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ABSTRACT

A Finite Element Conjugate Heat Transfer Method

Remo Marini

The need to accurately predict heat transfer in aircraft anti-icing systems or in
turbomachinery cooling passages is a current topic of Computational Fluid
Dynamics (CFD). In both applications, the flow structure is highly complex and
three-dimensional. The traditional use of correlations might be useful in
describing the average heat transfer behavior, but not the localized effects.
Accurate heat transfer predictions are required to design efficient complex
cooling or heating schemes and only a full 3D Navier-Stokes code, coupled with
a solid conduction code, is the sole alternative. Conjugate Heat Transfer (CHT) is
the commonly used term to identify such coupling of convection and conduction

across one or several fluid-solid interfaces.

The CHT approach proposed in this thesis solves both the fluid and solid thermal
fields simultaneously, in a fully-implicit manner using the infrastructure of a 3D
Navier-Stokes flow solver, FENSAP. The algorithm supports 3D structured,
unstructured, and hybrid meshes, with mismatched node connectivity and with

non-uniform grid densities between fluid and solid domains at CHT interfaces.
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The heat transfer validation is assessed for both laminar and turbulent flows
against relevant open literature data. The CHT validation is assessed with three
cases: a blunt flat plate flow, a fully-developed pipe flow, and the complex piccolo
tube system flow in a 3D nacelle lip. The results show that the proposed method
can be used as a reliable and cost-effective tool for the analysis and design of
thermal anti-icing devices, and can easily be extended to cooled gas turbine

components, such as: blades, vanes, shrouds, and disks.
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1. Introduction

1.1. Overview of Conjugate Heat Transfer Analysis

The need to accurately predict heat transfer in aircraft anti-icing systems or in
turbomachinery cooling passages is a current topic of Computational Fluid
Dynamics (CFD). Although both applications might be at the opposite end of the
spectrum in terms of heat transfer (heating versus cooling) both share similar

needs and complexities.

In the gas turbine industry, the need for higher efficiencies has driven turbine gas
temperatures to exceed allowable metal temperatures in critical regions of the
engine, thus requiring hot-end engine components to be cooled. Examples are
high pressure cooled vanes, blades, and blade shrouds. Durability engineers
must design cooling schemes that target regions of high thermal loads, using the
least amount of cooling air. Detecting and eliminating hot spots during the design
phase of these components requires a robust design and analysis system. An
important challenge is the complex three-dimensional gas flow patterns in such
passages. Thus, empirical correlations have traditionally been used to predict the
heat load distribution. Convective heat transfer boundary conditions are
commonly used for internal cooling schemes as they depend on the geometry
and the recognized flow regimes, while the external heat load can be evaluated

with simple boundary layer codes with correction factors for fim cooling, if



applicable. The interaction through the walls, however, is not properly considered

in this manner, if conservation of heat fluxes is not addressed.

Another extreme is an aircraft’s de-icing or anti-icing system that must remove or
completely prevent ice accretion on surfaces before it degrades the aerodynamic
performance of the aircraft. Ice accretion on nacelle lips, in particular, can be
hazardous to the engine not only because of performance drop off, but through
possible ice ingestion, fan blade damage, or combustor flameout. A typical
example of a thermal anti-ice device is the use of a piccolo tube system where
hot air taken from the engine impinges on the internal wall surfaces of the wing
slat or nacelle lips. The heat transfer mechanism in this case is a strong function
of the skin temperature, which is not uniformly distributed. The external cooling
load also has to be taken into account, as the ratio between the internal and

external heat transfer coefficients drive the skin temperature.

In both applications, the flow structure is highly complex and three-dimensional,
containing adjacent regions of very high and low speeds and intense or little heat
transfer. The use of simple or modified correlations might easily break down, as
the extent of these regions cannot be well predicted a priori. While correlations
might still be useful in describing the average heat transfer behavior, only CFD
may be appropriate for localized three-dimensional effects. To close the loop on
a design, iterations between the flow calculation and the solid calculation need to

be performed to improve the heat balance accuracy.
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Conjugate Heat Transfer (CHT) is thus the commonly used description of such
interactions involving coupled convection and conduction through one or several
fluid-solid interfaces. Solving the fluid and solid regions in a coupled manner

offers the following advantages:

- eliminate the need to impose thermal boundary conditions at the walls of
interest but only at locations where the temperature or heat flux are known
more accurately

- complete interaction of different flows (film cooling with mainstream
gaspath flow)

- more accurate temperature predictions for critical components

Two main approaches have been generally adopted for the coupling algorithms,

as shown in figures 1.1 and 1.2. They are:

1. boundary condition-exchange method (wall temperature / heat flux, wall
temperature / heat transfer coefficients and reference temperature, and
Mortar element) where the CFD and the conduction codes are separate
entities, and

2. implicit or simultaneous method, where the CFD code also solves the solid

conduction equation.



Both methods ensure that the temperature and the heat flux equilibrium

conditions are met, if done consistently, at each CHT interface, that is:

T, =T (1.1)
and,
q.A" =gt AS (1.2)
Mapping Module
T T
[+ o\
CSM
CFD Code
Code (Conduction &
Stress)

Figure 1.1: Boundary Condition-Exchange Method Flow Chart

< Mapping Module

4

T ,II, T

CSM

CFD/Conduction Code
Code (Stress only)

Figure 1.2: Implicit Method Flow Chart



1.2. Literature Review

1.2.1. Boundary Condition-Exchange Approach to CHT

This is the simplest approach used in industry if it is desired to couple the fluid
and solid domains for a thermal analysis. The coupling is obtained through an
exchange of boundary conditions at the CHT interfaces of interest. This allows
the external interaction of state-of-the-art CFD codes with state-of-the-art CSM
codes without any changes to them individually. The problem becomes an
interface algorithm between the two soivers. This provides maximum flexibility in
the design system since it breaks down the CHT problem into smaller pieces,
reducing the computational effort in solving the problem. However, a couple of

drawbacks are introduced:

1. Under-relaxation might be needed to prevent unphysical solutions when
passing the boundary conditions back and forth

2. The sequential solution of the Navier-Stokes and the Conduction problem
prevent their parallel execution on a multi-processor machine

3. Different discretization techniques between CFD and CSM codes can
cause a loss of accuracy for the heat fluxes calculated

4. Different time step characteristics between CFD and CSM codes can

cause numerical instabilities



Croce et al. [1, 2, 3] have published papers on the use of CHT in the aircraft anti-
icing field with the boundary condition-exchange approach. The method

proposed is the temperature / heat flux approach, described as follows:

1. Solve the fluid field with the CFD code using the Dirichlet boundary
condition for interface temperature and obtain a new heat flux distribution
at the interface.

2. Transfer the heat flux distribution from the fiuid grid to the solid grid using
some mapping algorithm (under-relaxation for the heat flux might be
required).

3. Solve the solid field with the CSM code using the Neumann boundary
condition for the interface heat flux and obtain a new temperature
distribution at the interface.

4. Transfer the temperature distribution from the solid grid to the fluid grid
using the same mapping code as in step 2 (under-relaxation for the
temperature might be required).

5. Repeat steps 1 to 4 until some convergence criterion on the interface is

achieved.

This method corresponds to the Shur Complement algorithm for domain
decomposition of partial differential equations described by Funaro et al. [4] The

use of a Neumann boundary condition for the solid and a Dirichlet boundary



condition for the fluid satisfies the stability requirement of the overall system,

while the opposite may lead to instabilities. [5]

Imlay et al. propose a variation to this method by damping the solid boundary
condition by using an approximate variation of the heat flux with wall
temperature. [6] The method proposed is the temperature / heat transfer
coefficient and reference temperature approach where:

q, =T, -T,) (1.3)

The method is described as follows:

1. Solve the fluid field with the CFD code using the Dirichlet boundary
condition for interface temperature and obtain a new heat flux distribution
at the interface.

2. Calculate the heat transfer coefficient using the heat flux distribution and
the stagnation temperature of the fiuid, one node away from the wall.

3. Transfer the heat transfer coefficient and the stagnation temperature
distributions from the fluid grid to the solid grid using some mapping
algorithm.

4. Solve the solid field with the CSM code using the Neumann boundary
condition for the interface heat flux and obtain a new temperature

distribution at the interface.



5. Transfer the temperature distribution from the solid grid to the fluid grid
using the same mapping code as in step 3 (under-relaxation for the
temperature may be required).

6. Repeat steps 1 to 5 until some convergence criterion on the interface is

achieved.

Another way to compute the heat transfer coefficients in step 2 might be to use
the adiabatic wall temperature, thus requiring an adiabatic calculation to compute
the reference temperature. Montenay et al. state that this method is cumbersome
and may lead to negative heat transfer coefficients rendering the conduction
problem ill-posed. [7] They propose to use an a priori value for the heat transfer
coefficient, thus computing a reference fiuid temperature with the heat flux
distribution such as:
q, =a(T, -T,) (1.4)

The heat transfer coefficient o used (maintained constant between coupling
steps and along the whole fluid-solid interface) is chosen in order to be physically
representative of the heat transfer coefficients of the computed flow (as it would
be for an uncoupled solution). Montenay et al. show that their method can be

viewed as some relaxation method in itself such that [7]:

Qv = (TS -T7) (1.5)
and,
f.n
Tr =Tl -G (1.6)
(44



and so,

Qi =i +a(Ty - T17) (1.7)

The second term of the right-hand-side of equation 1.7 prevents the solid
temperature from deviating too much from the fluid temperature, in order to
satisfy the heat flux equality. The value of the heat transfer coefficient « is
chosen high enough to make the coupled calculation stable since numerical
experience has shown that a great value for heat transfer coefficient leads to a
more stable calculation but also to a slower rate of convergence of the coupled

problem. [7]

Finally, the Mortar element method can be viewed as a variant to the method
proposed by Montenay et al. [7] The Mortar element method passes the same
heat flux to the solid and fluid at the interface and then uses the resulting
temperature difference to change the heat flux by using an a priori value for the
heat transfer coefficient. The fluid grid is referred to the master grid since it is
usually more refined than the solid grid at the interface. The Mortar element

method can be described as follows:

1. Solve the fluid field with the CFD code and the solid field with the CSM
code using the Neumann boundary condition for interface heat flux and

obtain a new temperature distribution at the interface.



2. Interpolate the solid temperature distribution to the fluid grid using some
mapping algorithm.

3. Evaluate a new heat flux distribution with the following equation:
Q' =ap, +a(T™ =T (1.8)

4. Interpolate the heat flux distribution from the fluid grid to the solid grid
using some mapping algorithm.

5. Repeat steps 1 to 4 until some convergence criterion on the interface is

achieved.

The Mortar element method does not require any relaxation for the exchange of
boundary conditions since the problem is already relaxed through the use of the
a priori value for heat transfer coefficient. The method also permits for the

parallel execution of both the CFD and CSM codes.

1.2.2. Implicit Approach to CHT

This is the most robust coupling method for CHT computations. The main
advantage of this procedure is that the fluid flow and heat transfer are
determined in just one code without any further iteration process that can cause
numerical instabilities such as the boundary condition-exchange approach. Also,
to maintain a high level of robustness, it is critical that the discretization of the

heat fluxes be accurate and identical at the fiuid-solid interfaces.

10



Bohn et al. have published papers on the use of CHT in the gas turbine industry
with the implicit approach. The numerical scheme for the CHT calculation works
on the basis of an implicit finite volume method, combined with a muitiblock
technique. [8, 9, 10] The Navier-Stokes equations are solved in the fluid blocks,
while the Fourier equations are solved in the solid blocks. The coupling between
the fluid and solid blocks is achieved via a common wall temperature, resuiting
from the equality of the local heat fluxes passing through the contacting cell
faces. [11] Kao et al. present a similar approach using a Chimera grid system
where overlapping grids between fluid and solid domains at the interface ensure

temperature and heat flux continuity during the numerical solution. [12]

Han et al. presented results using hybrid triangular/quadrilateral grids in 2D and
unstructured prismatic grids in 3D to solve the conjugate problem. [13]
Temperature and heat flux continuity is enforced at the fluid-solid interface.
Specifying the temperature boundary condition of the flow field with the wall
temperature calculated from the solid field satisfies the temperature continuity.
Specifying the heat flux boundary condition of the solid field with the value
calculated from the flow field satisfies the heat flux continuity. In this manner, the
heat flux continuity equation is iteratively enforced at the fluid-solid interface
during flow field and heat conduction conjugate calculations. Thakur et al. and
Rigby et al. report using the same numerical scheme as Han et al. for their CHT

computations. [14, 15]
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1.3. Purpose of the Present Work

The present work is motivated by the need to accurately predict heat transfer for
aircraft anti-icing systems and for gas turbine cooling applications. The objective
was to implement a CHT capability within the CFD code, FENSAP (Finite
Element Navier-Stokes Analysis Package), with a minimum of changes to the
existing code architecture. [16] The CHT algorithm presented in the following
thesis supports 3D structured, unstructured, and hybrid meshes, with
mismatched node connectivity between the fluid and solid domains at the
interface, and with non uniform grid densities on both sides of the interface.
Thus, the use of anisotropic mesh adaptation in the fluid domain is fully

supported.

The approach taken is a multi-domain method where the fluid energy equation
and the solid energy equation are solved simultaneously in a fully-implicit
manner. Each domain has its own mesh, enabling discontinuities in thermal
conductivity to be modeled exactly. The energy equations are assembled in the
usual finite element method for both fluid and solid domains where the
contributions to the residual terms and the matrix influence terms of the
equations are distributed consistently. A special treatment is used at the interface
to guarantee the temperature and heat flux equality, and the stability of the CHT
algorithm. At the interface, the solution advances at each iieration where the

temperature is solved only in the solid domain whereas the temperature in the



fluid domain is interpolated from the solid domain. The heat fluxes are forced to
be identical due to the implicit treatment of the calculation in the weak Galerkin

finite element formulation.
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1.4 Thesis Content

The thesis begins with a description of the flow solver FENSAP. [16] An overview
of the Navier-Stokes equations, the energy equations for the fluid and solid
domains, the turbulence modeling, and the heat transfer modeling are presented
first. The description of the CHT algorithm implementation in FENSAP follows
next. Heat transfer results are then presented in a two-fold manner. First, the
heat transfer validation of FENSAP is presented for both laminar flow and
turbulent flow, through relevant test cases. Next, the CHT validation of FENSAP
is presented with three test cases. The first test is the CHT analysis of a 2D
laminar blunt flat plate, the second test case is the CHT analysis of a fully-
developed 3D laminar pipe flow, and the last test case is the CHT analysis of a
3D nacelle lip equipped with a piccolo tube system. For each test case, the
results are compared to available empirical correlations or open literature
experimental results. Finally, the conclusions of the present work and the future

work possibilities are stated.
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2. The Flow Solver FENSAP

2.1. Introduction

This chapter presents the flow solver FENSAP used in this thesis. An overview of
the governing fluid flow equations and the solid conduction equation are
presented first. Their non-dimensionalization and their boundary conditions are
presented next. Some insight on turbulence modeling with special interest to
turbulent heat transfer modeling will also be highlighted, since a considerable
amount of modeling had to be developed in the course of the present work.
Finally, a description of a higher order heat flux evaluation method is presented

as this is of particular interest when dealing with CHT problems.

