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ABSTRACT

A Methodology for Thermal Analysis and Predictive
Control of Building Envelope Heating Systems

Tingyao Chen, Ph.D.
Concordia University, 1997

A heating system integrated into the building envelope, such as a floor radiant
heating system, is defined as a building envelope heating system (BEHS). Thermal mass
usually integrated with such a heating system can be utilized to lower both peak loads and
operating costs and to reduce room temperature swings by predictive control while
utilizing solar gains to reduce energy consumption. Nevertheless, techniques required for
the predictive control of BEHSs need to be developed in order to materialize these

potential benefits.

A methodology proposed in this study integrates building thermal analysis and
predictive control of BEHSs. A computer method for generating the symbolic transfer
function of buildings is developed as the first part of the methodology. It includes hybrid
signal flowgraph and generalized-nodal admittance formulations, and an algebraic
algorithm associated with the constraint conditions of inequalities. New concepts for
thermal network modelling are presented, with which a combined thermal parameter such
as the operative temperature can be explicitly represented with an imaginary thermal

network. A building thermal system is systematically modelled with a generalized thermal



network. Because some design parameters of interest, such as amount of thermal mass,
can be kept as symbols in the model, sensitivity analysis, optimum design and control

studies of building systems can be significantly facilitated.

An optimal predictive control system developed integrates a weather predictor, set-
point optimizer, a system identifier and an adaptive Generalized Predictive Control
algorithm so as to achieve high building thermal performance. A new weather predictor,
simplified through normalization, makes it feasible to quantify the qualitative weather
forecast for solar radiation. Several implementation issues in on-line parameter estimation
are investigated through experiments in an outdoor passive solar test-room. A Generalized
Predictive Controller (GPC) with a feedforward control scheme is improved with a new
algorithm. The zone set-point is optimized through the combination of dynamic

programming and on-line simulation.

The methodology has been verified with both experiments and simulations. Results
show that the weather predictor is capable of generating reasonably accurate solar
radiation and outdoor temperature profiles for one day. A building thermal model can be
robustly identified under the supervision rules. The performance of GPC is superior to
conventional on-off and PI controllers. Thé optimal set-point can be efficiently generated
by the proposed approach, which may lead to large savings in operating energy costs

when a BEHS is properly designed and operated.
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NOMENCLATURE

= the coefficients of polynomial A(z'l)

= matrix or node-to-branch incidence matrix
= polynomials

= total room-surface area, m>

= the first coefficient of polynomial B(z'l)

= loop matrix

= polynomial vector

= cutset matrix

= polynomials

= thermal capacity, J/°C

= utility rate structure, $/kWh

= white noise sequence

= average errors

= daily energy consumption, MJ/day

= radiation-view-factor matrix

= a vector of the angle factor between a person and surfaces
= transfer conductance, W/°C

= a transfer thermal-conductance vector W/°C

= air film heat coefficient, W/(m2 °C)
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h, = radiative heat transfer coefficient, W/(m2 °C)
H = transfer function

H(z'l) = polynomial vector
I = identity matrix

= objective function, $ or MJ/day

P

= thermal conductivity, W/(m °C)

= a proportional gain, kW/°C

Sl e

= an integral gain, kW/°C

M. = daily operating (energy) cost, $/day
n = predictive horizon
P = probability of ambient temperature patterns

Q = heat flow, kW
Q; = short-circuit heat flow, kW

Qg = auxiliary heat source, kW

r = a ratio of solar radiation absorbed or reflected
R = dimensionless irradiance of solar radiation
R. = the common ratio of the response factors

RH = relative humidity, %

s = Laplace transform variable or symbolic entry
= poles of the transfer function H(s)

S = irradiance of solar radiation, kW/m?

S = diagonal matrix with symbolic entries
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Smax = the maximum irradiance of solar radiation, W/m?
t = time, sec.
T = temperature, °C
T,; = room air temperature, °C
T, = globe or operative temperature, °C
T,,, = mean radiant temperature, °C
T, = internal-surface-temperature vector, °C
T, = ambient temperature, °C

TS(t) = a vector of independent sources

AT peak-to-peak amplitude of the room temperature fluctuation, °C

max,ocp
u = auxiliary heat, kW
u., = auxiliary heating capacity, kW
\Y% = a vector of the transfer temperature ratio
X = heating system state, °C
X() = a vector of system states, °C
y,Y = thermal admittance, W K!
Y1 = unit thermal admittance W/°C
Z = thermal impedance, K w!
Z; = unit thermal resistance °C/W
z! = backward operator
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SUBSCRIPTS
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GREEK

0

B

= branch

= operative

= short-circuit heat flow

= auxiliary heat source

= node numbers

= node

= predictive

= symbol or solar source

= setpoint

= tree

= ambient temperature

= control

value

index of rows or columns in a matrix
window inner glazing

window outer glazing

a set of the indices of rows or columns in a matrix

absorptance of the glazing

= the slope angle of the surface, °
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Y = surface azimuth angle, °

A = differencing operator 1-z'1
) = declination, °
€ = emissivity
4 = an exponential smoothing constant
8 = a vector of the system parameters to be estimated
8r = angle of incidence of beam radiation, °
8, = zenith angle, °
A = control weighting factor
A(k) = time-varying eigenvalue of the least-square estimator
(o] = root mean square deviations
Tl = time constant of the radiant panel
(0} = latitude of the place under consideration, °
¢ = a vector of outputs, inputs, and errors
® = hour angle, °
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CHAPTER 1

INTRODUCTION

Computer technologies are rapidly changing building design and operation. They
offer the possibility of implementing dynamic operation of buildings and their HVAC
systems, which is more advanced than conventional static control commonly employed

in the past.

Static control attempts to maintain indoor temperature about fixed set-points no
matter what the circumstance. With this approach, we need neither to know the dynamics
of the system to be controlled nor to anticipate the future thermal load. Consequently, we
cannot fully utilize the potential of the system and take advantage of dynamic building

control strategies for savings in operating cost and energy conservation.

Dynamic control implemented through an energy management system (EMS) has
two features that distinguish it from static control (Hartman 1988). The first is predictive
control with which the system operation strategies are optimized based on the continuous
anticipation of upcoming conditions. The second is integrated control, which takes into
account the interactions among all components in the system so that building and HVAC

modules operate in unison in order to achieve global optimal system performance.



The main objective of this thesis is to develop a methodology for thermal analysis
and predictive control of Building Envelope Heating Systems (BEHSs). It consists of
several techniques including symbolic analysis of buildings with generalized thermal
network, ambient temperature and solar radiation prediction, robust on-line system
identification, adaptive Generalized Prediction Control (GPC) with a new algorithm and

real-time multistage set-point optimization using dynamic programming techniques.

1.1 BUILDING ENVELOPE HEATING SYSTEM

A heating system integrated into the building envelope, such as a floor radiant
heating system or a passive solar system, is defined as a building envelope heating system
(BEHS). Studies by Weida (1986), Zmeureanu et al (1988), and Buckley (1989) indicate
that radiant heating systems can be economically efficient alternatives to other common
forms of heating. Because these types of systems raise the mean radiant temperature, we
can have lower air temperature for the same thermal comfort, which results in lower
infiltration heat loss. Moreover, a higher mean radiant temperature also provides an

improved indoor environment, particularly near exterior walls and windows.

The interior layer of the building envelope such as floor tiles, gypsum board,
interior bricks may be used to store heat. For example, inexpensive electricity during off-
peak hours may be converted to thermal energy and stored in the building envelope
thermal mass. The stored energy is then released later on when the cost of electricity is

higher. This operation strategy may greatly diminish heating costs. Moreover, solar gains



transmitted through windows may be absorbed by interior thermal mass and then
gradually released into the room when the indoor temperature decreases. The effect of
building thermal mass not only prevents the room from overheating during high solar
gains but also reduces energy consumption. Additionally, peak heating loads under an
extremely cold condition may also be reduced by means of passive thermal energy
storage. This will lead to a smaller heating system, which requires a lower initial cost.
Furthermore, a small heating system may have a higher average part-load efficiency if a
gas or oil boiler is used. There are other positive effects on the overall thermal
performance of buildings provided by efficient utilization of building thermal mass, which

have been reviewed in detail by Balaras (1996).

Building thermal mass, on the other hand, may have a negative side as well. It
may contribute to consumption of more energy in intermittent heating if there are no
natural energy sources such as solar energy that can be utilized. Moreover, heating
systems integrated into a building envelope with high heat capacity, such as a floor
heating system, have high thermal lag times, which increase with the amount of the mass.
Such systems may present control problems, especially when there are highly variable
uncontrollable heat sources, such as solar radiation. These problems have been observed
by Athienitis and Chen in their simulation and experimental studies (1992 and 1996).
Uncomfortable conditions, overheating or underheating, were experienced when the floor
heating syétem in an outdoor test-room was controlled by a conventional feedback control
strategy. It was also found that when high solar or internal heat gains are present, the

floor heating system with a thickness of 10 cm may have room temperature swings larger



than a system with a thickness of 5 cm. This is because the traditional feedback control
strategy can neither fully utilize natural energy sources nor compensate for any thermal

lag in heating systems.

1.2 NEEDS AND OPPORTUNITIES

Many studies on building energy management have indicated that the dynamic
operation of HVAC systems provides significant opportunities for energy cost savings.
Braun (1990) conducted simulations for the dynamic operation of a cooling system. His
study showed that the optimal control of building thermal storage may result in reductions
between 10% and 50% in both the energy cost and the electrical peak demand. Win and
Win (1985) modelled the optimal control of auxiliary heating of passive solar buildings.
Their results demonstrated that a reduction of 17% in fuel cost may be achieved as

compared to static thermostat control.

In spite of all the potential benefits, dynamic control technology has been
employed in very few building systems. One of the main reasons is primarily due to
neglect of the dynamic interaction between the building envelope, the HVAC system and
the control system. As pointed out by Athienitis et al. (1990), this neglect is largely due
to inadequate understanding of building thermal system dynamics, and the fact that the
building envelope is designed separately from the HVAC system that is usually sized
based on extreme design conditions; moreover, the control system is usually selected

separately from the dynamic simulation of building HVAC systems without sufficient



consideration of the system loads and their variability. Although digital controllers are
used, their capabilities are rarely exploited; their control parameters are preset and are

rarely changed.

Potential benefits due to dynamic control strategies depend on a number of factors.
They include the amount of building thermal mass and its distribution, dynamics of
building and HVAC systems, weather conditions, occupancy schedule and utility rate
structure. A building thermal system should be designed taking all the main factors into
account. Thus, the dynamic interactions between the building envelope, the HVAC system
and the control system need to be considered at the building design stage. The building
thermal system parameters should be optimized under the desired dynamic operation
strategy (such as with or without night temperature setback). For example, a well-designed
building thermal system that contains an appropriate amount of thermal mass can help us

to utilize solar gains and to reduce the heating peak loads.

The realization of these benefits relies upon several techniques. First, upcoming
independent sources, such as ambient temperature, solar radiation and internal heat gains
that affect the building heating and cooling loads, must be known before implementation
of the dynamic building operation strategy. Second, an accurate model describing the
relationship between the building envelope, HVAC components and independent sources
is also necessary for predicting building thermal loads. Last but not least, computationally
efficient techniques are required for on-line determination of the optimal operation

strategies.



1.3 SCOPE

The focus of this thesis is on the development of a methodology for thermal
analysis and predictive control of building envelope heating systems (BEHSs). It is
composed of several techniques, which may be considered for two main purposes, thermal
design and real-time control. An outdoor passive solar test-room with a computer-

controlled electric floor heating system is used to test the methodology.

The thermal design of BEHSs has four main aspects. First, the effect of building
design parameters, such as the amount of thermal mass, thickness of insulation layers,
window area and type, on heating load profiles should be analyzed to determine optimum
values. Second, thermal interactions between the building envelope, the heating equipment
and the control system need to be examined so as to obtain knowledge of the system
dynamics and to find an appropriate control algorithm. Third, interactions between BEHSs
and operation strategies should also be investigated in order to find the optimal operation
strategy and the heating system type and capacity. These three aspects actually depend on
each other and cannot be separated. In other words, the building design parameters and
the operation strategies must be simultaneously optimized. The last aspect is the utilization

of the prior knowledge of BEHSs for on-line control.

The focus of the present study is on the last aspect even though techniques
developed in this thesis are intended for simplification of the design procedure in all four
aspects. A model describing the relationship between system inputs (ambient temperature,

solar radiation, auxiliary heat, etc.) and output (the operative temperature) is needed for



predictive control of BEHSs. Prior knowledge of the dynamics of BEHSs provides useful
information about the model structure and guidelines for the development of real time
identification of heating process models. Therefore, it should not be replaced by system

identification.

The methods developed for on-line control include weather prediction one day
ahead, system identification, predictive controller and set-point optimization. The weather
anticipation covers ambient temperature and solar radiation prediction since they
considerably affect the building heating load profiles and have not been thoroughly
investigated. Attention is primarily focused on a cold area like Montreal and the winter

period.

A z-transfer function model is adopted in the identification of heating systems.
Different time intervals and prediction horizons are dealt with for both predictive control
and set-point selection. The horizon of predictive control in a closed feedback loop may
vary from a few minutes to one hour. It is much smaller than that in the set-point
optimization, which may typically vary from a few hours to one day. The allowable extent
of system non-linearity for the predictive controller is higher than that for the optimization
of operation strategies since the system model is easily adapted to the varying dynamics

in the narrow range of working conditions.

The controller is based on the Generalized Predictive Control presented by Clarke
et al (1987a and b, and 1989). It includes an adaptive model of the heating process and

an optimal predictor derived from the estimated model. Therefore, it is automatically

7



incorporated within a feedforward control scheme. Several studies by Jota (1987), Dexter
and Haves (1989), and Virk and Loverday (1991) show that the predictive control
algorithm is able to deal with most problems in building HVAC applications. The
prediction feature of the controller makes it particularly suitable for the dynamic control

of processes with a large thermal lag, such as a floor radiant heating system.

Dynamic programming techniques are applied to the determination of optimal
operation strategies. The techniques are computationally efficient and flexible for real-time

operation, particularly when the heating process is subject to many constraints.

1.4  CONTRIBUTIONS AND OUTLINE OF THE THESIS

The main contributions of this thesis are the following:

(1) A systematic computer method for generating the symbolic transfer
functions of detailed building thermal networks is developed by applying
network theory. It will facilitate the sensitivity analysis, optimum design
and control studies of building thermal systems. By introducing a
generalized-node admittance matrix and utilizing the topological
information of a given network appropriately, a new formulation
particularly suited for the semi-symbolic network analysis of buildings
significantly reduces the size of the coefficient matrix for the detailed
building thermal networks as compared with any existing hybrid system of

equations (Mielke, 1978; Singhal and Vlach, 1974 and 1977; Sannuti and



)

©)

Puri, 1980). A two-step algorithm associated with the stricter constraint
conditions of inequalities greatly improves Sannuti and Puri’s algebraic
method (1980) for semi-symbolic building thermal network analysis.
New concepts for thermal network modelling are proposed to describe a
complex building heat transfer process with a thermal network. The
establishment of a generalized building thermal network is now based on
not only the physical similarity upon which the thermal network has been
traditionally based, but also the principle of equivalence on a mathematical
basis. Two new analogue elements, temperature-controlled heat flow and
temperature-controlled temperature sources are introduced to interpret the
mathematical relationship between temperature and heat flow with a
thermal network. Consequently, any thermal parameter or process with a
linear relationship between variables, such as the operative temperature and
the mean radiant temperature, can be accurately modelled with an
imaginary subnetwork, avoiding many modelling approximations made by
the network transformations, such as delta-to-star transformation. It also
allows the number of independent heat sources to be significantly reduced
in a detailed building network and the overall transfer function with any
heat source as an input to be directly generated.

Several essential techniques are developed for a real-time optimal
predictive control system for a BEHS, which include a weather predictor,

a system identifier, a predictive controller and a set-point optimizer. First,



the new weather predictor, simplified through normalization, makes it
feasible to quantify the qualitative weather forecast for solar radiation for
the next day. It is able to appropriately utilize the daily forecast, the
historical weather record and the most recent measured data. Second, the
system identifier associated with a set of supervision rules can discard
faulty data that violate the preconditions required for parameter estimation
in order to obtain a reliable heating system model. Third, the new
predictive control algorithm can significantly reduce computational time if
the predictive control horizon is large. Finally, the set-point optimizer
combining dynamic programming with on-line simulation is

computationally efficient for real time optimization.

The remainder of this thesis is organized into nine chapters.

In the next chapter, a literature review is given on the dynamic operation of
building thermal systems. Topics covered include fundamental methods and computer
programs for computer-aided design and dynamic simulation of building thermal systems,

control studies for building HVAC applications and dynamic building operation.

Chapter three consists of two parts. In the first part, a methodology for thermal
analysis and predictive control of building envelope heating systems is presented. It is
followed by the description of a full-scale outdoor test-room with a floor heating system,

which is used in this study.
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In Chapters four and five, new thermal network modelling methods are developed.
A new formulation is presented for the semi-symbolic network analysis of buildings. An
algorithm based on the new formulation and Cayley’s expansion of a determinant is then
described to efficiently generate a symbolic transfer function. The constraint condition of
inequalities is also proven, which is aimed at fully utilizing the topological information
in the formulation. A generalized building thermal network is further developed so that
a complex thermal parameter such as the mean radiant temperature and the operative
temperature can be explicitly and precisely modelled with a thermal network. The
techniques are applied to find an s-transfer function for the floor heating system in the
test-room. The s-transfer function is then transformed to a z-transfer function, which

provides the required heating process model for system identification in Chapter six.

Chapter six describes the application of recursive least squares techniques to real
time identification of a BEHS. Knowledge from the symbolic analysis of the heating
process in Chapter five is utilized to establish a set of supervision rules for parameter
estimation. It is also used for determination of the initial model. The identification
algorithm is verified with experiments using both ceiling and floor heating systems. A

number of practical implementation issues are discussed and investigated in the study.

In Chapter seven, an adaptive controller based on Generalized Predictive Control
(GPC) is employed in dealing with varying set-points and a large thermal lag time
associated with the floor heating system. A new algorithm is proposed for improvement

of the GPC. The identification algorithm presented in Chapter six is implemented and
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verified with a small time interval of 200 seconds. A comparison among on-off, PI and

GPC controllers is finally given.

Chapter eight addresses weather prediction that plays an important role in the
thermal load anticipation for buildings. Statistical analysis of Montreal’s weather data in
the last decade provides the overall regular patterns of ambient temperature and solar
radiation. This helps to develop two algorithms for generating the weather profiles. The

prediction methods are verified with experiments.

In Chapter nine, a technique for combining dynamic programming with on-line
simulation is described for real time optimization of operation strategies. The identified
floor heating models obtained in the sixth chapter are used in simulation studies. Optimal
operation strategies for minimization of heating costs are investigated under different

conditions for the outdoor test-room.

Finally, conclusions and recommendations for further research are presented in

Chapter ten.
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CHAPTER 2

LITERATURE REVIEW

The use of computers for the direct control of building thermal systems is
increasing in popularity. This technology offers the possibility of implementing advanced
control algorithms and operation strategies. In the past, much research has been performed
on the application of dynamic control to building thermal systems. The results have shown
that advanced control techniques could significantly enhance the overall performance of
buildings associated with HVAC systems in terms of energy conservation, occupant

comfort, cost reduction and control stability.

Several surveys related to the dynamic control of building thermal systems have
recently been conducted. The development of thermal simulation of buildings was
reviewed by Balaras (1996), and Shaviv et al. (1996). A historical survey of control
system simulation in North American was given by Kelly (1988). Techniques for the
prediction of building thermal load profiles were reviewed and compared by Kreider and
Haberl (1994) and Kawashima et al. (1995). Optimal control of building HVAC systems
was reviewed by Dorato (1983), Townsend et al. (1986), Hartman (1998) and House et

al. (1991 and 1995).

Emphasis of the literature review in this study is placed on the simulation and
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optimum design of a predictive control system and its implementation for building heating
systems with passive heat storage. It consists of three parts: methods and computer
programs for dynamic simulation and thermal design of building heating systems in
Section 2.1; control techniques in building HVAC applications in Section 2.2; and
dynamic building energy management in Section 2.3. The specific objectives of this thesis

are outlined in Section 2.4 based on the literature review.

2.1 TOOLS FOR COMPUTER AIDED DESIGN AND SIMULATION

Recent developments in dynamic building energy management originated in the
work on transient thermal simulation of buildings, which started in the middle of 1960s.
Early developments on computational methods for analyzing the dynamic behaviour of
building thermal systems were reviewed by Mehta (1980). Two common techniques, time
domain techniques and frequency domain techniques, used in the detailed simulation of
building components and systems and their advantages and disadvantages were discussed

by Athienitis (1985A) and Haghighat and Athienitis (1988).

Time domain methods that have been employed in building simulation include
finite difference methods (Balcomb and Macfarland, 1977; Carter, 1980; Zmeureanu et
al., 1988), state space techniques (Benton et al., 1982; Zaheer-uddin, 1989) and response
factor methods (Mitalas and Stephenson, 1967; Stephenson and Mitalas, 1971; Kimura,
1977). The first two methods may be applied to any system, including nonlinear and

time-varying ones. Therefore, these two methods, especially the state-space approach, are
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very useful for simulating nonlinear HVAC components, such as cooling or heating coils
valves and dampers. Moreover, optimal control of building thermal systems is often based
on state-space analysis techniques. However, discretization in space and time required by
these methods may lead to a large error in simulating massive wall behaviour (Mitalas and
Stephenson, 1967) if the number of nodes is not enough. On the other hand, too many
nodes may make the methods computationally inefficient. Whenever nonlinear elements
in building systems can be linearized and the whole or subsystem becomes linear, the
response factor method may be employed. It uses fewer nodes than the two other
techniques and the error from discretization can be avoided. Note that the three time-
domain methods cannot be used for extracting useful building performance characteristics

without the need for simulation as pointed out by Sebald and Vered (1981).

The frequency domain technique is an alternative approach to linear and time-
invariant system simulation. The early applications of frequency domain techniques to
building thermal simulation were those methods developed for modelling building storage
elements, such as massive slabs (Davies, 1973) and simple building models (Kirkpatrick
and Winn, 1984; Athienitis, 1986). Several sophisticated computer methods for the
modelling and analysis of a large building thermal network were developed by Athienitis

(1985B, 1987 and 1990) applying network theory.

The frequency domain approach has several advantages over the time domain
approach. It permits extraction of useful building performance characteristics without

simulation (Sebald and Vered, 1981). In addition, it provides flexibility in detail of both
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the simulation and the weather model with a variable number of harmonics (Hittle,1979;
Anderson and Subbaro 1981). Moreover, it facilitates simulation of large thermal networks
and simplification of sensitivity analysis of building thermal parameters by means of

diakoptics techniques (Athienitis 1985B and 1989).

Athienitis et al. (1990) developed a methodology for a unified approach to building
energy analysis and thermal control studies. The overall building system transfer functions
in the Laplace domain were obtained by combining building shell, HVAC process and
control system so that short- and long-term thermal dynamics of buildings could be

studied using frequency response analysis.

There are some disadvantages with the frequency domain approach. First, the
application of frequency domain techniques is usually limited to linear and time-
independent systems. Second, it is difficult for the traditional thermal network to explicitly
describe a complex thermal parameter that may involve both convection and radiation heat
transfer. Potential advantages, which have not been exploited in building thermal design
and control studies, may need to be examined. For instance, a generalized thermal
network may overcome the second weakness mentioned above, as we will see later. A
symbolic network analysis technique in the frequency domain can be utilized to further

facilitate the sensitivity analysis, optimum design and control studies of buildings.

Simulation programs for modelling the dynamic behaviour of building control
systems are discussed by Kelly (1988) and Balaras (1996). The programs based on hourly

simulation, such as DOE-2 and BLAST , may be employed to simulate the quasi-

16



dynamic-type operation of building control systems for designing a large and expensive
building. Because they cannot take local-loop control dynamics into account, simulation
with a small time step of one minute or even a few seconds may be necessary for
evaluating sophisticated dynamic building control strategies and the interactions between
the building envelope, the HVAC equipment and building control. Several programs that
have such capability are available. Various approaches and techniques are adopted in these

computer programs for easy use, flexibility and computational efficiency.

The BLDSIM program developed by Shavit (1977) calculates the building load and
energy consumption as a function of the type of controls. Simulation is done with a
typical time step of one minute to a few minutes, which enables one to study the effect
of different HVAC systems and control alternatives on building energy consumption and

thermal comfort.

The TRNSYS program is a modular computer simulation package developed at
the University of Wisconsin-Madison (Klein et al., 1983). The components of systems to
be simulated can be interconnected in any desired manner due to its modular structure.
A minute-by-minute simulation allows the interactions among all the subsystems to be

evaluated.

The GEMS program developed by Benton et al. (1982) uses state-space analysis
techniques that cast linear equations into a vector-matrix form. A linear resistance-
capacitance network model is used for the building envelope, which can be solved by

means of sparse vector-matrix multiplication procedures to reduce 50-80% simulation
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time. Nonlinear components, such as heat exchangers, furnaces, air conditioners etc., are
modelled by nonlinear differential equations. The input and output vectors of the various
subsystems to be simulated are interconnected through indirect addressing of appropriate
arrays. Multirate simulation allows modules with very fast dynamics and/or strong non-
linearities to be solved at a time step necessary for accuracy and stability, while other

modules with linear models can be solved at much larger time steps.

The HVACSIM" program is a non-proprietary computer simulation package
released by the National Bureau of Standards (Park, 1985; Clark, 1985). A number of
techniques and computational methods are incorporated to enhance the computational
efficiency of this program. Besides many ideas, such as a modular approach and advanced
nonlinear equation-solving techniques based on a modification of the Powell hybrid
method are employed to solve large scale systems of algebraic and differential equations.
A hierarchical approach to simultaneous solution of a large number of algebraic and
differential equations allows one to partition them into smaller subsets. Techniques such
as the freezing of state variables and the inactivation of BLOCKS enable the state
variables to be removed from the calculation when they reach steady state. The building
shell is modelled with the response factor method. Variable time steps and variable order
integration are employed to deal with a set of differential equations with widely varying

time constants.

