INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UM! films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

@®

UMI

Lineage Tracing in Data Warehousing Systems:

A Design and Implementation

Jiu Xu

A Major Report
in

The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University

Montreal, Quebec, Canada

April 2003

© Jiu Xu, 2003

Bibliothéque nationale
Canada

of Canada du
Acquisitions and Acquisitions et .
Bibliographic Services services bibliographiques
m ON K1A ON4 mo‘:l K1A ON4
Canada Canada
Your fle Votre néddrence
Cur fle Notre réldrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retams ownership of the L’auteur conserve la propriété du
copytight in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-77725-1

ABSTRACT
Lineage Tracing in Data Warehousing Systems:

A Design and Implementation
Jiu Xu
Data warehouse, as the foundation of decision support system, is critical for the managers
to make decisions. It is different with operational database. Data warehouse reads data
from multiple operational databases instead of getting the data from the end user
transaction input. In a warehousing environment, the data lineage problem is that of
tracing warehouse data items back to the original source items from which they were
derived. Enabling lineage tracing in a data warehouse environment has several benefits
and applications, including in-depth data analysis and data mining, authorization

management, efficient warehouse recovery, etc.

In this report, we firstly introduce the basic concept and architecture of data warehouse, as
well as the development tools and methods about data warehouse. Secondly, we discuss
the lineage tracing problems and challenges in the data warehousing system, and then use
an example to present the algorithms and procedure of lineage tracing. As well, we will
present our design and implementation of a prototype system called LTI, to demonstrate
the lineage tracing procedures using an inventory system as a data warehouse system. We
also developed various graphical user interfaces required to facilitate interacting with the
system in order to update the source databases in the LTI system. Finally, we will show
the experimentation of using our LTI system through tracing inventory and sales order

data in the data warehouse system.

il

Acknowledgments

Thanks to my supervisor, Dr. Nematollaah Shiri, who guided me in this research and gave
me lots of valuable advises and instructions. Also, [would like to thank my fellow
graduate students, Minghua Chen, Dongmei Liu, Minggang Wu, together with whom we
studied this topic as a team project in the course COMP6591, and developed the first

version of the ideas of lineage tracing in the data warehouse systems.

iv

Table of Contents

Chapter 1 Introduction to Data Warehousing............coceveeenneeemmnmnenmmennnnssosesons 1
1.1 What Is a2 Data WarehouSe?..........cowvuveeuemeeeeieeeeeeeeeeeeeeeeeeeeeoeoooeoooooo 2
1.2 Why Do We Need Data Warehouses?.............o.oeewueeoeeeroemomoeeeeooooooooooo 4
1.3 Characteristics of Data within a Data Warehouse System......coooeeiiiiiiiiL 5
1.4 Architecture of a Data Warehousing System.....................................__._. .6
1.5 Data Warehousing Processes and Approaches.oooovooeooooooo] 8
1.6 Data Warehouse Software COmMpONents.o..oveeeeeenoeoo 10
1.7 Methods of Data Extraction and Transformation....................................._. 1
1.8 Data Warehouse Development Life Cycles................................._ 13
1.9 The Organization of This Report................cooooooooo 14

Chapter 2 Lineage Tracing in Data Warehousing.......ccceeueeuieienirinienniennnnennnn 15
2.1 An llustrative Example....................cocooeoooio 16
2.2 The lineage Tracing Procedure.................c.cccoooooiiiiiio o 23
2.3 Auxiliary Materialized Views in Data Warehouse..............o.oooooooooo 24
2.4 Methods of Using Auxiliary Views for Lineage Tracing............................. 25
2.5 Using Auxiliary Views for Lineage Tracing..........coooooii 30
2.6 Related Work..............oooooooii 33

v

Chapter 3 System DeSi@N. ... e ieuimieeereeiiereereereeeeeceseecosassnsnssnssesssssnsennm
3.1 LTI System Architecture.o..ooooooiiiii e 36
3.2 Source Databases and Data Warehouse Design...............cccooeeeeeoi . 38
3.3 System Functionalities.oo.ooiii i 40
3.4 Design of LTI and Test SYSIeMS...........oooouuniiine e 41

Chapter 4 Implementation and EXperimentation...............oveueeneeeeennnneeseeeneenn 48
4.1 Implementation Details.................................... 48
4.2 The User Interface of LTL...........ooooooiiiiiii e 55
4.3 Interacting with the SYSIEM......c.ooooveeurieieieeee et 62

Chapter § Concluding Remarks and Future Work.........ccceeueeeeeenemnnseeseeseeonnnn 67
5.1 Using Auxiliary VIew.........ooooiii i 67
5.2 Data Update in Data Warehouse..................c.oooooieinieiie 68
5.3 Data Growth in Data Warehouse...................c..occooieeii 69
SA4Future Work. ... 70

References........... 72

Appendix: Sample Codes. 74

List of Figures

Figure 1.1 A basic architecture of a data warehousing system..............cccevveuenanen. 7
Figure 1.2 Software components of a data warehouse.coeeeevenrenneenneenren 10
Figure 1.3 EXtraction 0pPtions........c..ccieueeueeeeenueieeneenneenneesnneeneeennsesnnessnssnsnes 12
Figure 1.4 Data transformations Methods.eeueeueeeencerenneceessresseoeeessseeesresesssessnons 13
Figure 2.1 Query tree for relational query OrderTofuTotal............eeeenueeevenneennnn. 21
Figure 2.2 View definition for NotEnoughOTder..........c..oeeumueeveneeeeeeneeernneennens 26
Figure 2.3 [llustration of lineage tracing using auxiliary views..............eeveuennnnn... 33
Figure 3.1 The E/R diagram of source databases.............ceveeneeeennereeenneeeeennsnnnns 38
Figure 3.2 LTI system USe Case.....c...cieueeruuenniriereneremmeeeennnesenssssssssnsessnnsmons 42
Figure 3.3 LTI system Class DIiagram........c..eeueveeeererenenieereeeernnnnnseessessesnnnnsose 43
Figure 3.4 Subsystem Class DIiagram............uuuueerueeereenneereennneeesennnseseseemnnsesons 45
Figure 3.5 A Sequence Diagram in LTI SYSteM...........cvveeenereemnneeeenenneeseeennnnsses 47
Figure 4.1 LTI system architeCture.........c.uueeeeeeeeernnneereennnreeeeennnsessemnnnnnnsonnns 48
Figure 4.2 Main interface of LTI SYStemM.....cveeeeeeeeeeereeunnnnneeseessessnmensmseeeesnnnnns 55
Figure 4.3 Interface of tracing inventory information.............e.eeeueveeeeveeueennnnnnss 56
Figure 4.4 Interface of tracing chosen product inventory...............eeeeeuveeveeennnnn.. 57

Figure 4.5 Total inventory information of the chosen product in three branches......58

Figure 4.6 Detail inventory information of the chosen product in three branches.....58

Figure 4.7 Interface of tracing sales order information.................eceevevveevveennnnn. 59
Figure 4.8 Interface of tracing sales order of the chosen category products............. 60
Figure 4.9 Sales order information of the chosen category products in store 1.......... 60

vi

Figure 4.10 Sales order information of the chosen category products in all stores.....61

Figure 4.11 Main interface of updating the SOULCES.......cuveeeurernereeeireeerneenaennans 62
Figure 4.12 Interface of updating inventory information............cc.eeeeueereneennnennn. 63
Figure 4.13 Entry form of updating product stock..................; 63
Figure 4.14 Entry form of adding a new product.........ccceeeeeuennienerennnennnernnnnns 64
Figure 4.15 Entry form of creating a new sales order............ceuueeeveeecionnnrenennnnnn. 65
Figure 4.16 Entry form of ordering product for the new sales order..................... 65
Figure 4.17 Entry form of adding a new CUStOMET........ceeueeernenrereeeeennnennneenneoes 66
Figure 4.18 Entry form of adding a new shipping company.................ueeennnnn.... 66

vii

List of Tables

Table 2.1 Source_LProducts........c.ccceveeeeerueemereeeeeereeaneeneeesnnnnnesseseesesssmmmeeson 17
Table 2.2 Source_1.Categories.ccevrerennreererrererrerenncennnesennneseesessmmsmnnnnn 18
Table 2.3 SouUrce_LOrders......ccovciieerrereereerrenneeeneeeesemmmseesennnnneseessssmmeesssos 18
Table 2.4 Source_1.0OrderDetails......c.ceeererererreieereeeeeeemmneeeemennnssseeseesseosssosns 18
Table 2.5 SoUrce_2.0rders.......ccceveeunrunnnmeeeneierereeeeeeeeeanennnnnnnnsesssneesnnnnseos 18
Table 2.6 Source_2.0rderDetails.........oeeeeeeeerureeirnneeeeeeeemueemenmeeseeeeeeeeeeseson 19
Table 2.7 SOUrce_3.0Tders.......ccc.uveeeeeriierarnuneeniieneeeeeenmeeennnnmeseneeeessessness 19
Table 2.8 Source_3.0rderDetails.ccceeerrrureeererueeeeenemnennnnnnnnnnseeesseessnnoons 19
Table 2.9 The table OrderTofuTotal in the data warehouse..........oeveevveoonnoonnn. o, 22
Table 2.10 Source2.Products.........coveeeereernnuenreiiirereereeeeeeeesnnenesneeneeesemessnnoson, 22
Table 2.11 Source2.0rderDetails...........ccoeeveveeeerrereereeeeeeeneaneneeneoesoeeeessneso, 22
Table 2.12 Contents of view NotEnoughOrde..........ccuveeeeeveeeeveeeeeeeeoooeesonn, 27
Table 2.13 PBT_Products..........ueeeernieeeeeerureeesseeeeseennennsenssessessssmme s, 28
Table 2.14 PBT_OrderDetails...........cccveummrreriiiirriieeeeeeeeeeenseeeesessesssonsssnssn oo 28
Table 2.15 BTP_Products..........ueuciereernnrnmunneeeeineeeeeeeseeeeeseesessseeessesomesnnsonn, 29
Table 2.16 BTP_OrderDetails............ccceeerererreereieesineneaneeseeeeeesesseseeesnnss 29
Table 2.17 Lineage view projection (LVP).......cc...ovevueeeeeeeeeeeeeenneennmsessonesonoonn, 30
Table 2.18 The auxiliary materialized view ProductTofu2................ovveeoeeeonnn 32

viii

Chapter 1 Introduction to Data Warehousing

As early as the 1970s the merits of placing specially prepared data on separate platforms
for decision support purposes were recognized. This approach provides easy access to the
needed data, improves system response time, and enhances data integrity and security
[GW1998]. In the 1990s, data warehousing was the subject of numerous developments for
data analysis and research. Many organizations developed data warehouse systems to

provide the end users with clean, consistent, and relevant data for querying and analysis.

Following the changes in a business situation, the decision-makers in an enterprise hope
to get the needed information in short time. They need to look through business data to
identify business opportunities that can provide competitive advantages, improve profits,
or reduce costs. This review of the enterprise data should be done from different
perspectives and at different levels of detail to find and address business problems as the
problems arise. The data warehouse in an organization collects the data from a wide
variety of data sources, such as the data about customers, products and financial data, for

analysis and making decisions based on the integrated information.

Traditional operational systems help storing data into databases quickly, safely, and
efficiently. However, they do not support delivering meaningful analysis in return. A data
warehouse is an extremely efficient system for gathering data from business transactions
or external sources, organizing the information in suitable formats, and providing users

with the tools needed to analyze the data, thus supporting better business decisions. The

data warehouse makes it possible to analyze business behavior, trends, and changes over
time. It offers data timeliness, consistency and comparability, and facilitates the process

of turning data into business intelligence information.

In the rest of this introductory chapter, we address the following questions:
e What is a data warehouse?
e Why do we need data warehouses?
¢ Characteristics of data within a data warehouse system
® Architecture of a data warehousing system
¢ Data warehousing processes and approaches
¢ Data warehousing software components
e Methods of extraction and transformation of data

¢ Data warehousing development life cycles

1.1 What is a Data Warehouse?

Data warehouse was originally envisioned as a separate architectural component that
converted and integrated masses of raw data from legacy and other operational systems
and from external sources. In data research and industry, the approach for providing
integrated access to multiple distributed, heterogeneous databases and other information
sources and select data into a single repository is commonly referred to as data
warehousing [Widl1995]. A large database system storing the selected data for data

querying and analysis is called a data warehouse [Inm1996] or a data warehouse system.

[nmon, known as the father of data warehousing, defines a data warehouse as a
“collection of integrated, subject-oriented databases designed to supply the information
required for decision-making” [HWM1999]. The key characteristics of a data warehouse
are listed as:
¢ Subject orientation. Warehoused data are organized by subject area (for example,
product, customer, etc), and span organizational and process boundaries. They
present a wide business view of information.
¢ Integration. A data warehouse collects data from many operational systems and
source databases, and provides an integrated view for the end users.
e Databases. The term data warehouse itself refers to a large, read-only repository
of data. At the heart of data warehouse lies the large database that stores the

integrated data “collected” from different data sources.

A data warehouse is a kind of database in two senses — technical and business [Mat1996].
A large physical database (technical support) must be clearly defined, which holds all
information of interest to specific groups of business (business understanding). A data
warehouse is nothing really more than a large database that holds copies of data from
other systems which is made available for use by other applications [Bral996]. So a data
warehouse is a database that [Mat1996]:

® isorganized to serve as a data storage area

® 1s used by data-mining and other applications

® meets a specific set of business requirements

® uses data that meets a predefined set of business criteria

1.2 Why Do We Need Data Warehouses?

Data warehouse systems are used for managing the time-variant data in order to analyze
business trends and make decisions. They can be used to store large quantity of data
together with summaries of data, which could be rolled up to higher levels of
generalization or drilled down to lower levels of detail. They provide the primary support
for on-line analytical processing (OLAP), decision support systems, and executive
information systems. An original purpose of a data warehouse system was to support
computation intensive queries for data analysis. However, it was then realized, as the so-
called the second generation of data warehouse systems, that they could be used for data

querying as well.

From a business perspective, a data warehouse provides a single and “consistent” data
source. The user can issue different business queries to the data warehouse. Queries can
be answered and analyzed quickly and efficiently. since the integrated information is
directly availably at the warehouse. The decision makers in the organization can use the
results of the queries to make strategic decisions and solve business problems [Mat1996].
More and more companies are using data warehousing as a strategic tool to help them win
new customers, develop new products, and lower the costs. The data warehouse becomes
the common information resource for making decisions throughout the organization. For
the business users, the overall objectives of a data warehousing system as discussed in
[MAG1998] are:

® ensure accurate, high-quality data, that are pertinent to the decision-making

processes of the enterprise;

e provide a consistent and integrated view of the enterprise data;
e provide easy access to data;
® provide timely access to data through fast, automated data gathering and delivery;

® empower business users through a friendly, effective access interface; and

® provide flexibility to grow with and adapt to changing business requirements.