The governing equations for the fluid flow are the three-dimensional,
compressible Reynolds-Averaged Navier-Stokes (RANS) equations. By the
Navier-Stokes equations, it is understood to be the physical laws of conservation
of mass (the continuity equation), of conservation of momentum (strictly speaking
these are the Navier-Stokes equations), of conservation of energy (the energy
equation), the equation of state for an ideal gas, and any additional empirical law
such as Sutherland’s law, which relates the dynamic viscosity and the thermal
conductivity to the temperature. The governing equation for the solid is the solid

conduction equation.
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FENSAP is a general purpose CFD code that can handle 3D structured,
unstructured, and hybrid grids. Spatial discretization is carried out by an implicit
weak-Galerkin Finite Element Method (FEM), and the equations are linearized by
a Newton or quasi-Newton method for the global iteration scheme. To advance
the solution in time, an implicit scheme is selected, and an iterative GMRES
procedure is used to solve the resulting sparse algebraic system. To enhance the
steady-state iterative convergence, a local time stepping method is employed.
First or second order artificial dissipation terms are added to the equations to
stabilize their numerical resolution. Finally, a high-Reynolds two-equation k-¢
model is used to model turbulence. A special element with a logarithmic shape
function is used adjacent to the walls to model the law-of-the-wall in the high-
Reynolds number turbulence model. This allows the integration of the full
governing equations to the walls without the need for grid over-refinement in the

boundary layer region.
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2.2. Governing Fluid Fiow Equations

The fluid flow solution variables in FENSAP are the pressure, the velocity
components, the density, and the temperature. The formulation is in conservative
form for the continuity and momentum equations, and in non-conservative form

for the energy equation as follows (in Cartesian coordinates for simplicity):

The Continuity Equations is:

dp  d(pu;)
9p , dpu) _ 2.1
ot Tox, O @1

The Momentum Equations are:

dpu) , dlpuu)  op 97 2.2)
ot ox; ax; X, '
where,
r=af 24 25 0, 2.3)
! ox, oax; 3 'ox, '
The Energy Equation is:
DT Dp 4 aT
S A e 4
’ Dt Dt“kaxi('(axi}rqb 24)
where,

du (du, du; 2 _ du
= i i __5__)(_
”axjtaxfaxi 3" aka
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To close the system of equations we need three more equations. They are:

The Gas Equation of State (for ideal gas):
p=pRT

Sutherland's Law for the dynamic viscosity:

3
M [T RT.+110°K
M. (T { T+110°K

Sutherland’s Law for the thermal conductivity:

3
K [ T )T.+133.7°K
k. | T. )| T+133.7°K

(2.6)

(2.7)

(2.8)

This system now consists of nine equations in nine variables: the pressure p, the

velocity components u;, the temperature T, the density p, the dynamic viscosity p,

and the thermal conductivity k.
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2.3. Governing Solid Conduction Equation

Assuming the solid is isotropic, the governing equation for the heat transfer in the
structure is the heat conduction equation. The formulation is in non-conservative

form for the temperature as follows (in Cartesian coordinates for simplicity):

aT 4 aT
PsCs a = K(Ks a—le (2.9)

This system consists of one equation in one variable: the temperature T. The
density ps and the specific heat cs are constant for the material, while the thermal
conductivity ks can be constant or a function of temperature when a table is
provided as an input. There are no heat sources or heat sinks in the solid energy

equation.
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2.4. Non-Dimensionalization of the Governing Equations

The governing equations are often written in non-dimensional form so that the
non-dimensional flow variables are usually of the order of magnitude of unity, a
convenient means in computational work to minimize numerical round-off errors

resulting from the different flow variable scales.

Since FENSAP is a CFD code tailored for external flow computation, the fluid

flow governing equations are non-dimensionalized as follows:

x{:ﬁ’ p.zﬁ_, u{:i, f:tu_"’, p'z__p_,
I O. u_ I p U3
. . . . Cc
T =l, y7i :ﬁ_’ K =£, Cp=_p
T, U, K, Coe

To maintain consistency through the non-dimensionalization of the governing
equations, the solid conduction equation is non-dimensionalized by introducing

the following dimensioniess variables:

>

X;: ', T. :L’ p;:—pi, C;: Cs . K;:ﬁ
- T. P.. Com K.

In the above variables, |_ is the characteristic length of the physical problem; U_
is the freestream flow velocity based on the freestream Mach number M_ and
freestream temperature T_; p. is the freestream density; u_ is the freestream

dynamic viscosity; k. is the freestream thermal conductivity; ¢, is the

freestream specific heat.



Omitting the star notation, the non-dimensional forms of the equations (ignoring

Sutherland’s law) are as follows:

The Continuity Equation is:

do  d(pu))
L2V =0 2.10
at+ ax; ( )

The Momentum Equations are:

ot ox. ox; Re,_ dx,

]

a(pui)+a(PU,-Ua)=_@_+ 1 97, (2.11)

The Fluid Energy Equation is:

_ P 2E=%+ ! J (KaT P, o (2.12)
(r.-OMZ Dt Dt Re_ Pr.(y.-1MZ2ox.| dx | Re.

The Gas Equation of State (for ideal gas):
p=21 (2.13)

=P
The Solid Energy Equation is:

aT 1 o aT
c, = 2.14
Pl 5 Re_ Pr_(y. -1)M2 ox, LKS ox, J 2.14)

Some recognized variables appear such as the Reynolds number Re_, the

Prandtl number Pr_, and the Mach number M_:

c
Re_ =LV p _H<Con M. = J7.RT.

o * oa ? L)

. K.



2.5. Boundary Conditions for the Governing Equations

For simplicity, only the conventional boundary conditions for subsonic flows are

listed. They are:

1. Inlet: velocity components u;, and temperature T are imposed
2. Walls: velocity components ui=0, and temperature T or heat flux q are
imposed

3. Exit:  pressure p is imposed

For the solid conduction equation, the conventional boundary condition is:

4. Walls: temperature T or heat flux q are imposed

However, when a CHT problem is being solved some additional boundary

conditions arise at the wall interface to ensure continuity for temperature and
heat flux:

T, =T: and, g\, A, =q3A, (2.15)
These two boundary conditions are enforced iteratively and not externally during

the solution of the CHT problem.
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2.6. Turbulence Modeling

For turbulence closure, the standard high-Reynolds x—-& model from Jones and
Launder is employed in the version of FENSAP used in this thesis. [17] However,
a few minor low-Reynolds corrections are introduced through damping functions.
These modifications allow the prediction of a variety of low-Reynolds number

problems with particular interest to heat transfer.

The turbulent viscosity is estimated from the turbulent kinetic energy «, and the

rate of dissipation of turbulent kinetic energy ¢, by the following relationship:

- C,f.roK (2.16)

Hy
&

The turbulent thermal conductivity is estimated using the turbulent viscosity and

the assumption of a constant turbulent Prandtl number (Pr,=0.9), as follows:

C U
K = Coth 2.17

Thus, the concept of effective viscosity and conductivity is used such that:
Het =M+ 1y @Nd, Ky =K + K,
The turbulent viscosity damping function is modeled through the Van-Driest

damping function as follows [18]:

_y* + yur
f#=1.0—exp( A J y' = (2.18)

where the constant A=26.0.



2.6.1. Turbulence Equations

The turbulent kinetic energy and the rate of dissipation of turbulent kinetic energy
are estimated by their own transport equations which can be written in non-

dimensional form, as follows (in Cartesian coordinates for simplicity):

R -
d(pk)  Apuk) 1 |9 Hy | ok +pJ_pg (2.19)

= H+ —
ot ox, Re.|ox;[| 0y )ox; |

2

dpe) Apue) 1 [d[(  m)oe ol . e
a " ax, Re ||| o, Jax, |TOMPE POk 220)

where,

du, du; du;} 2 ou, . |dy;
P=r. —= e LS 21
T3, [”‘(axi+axi) 3% %%, "Jax,. (2.21)

The turbulence equations were non-dimensionalized as follows:

The constants in the x —¢ turbulence model have the following values:
C,=0.09, C,=144, C,=192, s.=10, s,=10

Finally, the damping functions for the source terms in the x—& equations are

similar to the Jones and Launder damping functions as follows [19]:

f,=1.0 (2.22)

2
f,=1.0-0.3exp(-R2), R, = :—V (2.23)



2.6.2. Boundary Conditions and Wall Modeling

The inlet boundary conditions for ¥ and ¢ is specified from physical
considerations. The turbulence intensity is usually measured for experimental
setups, or can be deduced for industrial applications. Thus, the turbulence kinetic

energy can be obtained from the turbulence intensity as:

3.
k==i2, U2, (2.24)

E inlet
and, the dissipation rate is obtained by deducing the level of turbulent viscosity of

the inlet flow as:

f 2
AN (2.25)

Hijntet
For high-Reynolds number flows, wall functions are usually applied to avoid
excessively large grids near walls, although this is becoming less of an issue with
the increase of computer storage and speed. The idea of wall functions is to
apply Dirichlet boundary conditions for velocity, temperature, turbulent kinetic
energy, and rate of dissipation of turbulent kinetic energy at the first node-off-the-
wall. The governing equations are then not resolved in the layer of elements

above the wall.

Thus, through the assumption of the velocity profile near the wall modeled with
the universal turbulent profile, the boundary conditions for the x — & model within

a validity range of y*>30 are:



3/4 3
— (3/4 k

u u
o e=c¥eX Y (2.26)
JC.. Yy owy

In the version of FENSAP used in this thesis, a damping function is introduced to

K=

the £ equation a la Mohamadi [20] such that:

e=fe, f = ! (2.27)

£ € _ +C314
1—ex;{—y—“—]
2K

Through limited numerical investigation, this permits the range of y* to be lower

than the recommended range and still maintain the validity of the boundary

conditions for the x —& model.

In Finite Element methods, a methodology has been developed which aliows the
continuity, momentum, and energy equations to be resolved within the wall
elements for high-Reynolds flows. [21, 22] In the wall elements, the shape
functions for velocity and temperature are modified to include some universal
profile in the normal direction. The shape functions remain linear in the tangential

directions.

2.6.2.1. Velocity Wall Element Modeling
To characterize the behavior of the velocity near the wall, a dimensionless

velocity u® is introduced such as:

=2 (2.28)
uf



The experimentally observed velocity profiles across the viscous sublayer (y* <

5), and the fully turbulent layer (y* > 30) can be described for the dimensionless
slip velocity u™ by a linear profile in the sublayer:

u'=y* (2.29)

and, by a logarithmic profile in the log layer:

u' = IF{XL}-S.S (2.30)
K

The transitional sublayer (5 < y* < 30) can be described by some curve fit to

smoothly join both the sublayer and the log layer.

In the present thesis, the velocity shape function is derived by Reichardt's Law of

the Wall [21]:

. . s AR A .
u"=—In(1.0+0.4y")+7.8/ 1.0 —ex —-——exp(-0.33 2.31
K ( Y7 [ p[11.0] 11.0 P Y)J ( )
A similar profile is the Spalding Law of the Wall, shown for completeness [23]:

¢ Z
y =u"+ exp(—xB)(exp(z) -1.0-2 -?——J, Z=kKu’ (2.32)

Both these profiles match the experimental observations, as shown in figure 2.1.
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Figure 2.1: Universal Velocity Profiles for Turbulent Flow

2.6.2.2. Temperature Wall Element Modeling
To characterize the behavior of the temperature near the wall, a dimensionless

temperature T" is introduced such as:

T,-T :
e T =—Ju_ (2.33)
T PCoU,

T =
Experimental work done by Kader on temperature profiles in turbulent boundary
layers reveals that across the thermal viscous sublayer (y* < 30, for gases), and
the fully turbulent thermal layer (y* > 30) the temperature profiles can be
described for the dimensionless temperature T* by a linear profile in the thermal
sublayer [24]:

T =Pry’ (2.34)

and, by a logarithmic profile in the thermal log-layer:

T =ain(y’)+ B(Pr) (2.35)



where,

a=2.12 and, B(Pr)=(3.85Pr"'3-1.3)2 +2.12In(Pr) (2.36)

Kader developed a universal equation for the whole range of y* [24]:

T* =Pry’ exp(=)+[ain(1+y) + ﬂ(Pr)]exp(‘?’) (2.37)
+14
where, " = O_mip_'_y_)_ (2.38)
1+5Pry”

In the present thesis, the temperature shape function is inspired by the Spalding

Law of the Wall for velocity, and is given by the following curve fit:

+ 2 3 +
y = +oxp(-BCY expz)-1.0-2-Z -2 ) ;=T (2.39)
Pr o 2 6 o

This curve fit agrees well with the Kader curves as shown in figure 2.2 (Pr=0.72
for simplicity). It actually has a smoother blend fit between the linear and the

logarithmic region. This is important when computing a first derivative for T*.