The BEEP program that employs a different approach to building simulation is

based on the frequency domain thermal network analysis (Athienitis, 1988). Building
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components such as walls and windows are modelled by means of subnetworks. Nodes
representing exterior surfaces, whose temperatures do not have to be explicitly determined,
are removed by the Norton theorem. The nodal formulation uses a minimum number of
thermal balance equations to describe the building system. Discrete Fourier series provides
flexibility in modelling the weather data. The HEATCON program, which has recently
been developed by Shou (1991), uses BEEP as its core. It can be used to analyze the
dynamic performance of both building heating and control systems at any desired time

step because the model is established on a continuous time basis.

Most of the above mentioned programs can be used to study the dynamic
interactions between the three main subsystems, that is, the building shell, an HVAC
process and a control system. However, none of them integrate operation strategies and
building thermal system design variables into one model. This makes it difficult to
analyze the interactions between them and to design a building heating system
simultaneously with appropriate real time operation strategies. As pointed out by Hartman
(1988), most current building energy simulation programs do not permit the simulation
of anticipatory control strategies. In addition, none of them can be used for analyzing the

stability and performance of the predictive controller.

2.2 CONTROL TECHNIQUES

Bang-bang and PID control have been used in HVAC applications for decades.

This may stem from their relative simplicity. A great number of studies on this topic
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have appeared in the literature. For example, Mehta (1987) presented a theoretical model
that describes the dynamic interactions between controllers, HVAC components, building
envelopes and building occupants. This model was used to derive relationships between
the throttling range, proportional band, reset time, coil capacity and part-load operation.
As a result, several control strategies for reducing energy consumption in building

environmental control systems with proportional-integral control were derived.

Borresen and Grindal (1990) introduced the control difficulty method for controller
choice and dynamic controller tuning. The dominating time constant, time delay, and non-
linearity of control system may be found by field measurements using the Ziegler and
Nicols step-response approach. The choice among P, PI and PID could then be taken

according to the index of the relative control difficulty.

A computer program was developed by Kamimura et al. (1994) for the selection
of PID controller parameters. This method requires a linear building HAVC model with
single-input and single-output. A system transfer function is then derived from the model.
Several techniques, such as step response, frequency response and ultimate sensitivity, are

finally adopted to find the suitable PID coefficients.

A major disadvantage of the conventional control techniques is their inability to
compensate for a thermal lag and varying set-points, and to adapt to changing dynamics.
Moreover, considerable efforts are required in the tuning of PID controller parameters,

particularly when there are large changes in system dynamics.
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Optimal control theory has been applied for the robust control of building systems.
Generally, an integral objective function is established over the period of interest. The
function typically minimizes error between outputs and set-points. A feasibility study on
this topic was reported by Fan et al. (1970A, B, C, D and E). A single room with an air-
conditioning system is described by a state-space model. Pontryagin’s maximum principle
is employed to find the optimal control law. Both equality and inequality constraints are
imposed on state variables at the final process time. Sensitivity analysis is also conducted.
In follow-up studies, simultaneous control of air temperature and humidity in a single
room was considered (Nakanishi et al. 1973A and B, and Pereira et al. 1973). Their
results show that the performance of the optimal controller is superior to that of the
classical controllers. Townsend et al. (1986) utilized the maximum principle to determine
optimality in terms of appropriate cost and performance functions and subject to practical
limits. They concluded that among several candidate optimal strategies, optimum bang-
bang control of dry bulb temperature and moisture content in a single zone was less costly
and sometimes could significantly reduce operating costs. House et al. (1991) developed
a methodology capable of handling the non-linearities and constraints inherent in HVAC
systems. A discrete-time optimal control method was applied to a representative HVAC
system. Optimal temporal responses for heat exchanger energy and fan flow rate were
solved by means of a nonlinear optimization technique. Their results show that the
optimal control scheme using continuously varying control variables has some advantages

over bang-bang control in terms of lower costs and less oscillations.

A serious problem with the optimal controller is computation time. A control
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interval in HVAC applications typically varies from a few seconds to minutes while the
computation time required for one optimal control law generally varies from a few
minutes to hours, depending on the complexity of the system under consideration. This
may be a major reason that studies on the optimal controller for HVAC systems have only
focused on computer simulation. Its real time implementation has not been reported in

practice.

Adaptive control has received increasing attention in HVAC applications mainly
due to its distinctive capability to compensate for unknown system parameters, nonlinear
and dynamic variation of the plant, long-term or seasonal changes in the operation of the
process, and non-stationary disturbances acting on the process. This would obviously lead
to several benefits, such as great reduction in tuning expenditure and installation cost,
simplification of the control scheme, and improvement of the overall performance of the

controllers.

The early successful applications of adaptive control to HVAC systems began in
the 1970s. Farris et al. (1977) developed adaptive control schemes that could
automatically tune themselves to optimise the overall performance of a solar heated
building. Dexter et al. (1981) presented a self-tuning control scheme, based on the
minimum-variance control technique, for domestic stored-energy heating systems, which
could adjust the off-peak charging time to maintain the end of occupancy store
temperature at a predefined minimum lever. Brandt (1986) demonstrated several

implementation issues through experiments. His test data show that the use of an internal
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process model that converges on the actual process could significantly improve control
performance. Combining energy balance and least squares regression techniques, Zaheer-
uddin (1990) presented an adaptive building model. Heat loss and heat storage are first
estimated and used as base values for the least squares model. A great number of studies
on adaptive control of HVAC systems have been reported in the past few years by Nesler
(1986), Jota (1987), Dexter and Haves (1989), MacArthur et al. (1989 A and B), Lute and
van Paassen (1990), and Chen and Lee (1990), Coley and Penman (1992). A recursive-

least-squares technique has been adopted in most of the applications.

As pointed out by Astrom and Wittenmark (1989) and Ljung and Soderstrom
(1983), prior knowledge of the plant should be utilized as much as possible to improve
the performance of control systems and to simplify the on-line control scheme.
Nevertheless, this aspect of research has been largely ignored in past applications of
adaptive control to building thermal systems. Moreover, the adaptive controller is
automatically updated on-line and may face many unexpected situations. Therefore, the
identification process must be supervised to obtain a reliable adaptive model. However,

this problem has not attracted much attention.

Predictive control algorithms can compensate not only for a process thermal lag
but also for the preprogrammed set-point. The thermal lag compensation provided by a
predictive controller can greatly improve closed-loop stability, while its prediction

property enables control action to start earlier so as to closely track the varying set-point.

It is only recently that this control approach has been applied to building HVAC
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systems. Jota (1987) utilized predictive control for a multi-variable air-conditioning
process having many non-linearities. The objective of his study was to investigate the
potential advantages and the practical problems in applying this approach. His
experimental and theoretical results demonstrated that the use of adaptive predictive
control could have significant advantages even though such controllers might have limited
capability in dealing with non-linear systems. Dexter and Haves (1989) considered a
controller based on the Generalized Predictive Control algorithm. An application-
independent jacketing software that contains a set of expert rules was developed to
supervise the operation of the on-line parameter estimator and the calculation of control
action. Their simulation results indicated that the adaptive predictive control scheme was
able to deal with most of problems encountered in HVAC application and would require
much less commissioning effort than conventional controllers. Using simulation, Virk and
Loveday (1991) compared predictive on-off control with conventional on-off and PID
control. Their measured data show that the energy savings of 17% may be achieved by
predictive on-off control as compared to the conventional on-off control. They further
concluded that a predictive minimum variance scheme could give control performance
superior to that of PID control. MacArthur and Foslien (1993) proposed a multi-variable
predictive controller with nonlinear cost minimization capability. Their controller is able
to directly incorporate user-definable costs associated with transient plant operation into
the control sequence while maintaining desired servo-regulatory performance. It was

verified with simulation.

Predictive control has the same weaknesses and problems as adaptive control since
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it also needs an on-line identified model. An additional problem is that the computation
of a control law with the predictive control algorithm could be tedious when the

predictive control horizon is large.

Finally, several new control algorithms have recently been proposed for building
HVAC processes. Huang and Nelson (1991) combined a fuzzy rule-based system with a
PID controller. The new fuzzy logic controller was applied to the second-order model of
a plant. Their simulation results show that the behaviour of a PID controller can be
greatly improved when it is combined with fuzzy logic rules. The fuzzy PID controller
has a very quick response to a step input and no overshoot. Albert (1995) utilized
artificial neural networks (ANNGS) to serve both as a system identifier and as a controller
for an air-conditioning unit. Their results show that ANNs have potential benefit in system
identification as well as HVAC control. So et al. (1995) reported the application of ANN
to both identification and control of an air-handling system with multiple inputs and
multiple outputs. They found that forward plant identification was feasible while plant
inverse identification was not. Energy savings of 3.6% were realized by ANN control in

their study.

2.3 DYNAMIC BUILDING ENERGY MANAGEMENT

Dynamic building energy management seeks to (1) reduce both peak load demands
and energy consumption, (2) minimize total investment and operating costs, (3) utilize

"free" natural energy sources as much as possible, and (4) improve occupant comfort
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(Braun 1990). Building load profile prediction and operation strategy optimization are two

essential requirements involved in this approach.

2.3.1 Load Profile Prediction

Building load profile prediction is the first requirement in dynamic building energy
management. The optimization of building operation strategies significantly depends on
the accuracy of load prediction. It actually consists of two parts: prediction of varying
uncontrolled weather inputs acting on buildings, such as outdoor temperature and solar

radiation, and modelling of a building and HVAC process.

There are two main approaches for load prediction. One is that independent
sources are first estimated and then used to generate the load profiles. The other one is
that the two parts are combined into one model. Uncontrolled heat sources should
primarily include outdoor weather and internal heat gains. Internal heat gains have been
commonly expressed by a time schedule (Boonyatikarn and Jones, 1989; Braun, 1990).
There are techniques for identifying the number of residents (So et al. 1995B), which may

be applied to generate internal heat gain prediction.

Several methods are available to estimate a weather profile from a few hours to
days in advance. Model Output Statistic (Glah and Lowry, 1972; Cope and Bosart, 1982)
used in weather forecasting can give more precise future weather variation than any
existing method. Unfortunately, this method requires a great number of atmospheric

weather data and a supercomputer, which is not practical for on-line control. Most of the

26



methods for weather forecasting used in HVAC are based on least squares regression
analysis (Win and Robinson 1979 and Ngan, 1985). This implies that the future weather
condition is assumed to be extremely similar to the past, which is not realistic. Winn and
Robinson (1979) used Luenberger observer theory to improve the accuracy of weather
prediction. Their forecasting was based on the past measured weather data, using curve
fitting techniques. Ngan (1985) fitted historical ambient temperature to a short Fourier
series with 3 terms. The ambient temperature shape is updated every two weeks by
adjusting the Fourier coefficients. Kawashima et al. (1995) predicted the hourly ambient
temperature using the forecasted high and low temperatures and the shape coefficients
recommended by ASHRAE (1993). MacArthur et al. (1989B) utilized both the previously
measured ambient temperatures and the forecasted high and low temperatures from the
local weather station to predict the future temperature profile. Their method should be
superior to any prediction method that only uses the past measured weather data since it

utilized more information than the others.

In an indirect approach, building load profiles are generated without the prediction
of heat sources. Actually, it is implicitly concealed in the prediction model. A time series
model is an example of this approach. Kimbara et al. (1995) adopted an autoregressive
integrated moving average (ARIMA) method for on-line prediction of the load profile of
an air-conditioning system in a 35-story building at Osaka, Japan. The average logarithm
patterns related to ambient temperature and loads for a few days were used to take into
account the effect of ambient temperature on the load profile since a multidimensional AR

model assumes a stationary process. Note that such a model is still based on the
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assumption that the upcoming loads in the next cycle (24 hours) should be similar to the
past. Large changes in weather variables may result in a significant error. This situation
occurred in the Energy Prediction Shootout competition of ASHRAE on hourly energy
predictions based on limited amounts of measured data (Kreider and Haberl 1994). During
the testing period, all the competitors (more than 150) were unable to accurately predict
the electricity use for the first two weeks when the building was sparsely occupied. The
reason is that all the prediction models were trained with data that were different from the

testing data.

Kawashima et al. (1995) examined several techniques for thermal load prediction,
which include ARIMA, EWMA (exponential weighted moving average), MLR (multiple
linear regression), ANN (artificial neural network) methods. Their results show that it is
difficult for ARIMA and EWMA models to estimate the energy savings due the weather
since these two techniques only depend on the previous series data. They concluded that
the artificial neural network model has great potential for identifying nonlinear HVAC

systems, while the linear regression technique does not.

2.3.2 Optimization of Operation Strategies

Night or weekend setback is an example of set-point optimization. It lowers the
set-point temperature for heating and raises the set-point temperature for cooling during
unoccupancy times to save energy. Bloomfield and Fisk (1977) reported potential energy

savings of 12% for heavyweight buildings and 34% for lightweight buildings. Athienitis
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(1988) analyzed the effect of different set-point profiles on building thermal performance.
His results show that the use of simple night setback (i.e. square wave set-profile) may
lead to an increase of 40% in the peak heating loads as compared with ramp set-profiles.
Barney and Florez (1985) developed implicit formulae for optimum start-up time control,
occupancy time control and optimum shut-down time control by applying a self-tuning
minimum variance predictor. These formulae directly utilize the parameters of identified
building models so that no extra identification procedure is required. Seem et al. (1989)
presented and compared seven different algorithms for predicting recovery time from
night or weekend setback. They found that a quadratic relationship between the recovery
time and the initial room temperature gave the most accurate results for prechilling and
that equations relating recovery times to both the outdoor temperature and the room
temperature gave the best predictions for preheating. These seven formulae, however,

require an extra identification procedure besides the identification of building processes.

A typical procedure for dynamic building energy management consists of three
steps: (1) upcoming changes in outdoor weather and heat gains (e.g. internal gains, solar
radiation, etc.) are first anticipated; (2) appropriate or optimal set-point temperatures
and/or HVAC system operation strategies are determined by means of logic energy
management routines, on-line simulation or optimal control techniques; (3) an effective

controller is used to closely track the desired set-point temperatures.

Many publications on this topic have appeared during the past decade. Most of

them performed computer simulation studies primarily based on optimal controi theory.



Some were reviewed'by House et al. (1991 and 1995). Modern optimal control theory is
commonly adopted in the optimization of building operation strategies primarily for
energy conservation and thermal comfort. Generally, an integral objective function should
be first established associated with a number of constraints. The function is then
minimized or maximized, depending on the choice of cost criterion, over the duration of
interest. This may yield significant energy-savings without compromising occupant

comfort.

Kaya et al. (1982) demonstrated energy reduction through controlling room
temperature, humidity and air velocity simultaneously rather than independently. The
optimum steady-state condition was first determined by a search method. A control action
was then provided by a PI controller according to optimal control settings that minimize
the deviations from the desired steady-state set-points. Dorato (1983) presented a survey
of the application of dynamic optimization techniques to the design of solar energy
temperature control systems. Winn and Robinson (1979) installed an off-peak heat storage
device in Colorado State University Solar House [. They demonstrated that low-cost off-
peak electricity can be used to provide auxiliary heating for a passive-solar-heated
residence. Dorato and Knudsen (1979) dealt with a solar heating system associated with
periodic disturbances such as solar radiation and ambient temperature. Linear periodic
optimization techniques were applied in order to obtain the optimal control strategies that
are explicitly expressed by disturbance-inputs. Winn and Winn (1985) suggested several
simple control strategies and developed optimal control strategies by using Pontryagin’s

maximum principle for reducing the electrical demand during the utility high-demand time
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of day. Zaheer-uddin (1989) presented a thermal network model with bilinearity for a
solar-assisted heat pump system. A sub-optimal control strategy was developed for such
a system. Van Paassen (1988) studied an integrated passive solar building system. A room
with a large window facing south is heated by radiators. The window has a sun protection
system, an insulation shutter, and openings for ventilation. The system is controlled by
a microcomputer. It was aimed at minimizing energy consumption by predictively and
optimally controlling the passive solar gains, natural ventilation, lighting and heating. In
a follow-up study, Lute and van Paassen (1990) evaluated energy savings resulting from
dynamic control of such a system, using computer simulation. The optimal feedback
control law for heating and cooling was derived by minimizing a quadratic objective
function. They concluded that this integrated control system can save energy and provide
a good indoor environment. Schoenau et al. (1992) evaluated the thermal performance of
sunspaces at four representative climatic locations in Canada; Saskatoon, Toronto,
Vancouver and Fredericton, using simulation with typical meteorological year data.
Operating measures adopted in their study include the use of blinds and exhaust fans,
utilization of solar energy for space heating and closing off the sunspace during the
coldest months. Their results show that energy self-sufficient operation may be achieved
by combining the above operating measures when sunspaces face south. Braun (1990)
applied optimization techniques to computer simulations of a building cooling system in
order to quantify the reduction in peak electrical demand and operating cost resulting from
the use of dynamic building control strategies. Their results show that both energy costs

and peak electrical demand can be significantly reduced through proper dynamic control
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of the building’s thermal storage and that these benefits depend much on several factors
such as utility rate structures, load patterns, building thermal capacity and occupancy
schedules. Using a state-space approach, Benard et al. (1992A and B) developed a
simplified RC network model for a building heating system. The objective of their study
was the optimization of building energy management strategies. The parameters of the
network model were estimated with real measured data. The identified model was found
good enough for optimal control studies in which an objective function was defined on
a time horizon of a few days. House and Smith (1995) utilized a system approach for a
building with five zones subject to time-varying load and occupancy schedules. Operation
strategies for the five-zone system with multiple state and control variables are optimized
over a period of 24 hours. They found that the integral operation of the building system
and HVAC components can take advantage of the interaction of the system variables and
result in energy savings and improved thermal comfort compared to the conventional

control approach.

Only a few experimental studies on predictive building control strategies have been
published in recent years. Ngan (1985) and Shapiro et al. (1988) reported large energy
savings from the use of nighttime building flush in summer and the storage of internal
heat gains in building mass in winter. A preliminary microcomputer predictive control
routine was developed in that study and used in a monitored test hut for 18 months.
However, they set up a test hut without windows in order to avoid the complications
caused by solar radiation, which is not practical. In addition, the heating and cooling

equipment they used does not have large thermal lags.
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Boonyatikarn and Jones (1989) gave an overview of the studies on the "smart"
building control at the University of Michigan. Two test cells were constructed to
investigate predictive control of thermal comfort and lighting systems by means of load
shifting, using nighttime building flush. An adaptive approach was utilized to improve the
control algorithms that may then be applied to various building systems. However, no

experimental results were reported in any detail.

Further theoretical and experimental research on the predictive control of building
thermal systems is still needed to realize the potential of this advanced technique and to
investigate implementation issues. For example, the on-line evaluation of dynamic set-
point or operation strategies has generally been based on logic judgement, which may
sometimes result in over- or under- precooling or preheating. Efficient control algorithms
may need to be developed to improve on-line-computational efficiency. The combination
of several advanced control techniques may significantly improve the dynamic

performance of building thermal systems.

2.4 MOTIVATIONS AND OBJECTIVES

With the advent of microcomputers and growing concerns regarding energy
conservation and thermal comfort, more sophisticated operation strategies and control
techniques have been studied and employed since the late 1970s. Until now, however,
operation strategies and building thermal system design variables have not been integrated

into one methodology, especially for BEHSs. This makes it difficult to analyze the
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interactions between building system parameters and operation strategies and to design a
building heating system that is suitable for the desired operation strategy in real time.
Moreover, none of the building thermal analysis programs can be used for analyzing the
stability and performance of the predictive controller. Therefore, an efficient methodology
is needed for optimum design and systematic analysis of predictive control of building

thermal systems.

Bang-bang and PID control techniques are not able to compensate for thermal lags,
to track dynamic set-points closely, and to adapt to changing dynamics. The conventional
control with thermostats based on room air temperature could not fully utilize natural
energy sources and may lead to inefficient building thermal performance. Although
dynamic operation strategies and optimal, adaptive, and predictive control techniques have
been applied to building HVAC systems, more research on this topic is needed,

particularly for systems with large thermal lag times such as BEHSs.

Building thermal load prediction is the first key to successful dynamic building
operation. Existing methods for the prediction of weather variables need to be examined
and more accurate algorithms need to be developed. Moreover, robust system
identification plays an important role in the load prediction. Artificial neural networks and
fuzzy set theory may also provide promising tools for the identification of non-linear
building thermal processes. However, none of these techniques can replace knowledge that
has been accumulated for decades. No matter what techniques are adopted, prior

knowledge of the building thermal process should be utilized to reduce uncertainties and
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the initial period in real time identification.

The focus of past research has been on theoretical simulations. Only a few
experimental studies have been carried out, but not in real conditions. A computer
algorithm with all functions needed for on-line predictive operation of a full-scale building
envelope heating system in real conditions is not available. In addition, the real time
evaluation of dynamic set-point or operation strategies has generally been based on logic
judgement, which may sometimes result in over- or under-precooling or preheating.
Furthermore, existing predictive control algorithms are computationally inefficient when
the predictive control horizon is large. Therefore, an optimal predictive control system
needs to be developed for efficient dynamic control of building envelope heating systems.
This will assist us in investigating the potential and the practical problems encountered

by such a control system, and to finally develop this technology for intelligent buildings.

The specific objectives of this thesis are the following:

(1) The new concept of a generalized thermal network will be presented to
systematically describe a building envelope heating system (BEHS). A
systematic approach will be developed for generating a symbolic model of
BEHSs. The model will integrate all the significant parameters of the
heating process and the control system together. Because some of the
original design parameters of interest can be kept as symbols in the model,
the sensitivity analysis, optimum design and control studies of BEHSs can

be significantly facilitated.
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An optimal predictive control system will be proposed for real-time
predictive control of BEHSs. It will optimize heating operation strategies
based on predicted upcoming environmental conditions and perform
adaptive predictive control so as to compensate for heating process thermal
lags and to track dynamic set-points closely.

The potential for significant energy savings will be investigated. Practical
implementation issues will also be investigated in an outdoor test-

room with a computer-controlled floor heating system.
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CHAPTER 3
A METHODOLOGY AND A TEST FACILITY FOR
PREDICTIVE CONTROL OF BUILDING

ENVELOPE HEATING SYSTEMS

A methodology is presented for thermal analysis and predictive control of building
envelope heating systems (BEHSs). A full-scale outdoor test-room with a computer-
controlled floor heating system is employed in testing algorithms developed for the
methodology. The methodology consists of two parts. The first part is an approach for
systematic thermal analysis of BEHSs. The second part is an optimal predictive control
system for real-time control of BEHSs. The full-scale outdoor test-room is described in

Section 3.2.

3.1 METHODOLOGY

As mentioned previously, inadequate understanding of building thermal system
dynamics leads to neglect of the dynamic interaction between the building envelope, the
HVAC system and the control system. Usually, a building envelope, heating process and
control system are separately designed without consideration of the dynamic behaviour

of the whole system. Consequently, it is unlikely for such designed systems to take
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advantages of dynamic building energy management and to be suitable for the desired
operation strategy under specific operating situations such as weather conditions,
occupancy schedule and utility rate structure. Moreover, prior knowledge of building
thermal dynamics was rarely utilized for real-time dynamic energy management and
control of buildings. This may increase uncertainty and complexity in real-time system

identification and controller design.

A methodology developed in this section is composed of two parts, which
emphasizes an interaction between thermal analysis and real-time operation of building
thermal systems. The focus of the first part is on utilization of the prior knowledge of
BEHSs for real-time control even though techniques developed in this part may also be
used for optimum design, sensitivity analysis and control studies of BEHSs. In the second
part, several techniques are combined into an optimal predictive control system for on-line

predictive operation of BEHSs.

The basic procedures and primary components of the methodology are given in
Figure 3.1. Statements in the ellipse-shaped blocks indicate inputs, outputs or intermediate
results. Statements in the rectangular blocks indicate procedures. The proposed approach
for the thermal analysis and design of BEHSs consists of the following steps:

(1)  The known information for BEHSs needs to be input first. This includes

system parameters, initial desired operation strategies and weather data.
First, the system parameters are generally divided into two types, known

numerical values and design variables to be determined. The numerical
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parameters may include the dimension of a room under consideration,
the structure of a building envelope, the thermal properties of building
materials and so on. The design variables may be the thickness of thermal
mass and amount of insulation, and the window area, depending on the
purpose of thermal analysis. Second, the initial operation strategies are
the desired operating set-points. An example is the operative temperature
kept in a comfortable range during daytime, with or without set-point
setback at night. Third, weather data in a typical or average year may be
taken as weather input.

A generalized building thermal network is established according to the
inputs. It is based on both the physical similarity and the principle of
equivalence on a mathematical basis. Any combined thermal parameter
such as the operative temperature and the mean radiant temperature
can be explicitly and accurately modelled with the network. The
overall transfer function with any independent source as an input, such as
solar radiation, can also be directly calculated.

Symbolic network analysis is applied to the generalized thermal
network. A hybrid system of equations with both numerical values and
design variables is established. Then, an algebraic algorithm is adopted
to generate a symbolic transfer function or a Laplace transfer
function, depending on the objective of the thermal analysis.

A symbolic transfer function integrates all the components of BEHSs into
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one model. Therefore, the dynamic interaction between building envelope,
heating process and control system can be systematically analyzed.
Moreover, since the design parameters of interest, such as the amount of
heat storage mass and the thickness of insulation layer, can be kept as
symbols in the model, the sensitivity analysis, optimum design and control
studies can be considerably simplified.

A Laplace transfer function obtained through symbolic network
analysis is transformed to a z-transfer function, according to the
Heaviside expansion theorem (Churchill 1944). This provides both the
qualitative features and the quantitative structure parameters of BEHSs and

guidelines for on-line system identification.

An optimal predictive control system for on-line dynamic operation of BEHSs is

given after the z-transfer function is generated in the flow chart of F igure 3.1. It primarily
consists of three loops: outer, middle and inner loops. The outer loop includes a weather
monitor, weather predictor and set-point optimizer while the middle loop includes a
parameter estimator and parameter designer for the regulator. The inner loop is composed

of a heating process and a predictive regulator.

Ambient temperature and solar radiation are monitored with a data acquisition and

control system and then sent to the weather predictor, the parameter estimator and the
regulator parameter designer. The normalized weather predictor generates ambient

temperature and solar radiation profiles, typically 12 hours to one day in advance,
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utilizing the local daily weather forecast, the historic weather shape factors and the most

recent measured data.