1.3 Characteristics of Data within a Data Warehouse System

Data in a data warehouse may come from various operational database and other business
application systems, for example, accounting information, operation information,
inventory information, customer information, etc. Data warehouse builds cross-reference
information among these different data sources to enable data analysis and querying
capabilities. It can also be used to group data into different subject areas so that users can
search and analyze data easily and in a focused manner. Such specialized subject-oriented

data warehouses are called data marts.

1.3.1 Contents of a Data Warehouse

A data warehouse is served to store the information produced by other systems, not to
produce new information. A data warehouse includes not only copies of the current
information, but also historical copies thereof as well. Usually the data in a data
warehouse serves more than one application, so the data warehouse must be designed as
shared and simplified. As such, the data in warehouse must be organized in a way that

makes it easy for users to search and manipulate [Mat1996].

Highlights of the features of a data warehouse are as follows [Mat1996]:

e The tables in a data warehouse are very large

The number of tables are very large

The data in tables have a high degree of interdependency

¢ The data is accessed in a read-only mode by the users

e Changes to the information sources should be reflected to the data warehouse
periodically

e Much of the data collected and maintained in the data warehouse will be historical

(time-dependent)

1.3.2 Problems of Moving Data into the Warehouse

When building a data warehouse, two major problems need to be solved. First, the data in
a data warehouse should be cleaned, validated, and properly aggregated. We cannot
simply export disparate data from operational databases to a data warehouse. Second, the
data placed in a data warehouse system must be consistent, and be prepared using formal

techniques for managing and documenting summary data [Bra1996).

1.4 Architecture of a Data Warehousing System

L

As defined earlier, a data warehouse is a repository of integrated information from
distributed, autonomous, and possibly heterogeneous sources. A data warehousing system
collects data from multiple distributed sources and stores the integrated information as

materialized views in a local data warehouse, and keeps the view contents “up-to-date™

when the sources change. Users can then perform data querying, and analysis on the

warehouse views.

In fact, a warehouse stores some materialized views of the source data from different
sources. A user can query and analyze the data in the warehouse. Figure 1.1 shows a
basic architecture of a data warehousing system [LZW1997]. As we can see, there are
three major components: the data integration component, the data warehouse utself, and

the query and analysis component [Mat1996].

Data
Query & Analysis

R~
Data
Warehouse

Data Integrator

Figure 1.1 A basic architecture of a data warehousing system

The main component of a data warehouse system is the data warehouse itself: a large,
physical database that holds a vast amount of information from a wide variety of sources.
The data within the warehouse is organized in a way that makes it easy to search and use,
and is updated frequently from the sources. The data integration component includes
programs that are used for collecting data from the sources and storing them in the
warehouse. They are also used to collect and maintain the materialized views. The query
and analysis component includes all the data warehouse applications to support specific

end user’s queries and analyses requirements.

1.5 Data Warehousing Processes and Approaches

1.5.1 Data Warehousing Processes
Commonly, the data integration problem is based on the following two-steps process
[W1d1995]:

I Accept a query, determine the appropriate subset of information sources to answer

the query, and generate the appropriate subqueries or commands to each

information source.

9

Obtain results form the information sources. perform appropriate translation,
filtering, and merging of the information, and return the final answer to the user or

the application requested.

1.5.2 Data Warehousing Approaches

There are two alternative and competing approaches for building a data warehouse

system — data-driven and application-driven [Kel1996].

1. Data-driven approach

In this approach, a pool of data is selected to migrate to the data warehouse system which
then accumulates and maintains the source data added to the system. For example, we
decide to build a data warehouse system to manage the inventory information for the head
office to analyze the data obtained from several sources at the branches. This approach
can be used to select product inventory and other related information, such as product
category, and supplier information, from different sources, and then merge them as an
integrated data resource into the data warehouse. An important advantage of this approach
is autonomy of the sources, where separate pools of data, each of which is resident in the
operational environment with its own technology and platform, send their data to the data
warehouse. The mapping of the data from the sources to the target data models is done

during migrating the data.

2. Application-driven Approach

In this approach, separate applications are likely to require the data from different
operational systems in order to process the queries by the applications. For example, the
first application for the inventory information system is to query the products inventory

information. Some attributes of data can be used for other application system, such as the

sales order information. So the application-driven approach will result in the delivery of a

tangible business benefit for the organization.

1.6 Data Warehouse Software Components

In developing a data-warehousing project, a warehousing team will require several

different types of software tools. These software products generally fall into one or more

of the categories illustrated in Figure 1.2, as described below [HWM1999].

© Extraction &

)
: Transformation

Mart(s) [

i Data i

;Warehouse |
l —

’ Y
j
Y

e e e e e - - - - m m e d e - —— e = -

- Mctadata

______________ N m e
Warehouse !
Technology |

] r=—3
! -
(e
2 OLAP
— !
Data ! 2

N\

Data Access & |
Retrieval

n/
Y
o

]
me
A

®

Alert System
1 Exception Reporting

Data Mining

- e = -

Figure 1.2 Software components of a data warehouse

Extraction and transformation. The warehouse team requires tools that can

extract, clean, transform, integrate, and load data from sources to the data

warehouse.

10

Warehouse storage. Tools are also required to store warehouse data and their
accompanying metadata. Relational database management systems in particular

are well suited for large and growing warehouses.

Data access and retrieval. Different types of software are required to access,
retrieve, distribute, and present warehouse data to the end users. Data access and
retrieval tools are currently classified into the subcategories such as: Online
Analytical Processing (OLAP), Report Writers, Executive Information System

(ELS), Data Mining, Exception Reporting and Alert System, etc.

1.7 Methods of Data Extraction and Transformation

There are several methods used when a warehouse team solves the problem of extraction
and transformation data from source systems into the data warehouse. Next, we briefly

introduce these methods.

1.7.1 Extraction Methods

Two primary methods for extracting data from source systems are change-based

replication and bulk extractions as illustrated in Figurel.3 {HWM1999].

Bulk Extractions. In this method, the data warehouse is refreshed periodically by
extraction data from the source systems. This approach is expensive since it
requires the connection between the sources and the data warehouse and
transferring huge amount of data from the former to the latter. On the other hand,

such warehouses are easier to set up and maintain.

11

¢ Change-Based Replication. In this methed, only updated data or newly inserted
data are extracted and loaded into the data warehouse. This approach places less
stress on the network, but requires complex implementation of algorithms to

compute, the changes and apply them to the data warehouse.

——.

=

e
——— —————— -)
N - —
Source fZ——"\ — Warchouse |
System || =—= B
. —
S ——

(a) Bulk Extractions

Data
Warchouse

Source
System 4

(b) Change-Based Replication

Figure 1.3 Extraction options

1.7.2 Transformation Methods

Transformation methods transform extracted data from data sources into the appropriate
format, data structure, and values, as required by the data warehouse. Most transformation

methods provide features illustrated in Figure 1.4 [HWM1999].

12

SOURCE TYPE OF DATA
SYSTEM TRANSFORMATION WAREHOUSE
Address Field: No: 123
#123 ABC Street Street: ABC
XYZ City 1000 Field Splitting City: XYZ

Republic of MN

Country: Republic of MN
Postal Code: 1000

System A: Customer Title:
President

System B: Customer Title:
CEO

Field Consolidation

Customer Title:
President or CEO

Order Date: 05/08/1998

Order Date: August 05, 1998

Order Date: August 08, 1998 Standardization Order Date: August 08, 1998

System A: Customer Name:

Jone W.Smith Customer Name:
Reduplication Jone William Smith

System B: Customer Name
Jone William Smith

Figure 1.4 Data transformations methods

1.8 Data Warehouse Development Life Cycles

As discussed in [Mat1996], the development life cycle of a data warehouse includes three
phases, (1) overall warehouse development, (2) infrastructure development, (3)

applications development.
1. The overall warehouse development phase
During this phase, all participants must agree on the size, scope, complexity, approach

to the construction, and the value of the warehouse project.

2. The infrastructure development phase

13

During the infrastructure development phase, all of the technical, managerial, and
system-support issues should be resolved. The physical infrastructure is built and
tested, and is staffed with the appropriate support personnel. After the infrastructure

has been stabilized, users will actually begin trying to use the data in the warehouse.

3. The applications development

The last phase in the development of a data warehouse system actually is an iterative
one. During this phase, application developers decide on issues such as designing the
tables, software modules, and coding of the programs. Each system should meet the

specific business needs for the application at hand.

1.9 The Organization of This Report

The rest of this report is organized into four chapters. Chapter 2 discuses the data lineage
tracing problem in data warehousing, and introduces the lineage tracing procedure and
strategies. We will also illustrate how auxiliary views are useful for data lineage tracing.
In Chapter 3, we present our design and implementation of a prototype system for lineage
tracing of an inventory application. Chapter 4 will demonstrate the system performance
and our experimentation with the system. Finally, concluding remarks and future work are

presented in Chapter 5. In Appendix, we will provide some sample codes of the system.

14

Chapter 2 Lineage Tracing in Data Warehousing

From Chapter 1, we know that a data warehouse is a repository of integrated information
from multiple sources. The integrated information is stored as materialized views in the
data warehouse. Ideally, the views are kept up-to-date when the sources change. Users can

then apply data analysis and mining algorithms based on the data warehouse.

In a warehouse system, the view data come from multiple autonomous sources. In some
queries, only the content of warehouse view alone is not sufficient for in-depth analysis of
the data information. The collection of data sources that contributed to the view data is
also useful for analysis. We can “drill through” from interesting (or potentially erroneous)
view data to the original source data that derived the view data for in-depth analysis of the
view data. For a given view data item, identifying the exact set of base data items that

produced the view data item is termed as the data lineage problem [CW2000].

The primary motivation for supporting data lineage is to enable further analysis of
interesting or potentially erroneous view data. This capability is useful in the content of
data mining, scientific databases, and network monitoring systems. The lineage tracing
algorithms and techniques can also be applied for view update, materialized view schema

evolution, and data cleaning [CW2000].

The warehousing environment can help the lineage tracing process by providing facilities

to merge data from multiple sources, and to store auxiliary information in the warehouse

15

in a consistent fashion. However, the warehousing environment introduces some
additional challenges to the lineage tracing problem, such as how to trace lineage when
the base data is distributed among multiple sources, and what to do if the sources are
inaccessible or not consistent with the warehouse views, and how to reduce the cost of

data transformation from the distributed sources into the warehouse, etc [CWW1997].

We organize the rest of this chapter as follows. Section 2.1 illustrates the data lineage
problem using an example. Section 2.2 explains the lineage tracing procedure using the
aggregation (ASPJ views). Section 2.3 discusses using auxiliary materalized views over
the source data to help in tracing the lineage of the interesting view data item efficiently.
Section 2.4 presents some methods of storing auxiliary views to support tracing the data
lineage. Section 2.5 illustrates how auxiliary views can be useful for data lineage tracing
in a data warehouse system. Section 2.6 shows some related work about tracing the

lineage of view data in a warehousing environment.

2.1 An INlustrative Example

[n this section, we use an example to illustrate the idea of data lineage and to show it can
be useful. Consider a data warehouse system in a large company, which has three retail
branches. Each branch has its own database operating independently, which stores the
inventory and sales information. In this example, we use the relational data model to
present the tracing procedure, however, the ideas and results could be adapted to object

oriented data model as well.

16

The data warehouse system collects the data from three source databases of retail
branches: Source_1, Source_2, and Source_3. These databases have the same structure,
for ease of presentation. Each source database consists of the following tables: Products,
Categories, Orders, OrderDetails. The structures of these tables are given below, where
the underlined attributes in each table denote the key. Tables 2.1 through 2.8 show the

database schemas and instances for some of these tables.

Products (ProductID, ProductName, SupplierID, Category, UnitPrice, UnitsInStock)
Categories (CategoryID, CategoryName, Description)
Orders (OrderID, CustomerID, OderDate, RequiredDate, ShippedDate)

OrderDetails (OderID, ProductID, UnitPrice, Quantity, Discount)

Table 2.1 Source_ [.Products

Product . Unit Units In

D Product Name Supplier Category Price($) Stock
Queso Cooperativa de .

1 Cabrales Quesos 'Las Cabras' Dairy Products 21.00 1

14 Tofu Mayumi's Produce 23.25 35
Sir Rodney's Specialty Biscuits, .

20 Marmalade Ltd. Confections 81.00 40
Jack's New

New England

41 England Clam Seafood 9.65 85
Chowder Seafood Cannery
Singaporean

42 Hokkien Fried Leka Trading Grains/Cereals 14.00 26
Mee
Manjimup Dried ,

51 Apples G'day, Mate Produce 53.00 20

57 Ravioli Angelo | Pasta Buttini s.r.l. Grains/Cereals 19.50 36
Louisiana Fiery .

65 Hot Pepper g:}?’ hOtgeans Cajun Condiments 21.05 76
Sauce 9

72 ggﬁ?ﬁla di Formaggi Fortini s.r.l. | Dairy Products 34.80 14

17

Table 2.2 Source_1.Categories

Category ID | Category Name Description
1 Beverages Soft drinks, coffees, teas, beers, and ales
2 Condiments Sweet and savory sauces, spreads, and seasonings
3 Confections Desserts, candies, and sweet breads
4 Dairy Products Cheeses
5 Grains/Cereals Breads, crackers, pasta, and cereal
6 Meat/Poultry Prepared meats
7 Produce Dried fruit and bean curd
8 Seafood Seaweed and fish
Table 2.3 Source_1.Orders
Order ID Customer Order Date | Required Date | Shipped Date
10248 | Galeria del gastrénomo | 04-Jul-2001 01-Aug-2001 16-Jul-2001
10249 | Toms Spezialititen 05-Jul-2001 16-Aug-2001 10-Jul-2001
10250 | Hanari Carnes 08-Jul-2001 05-Aug-2001 12-Jul-2001
Table 2.4 Source_1.OrderDetails
Order ID Product Unit Price (§) | Quantity | Discount (%)
10248 Mozzarella di Giovanni 34.80 5 0
10248 Queso Cabrales 14.00 12 0
10248 I\Sﬁl;lgaporean Hokkien Fried 9.80 10 0
10249 Manjimup Dried Apples 42.40 40 0
10249 | Tofu 18.60 9 0
Jack's New England Clam
10250 Chowder 7.70 10 0
Louisiana Fiery Hot Pepper
10250 Sauce 16.80 15 15
10250 Sir Rodney's Marmaiade 80.00 20 0
Table 2.5 Source_2.0Orders
Order ID Customer Order Date Required Date | Shipped Date
10323 Koniglich Essen 07-Oct-2001 04-Nov-2001 14-Oct-2001
10324 Save-a-lot Markets 08-Oct-2001 05-Nov-2001 10-Oct-2001
10325 Koniglich Essen 09-Oct-2001 23-Oct-2001 14-Oct-2001

Table 2.6 Source_2.0OrderDetails

Order ID Product Unit Price ($) | Quantity | Discount (%)
10323 | Tofu 18.60 10 0
10323 Mozzarella di Giovanni 27.80 40 0
10323 Louisiana Fiery Hot Pepper Sauce 16.80 40 0
10324 | Jack's New England Clam Chowder 7.70 20 0
10324 Manjimup Dried Apples 42.40 48 20
10324 | Singaporean Hokkien Fried Mee 11.20 10 20
10325 Mozzarella di Giovanni 27.80 25 15
10325 | Tofu 18.60 9 0
10325 Louisiana Fiery Hot Pepper Sauce 16.80 40 0

Table 2.7 Source_3.Orders
Order ID Customer Order Date Required Date Shipped Date
10396 | Hungry Ow! All-Night 19-Sep-2001 17-Oct-2001 23-Oct-2001
Grocers
10397 | The Big Cheese 20-Sep-2001 18-Oct-2001 27-Sep-2001
10398 Du monde entier 20-Sep-2001 04-Oct-2001 26-Sep-2001
Table 2.8 Source_3.0OrderDetails

Order ID Product Unit Price (§) | Quantity | Discount (%)
10396 Mozzarella di Giovanni 27.80 21 0
10396 Manjimup Dried Apples 42.40 18 15
10397 | Singaporean Hokkien Fried Mee 11.20 40
10397 | Queso Cabrales 16.80 30
10397 | Tofu 18.60 12

Jack's New England Clam
10398 Chowder 7.70 25 20
10398 | Tofu 18.60 20 10

19

Example 1 [Lineage of aggregation view from multiple sources]
Suppose a user (say an administrator in the head office) needs to check the total order
quantity for the product “Tofu” from the three source databases at the branches. Further

suppose that the user wants to trace the order information detail for the product “Tofu”

from Source_2.