Universal Temperature Profiles for Turbulent Flow (air, Pr=0.72)
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Figure 2.2: Universal Temperature Profiles for Turbulent Flow (air, Pr=0.72)



2.6.2.3. Turbulent Viscosity and Conductivity Wall Element Modeling

Finally, since the standard x—& model is not solved in the vicinity of the walls, a
modeling scheme must be devised to simulate the variation of the turbulent
viscosity in the special element. Van Driest’s mixing length model is used such

as [18]:

1/2
o|[ du, du; \du;
= i 2.40

where, |, is the mixing length obtained from Van Driest's expression [18]:
I, = ky| 1-ex _Y (2.41)
A

In the present thesis, the turbulent viscosity shape function is derived with a

simplified one-dimensional Van Driest’s mixing length theory such as (assuming

that y is the normal coordinate while x is the tangential coordinate) [18]:

du
BAy’ (2.42)

The turbulent thermal conductivity is calculated in the wall element via the

Hy =p|i

assumption of a constant turbulent Prandtl number (Pr=0.9) with equation 2.17.
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2.7. Consistent Heat Flux Evaluation

An accurate and consistent heat flux evaluation is of particular importance when
dealing with conjugate heat transfer computations. For the case when the
temperature is specified at the wall, it is often required to evaluate the heat flux
once a converged solution is obtained. The intuitive method would be to simply
evaluate the wall temperature gradient using the shape function derivatives at the
wall face within the wall element. This would be a “first-order” method and would
give inaccurate results unless a fine mesh was used. This would also not be
consistent with the use of wall elements since they purposely require a “relatively
coarse” mesh at the wall. In FENSAP, heat fluxes are post-processed via the
consistent FEM approach of Gresho et al. allowing a more consistent and

“second-order” accurate method to evaluate the heat flux. [25]

When the temperature is specified at the wall, the discretized energy equations
are replaced by the Dirichlet boundary condition. These discretized equations at
the wall nodes are used in “reverse” to evaluate the heat flux, i.e. the elements
adjacent to a wall are once more re-assembled, with the temperature imposed as
a Dirichlet boundary condition and the heat flux considered as the unknown.
Gresho et al. labeled the method a “consistent” method for the simple reason that
if the heat flux were implemented as the boundary condition, the exact same

temperature field would result. [25] The later is not true if the heat flux evaluated
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through derivatives were employed. Finally, the Gresho heat fluxes are node-

based, while the derivative heat fluxes are face-based.

The weak-Galerkin discretized fluid energy equation is as follows:

1 T )| e _
f# W[Re Pr (y,,—1)M2( " ax, JJdS (2.43)

Jff| wf e BT Dp__1 o), MW ‘ A PCIRY
(y.-OM2 Dt Dt Re, ox, | Re_ Pr_(y. —1)M2 ox, ox,

Replacing the temperature gradient term by the heat flux in the surface integral

one obtains:

1
ﬁ W [Re Pr.(y. - M2 q}ds (244)

OT Dp_ 1 ), W 1 _af ar
m[ ( 1)M2 Dt Dt Re, ¢)+ X, LRe,, Pr_(r. - M2 ox, kKeﬁ ox, mdv

The solution variable q is then discretized on the element face using the 2D

shape functions N;:
a=3Y Ng, (2.49)
j=t

Replacing back into the heat flux equation, and letting Wi=N; gives:

i[ﬁ [Re Pr (1;' — Mz }[N‘N‘]d S}“ (2:48)

/S, DT Dp_ 1 AW, 1 d ( aT
'm[w{(n -)M2 Dt Dt Re, ¢J+ X, (Re, Pr. (7 —IME ax, " 3x, mdv




The right-hand-side is known at solution convergence and is evaluated in the
usual manner (numerical integration). The left-hand-side NiN; is known as the
consistent mass matrix. To eliminate the need to solve a matrix, mass-lumping
(row sum technique), usually done at the element level, can also be used such
as §;NiN;, i.e. NiN; thus, rendering the matrix diagonal. By comparing consistent
and lumped masses, Thornton has verified that the lumped mass approach is
generally a viable alternative in that it is simpler, sometimes more accurate
because there are no numerical wiggles, and generally more cost effective; also,
and importantly, the correct global balances are still obtained. [25, 26] The same

procedure applies for the evaluation of the solid heat fluxes.
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3. Implementation of Conjugate Heat Transfer in FENSAP

3.1. Introduction

The CHT algorithm implemented in FENSAP is a multi-domain method where the
fluid energy equation and the solid energy equation are solved simuitaneously in
a fully-implicit manner. The CHT algorithm supports 3D structured, unstructured,
and hybrid meshes, with mismatched node connectivity and with non-uniform
grid densities at the interface between the fluid and solid domains. Each domain
has its own mesh, enabling discontinuities in thermal conductivity to be modeled

exactly.

The method ensures that the temperature equality and the heat flux equality
conditions are respected iteratively at the CHT interface during the solution of the
energy equation, that is:

T, =T (3.1)
and,

aLA’ =q5A® (3.2)
At the CHT interface, a master grid is generated by splitting all the edges of the
fluid and solid grids to create a triangular grid where both the fluid and solid grid
are subsets. A conservative interpolation scheme is used to ensure the heat flux

equality of equation 3.2 at the CHT interface.
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3.2. Conjugate Heat Transfer Methodology

The methodology adopted in this thesis is inspired by the work of Sleiman in
multistage turbomachinery for rotor-stator interaction implicit treatment. [27] The
idea is to treat the CHT problem as a multi-domain problem. Each domain has its
own meshes which are later combined together inside FENSAP. However, the
elements are not connected at the CHT interfaces through the nodal connectivity

nor do the meshes need to have matching nodes.

At a CHT interface, the nodes of the solid grid will be termed the “live” nodes,
while the nodes of the fluid grid will be termed the “dead” nodes. Also, the fluid
elements at the CHT interface will be termed “dead” elements, while any other
element in the fluid or solid domains will be termed “live” elements during the

assembly of the energy equation.

The assembly of the discretized finite element energy equations for both the live
fluid elements and the live solid elements is performed as usual, that is the
element contributions to the residual terms and the matrix terms are distributed
according to the node connectivity of the meshes. At the interface, some sort of
node connectivity must be built to ensure that the fluid nodes and the solid nodes
become part of the same system of equations being solved. One set of nodes at
the interface is thus redundant: the dead fluid nodes. Note that if the meshes

were matched at the interface, then an easy way to connect both domains is to
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set the fluid nodes periodic to the solid nodes. However, at the interface between
the fluid grid and the solid grid, the meshes can be discontinuous as shown in
figure 3.1 for a typical mismatched grid. Square elements are used for simplicity

but any type of linear element is supported at the CHT interface.

Live

Dead

Figure 3.1: Mismatched Grids at the CHT Interface [27]

The initial approach investigated in this thesis was to distribute the contributions
of the energy equation residual and matrix terms in a consistent manner.
Basically, the live solid nodes (nodes 1 to 9) have a direct representation in the
matrix solver and so, the finite element solution at the nodes is updated through
the iterative solver. However, dead nodes (nodes | to L) have an indirect
representation in the matrix solver since their contributions are distributed, based

upon their physical location with respect to the live elements, to the live nodes.
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For example, nodes |, J, K and, L lie in the middle of the four node elements: 2-5-
4-1, 3-6-5-2, 6-9-8-5 and, 5-8-7-4, respectively. Assembly of the live elements is
carried out using the standard finite element method. A different approach is
taken in the assembly of the dead elements. The contributions of the dead node |
are distributed to nodes 1, 2, 5, and 4, according to the value of the finite element
shape functions at node [, as shown in table 1. The same procedure applies to

nodes J, K, and L. [27]

Local Nodes 1 2 3 4
Global Nodes 2 5 4 1
Weight 0.25 0.25 0.25 0.25

Table 3.1: Contributions of the Dead Node | into the Live Nodes [27]

A Dirichlet boundary condition is imposed at node |, and therefore, it has no
equation number. However, it is still assembled in the matrix and the residual.
The contributions of equation | are distributed into the equations of the global
nodes 2, 5, 4, and 1. At the end of the iteration, the temperature at node | can be

written as:

ndperl
T = §Nme (3.3)

m=1
Thus, the temperature at node | is updated through the solution at nodes 2, 5, 4,
and 1. The same procedure applies for nodes J, K, and L. By doing so, the

residual and the solution at node | are computed in a consistent manner. Note
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that this method is consistent when the grids are matching at the interface, and
leads to the common finite element assembly procedure as for any internal node.
However, this approach necessitates close grid densities at the interface
between the solid and the fluid grids. [27] If this condition is not met, then the
redistribution of the residuals will become non-conformal and the conservation of
the internal flux contribution will no longer be met. This is a fundamental principle
for a discretized problem in finite elements. One might say that most of the time,
the solid grid at the interface will be coarser than the fluid grid and the residual
contributions will remain consistent. However, if the reverse were true, as might
be the case when mesh adaptation is present, then the redistribution of the
residuals will become inconsistent, as some nodes in the live grid will not receive
any contributions for the residuals during the assembly. This is referred to
hanging nodes, and if they appear, the scheme becomes non-conservative.
Residuals are already area-weighted in the elements, so redistributing the
residual contributions using some sort of area averaging was thought of but the
implementation of this idea led to an ambiguous finite element procedure. Thus,
a new method to redistribute the residuals or, a new interpretation of the
discussed method has been devised to handle the general non-matching grids at

the interface.

In the case of the matrix terms, it is less critical because the iterative matrix is not
the total matrix but a preconditioning matrix. Thus, a non-conservative approach

is still valid since it will keep the dominant matrix terms in the FEM formulation to
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enhance the stability of the iterative procedure. Not keeping these matrix terms
lead to possible breakdown of the iterative CHT procedure and will not be
discussed further. Besides, any other implementation of the matrix terms in a

conservative manner was ambiguous.

Let us look at the residual contributions for the fluid and solid energy equations.

The weak-Galerkin linearized fluid energy equation residual is:

_ aT
A= ﬁ {Re Pr_( -1)M2[ axi]JdS (34

DT Dp_ 1 ), W 1 d (. a7
+.m[ [ 1)M2_D_t- Dt Re_ dj) akaRe Pr_(y. - 1)M2 ax, LK aximdv

The weak-Galerkin linearized solid energy equation residual is:

s 1 (o7
RE = ﬁwi[ﬂe_, TR LKS x ﬂds (3.5)

+Hf[ ((r e %IJ+3\>’<V{R9 Pl 3?‘{ ;’):mdv

When assembling the finite element equations, a usual assumption to make is to
neglect the surface integral contributions in the residuals for internal nodes. That
is, it is assumed that their contributions cancel out from both sides of neighboring

elements. Thus, the remaining terms for the interface fluid residual are:

DT_Dp__1 oW ( 1 a( ar
i m{ ((y e Dt Dt Re ” X, | Re_Pr( —IVE ax( "o Jﬂdv (3.6)
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The remaining terms for the interface solid residual are:

_ pCs  OT) W[ 1 a (.  oT
T Uf[ ( —IME at]+ 9%, | Re_ Pr_(r. —IME ax,| " 3x, mdv &)

The residual terms in equations 3.6 and 3.7 correspond to the right-hand-side

contributions of Gresho’s heat flux for the fluid and solid domains, respectively,

as demonstrated in equation 2.44 for the fluid domain.

Taking a closer look at what we have done, we can see that:

1 U 1 T
ﬁWi[RemF’r..,(}c., v ax,HdS ﬁ [Re,Pr_,(y, 1)M2( > lﬂdsa 8)

Ay

Replacing the temperature gradient terms by the heat flux in the surface integrals

we get:

1 1
W, dS=§Hw, ds 39
ﬁ '[Re, Pr_(y. -1M2 q’} ﬁ ’[Re, Pr_(y. - )M2 qu S

A A,

Removing the non-dimensionalization terms for clarity, we get:

ff Wa,ds = ff wa,ds (3.10)
A A,

Thus, redistributing the dead fluid energy equation residual terms to the live solid
nodes at the interface ensures that the heat flux across the interface is area-
conserved if done consistently. The solution at the interface advances at each
iteration where the temperature is the variable being solved in the solid domain,
but the heat fluxes across the interface are forced to be identical due to the

implicit treatment of the calculation. Therefore, the proposed method for the
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interface treatment is to redistribute the fluid matrix terms using a non-
conservative approach at the element level, but to redistribute the fluid residuals
at the end of the assembly by breaking them down to heat fluxes beforehand and
reconstructing the corresponding solid residual terms as a second step. The
methodology used to ensure that the heat flux contributions are area-
conservative will be described in the next section through the use of a master
grid concept. The master grid at the CHT interface is generated by splitting all
edges between the fluid faces and the solid faces to create a triangular grid

where both the fluid grid and solid grid are subsets of the master grid.

The CHT algorithm can be described as follows:

A. During the assembly for a live element (fluid or solid elements):

1. Create the local energy matrix terms and the local energy residual terms.

2. Create the local heat flux matrix terms and the local heat flux right-hand-
side terms.

3. Assemble the local energy matrix terms and the local energy residual
terms into the global energy matrix and the globa! energy residual vector
according to the element connectivity.

4. Assemble the local heat flux matrix terms and the local heat flux right-
hand-side into the global heat flux matrix and the global heat fiux right-

hand-side vector according to the element connectivity.
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B. During the assembly for a dead element (fluid elements only):

1. Create the local energy matrix terms and the local energy residual terms.

2. Create the local heat flux matrix terms and the local heat flux right-hand-
side terms.

3. Assemble the local energy matrix terms into the global energy matrix. For
the live nodes, use the element connectivity. For the dead nodes at the
interface, redistribute the terms to the live nodes using the shape functions
of the live elements. Assemble the local energy residual terms in the
global energy residual vector only for the live nodes using the element
connectivity.

4. Assemble the local heat flux matrix terms and the local heat flux right-
hand-side into the global heat flux matrix and the global heat flux right-

hand-side vector according to the element connectivity.

C. After the assembly:

1. Solve for the heat fluxes for the fiuid domain.

2. Map the fluid heat fluxes at the interface from the dead nodes to the
master grid nodes.

3. Assemble the “delta” residual contributions of the dead nodes to the live
nodes by recreating the right-hand-side surface integral of equation 3.9 for
all the master grid faces in the live elements faces. Redistribute the
contributions into the live nodes by using the weight of the shape function

in the live element (to be explained in the next section).



4. Solve the energy equation using a direct or iterative solver.

5. Update the temperature variable for all the live nodes in the usual manner.
For the dead nodes, update the temperature by interpolating the
temperatures of the live nodes in the live element face where the dead

nodes are found.

The method is consistent and general to handle any type of grid mismatch and
any type of linear elements on both sides of the CHT interface with relevant
ease. The solution is as accurate as the fluid and solid grids discretization
accuracy since there is minimal discretization error involved in the coupling

algorithm.
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3.3. Conservative Interpolation Scheme

The non-matching grid handling for the residuals (heat fluxes) is achieved
through the use of a virtual grid (master grid) concept developed by Lepage. [28,
29] Figure 3.2 shows the fluid and solid grids for a square region at the CHT
interface. The coarseness of the grids is intended for visualization purposes.