The parameter estimator is based on recursive least squares techniques with U-D
factorization algorithm (Isermann 1982, and Astrom and Wittenmark 1989). The
qualitative characteristics of the z-transfer function obtained through the symbolic network
analysis are used to establish a set of supervision rules for on-line parameter estimation.
The z-transfer function is also employed as a reference model to determine the structure
parameters as well as the coefficients of an initial heating process model. Two time
intervals are employed for different purposes. A small time interval (200 seconds) is used
for predictive control of the feedback loop while a larger one (half hour) is employed for

set-point optimization.

The set-point optimizer determines optimal operation strategies based on the
predicted weather profiles, the identified model, the current heating system state and the
utility rate structure. Dynamic programming techniques are applied to a state-space model
which is transformed from the identified z-transfer function. Two outputs from the set-
point optimizer are optimal set-points and reference control inputs, u.. The input, u,, sent
to the regulator designer helps to choose a heating or cooling model so as to reduce the

number of control variables.

A Generalized Predictive Controller (GPC) associated with a feedforward control
scheme is employed as a regulator. It possesses the ability to compensate for the large

thermal lag time of the floor heating process and of tracking the dynamic set-points
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closely. The regulator computes a control input u to the heating process, based on the

feedback signal T, and the optimal set-point T,, from the set-point optimizer.

All components of this methodology will be developed and discussed in detail in

the following chapters.

3.2 TEST FACILITY

An existing full-scale outdoor test-room set up on the roof of the Centre for
Building Studies at Concordia University was used in this work. A schematic of the direct
gain passive solar test room with computer-controlled radiant heating systems is given in
Figure 3.2. It has a double-glazed window facing 10 degrees east of south. The detailed
structure of the test room is described elsewhere (Shou 1991). The roof is composed
(from top to bottom) of 30 gage galvanized steel, 13 mm gypblock, fibreglass insulation
and suspended ceiling with lay-intiles . The vertical wall consists of 20 gage galvanized
sheet steel, building paper, 13 mm gypsum board, fibreglass insulation, steel deck and
gypsum board (13 mm). Before installing the floor heating system, additional insulation
was added over the existing plywood floor. The R-values of the test room walls were
measured as well as the infiltration (0.6 air changes per hour). They were 2.3 RSI on the
vertical walls, 3.6 RSI on ceiling and 5.4 RSI on the floor, respectively. The radiant
panels were then placed over the insulation, covered with sand of 1 cm and 4-cm-thick
concrete blocks were finally placed over the sand as the main thermal storage mass. The

radiant panels consist of electric resistance heating elements sandwiched between 13-mm-
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thick gypsum board and 13-mm-thick insulation. 13-mm-thick phase change material
(PCM) gypsum boards were placed on the vertical walls of the test room for the
experiments in the ceiling heating system and then removed for the experiments in the
floor radiant heating system. The PCM in the gypsum board undergoes solid-liquid

transition in the range of 16 °C - 20.8 °C (Athienitis et al. 1993).

The test-room also contains electric radiant ceiling heating, and baseboard heating
in addition to radiant floor heating as shown in Figure 3.2. The study is focused on floor
heating. Electric heating can be easily installed and controlled, thus providing flexibility

for the research.

Two globe temperature sensors are located in locations which do not receive direct
solar radiation. The globe temperature is approximately equal to the operative
temperature, which is a weighted average of the room air temperature and the mean
radiant temperature. A number of T-type thermocouples are used to measure the indoor
air and surface temperatures. Thermocouples monitoring the indoor and outdoor air
temperatures are sheltered by small tube-shaped aluminium sheets to prevent the effect
of thermal radiation from the sun and the radiant panel. Solar radiation incident on the
exterior surface of the south wall and transmitted through the window is measured by two

pyranometers.

The SYSTEM 200 made by Sciemetric Instruments Inc. was used for data
acquisition and control. It is a modular system that can be assembled by selecting the

necessary input and output modules to support the desired application. The Sciemetric
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Instrument Model 252, the Model 210 and The Model 231 were employed in this study.
The first module has 32 analogue channels for inputs. The analogue channels are
connected to the globe temperature sensors, the thermocouples and the pyranometers.
Measured analogue signals are converted to digital signals through an analog-to-digital
converter (Model 231) and then transmitted to the host microcomputer (IBM 286). The
Model 210 has 4 digital-to-analogue converter (D/A) and 4 digital channels for outputs,
which can be used for control purpose. The hardware modules are supported by the
SYSTEM 200 driver using QuickBasic. The software routines provide basic functions
needed for operating the hardware, such as initializing the hardware modules, checking
their base address and interfacing the modules with sensors. These subroutines can be
utilized in a real time building energy and control system for communication between the

host microcomputer and sensors/controllers.

The microcomputer calculates the current control output based on a pre-defined
algorithm, measured inputs and outputs and then sends it to a D/A converter. The control
digital value entered into the converter should be within range between 819 and 4095.
The low count, 819, always corresponds to the minimum analogue output of D/A while
the high count, 4095, corresponds to the maximum analogue output. Since a triac power
controller is employed as the final control element, the low count corresponds to 4 mA
while the high count to 20 mA. The power supply to the heating system controlled by the

triac power controller is proportional to the control digital value.
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CHAPTER 4
A COMPUTER METHOD FOR SYMBOLIC
THERMAL NETWORK ANALYSIS OF BUILDINGS

In this chapter’, a systematic computer method is presented for generating the
symbolic transfer functions of buildings, which have several inherent merits in sensitivity
analysis, optimum design and control studies. After introducing the concept of a
generalized-node admittance matrix, a new formulation particularly suitable for the semi-
symbolic (i.e. some of the network parameters being symbols) network analysis of
buildings is described. An algorithm based on both the new formulation and an algebraic
method is further developed. The constraint conditions of inequalities aimed at fully
utilizing the useful topologic information has been proven in order to eliminate as many
invalid symbol combinations as possible for the efficient generation of semi-symbolic
thermal-network functions of buildings. An example demonstrating the application and

efficiency of this method is included at the end.

* See also a publication by Chen and Athienitis (1993A).
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41 INTRODUCTION

Symbolic network functions have several inherent merits (Lin 1973; Singhal and
Vlash 1974). Because some original design parameters of interest may be retained as
symbols in the model, analytical sensitivities on a small scale and optimum design on a
large scale could be easier. In addition, when transfer functions can be obtained with s
kept as a symbol, their evaluation with different frequencies could be made without the
procedures of both solving the simultaneous equations at each harmonic and using fitting
techniques for obtaining the transfer function in the s-domain (Athienitis et al. 1990). This
is particularly useful for frequency response analysis of building thermal processes in the
design and tuning of feedback controllers. Moreover, for small building networks with all
design parameters in symbols and for large building networks with a few design
parameters in symbols, the symbolic analysis technique provides insights into the effect
of design parameters on the thermal performance of buildings. Furthermore, there are still
other advantages such as control of error in numerical calculation, simplification of time
domain calculations by means of inversion of the Laplace transform, simultaneous
evaluation of several network functions and facilitation of statistical analysis as pointed

out by Lin (1973) and by Singhal and Vlash (1974).

Until now, analytical solutions in the frequency domain for the thermal network
of buildings have been deduced manually. Examples include an analytical model for a
five-node network with lumped parameter elements by Kirkpatrick and Winn (1984) and

one with a two-node network with a distributed parameter element by Athienitis et al.
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(1986). It is almost impossible to obtain symbolic network functions for a large thermal
network without computer aid. A systematic computer method is therefore obviously

necessary for this purpose.

Numerous software systems devoted to various classes of symbolic computations
are available, such as MAPLE V (Char et al. 1992) and MACSYMA (Davenport et al.
1988). Since these systems have been developed for general applications, mathematical
algorithms adopted for calculating the determinant and the inverse of matrices generally
based on Cramer’s rule and elimination methods such as Gauss’ and Bareiss’ elimination
(Davenport et al. 1988 and Weiss 1962). The computation may be tedious and time
consuming when a system of linear equations is large. Moreover, a proper formulation
still needs to be established before using the software. For a specialized field, a
formulation can be established so that a more efficient algorithm, instead of Cramer’s rule
and elimination methods, may be adopted to significantly enhance the computational

efficiency of symbolic network analysis.

Several methods for generation of symbolic network functions have been
developed in network theory. Nevertheless, they may not be applied efficiently for the
building thermal analysis since thermal networks of buildings have their own
characteristics. In a detailed building thermal network, the number of branches is much
more than that of nodes. Moreover, there are only several thermal design parameters of
buildings that can be chosen by designers while many other parameters in the thermal

network of buildings take or approximately take constant values. If Sannuti and Puri’s
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formulation is applied to the thermal design and control of buildings, the coefficient
matrix for the thermal network of buildings may be very large due to a great number of
branches in the network This may lead to inconvenient generation of formulation because
fundamental cutset and loop matrices are interdependent and considerable effort is
required to obtain them (Vlash and Singhal 1983). In addition, their method may be

unable to avoid generating some symbol combinations that are topologically invalid.

A new formulation is therefore introduced in the next section so as to reduce the
number of variables. An efficient algorithm based on both the new formulation and the
algebraic method presented by Sannuti and Puri (1980) is further developed, which may
allow one to eliminate more invalid symbol combinations in semi-symbolic network
analysis than the method of Sannuti and Puri. The method will be applied through an
illustrative example to generate a frequency domain transfer function of the full-scale

outdoor test-room in the final section.

42 ANEW FORMULATION FOR SEMI-SYMBOLIC THERMAL-NETWORKS

The following assumptions commonly used in the analysis of building thermal
network are adopted before the establishment of the new formulation:
a) All the building materials and the indoor air temperature are uniform.
b) The thermal properties of the materials are time- and temperature-
independent.

c) Heat transfer through the building envelope is one-dimensional.
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d) The convective heat transfer coefficient and the infiltration are constant.

e) The radiative conductance is linearized by

Y, = 44T, F; ;
where A, is the area of surface under consideration; T,, denotes the rhean
temperature taken to be 294 K approximately; and Fi_j represents the

radiative transfer factor between surfaces i and j.

As mentioned previously, the nodal formulation of Alderson and Lin involves a
small number of variables, but its parameter extraction process is not straightforward.
Sannuti and Puri’s formula has only half of the number of variables contained in Mielke’s
hybrid system of equations, and symbolic analysis based on the former is more efficient.
However, Sannuti and Puri’s formulation may contain excess topological information for
the parameter extraction of semi-symbolic networks in which the number of branches is
much more than that of nodes. The advantages of Alderson and Lin’s and Sannuti and
Puri’s formulations could be taken at the same time when the concept of a generalized-
node admittance matrix is introduced and the topological information of a given network
is appropriately utilized. It is known that a fundamental cutset divides a network into two
isolated parts, one of which may be regarded as a generalized node. Utilizing this concept,
all of the numerical parameters in the cotree may form a generalized-node admittance
submatrix in order to reduce the size of coefficient matrix for the thermal network of

buildings.

In the thermal network of buildings, heat flow sources, such as solar radiation,
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may be equivalently transformed into dependent heat flow sources controlled by
temperature variables. Hence, thermal networks in which there are only dependent heat
flow and temperature sources controlled by temperature variables besides thermal

impedance, capacitance and independent source elements are considered here.

The new formulation, like the others, is based on the two thermal balance laws,
which are analogous to the Kirchhoff’s Current Law and the Kirchhoff’s Voltage Law,
and the element constitutive relations in the frequency domain, which are shown in
Table 4.1. It should be noted from Table 4.1 that the thermal admittance here is defined
tobeY = ijfl‘ jk» Which is analogous to the electric admittance. For instance, when Tjk
denotes swing in indoor air temperature and ij is the rate of heat flow through the
internal surface of the construction, Y is called as the self-admittance here, which also

corresponds to the thermal admittance in the CIBSE Guide (1986).

For a given thermal network with n nodes, a complete tree should first be selected
in such a way that edges with controlling and controlled temperature variables and as
many edges with symbolic parameters as possible act as tree branches while edges with
controlled heat flow sources do not . The temperature potentials of tree branches, the
necessary heat flows of several cotree branches with symbols, and node temperatures are
chosen as a set of basic variables. Providing that any edge with a controlled temperature
source in a tree does not form a fundamental cutset, the law of conservation of thermal

energy can be expressed by
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YT, + CQ, + Y,T, =0 4.1)

where T, represents a tree-branch-temperature vector corresponding to the passive tree
branches; Q,, is a heat flow vector corresponding to the passive cotree branches with
symbolic parameters; T, stands for an n-1 dimensional node-temperature vector; C
denotes an appropriate cutset matrix; Y is a diagonal admittance matrix; Y,isa
generalized-node admittance matrix. The rules for forming Y, are as follows:
Assume that a tree branch intersected by a fundamental cutset i is directed
away from the generalized node i and that node j belongs to the generalized
node i but node k does not.
a) For an admittance element y connected between nodes jand k, +y appears
at the entry Y, (i,j) while -y at Y, @i,k).
b) For a dependent heat flow element g leaving from node j to k controlled
by temperature difference T, between nodes 1 and m, +g appears at both
Y,G.l) and Y,(k,m) while -g at Y,(.m) and Y, (k.1); for the heat flow
leaving from node k to j, the sign of the entries is opposite.
c) All the numerical parameters of cotree edges should appear in the

generalized-node admittance matrix.

Applying the Kirchhoff’s Voltage Law to those cotree edges with symbolic

parameters, we have
BT, + ZQ, = 0 4.2)
where Z is a symbolic diagonal impedance matrix and B is an appropriate loop matrix.
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According to the definition, the transfer function H is the ratio of a desired output x to

an independent source x,.

H=2x
xo
or
-x+Hx, =0 (4.3)

In the thermal network of buildings, x may be the indoor air temperature or operative
temperature and x, may be outdoor air temperature, solar radiation or auxiliary heat. For
instance, an auxiliary heat source Q may first be replaced with a dependent heat source
controlled by indoor temperature T, which can be expressed by Q = T/H. Then, it may
be rearranged in the form of Equation (4.3). The constitutive equation for the element of

temperature-controlled heat flow source in Table 4.1 may be written in the form

- T, +2Q, = 0 (4.4)

where Z is equal to G'; G is a diagonal matrix consisting of g;; g; is the ratio of Qi'Tim-
The determination of tree-branch-temperature vector T}, in terms of node-temperature

vector in Equation (4.1) is given by

T,-AlT =0 4.3)

where AtT is the transpose of an appropriate reduced node-to-tree-branch incidence

matrix.
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When Equations (4.1) through (4.5) are combined into one matrix equation and
properly partitioned, we have a new formulation in the form

(Y1 0 0 0 ¢, ¢, vy, ][ 711,
0 Y2 0 0 CyCp ¥y, || T2

0 0 Y3 0 CyCyy ¥y, || 13,
0 -I 0 Hf 0 0 o0 ||T4 |-o 4.6)

00 T 0o 02 0 ||gg
Lo h I I, 0 0 -A7||T

| ]

where T1y, T2, and T3y, and T4, form a complete-tree-branch-temperature subvector T,
corresponding to uncontrolling, controlling and controlled edges, respectively; Q5, and
Q6,, constitute a heat flow subvector Qy,. corresponding to uncontrolling and controlled
edges, respectively; Y1, Y2 and Y3, and ZS and Z6 betoken partitioned diagonal
admittance and impedance submatrices forming Y and Z, respectively; H4 is a diagonal
submatrix of nondimensional parameters. Y1, Y,, and Y, constitute a generalized-node
admittance submatrix Y, in Equation (4.1); B;; and Cij represent appropriately partitioned
loop and cutset submatrices forming B and C, respectively; I, I, I3 and I, together form
an n-1 x n-1 dimensional identity submatrix; I is an identity submatrix of appropriate

order.

It should be noted that the determinant of the coefficient matrix in Equation (4.6)

should be equal to zero, otherwise the homogeneous equations could only have a trivial
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solution. Hence, the transfer function can be obtained by the sorting approach (Lin 1973),
in which all the terms with a transfer function symbol are sorted out for the denominator

and the rest for the numerator of the transfer function.

43 A TWO-STEP ALGEBRAIC ALGORITHM

Let us consider all tree branches with symbolic parameters first. The coefficient

matrix may be partitioned into four blocks

_ Ay A
An An

A 4.7

where

(¥1 0 0 0 C,
0 Y20 0 G,
0 0 Y3 0 C,
0 -I 0 H4 0
B, B, B, B, Z5 0
(0 0 -1 0 0 Z6|

Ca

Ca

Cx
0

A, =Y 0] , Y =Y, Y, Y1

Ay, =[10] ,I=[L L I I,]

Ap = - A

It can be observed that the submatrices Au, A21 and Azz consist of all their
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entries with numerical values while the submatrix A, has all its principal diagonal entries
with symbolic parameters. Applying the generalized algorithm of Gauss (Gantmacher

1959), the determinant A of the coefficient matrix may be obtained by

-1
A"'IAu'AquzAzl“Azzl (4.8)
Substituting (4.7) into (4.8), we obtain

] Y, 4D 0
A, An A = - y ] (4.9)

0 0

Partition the above matrix into such blocks that it matches with the partitioned matrix

All.

SN
gt §Y g°

. (4.10)
Y, &))" =

Yy
Yy
l Y

3

=

Note that A(Tis a reduced node-to-tree branch incidence matrix, which is non-
singular. Thus, the determinant of the matrix A,, is not equal to zero. In addition, as
mentioned previously, the determinant A should be equal to zero. Therefore,

Equation (4.8) may be written as:
-1
A=|Ay -AyAg Ay | 4.11)
Substituting (4.7), (4.9) and (4.10) into (4.11), we have
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A=[S|+|V] 4.12)
where

= diag [ Y1 Y2 Y3 H4 Z5 Z6 |

(Y, ¥, Y5 0 C,, C, |
Y0 Y Y5 0C; Cy

V= Yy Y ¥ 0 C; Gy - Yu Vul
© -I 0 0 0 O Va Vo
B, B, B, B, 0 0
0 0 -r 0 0 O

In Equation (4.12), S is a diagonal matrix with symbolic entries and V is a
dimensional matrix with all its entries numerical. Using Cayley’s expansion of a

determinant (Sannuti and Puri 1980; Hohn 1964), A may be obtained by

k J
s+ 3 LT ] o

where

l V(Y) |=l , When j =k ;

() is a set consisting of v}, Y5, -, Y; 8 denotes an entry in the diagonal matrix §; ¥,
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represents the row and column index of the entry s; I is the set of all possible (y). V(Y)
is a submatrix taken from the matrix V in Equation (4.13) by deleting the rows and
columns corresponding to the set (y), the determinant of which is the coefficient of

symbol combinations.

In expanding the determinant, some symbol combinations may be invalid because
the minor IV(Y)I may be equal to zero. When using Cayley’.é expansion, therefore, the
theorem (Appendix A) given by Sannuti and Puri (1980) may first be used in order to
eliminate those invalid terms before calculating any minor. Close examination of Equation
(11) shows that the submatrix V,, is composed of all its zero entries and that V,, and
V,; contain the useful topological information of a given network. Hence, more invalid
terms may be eliminated if some conditions stricter than those (Appendix A) given by
Sannuti and Puri (1980) are introduced. It is assumed that each of 6 submatrices in the
diagonal matrix S in Equation (4.12) has m, symbols, m, represents the number of
symbols extracted from each submatrix and then the number of remaining symbols is n -
my = l,. The coefficient matrix V(Y) may be written in the form

Ull Ulz
U, 0

0 -

where Uij is a submatrix taken from the submatrix Vj; in Equation (4.12) by deleting the
rows and columns corresponding to the set (y); Uy, and Uy are (1;+1,+15) x (Is+lg) and

(I4#l5+lg) x (1;+l,+13+],) submatrices, respectively. It is supposed that there are only n,
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rows and n_ columns with nonzero entries in Uy, and U,,, separately. Then, we have the

following inequalities for eliminating invalid symbol combinations.

The constraint conditions of inequalities: The determinant of V(Y) could be

nonzero only if n. 2 ls+l¢ and n, 2 I;+15+,.

Proof. Expanding the determinant of V(Y) from the last Is+l¢ columns according
to Laplace’s theorem (Vlach and Singhal 1983), if n_ < Is+l¢, the determinant of V(Y) will
be equal to zero because there are, at lest, (Is+l¢) - n_ rows with all zero entries in any
minor of order s+l taken from the last 15+lg columns. Similarly, we can prove the other

condition of n. 2 145+l

Let us now consider thermal networks in which some parameters of tree branches
are expressed by numerical values. Although the principle of calculation to be presented
can be applied to any thermal network, to simplify notations, it is assumed that only some
of the parameters of uncontrolling edges in the tree are numerical values. Then, Equation

(4.12) may be rearranged and repartitioned in the form

S=diag[0Y1,Y2Y3H4ZSZ6]

V, V, (4.14)

Va Va

V=

where
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Vu=[Y,+Y1,]
Vl.z = [ le sz YvJ 0 Cvl Cv)]

‘,21=[Ylv Y2v YSV 0 Bv O]T

(Y, Y, ¥, 0 C, C,]
Y, Y, ¥ 0 C, C,,

v, = , ¥ Y3 0 Cy, Gy, =[Wu Wul
0 -I 0 0 0 O Wa Wy
., B, B, B, 0 0
|0 0 -1 0 0 O |

where Y1, and Y1, denote the numerical and symbolic parameters of uncontrolling tree
branches, respectively. The other submatrices with the subscripts v and s are partitioned,

according to Y1, and Y1

There may be two approaches that can be employed to find the determinant of the

above matrix.

Approach 1. The algorithm for thermal networks in which all the parameters of
tree branches are symbolic may be directly employed. The advantage of this approach is
that it can eliminate as many invalid terms as possible before calculating determinants.
Nevertheless, the disadvantage is that higher order determinants need to be calculated in

the symbol extraction process.

Approach 2. Similar to the approach used before, the generalized algorithm of
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Gauss may first be employed to reduce the order of the coefficient matrix and the symbol
extraction process is then carried out. The advantage of this approach is that lower order
determinants are calculated in the process. However, the disadvantage is that the useful
topological information in the coefficient matrix formed properly could be neglected after

performing the generalized algorithm of Gauss.

The two approaches can be combined together because whatever method is
applied, the solution should be unique. Therefore, approach 1 may be used to weed out
invalid terms while approach 2 may be employed to calculate determinants in the symbol
extraction process. It should be noted that this principle of calculation can also be applied
to Sannuti and Puri’s method for the efficient generation of semi-symbolic network

functions.

44 APPLICATION

Although the method developed can deal with any detailed model of buildings, as
an example, a simplified model may be helpful for both describing and understanding it.
The radiant ceiling heating system in the test-room in section 3.3. is hence considered
here. The detailed description of the system has been given in the previous chapter. The
room model with node positions is schematically shown in Figure 4.1 (a) and its thermal
network in Figure 4.1 (b), which is a five-node model, including node 5 for an outdoor
temperature source. Node 1 denotes the interior surface of window glazing, the thermal

capacity of which is assumed to be negligible. Node 2 represents the interior surface of
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a. Graph of temperatures b. Graph of heat flows

Figure 4.2 Graph corresponding to the thermal network in Figure 4.1(b)

the ceiling; the thickness of the gypsum board is thin and its thermal mass can be treated
as a lumped capacity. Node 3 is the interior surface of surrounding walls made up of an
inner lining of storage mass material and outer massless insulation. Node 4 represents

indoor air temperature and node 6 is for reference.

Surrounding multilayered walls are modelled by transfer- and self-admittances,
1/Zg and Y,. The heat flow Qg through surrounding walls into the room forced by
outdoor temperature T, can be expressed by Qg = Tys/Zg ( or YT, ) according to
Norton’s theorem (Athienitis 1986), where Yg is the transfer-admittance of surrounding
walls and Ty,5 denotes T, for unified notation. When Tys is treated as a variable, the heat
flow is equivalently transformed to a temperature-controlled heat flow source. The capital

letters denote symbolic parameters, which are defined as follows: Y, is the heat capacity
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admittance of ceiling; Y, the self-admittance of exterior walls; Y, the heat capacity

admittance of indoor air; Hy the ratio of indoor temperature Ty (or Tyy) to outdoor

temperature T, (or Ty;); Zg and Z, the impedances of roof and air infiltration; Zg the

transfer-impedance of exterior walls. The small letters represent numerical values, which

are as follows: y;=5.48, yg=3.59, y;~4.31, ¥11=1.66, y,,=29.8, y,,=85.2 and

¥14=19.3 W/K.

A procedure to obtain the transfer function of a given thermal network is as

follows:

(1)

(2)

An independent source, such as outdoor temperature and auxiliary heat, is
replaced by a dependent source controlled by the output variable of interest.
In this example, the outdoor temperature Tys is first replaced with a
dependent temperature source controlled by indoor temperature Tyy4, which
can be expressed by -Ty,+HsT, 5 = 0, according to Equation (4.3).

If necessary, the thermal network of a building, like Figure 4.1, and its
corresponding graphs of temperature and heat flow, like Figure 4.2, may
be drawn out and then a complete tree must be selected. Here, the branches
from 1 to 5, bold lines in Figure 4.2, are chosen as the tree. Note that only
some edges, such as tree branches and cotree branches with symbolic
parameters, should be oriented in the graph and that the tree branch with
the dependent temperature source controlled by the temperature variable
does not necessarily need to form a fundamental cutset. For instance,

branch 5, a dotted line in the graph b of Figure (4.2), is such a tree branch.
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3) Following the formula (4.6), the system of thermal balance equations can
be established in the form of Equation (4.7). In this example, the

partitioned coefficient submatrices are given as:

o |

%0 00000 0]
0 ,000-100
00 Y0000-1

000 Y00-10
4 =100 0- 700 0
0100-1200
0001-1020
(0000-100 z
Yll
4z =1 v Ay = [ Ls Oy |
4x5)
-1 000 1]
0-1 000
A,=-A]=|00-100
000-10
100 0 0-1]
with
()’9"‘)'10*)’11 Yu Y10 Yo 0]
Y - 4% Y1utV12tV1e 4V 4l 0
. Yo Y2 NwVe*Vis Vi 0
Yo 40 Y13 Yo*Y13*¥14 0 |
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4)

(5)

(6)

M

®)

The vectors of the system variable are represented by

X, = [ Ty Ty Ty Ty Tps Qe Qs; Qba] ’
Xz=[Tl I, T, T, T,]

where subscript bi means the ordinal number of branches and the other
subscript is the ordinal number of nodes.