For computing the order quantity for the product “Tofu” from each branch, there are three
views: OrderTofu_l, OrderTofu_2, OrderTofu_3, defined over the corresponding source
databases. We thus need to formulate and issue the following SQL-like queries to the
sources — one to each source, to get the information on the order quantity of the product

“Tofu™.

(Connect to Source_i: i =1,2,3)

CREATE VIEW OrderTofu_i AS

SELECT P.ProductName, Sum(OD.Quantity) AS Total, "Store i" AS StoreName
FROM Products P, OrderDetails OD

WHERE P.ProductID = OD.ProductID AND P.ProductName = “Tofu”

GROUP BY P.ProductName:

For transferring the source data into the data warehouse, we can use a data array
Array_TotalTofu to “collect” the order quantities information of product “Tofu” from
sources. In the data warehouse, a table OrderTofuTotal is defined for saving the total

order information of the product “Tofu” from the Array_TotalTofu. Figure 2.1 shows the

query tree for defining the table OrderTofuTotal, whose intermediate nodes perform
relational algebra operations. The root indicates the output and the leaves indicate the

input relations. We use the following SQL-like codes to create the table OrderTofuTotal.

(Connect to Warehouse)
CREATE TABLE OrderTofuTotal (ProductName, Total, StoreName)
INSERT INTO OrderTofuTotal VALUES

FROM each line of Array_TotalTofu;

Data Warehouse

:
: LOrderTofuTotal]
1

OrderTofu_1

OrderTofu_3

! OrderTofu_2 l

TtProducL\'ame.TolalZ.S(oreNam

|

1

I

]

i

|

1

I

Y ProductID, sum(Quantity) as :
Total2, StoreName as “Store2™ |
[

|

|

|

|

]

|

1

1

|

e m e c e e m———m——— - d

7Tl’rodm:l.'\'ame.'!’otal 1,StoreName 7tl’rodua:tName.Ylotalii,sloreN’amc:

Y ProductID, sum(Quantity) as Y ProductID, sum(Quantity) as

Total3, StoreName as “Store3”

0- ProductName= “Tofu"

G ProductName= “Tolu”

G ProductName= *Tolu”

AN D]
AN N A
Lp1) (opi) lp2] (op2] (p3 | (ops |
Source_1 Source_2 Source_3

i
|
I
I
|
I
|
1
|
I
] Totall, StoreNatne as “Storel™
|
1
1
I
]
|
i
I
1
|
8

g

Figure 2.1 Query tree for relational query OrderTofuTotal

Table 2.9 shows OrderTofuTotal, the result of the query: total order information for the
product “Tofu” from the branches. If the user wishes to trace the order information detail
for the product “Tofu” from Source_2, the data lineage procedure must ‘“connect” to
Source_2 again to get the information. From the view OrderTofu_2, the lineage tracing
procedure traces back to the source tables, Source_2.Produces and Source_2.OrderDetails.
Tables 2.10 and 2.11 show the tracing results about the product “Tofu” in Source_2. Since
the data lineage procedure needs to query the source database again to re-compute, it is

both time consuming and expensive.

Table 2.9 The table OrderTofuTotal in the data warehouse

ProductName Total StoreName

Tofu 9 Store1

Tofu 19 Store2

Tofu 32 Store3

Table 2.10 Source2.Products
Product Product . s Units In
D Name Supplier | Category [Unit Price ($) Stock
14 Tofu Mayumi's Produce 23.25 35
Table 2.11 Source2.OrderDetails
Order ID Product Unit Price ($) Quantity Discount (%)

10323 Tofu 18.60 10 0
10325 Tofu 18.60 9 0

2.2 The lineage Tracing Procedure

Given a materialized view in a data warchouse, we may want to trace the lineage of
selected “interesting” tuples in the view. From Example 1 above, we know that for
computing the lineage of a view data item, the view definition, the original source data,
and perhaps some auxiliary information are needed. The view definition provides a
mapping from the base data to the view data. Given a view data item, the corresponding
base data according to the view definition can be traced back. However, determining the
inverse mapping—from a view data back to the source data that produced it—is not
always as straightforward. To determine the inverse mapping accurately, we not only need
the view definition, but also need the base data and some additional information
[CWWI1997]. In Example I, the auxiliary views OrderTofu_l, OrderTofu_2, and

OrderTofu_3 are used to help in tracing back to the source data.

The lineage of a view tuple is defined as the set of original source tuples that derived the
given view tuple. To trace the lineage of a view tuple, we use a predefined sequence of
relational queries over the sources, called tracing queries, to compute the lineage of the
view data [CW1999]. In general, we use relational views with arbitrary use of aggregation,
selection, projection, and join operators, called Select-Project-Join views with aggregation
(ASPJ views). Firstly, the view definition is transformed into a normal form composed of
the sequences aggregate-project-select-join, called ASPJ segments. The lineage of tuples
in a view defined by a single ASPJ segment can be computed using tracing queries, which
are parameterized by the tuple(s) being traced. To trace the lineage of a view defined by

multiple levels of ASPJ segments, an intermediate view for each segment are defined, and

23

recursively traced through the hierarchy of intermediate views in a top-down manner. At
each level, the tracing queries are used for a one-level ASPJ view to compute the lineage
for the current traced tuples with respect to the views or base tables at the next level

below [CW2000+].

2.3 Auxiliary Materialized Views in Data Warehouse

In the data warehouse, we can store the auxiliary materialized views over the source data
to help in tracing the lineage of interesting view data item efficiently. Usually, there are
two approaches for tracing the lineage of data in a view. Firstly, re-compute the relevant
portion of the aggregation when tracing a tuple’s lineage. It needs to access the sources
again and need more computation time. This approach, however, requires no extra storage
or maintenance cost. In Example 1, we used this approach to trace a view data in a data
warehouse system. Secondly, define and maintain some auxiliary materialized views over
the data item specifically for lineage tracing in the data warehouse. These auxiliary
materialized views contain the intermediate results from source tables about the specific
view item. It can reduce the computation cost, and reduce or avoid expensive source

accesses, but the auxiliary views must be stored and kept up-to-date.

Another reason for using the auxiliary materialized views for tracing the lineage of data,
in a distributed multi-source data warehousing system, is that querying the sources for
tracing the lineage information can be difficult or impossible: sources may be inaccessible
sometime, expensive to access and transfer data to the warehouse, or inconsistent with

respect to the views data in the warehouse. So storing additional auxiliary views in the

24

warehouse can reduce or eliminate source access when tracing the lineage of the specific

view data.

Therefore, using auxiliary views in the warehouse to answer queries over the source data
and to trace the lineage of the data provides an integrated and efficient mechanism. In
general, the more auxiliary views are materialized and stored in the warehouse, the more
efficient the tracing and maintenance of the data it would be in the specific view.
However, it also increases the warehouse storage and maintenance costs, since auxiliary

views themselves also need to be maintained.

2.4 Methods of Using Auxiliary Views for Lineage Tracing

As noted in the above section, it may be advantageous to materialize certain auxiliary
views in a data warehouse to improve lineage tracing. Using the auxiliary views for
storing the data form the source tables in the warehouse can reduce or avoid computations
and expensive source queries, hence resulting in efficient and consistent lineage tracing.
There are many possible auxiliary views to materialize for lineage tracing with different
performance tradeoffs in different settings. Here we just discuss four methods for storing
auxiliary views to support tracing the data lineage. For details, interested readers are

referred to [CW2000].

The user views and the auxiliary views need to be maintained in response to changes to
data in source base tables. Maintaining a warehouse view requires access to the data that

is not available in the view itself [QGMW1996]. If the data in a warehouse view can be

traced correctly and can be maintained efficiently without querying the sources, the view
is called as self-traceable and self-maintainable. In cases where the sources are
inaccessible or inconsistent with the warehouse views, the user view as well as the

auxiliary views must be both self-traceable and self-maintainable {CW?2000].

Example 2 [Illustrate the methods of storing auxiliary views for lineage tracing]

For illustrating the methods of using auxiliary views for lineage tracing, we use a simple
SPJ view NotEnoughOrder defined in Figure 2.2, where Products and OrderDetails are
the sample source tables of database Source ! introduced in Section 2.1. The view
NotEnoughOrder contains all orders that the stock of product is less than the quantity of
sales order for this product. including the OrderID, ProductName, Quantity, UnitsInStock.

Table 2.12 shows the view contents over the sample source data.

[NotEnoughOrder]

T OrderID, ProductName, Quantity, UnitsInStock

[
O UnitsInStock <Quantity
|

oy U |

LProducts] LOrderDetails]

- - - - e = . W = = ww

P ™ o et e e e e

Figure 2.2 View definition for NotEnoughOrder

Table 2.12 Contents of view NotEnoughOrder

Order ID Product Quantity Units In Stock
10248 Queso Cabrales 12 11
10249 Manjimup Dried Apples 40 20

2.4.1 Storing Base Tables (BT)

An easy way to make a view self-traceable is to store in the warehouse a copy of each
source table on which the view is defined (after local selection), and issue the tracing
queries to the local copies instead of issuing them to the source tables. Storing base tables
can improve the lineage tracing, however, base tables could be large, even after applying
local selections, and hence much of the source data may be irrelevant to the lineage of any
view tuple. For instance, in Example 2, base tables for view NotEnoughOrder are simply

copies of the tables Products and OrderDetails tables in the of database Source_1.

2.4.2 Storing Partial Base Tables (PBT)

To reduce the size of the base tables, we can store the semi-join of each source table with
the user specified view. For views with selective join conditions, the PBT scheme
replicates much less source data than the BT scheme. This reduces the storage
requirement, as well as the cost of refreshing the auxiliary views. It also reduces the
tracing cost, because the tracing query operates on a smaller table. This scheme is useful
for view self-traceability, but not for its self-maintainability. Since the contents of partial
base tables are based on the user view's contents and changes, they are not helpful to
maintain the user view. So the user view needs to be maintained first in response to the
changes of the base data in the sources. For instance, in Example 2, Tables 2.13 and 2.14

show the contents of the partial base table for the view NotEnoughOrder.

27

Table 2.13 PBT_Products

Product - Unit Units in
D Product Name Supplier Category Price ($) Stock
11 Queso Cooperativa de Dairy 21.00 11
Cabrales Quesos 'Las Cabras' | Products)
Manjimup Dried .
51 Apples G'day, Mate Produce 53.00 20
Table 2.14 PBT_OrderDetails
Order ID Product Unit Price (§) | Quantity | Discount (%)
10248 | Mozzarella di Giovanni 34.80 5 0
10248 | Queso Cabrales 14.00 12 0
10248 | Singaporean Hokkien Fried Mee 9.80 10 0]
10249 | Manjimup Dried Apples 42.40 40 0
10249 | Tofu 18.60 9 0

2.4.3 Storing Base Table Projections (BTP)

When source tables have known keys, we can store in our auxiliary views key attributes
from the source tables together with other necessary attributes, called the base table
projections (BTP). This scheme improves tracing query performance (over storing
nothing) while reducing view maintenance and storage costs (over storing full source
replicas). During lineage tracing, since the stored information identifies which source
tuples really contribute to a given view tuple, the detailed source information can be
fetched from the source, using the key information. The BTP scheme may not satisfy the
self-traceability, if we need to trace more detail source data through querying the sources.

However, the maintenance of the user view is easy, as we can store the key attributes

28

together with all other necessary attributes from the source tables in our auxiliary views.
For instance, in Example 2, Tables 2.15 and 2.16 show the contents of the base table

projections for view NotEnoughOrder.

Table 2.15 BTP_Products

Product D Product Name Units In Stock
1 Queso Cabrales 11
14 Tofu 35
20 Sir Rodney's Marmalade 40
41 Jack's New England Clam Chowder 85
42 Singaporean Hokkien Fried Mee 26
51 Manjimup Dried Apples 20
57 Ravioli Angelo 36
65 Louisiana Fiery Hot Pepper Sauce 76
72 Mozzarella di Giovanni 14

Table 2.16 BTP_OrderDetails

Order ID Product Quantity
10248 Mozzarella di Giovanni 5
10248 | Queso Cabrales 12
10248 Singaporean Hokkien Fried Mee 10
10249 Manjimup Dried Apples 40
10249 | Tofu 9
10250 | Jack's New England Clam Chowder 10
10250 Louisiana Fiery Hot Pepper Sauce 15
10250 | Sir Rodney's Marmalade 20

29

2.4.4 Storing Lineage View Projections (LVP)

Again, assuming base tables with known keys, we can store a projection over the lineage
view that includes only base table keys and user view attributes. We call this view the
lineage view projection (LVP). Compared to the BTP scheme, the LVP scheme further
simplifies the tracing query and improves tracing performance. However, the maintenance
cost for the lineage view projection is higher than that of the base table projections. Since
the LVP view includes only base table keys and user view attributes, at the last step of the
tracing process requires a source query for the detail source data. So this scheme does not
satisfy the view self-traceability or the view self-maintainability. Table 2.17 shows the

content of the lineage view projection for the view NotEnoughOrder.

Table 2.17 Lineage view projection (LVP)

ProductID | Order (D Product Quantity | Units In Stock
11 10248 Queso Cabrales 12 11
51 10249 Manjimup Dried Apples 40 20

2.5 Using Auxiliary Views for Lineage Tracing

In this section, we provide another example that shows how auxiliary views can be useful
for data lineage tracing in data warehouse systems. In this example, the data warehouse

system and source databases are the same as in Example 1.

30

Example 3 [Using Auxiliary Views for Lineage Tracing in data warehousing]

As in Example 1, suppose a user (say an administrator in the head office) needs to check
the total order quantity for the product “Tofu” from the three source databases at its
branches, and also trace details of the order information for the product “Tofu” from the

database Source_2.