Usually, the fluid mesh is much finer than the solid grid. [29]
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Figure 3.2: Fluid and Solid Grids at the CHT Interface [29]

The virtual grid is generated by splitting all edges between the fluid faces and

solid faces to create a 2D triangular grid where the square symbols identify the



solid nodes and the triangle symbols identify the fluid nodes, as shown in figure
3.3. The virtual grid is built in such a way that all the nodes and edges of both the
solid and fluid grids appear as nodes and edges on the virtual grid; some
additional nodes (and corresponding edges) also appear in the virtual grid in

order to allow the construction of a 2D triangular grid, as shown in figure 3.3. [29]

e T

Virtual Gnd ———

Figure 3.3: Virtual Grid at the CHT Interface [29]

The virtual grid contains both the fluid and the solid grids at the interface. They

are subsets of this master grid. The poor appearance of the virtual grid, caused

by the thin skewed elements, is purely of cosmetic concern. All elements are
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used for the interpoiation process only and not during the solution process of the

CFD code. [29]

The temperatures, defined at the nodes of the solid grid, are transferred to the
matching nodes on the virtual grid. The temperatures at the other nodes of the
virtual grid are obtained using linear interpolation over the triangular faces of the
virtual grid and are transferred directly to the nodes of the fluid grid at the end of

the energy equation iteration.

Now, from equation 3.10 we want to recreate the surface integral at the end of

the assembly procedure:

fiwa.as (3.11)
Ay

by using the nodal heat flux values coming from the fluid grid at the interface.
This will close the energy equation system. The nodal heat fluxes are transferred
to the matching nodes on the virtual grid. The heat fluxes at the other nodes of
the virtual grid are obtained using linear interpolation over the triangular faces of
the virtual grid. Computing the surface integral in equation 3.11 directly over the
solid face by using the heat fluxes at the solid nodes would not respect the heat
balance across the CHT interface as required by equation 3.10. The method
would be non-conservative for the heat balance. Instead, the evaluation of the

surface integral is broken down as:

ffwads =Y fwqds (3.12)

Al® vCS plv)
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as illustrated in figure 3.4. The solid face is made up of eleven virtual faces.

L Virtual Elements

Solid Elements

Figure 3.4: Evaluation of a Surface Integral on the Virtual Grid [29]

Each face of the virtual grid is totally contained within the face of the fluid grid
and a face of the solid grid. With this geometric decomposition, it is possible to
integrate the heat fluxes exactly over each face of the virtual grid and satisfy the
desired conservation properties, both locally and globally. [29] In our case, these

are the residual contributions.

The integrals are evaluated using Gauss-Legendre integration, such as for q:

ngaus

ffWaids = zq“’ (0 OW, (B T M| (3.13)
A(V)
where, & = D N(E.m)E, (3.14)
i
and, = ZNj(gk’nk 7, (3.19)
J
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with (Ej,ﬁi) being the local coordinates of the nodes of the virtual face AY in

terms of the local coordinates system of the solid face A®, and N; and N, are the

shape functions for the virtual face A" and solid face A®, as shown in figure 3.5.
Since Gresho’s heat fluxes are node based, a 3-4 Gauss point integration is
needed over the triangular faces to exactly calculate the contribution of the heat

fluxes on the virtual face A™ to each node of the solid face A,

(%, %)

(%,)3)

Figure 3.5: Local Coordinates Systems for AV and A® [29]
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4. Heat Transfer Validation of FENSAP

4.1. Introduction

The CFD Lab is active in the field of aircraft icing prediction. Before undergoing
any CHT implementation and validation to deal with anti-icing problems, some
baseline heat transfer validation must be conducted. The heat transfer validation
of FENSAP for both laminar and turbulent flow is conducted in this thesis through
a series of 2D test cases with special interest to fluid flow that applies in the
aircraft industry. For each test case, the results are compared to available
empirical correlations and/or numerical/experimental results from the open
literature when available. The 2D test cases are simulated in FENSAP with two
planes in the z-direction since FENSAP is a 3D code. One plane imposes a

symmetry condition, while the other plane imposes a periodic condition.

For the laminar test cases, grid sensitivity studies were performed through
anisotropic mesh adaptation using OptiMesh™. For the turbulent test cases, a
couple of refined grids were created to verify the near-wall grid spacing for proper
turbulence modeling. Only the results from the best grid are presented, unless
stated otherwise. Each test case was initialized with freestream conditions. The
simulations were performed until the absolute combined residuals for the
continuity, momentum and energy equations was below a value of 108 or, that

this maximum normalized residual was reduced by 3 orders of magnitude (103).
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4.2. Laminar Flow

During the course of this thesis work, FENSAP has changed formulations for the
energy equation from a conservative form for total enthalpy to a non-conservative
form for static temperature. Heat transfer validation was needed for the laminar
flow regime since there is no modeling assumption for the temperature profile,
i.e. the shape function uses a linear element in the first element on the wall. The

validation was conducted with the following two test cases:

1. 2D Flat Plate

2. 2D NACAO0012 Aerofoil

The flat plate test case should have been run with the incompressible
assumption but since FENSAP is a compressible code this can only be achieved
by running with a low Mach number, say around 0.10 in most test cases. Thus,
the condition of zero-divergence flow is not necessarily imposed but the error

involved is minimal.
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4.2.1. 2D Flat Plate

4.2.1.1. Introduction
The flow being modeled is the incompressible laminar flow over a smooth fiat
plate. The local Nusselt number distribution along the plate can be compared

with that of the well-known correlation of Eckert [30].

4.2.1.2. Problem Definition

The geometry for the flat plate is shown in figure 4.1 and has been non-
dimensionalized for a flat plate of length L. The inlet is placed 1-L upstream of
the plate leading edge. A symmetry condition is imposed upstream of the plate
while the far-field boundary condition, 2.5-L above the plate, was fixed at free

stream values. The exit is downstream of the plate.

Fixed at Mgin Stream Volues

Inlet Exit

C X

Plane of Symmetry Wail \q

Figure 4.1: Computational Domain for the Laminar Flow over a Flat Plate
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4.2.1.3. Boundary Conditions

The boundary conditions for the flow analysis are as follows:

Inlet. Mach Number, M_=0.10
Static Temperature, T_ =288 K
Reynolds Number, Re, = 1,000
Exit: Static Pressure, p_ =101.325 kPa
Plate: Wall Temperature, T, =293 K

The inlet velocity profile was uniform at the inlet. The Reynolds number is based

on the freestream conditions and the plate length, as follows:

Re, = £2U:L (4.1)
K.

4.2.1.4. Computational Grid

The test case used an unstructured grid. Through anisotropic mesh adaptation,
the best grid was obtained for a specified target number of nodes. The variable
used for the adaptation error estimation was the Mach number. The final grid has
2,748 nodes, as shown in figure 4.2 with a close-up view in figure 4.3. The initial
grid was not available for comparison since the adapted grid was not generated
in the course of this thesis. Notice how the mesh adaptation clustered the grid
points near the leading edge of the plate, as shown in figure 4.3, to resolve the

flow gradients.



Flate Plate Grid (2,748 Nodes)

Figure 4.2: Grid for the Laminar Flow over a Flat Plate
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Figure 4.3: Grid for the Laminar Flow over a Flat Plate (close-up)
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4.2.1.5. Resuits & Discussion

The convergence of this test case is shown in figure 4.4. To prove the robustness
of FENSAP, the test case was started from no initial solution on the adapted grid
with 3 cycles of artificial dissipation since the adapted grid had very skewed
elements. The final cycle exceeded the residual reduction of 3 orders of

magnitude and, converged to an absolute value of 108,

Convergence History for the Laminar Flat Plate, Re_ =1,000
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Figure 4.4: Convergence History for the Laminar Flow over a Flat Plate
The Mach number and static temperature along the flat plate are shown in

figures 4.5 and 4.6, respectively. From figure 4.3 it can be seen that the grid is

aligned with the Mach number and static temperature field.

54



Mach Number !o 104
0.078

0.052
0.026
0.000

Figure 4.5: Mach Number Distribution along the Plate
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Figure 4.6: Static Temperature Distribution along the Plate

To evaluate the accuracy of the heat transfer prediction, the computed local

Nusselt number is compared with that of the well-known correlation of Eckert

[30]. The local Nusselt number is defined as:

Nu=—3- (4.2)
k(Tw _Taw)



where q is the heat flux, L is the plate length, T, is the wall temperature, T, is

the adiabatic wall temperature, and k is the thermal conductivity of the air. The
analytical Nusselt number is given by [30]:

Nu = 0.3333/Pr/Re, % (4.3)

The results of this comparison are shown in figure 4.6. The computed and
analytical results are nearly identical, where the computed Nusselt number at the

end of the plate under-predicts from the analytical value by only 0.6%.

| Nusselt Number for the Laminar Flat Plate, Re =1,000
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Figure 4.7: Nusselt Number for the Laminar Flow over a Flat Plate
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4.2.2. 2D NACAQ012 Aerofoil

4.2.2.1. Introduction

The flow being modeled is the compressible laminar flow over a NACA0012
aerofoil at 10-degrees angle of attack. This test case was proposed by Dadone
for the different research units in Italian universities. [31] The local heat transfer
coefficient distribution along the aerofoil is compared with the computational

results from Dadone & De Paima. [32]

4.2.2.2. Problem Definition

The geometry for the aerofoil is shown in figure 4.8 and the geometry has been
non-dimensionalized for an aerofoil chord of length c. The inlet is placed 4-c
upstream of the aerofoil leading edge, while the exit is placed 6-c downstream of
the aerofoil trailing edge. The far-field boundary condition, 7-c above and below

the aerofoil, was fixed at free stream values.

Inlet <= Aerofoil Exit

Figure 4.8: Computational Domain for the Laminar Flow over a NACA0012 Aerofoil
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4.2.2.3. Boundary Conditions

The boundary conditions for the flow analysis are as follows:
inlet: Mach Number, M_ = 0.80
Static Temperature, T_ =288 K
Reynolds Number, Re, =500
Exit: Static Pressure, p_ = 100.0 kPa
Aerofoil: Wall Temperature, T, =324.864 K
The inlet velocity profile was uniform at the inlet and angled at 10-degrees angle
of attack. The wall temperature on the aerofoil was set to the inlet total

temperature. The Reynolds number is based on the free stream conditions and

the chord, as follows:

Re, = £=U-C (4.4)
“

4.2.2.4. Computational Grid

The test case used an unstructured grid. Through anisotropic mesh adaptation,
the best grid was obtained for a specified target number of nodes. The variable
used for the adaptation error estimation was the Mach number. The initial grid
had 13,342 nodes, as shown in figure 4.9, while the final adapted grid had
14,896 nodes, as shown in figure 4.10 with a close-up view in figure 4.11. Notice
how the mesh adaptation clustered the grid points near the leading edge of the
aerofoil and at the wake after the trailing edge of the aerofoil, as shown in figure

4.11, to resolve the flow gradients.
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NACAQQ12 Grid (Initial Grid: 13,342 Nodes)

Figure 4.9: Initial Grid for the Laminar Flow over a NACA0012 Aerofoil

NACAQO012 Grid (Final Adaptation: 14,896 Nodes)
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Figure 4.10: Adapted Grid for the Laminar Flow over a NACA0012 Aerofoil



Figure 4.11: Adapted Grid for the Laminar Flow over a NACA0012 Aerofoil (close-up)

4.2.2.5. Results & Discussion

The convergence of this test case is shown in figure 4.12. To prove the
robustness of FENSAP, the test case was started from no initial solution with 3
cycles of artificial dissipation since the adapted grid had very skewed elements.
The final cycle exceeded the residual reduction of 3 orders of magnitude, and

converged to an absolute value of 108,

Convergence History for the NACA0Q12 Aerofoil, Re.=500
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Figure 4.12: Convergence History for the Laminar flow over a NACA0012 Aerofoil
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The Mach number and static temperature along the aerofoil are shown in figures
4.13 and 4.14, respectively. From figure 4.11 we can see that the grid at the

trailing edge wake is aligned with the Mach number and static temperature field.

Figure 4.13: Mach Number Distribution along the Aerofoil

Figure 4.14: Static Temperature Distribution along Aerofoil
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To evaluate the accuracy of the heat transfer prediction, the computed local heat
transfer coefficient is compared with that computed by Dadone & De Palma. [32]

The local heat transfer coefficient is defined as:

2q
C. = 45
" e (45)

where q is the heat flux, p_ is freestream air density and, U_ is the air

freestream velocity.

The resuits of this comparison are shown in figure 4.15 and the agreement is
quite evident. Some of the differences are attributed to the fact that FENSAP is a
FEM code, while Dadone & De Palma’s is a FVM code, and both CFD codes use
a different artificial dissipation scheme. Also, the resuits from Dadone & De
Palma come from a body-fitted structured grid with clustering around the whole
aerofoil while the results from FENSAP use anisotropic mesh adaptation to

obtain the “converged” grid.

Heat Transfer Coefficient for the NACA0012 Aerofoil, Re.=500
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Figure 4.15: Heat Transfer Coefficient for the Laminar Flow over a NACA0012 Aerofoil
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4.3. Turbulent Flow

Heat transfer validation was needed for the turbulent flow regime since FENSAP
uses wall shape functions in the first element on the wall to integrate the velocity,
temperature and, turbulent viscosity profiles, while using a high-Reynolds
number x-¢ turbulence model, as detailed in chapter 2. Some extra damping
coefficients are added to the turbulence model for stability and to capture some

of the low-Reynolds number effects.

To assess the accuracy of the turbulence modeling for heat transfer in FENSAP,
the following three test cases, as proposed by Heyerichs and Pollard, were

tested [33]:

1. 2D Flat Plate (high-Reynolds number flow)
2. 2D Backward Facing Step (low-Reynolds number flow)

3. 2D Impinging Jet (low-Reynolds number flow)

The test cases should have been run with the incompressible assumption, but
since FENSAP is a compressible code this can only be achieved by running with
a low Mach number, say around 0.10 in most test cases. Thus, the condition of

zero-divergence flow is not necessarily imposed but the error involved is minimal.
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4.3.1. 2D Flat Plate

4.3.1.1. Introduction

The flow being modeled is the incompressible turbulent flow over a smooth flat
plate. This test case evaluates the modeling assumptions for boundary layer
flows. The local Nusselt number distribution along the plate is compared with the
correlation presented by Schlicting [30]. Velocity and turbulent kinetic energy
profiles are compared to the experimental data of Klebanoff found in Jones &

Launder. [34, 17]

4.3.1.2. Problem Definition

The geometry for the flat plate is shown in figure 4.16 and has been non-

dimensionalized for a flat plate of length L.

Fixed at Mcin Stream Values

Intet Exit
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Figure 4.16: Computational Domain for the Turbulent Flow over a Flat Plate



The inlet is placed 1-L upstream of the plate leading edge. A symmetry condition
is imposed upstream of the plate, while the far-field boundary condition, 2.5-L

above the plate was fixed at free stream values. The exit is downstream of the

plate.

