut dimensions given in Figure 2-24.

2.6 Summary

The literature review presented here has clearly shown that a lot of research
has been done in this area. While each researcher presented a different approach,
one thing is certain, deep beams and corbels should be designed using some sort
of compression strut and tension tie system. There has been no research done on
measuring the actual compressive strains along the strut and the corresponding
tensile strains perpendicular to the strut on a deep beam subjected to a point load.
The research done here will try to address this problem using experimental and

finite element analysis.
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3 Experimental Program

3.1 Test Program

3.1.1 Introduction

The current study consists of twelve deep beams fabricated and tested in four
groups of three beams. After an extensive literature review, it was evident that

deep beams can be defined as having up to five strength limits.

1. First flexural cracking which may result in uitimate failure in the case of deep

beams without or with very little tension reinforcement,
2. Inclined cracking under moment and shear due to beam action,
3. Inclined splitting due to arch action,

4. Ultimate flexural failure due to yield of tensile steel or crushing of concrete in

compression, and
5. Excessive deformation of the beam.

The twelve beams tested were designed to study the ultimate strength behav-
iour of deep beams and to develop a simplified design model. Sufficient reinforce-
ment was used to ensure a diagonal cracking failure. Stirrups were provided in only
half of the test beams. In this way it was possible to study the stress-strain distri-

bution along the compression strut for deep beams with and without stirrups.

It was decided to keep the beam depth constant while varying the shear span.
In addition, sufficient tension reinforcement was used to ensure failure in the com-

pression strut.
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3.1.2 Beam Details

The overall dimensions and reinforcement arrangement for the twelve beams
tested are shown in Figure 3-1, Figure 3-2, Figure 3-3 and Figure 3-4. In all cases
the main reinforcement consisted of horizontal M20 bars. Anchorage of the main
tension reinforcement was enhanced by providing 180-degree hooks at the bar

ends. The vertical reinforcement consisted of 6mm-closed stirrups.

Strain gauges were attached to one specimen from each of the four groups.
Steel strain gauges were applied to the main tensile reinforcement as well as to a
6mm non-deformed steel bar situated along the diagonal compression strut as
shown in Figure 3-5. Strain gauges were also attached to the surface of the con-
crete test beams as shown in Figure 3-6, Figure 3-7 and Figure 3-8.
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Figure 3-1. Reinforcement details for test beams B150S6, B250S6 and B350S6.
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Figure 3-2. Reinforcement details for test beams B150S19, B250S19 and B350S19.
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Figure 3-3. Reinforcement details for test beams B160S6, B260S6 and B360S6.
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Figure 3-4. Reinforcement details for test beams B160S25, B260S25 and B360S25.
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Figure 3-5. Locations of strain gauges placed on steel reinforcement.
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Figure 3-6. Location of concrete strain gauges on the left side of test beam.

Figure 3-7. Location of concrete strain gauges on the right side of test beam.

75



L/2

L/74

/\< 75}/ \ h/2

ALL DIMENSIONS IN mm

Figure 3-8. Placement of concrete strain gauges.
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3.2 Materials

3.2.1 Concrete
The concrete used in the study was supplied by a local ready-mix concrete sup-
plier and had the following specifications:
e 6mm (1/4”) crushed stone aggregate,
¢ 0.5 water to cement ratio, and
e 80mm slump.

Although 25 MPa concrete was requested, the 28-day concrete strength varied
from 16.5 MPa (2400 psi) to 34.5 MPa (5000 psi). Three 76mm (3") diameter and
152mm (6") high concrete cylinders were cast for each of the test beams. A sum-

mary of the concrete strength for each of the test beams is given in Table 3-1.

Table 3-1. Concrete strength determined from test cylinders.

Test Sample f’c (MPa) f'c (psi)
B150S6 28.9 4191
B250S6 34.5 5003
B350S6 28.9 4191

B150S19 28.9 4191

B250S19 28.9 4191

B350S19 255 3698
B160S6 28.9 4191
B260S6 28.9 4191
B360S6 34.5 5003

B160S25 16.5 2393

B260S25 34.5 5003

B360S25 16.5 2393

At the time of casting, the concrete beams and test cylinders were vibrated
using a pencil vibrator. Within a few hours of casting, the test samples and cylin-
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ders were covered with canvas and plastic. The canvas was watered twice daily for

14 days after which the formwork was removed.
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35.0 1
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Figure 3-9. Concrete compressive stress-strain relationship

3.2.2 Steel

The main tensile reinforcement consisted of deformed M20 bars (bar diameter
= 19.5mm), with a yield strength of 440 MPa (63.8 ksi). Non-deformed 6mm steel
bars were used as vertical reinforcement. In addition, one sample from each of the

four test groups had a 6mm non-deformed steel bar placed along a diagonal line
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from the loading point to the support. Three steel strain gauges were placed on

these bars to measure strains along the compression strut.
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Figure 3-10. Steel tensile stress-strain relationship
3.3 Instrumentation

Monitoring equipment was set up to measure loads, displacements, and con-
crete and steel strains. The following sections describe the system of instrumenta-

tion.
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3.3.1 Strain Gauges

Strain gauges were applied to one sample from each of the four test groups.
Showa strain gauges (N11-FA-60-120-11) were used to measure the strain on the
main steel reinforcement as well as a steel rod placed along the compression strut.
Precision strain gauges (CEA-06-125UN-120) were used to measure strains in the
concrete. Strain gauges placed on the reinforcement were covered with epoxy to
protect them during casting. In all, four samples had three strain gauges placed on
the main tensile reinforcement, six gauges on the steel rods placed along the com-

pression struts, and 15 gauges placed on the concrete surface.

3.3.2 Displacements

Displacements were measured at the midspans of the beams as well as at
305mm (12" for the shorter test samples) or 406mm (16” for the longer test sam-
ples) from each end. Location of deflection gauges are shown in Figure 3-11. Dig-
ital gauges with a least count of £0.01mm were used to measure the

displacements.

3.4 Testing

3.4.1 Testing Procedure

Testing was done using a Tinius Olsen compression machine. The test setup
is shown in Figure 3-11. The supports, as well as the loading points measured
127mm (5”) in length. The load was applied at midpoint as two point loads. Loading
was applied at 11 kN (2.5 kips) intervals until the total load was 133 kN (30 kips).
Loading was then applied at 22 kN (5 kips) intervals until specimen failure. The ini-
tial load increment was small in order to collect many readings from the strain
gauges. After the load reached 133 kN it was found that many of the strain gauges
on the concrete had failed due to cracks passing through them, therefore the load

increment was increased.
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At each increment, the load was held constant so that deflectionand electronic
strain gauge readings could be taken. After the readings were taken, the test beam
was inspected for any new or extended cracks. These observations were recorded
on the beam using felt tipped markers. Once the readings and observations were
taken, the loading was then increased by the next increment and the procedure

was repeated.

—1 95mm

127 —=

/]
MIDPOINT DEFLECTION

38mm STEEL BAR
BEARING PAD

698 or 838
ALL DIMENSIONS IN mm

19mm STEEL PLATE

XxXxxd
t\-d3mm STEEL BAR

—127 —=

305mm OR 406mm
RIGHTSIDE DEFLECTION

4

BEARING PAD—//

336

Figure 3-11. Schematic of test loading setup.
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3.4.2 Test Setup

The specimens were positioned in the Tinius Olsen compression machine for
midpoint loading as shown in Figure 3-11. The beams rested on two 19mm (3/4”)

steel plates which in turn rested on six 13mm (1/2”) diameter steel bars.

A bearing pad was placed between the steel plates and the test samples to
reduce the effects of surface irregularities. After the beam was centered and lev-
eled, two W steel sections were placed atop the midspan. Cardboard was again
placed between the surface of the beam and the loading plate. Throughout the
setup procedure, care was taken to assure that the samples were vertically aligned
with all load points and reactions in order to minimize the possibility of a stability

failure.

For the samples with strain gauges, all wiring was connected on the morning of
the testing. Prior to testing, the data acquisition system was electronically zeroed.

Digital deflection gauges were placed and zeroed prior to testing.

3.5 Objective

The objective of the test program was to measure the stress and strain distribu-
tion parallel to the compression strut, as well as perpendicular to the compression
strut. Test beams were designed with sufficient reinforcement to ensure a diagonal
cracking failure. Beams were also designed with and without stirrups to determine
their effect on the stress-strain distribution. The experimental findings will then be
compared to a finite element analysis. The research work will then be compared to

the current Canadian design code.
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4Test Results

4.1 Presentation of Resulis

In this chapter the experimental results are presented for the twelve test beams
described in Chapter 3. Analysis of these results with comparison to the finite

element predictions are discussed in Chapter 6.