In this example, using auxiliary views over the data item helps tracing the data lineage
information, described as follows. First, in our three sources, we define three views:
ProductTofu_1, ProductTofu_2, ProductTofu_3 to store details of order information for
product “Tofu”. Using our SQL-like query language, we formulate and issue the
following queries to the source — one to each source, to get the order information of the

product “Tofu™.

(Connect to Source_i: i=1,2,3)

CREATE VIEW ProductTofu_i AS

SELECT OD.ProductID, P.ProductName, OD.OrderID, OD.Quantity, "Store i"” AS
StoreName

FROM Products P, OrderDetails OD

WHERE P .ProductID = OD.ProductID AND P.ProductName = “Tofu™;

For transferring the source data into the data warehouse, we use a data array
Array_ProductTofu to store the order information of product “Tofu” from our three stores.

In the data warehouse, we define the three auxiliary materialized views: ProductToful,

31

ProductTofu2, ProductTofu3 to store the order detail information of product “Tofu” from
the three sources. We define table OrderTofuTotal for storing the total order information

of the product “Tofu”. The SQL commands to do this are straightforward and hence

omitted.

Figure 2.3 shows the query graphs of lineage tracing using auxiliary views expressed in
relational algebra. Table 2.18 shows the auxiliary materialized view ProductTofu2 that
stores the order data for the product “Tofu” from Source_2. In this example, we use the
method of the base table projections (BTP) to produce auxiliary views ProductTofu2 to

support tracing the data lineage.

When tracing the relevant detail information about the product “Tofu” from the Source_2,
user can find some detail information in the auxiliary materialized view ProductTofu2. If
the information is enough for the user, the data lineage procedure does not need to
connect to the source again. If the user needs more details about the product “Tofu”, such
as supplier name and category, then the data lineage procedure needs to access and use the
source again. There is a tradeoff in using the auxiliary materialized views to save some
source data for lineage tracing the source data. For example, it needs more space in the
warehouse. It also needs to maintain the auxiliary materialized views when the sources are

changed.

Table 2.18 The auxiliary materialized view ProductTofu2

Product ID | ProductName | OrderiD | Quantity | StoreName
14 Tofu 10323 10 Store 2
14 Tofu 10325 9 Store 2

Data Warehouse

[OrderTofuTotal]

OrderToful I OrderTofu2 I OrderTofu3

1
1
|
1
1
1
i
1
|
1
1
1
1
1
1
1
1
T Pmduc!NaT, Totall,StoreName T ProductName, '['otalz,swreName T ProductName, 'l'raB.StoreName :
1
I
1
[
1
1
1
]
|
|
1
'
1
1
1
1
4

Y ProductID, sum(Quantity) as Totall, Y ProductID, sum(Quantity) as Total2, Y ProductID, sum(Quantity) as Toal3,

StoreName as “Store ™ StorzName as “Store2™ StoreName as “Store3™

ﬁ’roductToful [Product'l’ofu.] ProductTofu3]

\ /

Array_ProductTofu

[ProductTofu_1 J

l ProductTofu_Zj [ProductTofu_3]

1 ' 1 1 ' 1
1 t i 1 1 '
' 1 1 t 1 '
' 1 1 1 ' 1
' 1 ! 1 ' 1
1 ' i f 1 1
: - | o :
: Y StOI'CNamLas“Slorc 1" : : Y StoreN: as “Store 2" : : Y StorcNamLas“Slore 3 :
E e) Producl.llanw—- *Tofu” E E o Producllllame-— *Tofu” E s o Produclllamc—- *Tofu™ E
| I : : I : : l !
' >J : . > - l > |
' : | { : ;
1 ! 1 t

' t ' 1 1 t

Pl oDl P3 0oD3

| (] Lo] b () (oms]
' Source_1 ' : Source_2 ' : Source_3 :
t

Figure 2.3 Illustration of lineage tracing using auxiliary views

2.6 Related Work

The related works for tracing view data lineage are provided in some papers. [CWW1997]

proposes a basic issue about tracing the lineage of view data in a warehousing

33

environment. Storing materialized views over data from one or more sources can provide
fast access to the integrated data. However, warehouse views need to be maintained in
response to changes to the base data in the sources. Using key and referential integrity

constraints to realize self-maintainable —the auxiliary views can be maintained without

going to the data sources or replicating all base data [Huyl996,QGMW1996]. In
[CWW1999], Y. Cui and J. Widom present an in-depth discussion of storing auxiliary
data for efficient maintenance and lineage tracing of complex views, such as investigating
the performance of lineage tracing, view maintenance, and storage costs by formulating
the view data lineage problem and developing a lineage tracing algorithm for relational
ASP views. They have developed a complete prototype that performs efficient and
consistent lineage tracing. Their prototype automatically generates lineage tracing
procedures and supporting auxiliary views at view definition time, and showing the

specific view data derivation process [CWW2000, CWW2000+].

34

Chapter 3 System Design

To realize and present the lineage tracing method in data warehouse system as introduced
in Chapter 2, and display the tracing results, we have designed and implemented a system
prototype, called Lineage Tracing Inventory System (LTI), to demonstrate the issues and
techniques involved in the development of such system. We developed various graphical
user interfaces required to facilitate interacting with the system in order to update the
source databases in the LTI system. The design ideas of the LTI system can be used as a
basis for a lineage tracing mechanism in a general warehouse setting. It also suggests
components that are required in the data warehouse system to support efficient lineage

tracing.

This project is an extension of our earlier project in the course COMP 6591
[CLWX2001]. It follows the system architecture in the original version. The current
project has more functionalities than the original prototype. The design of the current
system is more elaborate, using UML to describe the system and its components, such as
the graphic views: Use Case, Class Diagram, and Sequence Diagram. In order to improve
the usability and flexibility of the system, we provide more functionalities. For instance, a
user can select to trace all the information or part of the information, instructing the
system to display the desired information that the user wants. To improve the user
friendly aspect of the interface, we provide menu or help button to show the “help”
information. In a nutshell, the current version of the system prototype is more flexible,

and supports more functionalities, and in more user friendly.

35

3.1 LTI System Architecture

LTI is a data warehouse system we developed for a typical sales company. The company
has three retail stores. Each store has its own database system operating independently,
which stores the information about the product name, inventory, sales order, customer
name, shipper, and other related information. The data warehouse system collects the data
from three source databases at the retail stores: Source I, Source 2, and Source 3. These
databases have the same structure. The user (says an administrator in the head office) can
use this system to obtain and verify the total inventory and also order information at

branches.

As discussed in Section 1.4, LTI like a basic data warehousing system, includes three
components: the data integration component, the data warehouse, and the query and
analysis component.
L. The data integration component is the back end of the data warehousing system and
consists of systems that interface with the operation systems to load data into the data
warehouse. As discussed in [MAG1998], there are several steps that need to be done:
® Data source selection selects the data from multiple sources that are required for
specialized needs.
® Data extraction acquires data from the operational systems and stores data in a
temporary processing area.
® Data cleaning validates and cleans up the extracted data to correct inconsistent.

missing, or invalid values.

36

® Data transformation integrates data into standard formats and applies business

rules that map data to the warehouse schema.

e Data loading loads the cleaned data into the data warehouse.

2. The data warehouse as the storge component of the system, was implemented using
a relational database that contains a large number of tables holding the data collected

from the data sources.

3. Query and analysis component is the front end of the data warehouse. [t contains
the access tools and techniques that provide a user with direct, interactive access to the

data. The interface developed facilitates interaction with the system and presenting

query and lineage tracing results.

3.2 Source Databases and Data Warehouse Design

Data sources include three independent, relational databases with the same schema. Data
warehouse in the system is also a relational database; it is set up through creating views

and extraction of applicable information from the source databases.

3.2.1 The Design of the Database

Figure 3.1 shows an E/R diagram of a source database.

37

SupplierID
Suppliers

Phone
Supply
CategoryName
ProductID w
CategoryID
Products Classify Categories

QuantityPerUnit
UnitPrice Description
OrderDetails @

CompanyName

—
<

ShipperiD

Shippers

RequireDate

[Customers

e

Figure 3.1 The E/R diagram of source databases

38

3.2.2 Schemas of the Source Databases

The schema of each source database consists of the following tables:
L. Products (ProductID, ProductName, Supplier[D, Category, QuantityPerUnit,

UnitPrice, UnitsInStock)

[SS]

. Categorys (CategoryID, CategoryName, Description)

W

- Orders (OrderID, CustomerID, OderDate, RequiredDate, ShippedDate)

~

. OrderDetails (OderID, ProductID, UnitPrice, Quantity, Discount)

h

- Customers (CustomerID, CompanyName, ContecrName, Address, Phone)

[@))

. Shippers (ShoperID, CompanyName, Phone)

~J

- Suppliers (Supplier[D, CompanyName, ContecrName, Address, Phone)

3.2.3 The Schema of the Data Warehouse

The schema of the data warehouse is as follows:

I. InventoryView (StoreID, ProductName, UnitPrice, UnitsInStock, UnitsOnOrder,

RecordLevel)

2. OrderView (StoreID, CustomerName, ProductName, UnitsInStock, Quantity,

OrderDate, ShippedDate)

4. TotalView(ProductName, TotalInStock, TotallnOrder)

39

3.3 System Functionalities

The main function of LTI system is tracing the inventory and sales order information from

source databases. A subsystem is used to update source databases.

3.3.1 LTI System Functions

¢ Data warehouse set up and query:
» Data warehouse sets up and gets relevant information from source
databases.
The user can view total inventory information of three branch’s stores.

7~ The user can view total sales order information at branches.

e Data warehouse lineage tracing:
» The user can trace the inventory detail information according to the
product name, category name, or supplier name.
» The user can trace the sales order detail information according to the

pI’OdUC[name, category name, or customer name.

e Data warehouse maintenance and update:
» The system simulates update data process. That is, when source databases
are changed, the data in data warehouse are also updated accordingly.

A subsystem is used to update source databases.

40

3.3.2 Subsystem Functions

e Management and update of source databases:
» Update inventory data of the product
» Create new sales ordering and order products

Add new customer

‘/

A%

Add new product

‘/

Add new shipper

3.4 Design of LTI System

To present the design of the LTI system, we used the use case diagrams. It describes the
overall functionality of the system — the main functions supported by the system. We
then use the class diagrams to show details of the functions and the interrelationships
between classes. In order to describe details of the flow of the sequence of events for the
use case in the LTI system, we created a sequence diagram. It presents the sequence in the

use case that a user selects in tracing the inventory information.

3.4.1 Use Case Diagram

Figure 3.2 illustrates the use case of the LTI system. As show in the figure 3.2, LTI has
three main use cases. The user will be able to select (1) tracing inventory information; (2)

tracing sales order information; (3) update sources.

41

YN
N/
/ Tracing Inventory

User Tracmg Sales Order Q
/update inventory

Update Sources\ ©

Create New Sales Order

Figure 3.2 LTI system Use Case

As shows in the figure, the subsystem about updating sources has two use cases. The user

will be able to select (1) update inventory information and (2) create new sales order.

3.4.2 Class Diagram

Figure 3.3 illustrates the classes used for tracing inventory and sales order information in
the LTI system, as well as the relationship between the classes. A brief description of each

class is as follows:

42

!\)

TraceMenu

Tracelnventory

1

TraceSalesOrder

Prod_lnve

Cate_inve

Supp_lnve

Prod_Orager

Cate_Order

Cust_Order

= |

=

Displayinventory

<Uses>

JD8C

DisplaySalesOrder

Figure 3.3 LTI system Class Diagram

TraceMenu: This class implements the main interface of the LTI system. From the

main interface, the user can select one of the two tracing functions to execute: (1)

trace inventory information , (2) trace sales order information.

Tracelnventory: This class implements the interface of tracing inventory

information. From the interface, the user can choose to trace the inventory

information according to a product name, a category name, or a supplier name.

TraceSalesOrder: This class implements the interface of tracing sales order

information. From the interface, the user can choose to trace the sales order

information according to a product name, or a calegory name, or a customer name.

43

4. Prod_Inve, Cate_Inve, Supp_Inve: These classes implemented to realize the

functions of tracing the sales order information according to a product name, or a
category name, or a supplier name. The user can select to only view the total
inventory information or trace the detail inventory information. All three classes
need to connect the DB to query data through using the class JDBC.

Prod_Order, Cate_Order, Supp_Order: These classes implemented to realize the
functions of tracing the inventory information according to a product name, or a
category name, or a customer name. The user can select to view only the total
sales order information or trace details of sales order information. All these classes
need to connect the source databases to the query data.

JDBC: This class implements the algorithm to store the data into table.
DisplayInventory, DisplaySalesOrder: These two classes are used to display the

total information or tracing results about the inventory or sales order.

Figure 3.4 illustrates the classes used for update sources in the subsystem, as well as the

relationship between the classes. A brief description of each class is as follows:

1.

UpdateMenu: This class implements the main interface of the test subsystem.
From the main interface, the user can choose one of source database to update, and
then seiect one of the following functions to execute: Update the inventory

information or update the sales order information.

UpdateMenu

1

UpdgateSalesOrder

Updateinventory

[I

I AddNewCust AddNewShip

AddNewProd

]

UpaateProd_tnve

CreataNewOrger

OrderProducts

<Uses>
{

JoBsC

Figure 3.4 Subsystem Class Diagram

2. Updatelnventory: This class implements the interface of update inventory
information. From the interface, the user can add a new product in a source
database, or update the inventory data for a product that already exists in the
source database.

3. UpdateSalesOrder: This class implements the interface of update sales order
information. From the interface, the user can create the new sales order using a
customer name and shipper name. The user also can add new customer name and
new shipper name into source database. Then the user can order the products for

this new sales order.

45

4. AddNewProd, AddNewCust, AddNewShip: These classes implemented to realize
to add new product name, customer name, new shipper name into source database.
All these classes need to connect to source databases to insert new data into the
databases.

5. UpdateInventory: This class is used to update the inventory information through
storing the new data entered by the user. It needs to connect to the source to
update source databases.

6. CreateNewOrder, OrderProducts: These two classes implements to create the new
sales order and order the products for it. They need to connect to the source to
update the source database and to insert the new data into source databases.

7. JDBC: This class implements the algorithm to store the data into table.

3.4.3 A Sequence Diagram in LTI System

Figure 3.5 illustrates the flow of the sequence of events that the user selects the use case

for tracing product inventory information in LTI

46

i TraceMenu Traceinvertory P Ime ~DBC Displavirventory
I
l
|
|
|

Figure 3.5 A Sequence Diagram in LTI system

The following are details of each of the operation in the sequence diagram:
I. The user executes the LTI system.
2. The user chooses to trace the inventory information from the main interface.
3. The user chooses a product name to trace its inventory information.
4. The class Prod_Inve connects the sources to query details of the inventory data
about the product and return the results.
5. Finally, the system displays the tracing results of the information of the product.