4.3.1.3. Boundary Conditions

The boundary conditions for the flow analysis are as follows:
Inlet: Mach Number, M_ =0.044
Static Temperature, T, =288 K
Reynolds Number, Re, =4.2x10°
Turbulence Intensity, i, =0.04%
Turbulent Viscosity Ratio, x«_/ 4. =1.0
Exit: Static Pressure, p_, = 101.325 kPa

Plate: Wall Temperature, T, =293 K
The inlet velocity profile was uniform at the inlet. The Reynolds number is based

on the freestream conditions and the plate length, as follows:

Re, = pUL (4.6)
M.

The Reynolds number for this test case corresponds closely to the experimental
data of Klebanoff found in Jones & Launder. [34, 17] The Mach number was
deduced from ambient conditions to respect the experimental plate length. The
wall temperature was set not too high from the free stream temperatures since

the original test (for the flow field data) was probably run for an adiabatic wall.
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4.3.1.4. Computational Grid

The test case used a structured hexahedral grid with 126 nodes in the axial
direction, 51 nodes in the normal direction, and 2 nodes in the z-direction, thus
the grid had 12,852 nodes. The grid was clustered in the normal direction to the
wall to resolve the boundary layer and was also packed in the streamwise
direction near the leading edge of the plate to resolve the flow gradients there, as

shown in figure 4.17.

Flate Plate Grid (12,852 Nodes)

Figure 4.17: Grid for the Turbulent Flow over a Flat Plate

To verify the influence of the first element height normal to the wall, a series of
four grids were generated with four different grid spacing for the height of the first
element off the wall. This provided a y* study for this test case. The grid details

are reported in non-dimensional form, y,/L, as listed in table 4.1.
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yo/L Average y*
Grid 1 0.00005 10
Grid 2 0.00015 28
Grid 3 0.00025 42
Grid 4 0.00050 88

Table 4.1: Grid Sensitivity Study for the Turbulent Flow over a Flat Plate

4.3.1.5. Results & Discussion

The convergence of this test case is shown in figure 4.18, only for grid 3. The
other grids converged to the same residual levels but with a different number of
iterations. The test case was started from no initial solution with 3 cycles of
artificial dissipation. The final cycle exceeded the residual reduction of 3 orders of

magnitude, and converged to an absolute value of 10°°.
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Figure 4.18: Convergence History for the Turbulent Flow over a Flat Plate
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The Mach number and static temperature along the flat plate are shown in
figures 4.19 and 4.20, respectively. Notice the thin boundary layer since the

Reynolds number is of the order of 10°.

Mach Number !0.048
., 0.036

0.024
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Figure 4.19: Mach Number Distribution along the Plate

Static Temperature (K) !293.0
"291.7
290.5
289.2
288.0

Figure 4.20: Static Temperature Distribution along the Plate
The profiles of turbulence kinetic energy and of mean velocity normal to the plate

at x = L are compared to the data of Klebanoff as shown in figures 4.21 and 4.22,

respectively. [34] The agreement is quite evident for grids 2, 3, and 4 since the
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turbulence at the wall is correctly set off, i.e. the y* values are in a valid range for
the x—¢ Dirichlet boundary conditions. The turbulence kinetic energy is over-

predicted, while the mean velocity profile is under-predicted for grid 1.

i Turbulence Kinetic Energy Profiles for the Flat Piate at x=L, Re, =4.2x10¢
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Figure 4.21: Turbulent Kinetic Energy Profiles for the Turbulent Flow over a Flat Plate

Mean Velocity Profiles for the Flat Plate at x=L, Re_=4.2x10°
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Figure 4.22: Mean Velocity Profiles for the Turbulent Flow over a Flat Plate
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To evaluate the accuracy of the heat transfer prediction, the computed local
Nusselt number distribution along the plate is compared with the correlation

presented by Schlichting [30]. The local Nusselt number is defined as:

u=—_9t (4.7)
k(TW - Taw )

where q is the heat flux, L is the plate length, T, is the wall temperature, T,, is

the adiabatic wall temperature, and k is the thermal conductivity of the air. The

empirical Nusselt number is given by [30]:
Nu =0.0296 Pr'/* Re}’® L (4.8)
X

The results of this comparison are shown in figure 4.23. The computed and
empirical results are nearly identical for grids 2, 3, and 4. This is not the case for
grid 1 where it clearly over-predicts the heat transfer on the wall. Since the
turbulence kinetic energy is over-predicted next to the wall for this grid, then the

convective heat transfer is over-predicted, as shown in figure 4.23.

Nusselt Number for the Turbulent Flat Plate, Re =4.2x 108
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Figure 4.23: Nusselt Number for the Turbulent Flow over a Flat Plate
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A comparison of the Nusselt number at x = L is presented in table 4.2 for the four

grids tested.
yo/L Average y* % Error on Nu
Grid 1 0.00005 10 +13.3
Grid 2 0.00015 28 +0.6
Grid 3 0.00025 42 -1.0
Grid 4 0.00050 88 -1.7

Table 4.2: Nusselt Number Sensitivity Study for the Turbulent Flow over a Flat Plate

The values presented in table 4.2 confirm the usual practice of positioning the
first node-off-the-wall at a 30 < y* < 100 to obtain meaningful results for wall
bounded turbulent flows. FENSAP has shown that it can predict these types of

flows reasonably well.
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4.3.2. 2D Backward Facing Step

4.3.2.1. Introduction

The flow being modeled is the incompressible turbulent flow over a backward
facing step. This test case evaluates the modeling assumptions for a flow that
involves a reattachment of a separated turbulent boundary layer. The local
Stanton number distribution along the impingement plate will be compared with

the experimental data from Vogel and Eaton. [35]

4.3.2.2. Problem Definition

The geometry for the backward facing step is shown in figure 4.24, as suggested
by Heyerichs and Pollard. [33] The geometry has been non-dimensionalized for a
step height H. There is no wall region upstream of the step, i.e. the inlet is placed
at the step face. The inlet height is 3.1-H, the exit is located 35-H downstream of

the step face, and the far-field boundary condition was fixed at main stream

values.
Fixed at Main Stream Values
//
Inlet (heigth = 3.1H) Exit
2
- AN N
Step Face q Impingement Plate
(heigth = H) (length = 35H)

Figure 4.24: Computational Domain for the Turbulent Flow over a Backward Facing Step



4.3.2.3. Boundary Conditions

The boundary conditions for the flow analysis are as follows:

Inlet: Mach Number, M_ =0.10

Static Temperature, T_ =300 K

Reynolds Number, Re, = 28,000

Turbulence Intensity, i, =1.0%

Turbulent Viscosity Ratio, ../ .. =33.95
Exit: Static Pressure, p_, = 100 kPa
Impingement Plate: Wall Heat Flux, q, =270 W/m?
Step Face: Wall Temperature, T, =300 K

Since the inlet starts at the step face, the velocity profile was comprised of two
regions: a uniform core region and a boundary layer region, as detailed in
Heyerichs and Pollard. [33] The inlet height is 3.1-H where the boundary layer
height is 1.1-H and the core region height is 2.0-H. The turbulence inlet
quantities, however, were imposed uniformly at the inlet. The Reynolds number

is based on the freestream conditions and the step height, as follows:

Re,, = £=Y=H 4.9)
K.

4.3.2.4. Computational Grid
The test case used a structured hexahedral grid with 175 nodes in the axial
direction, 50 nodes in the normal direction, and 2 nodes in the z-direction, for a

total of 17,500 nodes, as shown in figure 4.25. The grid size in the x and y
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directions are as specified in Heyerichs and Pollard. [33] The grid was clustered
in the normal direction to the impingement plate to resolve the recirculation,
reattaching, and redeveloping near wall flow. It was also packed in the
streamwise direction after the step face to resolve the flow gradients there, but
was not clustered at the top of the step face since there was no wall region at the
inlet. A grid study was quickly assessed by changing the first node-off-the-walil
height and, only the optimal grid is shown here. The resulting average y* for this
grid was 7.0, which is below the usual wall function range, but FENSAP can still
resolve the near-wall gradients. For the specified grid size in the normal direction,

a higher y* would resuit in missing the redeveloping boundary layer.

Backward Facing Step Grid (17,500 Nodes)

Figure 4.25: Grid for the Turbulent Flow over a Backward Facing Step

4.3.2.5. Results & Discussion

The convergence of this test case is shown in figure 4.26. The test case was
started from no initial solution with only 1 cycle of artificial dissipation. The final
cycle exceeded the residual reduction of 3 orders of magnitude and, converged

to an absolute value of 108,
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Convergence History for the Backward Facing Step, Re,=28,000
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Figure 4.26: Convergence History for the Turbulent Flow over a Backward Facing Step

The Mach number and static temperature downstream of the step face are
shown in figures 4.27 and 4.28, respectively. Notice the recirculation pattern in

the Mach number field after the step face.

Mach Number

™~ Recirculation X = 17.5H/

Figure 4.27: Mach Number Distribution Downstream of the Step Face
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Stotic Temperature (K)

x=7H/

Figure 4.28: Static Temperature Distribution Downstream of the Step Face
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Figure 4.29: Velocity Vectors near the Reattachment Point

To evaluate the accuracy of the heat transfer prediction, the computed local
Stanton number distribution along the impingement plate is compared with the

data of Vogel and Eaton. [35] The local Stanton number is defined as:

h__ d (4.10)
U.o.c.. (T,-T.)U.po.cC..

St=
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where h is the heat transfer coefficient, q is the heat flux, T, is the wall
temperature, T_ is the freestream temperature, U_ is the freestream velocity, p_

is the freestream density, and ¢, is the freestream specific heat of the air.

The comparison is shown in figure 4.30. FENSAP seems to pick up the global
trend, as mentioned about similar wall function turbulence models tested in

Heyerichs and Pollard. [33]

Stanton Number for the Backward Facing Step, Re,=28,000

0.0040 | : : :
| | : | - —mer |
¢ 0.0035 t : 5 ; . @ Vogel&Eaton! |
1 9 ! ; ' - -

0.0 5.0 10.0 15.0 20.0 25.0
x/H ‘

Figure 4.30: Stanton Number for the Turbulent Flow over a Backward Facing Step

In order to quantify and rank each turbulence model, Heyerichs and Pollard
suggest comparing four results: maximum St, location of the maximum St, the
value of St downstream of reattachment at x’H = 20, and the point of
reattachment (x/H). [33] The experimental data of Vogel and Eaton are [35]:

1. Stmax = 0.0032

2. X/H, Stmax = 6.00
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3. Atx/H =20, St =0.06229

4. lereat( = 6.67

Turbulence Model Stmax X/H, Stmax | St, X/H=20 | X/H(eat
FENSAP -1.7 10.9 -1.3 -0.2
WF1, 1 layer [33] 1.6 -17.8 0.6 -10.5
WF2. 2 layer [33] 5.2 -17.8 0.6 -9.9
WE3, 2 layer+ [33] 5.3 -11.7 14.3 -15.6
Chien [33] 175.6 34.7 61.7 -10.2
Lam & Bremhost [33] 93.5 -7.6 53.9 -16.5
Launder & Sharma [33] 469.0 -7.6 30.7 -16.8
Launder et al. [33] 37.6 -7.6 3.8 -6.3
Myong & Kasagi [33] 151.8 -26.8 31.8 9.9
Wolfshtein, Chen & Patel [33] -28.7 -22.9 -10.5 6.0
Wilcox [33] 2.5 4.0 -0.7 11.3

Table 4.3: Percentage Errors for the Turbulent Flow over a Backward Facing Step

The results in table 4.3 indicate that FENSAP behaves closely to a wall function
model for this type of flow, and is a better match to the data then most of the low-
Reynolds turbulence models. As mentioned in Heyerichs and Pollard, using a
low-Reynolds number model for this type of flow does not necessarily lead to
better resuits if the near-wall functions are based on friction velocity or distance

from the wall. [33]
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4.3.3. 2D Impinging Jet

4.3.3.1. Introduction

The flow being modeled is the incompressible turbulent flow for an impinging jet.
This test case evaluates the near-wall modeling assumptions. The local Nusselt
number distribution along the impingement plate will be compared with the

experimental data from Van Heiningen. [36]

4.3.3.2. Problem Definition

The geometry for the impinging jet is shown in figure 4.31 as suggested by
Heyerichs and Pollard. [33] The geometry has been non-dimensionalized for an
inlet width W. Due to symmetry conditions, only half of the geometry is solved.
Thus, the inlet width is W/2. The exit is located 49 W downstream of the inlet
centerline. The gap between the confinement plate and the impingement plate is

of height H where H/W = 2.6.

Inlet .
(length = W/2) Confinement Plate

(length = 48.5W) \

W " Exit

Plane
Symmetry  q" N\ Impingement Plate
(height = H) (length = 49W)

Figure 4.31: Computational Domain of the Turbulent Flow from an Impinging Jet
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4.3.3.3. Boundary Conditions

The boundary conditions for the flow analysis are as follows:
Inlet: Mach Number, M_ =0.10
Static Temperature, T_ =300 K
Reynolds Number, Re, = 10,000
Turbulence Intensity, i, = 0.5%
Turbulent Viscosity Ratio, x,. /u,_ =2.76
Exit: Static Pressure, p. = 100 kPa
Impingement Plate: Wall Temperature, T, =310 K
Confinement Plate: Wall Temperature, T, =300 K

The inlet velocity profile was uniform, as well as the inlet turbulence quantities.

The Reynolds number is based on the freestream conditions and the inlet width,

as follows:

Re,, = 2=9-W 4.11)
A

4.3.3.4. Computational Grid

The present test case used a structured hexahedral grid with 92 nodes in the
axial direction, 30 nodes in the normal direction, and 2 nodes in the z-direction,
for a total of 5,520 nodes, as shown in figure 4.32. The grid size in the x and y
directions are as specified in Heyerichs and Pollard. [33] The grid was clustered
in the normal direction to the impingement plate to resolve the impingement and

developing near wall flow. It was also packed in the streamwise direction around
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and after the inlet region, to resolve the flow gradients there. Minimal grid
clustering was done on the confinement plate since the flow in that region was of
no interest for this study. A grid study was quickly assessed by changing the first
node-off-the-wall height, and only the optimal grid is shown here. The resulting
average y"* for this grid was 1.5, which is below the usual wall function range but
FENSAP can still resolve the near wall gradients. For the specified grid size in
the normal direction, a higher y* would result in missing the developing boundary

layer.