The failure loads measured during the experimental testing are given in Section
4.2. The load versus displacement observations are given in Section 4.3.

Results for each of the individual beams tested along with strain data and crack
patterns are presented in Section 4.4. The strain data is presented graphically to

aid in the interpretation of the results.
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4.2 Failure Loads

Failure loads were recorded by the Tinius Olsen compression machine. The

applied load which resulted in failure for each of the twelve test beams are given in

Table 4-1.

Table 4-1. Measured failure loads of the test beams.

Beam fe (MPa) s (psi) Failure load | Shear Span | Depth h | Ratio ath
(kN) a (mm) (mm)
B150S6 28.9 4191 371.9 559 356 1.57
B250S6 34.5 5003 496.4 559 356 1.57
B350S6 28.9 4191 422.6 559 356 1.57
B150819 28.9 4191 356.7 559 356 1.57
B250S19 28.9 4191 378.1 559 356 1.57
B350S19 25.5 3698 311.4 559 356 1.57
B160S6 28.9 4191 392.8 711 356 2.00
B260S6 28.9 4191 371.9 711 356 2.00
B360S6 34.5 5003 355.8 711 356 2.00
B160S25 16.5 2393 169.9 711 356 2.00
B260S25 34.5 5003 355.8 711 356 2.00
B360S25 16.5 2393 151.2 711 356 2.00
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4.3 Deflections
Deflections of eight deep beam specimen were measured at three locations as
shown in Figure 3-11 on page 81.

e 305mm (12”) from the right side for beams 1372mm (54”) long or
406mm (16”) from the right side for beams 1676mm (66”) long

This is designated as “Deflection Right” in Figures 4-1 to 4-8.

e 305mm (12”) from the left side for beams 1372mm (54”) long or 406mm
(16”) from the left side for beams 1676mm (66”) long

This is designated as “Deflection Left” in Figures 4-1 to 4-8.
¢ at the midspan
This is designated as “Deflection Middle” in Figures 4-1 to 4-8.

The load versus deflection diagram for these eight test beams are shown in

Figure 4-1 to Figure 4-8.
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Figure 4-1. Deflection of beam B150519.

86




400

17 L

R/

R

Load (kN)

N

ol

1.0 2.0 3.0 4.0 5.0
Deflection (mm)

—e— Deflection Left —m— Deflection Middle —a— Deflection Right

6.0

Figure 4-2. Deflection of beam B250S19.
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Figure 4-3. Deflection of beam B150S6.
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Figure 4-4. Deflection of beam B250S6.
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Figure 4-5. Deflection of beam B160S25.
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Figure 4-6. Deflection of beam B260S25.
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Figure 4-7. Deflection of beam B160S6.
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Figure 4-8. Deflection of beam B260S6.
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4.4 Individual Beam Results
4.4.1 Beam B150S6

Beam B150S6 measured 1372mm in length, 356mm in height, and 95mm in
width. The main horizontal reinforcement consisted of 4 - 20M bars. Eight closed

loop stirrups, 6mm in diameter, were equally spaced at 152mm intervals.

The beam was loaded in 22 kN increments. First cracking occurred at a load of
133.4 kN along a diagonal from the support to the loading point as well as flexural
cracking between the two supports. Failure of the test specimen occurred at371.8

kN by diagonal cracking along the compression strut.

At each load increment, deflection readings were taken and the crack pattern
drawn. Deflections were measured at midspan as well as 305mm from both the left
and right sides. The crack pattern is shown in Figure 4-9. Loading is shown in kips
(1 kip = 4.448 kN).

Figure 4-9. Crack pattern detail of left side of test beam B150S6.
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4.4.2 Beam B250S6

Beam B250S6 measured 1372mm in length, 356mm in height, and 95mm in
width. The main horizontal reinforcement consisted of 4 - 20M bars. Eight closed

loop stirrups, 8mm in diameter, were equally spaced at 152mm intervals.

The beam was loaded in 22 kN increments. First cracking occurred at a load of
111.2 kN along a diagonal from the support to the loading point. Flexural cracking
first occurred at 133.4 kN in the center of the beam. Failure of the test specimen

occurred at 496.3 kN by diagonal cracking along the compression strut.

At each load increment deflection readings were taken and the crack pattern
drawn. Deflections were measured at midspan as well as 305mm from both the left
and right sides. The crack pattern is shown in Figure 4-10. Loading is shown in kips
(1 kip = 4.448 kN).

Figure 4-10. Left side crack pattern for beam B250S6.
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4.4.3 Beam B350S6

Beam B350S6 measured 1372mm in length, 356mm in height, and 95mm in
width. The main horizontal reinforcement consisted of 4 - 20M bars. Eight closed

loop stirrups, 6mm in diameter, were equally spaced at 152mm intervals.

The beam was loaded in 11.1 kN increments until reaching 75 kN, then it was
loaded at 22.2 kN increments until failure. First cracking occurred at a load of 155.7
kN along a diagonal from the support to the loading point. Flexural cracking first
occurred at 155.7 kN at the center of the beam. Failure of the test specimen

occurred at 422.6 kN by diagonal cracking along the compression strut.

At each load increment 25 strain gauge readings were taken. The crack pattern
can be seen in Figure 4-11. Measured strain gauge readings are shown in Figure
4-12 to Figure 4-16.

Figure 4-11. Left side crack pattern for beam B350S6.
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Figure 4-12. Main tension steel strain versus load for beam B350S6.
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Figure 4-13. Diagonal steel strain versus load for beam B350S6.
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Figure 4-15. Concrete compression strain across the diagonal versus load for beam B350S6.
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Of the strain gauges placed on the steel reinforcement and the steel rods
placed along the compression strut, strain gauges 2, 5 and 9 stop functioning just
prior to the flexural and diagonal cracking. Gauge 14, which was placed on the
concrete to measure compressive strains failed to work from the start. The strains
measured along the compression strut by the gauges, by both the gauges on the
concrete and on the diagonal steel rods, showed that the strains were much less
than the Canadian Code proposed value of 0.002!%], the value recommended by
the Canadian code!®! to be used when calculating the strength of the compression
strut. The concrete strain gauges measuring tension perpendicular to the
compression strut showed an increase in tensile strains with an increase in loading
with a sudden drop just prior to diagonal cracking. After diagonal cracking, strain
gauges 11, 15, 17, and 18 stop functioning. The remaining two strain gauges

recorded that the tensile strains began to increase again as loading was applied.
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4.4.4 Beam B150S19

Beam B150S19 measured 1372mm in length, 356mm in height, and 95mm in
width. The main horizontal reinforcement consisted of 4 - 20M bars. A closed loop
stirrup, 6mm in diameter, was placed near the loading points and supports, for a
total of four stirrups.

The beam was loaded in 22.2 kN increments. First cracking occurred at a load
of 133.4 kN along a diagonal from the support to the loading point. Flexural
cracking first occurred at 155.7 kN at the center of the beam. Failure of the test

specimen occurred at 356.7 kN by diagonal cracking along the compression strut.

At each load increment deflection readings were taken and the crack pattern
drawn. Deflections were measured at midspan as well as 305 mm from both the
left and right sides. The crack pattern is shown in Figure 4-17. Loading is shown in
kips (1 kip = 4.448 kN).

Figure 4-17. Right side crack pattern for beam B150519.
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4.4.5 Beam B250S19

Beam B250S19 measured 1372mm in length, 356mm in height, and 95mm in
width. The main horizontal reinforcement consisted of 4 - 20M bars. A closed loop
stirrup, 6mm in diameter, was placed near the loading points and supports, for a
total of four stirrups.

The beam was loaded in 22.2 kN increments. First cracking occurred at a load
of 133.4 kN along a diagonal from the support to the loading point. Flexural
cracking first occurred at 155.7 kN between the two supports. Failure of the test
specimen occurred at 378.0 kN by diagonal cracking along the compression strut.

At each load increment, deflection readings were taken and the crack pattern
drawn. Deflections were measured at midspan as well as 305mm from both the left
and right sides. The crack pattern is shown in Figure 4-18. Loading is shown in kips
(1 kip = 4.448 kN).

Figure 4-18. Right side crack pattern for beam B250519.
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4.4.6 Beam B350S19

Beam B350S19 measured 1372mm in length, 356mm in height, and 95mm in
width. The main horizontal reinforcement consisted of 4 - 20M bars. A closed loop
stirrup, 6mm in diameter, was placed near the loading points and supports, for a
total of four stirrups.

The beam was loaded in 11.1 kN increments until reaching 133.4 kN, then
loaded at 22.2 kN increments until failure. First cracking occurred at a load of 122.3
kN along a diagonal from the support to the loading point. Flexural cracking first
occurred at 133.4 kN at the center of the beam. Failure of the test specimen

occurred at 311.3 kN by diagonal cracking along the compression strut.