6. The user can return to the above interface at step 2 or 3.

47

Chapter 4 Implementation and Experimentation

In this chapter, we present details of our implementation, including the tools, technologies,
and the pseudo code of the algorithms we used to implement the functions step-by-step
for tracing inventory and sales order information. We will also present the interaction of
the user through the graphical user interface, showing the convenience and ease of

interaction with the system developed.

4.1 Implementation Details

4.1.1 Tools

This system includes five main components: user interface, Java data engine, data
warehouse, extraction data method, and source databases. The system architecture is

shown in Figure 4.1.

Source

Database

P / -

User JDava Data Data Source
ata ———

Interface Engine Warehouse Extraction Database

User \O

Source
Database
—

Figure 4.1 The LTI architecture

48

The user interface of LTI system and test system is implemented by JBuilder 5.0, which
provides a Graphic User Interface to query the Data warehouse. JBuilder is a
comprehensive group of highly productive tools for creating scalable, high-performance,

and platform-independent applications using the Java programming language.

Source databases are developed using Microsoft Access in the Windows 2000
environment. The data warehouse itself is also a relational database, and is implemented
in Microsoft Access. The data warehouse is set up through creating views and extracts

applicable information from the source databases.

For data extraction and updating the data warehouse, we use the Bulk extraction method,
described earlier in Section 1.7. The entire data warehouse is refreshed periodically by
extracting data from the source. All required data are extracted from the source databases

for loading into the warehouse.

JBuilder provides the JDBC API to realize accessing information stored in the databases
through using ODBC objects to connect to all source databases. In this implementation,
ODBC objects are used to connect to all source databases, and then we use JDBC to
connect the ODBC objects and Java Data Engine to transform data from the sources to the

data warehouse.

The Java Data Engine serves as a bridge between the user interface and the database. The

system also uses JDBC to pose the query against the warehouse. We create the ODBC

49

object to connect the data warehouse, and then connect to the ODBC object and Java data

engine using JDBC bridge to transform data from the data warehouse to user interface.

We will next introduce details about our system implementation. There are more than 30
modules used in the implementation. In particular, we will discuss implementation of
tracing a product inventory information and sales order information. In Appendix, we will

provide some sample codes for the implementation of some modules of LTI system.

4.1.2 Tracing Product Inventory Information

Following is a Java-like pseudo code for implementing the function for tracing product

inventory information.

Input: A product name, selected by the user from the list of products and a click to
put a check to show user’s intension to trace details of the inventory information
Var itemname holds the name of the selected product
Var isTracing is initially set to True

Output: The total inventory information about this product and detailed tracing
result

// Create a jdbc object
jdbc inv = new jdbc();
//Set SQL command to query the selected product inventory information

Query!l = "SELECT P.ProductName, S.CompanyName, P.UnitPrice, "+
" P.UnitsInStock, P.UnitsOnOrder, P.ReorderLevel "+
" FROM Suppliers S, Products P "+
" WHERE S.SupplierID = P.SupplierID AND "+

" P.ProductName= itemname "
Call jdbc object to execute Queryl.

The jdbc object separately connects to the databases: sourcel, source2, and
source3. The data from the sourcel marks the store location as “Store 1”; the
data from the source2 marks the store location as “Store 2: the data from the
source3 marks the store location as “Store 3.

Connect to the data warehouse, the result of Queryl is stored as an auxiliary
Viewl in the data warehouse.

//Set SQL command to calculate the total inventory information about this
product

Query2 = "SELECT D1.ProductName, "+
"sum (D 1.UnitsInStock) AS TotalStock,"+
" sum(D1.UnitsOnOrder AS TotalOrder "+
" FROM "+ View! +" D1 GROUP BY D1.ProductName; ";

Call jdbc object to execute Query2.

Connect to the data warehouse, the result of Query?2 results is stored as an
auxiliary View2 in the data warehouse.

51

If (isTracing)

{

}

//Set SQL command to search details of the inventory information of this

product that comes from each store

Query31= "SELECT DI.ProductName, D1.CompanyName AS” +
" SupplierName, D1.UnitPrice, D1.UnitsInStock, " +
" D1.UnitsOnOrder " + "FROM " + View! +" DI "+
"WHERE D1.Store_Location='Store 1';":

Call jdbc object to execute Query31.

Connect to the data warehouse, the result of Query31 is stored as an
auxiliary View3! in the data warehouse.

Query32= "SELECT D1.ProductName, D1.CompanyName AS” +
" SupplierName, D1.UnitPrice, D1.UnitsInStock, " +
" DL.UnitsOnOrder " + "FROM " + View! +" D1 "+
"WHERE D1.Store_Location='Store 2';":

Call jdbc object to execute Query32.

Connect to the data warehouse, the result of Query32 is stored as an
auxiliary View32 in the data warehouse.

Query33= "SELECT D1.ProductName, D1.CompanyName AS” +
" SupplierName, D1.UnitPrice, D1.UnitsInStock, " +
" DL.UnitsOnOrder " + "FROM " + View! +" DI "+
"WHERE D1.Store_Location='Store 3";":

Call jdbc object to execute Query33.

Connect to the data warehouse, the result of Query33 is stored as an
auxiliary View33 in the data warehouse.

//Declare the object DisplayInventory

DisplayInventory DisplayInve = DisplayInventory(ViewName);

52

4.1.3 Implementation of Tracing Product Sales Order Information

Following is the Java-like pseudo code for implementing the function of tracing product

sales order information.

Input: A product name, selected by the user from the list of products and a click to
put a check to show user’s intension to trace details of the sales order information
Var itemname holds the name of the selected product
Var isTracing is initially set to True

Output: The total sales order information about this product and detail tracing result
/I Create a jdbc object

jdbc inv = new jdbc();

//Set SQL command to query the selected product sales order information

Query4 = "SELECT P.ProductName, CM.CompanyName, OD.Quantity ,"+
" P.UnitsInStock, OD.UnitPrice, CG.CategoryName, "+
"0.OrderDate, O.ShippedDate FROM "+
"Products P, Customers CM, OrderDetails OD, Order O, Categories CG"+
"WHERE CM.Customer[D=0.CustomerID AND"+
" CG.CategoryID=P.CategoryID AND P.Product[D="+
"OD.ProductID AND O.OrderID=0D.Order[D AND "+
"P.ProductName="";itemname "'

Call jdbc object to execute Query4.

The jdbc object separately connects to the databases: sourcel, source2, and source3.
The data from sourcel marks the store location as “Store 1”; the data from the
source2 marks the store location as “Store 2; the data from the source3 marks the

store location as “Store 3.

Connect the data warehouse, the result of Query4 is stored as an auxiliary View4 in
the data warehouse.

//Set SQL command to calculate the total sales order information about this product
Query5 = "SELECT D1.ProductName, sum(D1.Quantity) AS TotalSalesOrder, "+

" avg(D1.UnitPrice) AS AverageSalesPrice" +

" FROM " +View4 +" D1 GROUP BY D1.ProductName; "

Call jdbc object to execute Querys.

53

Connect to the data warehouse, the result of Querys5 is stored as an auxiliary
View5 in the data warehouse.

If (isTracing)

{

}

//Set SQL command to search the details of the sales order information of

this product that comes from each store

Query61= "select D1.ProductName, D1.CompanyName as " +
" CustomerName, D1.Quantity, D1.UnitPrice, " +
"D1.OrderDate "+"FROM "+ View4 +" D1" +
"WHERE D 1.Store_Location='Store 1;";

Call jdbc object to execute Query61.

Connect the data warehouse, the result of Query61 is stored as an auxiliary
View61 in the data warehouse.

Query62="select D1.ProductName, D1.CompanyName as " +
" CustomerName, D1.Quantity, D1.UnitPrice, " +
"D1.0OrderDate "+"FROM "+ View4 +" D1" +
"WHERE D1.Store_Location='Store 2';";

Call jdbc object to execute Query62.

Connect to the data warehouse, the result of Query62 is stored as an
auxiliary View62 in the data warehouse.

Query63="select D1.ProductName, DI.CompanyName as " +
" CustomerName, D1.Quantity, D 1.UnitPrice, " +
"D1.OrderDate "+"FROM "+ View4 +" D1" +
"WHERE D.Store_Location='Store 3";";

Call jdbc object to execute Query63.

Connect the data warehouse, the result of Query63 is stored as an auxiliary
View63 in the data warehouse.

//Declare the object DisplaySalesOrder

DisplaySalesOrder DisplayOrder = DisplaySalesOrder(ViewName);

Call object DisplayOrder to display the tracing result.

54

4.2 The User Interface of LTI

4.2.1 Main Interface of our LTI System

Figure 4.2 illustrates the main interface of the LTI system. There are three subtasks
supported there: Tracing inventory information, tracing sales order information and

updating sources.

&5 Lineage Tracing Inventory System
File Help

Lineage Tracing Inventory System

Inventory Information

Sales Order Information

Update Sources

Figure 4.2 Main interface of LTI system

4.2.2 Trace the Inventory Information

l. To trace the inventory information, the user has to click the button “Inventory
Information™ in the main interface. This pops up the “Tracing Inventory Information”

interface, shown in Figure 4.3. The user can choose to trace inventory information

55

according to product name, category name, or supplier name, and the user can select to

trace inventory information of all the stores or each store.

~g—;§ Inventory Information Management

Figure 4.3 Interface of tracing inventory information

2. Choose to trace the inventory information of all the stores according to product
name, then click the button “Continue”, the “Stock Products information (Products)”
interface pops up, shown in Figure 4.4. The user can choose a product name from the
combo box, and click the button “Search™. It causes a frame to be popped up,
displaying only the total inventory of the chosen product from the three branches
(Figure 4.5). If the user puts a check on the “tracing” box, and clicks the button
“Search”, the popped frame displays details of the inventory information of the chosen
product from each store (Figure 4.6). Here, the similarity method is used for tracing

inventory information according to category name or supplier name.

56

[433 lnventory Detail Search Result Display

K& Stock Detail Information (Products)

Jn

The Inventory Cetail Display (Product)

Product Name P\niseed Syrup
ProductName Total in Stock Total On Order
IAniseed Syrup 100.0 180.0

Figure 4.5 Total inventory information of the chosen product in three branches

57

=3 Inventory Detail Search Result Display

The Inventory Detail Displdy (Product)

Product Name = janiseed Syrup

ProductName Total in Stock - | © TotatOn Order
JAniseed Syrup 100.0 180.0

Store Name: Emrei ' | - ey

ProductName | SupplierName UnitPrice UnitsinStock “ | “UnitsOnOrder .
Aniseed Syrup __ |Exotic Liquids |10 50 180
Store Name: - _[Store 2 P T kR
ProductName | SupplierName | UnitPrice UnitsinStock | UnitsOnorder
Aniseed Syrup _ Exofic Liquids .10 33 ‘50

Store Name: Etore 3

ProductName | SupplierName | UnitPrice UnitsinStock] UnitsOnOrder
JAniseed Syrup Exotic Liquids 10 17 50

Figure 4.6 Detail inventory information of the chosen product in three branches

4.2.3 Trace the Sales Order Information

1. In the main interface, clicks the button “Sales order information”, the interface “Sales
Order Information™ pops up (Figure 4.7), the user can choose to trace sales order
information according to product name, category name, or customer name, and the user

can select to trace inventory information of all the stores or each store.

58

Figure 4.7 Interface of tracing sales order information

2. Choose to trace the sales order information according to a category name, and select to
trace sales order information of store 1, then clicking the button “Continue”, the interface
“Sales Order information (Categories)” pops up (Figure 4.8). The user can choose a
category name of products from the combo box, and checks the “tracing” box, and then
clicks the button *“Search”, then pops up a frame which displays the total sales order
information and detail tracing information of the chosen category of products in store 1
(Figure 4.9). If the user selects to tracing detailed sales order information of the chosen
category of products in all the stores, then pops up a frame which displays the total sales
order information and detail tracing information of the chosen category of products in all
the stores (Figure 4.10). Here, too, the similarity method is used for tracing sales order

information according to product name or customer name.

59

K& Order Detail Information {Categories)

"

Figure 4.8 Interface of tracing sales order of the chosen category products

k&4 Sales Order Detail Display (Category)

Sales Order Detail Disl;lay (Category)

Category Name [Condiments
ProductName Total Sales Order Average Sales Price
Chef Anton's Gumbo Mix 770 17.0 o|
Genen Shouyu 20.0 120
Gula Malacca 37.0 16.0 P
Louisiana Fiery Hot Pepper S... [35.0 170 h
Store Name: lgore 1
ProductName | CustomerName Quantity UnitPrice OrderDate
Louisiana Fiery ...|Hanari Cames |15 17 1986-07-08 -
Louisiana Fiery .._[ictuailles en st... |20 17 1996-07-08 Rd|

Figure 4.9 Sales order information of the chosen category products in store |

60

E Sales Order Detail Display (Category)

G L wdoEeR L ‘0.:(;\.: ™ \"
Sales Order Detail Display (C
CategoryName [Condiments Ll o i
“ProdictNama - . - _-Total Sales Onder .~ . ‘Average Sales Price)
[Aniseed Syrup 80.0 18.0 a)
ChefAnton's Cajun Seasoning [123.0 18.0 oy
ChefAnton’s Gumbo Mix 129.0 17.0 o
‘{Genen Shouyu 25.0 » 120 L~
Store Name: - re 1 .
ProduciName |-CustomerName| . Quantity | - UnitPrice” -]~ OrderDate
lAniseed Syrup |B's Beverages |30 18 1996-08-26 -
Chef Anton's Ca..|Hungry Owl All-__ |20 J18 1996-09-19 =]
Store Name: [Store 2
PraductName | CustomerName Quantity UnitPrice” | OrderDate
Louisiana Fiery ...|Hanarn Cames |15 17 1986-07-08 -
Louisiana Fiery ... |Victuailles en st... |20 17 1996-07-08 _:]
Store Name: §nre 3
ProductName | CustomerName Quantity I UnitPrice OrderDate
Aniseed Syrup |LINO-Delicates... 50 18 1997-01-06 -
ChefAnton's Ca.|Furia Bacalhau .. .16 18 '1997-03-04 -1

Figure 4.10 Sales order information of the chosen category products in all stores

61

4.3 Interacting with the System

To experiment with LTI, we developed a subsystem to change the underlying source
databases. In this section, we demonstrate this capability and the relevant interfaces. In the
main interface, if the user clicks the button “Update sources”, the interface “Local

Inventory Management” pops up (Figure 4.11).

&4 Update Source Information Management

Back Help

Figure 4.11 Main interface of updating the sources

4.3.1 Update Inventory Information

1. In the main interface of updating the sources, the user can select a branch store
to update the database, and then click the button “Update Inventory”, then pops up
the interface “Local Inventory Information Management” (Figure 4.12). The user

chooses a product name, and then clicks the button “Update Stock™ to update

inventory data about this product, clicks the button “New Product” to add new

product into inventory.

ALocal Inventory Management (Storel)

Figure 4.12 Interface of updating inventory information

If the user chooses to update the stock information of a product, the interface

“Update Product Stock Entry Form” pops up (Figure 4.13). The user can update

the inventory data on this product through this interface.