Impinging Jet Grid (5,520 Nodes)

Figure 4.32: Grid of the Turbulent Flow from an Impinging Jet

4.3.3.5. Resulits & Discussion

The convergence of this test case is shown in figure 4.33. The test case was
started from no initial solution with only 1 cycle of artificial dissipation. The final
cycle exceeded the residual reduction of 3 orders of magnitude, and converged
to an absolute value of 10°®. Some minor convergence problems were observed

in the energy equation but nonetheless the solution is still valid.
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Conwergence History for the Impinging Jet, Reyw=10,000
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Figure 4.33: Convergence History of the Turbulent Flow from an Impinging Jet

The Mach number and static temperature in the confined region are shown in
figures 4.34 and 4.35, respectively. Notice the complex interaction between the
impinging jet, the stagnation region, and the developing boundary layer. The
recirculation pattern around the confinement plate after the inlet is also evident.
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Figure 4.34: Mach Number Distribution in the Confined Region
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Figure 4.35: Static Temperature Distribution in the Confined Region

To evaluate the accuracy of the heat transfer prediction, the computed local
Nusselt number distribution along the impingement plate is compared with the

data of Van Heiningen. [36] The local Nusselt number is defined as:

hw qw

Nu = =
Tk, -1

(4.12)

where h is the heat transfer coefficient, q is the heat flux, W is the width of the

inlet, T, is the wall temperature, T_ is the inlet temperature, and k is the thermal

conductivity of the air.

The comparison of the computed results with the experimental results is shown
in figure 4.36. FENSAP seems to pick up the global trends but behaves
differently than similar wall function turbulence models found in Heyerichs and

Pollard. [33] Although not shown here, FENSAP behaves closer to the Launder &
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Sharma and Launder et al. turbulence models but with a better match to the data
than most of the low-Reynolds turbulence models. [33] Also, the secondary peak
is observed farther downstream with FENSAP since the boundary layer

development is predicted wrongly from what was observed in the experiment.

Nusselt Number for the Impinging Jet, H/'W=2.6, Rey=10,000

FENSAP

45.0 | ‘ : : 4
: 8 van Heinngen| |

a0.0 f
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30.0 | :
250 |
200 |
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100 |

0.0 ‘
0.0 5.0 10.0 15.0 20.0 25.0

Figure 4.36: Nusselt Number of the Turbulent Flow from an Impinging Jet

In order to quantify and rank each turbulence model, Heyerichs and Pollard
suggest comparing three results: maximum Nu at the stagnation region,
maximum Nu in the secondary peak, and the value of Nu downstream of the inlet
at x/W = 20. [33] The experimental data of van Heiningen [36]:

1. Numax1 =43.0

2. NUmaxe =27.0

3. AtxW =20, Nu=15.0
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Turbulence Model Numax1 Numax2 Nu, x/W=20
FENSAP -1.6 -12.2 -5.8
WF1, 1 layer [33] -27.8 32.0 9.6
WF2. 2 layer [33] -21.5 34.9 18.0
WF3, 2 layer+ [33] -21.6 38.4 25.8
Chien [33] 18.8 39.9 6.1
Lam & Bremhost [33] 12.5 49.1 8.0
Launder & Sharma [33] 5.0 26.1 18.6
Launder et al. [33] 4.9 25.3 -3.6
Myong & Kasagi [33] 30.6 -4.7 11.1
Wolfshtein, Chen & Patel [33] 12.8 not present -30.5
Wilcox [33] 9.9 19.5 -13.0

Table 4.4: Percentage Errors for the Turbulent Flow for the Impinging Jet

The results in table 4.4 further indicate that FENSAP does not behave like a wall
function model for this type of flow. As mentioned in Heyerichs and Pollard, using
a wall function or low-Reynolds number model for this type of flow does not
necessarily lead to better results if the near-wall turbulence is based on friction
velocity or distance from the wall; it is not even recommended. [33] However,
FENSAP behaves like a combination of a wall function and low-Reynolds

turbulence models for this type of flow.
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5. Conjugate Heat Transfer Validation of FENSAP

5.1. Introduction

The conjugate heat transfer validation of FENSAP for both laminar and turbulent

flows is conducted in this thesis through the following 3 test cases:

1. 2D Laminar Flow over a Flat Plate with a Blunt Leading Edge
2. 3D Fully-developed Laminar Pipe Flow

3. 3D Turbulent Flow over a Nacelle Lip equipped with a Piccolo Tube System

The first test case was used to test the coupling algorithm and the interpolation
routines. The metal conductivity of the plate being so high (10* times the air
conductivity) caused the temperature variation through the metal to be very low,
i.e. the plate was nearly isothermal. The second test case was a true test of the
CHT algorithm, since it closely couples the Navier-Stokes and Energy equations,
of both the fluid and solid domains. This was accomplished by setting the metal
to air conductivity ratio in the orders of 1 to 10. The results of the first two test
cases are compared to available empirical correlations and/or open literature
numerical results. Finally, the last test case involved the complex 3D anti-icing
flow interaction of a piccolo tube system impinging on a model nacelle lip placed
in a wind tunnel. [37, 38] This last test case also tested the conservative coupling

methodology (because of extensive anisotropic mesh adaptation in the fluid
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domain). The results are compared to available open literature experimental

results from Scarsi. [38]

The 2D test cases are simulated in FENSAP with two planes in the z-direction
since FENSAP is a 3D code. One plane imposes a symmetry condition, while the

other plane imposes a periodic condition.

For test cases 1&3, grid sensitivity studies were performed through anisotropic
mesh adaptation using OptiMesh™. For test case 2, a couple of refined grids
were created to verify the near-wall grid spacing and the inlet region spacing to
capture the temperature variations. Only the results from the best grids are

presented unless stated otherwise.

Each test case was initialized with freestream conditions. The simulations were
performed until the absolute combined residual for the continuity, momentum and
energy equations was below a value of 10® or, that this maximum normalized
residual was reduced by 3 orders of magnitude (10). The overall CHT residual
is also tracked at all the interfaces. The CHT residual is a L, norm of the

temperature variable from iteration to iteration at all the interfaces.
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5.2. 2D Laminar Flow over a Flat Plate with a Blunt Leading Edge

5.2.1. Introduction

The flow being modeled is the laminar flow over a smooth flat plate with a blunt
leading edge as tested by Imlay et al., and by Kao et al. [6, 12] The local Nusselt
number distribution along the plate can be compared with that of the well-known

correlation of Eckert for an isothermal wall. [30]

5.2.2. Problem Definition

The geometry for the flat plate is shown in figure 5.1 and has been non-
dimensionalized for a flat plate of length L. The inlet is placed 2-L upstream of
the plate leading edge. A symmetry condition is imposed upstream of the plate
while the far-field boundary condition, 2-L above the plate, was fixed at main
stream values. The exit is downstream of the plate. The plate thickness was set

to 0.0025-L. The close-up view of the flat plate geometry is shown in figure 5.2.

Fixed at Main Stream Vaiues
~

Inlet Exit

N
Symmetry Plane Wall 9

Figure 5.1: Computational Domain for the Flat Plate with a Blunt LE
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Outer Wall (CHT)

/ Inner Wall (Twall)

Plane of Symmetry \ Adiabatic

Figure 5.2: Computational Domain for the Flat Plate with a Blunt LE (close-up)

5.2.3. Boundary Conditions
The boundary conditions for the flow domain are as follows:
Inlet: Mach Number, M_ =0.30
Static Temperature, T_ =300 K
Reynolds Number, Re, = 10,000
Exit: Static Pressure, p_ = 100 kPa
Outer Wall: Conjugate Heat Transfer
The inlet velocity profile was uniform at the inlet. The Reynolds number is based
on the freestream conditions and the plate length, as follows:

Re, = P=Y-L (5.1)

K.

The boundary conditions for the solid domain are as follows:
Outer Wall: Conjugate Heat Transfer
Inner Wall:  Wall Temperature, T,, = 280 K

Plate Ends: Adiabatic
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The wall metal is aluminum, with the following constant properties:
Density, ps = 2,700 kg/m®
Thermal Conductivity, ks = 211 W/m-K

Specific Heat, ¢; = 900 W-s/kg-K

5.2.4. Computational Grids

The test case used an unstructured grid for the fluid domain and a structured grid
for the solid domain. Through anisotropic mesh adaptation, the best fluid grid
was obtained for a specified target number of nodes. The variable used for the
adaptation error estimation was the Mach number. The initial fluid grid had
22,146 nodes, as shown in figure 5.3, while the final adapted fluid grid had 8,182

nodes, as shown in figure 5.4.

Blunted Figt Plgte Grids
(1nitial Fluid Grid: 22,146 Nodes)
(Solid Grid: 5,792 Nodes)

Figure 5.3: Initial Grids for the Flat Plate with a Blunt LE
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Blunted Flat Plate Grids
(Final Adapted Fluid Grid: 8,182 Nodes)
(Solig Grid: 5,792 Nodes)

Figure 5.4: Adapted Grids for the Flat Plate with a Blunt LE

A close-up view of the grids is shown in figure 5.5. Notice how the mesh
adaptation clustered the grid points near the leading edge of the plate and along
the plate to resolve the flow gradients present in the boundary layer, as shown in
figure 5.5. The solid grid had 5,792 nodes and was not adapted. The interface
between the fluid grid and the solid grid had non-matching node connectivity, as

shown in figure 5.5.
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Blunted Flat Plate Grids (close—up)

Figure 5.5: Adapted Grids for the Flat Plate with a Blunt LE (close-up)
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5.2.5. Results & Discussion

The convergence of this test case is shown in figure 5.6. To prove the robustness
of FENSAP, the test case was started from no initial solution with 2 cycles of
artificial dissipation since the adapted grid had very skewed elements. The final
cycle exceeded the residual reduction of 3 orders of magnitude, and converged
to an absolute value of 108, Although the Energy equation residual was not
reduced by 3 orders of magnitude nor was it below 10 it was judged to have

achieved convergence.

Conmvergence History for the Flat Plate with Blunt LE

1.0E+02 !
1.0E+01 | ‘——-Totsal: N-S+Energy | :
E _ =

1.0E+00 2 N i
1.0E-01 : \ ;  —— Energy: Total

- :\ \\ i -- - Energy: Fluid J
1.0E-02 _\ \\ _ —— Energy: Solid !
1.0E-03 &

- —— CHT Inteface -

1.0E04 |
1.0E-05 §
1.0E-06 £
1.0E07 »
1.0E-08
1.0E-09
1.0E-10

L2 Residual

0 50 100 150 200
lteration

Figure 5.6: Convergence History for the Flat Plate with a Blunt LE

The Mach number and static temperature along the flat piate are shown in
figures 5.7 and 5.8, respectively. From figure 5.5, 5.7, and 5.8 we can see that

the fluid grid is aligned with the Mach number and static temperature field.
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Figure 5.7: Mach Number Distribution along the Plate

Static Temperature (K) .304_0
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Figure 5.8: Static Temperature Distribution along the Plate

wall. [30] The local Nusselt number is defined as:

u=—at
k(Tw —Taw)

The metal conductivity of the plate being 10* orders of magnitude higher than the
air conductivity caused the temperature variation through the metal to be very
low, i.e. the plate was isothermal. Therefore, the computed local Nusselt number

can be compared with that of the well-known correlation of Eckert for isothermal

(5.2)
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where q is the heat flux, L is the plate length, T, is the wall temperature, T,, is

the adiabatic wall temperature, and k is the thermal conductivity of the air. The
analytical Nusselt number is given by [30]:

L

Nu = 0.3333/Pr,/Re, - (5.3)

The results of this comparison are shown in figure 5.9. The computed and
analytical results are nearly identical everywhere except at the leading edge,
where the analytical results are not valid because of the blunt geometry. Note
how the solution at the interface is identical. At the end of the plate, the Nusselt

number is under-predicted from the analytical value by 1.5%.

Nusselt Number for the Flat Plate with Blunt LE
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Figure 5.9: Nusselt Number for the Flat Plate with Blunt LE
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5.3. 3D Fully-developed Laminar Pipe Flow

5.3.1. Introduction

The flow being modeled is the conjugate heat transfer in a fully-developed
laminar pipe flow. It is a typical Graetz thermal entrance problem where exact
solutions can be computed for isothermal pipe walls. This problem was analyzed
analytically by Pozzi & Lupo, and numerically by Imlay et al. [39, 6] The local
interface wall temperature along the pipe can be compared with the analytical

results presented by Pozzi & Lupo. [39]

5.3.2. Problem Definition

The geometry for the pipe is shown in figure 5.10 with a close-up view in figure
5.11. The geometry has been non-dimensionalized for a pipe diameter D and has
a pipe length of 20-D. The pipe thickness t was chosen to be 0.125-D. To ensure
the minimum thermal entrance length for a Graetz type of problem the following

formula can be used [40]:
L
% = 0.05Re, Pr (5.4)

For the Reynolds number and Prandtl number chosen in this test case, a pipe
length of 40-D would have been needed. However, since most of the data used
for comparison is within the first D length of the pipe there was no need to extend
the length of the pipe that far and so, half of this thermal length was chosen, i.e.
20-D. This value was also chosen in the analysis by Imlay et al. [6] The test case

was run in a three-dimensional mode with only half of the pipe, since a symmetry
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condition existed there. The test case could have been run with axisymmetric
conditions but the three-dimensional CHT modeling was tested instead for

debugging purposes.