At each load increment 25 strain gauge readings were taken. The crack pattern
is shown in Figure 4-19. Measured strain gauge readings are shown in Figure 4-20
to Figure 4-24.

Figure 4-19. Right side crack pattern for beam B350S19.

105



1750 ,
1 Flexural cracking

1500
1 Diagonal cracking

1250 1

-
(@}
Qo
o

Micro-strain

750 -

500 X

250 -

0 : T T T T T T T T T T T T T
0 50 100 150 200 250 300 350

Load (kN)

—e— Gauge 1 —a— Gauge 2 —a— Gauge 3

Ll

I
T‘ GAUGE 1 GAUGE 2 GAUGE 3 '—_r’

Figure 4-20. Main tension steel strain versus load for beam B350S19.
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Figure 4-22. Concrete compression strain along diagonal versus load for beam B350519.
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The strain gauges on the main reinforcement showed that the strain along the
length of the reinforcement was uniform after flexural cracking. This is consistent
with the tied-arch model in that after the concrete deep beam experiences flexural
cracking, the affect of the concrete in tension is negligible and the force in the tie is
constant throughout it's length. Of the strain gauges measuring compressive
strains, gauges 4,5, and 6 did not function from the start of the test. Gauge 23,
measuring concrete compressive strains ceased functioning after diagonal
cracking. Both the gauges on the steel rod placed along the compression strut and
the gauges attached to the concrete surface measuring compressive strains once
again showed that the strains along the compression strut are much lower than the
Canadian Code proposed value of 0.002[°!, with the highest measured strain just
over 0.001.

The concrete strain gauges measuring tension perpendicular to the
compression strut showed an increase in tensile strains with an increase in loading
with a sudden drop just prior to diagonal cracking. After diagonal cracking, strain
gauge 11 stop functioning. The remaining strain gauges recorded that the tensile

strains began to increase again as loading was applied.
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4.4.7 Beam B160S6

Beam B160S6 measured 1676mm in length, 356mm in height, and 95mm in
width. The main horizontal reinforcement consisted of 4 - 20M bars. Ten closed

loop stirrups, 6mm in diameter, were equally spaced at 152mm intervals.

The beam was loaded in 22.2 kN increments. First cracking occurred at a load
of 66.7 kN along a diagonal from the support to the loading point. Flexural cracking
first occurred at 133.4 kN at the center of the beam. Failure of the test specimen

occurred at 392.7 kN by diagonal cracking along the compression strut.

At each load increment, deflection readings were taken and the crack pattern
drawn. Deflections were measured at midspan as well as 406mm from both the left
and right sides. The crack pattern is shown in Figure 4-25. Loading is shown in kips
(1 kip = 4.448 kN).

Figure 4-25. Left side crack pattern for beam B160S6.
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4.4.8 Beam B260S6

Beam B260S6 measured 1676mm in length, 356mm in height, and 95mm. The
main horizontal reinforcement consisted of 4 - 20M bars. Ten closed loop stirrups,

6mm in diameter, were equally spaced at 152mm intervals.

The beam was loaded in 22.2 kN increments. First cracking occurred at a load
of 55.6 kN along a diagonal from the support to the loading point. Flexural cracking
first occurred at 122.3 kN at the center of the beam. Failure of the test specimen
occurred at 371.8 kN by diagonal cracking along the compression strut.

At each load increment, deflection readings were taken and the crack pattern
drawn. Deflections were measured at midspan as well as 406mm from both the left
and right sides. The crack pattern is shown in Figure 4-26. Loading is shown in kips
(1 kip = 4.448 kN).

Figure 4-26. Right side crack pattern for beam B260S6.
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4.4.9 Beam B360S6

Beam B360S6 measured 1676mm in length, 356mm in height, and 95mm. The
main horizontal reinforcement consisted of 4 - 20M bars. Ten closed loop stirrups,

6mm in diameter, were equally spaced at 152.4mm intervals.

The beam was loaded in 11.1 kN increments until reaching 133.4 kN, then
loaded at 22.2 kN increments until failure. First cracking occurred at a load of 66.7
kN along a diagonal from the support to the loading point. Flexural cracking first
occurred at 133.4 kN at the center of the beam. Failure of the test specimen

occurred at 355.8 kN by diagonal cracking along the compression strut.

At each load increment 25 strain gauge readings were taken. The crack pattern
is shown in Figure 4-27. Measured strain gauge readings are shown in Figure 4-28
to Figure 4-32.

Figure 4-27. Right side crack pattern for beam B360S6.
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Figure 4-30. Concrete compression strain along diagonal versus load for beam B360S6.
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Figure 4-31. Concrete compression strain across the diagonal versus load for beam B360S6
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The strain gauges on the main reinforcement showed that the strain along the
length of the reinforcement was uniform after flexural cracking. This is consistent
with the tied-arch model in that after the concrete deep beam experiences flexural
cracking, the affect of the concrete in tension is negligible and the force in the tie is
constant throughout it's length. Of the strain gauges measuring compressive
strains, gauges 4, 9, 14 and 21 did not function from the start of the test. Both the
gauges on the steel rod placed along the compression strut and the gauges
attached to the concrete surface measuring compressive strains once again
showed that the strains along the compression strut are much lower than the
Canadian Code proposed value of 0.002!%], with the averaged measured strain just
over 0.001.

The concrete strain gauges measuring tension perpendicular to the
compression strut showed an increase in tensile strains with an increase in loading.
After diagonal cracking and prior to flexural cracking, all strain gauges with the
exception of gauge 17 stopped functioning. The remaining strain gauge recorded

that the tensile strains began to increase again as loading was applied.
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4.4.10 Beam B160S25

Beam B160S25 measured 1676mm in length, 356mm in height, and 95mm.
The main horizontal reinforcement consisted of 4 - 20M bars. A closed loop stirrup,
6mm in diameter, was placed near the loading points and supports, for a total of

four stirrups.

The beam was loaded in 22.2 kN increments. First cracking occurred at a load
of 89.0 kN along a diagonal from the support to the loading point. Flexural cracking
first occurred at 111.2 kN at the center of the beam. Failure of the test specimen

occurred at 170.0 kN by diagonal cracking along the compression strut.

At each load increment deflection readings were taken and the crack pattern
drawn. Deflections were measured at midspan as well as 406mm from both the left
and right sides. The crack pattern is shown in Figure 4-33. Loading is shown in kips
(1 kip = 4.448 kN).

Figure 4-33. Right side crack pattern for beam B160S25
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4.4.11 Beam B260S25

Beam B260S25 measured 1676mm in length, 356mm in height, and 95mm.
The main horizontal reinforcement consisted of 4 - 20M bars. A closed loop stirrup,
6mm in diameter, was placed near the loading points and supports, for a total of

four stirrups.

The beam was loaded in 11.1 kN increments until 133.4 kN then in 22.2 kN
increments until failure. First cracking occurred at a load of 77.8 kN along a
diagonal from the support to the loading point. Flexural cracking first occurred at
111.2 kN at the center of the beam. Failure of the test specimen occurred at 355.8

kN by diagonal cracking along the compression strut.

At each load increment, deflection readings were taken and the crack pattern
drawn. Deflections were measured at midspan as well as 406mm from both the left

and right sides. The crack pattern is shown in Figure 4-34.

Figure 4-34. Right side crack pattern for beam B260S25.
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4.4.12 Beam B360S25

Beam B360S25 measured 1676mm in length, 356mm in height, and 95mm.
The main horizontal reinforcement consisted of 4 - 20M bars. A closed loop stirrup,
6mm in diameter, was placed near the loading points and supports, for a total of
four stirrups.

The beam was loaded in 11.1 kN increments until reaching 133.4 kN, then
loaded at 22.2 kN increments until failure. First cracking occurred at a load of 77.8
kN along a diagonal from the support to the loading point. Flexural cracking first
occurred at 122.3 kN in the center of the beam. Failure of the test specimen

occurred at 151.2 kN by diagonal cracking along the compression strut.

At each load increment 25 strain gauge readings were taken. The crack pattern
is shown in Figure 4-35. Measured strain gauge readings are shown in Figure 4-36
to Figure 4-40.

Figure 4-35. Right side crack pattern for beam B360S25.
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The strain gauge 3, which was to measure tensile strains on the main
reinforcement did not function from the start of the test. Of the strain gauges
measuring compressive strains on the steel rod placed diagonally along the
compression strut, gauges 5, 6, 7, and 8 failed shortly after diagonal cracking.
Strain gauge 9 did not function from the start of the test. All of the strain gauges
measuring compressive strains on the concrete showed that the strains along the
compression strut are much lower than the Canadian Code proposed value of
0.00215), with the all of the measured strains below 0.0007.