Because At'r is nonsingular, Equations (4.9) through (4.11) can be used to
obtain the formula of a determinant of lower order in the form of Equation
(4.12).

Search the submatrices V,, and V,, in Equation (4.12) for nonzero entries
and record the topological information, i.e. the row and column indices of
those entries with nonzero values.

If, like this example, some parameters of elements in the tree take
numerical values, the generalized algorithm of Gauss is secondly applied
to reduce the order of the coefficient matrix, otherwise skip this step.
According to the inequalities presented in the third section, invalid
cancelling terms can be eliminated before calculating any determinant and
if a symbol combination is valid, Equation (4.13) is used to find its
coefficient.

Having sorted out the terms with the distinct symbol Hs, we obtain the
transfer function whose denominator is equal to the sum of these terms,

multiplied by -1, and numerator to the sum of the rest (Lin 1973).
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Table 4.2 Symbolic Transfer Function Hg = N(s)/D(s)

NUMERATOR N(s) DENOMINATOR D(s)
No. Coefficient Symbolic Term Coefficient Symbolic Term
1 |-1.34x107 1780 yA
2 1780 Z 15.0 Y Zg
3 | -7.07x10% Z, 76000 ZZg
4 1300 Z, 78600 Z,Zg
5 5.64x1077 Y,Z, 1780 Y,ZZ,
6 150 Y3Zg 760 YsZZ,
7 76000 ZZ, 1610 Y3Z,Z,
8 78600 Z,Z, 1780 Y,Z,Z,
9 74500 ZZ, 261000 ZZ,Zq
10 1780 Y,ZZq 15.0 Y,Y3ZeZe
1 1300 Y,Z:Z, 78600 Y,Z6Z,Zq
12 | 760 Y;Z.Z, 15.0 Y;Y,Z,Z,
13 | 316 Y,Z,Z, 75700 Y3ZZ,Z,
14 | 261000 ZeZ,Z, 76000 Y, ZsZ,2,
15 15.0 Y,Y,ZZ, 1610 Y,Y3Z,Z2,Z,
16 | 4360 Y,Z2.2.Z, 1780 Y,Y,ZZ,Z,
17 1170 Y3ZZ,Z, 760 Y,Y,Z.2,Z,
18 19.7 Y,Y,Z.2,Z, 15.0 Y,Y;Y,Z.Z,Z,

A computer program containing the above algorithm has been developed and
applied to this example. The transfer function of Ty4/Ty5 obtained with the program for

the thermal network in Figure 4.1 is shown in Table 4.2.
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For comparison, Sannuti and Puri’s method has also been applied. The result
shows that 28 invalid symbol combinations have to be generated before weeding them out
while there is no invalid symbol combination among those terms generated by the

inequalities given in the third section.

The new method, like all the other methods for building energy analysis in the
frequency domain, is based on the linearization of building systems. This assumption has
been proven to be acceptable by Haghighat and Athienitis (1988). They compared and
validated the program BEEP (Athienitis et al. 1990) , which uses frequency domain
techniques, with TARP (Thermal Analysis Research Program) and with experimental data.
BEEP produces the numerical transfer functions of buildings while the new method
generates the symbolic ones. The two computer programs have also been compared with
each other with the case described in the example. Simulation results obtained from the

two programs agree well with each other.

Symbolic transfer functions in the frequency domain, like Hs in Table 4.2, can be
widely applied to building energy analysis and control studies. When all the components
of a system consisting of building, HVAC and control subsystems are represented by the
Laplace transfer function, the frequency response analysis is readily performed. For
instance, Nyquist plots may be used to study the frequency response characteristics of the
dynamic control system of buildings and to design feedback controllers (Athienitis et al.
1990). In addition, when the Laplace transform variable s is set equal to jo, where j=

D2 and @ is the frequency, the simulation of room air temperature or energy
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consumption in the time domain can be easily carried out by means of superposition of
the individual harmonic components. Moreover, the equivalent z-transfer functions for the
digital control of dynamic building systems can be obtained through one of the
approaches, such as pole-zero mapping and hold equivalence (Franklin and Powell 1980)

or by applying the Heaviside expansion theorem.

Several efficient procedures may be incorporated in the computer program for
automatic formulation and solution of given building models. First, the thermal network
of buildings can be identified by the computer program only according to the input
information, such as the number of interior surfaces of a room, symbolic and numerical
parameters. Second, such heat sources as solar radiation may be automatically modeled
by inputting the fractions projected on each of the interior surfaces of the room. Third,
a computer procedure (Wing 1978) for automatically choosing a complete tree of the
network may be adopted with minor modification. Finally, the regulations described in
the second section for selecting tree and cotree branches should also be included so that
the system equations (4.6) can be appropriately generated by computer. When all of the
above procedures have been combined with the symbolic extraction program, it needs
little effort and knowledge of the network theory to carry out the thermal design and

control studies of buildings with the symbolic network analysis technique.
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CHAPTER 5
A GENERALIZED THERMAL NETWORK METHOD

A generalized thermal network method is developed in this chapter * for modelling
of complex building thermal processes. A new concept of thermal network modelling
techniques and imaginary subnetwork for building thermal systems is proposed to describe
the complex heat transfer process explicitly and precisely with a thermal network. Two
analogue elements, temperature-controlled heat flow and temperature-controlled
temperature sources, are introduced in order to model the mathematical relationship
between variables. This leads to the direct generation of frequency domain transfer
functions for any combined thermal index such as the operative temperature and the mean
radiant temperature. An s-domain transfer function with respect to the operative
temperature as output is derived for the floor heating system in the test room, using the
techniques developed in this study. A z-transfer function is then transformed from the s-
function to provide both the qualitative features and the quantitative structure parameters

of the building heating model and guidelines for real-time system identification.

* See also a publication by Chen and Athienitis (1995).
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S.1 INTRODUCTION

With the computer method developed in the last chapter, we still cannot generate
the symbolic transfer function of buildings for the operative temperature due to some
weaknesses of the conventional thermal network modelling techniques. The operative
temperature combining effects of the room air temperature and the mean radiant
temperature is more appropriate than the room air temperature for evaluating the indoor

thermal comfort. However, it cannot be explicitly described with a thermal network.

A star network transformed from an actual building thermal network has been used
to represent an index temperature taking the effect of both convection and radiation heat
transfer into account (Davies 1983; Seem et al. 1989). Nevertheless, the star temperature
is not equal to the mean radiant temperature when the star network depicts the radiation
heat transfer processes, or the operative temperature when it characterizes both convection

and radiation heat transfer processes in a building enclosure.

If the thermal network of a building enclosure has four or more nodes, no exact
equivalent star network exists for the actual delta network of a room (Davies 1983). In
other words, a delta-to-star network transformation can be accurately performed only if
the number of nodes in a network is equal to or less than three. This could make it more
difficult to evaluate the thermal comfort at different locations within a room. Moreover,
the delta-to-star network transformation is based on the equivalence with respect to the
terminal relationship between temperature and heat flow rather than the environmental

index itself. In other words, the star-connected network can only describe the thermal
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characteristics of the delta-connected network while ignoring the insight of the
subnetwork being transformed (Hayt and Kemmerly 1993). Nevertheless, the mean radiant
temperature or the operative temperature is not a terminal index of the thermal network.
Furthermore, it is difficult to perform symbolic network analysis using the traditional
thermal network techniques for a complex thermal index such as the operative

temperature because the calculation has to involve the inverse of a matrix.

Solar energy absorbed by each internal surface is usually modelled by an
independent heat source. Many independent heat sources are then needed in a detailed
building thermal network to describe a single heat source such as solar radiation.
According to the principle of superposition, one has to determine all the individual
transfer functions with each independent heat source as input before finding the overall
transfer function. It could be tedious to calculate the overall transfer function, especially

the symbolic one.

Therefore, a new concept of thermal network modelling has been presented to
overcome the weaknesses of the available thermal network techniques. Several methods
including imaginary subnetwork for modelling of the complex thermal processes,
recurrence formulae for the determination of the admittances of a multi-layer wall, and

the direct generation of s- and z-transfer functions will be described in this Chapter.
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5.2 THERMAL NETWORK MODELLING TECHNIQUES

5.2.1 New Concept of Thermal Network Modelling

Traditionally, a building thermal network has to be established first for thermal
network analysis, utilizing physical similarity. For example, a heat transfer coefficient is
analogous to an electrical resistance or admittance. A massive wall is similar to an
electrical transmission line. Available network techniques, then, are applied to find the
solution. However, some thermal phenomena in buildings do not have electrical
counterparts, which creates difficulties for modelling of complex heat transfer processes.
The example in the previous section has shown that the complex environmental index
cannot be properly modelled with the available thermal network techniques. This is
because the characteristics of a building thermal network is different from that of an
electrical network even though they share many similarities. For instance, the delta-to-star
transformation results in a difference between the star temperature and a thermal
parameter such as the operative temperature. Moreover, there is no equivalent delta-to-star
transformation even for an electrical circuit when the number of nodes in the network to
be transformed is more than three. Nevertheless, the transformation currently has to be
adopted for a building thermal network with any number of nodes in order to

approximately model the complex thermal processes.

A new concept of thermal network modelling is shown in Figure 5.1. A building
thermal network is now based on both the physical similarity and the principle of

equivalence on a mathematical basis. The mathematical relationship between heat flow
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and temperature is equivalently interpreted with the thermal network in term of the
environment index itself rather than the terminal relationship between temperature and
heat flow at the connecting ports of the subnetwork. Two new thermal network elements,
temperature-controlled temperature source and temperature-controlled heat flow source,
are introduced for this purpose. An imaginary subnetwork is then established to describe
any complex thermal process explicitly with the linear relationship between the variables.
The network analysis techniques are finally applied to obtain the result. The following
sections will further demonstrate how the new concept of thermal network modelling

works.

5.2.2 An Imaginary Subnetwork for the Operative Temperature
The operative temperature is one of the key environmental parameters that are
frequently used to evaluate the thermal comfort. It is defined by ASHRAE (1993)

_ BTy R Ty (5.1)
‘ hr + hc
where T _is the mean radiant temperature (°C); T,; is the room air temperature (°C); h,

and h, are radiative and convective coefficients (W/°C/m?), respectively.

The mean radiant temperature can be calculated when the temperature of the
surrounding walls, the thermal properties and dimensions of the surfaces and the view
factors between the person under consideration and the surrounding surfaces are known.
If the emissivity of all the interior surfaces is high and the temperature differences

between the surfaces of the enclosure are relatively small, the mean radiant temperature
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Ty, is approximately given by ASHRAE (1993):

Tmr = F;-‘f T-ff (5-2)

with

where T is an internal-surface-temperature vector (°C); F

p-sf is a vector of the angle

factor between a person and surfaces; subscript ng is the number of internal surfaces;
superscript T represents transpose. The vector of the angle factor can be either obtained
from Fanger’s figures (ASHRAE 1993; Fanger 1982) or calculated using the analytical

formulae (Rohsenow and Hartnett; ASHRAE 1993).

More generally, the mean radiant temperature can be obtained through the detailed
analysis of heat transfer in buildings. A method developed by Athienitis and Shou (1991)
may be used to evaluate the indoor thermal comfort at any location. For instance,
assuming that a sensor is located in the centre of a room, the mean radiant temperature

may be written by

T, = - ATLI - disglp] F 1" diagle] T, (53)

mr
[4
where diag[e] is a diagonal matrix of the emissittance of room surfaces; A, is the total

room-surface area (m2); A is an area vector (mz); I is an identity matrix; diag[p] is a

diagonal radiation-reflectance matrix and F is a radiation-view-factor matrix. The details

78



of the above method have been published elsewhere (Athienitis and Shou 1991).

In view of Equations from (5.1) to (5.3), the operative temperature is expressed
by the linear superposition of the room air temperature and the internal-surface

temperatures. It may be written in the generalized form as follows:

T, =V'T, (54)

with
V= [ vp vzr "%y v,.,]

where V is a vector of the transfer temperature ratio. VX may be equal to FT.
Pe. y q p-sf

Equation (5.2) or (AT/A()[I-diag[p]F]'ldiag[e] in Equation (5.3). Therefore, the mean

in

radiant temperature may also be considered as sum of all the temperature-controlled
temperature sources in the sense of network. The element of the vector V is regarded as
a temperature transfer factor. An imaginary temperature-controlled heat source may
replace the temperature-controlled temperature source for the convenient establishment
of a building thermal network. The contribution of an individual temperature (the internal-
surface temperature or the room air temperature) to the operative temperature may then

be modelled by
4=V =81 (5-5)

where q; is an imaginary temperature-controlled heat flow (W); y1 is unit thermal
admittance (W/°C) that is equal to I; Tj is the room air temperature or the surrounding-

surface temperature (°C); Bej is a transfer thermal-conductance (W/°C), which can be
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obtained from Equations (5.1) through (5.5). Hence, the total contribution from the room
air temperature and the surrounding-surface temperatures may be written in the vector

form as follows:

Q‘ = GT T (5.6)

with

G = [ 8e> 8epp 8,,,’ ]T

T = [ Tp Tp "y Tn', ]T

where G is a transfer thermal-conductance vector (W/°C); T is a temperature vector
consisting of the room air temperature and all the internal-surface temperatures (°C);
subscript i represents room air. The imaginary heat flow Q, can be transformed to the
operative temperature when it passes through the branch of the operative temperature.

Thus,

T, =z Q, (5.7)

where z; is unit thermal resistance (°C/W), which is equal to 1. Substituting Equation

(5.2) or (5.3) into (5.1) and then comparing (5.1) with (5.6) and (5.7), we have

G-—1_ &,
h+hc

r

hFy 1T . (5.8)

The relationship between the operative temperature and the environmental
temperatures (the air temperature and the internal-surface temperatures) in Equations (5.4)

through (5.6) may be explicitly described with an imaginary subnetwork, as shown in
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Figure 5.2.

5.2.3 Imaginary Solar Source
Thermal network analysis for the solar radiation could be significantly simplified
when the detailed thermal network has only one independent solar source. An imaginary

solar source is thus proposed in Figure 5.3, which may be expressed by

Q‘ =y T, 5.9

where Q is the total solar radiation incident on the external surface of the window (W);
T, is imaginary solar temperature (°C) whose value is equal to that of Q when y; is set
to one. The total solar radiation is largely transmitted through the glazing and then
absorbed by the interior surfaces. The remainder is either reflected or absorbed by the

glazing. Thus,

sy
r+Zr +Er=1 (5.10)
a1 st

where r is the ratio of solar radiation absorbed or reflected, which is called as transfer
heat flow ratio; ng is the number of the internal surfaces; o, is the number of glazing
layers; subscripts p and o indicate the reflection and absorption of the glazing. Combining

Equation (5.9) with (5.10), one may have

Q =(g, + Zg,+E g) T, G-1D

a1 if

with
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8 =V s &, =¥l & =¥
where g and g, are the transfer thermal-conductances for solar radiation reflected and
absorbed by the glazing; g; are the ones absorbed by the internal surface. Each term in
Equation (5.11) represents one solar source. It can be modelled by a temperature-
controlled heat source, as shown in Figure 5.3. This allows the solar source to be
represented by a single independent heat source and the number of independent heat
sources to be significantly reduced in a detailed building network so that the overall

transfer function with respect to solar radiation as an input can be directly calculated.

5.2.4 Recurrence Formulae for the Wall-Admittance

The thermal admittances of multi-layer walls are traditionally obtained by means
of solving the transfer matrix of multi-layer walls, which is the product of cascade
transfer matrices. New algebraic recurrence formulae are developed to provide
straightforward calculation, and insights to the variation of the thermal admittance of

multi-layer walls.

A homogeneous slab can be analogous to a reciprocal and symmetrical three-
terminal network (two-ports), which may be represented by an equivalent two-port lump
parameter network (Davies 1983). The thermal network of double-layer walls can then
be considered as two individual networks of a homogeneous slab in cascade connection,
as show in Figure 5.4-a, where Y|, Y, and Y, represent the thermal admittances of the
first slab while Y,’,Y,’ and Y;’ denote those of the second slab. The formulae for

determining them can be found elsewhere (Kimura 1977). If two lumped admittances, Y;
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and Y,’, connected in parallel are regarded as one, a star-connected admittance network
is formed by Y,, Y,” and Y3+Y,’. It can then be equivalently transformed into a delta-
connected admittance network composed of Y;,, Y3; and Y,; in Figure 5.4-b, according
to the network theory (Roe 1966). Similarly, two admittances, Y, and Y5, in parallel can
be also regarded as one Yl‘, and Y,3 and Y3’ as Y3'. It is now obvious that the cascade-
connected network of double-layer walls becomes a delta-connected network, which is of

the same form as that of a slab. Therefore, the new admittances may be written by

. Y2Y2,
Y, = / /
Y, +Y,+Y + 1,
Y =Y, + Yz(Y“/Y{)I (5.12)
L+L+h+h
;. LY+ 1
Y, =Y + 3

Y, +Y, +Y + Y
where Yz‘ is the transfer admittance of double-layered walls, and YI* and Y3‘ are the
storage admittance at the two sides of double-layer walls; superscript ’ denotes the second
layer and * the two-layered wall. The self-admittances, Y“‘ and Y22', of double-layer

walls can be calculated by

Yl‘z = th
Y=Y +Y; (5.13)

Yp=V¥; + 1

Equations (5.12) and (5.13) are basic recurrence formulae for the admittance of multi-
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Figure 5.4 The two port network of a double-layer wall
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layer walls. No matter how many layers a wall consists of, the admittances of the first
two layers can be calculated by the above formulae. Then, we can regard them as an
equivalent slab, which can again form another two-layer wall with the third layer. In this
way, we can calculate them layer by layer until the overall thermal admittances are finally

obtained.

5.3 GENERALIZED BUILDING THERMAL NETWORK

The assumptions described in Chapter 4 are applicable to a generalized building
thermal network. Thus, the superposition principle can be utilized. The generalized
thermal network is composed of the following basic elements. First, distributed elements
such as the massive floor are described by a general admittance. Second, radiative and
convective heat conductances are depicted by thermal admittances or impedances. Finally,
temperature-controlled heat flows are used to model the operative temperature heat flows

driven by the ambient temperature, and solar radiation absorbed by internal surfaces.

The techniques can be employed in any detailed building thermal model. However,
a simple thermal network for the floor heating system in the outdoor test room may be
helpful for the illustration of the new techniques. Moreover, a simplified model is also
acceptable since the main thermal storage of the system is the concrete floor. The room
model with node positions is schematically shown in Figure 5.5-a and its corresponding
thermal network in Figure 5.5-b. Node 1 denotes the internal surface of the inner window

glazing; node 2 represents the internal surface of surrounding walls and ceiling; node 3
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is the internal surface of floor; node i represents the indoor air temperature; node H
means the auxiliary heat source; node o is the ambient temperature and node r is for
reference. Nodes s and e are imaginary and denote a solar energy source and the operative
temperature, respectively. T, represents outdoor temperature; Q; solar source and Qy
auxiliary heat source; T, is the operative temperature and T, is the imaginary solar
temperature; y, is thermal admittance between the outdoor air and the floor radiant panel;
¥ is between the outdoor air and the internal surface of the inner window glazing; y is
infiltration admittance; Y4 is combined conductive admittance between the outdoor air and
the internal surfaces of the wall and the ceiling; yg, y;; and y,, are convective
admittances between the indoor air and the internal surfaces of the window, floor and
surrounding wall, respectively; Y10 Y1 and y,, are radiative admittances between the
interior surfaces; y, and y, are imaginary thermal admittances; 81> & and g5 are transfer
thermal-conductances for the solar source and 8eci» 8el» B¢z and g.3 for the operative
temperature (W/°C), which may be obtained by Equations (5.1) through (5.6). Y, is the
symbolic heat capacity admittance of the inner layer of surrounding wall that equals st,
where s is the Laplace domain variable and Cp the inner layer capacitance (J/°C). Yo
and Y, are the thermal storage-admittance at both sides of the massive floor and Yoe
is the thermal transfer-admittance, which are given as:

A, (cosh( Bl ) -1)
P sinh( Bl ) / kB

4

Y
™2~ sinh( Bl ) | kP

(5.14)
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L RLY)

(b) Generalized thermal network

Figure 5.5 The model of the floor heating system
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where B=(s/a)"2; A is the area of the floor; | the thickness of the floor; a the thermal

diffusivity and k the thermal conductivity.

As shown in Figure 5.5, the operative temperature is explicitly described by the
subnetwork. A heat source such as solar radiation and auxiliary heat is modelled by a
single independent heat source. The symbolic analysis of the thermal network may be
further simplified by applying the principle of superposition and Norton’s theorem
(Athienitis et al. 1985). According to Norton’s theorem, an active linear subnetwork that
is connected to a network at two terminals can be modelled by an equivalent heat source
and an inactive network coupled in parallel while the relationship between temperature
and heat flow at terminals n3 and n, remain the same. Therefore, the complicated
subnetwork of the floor may be replaced by the Norton equivalent since temperatures at
the external surfaces of the building enclosure are usually of no interest, especially for
generating the-s-domain transfer function. The two terminal subnetwork as seen from
ports n3 and n, for the massive floor is shown in Figure 5.5-b. Yif Yo and Y
represent the thermal admittance of the concrete floor. The ambient temperature source
T, is acting on the external surface. The radiant panel supplies auxiliary heat into the
floor. Solar energy absorbed by the internal surface releases to the room. On the basis
of the superposition principle, a transfer function with the operative temperature as output
and auxiliary heat as input can be obtained when both ambient temperature T and solar
source Q are set to zero. Short-circuiting the subnetwork of the floor at ports n; and n,

in Figure 5.6-a, one may have the short-circuit heat flow Qy, given as:
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Q= YmTH

and the auxiliary heat source Qy is given by:

QH=[yo+Ynﬂ+YMﬂ]TH

Consequently, the equivalent heat flow Q; may be expressed by

Q. = Yo Qu (5.15)
h
Yo + Yo + Yop

Letting all the excitation sources in the subnetwork of the floor inactive and temperature
difference between the terminals n; and n; acting on it, one may have, after some
derivation using Equations (5.14), an equivalent thermal admittance between the
connecting ports n; and n, as follows:

_ A (3, 4, + tanh( 1) kB )

s (5.16)
1+ (y,/ Ay tanh( Bl ) / kB

The Norton equivalent with the auxiliary heat source active is shown in Figure 5.6-b.
Similarly, one can have the other two Norton equivalents as shown in Figure 5.7. The
equivalent simplified subnetwork is the self-admittance Y, and temperature-controlled
solar source g.;T, connected in parallel (Figure 5.7-a) when only the solar source Q is
active. Letting the ambient temperature active alone, the equivalent heat source may be
modelled by ambient-temperature-controlled heat source that is equal to the product of
the ambient temperature and the transfer-admittance (Athienitis et al. 1985), as shown in

Figure 5.7-b.

89



nrp

(@) Short-circuit of the subnetwork of the floor at port Dy-Nr

0% Y3

2 M

(b) Equivalent heat source and thermal self-admittance

Figure 5.6 The Norton equivalent with auxiliary heat source active

® ®
Y3 8s3Ts Q,=YpTo Y;
9 Or € Ir
(a) Solar source active (b) Ambient temperature active

Figure 5.7 The Norton equivalent with solar source or ambient temperature
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54  APPLICATION

Three transfer functions in the s-domain relating the operative temperature (output)
to the auxiliary heat, solar radiation, ambient temperature (input) will be derived for the
floor heating system in the test room. A general hybrid system of thermal balance
equations for the thermal network in Figure 5.5-b is first established according to the rules

given in Chapter 4 as follows:

All AIZ
4, Ay

X,

X,

AX-= =0 (.17

The system variables in Equation (5.17) are given by

X, = [ Ty The Ty T T,y Ty T, Q@ Q Q, ]T

X2=[Tx I, I, I, T, T, Ta]T

(5.18)

where T with a subscript b indicates branch temperature and the other symbols are node

temperatures. The partitioned coefficient matrices are given by:
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[y, © 000 0O0 O

0y, 0000 0 0

0 0y00000-10

0 00y 000000

0 000FY¥0O0GO OGO OO0
A=l 000FY 0 -10 -1]|°

(5.19)

0 -1L00O0OOH 00 0

0-10000 0H 0 0

0 -100000 0AH O

(000000 -100 7
Y I, K

Ap=| 0" | Au=[Low O] - Au=[om _1]

“x7 | (1x6)

where capital symbols such as Y,, Y3, Hy, Hy, Hy and Zg are symbolic parameters and
the other symbols represent the numerical parameters. Subscript (ixj) means ixj
dimension, Y, is a generalized-node admittance submatrix and K is a vector, which are

expressed by

[ Yo*+¥10*¥u 0 -8y Y Yu Y10 0 ]
s 00 “8u 82 8s O
0 0 0 0 0 0 0
ha= Yo 0 0 yy+y;3+¥4 Y Y13 0 ’ (5.20)
n 0 -8, Yo Y1 YutVe*Vs Y2 24
Yo 0 -8y “Yis 2 Yio*Y12*Y3 0 |

P
"

[1t00100]

The numerical coefficients are calculated on the basis of the following parameters:

92



The dimension of the test room was 2.82 m x 2.22 m x 2.24 m and the window area was
1.08 m x 1.08 m. The insulation was 2.2 RSI (°Cm2/W) on the vertical walls, 3.6 RSI
on the ceiling and 5.4 RSI on the floor. The exterior heat transfer coefficient on all the
external surfaces was 35 W/°C/m? and the interior convective coefficients were taken to
be 3.08 W/°C/m? on the vertical surfaces and 4.0 W/°C/m? on the floor and ceiling
surfaces (ASHRAE 1981). The radiation exchange factor between the internal surfaces
was calculated with an emittance of 0.9 and the linearized radiative conductance was
based on the mean temperature of 294 K. The infiltration was set to 0.7 air changes per
hour (Shou 1991). Consequently, we have all the numerical admittances and temperature-
transfer factors as follows: y,=5.48, ¥6=3.68, y;=17.0, yg=3.59, y,,=0.98, y;;=5.0,
¥12=30.56, y;3=25.0 and y,,=91.0 W/°C; g,,=0.36, g.1=0.021, g.,=0.504, g.,=0.114

W/°C; and g,=0.09, g.,=0.48 and g£,3=0.24 W/°C.