Inner & Outer Walls (lenght = 20D)
Inlet B Exit

Figure 5.10: Computational Domain for the 3D CHT Pipe Flow
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Figure 5.11: Computational Domain for the 3D CHT Pipe Flow (close-up)

5.3.3. Boundary Conditions
The boundary conditions for the flow domain are as follows:
Inlet: Mach Number, M_ = 0.01
Static Temperature, T_ =300 K
Reynolds Number, Re, = 1,108

Prandtl Number, Pr=0.72
Thermal Conductivity, ki = 0.0259 W/m-K

Exit: Static Pressure, p_, = 101.325 kPa

Pipe Inner Wall: Conjugate Heat Transfer
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The inlet velocity profile was a three-dimensional fully-developed Poiseuille flow

parabolic profile for pipes such as [40]:

445

where u=U_ =0.5u,,, is the average velocity at the inlet of the pipe, r is the

radius in the pipe, and D is the diameter of the pipe. The inlet static temperature
is uniform. The inlet Mach number is based on the average velocity and static
temperature. The Reynolds number is based on the freestream conditions and
the pipe diameter, as follows:

Re, = @ (5.5)

K.
The boundary conditions for the solid domain are as follows:
Pipe Outer Wall: Wall Temperature, T, =320 K
Pipe Inner Wall: Conjugate Heat Transfer
Pipe End Walls: Adiabatic

Thermal Conductivity: ks = 0.0578 W/m-K

This test case was run with fixed thermal conductivities for both the fluid and the
solid, as assumed by Pozzi & Lupo. [39] The value for the solid thermal

conductivity was chosen with the following formula [39]:

K, ot
L 56
K [ +D) (5-6)

S
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where p is a ratio parameter for the thermal conductivities. The value chosen for
the test case in this thesis is p = 0.10. Contrary to Pozzi & Lupo, the following
test case:

- does NOT neglect dissipation in the fluid,

- does NOT neglect axial heat conduction in the pipe walls, and

- is NOT modeled with an incompressible flow.
The boundary conditions and geometry used in Imlay at al. are somewhat
conflicting as they lead to a Rep = 1.11x10° whereas the assumption of laminar
flow in a pipe is Rep < 2,000! Thus, no comparison will be established with their

computed results.

5.3.4. Computational Grids

The test case used structured grids for both the fluid and solid domains. The grid
was clustered in the normal direction to the wall to resolve the boundary layer. It
was also packed in the streamwise direction near the leading edge of the pipe to
resolve the flow and temperature gradients there. Grid refinement studies were
conducted to verify the above-mentioned grid criteria. Only the results from the
best grids are presented here. For the half pipe geometry, the fluid grid had
74,841 nodes, while the solid grid had 50,096 nodes, as shown in figures 5.12
with a close view in figure 5.13. An axial view of the grids is also shown in figure
5.14. The interface between the fluid grid and the solid grid had matching node

connectivity, as shown in figures 5.13 and 5.14.
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Pipe Grids
Fluid Grid: 74,841 Nodes
Solid Grid: 50,096 Nodes

Figure 5.12: Grids for the 3D CHT Pipe Flow

Pipe Grids (close—up)

T *

Figure 5.13: Grids for the 3D CHT Pipe Flow (close-up)

Pipe Grids (axial view)
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Figure 5.14: Grids for the 3D CHT Pipe Flow (axial view)
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5.3.5. Results & Discussion

The convergence of this test case is shown in figure 5.15. The test case was
started from no initial solution, with 2 cycles of artificial dissipation. The final cycle
exceeded the residual reduction of 3 orders of magnitude and converged to an
absolute value of 108, Although the Energy equation residual was not below 108

it was reduced by 3 orders of magnitude and was judged to have converged.

Convergence History for the 3D CHT Pipe Flow
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Figure 5.15: Convergence History for the 3D CHT Pipe Flow

Table 5.1 presents a comparison of the cost, in terms of iterations, to compute a

CHT solution with the same level of convergence versus the following options:

—

. adiabatic wall solution,
2. constant wall temperature solution,
3. adiabatic wall solution + 1-step CHT solution, and

4. constant wall temperature solution + 1-step CHT solution.
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Solution Type Total Number of Iterations
CHT 314
Adiabatic Wall 205
Constant Wall Temperature 187
Adiabatic Wall + CHT 478
Constant Wall Temperature + CHT 420

Table 5.1: Solution Cost versus Solution Type for the 3D CHT Pipe Flow

The results in table 5.1 show that the cost of a CHT solution is greater than an
adiabatic or a constant wall temperature solution. However, the results in table
5.1 also show that the cost associated with computing a CHT solution from an
initial converged solution is more costly than computing a CHT solution from the

start. The robust CHT algorithm offers this advantage.

The convergence of the interface average wall temperature is shown in figure
5.16. It shows that essentially, the energy equation gets decoupled from the
Navier-Stokes equation after 100 iterations. We knew ahead of time that the
problem being solved is an incompressible flow where the thermal field is
evolving while the dynamic field is fixed. Note that the residual level of the
Navier-Stokes equations is reduced by 3 orders of magnitude after 100 iterations.

Performing multiple Energy equation loops for every Navier-Stokes equation loop
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would speed up the overall convergence for this incompressible flow. This option

was used in the test case but not to its full extent.

 Interface AVeiagé Wall Téfﬁ;_);fatu!e

Convergence History for the Interface Wall
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Figure 5.16: Convergence History for the CHT Interface Wall of the 3D Pipe

The Mach number and axial velocity along the mid-plane of the pipe are shown in

figures 5.17 and 5.18, respectively. Notice how the fully-developed velocity

profile is maintained in the streamwise direction, as expected. The thermal field

has no effect on the dynamic field in this incompressible pipe flow.
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Figure 5.18: Axial Velocity along the mid-plane for the 3D CHT Pipe

The static temperature along the mid-plane of the pipe for both the fluid and solid
domains is shown in figure 5.19. Notice how the temperature contours are
continuous at the CHT interface as shown in a close-up view in figure 5.20.
Figure 5.20 also shows that there is a temperature variation in the pipe walls
because of the low thermal conductivity ratio (ki/ks=2.23). The inner pipe wall
temperature is shown in figure 5.21, with a close-up view in figure 5.22. Notice
how the wall temperature evolved rapidly around the inlet region, as expected for
this Graetz thermal entrance problem. The wall temperature reaches a constant

value around the half pipe length, as shown in figure 5.21.

Static Temperature (K) 320.0
(mid—plane) !315.0

i 310.0

305.0

300.0

Figure 5.19: Static Temperature along the mid-plane for the 3D CHT
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Figure 5.20: Static Temperature along the mid-plane for the 3D CHT (close-up)
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Figure 5.21: Pipe Inner Wall Temperature
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Figure 5.22: Pipe Inner Wall Temperature (close-up)
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To verify the accuracy of the solution with the analytical results presented in

Pozzi & Lupo [39], a non-dimensional wall temperature is computed at the pipe

inner wall such as:

N -

where T,is the pipe inner wall temperature, T_is the pipe outer wall
temperature, and T, is the inlet temperature. The results are plotted versus a

non-dimensional streamwise coordinate such as:

_(2x/D) _(2x/D)
" Pe  Re,Pr (5.8)

The results of this comparison are shown in figure 5.23. The computed and
analytical results agree within reasonable accuracy. The CHT implementation in

FENSAP accurately computes the conjugate heat transfer for this test case.

Non-Dimensional CHT Interface Wall Temperature
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8 Theory of Pozzi & Lupoi
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(2x/D)/Pe :

Figure 5.23: Non-dimensional CHT Interface Wall Temperature
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5.4. 3D Turbulent Flow over a Nacelle Lip equipped with a Piccolo Tube System

5.4.1. Introduction

The test case involves the complex 3D anti-icing flow interaction of a piccolo tube
system, impinging on a model D-duct nacelle lip placed in a low speed wind
tunnel. The experimental tests were conducted in the low-speed wind tunnel ALN
1.2 x 0.9 m at Alenia-Torino. [37] These tests were part of a thesis conducted by
Scarsi. [38] The computed external lip temperature distribution will be compared

to the available experimental temperature distribution.

A typical business jet engine nacelle inlet is shown in figure 5.24. The full-size
model tested in the wind tunnel was a simplified two-dimensional D-duct, as
shown in figure 5.25, where the lip curvature effects were removed since it was
judged to have minimal effect on the heat transfer distribution. The model has a

span of 400 mm, a chord length of 100 mm, and a back face width of 160 mm.

engine .
inlee  °

nacelle

Figure 5.24: Business Jet Engine Nacelle Inlet [41]
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/(; : /()

100 A0}

Figure 5.25: Simplified Two-Dimensional D-duct Experimental Model [38]

The piccolo tube, as shown in figures 5.25 and 5.26, has a diameter of 25.5 mm.
It has one row of 25 evenly spaced holes with a pitch of 15.5 mm and a hole
diameter of 3.5 mm. The impingement length of the piccolo tube holes to the

internal lip skin is 47 mm.

7N Cc o0 o 00 0O GG 9o 3 a0 0030 0 000 0o )

Figure 5.26: Piccolo Tube [38]

Three discharge holes with a pitch of 164 mm and a diameter of 14.6 mm are

located on the back face of the D-duct, 17 mm from the top of the D-duct, as

shown in figure 5.27.

107



Figure 5.27: Discharge Holes Configuration [38]

The model has shielding walls after the D-duct lip to move the wake effects of the
blunted model downstream of the measurement region. These walls extend
downstream of the D-duct lip by 200 mm. An exploded view of the test model is

shown in figure 5.28.

N

Figure 5.28: Exploded View of the Test Model [38]
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The D-duct model is shown in figure 5.29 inside the Alenia low-speed wind
tunnel. The range of the test conditions is:

1. Bleed Temperature: 333-403 K (= 1 K)

2. Lip Chamber Inlet Pressure: 100-400 kPa (+ 10 kPa)

3. Wind Tunnel Mach Number: 0.00-0.15 (+ 0.01)
To measure the lip skin external temperature, 22 thermocouples were placed on
the unwrapped lip skin, as shown in figures 5.29-31. During the tests, it was
noted that only thermocouples 4, 7, 12, 14, and 21 were operating normally. [38]
Thus, no “real” spanwise averaging was available from the experimental results.
However, the local external lip skin temperature distribution from the numerical
model in this thesis will be compared with the experimental results presented by

Scarsi. [38]

Figure 5.29: D-duct Mode! Installed in the Alenia Wind Tunnel [38]
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Figure 5.30

Thermocouple Locations on the External Lip Skin [38]
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5.4.2. Problem Definition

The computational model presented in this thesis replicates the experimental
model as closely as possible. The experimental model was placed close to the
bottom half of the wind tunnel, and the downstream location is also unknown. For
the computational model, it was judged to center the D-duct in the spanwise
direction, since the bottom wall has minimal heat transfer effects, and to locate
the back face of the D-duct at 1 m downstream of the inlet of the 2 m long wind
tunnel. By taking advantage of the symmetry conditions, we can diminish the
model size by half. However, a further assumption was used in the computational
model: only one third of the experimental model was used (the middle part), with
symmetry conditions being applied on either end of the nacelle lip geometry. The
periodicity of the 25 piccolo holes to the 3 discharge holes is approximated by 8
piccolo holes and 1 discharge hole. Though this periodicity does not really exist
since the discharge holes are not equally spaced between the side walls, as
shown in figure 5.27, it was judged a good compromise without any scaling of the
piccolo holes and the discharge holes. Next, the shielding walls downstream of
the nacelle lip are continued until the exit of the wind tunnel for simplicity and to
completely remove the wake interaction of a blunt object in a freestream flow.
Finally, since no information on the wind tunnel wall boundary layer control was
mentioned, the computational model was simulated with slip conditions on the
wind tunnel walls by fixing them to wind tunnel inlet values, i.e. treating them as
inlets. The computational D-duct model is shown in figure 5.32 with close-up

views in figures 5.33-35.
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Wind Tunnel inlet
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Wind Tunnel Walls
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Figure 5.32: Computational Domain for the Nacelle Lip inside the Wind Tunnel
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ip and Piccolo Tube (close-up 2)

: Nacelle L

Figure 5.34

lo Tube (close-up 3)
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Note that only the nacelle lip external and internal walls have CHT boundary
conditions while the back face is treated as adiabatic. Thus, the solid model for
the CHT computation only comprises the external and internal nacelle lip walis,
and a back wall connecting them without the back face, as shown in figure 5.36.

The wall thickness between the external and internal nacelle lip walls is 1.35 mm.

Nacelle Lip
(Solid Modetl)

ceNe Lip External & Internal Walls (CHT)
vy

Nacelle Lip Back Wall
(odioboticg

Figure 5.36: Computational Domain for the Nacelle Lip Structure
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5.4.3. Boundary Conditions

It should be noted that the flow domains are disconnected in this model but are

still modeled as one integral system for practicality.

The boundary conditions for the wind tunnel flow domain are as follows:
Inlet: Mach Number, M_ =0.15
Static Temperature, T =288 K
Reynolds Number, Re, =5.6 x 10°
Turbulence Intensity, i, =0.5%
Turbulent Viscosity Ratio, u,_ /u,_ =1
Exit: Static Pressure, p. = 101.325 kPa

Wind Tunnel Walls: Slip condition, fixed at free stream inlet values
Shielding Walls: Adiabatic, no slip
Nacelle Lip External Wall: Conjugate Heat Transfer
The inlet velocity and temperature profiles in the wind tunnel are uniform, with
typical wind tunnel turbulence levels. The Reynolds number is based on the free

stream conditions and the back face width of the D-duct, as follows:

Re, = pUW (5.9)
u.
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The boundary conditions for the nacelle lip and piccolo tube flow domain are as
follows:

Jets: Mach Number, M; = 1.00
Static Temperature, T, = 335.8 K
Reynolds Number, Re, = 7.8 x 10*
Turbulence Intensity, i; = 3.0%
Turbulent Viscosity Ratio, p,/u, =100

Discharge Hole: Static Pressure, p_ = 101.325 kPa

Nacelle Lip Internal Wall: Conjugate Heat Transfer

Piccolo Tube Wall: Wall Temperature, T, =403 K
The inlet velocity and temperature profiles for the piccolo jets are uniform with
typical jet turbulence levels. The piccolo holes are assumed to be choked, thus,
the temperature and pressure are deduced from the isentropic relations and the

total quantities inside the tube, where: T, = 403 K and p, = 200 kPa for the test

conditions used. Aithough the characteristics allow the pressure to be imposed at
the piccolo holes, this was not done since the flow solver did not react properly to
this boundary condition. Thus, the static pressure of the piccolo holes was not
properly controlled but at convergence was only 8% above the isentropic value,
but still within the experimental uncertainty of the pressure measurement. To
reduce this inconsistency, the back pressure of the discharge hole could have
been reduced but it was not since it cannot be below the back pressure of the

wind tunnel. The piccolo tube wall temperature was set at the tube’s total
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temperature since the flow inside the tube is very low and any convection effects
from the recirculating flow around the exterior of the tube was neglected. Finally,
no blockage effects were taken into account at the piccolo holes for the choked
condition. The Reynolds number is based on the jet conditions and the piccolo
hole diameter, as follows:

_ pupD

Re, = (5.10)
Y,

The boundary conditions for the solid domain are as follows:
Nacelle Lip External and Internal Walls: Conjugate Heat Transfer

Nacelle Lip Back Wall: Adiabatic

The wall metal is duralumin, with the following properties at 20°C:
Density, ps = 2,787 kg/m®
Thermal Conductivity, ks = 164 W/m-K

Specific Heat, ¢s = 883 W-s/kg-K

The wall thermal conductivity was actually modeled as a function of temperature,

with a table provided as an input. The table values can be found in Holman. [42]
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5.4.4. Computational Grids

The test case used an unstructured grid for the fluid domain and a structured grid
for the solid domain. Through anisotropic mesh adaptation, the best fluid grid
was obtained for a specified target number of nodes. The variable used for the
adaptation error estimation was the Mach number. Mesh adaptation for this test
case was essentially needed since the initial grid was very coarse and did not
provide good convergence levels, but was only used to obtain a first guess
adiabatic solution. The target number of nodes estimated was chosen to provide
a good resolution of the effects while being able to obtain a solution with a
reasonable computing time. Near-wall grid spacing was also evaluated during the
mesh adaptation cycles to ensure a valid range of y* values at the first-node-off-
the-wall. The external flow is a boundary layer fiow with a stagnation point, while
the internal flow is a constrained impingement flow. Nonetheless, the average y*
is approximately 45 for the external flow, and approximately 25 for the internal

flow, both in a reasonably valid range for near-wall turbulence modeling.