The concrete strain gauges measuring tension perpendicular to the
compression strut showed an increase in tensile strains with an increase in loading
with a sudden drop after diagonal cracking. After diagonal cracking, strain gauge
15, 17, 18 and 20 stop functioning. The remaining two strain gauges recorded that

the tensile strains began to increase again as loading was applied.

4.5 Modes of failure

All of the test beams failed by diagonal cracking. The strains measured in the
tensile reinforcement showed that the beams did not fail by yielding of the
reinforcement. Diagonal cracks were clearly visible from the point of loading to the

supports.
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5 Non-Linear Finite
Element Analysis

5.1 Introduction

Finite Element Modeling was used to analyze the test results as reported in
Chapter 4. The models were also used to help develop the strut and tie model intro-
duced in Chapter 7. The commercial program ADINA' (Automatic Dynamic Incre-

mental Nonlinear Analysis) was used.

5.1.1 Material Properties

5.1.1.1 Concrete
The concrete model in ADINA can be employed with 2-D or 3-D solid elements.

The basic characteristics of the concrete model are:
e compression crushing failure at high compressive stresses,
¢ tension failures at relatively small tensile stresses,

* strain softening from compression crushing failure to an ultimate strain

at which the material fails.

The tensile and compression failures are governed by stress strain envelopes.
Consideration for the case of biaxial stress states is done by employing the stress-

strain envelope proposed by Kupfer®® as shown in Figure 5-1.

1. ADINA is a registered trademark of K.J. Bathe / ADINA R&D Inc.
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Figure 5-1. Concrete stress-strain curve used in the finite element analysis

5.1.1.2 Steel
The steel reinforcement was modeled using a plastic-bilinear material model.
ADINA bases this material model on:

e The von Mises yield condition,
* An associated flow rule using the von Mises yield function,
¢ An isotropic or kinematic, bilinear hardening rule.

This material model can be used with truss elements. The stress-strain relation-

ship is shown in Figure 5-2.
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Figure 5-2. Stress-strain relationship for steel used in the finite element analysis

5.1.1.3 Concrete Post Tensile Failure
Tensile failure occurs when the tensile stress in the principal direction exceeds

the tensile failure stress. When this occurs, it is assumed that a plane of failure
develops perpendicular to the principal stress direction. The tensile failure plane is
checked at each subsequent load step to determine whether the failure is still
active. Failure is considered to be inactive when the normal strain across the plane
becomes negative and less than the strain at the “last” failure. A tensile failure, may
repeatedly become active and inactive. If a tensile failure plane has developed, the
stress conditions along and normal to the material tensile failure piane are used to
evaluate the stress-strain matrix.
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5.1.1.4 Post Compression Failure
Compression crushing under multiaxial stress conditions is identified using the

multiaxial failure envelope. Once the material has crushed, isotropic conditions are
assumed using the uniaxial stress-strain law. The principal stresses are checked
to see if a positive value has been reached, and if so, the stress in the correspond-

ing direction is set to zero.

5.1.2 Modeling of Reinforcement

There are three alternative representations of reinforcement in a reinforced
concrete member. These representations are known as distributed, embedded and

discrete.
(a) Distributed

ad
/// A—

Pl P
/jg // [~ REINFORCEMENT
< - X

(b) Embtedded

w/]
=~ REINFORCEMENT

X

(¢) Discrete

q | AXIAL ELEMENTS

| FLEXURAL ELEMENTS

T

Figure 5-3. Alternate representation for steel reinforcement
Distributed representation assumes that the steel is distributed over the con-

crete element with a particular orientation. A composite concrete-reinforcement
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constitutive relation is used. Perfect bond must be assumed between the concrete

and steel.

An embedded representation may be used with higher order isoparametric con-
crete elements. The reinforcement is considered to be an axial member buiit into
the isoparametric element such that the displacements are consistent with that of

the element. Perfect bond is assumed between the concrete and steel.

With the discrete representation, axial force elements are assumed to be pin
connected with two degrees freedom at the nodal points. The one dimensional
reinforcement elements are superimposed on the two dimensional finite element
mesh used to model the concrete. An advantage of this system is that it can
account for possible displacement between the reinforcement with respect to the
surrounding concrete. In this study, a discrete reinforcement representation is

used.

5.1.3 Elements

5.1.3.1 Plane Stress Element

ADINA can model the following kinematic assumptions; plane stress, plane
strain, generalized plane strain, axisymmetric and 3-D plane stress. The deep
beams were modeled using eight node two dimensional plane stress elements.

The eight node element is shown in Figure 5-4.

Vi
A
=0
. o—e¢ > &
T.XZ =0
T..=0
vz
® ®
z — X
o —o —@

Figure 5-4. Eight node plane stress element
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5.1.3.2 Truss Element
ADINA can employ 2-node, 3-node or 4-node truss elements. The steel rein-
forcement was modeled using 3-node truss elements shown in Figure 5-5. Only

longitudinal forces are transmitted by the truss element.

W;

Ui

U,V, W are global displacement
degrees of freedom

Figure 5-5. Three node truss element used to model the steel reinforcement

5.2 Finite Element Models

Although all beams were modeled, only two series are presented here. Beams
B150S6, B150S19 and B250S19 were modeled using 981 nodes, 300 plane stress
elements and 60 three node truss elements. The concrete elements used were 8-
node plane stress elements, the steel was modeled with 3-node truss plastic-bilin-

ear truss elements. The finite element models used are shown in Figure 5-6.

Beams B260S6, B360S6 and B260S25 were modeled using 1109 nodes, 340
plane stress elements and 68 three node truss elements. The concrete elements
used were 8-node plane stress elements, the steel was modeled with 3-node truss
plastic-bilinear truss elements. The finite element model used is shown in Figure
5-6.
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Figure 5-6. Finite element models used to simulate experimental tests
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5.3 Finite Element Results

5.3.1 Beams B150S6, B150S19, and B250S19

The finite element model for beams B150S6, B150S19, and B250S19 predicted
a failure load of 375.3 kN. This compares very well with the observed failures at
371.8 kN, 356.7 kN and 378.0 kN for beams B150S6, B150S19, and B250S19
respectively. The load versus deflection at the midpoint as well as 304 mm from the
left side is shown in Figure 5-7. Plots of the tensile steel strain determined by the
finite element analysis at midpoint and on the left side of the main reinforcement is
shown in Figure 5-8. A comparison of finite element results with the experimentally

measured values is done in Chapter 6.

Contour plots of compressive stresses at increasing loads are shown in Figure
5-9 and Figure 5-10. From these figures, the development of the compression strut
is clearly shown. This supports the concept of strut and tie modeling of deep

beams.

The finite element analysis predicted a diagonal cracking failure. The cracking
pattern is shown in Figure 5-15 on page 147. Comparing this pattern to the photo-
graphs taken of the failed test beams shows that the patterns are quite similar. This
leads us to believe that the finite element analysis is accurately modeling the test

beams.
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Figure 5-7. Deflection of series B50 as determined by the finite element analysis
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5.3.2 Beams B260S6, B360S6 and B260S25

The finite element model for beams B260S6, B360S6 and B260S25 predicted
a failure load of 343.0 kN. This compares very well with the observed failures of
371.8 kN, 355.8 kN and 355.8 kN for beams B260S6, B360S6 and B260S25
respectively. The load versus deflection at the midpoint as well as 406 mm from the
left side are shown in Figure 5-11. Plots of the tensile steel strain determined by
the finite element analysis at the midpoint and on the left side of the main reinforce-
ment are shown in Figure 5-12. A comparison of finite element results with the

experimentally measured values is done in Chapter 6.

Contour plots of compressive stresses at increasing loads are shown in Figure
5-13 and Figure 5-14. From these figures, the development of the compression
strut is clearly shown. This supports the concept of strut and tie modeling of deep

beams.

The finite element analysis predicted a diagonal cracking failure. The cracking
pattern is shown in Figure 5-15 on page 147. Comparing this pattern to the photo-
graphs taken of the failed test beams shows that the patterns are quite similar. This
leads us to believe that the finite element analysis is accurately modeling the test

beams.
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Figure 5-11. Deflection of deep beam series B60 as determined by finite element analysis
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6Analysis of F.E.M.
Results

6.1 Introduction

Test results were presented in Chapter 4 with finite element modeling of the test
samples in Chapter 5. This chapter will first examine the validity of the finite
element models, then the behaviour of the compression strut will be studied using
the results from the models. A strut and tie model will be defined based on the
observations from the experimental work as well as from the finite element
analysis. The strut and tie model, presented in Chapter 7, will be applied to the
samples tested in this study as well as to other past research that was discussed
in Chapter 2.