When only the independent auxiliary heat source is acting on the system and the
others are set to zero, the dead variables including Tos Tpor Qs Q,r T and T, should be

taken out from the vector Xl and Xz- Thus

X =[sz Ty Ths Ty, Tp3 Q, ]r
L=[L T T, L)

Correspondingly, the entries in the rows and columns relevant to those dead variables

should also be deleted from the coefficient matrix A. Then
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(5, 0 0 0 0 0|
0 5,00 0 0
0 0y, 00 0
4=l 00zr0 0"
00007V -I
0-100 0 &,
[ Yo*¥10*¥y O Yo Yu Y10
Ca 0 -, 8.2 83
A= Vo 0 Yory3+yy Ve Vi3 ,
Va0 Y4 YrutVntV Y2
Yo 0 -y 2 Y10V 12*V13
0 o0 o 0 0o |

A, - [I(s>.s) 0(5xl) ] ’ 4, = ‘[ I(5x5)]

Substituting all the numerical parameters into the above equations and applying the

computer program developed in Chapter 4, gives

T(s) 95.6 + 0.191Y,

= (5.21)
Qi) 3970 + 92.3Y, + 130Y, + V.Y,

Hh(S) =

Combining Equation (5.15) with (5.21), the transfer function relating the auxiliary heat
to the operative temperature is given as:

O 95.6Y,, + 0.191,Y, ,

= = (5.22)
Qy(®) 3970on + 92.3Y,Y, + 130Y,Y,, + Yy,

with
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Yo=Y+ Vo + Yy
Similarly, Letting either the solar source or the ambient temperature active alone,
the systems of thermal balance equations may also be simplified (Appendix B). Then, the

transfer function with the ambient temperature as input may be expressed by

() = =) HNAS) (5.23)
T() 3970 + 923Y, + 130Y, + L%,

where
HN(s) = 3970 + 2.56Y2 + 34.9Y3 + 95.6Yﬂ + 0.191Y2Yﬂ + 0.0225Y2Y3
with

cosh(BD) , ! sinh(B),
Yol A, kBl

Y, = A (
Similarly, the transfer function with the solar source as input is given as

H ) T(s) 71.6 + 0.0575Y, + 0.428Y, + 0.000105Y,Y,
5) = =

_ _ (5.24)
= Q) 3970 + 92.3Y, + 130Y, + Y,Y,

The three s-domain transfer functions provide a basis for systematic analysis of
the floor heating system and the direct generation of z-transfer functions of the entire

process.

5.5 GENERATION OF A Z-TRANSFER FUNCTION

5.5.1 Method

Examination of Equations (5.21), (5.23) and (5.24) shows that the three s-transfer
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functions Hy(s), Hz(s) and H(s) have the same denominator but different numerators. It

may be expressed in the general form as follows:

H(s) = NG) (5.25)
D(s)

A z-transfer function with the operative temperature as an output for the entire floor
heating system can be directly derived from the s-function by applying the available

transform techniques (Churchill 1944; Stephenson & Mitalas 1971).

A unit triangle wave is adopted as a discret input for variables such as ambient
temperature, solar energy and auxiliary heat. It can be described by the combination of

functions of a unit ramp, which is defined as:

0 t<0
) = (5.26)
n® £ t>20
At

where t is time and At is a time interval. The Laplace transform of t is equal to 1/s2.
Hence, the s-domain response with a unit ramp input should be N(s)/s?D(s). Applying the
Heaviside expansion theorem (Churchill 1944, Kimura 1977), the inverse Laplace

transform h(t) is given as:

=NO) ¢ _ .ﬂ(l_e‘f)

h@) -
DO i s’pis)

(5.27)

Koz-g; K (1-¢e7)

with
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N(O N(s
K,-NO g NS

bO) " T 52 i)
where s; are the poles of the transfer function H(s), which are the roots of the
denominator D(s) after cancelling common factors in the numerator N(s). A key to the
above solution, then, is to find the roots of the denominator. Analysis of s2D(s) shows
that it should have an infinite number of negative real roots (i.e. $=-X; j=1.2,+, x;>0)
besides double roots at s=0. The denominator may be directly or indirectly solved. The
direct approach has been extensively used in the past (Mitalas and Arseneault 1967; and

Kusuda 1977). Since D(s) has all negative real roots, one may utilize the following

cosh(B)) = cosh(i pl) = cos(p))

relations

(5.28)

sinh(B) _ i sinh(ul) _ sin(u))
7] iul pl

to avoid calculating in complex numbers. After substituting Equation (5.28) into (5.25),
a root-scanning scheme is used to find an initial estimate of roots. The denominator D(s)
is repeatedly evaluated with small increments of s. Whenever the function changes sign
on the interval, a root should exist there if D(s) is a continuous function. Then, an

algorithm that is suitable for solving both continuous and discontinuous nonlinear
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equations, such as halving the interval, is applied to determine the precise location of the
roots. Theoretically, the roots of D(s) are located from zero to negative infinity. However,
the response function h(t) in practice converges rapidly. The number of roots that need

to be found is generally less than thirty.

In the indirect approach, the hyperbolic functions are expanded with power series

as follows:

=0 (2n)!

. _ - (‘31)2(n+l)
smh(BHB! = Z..; @n+1)!

A proper rational function for H(s) can be obtained after performing the arithmetic
operation on polynomials. The degree of the numerator and denominator polynomials
depends on how quickly the coefficients converge. The roots of the denominator can be
found without difficulty by using any available algorithm for solving polynomials, such
as Laguerre’s method (Press et al. 1992). This approach needs to carry out the arithmetic

operations on polynomials. However, it ensures that there is no root missing.

When a unit triangle wave acts on the system, the response factors of the room
may be expressed by the linear combination of the transfer functions for the case of a unit

ramp input in Equation (5.27). Thus,
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-1 = + 3 E _ o A
fO) = 1 hAD = K + 320 (1 -e™)
b = KIE (AL G+DAt] - 2h(jAe) + K[ G-DAr]} j=1 (529

=iﬁ (1- e-x,At )2 e-(j—l)x,At
i=1 At

The z transform of the above response factor function should be equal to the z transform
function in the common form as follows:

-1 -2
=b0+l7lz +b, 2% + -

0) + Rz +A2)z2 +
f0) + A1) z f2) z L +d ot +d 2% +-

Multiplying the two sides of the equation with the denominator and letting the coefficients

equal with each other, we have

J
b, = 0 d ’ j = 0’ 1’ -
! ‘Z_.;f() R (5.30)

d, =1

where d; may be calculated by
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d = 1
A A A =

dl =_(e-xx t+e-xl t+...+e-x" t)=_ze-x‘At
i

dz = e-(xlox,)Ax + e-(xl*x,)At PR e-(x,_,+x,)At
(5.31)

n-1 n

=Y Y e aR

i=l jw=j+]
d, =(-)re@rar-rwu
n

where -x; are the roots of the denominator D(s) and n is the number of the roots. The
powers of exponents e of any element d; are simply the summation of j roots taken from
the roots of D(s) (n roots in total). Therefore, the number of terms (exponents) in each
equation is equal to the number of combinations of j roots taken from the n roots of D(s).

The detailed derivation of the above formula is given in Appendix C.

5.5.2 Z-Transfer Function of the Test Room

The s-transfer functions, H; (s), Hy(s), Hy(s), and H,(s) in Equations (5.21), (5.22),
(5.23) and (5.24), will be transformed into z-transfer functions. The thermal conductivity,
density and specific heat of the concrete floor are taken as k=1.1 W/°C/m, p=1650 kg/m>
and cp=750 J/°C/kg, respectively, and the thermal properties of the gypsum board as p=
800 kg/m® and ¢,=840 J/°C/kg. With the method described previously, the transform
procedure is as follows:

(D According to the Heaviside expansion theorem, the roots of the common

denominator should be found first, which are given in the second column
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(-x;) of Table 5.1.

2) The derivative of D(s) may also be derived as follows:

D'(s) = 92.3C, + C,Y(s) + (130 + C,5 )Y(s)

where
Yis) = NY(s)
ol tanh(ﬁor
kBl
with

NY(s) = %f—l [ 1+ Ll tanh(B) J [ sech*(Bl) + tanh(B) ]

k Bl Bl
Apt ‘ 2 tanh(BJ)
- S22 (4, + k tanh(pD B][sech (8 - 25ED |

where u, is equal to y /A

3) The response factor functions, f, (1), f1(i) and f (i), with a unit triangle input
are then determined, using Equations (5.27) and (5.29). The results are
shown in the last three columns of Table 5.1.

@) The coefficients, d(i), of the common denominator of the z-transfer
function are obtained, according to Equation (5.31). Then, the coefficients,
by (i), bp(i) and by(i), of the numerators with respect to the inputs of the
short-circuit heat flow Q,,, ambient temperature T, and solar radiation Q
are calculated, using Equation (5.30). All the coefficients are given in Table

5.2.
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Table 5.1 Results for the Response Factor Functions

r__—'——_——--—————_
f,()x10° f(i)x10? f(i)x10°

i X
A=0.5hr 1/0.5hr °C/(kJ/0.5hr) °C/(kJ/0.5hr mz)
0 0.0621 0.7701 8.9020 1.1258
1 0.6517 1.0061 9.4844 1.4279
2 6.8203 1.0798 6.9993 1.1145 t
I
3 25.759 1.0930 5.5791 0.9307
4 57.339 1.0680 4.7227 0.8139 "
5 101.55 1.0250 4.1671 0.7332 ”
6 158.40 0.9744 3.7749 0.6726 "
7 227.88 0.9215 3.4739 0.6235 "
8 310.00 0.8690 3.2264 0.5814
9 404.75 0.8183 3.0122 0.5441
10 512.13 0.7698 2.8204 0.5101
11 632.14 0.7239 2.6452 0.4788
" 12 764.79 0.6805 2.4831 0.4496
‘[ 13 910.07 0.6397 2.3321 04224
I R R R
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Table 5.2 Coefficients of z-Transfer Function for the Test Room

i d() by ()x10° by(i)x10? b(i)x10°
A=0.5hr °C/(kJ/0.5hr) °C/(kJ/0.5hr m?)
0 1.000000 0.770105 8.90198 1.1258
1 - 1.462027 - 0.119849 - 3.53053 -0.2180
2 0.491359 - 0.012716 - 2.49308 - 04199
3 - 0.000535 0.008300 0.00142 0.0023
é
5) The coefficients by (i) of the z-transfer function that have been found so far

are corresponding to the input of the short-circuit heat flow Qy, rather than
the auxiliary heat source Q. The relationship between Q;, and Qg has been
given in Equation (5.15) without taking the time delay of the radiant panel
into account. The time constant of the radiant panel is about one minute.
This thermal lag may be assumed to be a simple time delay for simplicity.

Substituting (5.14) into (5.15), we have

e " Q
Q, = T 2 (5.32)
T opr oD

where Tol is the dead time of the radiant panel. Then, the response

factors relating Q;, to Qg can be determined in a manner similar to steps
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1 through 3, and the coefficients by with respect to the input of Qg may

be calculated by

by() = 5“_, b, -
j=0
where fy; is response factor with Qy as input and Q,, as output. Finally, the
z-transfer function for the floor heating system in the test room is obtained
as:
T (i) = 1.4620T (i-1) - 0.4914T(i-2) + 0.0005345T,(i-3)

+ 0.0006652Q,(i-1) - 0.00002434Q,(i-2) + 0.08902T.(i)
- 0.035305T,(i-1) - 0.024931T,(i-2) + 0.001126Q,(3)

(5.33)

- 0.0002180Q,(i-1) - 0.0004199Q,(i-2)

Both qualitative features and quantitative parameters of the above theoretically
derived model will be utilized to develop supervision rules and to establish an initial

model for real-time identification of the floor heating system.
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CHAPTER 6
REAL-TIME IDENTIFICATION

OF THE HEATING PROCESS

In this chapter’, recursive least squares techniques are applied for real time
identification of the heating process in the test-room. Several practical implementation
issues are discussed and investigated with experiments. Prior knowledge obtained in
Chapter 5 about the heating process is utilized to determine the structure parameters of
the initial model and to establish a set of supervision rules for parameter estimation.
Three models are employed for three different situations to avoid the violation of the
required pre-conditions for the parameter estimation. A computer program based on the
system identification algorithm presented in this chapter has been developed and
implemented in the test room. Experimental results from identification of both the ceiling
and the floor radiant heating systems show that the globe temperatures predicted by the
identified models agree well with the measured data. This allows us to use the real time
system identification techniques for on-line dynamic operation of buidling envelope

heating systems.

* See also publications by Chen and Athienitis (1994 and 1996B).
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6.1 INTRODUCTION

Real-time determination of heating process parameters is an essential element in
the adaptive predictive control and the set-point optimization. Typical prediction horizon
during which the set-point is optimized varies from six to twenty-four hours while the
prediction horizon for the adaptive predictive control is generally less than one hour. It
is apparent that the working conditions of the process will vary widely over the long term.
In addition, the predicted error could accumulate over time. Consequently, requirements
for the identified models used for the determination of optimal set-points is higher than
that for the adaptive control. This chapter will focus on identification of the heating

process models used in the set-point optimization.

The theoretical parameter estimator is based on idealized conditions. It provides
guidelines for development of real time identification of heating process models.
However, real situations are much more complex than the theoretical pre-assumptions
used for the derivation of the recursive least squares parameter estimator. The theory has
not yet covered every practical aspects of system identification (Astrom and Wittenmark
1989). Solutions to real cases usually depend on practical situations of the application. All
circumstances that may occur in the floor heating system must be considered and

analyzed since the parameter estimation is automatically performed on-line.

Proper model structure, good measured input and output data, and reliable
parameter estimation algorithm are three important factors in system identification. A

linear z-transfer function will be described in the next section for modelling of building
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heating systems. Recursive least squares techniques with U-D factorization algorithm are
then described to prevent rapid divergence of the parameter estimates. Practical aspects
of real time system identification will be discussed and a set of supervision rules for
parameter estimation will be established in Section 6.4. Experimental results will be

presented in the final section.

6.2 MODEL OF THE FLOOR HEATING SYSTEM

The operative temperature, moisture content and indoor air velocity are three
environmental parameters that affect thermal comfort. When moisture content and air
velocity are measured, the influence of these two factors on the thermal comfort may be
taken into account by using Fanger’s figures and equations (Fanger 1970). The operative
temperature is considered as the controlled variable output. The heating process is

modelled with the following z-transfer function:

A@NT() = Bz ™Mu(t-ny) + HZYTS@) + € (6.1)

where T,(t) is the globe temperature, which is approximately equal to the operative
temperature; u(t) is a control input; TS(t) is a vector representing the measurable but
independent sources, such as solar radiation and ambient temperature; €, denotes average
prediction error; ny is the discrete dead time; A(z'l) and B(z‘l) are polynomials and

H(z'!) are polynomial vectors in the backward operator z™!, which are defined by
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AzH =1+ az'+. +a z™
a

-y _ -y ~n 1) -y
Bz™) =b,, 2" +b, 2 * et bz

Hz™ = hy + hyz7t + .+ h'. z ™
where n,, n, and n;, are the order of the polynomials. The two structure parameters
including the model order and the dead time must be determined before the system
coefficients are identified in real time. A number of methods are available to determine
the model order. For example, selection of the order may be based on the rank of the
Hankel matrix (Sinha 1983). It may also be determined by applying the determinant ratio
test to the product moment matrix (Young et al 1980). Most of these methods have been
developed for the off-line situation (Ljung and Soderstrom 1983). A procedure of on-line
search for the structure parameters was presented by Schumann et al. in 1981. In their
method, the parameter estimates are calculated using all the possible structure parameters
within prior specified bounds. The proper structure parameters are selected based on the
criterion of minimal least-squares error between the predicted and measured data.
Polynomial B(z'!) with respect to the control input was over-parameterized by Dexter and
Haves (1989) to deal with the unknown dead time of the system. The length of the dead
time was then determined according to the sign of the leading parameters of the
polynomials. There is no method that is suitable for a general case. In practice, several

methods may be applied. The performance of models with different structure parameters

are compared so as to select the most appropriate ones.
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63 PARAMETER ESTIMATION ALGORITHM

Recursive least squares algorithms have proved to be computationally efficient for
real-time system identification. The least squares estimator is described in the following

form (Isermann 1982):

8k+1) = 8(k) + K(k+1) [ T,(k+1) - T(k+1) () ] (6.2)

Pk) dk+1)
K(k+1) = (6.3
Gt p(k+1) + G(k+1) Pk) dk+1) )

1
p(k+1)

P(k+1) = [ I - K(k+1) ¢T(k+1) ] Pk) (6.4)

with

¢t = [ ~T(k-1) ~ -T(k-n) u(k-1) T, (k) - T, (k~np) SK) - S(k-n) 1

6= g - ana bl hTO thm h:O hs n, ]

PN) = [ ®F @, 1!
Oy = [ 61 Q) ~ d(V) ]
where 8 denotes a vector of the system parameters to be estimated and A means
estimation; ¢ represents a vector of the output, input, measurable heat source and error
data; T, represents ambient temperature; S indicates solar radiation; p denotes a forgetting
factor; k is discrete time; subscripts T and s represent ambient temperature and solar

source, respectively.

P is proportional to the covariance matrix of the estimation error, which should
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be a symmetric positive definite matrix (Astrém and Wittenmark 1989). A direct
implementation of Equation (6.4) may result in a negative definite covariance matrix P.
This will make parameter estimation numerically unstable. The square root algorithm
(Potter 1963) or U-D factorization techniques (Bierman 1982) may be adopted to make
the recursive least squares algorithm more numerically robust. The U-D factorization
method is computationally more efficient than the square root algorithm (Li and Liu

1988). The matrix P(N) may therefore be factorized by

Pk) = Uk) D(k) Uk (6.5)
in order to prevent rapid divergence of the parameter estimates in the recursive
calculations of matrix P. In the above equation, U represents an upper triangular matrix
and D is a diagonal matrix. The U-D factorization algorithm is described by the following
9 steps:

(D Set up the initial values of 8(0), U(0) and D(0)
(2)  Sample the operative temperature, auxiliary heat, ambient temperature, solar
radiation.

3 Calculate c(k) and g(k) with the following equations:

c(k) = UT(k-1) &0
gk) = D(k-1) c(k)

(C)] Compute x;(k) by

x,(k) = p(k)
kK =x_ (k) +ck)gk) 1sicx n,
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(5) Compute K(k) with

K@ - V=) g®
x, ()

(6)  Find 8(k) with
8k) = 8k-1) « K@®) [ T,k - ¢7(k) Bk-1) ]

@) Calculate the diagonal matrix D by

%, (k)

dk) = ——
© = 2w x(K)

dk-1)

(8)  Compute the element of an upper triangular matrix V by

uk-1) gk l<i=j <« n,
OR
Vi -0 + uv(k—l) g,(k) 1 <i<jg n,

(9)  Find the upper triangular matrix U with

1 l<i=jx n,
u; = c,(k)
) y .
wk-1) - 4— v (k l<i<j<n
v'( ) Kj-l(k) ij-l( ) J P

where n, is the order of the matrix P.

6.4 IMPLEMENTATION ISSUES

In this section, several practical implementation issues will be discussed and
investigated with experimental results from the real time identification of the floor heating

system.
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6.4.1 Discussion of Implementation Issues

Uncontrollable inputs on the floor heating process may change dramatically over
the prediction horizon. The expected pre-conditions for the parameter estimation are
frequently violated in practical situations. For instance, solar energy is not a continuous
heat source since it does not exist at night. Hence, it is not consistently exciting the
heating process. The estimated parameters with respect to solar radiation could gradually
deviate from the true values if the model is continuously identified at night. Moreover,
sources including ambient temperature, solar radiation and auxiliary heat do not uniformly
excite the building heating system. Solar radiation, for example, dominates the indoor
temperature on sunny days. The parameter estimates with respect to ambient temperature
and auxiliary heat may diverge significantly from their real values when the solar

radiation is high.

To investigate the above problem, one floor heating process model was used and
continuously identified. The variation of the parameter estimates over 24 hours is shown
in Figure 6.1. In Figure 6.1(a), curves a; and a, represent the coefficients of polynomial
A(z'l) and hy, indicates the first coefficient with respect to ambient temperature. In
Figure 6.1(b), b, is the first coefficient of polynomial B(z'l), hy, is the first coefficient
with respect to solar radiation and S is the irradiance of solar radiation. It can be observed
from Figure 6.1 that the parameter estimates at night are very different from those
identified during day time; It is clearly evident that hy, gradually becomes negative after

sunset. Obviously, this is physically incorrect.

112



Estimated coefficients

1
a S et b x 10 e
8 03 g — -, joeooliomnnn-
Q L % az ’
E - Eidad - Sttt Acseee.., Aeeom"" Areeseoen Ao’
o 0
Q X
3 ¥
T osE
E X
5] 1 " aj
-15 L -
0 4 8 12 16 20 24
Time (Hour)
(@)
1
N 500
S
= 400 g
I H [N E.:
N PRI SR S 300 &
02 + G ) { (CWisqm)) 3 =
Ao aee ¥ 20 g
0 Si s =
i 24100 g
02 | 3 2
- .’—-—’ "..'. ‘\‘
_0'4 H I 14.1 1 4 l [l bl L '4 L L 1 [Mﬁll‘ll 4 I'l 4 I'I : O
0 4 8 12 16 20 24
Time (Hour)

Figure 6.1 Estimated coefficients of the z-transfer function using one model
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Use of either the updated model or the average model over 24 hours will lead to
significant prediction errors. Therefore, three models were adopted in this study so as
to enhance the accuracy of the identified heating system model. One model was used for
night without solar radiation and two models for day time with either the low or the high

levels of solar radiation.

6.4.2 Initial Phase of Process Identification

The aim of a start-up procedure during the initial phase of the system
identification is to obtain a proper initial model of the heating process and to provide a
solid basis for on-line parameter estimation. The free specification parameters must be
properly selected, including the sampling interval of identification and the structure
parameters of models. The bound of the identification interval is relatively wide in
practical engineering situations (Isermann 1982). The computational time also affects the
choice of the sampling interval since the optimal operation strategies will be updated
during each sampling period. The longer sampling interval will demand less from the

computer. Therefore, the sampling interval of identification was taken as At;=0.5 hour.

All possible structure parameters within wider ranges have to be tested on-line if
no information about the heating process under consideration is available. Several
methods described in Section 6.2 may be used. The most suitable parameters are then
determined by comparison of the behaviour of identified models with measured input and
output data. Structure parameter selection and system parameter estimation depend on

each other. The increase in the number of indeterminate parameters will increase

114



uncertainty in the system identification, particularly when the level of noise contained in
the measured data is high. Therefore, prior knowledge of the heating system to be
identified should be utilized as much as possible to reduce the uncertainty and to simplify

the start-up procedure.

The z-transfer function of the floor heating system has been given in Equation
(5.33) of Chapter 5. It provides information on the model structure. Two factors should
be considered before determining the heating process model. Firstly, the dynamic
programming will be used to optimize the operation strategies. Hence, the z-transfer
function needs to be slightly rearranged to be suitable for the application of this
technique. Secondly, the number of coefficients should be reduced, if possible, since the
identification of polynomials with high order requires persistently exciting inputs of high
order (Astrom and Wittenmark 1989). In a real system, the passive sources such as
ambient temperature and solar radiation are uncontrollable while the auxiliary heat has
to obey a control law to keep the room temperature tracking the set-point. It is not
feasible to generate the inputs that satisfy the pre-requirement for the inputs. Therefore,
the order of the model has been taken as follows: n,=4, n,=1, n; =2 and n.=1, and
Ny ,=2 for night and nyg =1 for day time. The dead time n,4 was equal to 1. The
coefficients of the z-transfer function in Equation (5.33) should also be used as the initial
values of the parameter estimates even though the exact choice of the initial parameters

is not very crucial (Ljung and Soderstrom 1983).

The heating system may ideally operate in an open-loop during the initial period
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if the operative temperature is not subject to any constraint during that period. A
perturbation or random test signal rather than a control signal can then be input into the
heating process to accelerate the convergence of the parameter estimates. However, this
may not be feasible if a building has been occupied. The reason is that the initial phase
may take two days or even longer since the sampling interval for the dynamic
operation of buildings generally varies from a quarter to one hour. The open-loop
operation of the heating system may be unable to keep the globe temperature within the
desired range. Hence, the floor heating system was operated in a closed loop. The
convergence of the estimated parameters during the initial period (Figure 6.2) was
observed in the on-line identification of the floor heating system. In Figure 6.2(a), a; is
the first estimated parameter with respect to the output and hr, is the first estimated
parameter for ambient temperature. In Figure 6.2(b), b, is the first parameter estimate
with respect to the auxiliary heat and hg, is the first identified parameter for solar
radiation. It was observed that all the estimated parameters approach their true values after

50 time intervals.

The identified model should be verified before using it for the optimization of the
operation strategies. The average error and the root mean square deviation between the
predicted and the measured globe temperature may be used as a major criterion for

evaluation of the identified models. The mean value g(k) of the error is given as:
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Figure 6.2  Variation of the parameter estimates during the initial period
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&) = exk - ) 66)
with

exk=)) = T,(k~) - ¢T(k-B(k)
where T (k-j) represents the measured globe temperatures stored in the computer; 8(k)
can be obtained from Equation (6.2) and N, indicates the prediction horizon. The root

mean square deviation is defined as:

1 e , 6.7)
ok = \J—N_ Y efk-j)

p 7

The system identification is shifted from the initial phase to the normal operation period
when the root mean square deviation oy is less than the desired accuracy of the process
model. The process model must be restructured if O always exceeds the tolerable error

for a relatively long period (e.g. 80 to 100 intervals).