Product Name

Supplier Name
Categor name
Qumﬂtv‘Pgr‘Unlt .:
uUnit Prldor

Unit in Stock

Units On Order
Recorder Level

Discontinue

Commit

E-;; Stock Products Update System

Update Product Stock Entry Form

J12- 550 mi bottles

hho.oo

lso

lso

7o

fralse

| Retum |

- B[]

Figure 4.13 Entry form of updating product stock

63

3. If the user chooses to add a new product into inventory, then the interface
“Update Product Stock Entry Form” pops up (Figure 4.14). The user can add a
new product into inventory, then use the update product stock entry form to update

the inventory information about the new product.

Figure 4.14 Entry form of adding a new product

4.3.3 Update Sales Order Information

In the main interface, if we click the button “New Sales Order”, the system pops up the
interface “Create Sales Order Entry Form” (Figure 4.15). The user can choose a
customer name and shipping company, and then click on the button “Create Order” to
create a new sales order. If the user clicks the button “Order Product”, system pops up
the interface “Entry form of ordering product for the new sales order”(Figure 4.16). The
user can click the button “New Customer” to add new customer (Figure 4.17), or click

the button “New Shipper” to add new shipping company (Figure 4.18).

64

E; Sdles Order “anagement (Storel

Figure 4.16 Entry form of ordering product for the new sales order

65

g Add a \ew Customer Menuy

Figure 4.18 Entry form of adding a new shipping company

66

Chapter 5 Concluding Remarks and Future Work

The LTI system implemented has several limitations, explained below.

3.1 Using Auxiliary View

In the LTI system, we use auxiliary views to help lineage tracing. Once an auxiliary view
has been created in the data warehouse, when lineage tracing source data, we just need to
trace back to auxiliary views to get enough information. Obviously, it avoids some
computations and expensive source queries, thereby reducing maintenance and query

COsts.

As discussed in section 2.4, there are several approaches for storing auxiliary views to
support lineage tracing. For each approach of storing auxiliary view, we specified the
lineage tracing procedure, as well as the maintenance procedure. We compared them and
chose storing partial base table (PBT) and storing Base table projection (BTP). There are
some benefits of our choices, described as follows:
® Our choices reduce the storage requirement as well as the cost of refreshing the
auxiliary views. For example, when we create a view, we Just store useful
information instead of the entire base tables.
* The choices reduce the tracing cost. Just as mentioned above, if there is enough

information in auxiliary view, it is not necessary to trace back to source database.

67

Since accessing source database is very expensive, it greatly reduces the tracing

cost.

® Our choices improve tracing query performance (over storing nothing) while
reducing view maintenance and storage costs. If we store nothing in the data
warehouse, every time for lineage tracing, the system has to trace back to source
database, which is very expensive and time consuming. Tracing query operates on
a much smaller view table is much faster than querying base table in source

databases.

5.2 Data Update in Data Warehouse

As mentioned in Section 1.7, there are two primary methods for extracting data from
source systems. In the LTI system, we use the Bulk Extractions method for updating data
warehouse when the source data changes. The reason is that such a warehouse is easier to
set up and maintain. The data warehouse can be refreshed periodically by extraction of
daia from the source systems. All applicable data are extracted from the source systems
for loading into the warehouse. However, it heavily increases the burden of network

connection between source and data warehouse.

In practice, Change-Based replication is often used. Only the data that have been newly

inserted or updated in source systems are extracted and loaded into the warehouse.

Therefore, it places less stress on the network (due to the smaller volume of data to be

68

transported). However, it requires more complex programming to determine when a new

warehouse record must be inserted or when an existing warehouse record must be updated.

5.3 Data Growth in Data Warehouse

In our LTI system, we did not discusses the space or the capacity problems. But as time

passes and the warehouse grows in size, with frequent tuple insertions, and changes in the

contents and extraction method, the indexes can be built up for the source data and data
warehouse to improve efficiency of the data access. Moreover, as discussed in

[HWM1999], other ways can be taken to handle data growth, including:

o Use of aggregates. The use of stored aggregates significantly reduces the space
required by the data, especially if the data are required only at a higilly summarized
level. The detailed data can be deleted or archived after aggregates have been created.
Note however, that the removal of detailed data implies the loss of the ability to drill
down for more detail. It has to be balanced.

¢ Limiting the time frame. Although users desire the warehouse to store as much data
for as long as possible, there may be a need to compromise by limiting the length of
historical data in the warehouse.

* Removing unused data. Using query statistics gathered over time, it is possible for
the warehouse administrators to identify rarely used data in the data warehouse. These
records are ideal candidates for removal since their storage results in costs with very

little business value.

69

5.4 Future Work

5.4.1 Dynamic Tracing

In the LTI system, we implemented two major tracing functionalities: tracing inventory
information and tracing sales order information. In the future, we need to implement the
dynamic tracing functions in the system, so that user can select any combination of
attributes of a tuple to trace back. If for every combination, we implement a class to do
the work, the workload will be very huge. For example, if the tuple has 50 attributes, we
have to implement 2°° classes. We can construct an engine that will dynamically construct
SQL according to the user requirements. It is like the CGI (Common Gateway Interface)
that connects user interface and the database. That means, for every combination of
attributes, the engine creates a SQL statement, in order to query the data warehouse. Then,
we can achieve dynamic tracing and can give users more friendly user interface, more

flexibility to choose what they want to trace.

5.4.2 Distributed, Heterogeneous Source Databases

In the LTI system, the source databases are developed using Microsoft Access, and the
sources databases are stored in one computer. In the future, we can connect this system to
distributed, heterogeneous source databases, such as MS SQL Server, Oracle, Access, etc,

and that can be distributed in a LAN or WAN network of computers.

70

5.4.3 More Functionality for Different Users

In the future, we can provide more functionality to improve the usability for different
users, for example, checking customer information, supplier information, shipper
information, etc. The user interface can be improved to provide and support more

flexibility to ender users.

5.4.4 Flexibility and Reusability

LTI system is designed and developed for tracing view data of the inventory information
and tracing sales order for a sales company. The design ideas can be used as a basis for a
lineage tracing mechanism for the diffident application in a general warehouse setting. In
the future, we need to improve the flexibility and reusability of the design and

implementation to adapt to different applications.

Our main objective in this project and the prototype developed was to demonstrate what
lineage tracing is, how tracing is done, and how data warehouse updates are managed in
conjunction with tracing capability. Our prototype system is still a long way to become a
real data warehouse system. However, it contains basic, important components of a data

warehouse, and it truly demonstrates the lineage tracing procedures.

71

References

[Bral996] Michael H. Brackett, The Data Warehouse Challenge: Taming data Chaos,
Wiley Computer publishing, John Wiley & Sons, Inc., 1996.

[CW1999] Y. Cui and J. Widom, Storing Auxiliary Data for Efficient View Maintenance
and Lineage Tracing. Techincal Report, Stanford University, 1999.

[CW2000] Yingwei Cui and Jennifer Widom, Practical Lineage Tracing in a Data
Warehousing System, In Proceedings of the Sixteenth I[nternational
Conference on Data Engineering, San Diego, California, February 2000.

[CW2000+] Yingwei Cui and Jennifer Widom, Lineage Tracing in a Data Warehousing
System. In Proceedings of the Sixteenth International Conference on Data
Engineering, San Diego, Califomnia, February 2000. Demonstration
Description.

[CWW1997] Yingwei Cui, J. Widom, and J.L. Wiener, Tracing the lineage of view data
in a data warehousing environment. Technical report, Stanford University
Database Group, November 1997 Technical Report, Stanford University,
1997 (Revised 1999).

[GW1998] Paul Gray, Hugh J.Watson, Decision Support in the Data Warehouse, The
data Warehousing Institute Series from Pentice Hall PT R, 1998.

[Huy1996] N. Huyn, Efficient Self-Maintenance of Materialized Views. Technical

Report, Stanford University, 1996.
[HWM1999] Mark Humphries, Michael W. Hawkins, Michelle C. Dy, Data Warehousing

Architecture and Implementation, Prentice Hall PTR,[999.

72

[Inm1996] W. H. Inmon. Building the Data Warehouse, Second Edition, John Wiley &
Sons, Inc. 1996.

[Kell996] Sean Kelly, Data Warehousing: the route to mass customization, John Wiley
& Sons, 1996.

[LZW1997] W.J.Labio, Y. Zhuge, J.Widom. The WHIPS Prototype for Data Warehouse
Create and Maintenance, Dept. of Computer Science, Stanford Univ. 1997.

‘ [MAG1998] Management Accounting Guideline 48, Building a Data Warehouse,
Included in Management Accounting Practices handbook, 1998.

[Mat1996] Rob Mattison. Data Warehousing: Strategies, Technologies, and Techniques,
McGraw-Hill. 1996.

[QGMW1996] D. Quass, A. Gupta, I. Mumick, and J. Widom, Making Views Self-
Maintainable for Data Warehousing. In Proceedings of the Conference on
Parallel and Distributed Information Systems. Miami Beach, FL, December
1996.

[WGLZGW1996] J. L. Wiener, H. Gupta, W. J. Labio, Y. Zhuge, H. Garcia-Molina, J.
Widom, A System Prototype for Warehouse View Maintenance. In
Proceedings of the ACM Workshop on Materialized Views: Techniques and
Applications, Montreal, Canada, June 7, 1996, pp. 26-33.

[Wid1995] J. Widom, Research Problem in Data Warehousing, Dept. of Computer
Science, Stanford Univ. 1995

[CLWX2001] Minghua Chen, Dongmei Liu, Minggang Wu, Jiu Xu, Lineage Tracing
System in Data Warehouse. A COMP6591 Project Report, Concordia

University, December 2001

73

Appendix Sample Codes

In Appendix, we present some sample codes for the implementation of the main functions

of LTI system. For this we have decided to illustrate the codes for the following modules:

Module 1. Main Interface of LTI

Module 2. Interface of Tracing Inventory
Module 3. Tracing Chosen Product Inventory
Module 4. Interface of Tracing Sales Order

Module 5. Tracing Chosen Category Products Sales Order

Module 1. Main Interface of LTI

/Mmplement the main interface of the LTI. There are three subtasks supported: Tracing
inventory information, tracing sales order information and updating sources.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.io.*;

import java.util. *;
import java.sql.*;

public class mainFrame extends JFrame {
JPanel contentPane;
JMenuBar jMenuBarl = new JMenuBar();
JMenu jMenuFile = new JMenu();
JMenultem jMenuFileExit = new JMenultem();
JMenu jMenuHelp = new JMenu();
JMenultem jMenuHelpTopic = new JMenultem();
JMenultem jMenuHelpAbout = new JMenultem();
JToolBar jToolBar = new JToolBar();
JButton jButtonl = new JButton();
JButton jButton2 = new JButton();
JButton jButton3 = new JButton();
Imagelcon imagel;
[magelcon image2;
[magelcon image3;

74

JLabel statusBar = new JLabel();

BorderLayout borderLayout! = new BorderLayout();
ButtonGroup bGroupl=new ButtonGroup();

Panel dataAreal = new Panel();

Button button2 = new Button();

ResultSetMetaData rsmd;

JLabel jLabel2 = new JLabel();

Button button! = new Button();

boolean isSaleTracing=false;

boolean isInvTracing=false;

Panel panell = new Panel();

JButton jButton4 = new JButton();

JButton jButton_update = new JButton();
JButton jButton_updateSource = new JButton();

/**Construct the frame*/
public mainFrame() {
enableEvents(AWTEvent. WINDOW_EVENT_MASK);
try {
jbInit();
}
catch(Exception e) {
e.printStackTrace();

}

}

/**Component initialization*/

private void jbInit() throws Exception {
imagel = new Imagelcon(datatrace.mainFrame.class.getResource("openFile.gif"));
image2 = new [mage[con(da[atrace.mainFrame.class.getResource("closeFile.giF'));
image3 = new ImageIcon(datatrace.mainFrame.class.getResource("help.gif'));

contentPane = (JPanel) this.getContentPane();
contentPane.setLayout(null);
this.setSize(new Dimension(400, 381));
this.setTitle("Lineage Tracing Inventory System");
jMenuFile.setText("File");
JMenuFileExit.setText("Exit");
JMenuFileExit.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
JMenuFileExit_actionPerformed(e);
}

b
jMenuHelp.setText("Help");

JMenuHelpAbout.setText("About");
JMenuHelpAbout.addActionListener(new ActionListener() {

75

public void actionPerformed(ActionEvent e) {
jMenuHelpAbout_actionPerformed(e);

}
D;

jMenuHelpTopic.setText("Topics");

JMenuHelpTopic.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
jMenuHelpTopic_actionPerformed(e);

}
H;
dataAreal.setLayout(null);
dataAreal .setBounds(new Rectangle(23, 118, 356, 26)):
buttonl.setFont(new Java.awt.Font("Dialog", 1, 13));
button1.setLabel("Inventory Information™);
button.setBounds(new Rectangle(70, 2, 226, 37));
buttonl.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(ActionEvent e) {
button]_actionPerformed(e);

}
H;

button2.setFont(new java.awt.Font("Dialog”, 1, 13));
button2.setLabel("Sales Order Information");
button2.setBounds(new Rectangle(70, 60, 226, 37));
button2.addActionListener(new Java.awt.event. ActionListener() {
public void actionPerformed(ActionEvent e) {
button2_actionPerformed(e);

}
b

JButtonl.setlcon(imagel);

jButtonl.setToolTipText("Open File");

jButton2.setlcon(image2);

JjButton2.setToolTipText("Close File");

JButton3.setlcon(image3);

jButton3.setToolTipText("Help");

JButton_update.setText("jButton5");

JjButton_update.setBounds(new Rectangle(77, 139, 226, 30));

JjButton_updateSource.setFont(new java.awt.Font("Dialog", 1, 12));

jButton_updateSource.setActionCommand("jButton_updateSource");

jButton_updateSource.setText("Update Sources");

JButton_updateSource.setBounds(new Rectangle(70, 116, 226, 37)):

JButton_updateSource.addActionListener(new Java.awt.event.ActionListener() {
public void actionPerformed(ActionEvent e) {

JButton_updateSource_actionPerformed(e);

76

}
bs
jToolBar.add(jButtonl);
JToolBar.add(jButton2);
JToolBar.add(jButton3);
jMenuFile.add(jMenuFileExit);
JMenuHelp.add(jMenuHelpTopic);
JMenuHelp.add(jMenuHelpAbout);
JMenuBarl.add(jMenuFile);
jMenuBar!.add(jMenuHelp);
this.sety/MenuBar(jMenuBarl);
contentPane.add(jToolBar, BorderLayout. NORTH);
contentPane.add(statusBar, BorderLayout. SOUTH);

contentPane.setMaximumsSize(new Dimension(32767, 33767));

JLabel2 setFont(new java.awt.Font("Dialog", 1, 20));
jLabel2.setForeground(Color.red);
jLabel2.setText("Lineage Tracing Inventory System");
JLabel2 setBounds(new Rectangle(38, 71, 333, 37));
panell.setBounds(new Rectangle(13, 129, 371, 227));
panell.setLayout(null);