6.2 Finite Element Model

Before conclusions can be drawn from the finite element models, it is necessary
to determine their validity. Table 6-1 lists the calculated capacity of the test
samples as determined by the ADINA finite element models. The ratio of the
experimental failure load to the finite element analysis is also provided for clarity.
As can be seen from this table, the models accurately predicted the ultimate
capacity of the test samples.

Ultimate capacity prediction by itself is not sufficient in determining the overall
accuracy of the models, other factors must also be checked. It was shown in
Chapter 5 that the cracking patterns and mode of failure predicted by the finite
element analysis was similar to that observed in the laboratory. Deflection graphs
were drawn comparing the experimental model with the ADINA predictions. As can

be seen in Figure 6-1, Figure 6-2, Figure 6-3, and Figure 6-4, the predicted
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deflection of the deep beam samples compared well to the actual recorded
deflections. This is a very good indication that the models are behaving in a similar

fashion to that of the experimental samples.

Figure 6-5, Figure 6-6, Figure 6-7, and Figure 6-8 show the comparison of the
calculated tensile strain in the steel reinforcement with the strains recorded from
the strain gauges applied to the test samples. As can be seen from these graphs,
the predicted strains are in good agreement with the recorded ones indicating that
the steel reinforcement was modeled correctly and that the behavior of the finite

element model is similar to that of the test samples.

Table 6-1. Measured failure loads of the test samples.

Commrose | Measure | Computed M d Ultimate Load

Sample Str%ngth L%';Z"fktﬁ) Fa"‘:{(‘;")ﬁad Ciar::l:fed Fallure Loso
(MPa)

B150S6 29.0 371.9 358.5 1.04
B250S6 345 4964 439.9 113
B350S6 29.0 4226 358.5 117
B150S19 29.0 356.7 358.5 0.99
B250S19 29.0 378.1 358.5 1.05
B350S19 255 3114 300.2 1.04
B160S6 29.0 392.8 367.0 1.07
B260S6 29.0 371.9 367.0 101
B360S6 345 355.8 342.9 1.04
B160S25 16.5 169.9 1641 1.03
B260S25 34.5 355.8 342.9 1.0
B360S25 16.5 151.2 164.1 0.92

Important observations can now be made from the finite element models since

they have been shown to accurately depict the experimental test resulits.
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6.2.1 Stress and strain distribution

The first important observation can be made by examining the load transmis-
sion. As can be seen in Figure 6-9, the finite element analysis shows the develop-

ment of the compression strut from the point of loading to the supports.

It stands to reason that if the load transmission acts from the loading points to
the supports, then the effective stress’ will likewise have a similar behaviour.

Figure 6-10 to Figure 6-11 verifies this observation.

A significant observation can be seen in Figure 6-12 to Figure 6-15. From these
figures, it can be seen that the compression strut is under biaxial stress and strain.
This is in good agreement with the cracking pattern discussed in the introduction
and with that developed on the test samples. Under biaxial compression and
tension, the concrete compressive strength must be reduced. When defining the
compression strut, steps must be taken to consider the biaxial stress state that

exists along the compression strut.

The preliminary results of the finite element modeling indicates that there is no
need to design deep beams and corbels for “shear”. It has been shown that the
behaviour of these structures is in developing a compression strut and tension ties.
By designing the strut and tie, the design of the structure is complete. Not only will
the design reflect the behaviour of these elements, but more economical and effi-

cient designs can be made.

A close examination of the stress-strain distribution along the compression strut
as well as perpendicular to the compression strut is needed. In the following sec-

tion, such an examination is carried out.

1. Although maximum shear stress theory provides a reasonable hypothesis for yielding, maxi-
mum distortion energy theory correlates with test data better. ADINA uses the following equation

to determine effective stress. oy = A[%[(ox - oy)2 +(oy - 02)2 + (0, - cz)2 + 6(r§y + Tiz + ‘5)2(2)] .
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Figure 6-13. Left side stress distribution for beams B260S6, B360S6, and B260S25
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Figure 6-14. Left side strain distribution for beams B150S6, B150S19, and B250S19
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6.2.2 Strain along the compression strut

As previously mentioned, in order to design a strut and tie model that accurately
depicts the behaviour of the compression strut, an examination of the stresses
along the strut and perpendicular to the strut will be necessary. In anticipation that
such detail would be required, strain gauges were placed on the concrete test
samples along the diagonal from the point of loading to the support (line A-A). As
well, strain gauges were placed on a line perpendicular (line B-B) to the main

diagonal intersecting the midpoint of line A-A.

Lines A-A and B-B for the left side of the test samples are shown in Figure 6-16

while Figure 6-17 shows the right side of the test sample.

Figure 6-16. Location of left side strain gauges on lines A-A and B-B

166



Figure 6-17. Location of right side strain gauges on lines A-A and B-B

Figure 6-18 to Figure 6-25 show the strain perpendicular to line B-B as
measured during testing along with the strain calculated by the finite element
analysis. In these diagrams, the left side strain gauges are numbered 12,13, and
14, while the right side gauges are numbered 21, 22, 23. In all, two load steps are
shown for each of the four samples that had strain gauges. In each of these
diagrams, the measured strains recorded during the testing phase match closely
to the strain calculated by ADINA. This further demonstrates that the finite element
modeling accurately describes the test samples. The compressive concrete strains
shown in these figures show that the strain is much less than 0.002, the value
which is recommended by the Canadian Codel®!.
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Figure 6-18. Strain perpendicular to B-B for sample B350S19 at 200 kN
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Figure 6-19. Strain perpendicular to B-B for sample B350S19 at 289 kN
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Figure 6-20. Strain perpendicular to B-B for sampie B350S6 at 200 kN
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Figure 6-21. Strain perpendicular to B-B for sample B350S6 at 289 kN

171



uless apig JUbrY painsesp —e—

ulens apIg Yo peInNsesp —s— /
sisAjeuy Jusw9|g ayul4 — € ND

A

X

AN

NN
>
X

X

BdW 9£°C S

avol
381425344

NX L9 - §2S09¢€9 <Z _D<

Figure 6-22. Strain perpendicular to B-B for sample B360S25 at 67 kN
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Figure 6-23. Strain perpendicular to B-B for sample B360S25 at 89 kN
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Figure 6-24. Strain perpendicular to B-B for sample B360S6 at 200 kN
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Figure 6-25. Strain perpendicular to B-B for sample B360S6 at 289 kN
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Figure 6-26 to Figure 6-33 show the strain perpendicular to line A-A as
measured during testing along with the strain calculated by the finite element
analysis. In these diagrams, the left side strain gauges are numbered 11,15, and
17, while the right side gauges are numbered 18, 20, 24. In all, two load steps are
shown for each of the four samples that had strain gauges. In each of these
diagrams, the measured strains recorded during the testing phase match closely
to the strain calculated by ADINA. This further demonstrates that the finite element
modeling accurately describes the test samples. An important observation is that
the tension strain along line A-A is almost constant. The strain becomes

compressive in the area of the main reinforcement and under the loading point.

The figures show that the tensile strains which act perpendicularly to the
compression strut were present whether or not there were stirrups crossing the
strut. This is contrary to the design recommendation of the Canadian Code!®],
which calls for a reduction of concrete strength only when the compression strut is
crossed by a tension tie. The biaxial stress state exists along the compression strut
regardless of the reinforcement provided. Therefore, the strength of concrete

should be reduced accordingly.
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Figure 6-26. Strain perpendicular to A-A for sample B350S19 at 44 kN
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Figure 6-27. Strain perpendicular to A-A for sample B350S19 at 67 kN
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Figure 6-28. Strain perpendicular to A-A for sample B350S6 at 44 kN

179



QO
OA\OO -O\
]
uieng apIg WY paInsesiy —e— @(oo .O\
uIBl}S 9pIS Yo paINSesi —s— (ooo
sisjeuy juswa|g spuly — °© OO.Q
o°
O.O
o
© o o°
N d t% d nvgvo -Q
/ pd (OOO
N 3 |°
\ ;
P
/ A
v nn

BdW 9/L'C g

avol
Q48/DS3dd

NX 29 - 980S€9 <Z_Q<

Figure 6-29. Strain perpendicular to A-A for sample B350S6 at 67 kN
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Figure 6-30. Strain perpendicular to A-A for sample B360S25 at 44 kN
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Figure 6-31. Strain perpendicular to A-A for sample B360S25 at 67 kN
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Figure 6-32. Strain perpendicular to A-A for sample B360S6 at 44 kN

183



@A\O O.O\
ules)s apIS 146y paInseapy —e— O@OO &
Ules]S apIS Ue paINSesp —e— @(ooo e
sIsAjeuy Juawalg ajuld — (OOO &
0 OOO
oY O.O

of

o0 o0
% Am © moo 0
g o
X N | o
D% S
- g
/ \\ \\ mD N\D
\\ >
\ 2
BRZ=a
= N
— /b/\\,\;
\»\\,\4 %
edW 9/L'C S
NJ /9 -9S09¢89
avor VNIAV
a3g1dos3dd

Figure 6-33. Strain perpendicular to A-A for sample B360S6 at 67 kN
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6.2.3 Stress along the compression strut

After determining that the calculated strains closely matched the measured
values, our attention turned to an examination of the stresses. Figure 6-35 to
Figure 6-36 show the stress perpendicular to line B-B as calculated by the finite
element analysis. In all, three load steps are shown for each of the two different
shear span length samples. The first significant observation was that the stresses
are distributed over the entire area perpendicular to the strut. This shows that the
compression strut is not a narrow column of compressive stresses. At higher loads,
the stress is parabolic in shape, with the maximum value peaking along the main
diagonal. The area under the finite element curves was calculated in order to
compare with an internal force strut and tie diagram shown in Figure 6-34. Table
6-2 lists the compression force values along with the ratio of the finite element

results to the free body diagram values.