6.4.3 Normal Operation Period

Some practical problems with the real time parameter estimation, such as estimator
wind-up and unmodeled process dynamics, has been investigated by Wittenmark and
Astrom (1984 and 1989). Unexpected situations may also occur in practice. For instance,
large unmodeled disturbances may result in an unacceptable model. Therefore, it is

important to supervise the parameter estimator during operation in order to obtain a
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reliable and accurate process model.

The qualitative features of theoretically derived floor heating model in Equation
(5.33) provide guidelines for the parameter estimation. Analysis of the theoretical model
shows that the sum of any first parameter estimates with respect to each input (auxiliary
heat, ambient temperature or solar erergy) must be positive. The sum of any first
coefficients except a; with respect to the output (the operative temperature) must be

negative. Thus,

j
Ya<0 j=1,2 . (6.8)
i=]
j
Y bp,>0 =12 - (6.9)
i=0
j
Yk, >0 j=01,- (6.10)
pard

where h; is equal to [hr; hsi]T. The violation of the above conditions will lead to a
physically unmeaningful model. The problem was observed in identification of the floor
heating system. Three updated parameter estimates with respect to ambient temperature
are shown in Figure 6.3(a). It is noticed from Figure 6.3(b) that the sum of the first two
estimates is negative at the first nine intervals even though the sum of all the three

estimates is positive. The first coefficient in Figure 6.3(a) varies from a positive value
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to a negative value while the second coefficient changes from negative to positive. The
negative value of the first coefficient means that the operative temperature would decrease

even though input from the heat source increases, which is physically impossible.

The other feature of the theoretical model in Equation (5.33) is that the common
ratio of response factors of the operative temperature to any input should be less than one
when the number of time intervals is greater than the time delay of the process. This is
a necessary condition for a model to be stable. The response factors can be obtained with

Equation (5.30). The common ratio of response factors can be calculated by

R = ﬂjltz;)l) j >y (6.11)

where R is the common ratio of the response factors; f is response factor; j is the discrete
time interval and N, is the discrete time interval of process thermal lag. The thermal lag
of the heating process to any input has been found in the thermal analysis of the building

heating system in Chapter 5.

When the heating process is persistently excited, the parameter estimates should
be continuously updated to adapt to changes in the heating system dynamics. The old
measured data should then be discarded by a proper forgetting factor p at an appropriate
rate which matches with the changes. If there is no new information about the process
dynamics, the continuous parameter estimation with a forgetting factor less than one may
lead to an unreliable estimator (Wittenmark and Astrom 1984). To prevent this problem,

the time-varying eigenvalue A(k) of the least-square estimator was used to determine if
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there is persistent excitation. The eigenvalue A(k) can be computed by (Knapp and

Isermann 1990):

AB = 1 - K70 6 (6.12)
where K(k) can be obtained with Equation (6.3). An eigenvalue close to zero means that
the heating process is well excited; the parameter estimator should then be switched on.
An eigenvalue close to one indicates that there is no excitation. Hence, the parameter

estimator is switched off whenever

A() = EQYR) . (6.13)

The determination of the forgetting factor should also be based on excitation. It may be

calculated by

Pk = py + (1 -py) * A%(K) (6.14)
where p, is the value of the forgetting factor when the heating process is well excited.
The discarding of the old measured data will be automatically slowed down by the
increasing value of the forgetting factor when the heating process is less excited. The
typical variation of the eigenvalue and the forgetting factor obtained in the experiments
is shown in Figure 6.4. The eigenvalue mainly varied between 0.8 and 1. This means that
the heating process is not well excited due to the uncontrollable heat sources and the
closed loop control, which causes considerable difficulties in the identification of heating

processes in a passive solar building.
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6.5 VERIFICATION WITH EXPERIMENTS

A computer program based on the algorithm described in the previous sections
has been developed and implemented in the test room. The function of ON TIMER in the
Quick Basic Language was utilized to allow sampling and adaptive control to be
conducted on the desired time while the calculations of the system identification and the

set-point optimization are performed in the rest of time.

High frequency noises contained in the measured data may be interpreted as low
frequency signals, which will significantly reduce the accuracy of the estimated
parameters. Since the sampling interval in the adaptive control loop was 200 seconds and
in the set-point optimization loop was 1800 seconds (0.5 hour), the average value of all
inputs and outputs including ambient temperature, solar radiation, auxiliary heat and
indoor globe temperature were taken from 9 samples to filter the high frequency white
noise. The estimated parameters of the heating process also highly fluctuate due to the
influence of noise. The exponential smoothing technique (Chatfield 1989) was adopted
for filtering of the parameter estimates. The filtered value of the parameter estimates is

calculated by
8k = Y& (1 - LY Bk (6.15)
j=0

where { is an exponential smoothing constant whose value should be between zero and
one and subscript f represents filtered value. Notice that the weights §(1-{) decrease

geometrically with j. The recursive form of Equation (6.15) may be expressed by
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Gj(k) =08k +(1-0 éf(k-l) (6.16)
High fluctuating parameter estimates were considerably smoothed by the filter

(Figure 6.5).

The parameter estimation algorithm has been verified by the identification of both
the ceiling and the floor radiant heating systems. The experiments in the ceiling heating
system were conducted from the middle of January to the end of March 1995. Phase
change material (PCM) gypsum boards were placed on the vertical walls of the test room.
The PCM in the gypsum board undergoes solid-liquid transition in the range of 16 °C -
20.8 °C (Athienitis et al. 1993). This means that the heating system is of high non-
linearity. The average value of the root mean square deviation between the predicted
outputs from the identified model and the measured operative temperatures over 24 hours

was 0.36 °C.

The experiments in the floor radiant heating system were carried out from the end
of March to the beginning of May 1996. The PCM gypsum boards were taken off from
the vertical walls. Hence, the non-linearity of the heating process is substantially reduced.
The parameter estimates were updated during operation. The filtered coefficients of
identified heating process models at the end of the experiment are given as follows: the

model for days with high solar radiation is expressed by
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T(K) = 1.1806 T,(k-1) - 0.0708 T,(k-2) - 0.0821 T,(k-3)
- 0.0572 T(k-4) + 0.9328 u(k-1) + 0.0760 T,(K)

6.17)
-0.0468 T,(k-1) + 3.1954 S, (k) - 0.5081 S, (k-1)
- 1.0464 S (k-2) + 0.00199 ;
for days with moderate solar radiation, it is described by
T (k) = 1.3499 T (k-1) - 0.3134 T (k-2) - 0.1146 T (k-3)
+ 0.0593 T (k-4) + 0.4868 u(k-1) + 0.08265 (9 (6.18)

-0.0565 T,(k-1) + 3.5675 S (k) - 2.4330 §,(k-1)

- 0.3273 §,(k-2) - 0.00035 .
When the amount of the daily solar radiation is equal to or greater than 6 MJ/m? day, it
is considered as a day with high solar radiation in this study. Therefore, Equation (6.17)
is used. Otherwise, Equation (6.18) is adopted to predict the globe temperature. The

model for night is given by

T (k) = 1.2817 T (k-1) - 0.1364 T (k-2) - 0.1584 T (k-3)

- 0.01004 T,(k-4) + 0.7562 u(k-1) + 0.1050 T,(k) (6.19)

0.0643 T (k-1) - 0.0132 T,(k-2) - 0.000134

where u is auxiliary heat (kW); T, is ambient temperature (°C) and S, is the irradiance

of solar radiation (kW/sq m).

Experimental results with the different levels of the daily solar radiation are shown
in Figures 6.6 through 6.10. It can be observed that the operative temperatures predicted

with the updated models generally agree well with the measured data. The average error
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between them was 0.02 °C over 6 hours and 0.05 °C over 24 hours. The average root
mean square deviation was 0.25 °C over 6 hours and 0.27 °C over 24 hours. Large errors
were found on partly sunny days when solar radiation is rapidly varying. This can be
observed in Figures 6.7 and 6.9. The amount of the daily solar radiation on April 15 1996
was 2.52 MJ/m? day (Figure 6.7). It is approximately equal to that on April 23 (Figure
6.9), which was 2.18 MJ/m? day. The variation of ambient temperature was similar on
the two days. The only evident difference is that it was uniformly cloudy on April 15
while there was a pronounced variation in the cloudiness on April 23. This may
significantly affect the prediction accuracy. The prediction error was negligible in Figure
6.7, but it was large in Figure 6.9. A similar phenomenon occurred on April 7 (Figure
6.6) when the variation in the cloudiness was sharp. It can also be observed from Figures
6.8 and 6.10 that the deviation between the predicted and the measured globe temperature
are relatively small on very sunny days like April 19 and April 29 when the amount of

the daily solar radiation is around or higher than 10 MJ/m? day.
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CHAPTER 7
A GENERALIZED PREDICTIVE CONTROLLER
WITH A NEW ALGORITHM

A new algorithm is presented in this chapter’ for improvement of Generalized
Predictive Control (GPC, Clarke et al. 1987A and B). It seeks to avoid the need for the
inverse of the whole matrix in calculation of the predictive control law. The identification
algorithm given in the last chapter was used to estimate the heating model parameters for
the adaptive predictive controller. Multi-step predictor formulas for the floor heating
process were deduced from the identified model, which takes both active and passive heat
sources into account. Therefore, a feedforward control scheme is automatically
incorporated with GPC that is based on the optimal predictive predictor. GPC, PI and on-
off controllers have been applied to the floor heating system. Their behaviour is evaluated
with computer simulations using the identified models. Experimental results show that the
room temperatures predicted with the identified models agree well with the measured
data. The performance of GPC is superior to the other two controllers in terms of

response speed, minimum offset and on-off cycling frequency.

* See also a publication by Chen and Athienitis (1996B)
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71 INTRODUCTION

As mentioned previously, thermal mass integrated with a floor heating system in
a passive solar house can be utilized to reduce peak heating loads by load shifting and
to reduce temperature swings while utilizing the solar gain to reduce energy consumption.
On the other hand, the inherent thermal lag in the floor heating system causes time delay
in the system response. This will present control difficulties, particularly when the floor
thermal mass is thick. Predictive control of such systems may provide a solution to the

above problem.

Adaptive predictive control generally consists of three basic steps: 1) A model of
the process under consideration is first identified on line, using measured input and output
data. 2) An optimal predictor of the process to be controlled is then derived from the
identified model. It is used to forecast the process output over a horizon. 3) Future control
actions are optimized according to the objective function in terms of minimization of both
deviation between the process output and the desired set-point and the control variation.
The prediction feature allows the predictive controller to be able to respond to any
potential future error in advance. Consequently, it can compensate not only for a process

thermal lag but also for the dynamic set-point.

The system identification algorithm described in the last chapter will be adopted
to estimate the model parameters of the floor heating system in a smaller time interval.
An optimal j-step-ahead model of the floor heating system in the test-room will then be

presented to predict the indoor globe temperature, using the identified process model. A

134



new algorithm for Generalized Predictive Control will be developed in Section 7.4 based
on the j-step-ahead predictor. A feed-forward control scheme is also incorporated with the
predictive controller. GPC, on-off and PI controllers will be applied to control of the floor
heating system. The behaviour of the three controllers will be evaluated with computer

simulations in the final section.

7.2  IDENTIFIED MODEL FOR PREDICTIVE REGULATOR

A z-transfer function model similar to Equation (6.1) is adopted for the adaptive

predictive controller as follows:

AR DT = B Yu@-ny) + HEZ)TSG) 2.1)

+ C(z Ve

where C(z'!) is a polynomial; e(t) denotes a white noise sequence which represents all
unmeasurable and random disturbances and the other terms have the same meaning as

those in Equation (6.1).

The real-time system identification algorithm associated with a set of supervision
rules developed in the last chapter was implemented to determine the above model. The
test-room described in Chapter 3 was used as the test facility. The floor heating system
operated with feedback control. Ambient temperature, solar radiation, floor surface
temperature, indoor air and globe temperatures were sampled by the data acquisition and

control system. Since the model can be quickly adapted to dynamic variation of the
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heating process and the prediction horizon for the adaptive controller is much shorter
compared to that for the set-point optimization, two models instead of three were adopted
to avoid the problems with inconsistent inputs such as solar radiation. The heating process
parameters were continuously updated. An updated model for night was obtained as

follows:

T, = 1.0471 T(k-1) - 0.1879 T,(k-2)
+ 0.01207 T,(k-3) + 0.1267 T,(k-4) a2
+ 0.04221 u(k-2) + 0.001809 T,(k)

~ 0.004054 e(k-1) + 0.00306

and for day time, it was given by:

T, = 1.3256T,(k-1) - 0.3245T (k-2)
- 0.04824T,(k-3) + 0.04514T (k-4)
+ 0.03751u(k-2) + 0.001352 T,(k)

(7.3)
+ 0.84335,(k) + 0.24315,(k-1)
- 0.95365,(k-2) - 0.3201 e(k-1)

+ 0.004253

where T is ambient temperature °C and S, is the irradiance of solar radiation (kW/sq m).

The prediction horizon of the predictive controller is generally is less than an

hour. The globe temperature was predicted 20, 40, and 60 minutes ahead separately, using
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the updated models. The average errors & and root mean square deviations & between the
predicted values and the measured temperature are given in Table 7.1. It can be seen that
the night model is more accurate than the day model since solar radiation increases the
uncertainty and non-linearity of the heating system. The results also show that the
predicted temperatures agree reasonably well with the measured data even though the

error is increasing with increased prediction horizon.

Table 7.1  Average Errors & and Root Mean Square Deviations & (°C)

between the Predicted and the Measured Temperatures

Minutes Day Model Night Model ,
Ahead z 5 z 5 ‘I
20 0.04 0.11 0.02 0.07 ’l
40 0.10 0.19 0.05 0.10
60 0.16 0.26 0.08 0.12
—_—

7.3  OPTIMAL PREDICTIVE MODEL OF THE FLOOR HEATING PROCESS

The model of the floor radiant heating system in Equations (7.1) through (7.3)
may be reorganized into the CARIMA (Controlled Auto-Regressive and Integrated

Moving-Average) form (Clarke et al. 1987A) as follows:
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A'@ YT = B ™HAu@-ny) + HE)TSE) (7.4
+ Clz e
with
Au(®) = u(®) - u(t-1)
Az =AgMNA, ny=n, + 1

''e1. g =- oo 1<i
@ =1,a,,=-a ,4 =a -a, lsisn,

HzY)=HzYHY%, n,=n, +1

hy = ho . by, = -k

l"

hy =h - h,, lsisn,
Czh=CehHA , ns=n +1

I _ o I 1<i
Co=CpsCn, = ~Cp»C =€ ~ €, lsisn

where A is the differencing operator 1 - z°}; n, and n_ are the order of polynomials Az
and C(z'h), respectively; my, is a vector for the order of polynomial vector H(z'!). The
CARIMA model is particularly appropriate due to its inherent integral action for most

building HVAC applications.

As pointed out by Favier and Dubois (1990), the single-step formulation of the j-
step-ahead predictor described by Astrom (1970) is time-consuming since it needs to
solve a set of Diophatine equations. The step-recursive algorithm presented by Clarke et
al. (1987A and B) made great improvement in computing the j-step-ahead predictor. The
multi-step formulation originally proposed by Alaike (1975) and developed by others

(Goodwin and Sin, 1984; Favier, 1987), appears computationally efficient as compared
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with the single-step formulations (Favier, 1987) because it avoids calculating the
polynomials of the j-step-ahead predictor. According to the multi-step formulation of the
j-step-ahead predictor, one can have, after some deduction, the following multi-step
formulation of the j-step-ahead predictor for control systems with measurable and possibly

predictable passive driven sources:

I-ry IRy
T,@+) = Y bAd(t+j-n,) - Y a/T,(t+j-0)
i=0

i=1l

nb nc/

+ Y bAu(t+j-nyi) + Y cle(t+j-i)
! “ (1.5)

Ilu/

Jj-1
- Y aT@+-i + gh’f TS*(t+j-ift)
4

f=f-nge1

llh/

+ Y BT TS(2+j-0)
i=f

where the superscript * represents a value predicted at time t and i is a control action to
be determined; ny is the order of polynomial B(z'!). The optimal j-step-ahead predictor,
based on all available inputs, outputs and other independent sources such as ambient
temperature and solar radiation up to time t, gives the minimum prediction error at j-steps

ahead.

Recursively substituting the previous predicted outputs (see Appendix D for
detail), Te*(t+ntd), vy Te‘(t-i-j-l), into the predicted future output Te'(t-i-j), one can obtain

the following multi-step formulation of the optimal j-step-ahead predictor:
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T, =GU + F

with

T, = [ T,(+ny), T,t+ny+1), -, T, e+ I

U- = [ Ali(t), Aﬁ(t"'l)a s Aﬁ(t*‘j-nﬂ) ]T

EA 0
8 8o

8j-ny 8j-ny1 " 8o

F = [fls .fzs "y f]-n“#l ]T

where the elements g, and f; may be expressed by

Min(n_ik)
&=b- Y a; 8 Osksj-n,,
i=1
Min(e,1-1)
fi=fu- X af, Lslsj-n, +1

i=1

f

(7.6)

a7

0,1 €an be considered as the contribution to the globe temperature from the known historic

outputs and inputs as well as predicted ambient temperature, solar radiation and globe

temperature. It may be computed by
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LT3 ngl

for = Y bAu@+l-1-) + ¥ clet+len~1-)

i=l telong-1
R leng-2
- E a,'Te(t+l +n -1-0) + E 4 f IS*(t+l+n -1-0) (7.8)
i=l i=0

nh,

+ Y K] TS(@+l+n-1-i)
t=len -1

It can be observed from Equations (7.5) and (7.6) that the future output T‘(t-l-j)
depends on three terms: future control actions to be optimized, past known control inputs,
measured outputs and passive inputs, and future independent sources. If the future
independent sources are predictable, TS (t+i) with i>0 can be replaced by the predicted
value, otherwise it is approximated by the current measurement, TS (t). For example,
solar radiation can be quite precisely predicted on a sunny day but perhaps not on a

partially cloudy day.

7.4  GENERALIZED PREDICTIVE CONTROL WITH A NEW ALGORITHM

Assuming no constraints on future controls, Clarke et al. (1987A) minimized the

following objective function:

nyrny-1
Jgn) = Y [T - T e P
S (7.9)

p
+ YA Ad(e+j-1)
J=1
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They obtained the Generalized Predictive Control law in the vector form:

OC=[GG+M]'"G"[T, -F] (7.10)

When the dead time of control systems is known, the minimum prediction horizon is
equal to the time delay n, n, is the maximum prediction horizon, A is a control-
weighting factor, and the subscript, sp, is the set-point. The control horizon n, is usually

less than the prediction horizon n,. Thus we have
T =[T_(t+n,), T,p(t+n,d+1),---,Tq(t+nﬂ+np-l)]7

U=[Ad(t), Ad(t+1),~,Ad(z+n,-1)]

(& ~ 0] (7.11)
G = g1 go
_gn’—l vee gn,-n.‘

At each control interval, only the current control u(t) needs to be calculated by

u®) = u-1) + ¢;[ T, - F1 (7.12)
where qlT is the first row of the matrix [GTG+M]'1GT. Note that the calcualtion of the
inverse of matrix [GTG-l-M] could be tedious if the dimension of the matrix is large.
Clarke et al. (1987A and B) proposed an assumption that all control increments after a
control horizon n, are constrained to zero to simplify the calculation. This assumption

leads to significant reduction of calculation time. Favier (1987) used the partitioned-matrix
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inverse lemma with a recursive algorithm to further improve GPC. A new algorithm to
be developed seeks to avoid calculating the inverse of the whole matrix because only the
first row of [GTG+M]’1, in view of Equations (7.8) and (7.9), is needed for calculating
the current control. One may observe that the matrix [GTG+AI] is symmetrical. Moreover,
the inverse of a symmetrical matrix is also symmetrical. Therefore, the first column,
instead of the first row, of the matrix [GTG+M] may be calculated as follows:

(D Assume

P=[G'G+1l,q] (7.13)
with
q-= [ 1,0,"',0 ]T
The other entries of P are given by

[ 'l,,-j
Y g+ i=j
k=0

Py = I ony (7.14)

Y &8y i< i lsjsn,
k=0

B, >
Note that the calculation of p;; should start with i=n, and j=n, because Bjj
with small subscripts i and j are equal to the sum of p; Wwith large

subscripts.

) I =k
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A3) ij/Pkk = Pyj» with j=k+1, k+2, -, n,+1.

(C)] PijPikPxj = Djj» with j=k+1, k+2, -0, +1 and i = k+1, k+2, -, n,.
(5)  If k=n,, go to step 6; otherwise k+1 = k and then g0 back to step 3.
(6)

".
Pip 1 ~ E P4 =q i=n,n-1, -, 1 (7.15)

j-‘¢1

The first row, q=[q;, q,, - qy, 1T, of [GTG+AI]"! is obtained after the above six-
step calculations. Then, qlT is calculated with qGT. The calculation time can be
significantly reduced when the control horizon n, is large. An example shows that the
computational time could be reduced by about fifty percent when the control horizon n,

is equal to 12.

7.5  APPLICATION OF ON-OFF, PI GPC TO FLOOR HEATING PROCESS

The GPC and the conventional on-off and PI controllers have been applied to the
floor heating system in the test-room. The objective of this study is to determine a more
appropriate control algorithm for such a system and to find opportunities for improvement
of the thermal performance of the floor heating process. Their behaviour was evaluated
with computer simulation using Equations (7.2) and (7.3). Simulation results will give the

limit of what may be achieved by each controller.

The on-off control algorithm is the simplest one which does not need any tuning

effort. Hysteresis (dead) bands were not incorporated in this study because the heating
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system already has a thermal lag. The control input is on (u(t)=1) when the indoor globe
temperature is below the set-point, otherwise it is off (u(t)=0).

The PI control algorithm is described by

k
ufk) = K, ek) + K,y e (7.16)
=0

where Kp represents a proportional gain and K| denotes an integral gain. Selection of the
proportional and the integral gains significantly affects the behaviour of the controlled
heating system. Considerable efforts are thus needed to find the proper proportional and
integral gains. The proportional (Kp) and integral (K;) gains were taken as Kp=15 kW/°C

and K;=12 kW/°C, respectively, based on simulation.

The GPC employed here has been described in previous sections. The following
approach for implementation of GPC was adopted in the computer program:

(D Input the orders of the polynomials, n,, ny, n; and n,, the dead time of the
heating process ny, the minimum and maximum prediction horizons n, and
L the predictive control horizon n,, and the control weighting factor A.
The following values were used in this study: n, =4, n=I, nh=[1,3]T,
n=2, n4=2, nj=n,=2, np=10, A=0.

(2)  Initialize the parameter estimates 8 in Equation (6.2), using the approach
presented in the last chapter.

(3)  Sample all the inputs and output every 20 seconds and filter high frequency

noise in the sampling signals.
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C)

&)

(6)
)

®)

)

(10)

(11)

(12)

Estimate the heating model parameters 8 every 200 seconds, using the
identification algorithm given in the last chapter.

Verify the estimated parameters with the historic measured input and output
data, using a criterion the root mean square deviation. Go to step 6 if the
identified model satisfies the desired criterion, otherwise go back to step
3.

Calculate A’, H’ and C’, using Equation (7.4).

Predict the future globe temperature T‘c(t-l-j) (1<j<n,y) with Equation (7.5)
whenever the discrete dead time n,, is greater than one, otherwise skip this
step.

Compute the contributions of the historic measured inputs and outputs as
well as predicted inputs to the future globe temperatures f,) using
Equation (7.8).

Recursively calculate g, and f; with Equations (7.7) and (7.8) to form
matrix G and vector F in Equation (7.10).

Find the first row of [GTG+AIJ"!GT by computing the first column,
adopting the six-step algorithm described in the last section.

Calculate the current control u(k), using Equation (7.12). Set u(k) to the
heating capacity whenever u(k) is greater than the heating capacity.

This step is only for on-line control not for simulation. Compute the current

digital control value, using the following formula:
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Dge(k) = 819 + 25 (4008 - 319 (7.17)

Uep

where Ucp is the heating capacity. The digital value Dgt(k) is entered into
a 12-bit D/A converter. The 819 count corresponds to the minimum analog
output of 4 mA while the 4098 count corresponds to the maximum analog
output of 20 mA. The analog signal is sent to a triac controller, which
controls the electric heating power. Now end one control cycle and then

go back to step 3.

The control interval was 200 seconds for all the three controllers. The capacity
of the heating system was assumed to be 2 kW and was normalized. Since the indoor
temperature is not allowed to vary rapidly when a building is occupied, step set-point
change with increase from 21 °C to 21.25 °C was adopted in all the three cases.
Simulations were performed under night situation, using the updated heating process

model.

Responses of the globe temperature controlled by the GPC and the on-off and PI
controllers to the step set-point changes are given in part a of Figures 7.1 through 7.3.
Normalized supply power is shown in part (b) of the three figures. It was observed that
the offset band between the set-point and the indoor globe temperature is 0.15 °C for the
PI controller. It is smaller than that of 0.20 °C for the on-off controller. The offset band
caused by GPC after the transient phase was negligible. The rise time with the on-off

controller was 15 minutes, with the PI controller it was 18 minutes and with GPC it was
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9 minutes. Comparisons among these three controllers with the particular parameters
applied to the floor heating process are summarised in Table 7.2. The behaviour of on-off
and PI controllers could be different if their parameters are changed. For instance, the on-
off cycling of the on-off controller will decrease and the offset band will increase if a
hysteresis band is adopted. The response of the heating process will be slower and the on-
off cycling may be eliminated if the proportional gain is reduced. Compromise in
response speed, offset band and on-off cycling has to be made when designing a
controller for the heating system with a large thermal lag. It is evident in Figure 7.1
through 7.3 that the behaviour of the GPC is superior to the other two controllers in every
aspect, thanks to the feature of its predictive action. GPC has the fastest response to
changes in set-point and eliminates on-off cycling. The indoor globe temperatures
controlled by GPC deviate least from the set-point. Cost for these advantages is the need
of a computer or a micro-processor and the requirement of an algorithm for robust system

identification.

Two assumptions have been made previously for GPC: there is no constraint to
the heating capacity and all control increments after a control horizon are equal to zero.
Actual control increments in Figure 7.3(b) vary significantly during the transient phase.
Conflict between the assumptions and the real situations lead to that the globe temperature
cannot closely track the set-point during the transient phase. It can be expected that the
performance could be worse if the transient period is longer. A possible approach for
improvement of the predictive controller is the modification of the assumptions for control

increments during the transient period. Another method is to impose the actual constraints
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to the controller if the capability of a computer used allows.