The initial fluid grid had 121,716 nodes, as shown in figure 5.37 with a close-up
view in figure 5.38. The final adapted fluid grid had 250,444 nodes, as shown in
figure 5.39, with close-up views in figures 5.40 and 5.41. Notice the piccolo jet
resolution and the boundary layer resolution around the nacelle lip on the
adapted grid, obtained through a series of 5 solution-adaptation global cycles
(some adiabatic, some CHT). The solid grid had 23,205 nodes and was not

adapted, but was clustered in the wrap direction near the impingement region.
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Initial Nacelle Grids
(Fluid Grid: 121,716 Nodes)
(Solid Grid: 23,205 Nodes)

(Mid Ptane Cut, z = 0.0)

Figure 5.37: Initial Grids for the Nacelle Lip

Initial Nacelle Grids
(Mid Plane Cut. 2z =0.0, close-up)

7A

Figure 5.38: Initial Grids for the Nacelle Lip (close-up)
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Final Adapted Nacelle Grids

(Fluid Grid: 250,444 Nodes)
(Solid Grid: 23,205 Nodes)
(Mid Plane Cut, z = 0.0)

Figure 5.39: Final Adapted Grids for the Nacelle Lip
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Figure 5.41: Final Adapted Grids for the Nacelle Lip (close-up 2)
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The interface between the fluid grid and the solid grid had non-matching node
connectivity, as shown in figure 5.41. The external surface fiuid grid is stretched
spanwise since there are not many gradients for this boundary layer flow along
the surface, while the internal surface fluid grid picks up the impinging jet
features. The grid densities of the final adapted fluid grid for the external and
internal lip walls are shown in figures 5.42 and 5.43, respectively. The grid
densities of the solid grid for the external and internal lip walls are nearly identical
since it is a structured grid, thus only the internal lip wall grid is shown in figures
5.44. The grid densities on both sides of the interface are in the range of 1:1 for
nodes but, 2:1 or 3:1 for faces. This grid density variation does not pose a
problem for the CHT algorithm since the residual coupling is done consistently

with the virtual grid routines. There is only an increase in the coupling time.



Nacelle Lip External Grid
(Fluid Side: 4,524 Nodes, 8,677 Faces)
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Figure 5.42: Nacelle Lip External Surface Fluid Grid

Nacelie Lip Internal Grid
(Fluid Side: 6,208 Nodes, 12,090 Faces)
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Figure 5.43: Nacelle Lip Internal Surface Fluid Grid
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5.4.5. Results & Discussion

The convergence of this test case is shown in figure 5.45. To prove the
robustness of FENSAP, the test case was started from no initial solution with 4
cycles of artificial dissipation since the adapted grid had very skewed elements.
The final cycle did not have a residual reduction of 3 orders of magnitude, but
converged to an absolute value of 10°® with a residual reduction close to 2 orders
of magnitude. Aithough the Energy equation residual was not reduced by 3
orders of magnitude nor was it below 108, it was still judged to be converged.
The convergence of the external and internal lip average wall temperatures is
shown in figure 5.46. The average wall temperatures have almost settled down
and this concurs with the CHT L, norm being below 10°. While the energy
equation residual exhibited some problems converging, the overall solution is
good and it is believed that the problem is due to a local phenomenon. There is

no need to continue iterating on the overall problem in such a case.

Convergence History for the 3D CHT Naceile Lip
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Figure 5.45: Convergence History for the 3D CHT Nacelle Lip



Convergence History for the CHT Interface Walls
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Figure 5.46: Convergence History for the CHT Interface Walls of the Nacelle Lip

The Mach number along the mid-plane in the nacelle lip is essentially low
everywhere, except for the impinging jet core, as shown in figures 5.47 and 5.48.
The flow structure in the nacelle lip coming from the impinging jets is highly
complex and three-dimensional, but repeats closely at every jet. This is clearly
shown through streamlines, colored by Mach number, originating from the
piccolo holes as shown in figures 5.49 and 5.50. Regions of high Mach number
are neighbored by regions of recirculation and low Mach number between the
piccolo tube and the back wall. The interaction of the jets between themselves is
another phenomenon found here. However, the impact is reduced since the
piccolo holes are choked, closely spaced, and the L/D of the impinging jet is
around 13.4 for this configuration, a relatively high value for heat transfer by

impinging jets.



Mach Number
(Mid Pigne Cut, z = 0.0)

Figure 5.47: Mach Number along the mid-plane for the Nacelle Lip

Mach Number
(Mid Plane Cut, z = 0.0)

Figure 5.48: Mach Number along the mid-plane for the Nacelle Lip (reduced scale)
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Streamlines colored by Mach Number

0.500
.0.375

0.250
0.125
0.000

Figure 5.49: Streamlines colored by Mach Number for the Nacelle Lip (rear view)

Streamlines colored by Mach Number

Figure 5.50: Streamlines colored by Mach Number for the Nacelle Lip (front view)
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The static and total pressures along the mid-plane are shown in figures 5.51 and
5.52, respectively. The total pressure losses incurred during the free-shear
portion of the expanding jet as it comes out of the piccolo holes are clearly shown
in figure 5.52. What these two figures also show is that the pressure is nearly

uniform in the nacelle lip after impingement.

Static Pressure (kPo)
(Mid Plane Cut, z = 0.0)

Figure 5.51: Static Pressure in the Nacelle Lip

Total Pressure (kPa)
(Mig Plane Cut, z = 0.0)

Figure 5.52: Total Pressure in the Nacelle Lip



The static and total temperatures along the mid-plane are shown in figures 5.53
and 5.54, respectively. Notice the total temperature decrease along the axis of
the jet, typical for a free-shearing jet. The convection along the piccolo tube also
caused more heat to be convected with the jet onto the internal lip wall, as shown

in figures 5.53 and 5.54.

Static Tempercture 8(&
(Mig Plane Cut, z = 0.0)

Figure 5.53: Static Temperature in the Nacelle Lip

Total Temperature (K)
(Mid Plane Cut, z = 0.0)




Finally, the external and internal wall temperature distributions are shown in
figures 5.55 and 5.56, respectively. There is not much difference in both figures
since the metal is nearly isothermal across its small thickness. However, the
impingement pattern is clearly visible for every jet. There is also not much
spanwise temperature distribution along the nacelle lip except at the impinging

region, where the peak to valley temperature difference is around 10 K.

External Wall Termpergture (K)

Figure 5.55: External Wall Temperature for the Nacelle Lip

internal Wall Temperature (K)

Figure 5.56: Internal Wall Temperature for the Nacelle Lip
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The computed external wall temperature for the nacelle lip is compared with the
experimental results provided by Scarsi, as shown in figure 5.57. The spanwise
temperature variation of the computed results is compared to the thermocouple
temperatures. FENSAP is able to predict the impingement region temperature
(wrap distance = -35 mm) quite well. The bottom nacelle lip region temperature
distribution is also well captured after the impingement (-135 mm < wrap distance
< -35 mm). The jet heat transfer is properly confined in this recirculating flow
region. At the external stagnation point (wrap distance = 0 mm), the external heat
load is under-predicted resulting in a low wall temperature. The top nacelle lip
region temperature distribution is not that good (0 mm < wrap distance < 150
mm). The far end point is totally off from the experimental value. Recall in
chapter 4 that for the impinging type of flow, FENSAP can have difficulties
capturing the redeveloping boundary layer along the wall after impingement, thus

the internal heat load can be under-predicted resuiting in a low wall temperature.
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Figure 5.57: External Wall Temperature Distribution for the Nacelle Lip
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One should also recall that only the lower-span thermocouples were working
properly during the experiments conducted by Scarsi, since the other
thermocouples were creating aerodynamic disturbances. [38] Scarsi also
mentioned that in certain zones on the nacelle lip they observed transition
phenomena from laminar to turbulent flow at the location of some of the
thermocouples. [38] FENSAP assumes no transition point and the flow is
completely turbulent. Thus, if the external flow were actually modeled with a
laminar flow at the stagnation point developing into a turbulent flow along the
surface, a reduction in the external heat load would ensue. This would lead to

higher skin temperatures.

Also, how good are the experimental results presented by Scarsi? Can the point
at the far end of the nacelle lip be measured wrong? Can there be any effects of
the discharge hole flow in this region? Can the experimental weld setup between
the shielding walls and the nacelle lip walls provide some shielding effect from
the freestream flow, thus reducing the external heat load and augmenting the

nacelle lip temperature? Can the far end thermocouple be malfunctioning?

Another possible source of error for this test case is the inability of the k-e
turbulence model to correctly predict the flow structure and heat transfer for this
complex three-dimensional flow. Improving or even changing turbulence model! is

definitely an avenue that needs to be looked at, but was not tested in this thesis



because it was not part of the scope nor was another turbulence model available

within FENSAP during the time period of the present thesis.

Using mesh adaptation to keep refining the grid to increase the amount of nodes
can be tried out but at the expense of long solution times. This was not the
interest of this study. The solution provided in this thesis is of valid engineering

interest.

Finally, the modeling used for this test case is to consider the back face of the
nacelle as adiabatic when it should be conducting. The shielding walls after the
D-duct provide for an expanding jet coming out of the discharge holes. Thus, the
heat transfer along the back face on the outside will be very low, while on the
inside the flow follows mostly the back face so, the heat transfer will be higher.
There will be heat transfer convected away and influencing the nacelle lip wall
temperature. This can affect the overall balance of heat transfer for the whole

nacelle lip.
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6. Discussion

6.1. Conclusion

A conjugate heat transfer capability has been developed and embedded within a
CFD code, FENSAP. The approach is a multi-domain one, whereby the fluid
energy equation and the solid energy equation are solved simultaneously in a
fully-implicit manner where each fluid and solid domains have their own meshes.
The proposed CHT methodology has been fully integrated within a 3D framework
that supports 3D structured, unstructured, and hybrid meshes, with mismatched
node connectivity and with non-uniform grid densities across interfaces. Thus,
the use of anisotropic mesh adaptation in the fluid domain becomes possible and
greatly improves the quantitative nature of the flow predictions, and hence, heat

transfer results.

The heat transfer validation for both laminar and turbulent flows has been
conducted. For each test case, the results have been compared to available
open literature results for simple geometries, and the agreement was excellent.
The CHT validation is assessed with three cases: a blunt flat plate flow, a fully-
developed pipe flow, and a complex piccolo tube system flow in a 3D nacelle lip.
Open literature results were available for all test cases, and the agreement was

shown to be within reasonable accuracy.
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From the piccolo tube test case, it can be concluded that the proposed method
can be used as a reliable and cost-effective tool for the analysis and design of
thermal anti-icing devices. Different geometrical configurations can rapidly be
tested and even optimized, without the need for extensive and expensive

experimental testing.

The stability and robustness of the CHT algorithm developed allows for a CHT
computation to be tackled from the start instead of performing a traditional
adiabatic or constant wall temperature computation. The extra cost in terms of
computational time and structure meshing is worth investing, but the choice

belongs to the user.
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6.2. Future Work

The CHT capabilities of FENSAP can easily be extended to the prediction of the
thermal field of cooled gas turbine components, such as: blades, shrouds, and
disks. The automotive industry can also benefit from a CHT system to analyze
brake systems, and automotive under-hood cooling. Such CAD-complex
analyses require a robust flow solver, a stable CHT algorithm, and accurate heat
transfer modeling. The CHT methodology developed couples, in the spirit of
concurrent engineering, the aerodynamic and thermal analyses into an integral
system for air-cooled or air-heated components. The future ought to see the

further application of the approach to these interesting situations.

The continuing need for better turbulence modeling has to be addressed, since
most of the cooling or heating techniques involve low-Reynolds flows. Using a
higher order turbulence mode! with a scalar transport model for the energy
variable should be investigated. Transition modeling also needs to be addressed
so that the heat transfer for blade leading edges or nacelle leading edges can be
better predicted. The inclusion of a roughness model can also be of great
importance when tackling aerofoil heat loads in a turbine gaspath, or for nacelles
under icing conditions. Finally, a radiation model would also be beneficial for the

icing heat load predictions.
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The current CHT implementation is limited to a single fluid and a single solid
domain. The use of multiple solid layers with different thermal conductivities,
such as Thermal Barrier Coatings (TBC) on blades, cannot be supported at this
moment, but could be included in future modeling. The heat loss through a film of
water or a layer of ice on a wing leading edge or a nacelle lip also cannot yet be
simulated with the current CHT implementation. Further programming would be
required to include a physical film model within the CFD code, but this becomes

cumbersome for the architecture of the code.

All of the presented results were predicted at steady-state conditions. Although
unsteady heat transfer of cooled components is too time consuming to tackie
today, an unsteady validation of the CHT algorithm characteristics still needs to
be assessed. Thermal transient blade and disk stress analysis are of great
importance in the gas turbine industry, and unsteady heat transfer analyses will

become feasible in the near future.

The present CHT algorithm supports the feature of performing muitiple energy
equation loops for every Navier-Stokes equation loops since it speed-up the
convergence of the global energy equation. A detailed study on the convergence

characteristics of this feature needs to be addressed for both Steady-State and

Unsteady-State computations.
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Automation of the CHT setup is an issue that needs to be continuously
addressed. Currently, the interpolation files used in the coupling routines are
generated with the provided grids. The degree of grid mismatch can affect the
interpolation accuracy. Perhaps the latter could be automated at the grid creation
level so that the interpolation can be done on the native-CAD description and not

on the numerical grids.
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