Figure 6-34. Internal force diagram strut and tie schematic
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Table 6-2. Force along the compression strut

Fgrge under the Force from strut Finite element
Sample Load (kN) finite element and tie (kN) ~Struland fie
curve (kN)

180.1 43.0 447 0.96
B350S19 270.2 67.6 67.1 1.00
362.8 96.1 90.1 1.07
132.1 31.9 39.4 0.81
B360S25 176.1 50.9 52.5 0.97
213.5 63.6 63.7 1.00

Figure 6-37 to Figure 6-38 show the stress perpendicular to line A-A as
calculated by the finite element analysis. In all, three load steps are shown for each
of the two different shear span length samples. An important observation is that the
tension stress along line A-A is constant along the length of the strut, with the area

near the loading point and near the support being in compression.

This phenomena has been documented before. The American Society for
Testing and Materials tensile test (ASTM C496) places a standard concrete
cylinder, 6" x 127 (152mm x 305mm) on its side and then loads it in compression
along the diameter as shown in Figure 6-39 on page 191. As can be seen from
Figure 6-39d, the vertical axis is stressed in biaxial compression and tension. The
stresses acting across the vertical diameter range from high compressive stresses
(in the perpendicular direction) at the top and bottom to a nearly constant uniform
tensile stress across the rest of the cylinder. The strength of the cylinder, tested in

this fashion, defines the splitting strength of concrete as:

f, =< Equation 6-1.
°t = 7id q

where

P = maximum applied load,
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Figure 6-35. Finite element stress perpendicular to B-B for sample B350S19
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Figure 6-36. Finite element stress perpendicular to B-B for sample B360S25
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Figure 6-37. Finite element stress perpendicular to A-A for sample B350519
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Figure 6-38. Finite element stress perpendicular to A-A for sample B360S25
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(8) Test procedure (b) Simplified force system.

Tension <«——4——» Compression

x:

(d) Distribution of o4 on vertical diameter.

P
(c) Stresses on element

Figure 6-39. ASTM (C496) split cylinder test

| =the length of the concrete cylinder, and
d =the diameter of the cylinder.

Comparing Figure 6-39d to the finite element work shown in reveals that

diagonal splitting of deep beams is similar to the splitting test adopted by ASTM.
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6.2.4 Summary

Numerous comparisons were carried out between the finite element modeling
and the experimental work. The following is a list of observations that can be made

from the experimental and finite element work:

1. The finite element modeling done using ADINA was shown to

accurately represent the test samples.

2. The stresses and strains along the compression strut are biaxial in

nature whether or not the strut is crossed by a tension tie.

3. The compression stresses in the strut, are distributed over the entire
area perpendicular to the strut. The strut is not a narrow column of

stresses as assumed by many strut-and-tie models.

4. Tensile stresses exist perpendicular to the compression strut. These
stresses are constant over the length of the strut, with two areas of
compressive stress, one near the loading point, the other near the

support.

5. Concrete can continue to carry tensile stresses after cracking. The
tensile stress at the crack is zero, however between two cracks the

concrete continues to carry tensile stresses.

6. The strains in the concrete strut are much less than the value [BIl8] of
0.002 used by the Canadian code.

A strut and tie model used to describe the behaviour of deep beams and corbels
must consider a reduction of compressive strength of concrete subjected to biaxial
tension and compression stresses. Based on these observations, a strut and tie
model is defined in Chapter 7. This model accurately predicts the failure loads of

deep beams and corbels, while considering the behaviour of these structures.
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7Truss Model

7.1 Truss Model

The finite element and experimental work presented suggests that deep beams
behave as tied arches comprised of concrete compression struts, acting between
the points of loading and the supports, and steel tension ties. For the case of a
deep beam subjected to two point loads, the load path can be idealized as shown
in Figure 6-34. Failure of the deep beam will occur by failure of the compression
strut, failure of the tension tie, or a simultaneous failure of both the compression
strut and tension tie. It was also shown that the compression stress perpendicular
to line B-B in Figure 7-1 is symmetrically distributed about line A-A. The stress
perpendicular to line A-A is also uniformly distributed, with two isolated areas of
compression, one where the main tension reinforcement is located and the other
in the compression zone due to bending. Any truss model derived to calculate the
capacity of such structures should account for the biaxial stress state that exists

along these diagonals.

|
1€

Figure 7-1. Schematic detailing main diagonal and perpendicular diagonal
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7.1.1 Compression strut

For simplicity, it will be assumed that the compression stress is uniformly
distributed, much like it is done for conventional bending stresses. In this way, the

stress distribution can be seen as shown in Figure 7-2.

From the free body diagram shown in Figure 6-34, the compression strut can
be defined as

C=—=—— Equation 7-1.
sin® sinB q
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Figure 7-2. Simplified compressive stress distribution
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From this, the uniformly distributed compression stress perpendicular to line B-

B can be defined.

fo= C _ Vcos6

= = E tion 7-2.
4, h bhsind quation
cos6
since tan6 = % = 2 Equation 7-3.
e
T
h
‘// cos®
/ fCt
h T,
-
—
v e
P wA
™~ a Ll
* 2cos’0
\Y
Figure 7-3. Assumed compression stress distribution
substituting equation Equation 7-3 into Equation 7-2 yields
= Vecosd _ Va Equation 7-4.

ct — bhsin0 - bh2

In defining the tension stress perpendicular to the main diagonal, an internal
force diagram as shown in Figure 7-4 is proposed. The compression force is
replaced with two struts radiating at an angle of 2:1 from the point of application.
The ratio of 2:1 was adopted from research conducted by Schlaich(®3154l, For

equilibrium, tension forces are introduced in the perpendicular direction.
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Figure 7-4. Internal force distribution of the compression strut

From the above diagram, the compression strut can be defined as

0

__V

¢ = 2 2sin0

Equation 7-5.

The corresponding tension force can be defined as

T' = g = V
2 4sin0

Equation 7-6.

In terms of stress

fo= 2T _ Vcos0
te a_, 2absing

Equation 7-7.

cosf

Substituting from Equation 7-3
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Vcos6 _ Va _ V

- - - Equation 7-8.
t© ~ 2absin® = 2abh ~ 2bh quation 7-8

As previously mentioned, the biaxial concrete stress state must be considered
when defining the strength of the compression strut. The linear strength envelope
(shown in Figure 7-5) describing the biaxial strength of concrete as proposed by
Zielinskil”3! will be adopted.

fo  Stress in Direction 2

A

| 0.25f, |

c

: &

& 4

kQ Q

R £

\ (e}

\\,‘b (&)

X w

Lo % 3
\;/\Q

Stress in Direction 1
— f1

Q
Biaxial Tension fet

| fio P, | 0.25f |

| | |

Biaxial Compression-Tension

Figure 7-5. Biaxial strength envelope for concrete as proposed by Zielinskil73!
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f,=1%1.1 —f—"—: Equation 7-9
ct 7 "¢ ft 9 )
]ﬁ; +f,=f Equation 7-10
ft ct = "¢ q .
f f'C+f"‘ = f Equation 7-11
tc f_t ft_ — e q .
fs .
fie = FR Equation 7-12.
c+ _ct

From Equation 7-4 and Equation 7-8

va
f 2
i‘ = % = ?hé Equation 7-13.
bh
Substituting into Equation 7-12
f'.
f.. = Equation 7-14.
tc fv
¢4 2a

T

Equation 7-13 implies that tension stresses decrease with an increase in clear
span to depth ratio. From the geometry of the deep beam and the material
properties, the tension stress can be calculated from Equation 7-14. By substituting
into Equation 7-9, the maximum compression stress capacity can be found. The
maximum load can then be calculated from Equation 7-4.