Table 7.2 Comparisons among GPC, PI and On-Off Controllers

System Identification

e

149

CONTROLLER ON-OFF PI GPC

Tuning Effort None Considerable None "
Response to Set- Slow Slightly Fastest

Point Changes Slower

Offset Band Larger Large very small
On-off Cycling Frequent Frequent None
Requirement of No No Yes
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CHAPTER 8
PREDICTION OF AMBIENT

TEMPERATURE AND SOLAR RADIATION

Effective implementation of predictive control requires prediction of solar radiation
and ambient temperature for the next day. The accuracy of the prediction for the next six
to 12 hours is particularly important since it greatly affects current operation strategies.
In this chapter’, statistical analysis of Montreal’s weather data in the last decade is first
conducted to understand the overall regular patterns of ambient temperature as well as
solar radiation. Results show that the ambient temperature has three typical patterns, near-
sinusoidal wave pattern, abnormal "drop-down" and "warm-up" patterns. The abnormal
patterns that are extremely different from the normal one occur very frequently in
midwinter. Two algorithms for weather prediction have been developed based on the
statistical analysis. New weather predictors attempt to utilize as much useful weather
information as possible, including the daily weather forecast, the historic weather record
and the most recent on-line measured data to improve the accuracy of predicted weather
profiles. They are also simplified through normalization. This makes it feasible to quantify

a qualitative weather forecast for solar radiation. The weather prediction algorithms have

* See also a publication by Chen and Athienitis (1996A)
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been verified with Montreal’s weather record and experimental data. The results show that
the predictors are capable of identifying the pattern of tomorrow’s weather profiles at
night, generating the solar radiation and ambient temperature profiles that reasonably

agree with the actual weather.

8.1 INTRODUCTION

Weather prediction is essential for dynamic building heating system operation. As
stated in Chapter 2, the forecast of ambient temperature has received increasing attention
in the last decade while little effort has been made in the prediction of solar radiation

profiles.

Least squares regression techniques have been commonly applied to the prediction
of ambient temperature. It may result in unacceptable errors when the future ambient
temperature is not similar to the past. Moreover, the ambient temperature profile has been
usually assumed as a near-sinusoidal wave in which the daily maximum temperature
occurs at mid-afternoon. As shown later, this may not be appropriate for a cold climate.
The abnormal ambient temperature profile, which is very different from the above normal
pattern, may occur very frequently in midwinter. This is important for the predictive

control but has been largely neglected.

Therefore, a statistical analysis of Montreal’s historic weather data is described in
the next section. Based on the statistical study, algorithms for predicting both ambient

temperature and solar radiation are developed in Section 8.3 and 8.4, separately. Results
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from the weather predictors are verified with experiments in the final section.

8.2  STATISTICAL ANALYSIS OF MONTREAL’S WEATHER DATA

Knowledge about typical weather variation profiles is important in weather
prediction. For instance, the ambient temperature profile depends on the time at which the
daily high and low ambient temperature occur. The daily high and low ambient
temperature have been usually assumed to occur at mid-afternoon and early morning,
respectively. The assumptions should be validated before developing an ambient

temperature predictor.

A statistical analysis of Montreal’s ambient temperature data from 1982 to 1993
has been conducted. Some typical results are given in Figure 8.1 through 8.4. It can be
seen from Figure 8.1 that the hourly distribution of the daily maximum ambient
temperature (what time of day it occurred) in December is very different from that in
July. The daily maximum temperature basically occurs around mid-afternoon in July. It,
however, occurs frequently at night in December. The hourly distribution of the daily
minimum ambient temperature is shown in Figure 8.2. It is evident that the daily low
temperature generally occurs at around S a.m. in August. In contrast to Figure 8.2(b),
there are two peaks in January in Figure 8.2(a). One peak is around 7 a.m., which is
similar to Figure 8.2(b). Another peak is around midnight primarily due to the warm-up

pattern.

It was found that ambient temperature profiles at Montreal have three major typical
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Figure 8.1 The hourly distribution of the daily maximum
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Figure 8.2 The hourly distribution of the daily minimum
ambient temperature for a month
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patterns. The first is a near-sinusoidal wave whose daily high temperature occurs at mid-
afternoon and low temperature occurs at early morning, which is defined as a normal
pattern here. This pattern has been commonly assumed in the past. The other two are
abnormal "drop-down" and "warm-up" patterns, whose profiles are much different from
a sinusoidal curve. Ambient temperature profiles on some days do not have a clear
pattern. For example, ambient temperature may fluctuate irregularly after changing (down

or up) dramatically. These temperature profiles are defined as "other patterns” here.

Based on the above findings, further statistical analysis was performed on the
probability of the typical ambient temperature patterns. The probability of each pattern
is calculated by

n,()
N

PO = (8.1)

where P denotes the probability of a pattern; N is the number of days in analysis;
subscript m represents month; j indicates pattern including the normal, drop-down, warm-
up and other patterns; and n is the number of outcomes corresponding to pattern j.
Statistical results show that the probability of the typical ambient temperature patterns
varies with month (Figure 8.3). The normal pattern dominates in summer while the
abnormal pattern occurs more frequently than the normal pattern in winter. The other
temperature pattern seldom occurs throughout the year. Its probability is generally less

than 0.05, which can be negligible.

The monthly average temperature profile T of each pattern was also computed by
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T b 8.2)

1'*0 ) = 1
d nj i=l

where n; is the number of outcomes corresponding to pattern j; i indicates the ordinal
number of days and k denotes discrete hour. The average profiles of the typical ambient
temperature patterns in December are given in Figure 8.4. It is evident that the three

typical patterns are clearly different from each other.

The hourly total horizontal solar radiation on a very sunny day is helpful for the
prediction of solar radiation. Correlation formulae presented by Hottel (1976) may be used
to estimate the beam radiation transmitted through clear atmosphere. An empirical
equation given by Liu and Jordan (1960) may be adopted to find diffuse radiation on clear
days with the transmittance for beam radiation. However, the hourly maximum radiation
should be obtained from historic solar radiation data whenever the data are available. It
may be determined by

b
S (K = Max SG.k) (8.3)

i=i,

where S_.. is the hourly maximum solar radiation on a horizontal surface, which is
obtained by comparing the measured data at the same hour during the period of ten days
between i, and i,. The results for December and January are shown in Figure 8.5, which
should be closer to the real situation than the calculated profile. It can be seen that the

lowest maximum solar radiation occurs during the period of the second ten days of
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December.

83 ALGORITHM FOR AMBIENT TEMPERATURE PREDICTION

The statistical analysis has shown that the ambient temperature pattern varies
significantly, particularly in winter. Therefore, a new weather predictor to be developed
attempts to utilize as much useful weather information as possible, including the daily
weather forecast, the historical weather record and the most recent on-line-measured data.
The local weather forecast is updated four times a day in Montreal, which may be
obtained on-line by modem if the service is available. This information is used to identify
tomorrow’s ambient temperature variation pattern and to predict the solar radiation and
temperature profiles. The most recent measured data are employed to derive the weather
trend a few hours ahead, using the fitting technique. The historical record is utilized to
find the rules of weather variation, such as the average ambient temperature difference in
the normal pattern, the average shape factors of the ambient temperature and the
maximum solar radiation curve in the different periods of the year. Using all of the above
information, the predicted ambient temperatures can be updated in real time at intervals

of 15-30 minutes.

An algorithm for predicting the ambient temperature is composed of two basic
parts: the identification of tomorrow’s temperature wave pattern and the prediction of the
temperature profile. A procedure for the first part is as follows:

(1)  The ambient temperatures in tomorrow’s early-hours, T, (i), are first
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anticipated during the period between 8 p.m. and 12 p.m., based on the
current temperature trend as well as the historical average shape factors.

Comparison is made between the local forecasted temperatures for
tomorrow and the predicted temperatures, T, (). If the highest T, s(p)
among T, (i) is greater than the forecasted high T, 4(p) or if T, (Gy) is
approximately equal to T, £(ip) and the temperature difference aTg g
between the forecasted high T, ((ip) and low T, «(i is much (almost double
or more) greater than the temperature difference aTg i between the
forecasted high and the predicted lowest T, (i) among T, s(1), tomorrow’s
temperatures should be decreasing. If the temperature difference aTg g
between the forecasted high T, (i) and the predicted low T, (i) is much
greater than the historical average temperature difference ATo,avg between
the daily high and low temperatures in the normal weather or if aTg,  is
greater than or approximately equal to aT,, ,,, and aTg, ¢ is much (almost
double or more) greater than the temperature difference aTg ; between the
predicted high T, «(ip) and low T, s(ip), tomorrow’s temperatures should be

warming up. The other cases should be normal.

The ambient temperature profile typically has two periods in one cycle:

follows:

temperature-up period in which the temperature is increasing from the low to the high,
and temperature-down period in which the temperature is decreasing from the high to the

low. It can be normalized to simplify the prediction by defining a shape factor r as
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T;.h - T;.d(’) (8.4)

r{p =
Top — Ty
for the temperature-down period;
rg) = —ouD) ~ Loy ®5)
Ty - T

for the temperature-up period. T is ambient temperature (°C) and j is discrete time
counted from the beginning of each period. The subscripts h and 1 indicate the high and
low temperatures; d and u mean temperature-down and up periods; respectively; o is

ambient.

Three pieces of information are helpful for predicting the upcoming utmost (high
or low) temperature. They are the local weather forecast, the measured temperatures in
the current period and the historical temperature shape ratio. The predicted utmost (high

or low) temperature, then, can be calculated by

T, = Wy + wIT, () + wT,.0) (8.6)

where w is the weighting factor. The subscripts hl, f, r and t mean utmost (high or low),
forecast, shape ratio and temperature trend. Ty is the forecasted high or low temperature
°O; T, () is the upcoming utmost (high or low) temperature (°C) predicted at time Js
using the average shape ratio and the measured temperatures within the current period.

It can be computed by

J
1,0 <1, + 3 3 2 e ®)

ma1 I, (m)
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for the temperature-up period and

J -
T =1, - L3 JoTed® © (8.8)

Jom M)
for the temperature-down period. T, pi() is, based on the ambient temperature trend,

predicted by

T =T, +kGy-J) 8.9
where k is the slope of a linear correlation function of ambient temperature and discrete
time, which can be obtained by means of fitting techniques. The subscript ¢ represents the

current time.

The three weighting factors in Equation (8.6) are varying with time. The sum of
them should be equal to one. At the beginning of a period, only the forecasted high or
low temperature is used for predicting the upcoming utmost (high or low) temperature
since there are no measured temperatures available within this period. With more and
more measured temperatures available, T, p4(G) should be gradually emphasized. When
approaching the end of a period, the real temperature trend should give more accurate

prediction.

The predictive horizon of 24 hours is divided into two periods. The first period
is from the current time to the time when the first utmost (high or low) temperature
appears while the rest is the second period. The ambient temperature profile can then be

predicted by
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T + (1- T O<is<i
10 - [ VT, @) + A-v@T, O O<isiy, 3.10)

T® iy <isi
where i is discrete time counted from now to 24 hours ahead and v is a weighting factor
varying with time i. The subscript n is the number of predictive time intervals within the
current period. To’t(i) is the predicted ambient temperature (°C), based on the current

trend of the most recent measured temperatures. It is calculated by

TB =T, +k(i-i) . (8.11)

T, (1) is calculated by

T, =Ty - 10 T'op = T,;) (8.12)

for the temperature-down period and by

T, = T, + 1,0 Ty - Tp) (8.13)
for the temperature-up period. The supscript ’ represents the measured temperature. The
remaining ambient temperatures in the predictive horizon can be computed in a similar
manner to Equation (8.12) or (8.13). The other future utmost (high or low) temperatures
in the predictive horizon can be updated using the above predicted upcoming utmost (high
or low) temperature Ty, the historical average and maximum temperature differences
in the different weather patterns and the other corresponding forecasted high and low

temperatures.
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84 ALGORITHM FOR SOLAR RADIATION PREDICTION
To simplify the procedure, solar radiation is also normalized as follows:
SG)
R() = —=— (8.14)
Smax()
where S(j) is the irradiance (W/sq m) of solar radiation at time j and S,,,() is the
historical maximum irradiance (W/sq m) of solar radiation at time j for a given place. R()
is the dimensionless irradiance of solar radiation. Its maximum value is equal to one and

may be divided into ten levels as shown in Table 8.1.

The above qualitative sky conditions can be quantified, using the middle value for
each level as shown later. The normalized solar radiation profile can be first predicted
according to the local forecast issued at night and then dimensioned by using Equation
(8.14). The predicted solar radiation starts to be modified one or two hours after sunrise
since the clarity of atmosphere is very uncertain and may usually be lower than that in
the rest of day. The modification is continued until sunset based on the measured solar

radiation.

The maximum irradiance of solar radiation on a tilted surface is needed if the
prediction of solar radiation on the surface is required. The statistical analysis approach
described in Section 8.2 cannot be adopted since the measured data of historic solar
radiation on a tilted surface usually are not available. Some existing methods may be used
for estimating the solar radiation. The Hottel correlation formulae (1976) do not need the

historic measured data while the isotropic diffuse model (Liu and Jordan 1963) and the
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Table 8.1 Ten Levels of Solar Radiation

Level The type of sky
1 Plenty of sunshine or sunny with colder-than-normal
temperature
2 Sunny or clear
3 Sunny sky with a few scattered clouds
4 Sunny sky with cloudy periods
5 Cloudy sky with clear periods
6 Mostly cloudy
7 Cloudy
8 Cloudy sky with light rain or snow
9 Cloudy sky with rain or snow or heavy cloudy
10 Very cloudy sky with heavy rain or snow

anisotropic diffuse model (Reindl et al 1990) require the measured radiation on a
horizontal plane. The three methods have been used to calculate the maximum total
radiation on the vertical surface of the test room, which is facing 10 degree east of south.
Comparisons have been made between the estimated and the measured solar radiation on

very sunny days. It was found that results from the latter two methods are more accurate
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than the correlation method. The value given by the isotropic diffuse model is closer to
the experimental data than that by the anisotropic diffuse model. In addition, the solar
radiation estimated by the two models during early mormning is much higher than the
measured data. This may be because the correlation equation (F.3) (Appendix E) presented
by Erbs et al. gives a lower fraction of diffuse radiation during the sunrise period.
Therefore, the maximum solar radiation in the morning should be modified with

experimental data.

8.5 VALIDATION WITH EXPERIMENTS

An on-line program based on the two weather prediction algorithms has been
developed and validated with historical weather records of January 1993 (Canadian
Climate Centre 1983-1993) and experiments from late December of 1994 to early
February of 1995. The results show that the algorithm can successfully identify the
ambient temperature pattern and generate the satisfactory weather profiles when the
forecast is reasonably close to the actual weather. Large difference between the forecast
and the actual weather could lead to a large error in the weather prediction. It can,
however, be gradually modified when the measured ambient temperature and solar

radiation are available in real-time.

Figure 8.6 shows a typical process of the ambient temperature prediction. The
forecasted high temperature for January 9 1993 issued at 8 pm on January 8 was -9 °C

and the low -16 °C (The Gazette 1993), which are 3.3 °C and 4.5 °C higher than the
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Figure 8.6 Predicted and measured ambient temperature
on January 9-10, 1993
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Figure 8.7 Predicted and measured ambient temperature
on December 29-30, 1994
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Figure 8.8 Predicted and measured ambient temperature
on December 30-31, 1994
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actual high and low temperatures, respectively. Consequently, the temperature profile
in Figure 8.6(a) generated at 22 pm on January 8 is on the average 0.92 °C above the
actual. Using the measured ambient temperature, the profile updated at 3 am on January
9, as shown in Figure 8.6(b), is on the average 0.45 °C above the actual. Figures 8.7 and
8.8 show typical drop-down and warm-up ambient temperature profiles observed on
December 29 and 30 of 1994. The forecasted high temperatures were -4 and -9 °C and
the low temperatures -19 and -17 °C for December 29 and 30, respectively, which were
at least 1.5 °C different from the measured daily high and low. The average error between
the predicted and the measured temperature was 0.98 °C for the temperature profile
generated at 2 am on December 29 and 0.72 °C for the curve predicted at 3 am on

December 30.

The ten levels of solar radiation in Table 8.1 may be quantified by giving a middle
value to each level. The middle values in Table 8.2 were used in this study for the
prediction of solar radiation in December and January for Montreal. They are employed

to form the estimated dimensionless solar radiation profile according to the local forecast.

The algorithm has been verified with historic solar radiation data on a horizontal
plane. Results show that the predicted solar radiation profiles agree very well with the
measured data for the sunny hours or days, but may diverge from the actual solar

radiation in uncertain sky conditions, such as clearing and clouding.

It was forecasted at 8 pm on January 7 1993 that " light snow early this morning

(on January 8) will quickly give way to clearing, sunny this afternoon" (The Gazette
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1993). The predicted dimensionless solar radiation, hence, starts with 0.255 at 8 am, is
gradually increasing to 0.868 at 1 pm and keeping this value for sunny sky until sunset,
as shown in Figure 8.10. A constant value of 0.97 (Figure 8.10) is estimated for solar
radiation on January 9 1993 since the forecast for that day was "sunny with colder-than
normal temperatures" (The Gazette 1993). The measured solar radiation on these two days
and the predicted solar radiation dimensioned from the above estimated profiles by using
Equation (8.14) are also shown in Figures 8.9 and 8.10. The prediction errors are 0.43 and
0.33 MJ/mzlday on January 8 and 9, respectively. The relative errors are 8.1% and 4.2%,
separately.

Table 8.2 Dimensionless Middle Values for Ten Levels of Solar Radiation

Level

Middle Value
Level 6 7 8 9 10
Middle Value 0.459 0.357 0.255 0.152 0.05

Solar radiation on a tilted surface may need to be predicted for a real building
heating system. Shading by surrounding buildings may frequently occur. The above
approach can be first applied to predict solar radiation on a horizontal surface. It is then
transformed to solar radiation on the surface under consideration, using the Liu and Jordan
model in Appendix E. Shading effect due to surrounding buildings can be determined

when measured solar radiation is much less than the predicted value on sunny days. The
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Figure 8.9  Predicted and measured solar radiation on
a horizontal surface on January 8, 1993
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Figure 8.10  Predicted and measured solar radiation on
a horizontal surface on January 9, 1993
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algorithm was implemented to predict solar radiation on the south wall of the test room.
Typical results are given in Figures 8.11 and 8.12. The forecasted sky condition for
December 28 of 1994 was "cloudy and mild with the chance of a shower today, scattered
flurries this evening". Consequently, the dimensionless solar radiation was formed with
the constant value of 0.152. The predicted profile generally agrees with the measured data
even though the large deviation occurred due to high uncertainty on a cloudy day. A
constant value of 0.97 was estimated on December 30 of 1994 because the forecast was
"sunny and cold today, clear skies with cold temperature throughout this evening and
tonight". Shading effect due to surrounding buildings was clearly observed at around 1:30
pm as shown in Figure 8.12 while it is almost negligible on cloudy days. The prediction
errors in terms of total daily radiation on the south window of the test room are 0.12 and
1.18 MJ/mZ/day on December 28 and 30, respectively. The relative errors are 21% and

8.8%, separately.

The accuracy of weather profiles generated by the two algorithms largely depends
on the forecast accuracy. It was found in the experiments that the forecasted sky condition
is usually close to the real situation while the forecasted daily high and low temperatures
sometimes deviate largely from the actual temperature. In the experiments, the average
absolute error of predicted ambient temperature is 1.3 °C; the average absolute value of
relative errors in terms of total daily solar radiation is 11.4% and the relative error of total
predicted solar radiation is 3.3%, respectively. Fuzzy sets theory may need to be
introduced to improve the prediction accuracy since the weather prediction involves a

number of uncertainties.
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CHAPTER 9
APPLICATION OF DYNAMIC PROGRAMMING
TO PREDICTIVE OPERATION OF

THE FLOOR HEATING SYSTEM

In this chapter, a model is developed for predictive operation of a floor heating
system. It consists of an objective function, a state-space model of the heating system and
a number of constraints. The state-space model is transformed from the z-transfer
function. The constraints for thermal comfort are described mathematically so that they
can be easily employed in set-point optimization. Dynamic programming techniques are
adopted for determination of optimal operation strategies. In order to reduce the number
of system states to be searched, an acceptable operating range of the room temperature
is reduced to a feasible operating range by on-line simulation. Simulation studies show
that the techniques are computationally efficient and suitable for on-line control of
building heating processes. Results also indicate that predictive control of building
envelope heating systems may lead to significant savings in operation cost if the heating

system is properly designed and operated.
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9.1 INTRODUCTION

A considerable amount of thermal mass in a radiant floor heating system can be
utilized for dynamic heating operation. Predictive operation of electric heating systems
can reduce the peak power demands. Moreover, the average temperature of building
thermal mass may be lowered through night set-point setback. Hence, more solar radiation
energy transmitted through windows may be absorbed during the following day.
Furthermore, the peak load of heating systems may also be diminished by means of
predictive control of thermal energy storage. This makes it possible to reduce heating
equipment size, which translates into savings in the initial cost. Consequently, the part

load efficiency can be enhanced if a gas or oil boiler is used in a heating system.

There are several techniques available in the theory of optimal control, such as the
maximum principle as formulated by Pontryagin (1962) and dynamic programming
presented by Bellman (1957). The computational efficiency and flexibility are key indices
in choice of the technique for on-line optimization of operation strategies. The maximum
principle has been widely adopted in simulation studies on the dynamic operation of
HVAC systems. The technique is efficient for the problem without constraints or with a
few ones. However, the efficiency will rapidly decrease with increasing number of
constraints. The issue becomes more complicated when there are several operation stages
in which different models may be employed. An operating HVAC system is usually
associated with a considerable number of constraints. In dealing with constraints, dynamic

programming seems to be more flexible and efficient. The main disadvantage of this
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technique is that it may become inefficient or even infeasible if the dimension of system
state variables is large or the number of possible system operating states is considerably
high. The reason is that the optimal values of objective functions and stage decisions have
to be calculated and stored in a computer for each state. This weakness could be remedied

or partly overcome by reducing the number of discrete grids of states to be searched.

An objective function subject to a state-space model of the heating process and
a number of operating constraints will be established in the next section. An algorithm
for multistage decision of the floor heating system is then presented. In the final section,
the techniques will be applied to the test-room (described in Chapter 3) to reduce the

operating cost and the energy consumption.

9.2 A MODEL FOR PREDICTIVE HEATING OPERATION

Dynamic programming techniques will be adopted to optimize the operation
strategies of the floor heating system. Before applying the techniques to the problem at
hand, the z-transfer function obtained in Chapter 6 should be transformed into a state-
space model. It is observed from Equation (6.1) or Equations (6.17) through (6.19) that
the output T,(k) can be determined when T,(k-1), T (k-2), Te(k-3), T.(k-4), u(k-1) and
weather conditions are known. T (k-1), T (k-2), T(k-3), T(k-4) are hence chosen as state

variables. We have
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x,(k) = T (k-4)
x k) = T (k-3)

9.1)
x,® = T,k-2)
x(k) = T(k-1)
It follows that
x(k+1) = x,, (0 i=123 (9.2)

Substituting Equations (9.1) and (9.2) into the z-transfer functions of the heating process
and combining them together, we have a discrete-time state equation in the vector-matrix
form

X(k+1) = M X(k) + m, (b, u(k-1) + Hz™)TS(k) + e,) (9.3)

where the coefficient matrix M and the vector m, are given as

(0 1 0 o

0 0 1 O

M=19 0 o0 1
| -4, -6, -a, -a, |

m =[000 1]
and the vector of state variables is expressed by

X(k) = [ x(0) &) xE@ xb |
With the above state-space model, the objective function for predictive operation of the

floor heating process may be established as follows:
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N-1
J* = min ¥ C,(k) u(k) At (9.4)
“Wk) k=0

where superscript * indicates optimum; N is the number of time intervals over the period
of interest; C, represents the utility rate structure ($/kWH) and At discrete time interval
(Hour); u is supply heating power (kW), which is also called the decision variable here.
C; is set to 1 if the utility rate is constant or if energy consumption rather than operating

cost is considered in applications.

The objective function is subject to the state-space model (Equation (9.3)), and the

initial and final conditions as follows:

X=X
0 9.5)

Xy < XWV) < X,

where X, is the initial state of the heating system; Xy;; and Xy, represent the acceptable
range of the system state (i.e. indoor operative temperature) at the end of the period. Note
that the global heating cost over the period of N stages is equal to the sum of separable
criteria Cy(k)u(k)At at each stage. A decision u(k) to be made will minimize the global
heating cost. It implicitly depends on the current system state because the objective
function must be subject to the state-space model (Equation 9.3) of the heating process.