JMenvuFile.add(jMenuFileExit);
JMenuHelp.add(jMenuHelpAbout);
JMenuHelp.add(jMenuHelpTopic);
JMenuBarl.add(jMenuFile);
jMenuBarl.add(jMenuHelp);
this.set/MenuBar(jMenuBarl);
contentPane.add(panell, null);
panell.add(buttonl, null);
panell.add(button2, null);
panell.add(jButton_updateSource, null);
contentPane.add(dataAreal, null);
contentPane.add(jLabel2, null);

}

/**File | Exit action performed*/

public void jMenuFileExit_actionPerformed(ActionEvent e){
System.exit(0);

}

/**Help | About action performed*/

public void jMenuHelpAbout_actionPerformed(ActionEvent e){
mainFrame_AboutBox dlg = new mainFrame_ AboutBox(this);
Dimension digSize = dlg. getPreferredSize();
Dimension frmSize = getSize();
Point loc = getLocation();

77

dlg.setLocation((frmSize.width - digSize.width) / 2 + loc.x, (frmSize. hexght -
digSize.height) / 2 + loc.y);
dlg.setModal(true);
dig.show();
}
/**Help | Topic action performed*/
public void jMenuHelpTopic_actionPerformed(ActionEvent e) {
mainFrame_TopicBox dlg2 = new mainFrame_TopicBox(this);
Dimension digSize = dlg2.getPreferredSize();
Dimension frmSize = getSize();
Point loc = getLocation();
dlg2.setLocation((frmSize.width - dlgSize.width) / 2 + loc.x, (frmSize.height -
digSize height) / 2 + loc.y);
dig2.setModal(true);
dlg2.show();
}

/**QOverridden so we can exit when window is closed*/
protected void processWindowEvent(WindowEvent e) {
super.processWindowEvent(e);
if (e.getID() == WindowEvent. WINDOW_CLOSING) {
JMenuFileExit_actionPerformed(null);
}
}

void jCheckBox 1_actionPerformed(ActionEvent e) {
isSaleTracing=true;

}

void jCheckBox2_actionPerformed(ActionEvent e) {
isInvTracing=true;

}

void button1_actionPerformed(ActionEvent e) {
StockInfo myInventory=new StockInfo();
myInventory.setTitle("Inventory Information Management");
myInventory.pack();
mylnventory.setVisible(true);
mylnventory.setSize(400,300);

}

void button2_actionPerformed(ActionEvent e) {
SalesOrderInfo myOrder=new SalesOrderInfo();
myOrder.setTitle("Sales Order Information Management");
myOrder.pack();
myOrder.setVisible(true);

78

myOrder.setSize(400,300);
}

void jButton_updateSource_actionPerformed(ActionEvent e){
chooseSource updatesource = new chooseSource();
updatesource.setTitle("Update Source Information Management");
updatesource.setVisible(true);
updatesource.validate();
updatesource.setSize(400,400);

Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
Dimension frameSize = updatesource.getSize();
if (frameSize.height > screenSize.height) {
frameSize height = screenSize.height;
}
if (frameSize.width > screenSize.width) {
frameSize.width = screenSize.width;
}
updatesource.setLocation((screenSize.width - frameSize.width) / 2, (screenSize. height -
frameSize.height) / 2);
}
}

Module 2. Interface of Tracing Inventory

// Implement for tracing the inventory information. The user can choose to trace inventory
information according to product name, category name, or supplier name, and the user can
select to trace inventory information of all the stores or each store.

import java.awt. *;
import java.awt.event.*;
import javax.swing.*;
import java.io.*;

import java.util.*;
import java.sql.*;
import java.lang.*;
import java.net.*;
import jdbc.*;

import viewBean.*;

public class Stocklnfo extends Frame {
String StockChoose;
String storeName;
Panel panel5 = new Panel();
Panel panel2 = new Panel();

79

Panel panel4 = new Panel();
ButtonGroup bGroup=new ButtonGroup();
JRadioButton jRadioButtonl = new JRadioButton("Product”, true);
JRadioButton jRadioButton2 = new JRadioButton("Catelogy"” false);
JRadioButton jRadioButton3 = new JRadioButton("Supplier” false):
JToggleButton jToggleButton! = new JToggleButton();
Label labell = new Label();
JButton jButton_return = new JButton();
String unitOnOrder;
String recordLevel;
String Discontinued;
JButton jButton_help = new JButton():
JComboBox jComboBox_store = new JComboBox();
JLabel jLabell = new JLabel();
public StockInfo() {

try {

jbInit();
}
catch(Exception e) {
e.printStackTrace();

}

}

private void jblnit() throws Exception {
labell.setBounds(new Rectangle(61, 75, 288, 29));
labell.setText("Tracing Inventory Information");
labell.setForeground(Color.red);
labell .setFont(new java.awt.Font("Dialog”, 1, 20));
JToggleButtonl.setBounds(new Rectangle(84, 102, 95, 25)):
JToggleButtonl.setText("Continue");
JToggleButtonl .setFont(new java.awt.Font("Dialog", 1, 12));
JToggleButtonl.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(ActionEvent e) {
JToggleButton!_actionPerformed(e);
}
Hs

JRadioButton1.setBounds(new Rectangle(52, 6, 66, 25));
jRadioButton1.setText("Product ");
JRadioButton].setFont(new java.awt.Font("Dialog", 1, 12));
JRadioButtonl.addActionListener(new Jjava.awt.event.ActionListener() {
public void actionPerformed(ActionEvent e) {
JjRadioButton1_actionPerformed(e);
}
hs

JRadioButton2.setBounds(new Rectangle(158, 8, 87, 25));

80

JjRadioButton2.setText("Category");
JjRadioButton2.setFont(new java.awt.Font("Dialog", 1, 12));
JRadioButton2.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(ActionEvent e) {
JRadioButton2_actionPerformed(e);
}
H:
JRadioButton3.setBounds(new Rectangle(267, 9, 69, 24));
JRadioButton3.setText("Supplier");
JRadioButton3.setFont(new java.awt.Font("Dialog", 1, 12));
JRadioButton3.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(ActionEvent e) {
JRadioButton3_actionPerformed(e);
}
b;

panei4.setLayout(null);
panel4.setBounds(new Rectangle(5, 150, 388, 147));
jButton_return.setFont(new java.awt.Font("Dialog", I, 12));
jButton_return.setText("Return");
jButton_return.setBounds(new Rectangle(232, 102, 86, 26));
jButton_return.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(ActionEvent e) {
jButton_return_actionPerformed(e);
}
H:

jButton_help.setActionCommand("jButton_help");
jButton_help.setText("Help");
JjButton_help.setBounds(new Rectangle(19, 33, 60, 22));
jButton_help.addActionListener(new Java.awt.event.ActionListener() {
public void actionPerformed(ActionEvent e) {
jButton_help_actionPerformed(e);
}
b

String(] storeList;

final int row=4;

storeList=new String[row];

storeList[0]="All_stores";

storeList[1]="Store_1";

storeList[2]="Store_2";

storeList[3]="Store_3";

JComboBox_store=new JComboBox((Object[])storeList);

JComboBox_store.setBounds(new Rectangle(178, 53, 156, 27);

81

jComboBox_store.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(ActionEvent e) {
JComboBox_store_actionPerformed(e);
}
s

JLabell setFont(new java.awt.Font("Dialog", 1, 13));
JLabell.setText("Choose store(s):");
jLabell setBounds(new Rectangle(53, 53, 108, 26));

panel4.add(jRadioButton3, null);
panel4.add(jRadioButton2, null);
panel4.add(jRadioButton !, null);
panel4.add(jToggleButtonl, null);
panel4.add(jButton_return, null);
panel4.add(jLabell, null);
panel4.add(jComboBox_store, null);
this.add(panel2, null);
this.add(panel4, null);
this.add(panel$5, null);
bGroup.add(jRadioButton1);
bGroup.add(jRadioButton2);
bGroup.add(jRadioButton3);
StockChoose="Product";
this.setLayout(null);
panel5.setBounds(new Rectangle(4, 14, 383, 111));
panel5.setLayout(null);
this.setForeground(Color.red);
this.setBackground(SystemColor.activeCaptionBorder);
this.addWindowListener(new java.awt.event.WindowAdapter() {
public void windowClosing(WindowEvent e) {
this_windowClosing(e);
}
s
panel2.setBounds(new Rectangle(41, 128, 332, 20));
panel2.setLayout(null);
panel5.add(jButton_help, null);
panel5.add(labell, null);
JRadioButton!.isSelected();
}

void jRadioButton!_actionPerformed(ActionEvent e){
StockChoose="Product";

}

void JRadioButton2_actionPerformed(ActionEvent e){

82

S
}

VO

tockChoose="Catagory";

id jRadioButton3_actionPerformed(ActionEvent e) {

StockChoose="Supplier":

}

void jToggleButton]_actionPerformed(ActionEvent e) {
if (StockChoose=="Product")

{

}

€

{

}

StockProducts fl=new StockProducts(storeName,StockChoose);
fl.setTitle("Stock Detail Information (Products)”);

f1.pack();

f1.setSize(400,300);

fl.setVisible(true);

Ise if (StockChoose=="Catagory")

StockCategories f2=new StockCategories(storeName,StockChoose);
f2.setTitle("Stock Detail Information (Categories)");

f2.pack();

f2.setSize(400,300);

f2.setVisible(true);

else if (StockChoose=="Supplier")

{

}

StockSuppliers f3=new StockSuppliers(storeName,StockChaose):
f3.setTitle("Stock Detail Information (Suppliers)");

f3.pack();

f3.setSize(400,300);

f3.setVisible(true);

}

void this_windowClosing(WindowEvent e) {

}

setVisible(false);

void jButton_return_actionPerformed(ActionEvent e) {

}

setVisible(false);

void jButton_help_actionPerformed(ActionEvent e){
stockInfo_TopicBox dlg2 = new stockInfo_TopicBox(this):
Dimension digSize = dig2.getPreferredSize();

Dimension frmSize = getSize();

83

Point loc = getLocation();
dlg2.setModal(true);
dlg2.show();
}

void jComboBox_store_actionPerformed(ActionEvent e) {
String temp=new String();
temp=((String)jComboBox_store.getSelectedItem());
storeName=temp.trim();

}

public String checkStr(String str) {
char(] ctr=new char{str.length()+10];
String f="'d";
int j=0;
for(int i=0;i<str.length();i++)
{
char ch=str.charAt(i);
if(ch==f.charAt(0)){
ctrfj]=ch;
=i+l
ctrjl=ch:
=i+
}else{
ctr{j}=ch;
Jj=i+ls
}
}
return new String(ctr);
}
}

Module 3. Tracing Chosen Product Inventory

/Mmplement for tracing inventory information of the chosen product for all stores or one
store

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.io.*;

import java.util.*;
import java.sql.*;
import java.lang.*;
import jdbc.*;

84

import viewBean.¥;

public class StockProducts extends Frame {
String storeName=new String();
String stockChoose=new String();
Panel panell = new Panel();
Label labell = new Label();
Panel panel2 = new Panel();
JComboBox jComboBox 1:// = new JComboBox();
JLabel jLabell = new JLabel();
JButton jButtonl = new JButton();
String itemName=new String();
final String dbDriver="sun.jdbc.odbc.JdbcOdbcDriver";

ResultSetMetaData rsmd;

JCheckBox jCheckBox1 = new JCheckBox();
boolean isTracing=false;

JButton jButton_cancel = new JButton();
JButton jButton_help = new JButton();
JLabel jLabel2 = new JLabel();

JTextField jTextField] = new JTextField();

public StockProducts(String name,String choose) {
storeName=name.trim();
stockChoose=choose.trim();
try {
jblnit();
}
catch(Exception e) {
e.printStackTrace();
}
}

private void jbInit() throws Exception {
this.setLayout(null);
panell.setBounds(new Rectangle(2, 15, 395, 143));
panell.addHierarchyBoundsListener(new java.awt.event.HierarchyBoundsAdapter() {
public void ancestorMoved(HierarchyEvent e) {
panell_ancestorMoved(e);
}
H;
panell.setLayout(null);
label l.setFont(new java.awt.Font("Dialog", I, 18));
label 1.setForeground(Color.red);

labell.setText("Stock Products Information (Products)");
labell.setBounds(new Rectangle(28, 58, 342, 27));

85

panel2.setBounds(new Rectangle(9, 167, 379, 130));
panel2.setLayout(null);

jLabell setFont(new java.awt.Font("Dialog", 1, 14));

jLabell setText("Choose a Product:");

jLabell.setBounds(new Rectangle(26, 12, 144, 25));

JButtonl.setFont(new java.awt.Font("Dialog", 1, 14));

jButtonl.setText("Search");

jButtonl1 setBounds(new Rectangle(158, 67, 84, 23));

JButtonl.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(ActionEvent e) {

JjButtonl_actionPerformed(e);

}
s
this.setBackground(SystemColor.activeCaptionBorder);
this.addWindowListener(new java.awt.event. WindowAdapter() {
public void windowClosing(WindowEvent ¢) {
this_windowClosing(e);
}
b

JCheckBox1.setFont(new java.awt.Font("Dialog", 1, 14));
JCheckBox | .setText("tracing");
JCheckBox 1 .setBounds(new Rectangle(33, 66, 75, 27));
JCheckBox !.addActionListener(new Java.awt.event.ActionListener() {
public void actionPerformed(ActionEvent ¢) {
JCheckBox 1 _actionPerformed(e);
}
s
JButton_cancel.setFont(new java.awt.Font("Dialog", I, 14));
JButton_cancel.setActionCommand("Cancel");
JjButton_cancel.setText("Cancel");
JButton_cancel.setBounds(new Rectangle(258, 68, 86, 23));
JjButton_cancel.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(ActionEvent e) {
JjButton_cancel_actionPerformed(e);
}
s
JButton_help.setActionCommand("jButton_help");
JButton_help.setText("Help");
jButton_help.setBounds(new Rectangle(28, 27, 65, 25));
jButton_help.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(ActionEvent e) {
jButton_help_actionPerformed(e);
}
s

86

JLabel2.setFont(new java.awt.Font("Dialog", 1, 13));
jLabel2 . setText("Store Name:");
jLabel2.setBounds(new Rectangle(26, 103, 88, 25));
JTextFieldl .setBounds(new Rectangle(116, 106, 94, 25));
JTextFieldl.setEditable(false);
jTextFieldl.setText(storeName);

this.add(panell, null);

panell.add(labell, null);

panell.add(jLabel2, null);

panell.add(jTextFieldl, nuil);
panell.add(jButton_help, null);

this.add(panel2, null);

Jjdbc items=new jdbc();
items.setClassname(dbDriver);
items.setIsQuery(true);

items.setUrl("jdbc:odbc:source-store1");