V=St Equation 7-15.
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The presence of web reinforcement will increase the capacity of the

compression strut. Considering the portion of web reinforcement parallel to the

diagonal.
[P a .|
VvV
Web reinforcement (AS) Uj_*
AN
i SR} >
\ Pad
\ P
\ Pad
h \ e
" projection of
- )/ web reinforcement
-~
h 4 -0 \
F | | } b

Figure 7-6. Projection of reinforcement along compression strut

2 E
V = fct(p—g— + E—SZAS sin 6] Equation 7-16.
C

Failure of the deep beam can be defined by the above equation, provided that

the tension tie is well anchored and has sufficient capacity.

7.1.2 Tension tie

The tension tie, assuming that it is well anchored and that adequate

development length is present, can be defined as having a maximum capacity of:

T = ZAsfy Equation 7-17.
where:
Ag = the area of main horizontal tensile reinforcement
fy = the yield strength of the steel reinforcement
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From the free body diagram shown in Figure 6-34, the total load, V, that can be

carried by the deep beam based on the capacity of the tension tie is:
— _ h .
V = Ttan6 = ZAsfytanG = ZAsfya Equation 7-18.

Failure occurs when the capacity of the compression strut or the tension tie is
reached. At the balanced condition, failure of the compression strut occurs
simultaneously with the failure of the tension tie. A comparison of Equation 7-18 to
the force in the reinforcement as determined by ADINA is shown in Figure 7-7. For

both test series at various loadings, Equation 7-18 was in good agreement with the
force determined by ADINA.
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Figure 7-7. Comparison of Equatio n7-18 to force in reinforcement as determined by ADINA

The above equations were applied to the current research to determine their
adequacy. A comparison was also made with the current Canadian Codel®.,
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Table 7-1. Truss model equations applied to experimental results

Sample rZ?o (l\(,ll\Jl) (éimlt?o?;ﬂl) vvu \Tv'u—

calc CSA
B150S6 1.57 185.9 178.9 1.04 1.35
B250S6 1.57 258.0 210.0 1.23 1.78
B350S6 1.57 211.3 178.9 1.18 1.60
B150S19 1.57 178.4 178.9 1.00 1.27
B250519 1.57 189.0 178.9 1.06 1.38
B350S19 1.57 155.7 159.3 0.98 1.21
B160S6 2.00 196.4 169.6 1.16 2.35
B260S6 2.00 185.9 169.6 1.10 2.18
B360S6 2.00 177.9 199.0 0.89 1.72
B160S25 2.00 85.0 102.4 0.83 1.34
B260S25 2.00 177.9 199.0 0.89 1.72
B360S25 2.00 75.6 102.4 0.74 1.16
Average 0.99 1.59
Coefficient of variation 0.15 0.24

From Table 7-1, it can be seen that the equations developed here are in good
agreement with the experimental work done. The Canadian Codel®!
underestimated the capacity of the test beams by an average of 59%. The model
presented predicted the capacity much more accurately and with a smaller
coefficient of variation than the Canadian Code!®!. It is important to note that the
defined truss model utilizes a much wider compression strut than defined by the
Canadian Code, and that the concept of strain-softening is not completely lost. By
utilizing a concrete biaxial stress curve, we are reducing the concrete capacity due

to the presence of perpendicular tensile stresses.

The equations derived in this chapter were applied to test beams available in
literature. Test results reported by Smith and Vantsiotis!®8], Kong, Robins and
Colel?% were used to test the accuracy of the presented model. These test beams

were selected because they satisfied the following conditions.

1. the test beams failed in web shear mode, not in a flexural or bearing mode,
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2. the span to depth ratio was less than 2 (thus making them deep beams),

3. the test beams were simply supported.

7.2 Comparison to Other Research

The equations derived in this chapter were applied to fifty-two samples tested
by Smith and Vantsiotis!®8l. Their research, conducted in 1981, studied deep
beams with shear span to depth ratios ranging from 0.77 to 2.01. As shown in

Table 7-2, the derived equations are in good agreement with their experimental test

results.
Table 7-2. Comparison to work done by Smith and Vantsiotis/®]
Vear (Ibs v v
Sample a/d V, (Ibs) (Equc:t'fo(n 7_)1 6) Vc:|c \-/Ct\
0A0-44 0.77 31370 29385 1.07 0.59
0A0-48 0.77 30600 30028 1.02 0.56
1A1-10 0.77 36250 27097 1.34 0.76
1A3-11 0.77 33350 26420 1.26 0.72
1A4-12 0.77 31750 23833 1.33 0.76
1A4-51 0.77 38430 30366 1.27 0.75
1A6-37 0.77 41385 31371 1.32 0.80
2A1-38 0.77 39230 31423 1.25 0.73
2A3-39 0.77 38350 28919 1.33 0.77
2A4-40 0.77 38650 30065 1.29 0.76
2A6-61 0.77 36400 28595 1.27 0.75
3A1-42 0.77 36200 26699 1.36 0.77
3A3-43 0.77 38830 28169 1.38 0.81
3A4-45 0.77 40140 30768 1.30 0.78
3A6-46 0.77 37800 29756 1.27 0.75
0B0-49 1.01 33500 30025 1.12 0.74
1B1-01 1.01 33150 30905 1.07 0.72
1B3-29 1.01 32275 28492 1.13 0.76
1B4-30 1.01 31550 29850 1.06 0.72
1B6-31 1.01 34475 28337 1.22 0.86
2B1-05 1.01 29000 26871 1.08 0.70
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Table 7-2. Comparison to work done by Smith and Vantsiotis!>®)

Vealc (Ibs v v

Sample a/d Vu (Ibs) (Equcgt'fcfn 7-)1 6) vc:Ic VC: R
2B3-06 1.01 29500 26946 1.09 0.72
2B4-07 1.01 28350 25135 1.13 0.75
2B4-52 1.01 33700 31210 1.08 0.74
2B6-32 1.01 32650 28679 1.14 0.79
3B1-08 1.01 29400 22787 1.29 0.84
3B1-36 1.01 35735 28600 1.25 0.86
3B3-33 1.01 35600 26946 1.32 0.92
3B4-34 1.01 34850 27615 1.26 0.88
3B6-35 1.01 37350 29950 1.25 0.90
4B1-09 1.01 34500 23989 1.44 0.98
0C0-50 1.34 26000 27323 0.95 0.78
1C1-14 1.34 26750 25775 1.04 0.87
1C3-02 1.34 27750 29677 0.94 0.81
1C4-15 1.34 29450 31133 0.95 0.84
1C6-16 1.34 27500 30313 0.91 0.80
2C1-17 1.34 27900 26600 1.05 0.90
2C3-08 1.34 23300 26123 0.89 0.73
2C3-27 1.34 25925 26215 0.99 0.84
2C4-18 1.34 28000 28114 1.00 0.87
2C6-19 1.34 27900 28910 0.97 0.86
3C1-20 1.34 31650 28159 1.12 1.00
3C3-21 1.34 28100 22519 1.25 1.08
3C4-22 1.34 28700 25184 1.14 1.01
3C6-23 1.34 30850 26523 1.16 1.07
4C1-24 1.34 32950 26233 1.26 1.13
4C3-04 1.34 28900 25199 1.15 1.00
4C3-28 1.34 34250 26123 1.31 1.22
4C4-25 1.34 34300 25510 1.34 1.27
4C6-26 1.34 35850 29565 1.21 1.17
0D0-47 2.01 16500 23573 0.70 0.88
4D1-13 2.01 19650 24177 0.81 1.35
Average 1.16 0.85

Coefficient of variation 0.14 0.19
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11b = 4.448222 N, 1 psi = 0.00689476 MPa

The current Canadian Code over estimated the capacity of these deep beams
by and average of 15%, while the model presented here had an under estimated
the same beams by 16%. The model presented here yielded results on the

conservative side with a smaller coefficient of variation.

Further comparisons were also carried out with work done by Kong, Robbins
and Colel?% in 1970. This time, thirty-five samples with shear span to depth ratios
ranging from 0.35 to 1.18 were studied. Once again, the equations presented in

this chapter proved to accurately predict the experimental test results.