This dependence can be expressed by a stage cost function

C(k-1) uk-1) At = L(X(k), u(k-1), k) (9.6

There are some other constraints when operating the heating system. The supply heat

must be less than the heating capacity u_, :
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0 < ukk) <u,, (CN))

The indoor conditions must be within the acceptable range of thermal comfort
recommended in ASHRAE Standard 55-1992, which is based on a 10% dissatisfaction
criterion. The following comfort constraints must be satisfied for people in typical winter
closing during light, primarily sedentary activity. The boundaries of the comfortable

operative temperature may be expressed by

T (k) > 19.82 + 0.016x(60 - RH(K)) 30% <RH(k)<60% ©8)

T (k) < 2345 + 0.023x(60 - RH(K)) 23% <RH(k)<60%

where RH is the relative humidity. The limits of the relative humidity may be described

by
(30 - 1.75 x (T(k) - 203))% < RH(k) < 60%  203sT,(k)s243 (9.9)
and the mean air speed should be subject to

Vg <015 mis . (9.10)

Otherwise the indoor temperature has to be raised to offset increased air speed. The air
speed should be limited by a well designed air distribution system. The surface

temperature of the floor must be kept within

18°C< T, <29°C .11

The maximum rate of the operative temperature change should be subject to
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AT® . os°cm . ©.12)
At

During the occupancy time, the peak-to-peak amplitude ATum‘ocp of the temperature

fluctuation is also limited by

AT s35°C . (9.13)

9.3 MULTISTAGE DECISION OF THE HEATING PROCESS

The optimization of decision sequence u(k) could be tedious if decision-making
is based on the structure of Equation (9.4). The reason is that the current optimal decision
u(k) depends on not only the past, current and future system states but also the past and
future decisions. A great number of feasible operation strategies must be evaluated to
determine the optimal one. In practice, fortunately, the current and future decisions do not
affect the past system states, decisions and cost functions even though such a system
could be mathematically established. This property allows the current decision to be
separated from the past and to be optimally chosen with a knowledge of only the current
state of the heating system (Bellman 1965). Hence, the problem can be significantly
simplified by applying Bellman’s principle of optimality. The global heating cost in

Equation (9.4) is thus restructured in the recurrence form

184



JX(), K] = min { LX), u(k-1), k) + J'[X(k+1), k+1]1}  (9.14)
u(k-1)

where J‘[X(k), k] indicates the minimum heating cost obtained at stage k using a
sequence of optimal decisions “‘k (u‘k={u‘(k-l), u‘(k), -y u‘(N-l)}. It can be observed
from the above equation that the past and current decisions do not directly influence the
future decisions. They affect the future decision indirectly through the future system states
X(k+1). The current optimal decision u‘(k-l) and minimum heating cost J'[X(k), k] at
stage k can be determined by minimization of the sum of the current stage cost function
L(X(k), u(k-1), k] and the future optimal cost function J*[X(k+l), k+1] determined at
stage k+1. There are two search procedures in application of dynamic programming. The
first is a backward procedure (k=N-1, N-2, -, 0) in which the minimum cost function is
recurrently computed from the final stage N to the initial stage. Thus, the optimal cost
function J'[X(k), k] at stage k is recursively calculated using the minimum cost function
J*[X(k+1), k+1] obtained at stage k+1. The second procedure is a forward process in
which the optimal system states (i.e. set-points) are computed from the initial stage to the
final stage. The initial or past system states and the optimal decisions found in the
previous procedure are recurrently substituted into the z-transfer functions (6.17) through

(6.19) to determine the optimal set-points and heat supply curve.
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The required final system condition (9.5) is treated by

0 X(N) € [Xy, Xy]
JIX(N), N) = (9.15)
. m o XWN) € [Xy, X1

which indicates that the objective function is set to zero when the operative temperature
at the final stage is in the desired range; otherwise, it is penalized. The infinity is replaced

by a large penalty number in a computer program.

In order to find the numerical solution, the operation range of the operative
temperature must be discretized. The increment was taken as 0.25 °C. According to
Equation (9.1), a system state is the combination of four consecutive operative
temperatures over four successive time intervals. All the possible system states were
searched in a proper order so that the identification of system states refers to the ordinal
number of states, rather than the combination of the operative temperatures. This will
considerably reduce the search time and the demand for storage space in a computer since
the ordinal number is an integer and one number replaces four temperatures. Equation
(9.14) shows that the calculation of the optimal cost function J*[X(k), k] at stage k needs
to use the value of J*[X(k+1), k+1] at stage k+1. Moreover, the optimal decision u[X(k),
k] for each state at each stage is also needed to find the optimal set-point in the forward
procedure. Consequently, it is necessary to store all the optimal cost functions and heat

supply decisions at the previous stage in a computer.

The increase of the dimension of system state variables and the operation range

of system states will result in a significant increase of demand for computer storage and
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computation time. This is the main weakness of dynamic programming techniques. Any
approach that can reduce the demand on computer resources should be incorporated with

the application to enhance the efficiency of dynamic programming techniques.

It is well known that a constraint can reduce the operation range of heating
systems. Therefore, as many practical constraints as possible should be utilized when

adopting dynamic programming in searching for the optimal set-points.

The acceptable operation range described with Equations (9.8) and (9.9) may not
be feasible sometimes since the future states of the heating system depend on the past and
current states, the weather conditions in the near future and the maximum heating system
capacity. Hence, the feasible operation boundaries may first be determined with on-line
simulation. It is easy to find the high and low limits of the operative temperature if night
set-point setback is not considered. The calculation of the feasible boundaries of the future
system states starts at the current state using both full and zero heating capacity until the
feasible limits intersect with the acceptable operation boundaries. A trial and error
approach is used when night set-point setback is adopted. The heat supply strategy for the

night setback is estimated by the following equations:

n, = nqo + nql

T,p=T, - ngy AT, (9.16)
Ty =T, - n, AT,

where ng, is the number of time intervals over the night setback; Dgo and R, represent

the number of time intervals with zero and full heating capacities, respectively; AT, and
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AT, indicate average temperature decrease and increase when the heating system is off
and fully on, respectively. T, is the operative temperature when the night setback starts;
Tk, is the required minimum comfort temperature when a room is occupied; Te 10 and
T, j; are the lowest temperatures during the night setback, which are calculated from the
temperature-down process when the heating system is shut off and temperature-up process
when the heating system is fully on. The lowest feasible setback profile may be

determined by adjusting Ngo and Ng; until T,y and T, 11 are approximately equal.

94 DETERMINATION OF OPTIMAL OPERATION STRATEGIES

The model and the algorithm described in the last two sections have been
implemented into a computer program and applied to the test room. The heating process
models in Equations (6.17) through (6.19) identified in Chapter 6 were used in the
simulation study. Computer calculations show that the techniques are computationally
efficient and flexible. It takes about 10.7 to 14.3 seconds on a computer with Pentium 166
MHz to find one optimal operation strategy over 24 hours. Applications in this section
are aimed at two targets: the reduction of operating cost and the utilization of solar

energy.

9.4.1 Reduction of Operating Cost
The electrical heating load during the utility high-demand time of day may be

shifted to the time when the utility rate is low. In order to do this, the variation of the
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utility rate has to be known. The rate generally varies with the overall electricity demand.

Figure 9.1 shows the utility rate structure generated for Albuquerque, NM (Winn and

Winn 1985). It was used in this study.

Several optimal set-point and heat supply power profiles are presented in Figures
9.2 through 9.5. They were obtained on a day with daily total incident solar radiation of
6.77 MJ/Day/m? and the typical normal ambient temperature with an average of -5.8 °C
in December (see Figure 8.4). Four different cases were considered for two operation
strategies and two objective functions. No night setback was considered for both Figures
9.2 and 9.3 while night setback was considered for Figures 9.4 and 9.5. Minimum energy
consumption was used as an objective index for Figures 9.2 and 9.4 while minimum

energy cost was employed for Figures 9.3 and 9.5. Operating (energy) costs and energy
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Figure 9.1 The utility rate structure

189



Optimal Set-points (C)

Optimal Set-points (C)

28 3 1400

-1 1200

26 —&— set-point 4

--A-- power

24

lllllll'lll

it 4 1000
' 800
600

400
200

0
230 20 5.0 8.0 11.0 14.0 170 200 23.0

Time of Day (Hour)

Figure 9.2 Optimal operation strategies without night setback
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Table 9.1 Operating Costs and Energy Consumption with the Daily Solar

Radiation of 6.77 MJ/Day/m? and the Mean Ambient Temperature of -5.8 °C
Minimum Energy Minimum Operating

Desired Consumption Cost

Operation M, E M

(4 C

Dollar/Day MIJ/Day Dollar/Day MJ/Day

No Night Setback L.71 58.1 1.34 62.3

Night Setback 1.38 50.2 1.27 60.1

e —————————————————————————n e

consumption for these four cases are summarized in Table 9.1 in which M_ represents the

daily operating (energy) cost and E_ indicates the daily energy consumption.

Dynamic operation strategies were also optimized with different weather
conditions. A moderate ambient temperature of 2.2 °C and a low daily solar incident
radiation of 1.75 MJ/Day were considered. Summaries of operating costs and energy
consumption without and with night setback are given in Tables 9.2 and 9.3, respectively.
Comparing the results in the three tables, we may observe the following:

¢)) When we minimize energy consumption, we do not minimize cost.

Comparing the daily cost (M) values for minimum operating cost to those

for minimum energy consumption in Table 9.2, we observe that when night
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)

3)

setback is not desired, decrease of 22% to 27% in operating cost may be
achieved by predictive control of the floor heating system and utilization
of the varying utility rate.

If night setback is desired, savings in operating cost significantly
decrease because the energy savings due to night setback with minimization
of energy consumption are much higher than the energy savings with
minimization of operating cost. This phenomenon can be observed in
Table 9.1 and by comparison of Tables 9.2 and 9.3. When average
ambient temperature is -5.8 °C, for example, savings in operating cost with
night setback (in Table 9.3) are 11% since the daily operating (energy) cost
is $1.59 with minimization of operating cost and $1.78 with minimization
of energy consumption. In comparison, the savings without night setback
under the same conditions are 22% (in Table 9.2). However, the influence
of night setback on the savings decreases considerably with increase of
ambient temperature. When average ambient temperature is 2.2 °C,
operating cost is reduced by 24% with night setback and by 27% without
night setback.

The ratio of heating loads to amount of thermal mass in a building
is an important factor that affects the cost-savings. This ratio for the
test-room is lower as compared with that for some floor heating
systems in a thermally massive building. It is hence expected that the

savings in higher mass system should be higher than the results obtained
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in this study.

Table 9.2 Operating Costs and Energy Consumption without Night

Setback (the Daily Solar Radiation of 1.75 MJ/Day/mz)

Table 9.3 Operating Costs and Energy Consumption with Night

Setback (the Daily Solar Radiation of 1.75 MJ/Day/mz)

e

Average Minimum Energy Minimum Operating
Ambient Consumption Cost
Temperature M, E, M. E,
°C Dollar/Day MIJ/Day Dollar/Day MIJ/Day
2.2 1.35 42.8 0.99 45.7
il
-5.8 2.12 66.2 1.66 69.2
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Average Minimum Energy Minimum Operating
Ambient Consumption Cost
Temperature M, E, M, E,
°C Dollar/Day MIJ/Day Dollar/Day MIi/Day
2.2 1.13 38.0 0.86 443
-5.8 1.78 584 1.59 67.5
S E—




The results also indicate that the successful predictive control of heating systems
considerably depends on local weather conditions, desired operation strategies (with or
without night setback) and building heating system design. A heating system should be
designed with systematic analysis of the dynamic heating operation under local weather
conditions. Other possible options should also be evaluated. For instance, active heat
storage may need to be added into a heating system when night setback is considered.
This allows us to design a heating system that is suitable for the desired operation

strategy and to maximize the savings in operating cost.

94.2 Utilization of Solar Energy

Dynamic programming techniques were also applied for the utilization of solar
energy. A sunny day (9.96 MJ/Day) with the typical normal ambient temperature in
December was considered as shown in Figure 9.6(a). Optimal set-points and heat supply
power profile are presented in Figure 9.6(b). The operative temperature is set back during
the period between 8 pm and 6 am to precool the thermal mass. Consequently, it can
absorb more solar radiation to prevent the room from overheating. It can be observed that
the heating system is fully on at around 2 am to raise the operative temperature to the
minimum comfort temperature at 6 am when the room starts to be occupied. The room
should be kept with the minimum comfort temperature before sunny hours. Some heat
may have to be supplied after sunny hours if allowed changes in the operative
temperature must be less than or equal to 0.5 °C/h as required by ASHRAE Standard 55-

1992. Analysis of the results shows that the floor thermal mass cannot be fully utilized
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for storage of solar energy since the floor has to be heated before heating the room air.
Therefore, a small air heating system may need to be added if we want to fully utilize the

floor mass to store solar energy.

The techniques developed in this work may also be applied to the other predictive
operation strategies. For example, the peak heating load may be reduced by storing heat
in the building envelope mass a few hours ahead. The increase of indoor temperature for
the peak load shifting will consume more heating energy. This strategy, however, only
operates for a few hours in a whole year when the outdoor temperature is extremely low.
Therefore, the increase of energy consumption due to the peak load shifting is negligibly
small. Taking Montreal weather as an example, the time when the peak shifting operation
is needed is less than two percent of total heating hours in one year if the capacity of a
heating system is reduced by 10%. On the other hand, a heating system with smaller
capacity requires less equipment cost, and has an improved part load efficiency when a
gas or oil boiler is used. An example simulation run with BESA for an apartment building
located in Montreal shows that the energy consumption is reduced by about 1.5% when

the size of a gas boiler is reduced by 10% (Chen and Athienitis 1993B).
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CHAPTER 10

CONCLUSIONS AND RECOMMENDATIONS

A methodology presented in this thesis integrates thermal analysis and real-time
predictive control of BEHSs. Techniques for symbolic network analysis of buildings are
developed as the first part of the methodology. Due to the distinctive characteristics of
building thermal networks, a new hybrid formulation is developed by combining the
signal flowgraph and the generalized-nodal admittance formulations, which significantly
reduces the number of variables in the formulation. The constraint conditions of
inequalities are proved for eliminating invalid symbolic combinations. An algebraic
algorithm based on the new formulation, the constraint conditions and Cayley’s expansion
of a determinant is presented for appropriately utilizing the topological information of a
building thermal network. It can generate the semi-symbolic transfer function of buildings
more efficiently than existing methods in the network theory. Moreover, the new concepts
of generalized thermal network and imaginary network are proposed, with which a
building thermal network is now established based on not only the physical similarity but
also the principle of equivalence on a mathematical basis. Any combined thermal process
or parameter such as the operative temperature can be explicitly and accurately described
with an imaginary subnetwork. The techniques are applied to direct generation of the

symbolic transfer functions for a floor heating system in a passive solar test-room, which
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provide the model structure parameters and guidelines for real-time identification of the
heating system. The techniques are also validated with both Sannuti and Puri’s method

(1980) and the program BEEP (Athienitis 1990).

Several techniques are also developed for a real-time optimal predictive control
system. It consists of a weather predictor, a system identifier, a predictive controller and
a set-point optimizer. Two algorithms for ambient temperature and solar radiation
prediction are developed based on a statistical analysis of Montreal’s weather data in the
last decade. Normalization of the weather predictor made it feasible to quantify the
qualitative weather forecast for solar radiation for the next day. Validation of the
algorithms through experiments demonstrated that the predictor can identify the weather
pattern for the next day at night and generate solar radiation and ambient temperature

profiles that reasonably agree with the actual weather.

The prior knowledge of a BEHS, obtained through symbolic network analysis, can
be utilized to determine the initial model and to establish a set of supervision rules for
parameter estimation. Several implementation issues for robust real-time system
identification are investigated through experiments. The identification algorithm has been
verified with both ceiling and floor heating systems, using two time intervals and two
prediction horizons for predictive control and set-point optimization. The results indicate
that the globe temperatures predicted by the estimated models agree well with the
experimental data. In addition, a new predictive control algorithm eliminates the need for

inversion of the whole matrix in the calculation of the predictive control law. It
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considerably enhances the computational efficiency of GPC when the predictive control
horizon is large. The performance of GPC is superior to on-off and PI controllers, due to
its predictive action. Furthermore, the dynamic programming technique is computationally
flexible and efficient for multistage decision of operation strategies since a heating system
in practice is usually subject to many constraints. The flexibility allows us to combine
efficient measures, such as on-line simulation. Application of these techniques to the floor
heating system shows that significant savings in operating energy cost may be achieved

by predictive control of BEHSs when they are properly designed and operated.

Research conducted in this thesis provides opportunities for further developments
in dynamic building energy control. First, periodic optimization methods developed by
Bittanti et al (1973) and Dorato and Knudsen (1979) may be combined with symbolic
network analysis for simultaneous optimization of both building design variables and
operation strategies. An objective function integrating energy consumption over the period
of interest may be described in the frequency domain. Symbolic transfer functions of
buildings and penalty functions for given constraints may be substituted into the objective
function. An analytical optimal heat supply strategy may then be derived by minimizing
the objective function for each harmonic. This allows building design parameters to be
optimized under the optimal operation strategy. Second, thermal analysis and sensitivity
studies of building thermal systems provide insight into a relationship between
independent heat sources and optimal set-points. This information may be utilized to
generate correlation equations between the optimal operating range and independent

sources, which will significantly reduce the range in which optimal operation strategies
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are searched for in real-time. Third, the determinate rules given in Chapter 8 for
identifying the ambient temperature pattern for the next day may be replaced by a fuzzy
rule-based system to deal with a number of uncertainties. Algorithms for prediction of
other weather variables such as wet-bulb temperature may also be developed by using an

approach similar to one used in Chapter 8.

Fourth, except for on-line simulation, other measures may be considered to
enhance the computational efficiency of dynamic programming. Approximate optimal set-
points may be obtained with a low grid resolution to reduce the search range and then the
accurate solution may be determined with a finer grid. The feasible operating range may
also be divided into several strips along the time axis. Then, optimal operation strategies
may be recursively searched within a small range. Fifth, the developed techniques may
be integrated into one computer program for real-time operation and implemented in the
test-room or a real building to further investigate practical implementation issues. Last but
not least, artificial neural networks may be incorporated to identify HVAC systems with
high nonlinearity so as to extend this work to dynamic control of other heating and

cooling systems.
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APPENDICES

APPENDIX A
SANNUTI AND PURI’'S THEOREM

In expanding the determinant in Cayley’s expansion (Equation (4.13), Sannuti and
Puri (1980) proved the following theorem to weed out invalid symbol combinations. They

considered a partitioned matrix A of the form

A g A

I O

where A; and A, are | x m and | x m, submatrices, respectively; I is an m x m identity
submatrix; (i) is a set of the indices of 1, rows deleted from the submatrix I; (j) is a set
of the indices of m; columns deleted from the submatrices A; and I Then, the
determinant of A could be nonzero only if m-1; < m-m, and if (j) is either a subset of (i)

or the same as (i). Under this condition, the determinant of A is obtained by
A = (17| 4y guy 4 |
where

m-l,

p = m-1)+Y (k+n) ;

n=]l
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(j+k) denotes a set of the indices of columns deleted from A, and the sum of the two sets

(§) and (K); (k) is a set consisting of k, (nis from 1 to m-1, ) and the complement of the

set (i) in the submatrix L.
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APPENDIX B

A HYBRID SYSTEM OF EQUATIONS FOR THE FLOOR HEATING SYSTEM

The systems of thermal balance equations (5.17) through (5.20) can be simplified

when either the solar source or the ambient temperature is active alone.

B.1 Ambient Temperature Active
When only the ambient temperature is active, the vectors of the system variables

should be simplified as follows:

X = [ Ty The Ts T, Ty T, Q, ]T

X2=[T1 LT, T, T, To]r
Correspondingly, the coefficient matrix is given as:

-yl 00
Y O
0 y
0 0
0 o
-1 0
0 0

© ©o o © o o
© o XX © ©o © o
L X o o o o o

© © o o

© O O © O O

-1 K
, Ay = [I(M) 0(,“)] » Ay 2[ o(sxS) ]

(1x5) -1
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with

[ Y9+¥0*¥u O Y n Yo
8 0 -8 &2 “8es
Y= Vo 0 Yoryiatyy 24 4t o1,
TYu 0 Ve MYt 2 Y7
Yo O Y13 2 YoVt 0 |

K=[10100]

B.2 Solar Source Active
If the solar source is acting on the system alone, the vectors of the system

variables may be expressed as:

X = [ Ty T Ty, Ty Ty Ty, Q:]T

L=[L LT, T, 5]

and the coefficient matrix written as:

[y, 0 00 0 0
0O y, 00 00
0 y, 0 0 0 -1

A,=|0 0Y, 00 O},
0 0o0Y,ooO
0 00 0VYO
_O-IOOOOH,.

Yll
4, = 0o » Ay =[I(M) o(‘xl)] » Ap = ‘[I(s,a)]
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with

-8,
0
Yo
u

Y10

0

© © O ©

[ Yo+¥10*yy; O ~&

Yo

0 -84

0 0

0 Yo*¥i3+¥ue
82 VY
s Vi3
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APPENDIX C
DERIVATION OF THE FORMULAE FOR
THE COEFFICIENTS OF Z-TRANSFER FUNCTIONS

The z-transform of the response function h(t) in Equation (5.27) with a ramp input

is represented by

ZIKt1-Z[YK]1+Z[Y Ke™']

Z[h®] =
= = (C.1)
z(1-zH? T 1-z7' 1oy
Reducing fractions to a common denominator, we have
N@)
Z[h®] =
[A@®) ] (C2)

21z (1 - e 2 0)
j=1

where N(z) should be a polynomial of 7l
In addition, the z-transform of the response function f(j) in Equation (5.29) with

a unit triangle wave as input may be given by
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Z[fN)1

i (ZLht+AD 1 -2Z [ ] + Z [ hit-Ad) ]}

(C.3)
= 5(1"_2'1)2_ Z[hQ ]
At

Substituting Equation (C.2) into (C.3), we have

N@@) _ by + bz +bz? +

ﬁ( { - e_xfmz'l ) 1+ dIZ‘l + dzz‘z +
J=1

since Z[f(j)] should be equal to the z transfer function in the common form. The
coefficients in the term of the same order in the two denominators should be equal to

each other. Thus

d =1
dl - _ ( e-xlAr + e-szt PR e-x,,Ar)
dz=e-(x1¢xz)Ar+e-(x1¢x3)At+m+e-(xn_l¢xn)At (C4)

dn = (-1)" e'(‘l""z"' + %) At
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APPENDIX D
DERIVATION OF MULTI-STEP PREDICTOR FORMULAE

The dead time of the heating process is assumed to be unity for simplification of
notation. One may replace unity with ny to obtain the general formulae.

Examination of Equation (7.5) shows that the future globe temperature may be
divided into two parts. The first part is determined by the current and future control inputs
to be optimized. The other depends on the historic measured inputs and outputs as well
as predicted ambient temperature and solar radiation. The globe temperature one step

ahead may be expressed by

T;(t+1) = by Ad(t) + f, (D.1)

Similarly, the globe temperature two step ahead may be obtained by

T (1+2) = by Ai(e+1) + by AQ() - a) To(t+1) + fy, D-2)
where fo,; and fo2 can be calculated by using Equation (7.8).

Substituting Equation (D.1) into (D.2), we have

T;(t+2) = (by - a] by) Ad(t) + by Ad(t+1)
(D.3)

/
+ (o2 - a fo)

Examining Equations (D.1) and (D.3), one may find the following relations:
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D4)

Assume that the recursive formulae (D.1) through (D.4) are tenable at j steps ahead, thus

j-1
T:(t*‘f) = Zo 8j-1-i Aa(e+i) + fJ D.5)
1=
with
Min(n_ %)
& =b - E a,-' 8 O<ksj-1
i=1
(D.6)
Min(n_s1-1)
fi=fu- X a/ f 1slgj
i=1
The globe temperature at j+1 steps ahead can also be described as:
. J
T2(t+j+1) = Y b; Ad(t+j-i)
i=0 ©.7)

J
/ .
- Y a; T4 +1-D) + foju

i=1

Substituting Equations (D.5) and (D.6) into (D.7), we have
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j
T, (t+j+1) = Y b; Ad(t+j-i) + f, ol
i=0

j-1
- all [% gj‘l—i Aﬂ(t"‘i) + f} :| (D.8)

/ -
- 4; [go Ai(r) "‘fl 1
The above equation is simplified by merging the terms with the same variables as

follows:
* . J / -
T, (t+j+1) = bj - Eai g-i Au(r)
i=1

Jj-1
+ [bj_l - Za! gj‘l'l J M(t+1) +
i=1 (D.9)

j
- /
+ by Aa(t+)) + [fom -4 fj+1-i}
i=1
It is clearly evident that the coefficients in Equation (D.9) can be expressed by the

recursive formulae (D.6), thus

j
T (t+j+1) = Y gj_; Ad(e+i) + £, (D.10)
i=0

The multi-step formulae of the optimal predictor for the floor heating system has been

proved.
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APPENDIX E
A PROCEDURE FOR CALCULATION OF HOURLY

SOLAR RADIATION ON A SLOPED SURFACE

Hourly solar radiation may be estimated in the following procedure (Duffie and
Beckman 1991):

1) Input the following parameters: n, the day of the year; ¢ (°), the latitude
of the place under consideration; y and 8 (°), the surface azimuth angle
and the slope angle of the surface; Pg @ diffuse reflectance for the total
solar radiation; @, the hour angle (°); and I, the measured total solar
radiation on a horizontal plane.

2) Compute the declination 8 (°) with

8 = 23.45 sin [360284 + 1 (E.1)
365

3 Calculate the hourly extraterrestrial radiation on a horizontal surface with

Io=u—6001“(1 + 0.033 cos 360")x
19
(E.2)
. . 1!((02-&)1) . .
cos ¢ cos 8(sin w,-sin w,)+ 180 sin ¢ sin &

where I is the solar constant (1367 W/mz); @, and @, are hour angles (°)

representing the limits of the hour under consideration (@y>w,).
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4)

e

Find the fraction Ry of the hourly diffuse radiation to the hourly solar

radiation on a horizontal surface with

r

1.0 - 0.09 k, ky < 022
2
r - L _|09511-0.1604k,+4.388%; E.3)
T -16.638k;+12.336k;  0.22<k.<0.80
0.165 k,>0.80

where ky is hourly clearness index which is defined as:
ky = I (E4)
IO

Compute Ry, the ratio of beam radiation on a tilted surface to that on a

horizontal surface with

cos 0,

R, - (E:5)

cos Gz

where 0, is the zenith angle, which may be, for a horizontal surface,

calculated by

cos 0, = sin & sin ¢ + cos 8 cos ¢ cos w

and O is the angle of incidence of beam radiation on a surface, which may

be, for a vertical surface, determined by
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cos 0 = cos & sin y sinw - sin 8 cos ¢ cos y

+ cos § sin ¢ cos y cosw

(6)  Find the hourly diffuse and beam radiation on a horizontal surface with
I,=R,. I
“ E6)
L =I-1
(7)

Find I, the total solar radiation on a tilted surface, using the isotropic
diffuse model given by Liu and Jordan ( 1963) as follows:
I,.=I,,R,,+Im « Ip[1zcos B E.7)
2 2
The diffuse component may be also determined with the anisotropic diffuse

model, which is presented by Hay and Davies (1980), and modified by
Reindl et al. (1990) as follows:

Ir = Id{cl-A,>(E°2L“)[1 of sin’(g)]ﬂiﬂb} E8)
with
I
A = I_"
I
-k
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