Table 7-3. Comparison to work done by Kong, Robbins and Cole (20

Sample ald V, (Ibs) (Eq‘:f;t'ico(r'\b?_)1 6 vv“
calc
1-30 0.35 53700 53888 1.00
1-25 0.43 50400 50979 0.99
1-20 0.54 42600 35287 1.21
1-15 0.74 36900 26490 1.39
1-10 1.18 20100 18170 1.11
230 0.35 56000 47408 1.18
225 0.43 50400 37969 1.33
2-20 0.54 48400 31991 1.51
215 0.74 31400 26944 117
2-10 1.18 22400 15436 1.45
3-30 0.35 62100 58795 1.06
325 0.43 50700 45555 1.11
3-20 0.54 46700 33408 1.40
3-15 0.74 35800 28040 1.28
3-10 1.18 19400 18545 1.05
4-30 0.35 54400 55084 0.99
4-25 0.43 45200 43392 1.04
4-20 0.54 40600 32922 1.23
4-15 0.74 24600 26312 0.93
4-10 118 21500 17153 1.25
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Table 7-3. Comparison to work done by Kong, Robbins and Cole [20]

Sample a/d Vu((Ibs) (Eq‘:xcaatlfcflLb;-)1 6) \/Vu

calc
5-30 0.35 53800 46496 1.16
5-25 0.43 46800 39883 1.17
5-20 0.54 38800 33020 1.18
5-15 0.74 28600 26461 1.08
5-10 1.18 17500 17511 1.00
6-30 0.35 69200 64630 1.07
6-25 0.43 59800 51463 1.16
6-20 0.54 55000 42345 1.30
6-15 0.74 38800 31299 1.24
6-10 1.18 22100 19611 1.13
7-30A 0.35 56800 61425 0.92
7-30B 0.35 67400 64091 1.05
7-30C 0.35 58300 61954 0.94
7-30D 0.35 59300 53034 1.12
7-30E 0.35 66800 53277 1.25
Average 1.16
Coefficient of variation 0.13

1 1b = 4.448222 N, 1 psi = 0.00689476 MPa

Comparisons were also carried out with work done by Mattock et
al.[37II38I39N40N41] This time, twenty-seven samples with shear span to depth ratios
ranging from 0.23 to 1.01 were studied. Only the corbels that failed in “beam shear”
were considered. Once again, the equations presented in this chapter proved to

accurately predict the experimental test results.

Table 7-4. Comparison to work done by Mattock et ai (3713813914014 1]

Veaic (IbS) vV,
Sample a/d V, (Ibs) calc \ °V
(Equation 7-16) Vcalc
a2 0.67 35600 39354 0.90
a3 1.01 28000 39093 0.72
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Table 7-4. Comparison to work done by Mattock et a

| [371[38](39][40][41}

Sample ald v, (Ibs) (Eq‘:faat'iccfgb;_% 6 VV“

calc
b2 0.67 38900 36944 1.05
b3 1.01 38900 38179 1.02
b3a 1.01 42100 42291 0.99
c1 0.45 44000 44514 0.99
c2 0.68 40000 39718 1.00
c2a 0.68 40500 39611 1.02
c3 1.02 37600 44457 0.85
di 0.45 28000 43404 0.65
d2 0.68 34000 40680 0.83
d3 1.01 32800 37570 0.87
el 0.22 55000 38765 1.42
e2 0.45 46000 41165 1.12
e3 0.68 48500 37598 1.29
e4 1.01 35500 34312 1.03
f2 0.45 36500 34366 1.06
3 0.68 24000 33232 0.72
f4 1.01 24000 34142 0.70
fda 1.01 23500 31435 0.75
g4 0.99 24000 31828 0.75
h1 0.23 67000 37641 1.78
h2 0.45 50000 36355 1.37
h3 0.68 47400 34346 1.38
h3a 0.68 39600 35281 1.12
h3b 0.68 46100 34034 1.35
j4 1.01 21500 30842 0.70
Average 1.01
Coefficient of variation 0.26

1 1b = 4.448222 N, 1 psi = 0.00689476 MPa

The results shown in the previous tables have been graphed, and are shown in
Figure 7-8. As can be seen, the equations presented here can predict the failure
load of corbels and deep beams. Differences between the calculated and
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measured values tend to be on the conservative side, with the calculated values

generally predicting a slightly lower value than actually recorded.

The equations presented in this study have been applied to ninety-nine deep
beam test samples and twenty-seven corbels. Overall, good agreement was seen
between the predicted failure loads and the actual failure load. The model
presented here differs from other truss models in that it takes into account the
biaxial stress state that exists. Of course, this is only true if failure does not first

occur by some other means such as, the crushing of the bearing area.
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Figure 7-8. Calculated versus measured failures for various shear span to depth ratios
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8.1 Conclusion

Reinforced concrete, being a heterogeneous material, depends on the strength
of both concrete and steel. Failure results when either of these materials fail

independently or simultaneously.

Given there is sufficient reinforcement, after flexural cracking, a concrete deep
beam will work as a tied arch. The compression strut formed between the loading
point and the support is under biaxial compression tension stresses. Beams with a
shear span to depth ratio of less than 2.3273] will work as tied arches provided that

the main reinforcement is well anchored beyond the support.

The current Canadian Code!®! uses the work done by Collins and Mitcheli8l®]
to establish guidelines in the design of “regions of discontinuity”. However the
Compression Field Theory was developed using beam theory, and requiring that
plane sections remain plane, which is clearly not the case when designing deep
beams or corbels. As well, the code does not provide a rationale for how the design
recommendations for the width of the compression strut are derived. A significant
weakness of the code is the need to assume the values of the strain in the

compressive strut as well as in the tension ties.

The research presented here discusses the analysis, behaviour and ultimate
strength in diagonal cracking of reinforced concrete deep beams. In all, twelve
deep beams, categorized in four groups were tested. Test variables included the
shear span, the amount of web reinforcement and the concrete compressive
strength. A single beam from each of the four test groups was fitted with twenty-
five strain gauges to measure the tensile strain in the main tensile reinforcement,

as well as the concrete strain along the main diagonal from between the support
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and the loading points. The experimental work showed the development of

diagonal cracking. These cracks appeared above the supports and propagated

towards the loading point. The strain gauges on the concrete surface confirmed

that the stresses along the compression strut were under biaxial compression

tension stresses.

The finite element analysis presented was compared to the experimental failure

loads, deflections, the concrete and steel strains cracking patterns and modes of

failure. On confirmation that the finite element analysis accurately represented the

test beams, further results were considered. The following observations were

made:

1.

Compressive strains along the compression strut are below the Canadian

Codel®! (and the Compression Field Theory) recommended value of 0.002. Val-
ues as low as 0.001 were measured by the strain gauges as well as predicted

by the finite element analysis.

. The width of the compression strut was found to be much wider than that rec-

ommended by the Canadian Codel®!. The finite element analysis demonstrated
that the width of the compression strut was as wide as the perpendicular pro-
jection of the beam depth to the compression strut.

. Tensile strains are found perpendicular to the compression strut, whether or not

there are any tension ties crossing the strut at that point. The tensile stresses
are uniformly distributed along the length of the compression strut. The current

Canadian Codel® only reduces the concrete capacity if a tension tie is present.

. The Compression Field Theory requires that the strain perpendicular to the

compression strut be greater than 0.00117 before the concrete compressive
strength is reduced. This high value of strain is probably due to the heavy rein-
forcement used in the experimental work by Collins and Mitchell. For deep
beams without heavy or with no web reinforcement, this value is unreasonably
high. The compressive strength of concrete is significantly reduced in the pres-

ence of biaxial tensile strains.
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With this information, a strut and tie model is defined. This model calculates the
average tensile stress perpendicular to the compression strut. Then using a biaxial
concrete stress capacity curve, the reduced compression capacity of concrete is
used to calculate the maximum compression load each strut can carry. The strain
softening concept is still somewhat maintained, in that the strength of concrete is
reduced due to the presence of biaxial stresses. This differs from all other strut and
tie models. The model was applied to the twelve test beams used in this study
confirms an accuracy of 99%. A comparison with the current Canadian Codel!
revealed that the work done here yielded more accurate results than the code. The
current code underestimated the capacity of the test beams by an average of 59%.
The model was also applied to 114 other test samples available in literature (from
Smith and Vantsiotis(®®!, Kong, Robbins and Colel?®, and Mattock et
al.[37I38I30]40141]y and yielded an accuracy of 112%. The models presented, on
average, were on the conservative side, under estimating the failure values by
12%.

Designing for diagonal splitting failures using the models presented here will
decrease the amount of concrete and steel used while considering the behaviour
of these structures. In order to accurately predict the capacities, the real stress
state of the concrete must be considered, i.e. that the compression strut is under

biaxial compression and tension.

The advantages of the system proposed here are:

the concept is simple and avoids complicated empirical equations.

» the model more accurately reflects the behaviour of structures failing in
diagonal splitting.
* the designer does not have to assume strain values in the compression

strut or the tension ties.

¢ the formulas have been shown to yield accurate results to 115 beam and
corbel test samples available in literature as well as the 12 beams tested
in the course of this study
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8.2 Recommendations for future study

Recommendations for future work includes expanding the current study:

to include continuous span beams,

to consider variations in the loading, perhaps by adding more point loads

or by considering distributed loads,
by changing the horizontal and vertical web reinforcement patterns, and

by using inclined reinforcement, which is perpendicular to the compres-
sion strut.
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