String itemQuery="SELECT [Products].[ProductName] "+
"FROM Products;";

items.setQuery(itemQuery);

int itemNum;
String[] itemList;
try({
items.go();
Vector itemVector=items.getResult();
itemNum=items.getRowCount():
final int row=itemNum;
itemList=new String[row];
String[] temp=new String[1];
for(int i=2 ; i<=row;i++){
temp=(String[])itemVector.eclementAt(i-1);
itemList[i-2]=temp[0];
}
jComboBox l=new JComboBox((Object[])itemList);
}catch (Exception ex) {
ex.printStackTrace();

}

jComboBox 1.setBounds(new Rectangle(173, 13, 170, 25));

JComboBox .addActionListener(new java.awt.event.ActionListener() {

public void actionPerformed(ActionEvent e) {
JComboBox 1 _actionPerformed(e);
}
H:

87

panel2.add(jLabell, null);
panel2.add(jComboBox 1, null);
panel2.add(jCheckBoxI, null);
panel2.add(jButtonl, null);
panel2.add(jButton_cancel, null);
}
void jComboBox 1_actionPerformed(ActionEvent e) {
String temp=new String();
temp=checkStr((String)jComboBox .getSelectedItem());
itemName=temp.trim();
System.out.println(itemName);
}
public String checkStr(String str)
{
char(] ctr=new char[str.length()+10];
String f=""d";
int j=0;
for(int i=0;i<str.length();i++)
{
char ch=str.charAt(i);
if(ch==~f.charAt(0)){
ctr(j]=ch;
Jj=j+L
ctrj]=ch;
j=j+ls
telse{
ctr{j]=ch;
Jj=j+1L;
}
}

return new String(ctr);

}

public String getViewName()

{
Calendar ¢ = Calendar.getInstance();

java.util. Date myDate=c.getTime();
String temp=(new Integer(myDate.getHours())).toString();
temp=temp+(new [nteger(myDate.getMinutes())).toString();
temp=temp+(new Integer(myDate.getSeconds())).toString();
return temp;

t

void jButton! _actionPerformed(ActionEvent e) {
jdbc inv=new jdbc();

stockDisplayProduct inventory=new stockDisplayProduct(itemName,storeName);
inv.setClassname("sun.jdbc.odbc.JdbcOdbceDriver");
inv.setIsQuery(true);

String itemQuery;
itemQuery ="SELECT [Products].[ProductName], (Suppliers].[CompanyName], "+
“[Products].[UnitPrice], [Products].[UnitsInStock], "+
" [Products].[UnitsOnOrder], [Products].[ReorderLevel] "+
" FROM Suppliers INNER JOIN Products ON "+
" [Suppliers].[SupplierID] = [Products].[SupplierD] "+
" WHERE [Products].[ProductName]="";
itemQuery=itemQuery+itemName + ";";

Vector resultVector;
viewBean jdbcBean = new viewBean();
jdbcBean.setClassname("sun.jdbc.odbc.JdbcOdbeDriver");
JdbcBean.setViewUrl("jdbc:odbc:trace-store0");
String viewName=new String();
viewName=getViewName();
JdbcBean.setViewName(viewName);
jdbcBean.setQuery(itemQuery);
try {

JjdbcBean.creatViewer();

String[] metaData;

if (storeName=="All_stores") |{
itemQuery = "SELECT [D1].[ProductName], "+
"sum([D1].[UnitsInStock]) AS [Total in Stock],"+
" sum([D1].[UnitsOnOrder]) AS [Total On Order] "+
" FROM "+viewName+" DI GROUP BY [D1].[ProductName]; ”;
}
else if (storeName=="Store_1") {
itemQuery = "SELECT [D2].[ProductName], "+
“sum([{D2].[UnitsInStock]) AS [Total in Stock],"+
" sum([D2].[UnitsOnOrder]) AS [Total On Order] "+
" FROM "+viewName+" D2 WHERE [D2].Store_Location='Store 1'"+
" GROUP BY [D2].[ProductName]; ";
}
else if (storeName=="Store_2") {
itemQuery = "SELECT [D2].[ProductName], "+
“sum([D2].[UnitsInStock]) AS [Total in Stock],"+
" sum({D2].[UnitsOnOrder]) AS [Total On Order] "+
" FROM "+viewName+" D2 WHERE [D2].Store_Location='Store 2"+
" GROUP BY [D2].[ProductName]; ";
}

else if (storeName=="Store_3") {

89

itemQuery = "SELECT [D2].[ProductName], "+
"sum([D2].[UnitsInStock]) AS [Total in Stock],"+
" sum([D2].[UnitsOnOrder]) AS [Total On Order] "+
" FROM "+viewName+" D2 WHERE [D2].Store_Location="Store 3"+
" GROUP BY [D2].[ProductName]; ";
}
inv.setQuery(itemQuery);
inv.setUrl("jdbc:odbc:trace-store0");
inv.go();
resultVector=inv.getResult();
final int a=inv.getColumnCount();
final int b=inv.getRowCount();
String[][] tableData;
tableData=new String[b-1]{a];
for(int m=2;m<=b;m++)
{
metaData=(String[])resultVector.elementAt(m-1);
for(int n=1; n<=a;n++)
{

tableData[m-2][n-1]=metaData[n-1];

}
invenlory.setMetaData((String[])resultVector.elementAt(O));

inventory.setTableData(tableData);
} catch (Exception ex) {
ex.printStackTrace();
}
if(isTracing)
{
if (storeName=="All_stores")
{
itemQuery= "SELECT DI.ProductName, D1.CompanyName AS "+
“ [SupplierName], D1.UnitPrice, D1.UnitsInStock, D1.UnitsOnOrder "+
"FROM "+ viewName +" D1 "+
"WHERE D1.Store_Location='Store 1';";
inv.setQuery(itemQuery);

try {
inv.setUrl("jdbc:odbc:trace-store0");

inv.go();
resultVector=inv.getResult();
String[] metaData;

final int a=inv.getColumnCount();
final int b=inv.getRowCount();
String[][] tableData;
tableData=new String[b-1][a];

90

for(int m=2;m<=b;m++)
{
metaData=(String[])resultVector.elementAt(m-1);
for(int n=1; n<=a;n++)
{
tableData[m-2][n-1]}=metaData[n-1];
}
}
inventory.setMetaDatal((String[])resultVector.clementAt(0));
inventory.setTableDatal(tableData);
} catch (Exception ex) {
ex.printStackTrace();
}
itemQuery= "SELECT D1.ProductName, D1.CompanyName AS "+
* [SupplierName], D1.UnitPrice, D1.UnitsInStock, D1.UnitsOnOrder "+
"FROM "+ viewName +" D1 "+
"WHERE D1 .Store_Location='Store 2";";
inv.setQuery(itemQuery);

try {

inv.go();

resultVector=inv.getResult();

String[] metaData;

final int a=inv.getColumnCount();

final int b=inv.getRowCount();

String[](] tableData;

tableData=new String[b-1][a];

for(int m=2;m<=b;m++)

{
metaData=(String[])resultVector.elementAt(m-1);
for(int n=1; n<=a;n++)

{
tableData[m-2][n-1]=metaData[n-1];
}

1
inventory.setMetaData2((String[])resultVector.elementAt(0));

inventory.setTableData2(tableData);
} catch (Exception ex) {
ex.printStackTrace();

}

itemQuery= "SELECT DI.ProductName, D1.CompanyName AS "+
*“ [SupplierName], D1.UnitPrice, D1.UnitsInStock, D1.UnitsOnOrder "+
"FROM "+ viewName +" DI "+
"WHERE D! .Store_Location='Store 3";";

inv.setQuery(itemQuery);

91

try {
inv.go();

resultVector=inv.getResult();

String[] metaData;

final int a=inv.getColumnCount();

final int b=inv.getRowCount();

String{](] tableData;

tableData=new String[b-1][a];

for(int m=2;m<=b;m++)

{
metaData=(String[])resultVector.elementAt(m-1);
for(int n=1; n<=a;n++)

{
tableData[m-2][n-1}=metaData[n-1];
}

}
inventory.setMetaData3((String[])resultVector.elementAt(0));

inventory.setTableData3(tableData);
} catch (Exception ex) {
ex.printStackTrace();
}
}

else if (storeName=="Store_1")
{
itemQuery= "SELECT D1.ProductName, D1.CompanyName AS "+
“ [SupplierName], D1.UnitPrice, D1.UnitsInStock, D1.UnitsOnOrder "+
"FROM "+ viewName +" D1 "+
"WHERE DI .Store_Location="'Store 1';";
inv.setQuery(itemQuery);

try {

inv.setUrl("jdbc:odbc:trace-store0™);

inv.go();

resultVector=inv.getResult();

String[] metaData;

final int a=inv.getColumnCount();

final int b=inv.getRowCount();

String[][] tableData;

tableData=new String[b-1][a];

for(int m=2;m<=b;m++)

{
metaData=(String[])resultVector.elementAt(m-1);
for(int n=1; n<=a;n++)

{

92

tableData[m-2][n-1]=metaData[n-1];
}
}
inventory.seLMetaDatal((String[])resultVector.elementAt(O));
inventory.setTableDatal (tableData);
} catch (Exception ex) {
ex.printStackTrace();
}
}
else if (storeName=="Store_2")
{
itemQuery= "SELECT D1.ProductName, D1.CompanyName AS "+
“ [SupplierName], D1.UnitPrice, D1.UnitsInStock, D1.UnitsOnOrder "+
"FROM "+ viewName +" D1 "+
"WHERE D1.Store_Location='Store 2":";
inv.setQuery(itemQuery);

try {
inv.setUrl("jdbc:odbc:trace-store0");
inv.go();
resultVector=inv.getResult();
String[] metaData;
final int a=inv.getColumnCount();
final int b=inv.getRowCount();
String[]{] tableData;
tableData=new String{b-1][a];
for(int m=2;m<=b;m++)
{
metaData=(String[])resultVector.elementAt(m-1);
for(int n=1; n<=a;n++)
{
tableData[m-2][n-1]=metaData[n-1];
}
}
inventory.setMetaDatal((String[])resultVector.elementAt(O));
inventory.setTableDatal (tableData);
} catch (Exception ex) {
ex.printStackTrace();
}
}
else if (storeName=="Store_3")
{
itemQuery= "SELECT D1.ProductName, DI1.CompanyName AS "+
* [SupplierName], D1.UnitPrice, D1.UnitsInStock, D1.UnitsOnOrder "+
"FROM "+ viewName +" D1 "+
"WHERE D1.Store_Location="'Store 3";":

93

}

inv.setQuery(itemQuery);
try {

inv.setUrl("jdbc:odbc:trace-store0");

inv.go();

resultVector=inv.getResult();

String[] metaData;

final int a=inv.getColumnCount();

final int b=inv.getRowCount();

String[][] tableData;

tableData=new String[b-1][a];

for(int m=2;m<=b;m++)

{
metaData=(String[])resultVector.clementAt(m-1);
for(int n=1; n<=a;n++)

{
tableData[m-2][n-1]=metaData[n-1];
}

}
inventory.setMctaDatal((String[])resultVector.eIementAt(O));

inventory.setTableDatal(tableData);
} catch (Exception ex) {
ex.printStackTrace();
}
}
}

inventory.setTitle("Inventory Detail Search Result Display");
inventory.tableGo();

inventory.pack();

inventory.setVisible(true);

if(isTracing)({
if (storeName=="All_stores"){
inventory.setSize(680,680);
}
else(
inventory.setSize(680,390);
}
}

else{
inventory.setSize(680,250);
}

setVisible(false);

void jCheckBox 1_actionPerformed(ActionEvent e)

94

if(jCheckBox .isSelected()==true)
{
isTracing=true;
lelse{
isTracing=false;
}
}

void this_windowClosing(WindowEvent) {
setVisible(false);

}

void jButton_cancel_actionPerformed(ActionEvent e){
setVisible(false):

}

void jButton_help_actionPerformed(ActionEvent e) {
stockProducts_TopicBox dig2 = new stockProducts_TopicBox(this);
Dimension digSize = dlg2.getPreferredSize();
Dimension frmSize = getSize();
Point loc = getLocation();
dig2.setModal(true);
dig2.show();

Module 4. Interface of Tracing Sales Order

// Implement for tracing the sales order information. The user can choose to trace sales
order information according to product name, category name, or customer name, and the
user can select to trace sales order information of all the stores or each store.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.io.*;

import java.util.*;
import java.sql.*;
import java.lang.*;
import java.net.*;
import jdbc.*;

import viewBean.*;

public class SalesOrderInfo extends Frame {

95

String OrderChoose;

String storeName;

Panel panel5 = new Panel();

Panel panel2 = new Panel();

Panel panel4 = new Panel();

ButtonGroup bGroup=new ButtonGroup();

JRadioButton jRadioButtonl = new JRadioButton("Product", true);
JRadioButton jRadioButton2 = new JRadioButton("Catelogy" false);
JRadioButton jRadioButton3 = new JRadioButton("Customer” false);
JToggleButton jToggleButton1 = new JToggleButton();

Label labell = new Label();

JButton jButton_return = new JButton();

String unitOnOrder;

String recordLevel;

String Discontinued;

JButton jButton_help = new JButton();

JComboBox jComboBox_store = new JComboBox();

JLabel jLabell = new JLabel();
public SalesOrderInfo() {
try {
jbInit();
}
catch(Exception e) {
e.printStackTrace();
}
}

private void jbInit() throws Exception {
labell.setBounds(new Rectangle(43, 76, 312, 29));
labell.setText("Tracing Sales Order Information");
label I .setForeground(Color.red);
labell.setFont(new Jjava.awt.Font("Dialog", 1, 20));

jToggleButton1.setBounds(new Rectangle(84, 102, 95, 25));
JToggleButton | .setText("Continue");
JToggleButtonl.setFont(new java.awt.Font("Dialog", 1, 12));
jToggleButtonl.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(ActionEvent e) {
jToggleButton1_actionPerformed(e);

}
b

JRadioButton1.setBounds(new Rectangle(52, 6, 66, 25)).
JRadioButton1.setText("Product ");

JRadioButton|.setFont(new java.awt.Font("Dialog", 1, 12));
JRadioButton1.addActionListener(new java.awt.event.ActionListener() {

96

public void actionPerformed(ActionEvent e) {
JjRadioButton 1 _actionPerformed(e);
}
Hs

JRadioButton2.setBounds(new Rectangle(158, 8, 87, 25));
JRadioButton2 setText("Category");
JRadioButton2 .setFont(new Jjava.awt.Font("Dialog", 1, 12));
jRadioButton2.addActionListener(new Java.awt.event.ActionListener() {
public void actionPerformed(ActionEvent e) {
JRadioButton2_actionPerformed(e);
}
s

JRadioButton3.setBounds(new Rectangle(255, 9, 80, 24));
JRadioButton3.setText("Customer");
JRadioButton3.setFont(new Java.awt.Font("Dialog", 1, 12));
JRadioButton3.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(ActionEvent e) {
JRadioButton3_actionPerformed(e);
}
s

panel4.setLayout(null);
panel4.setBounds(new Rectangle(5, 150, 388, 147));

JButton_return.setFont(new Java.awt.Font("Dialog", 1, 12));
jButton_return.setText("Return");
jButton_return.setBounds(new Rectangle(232, 102, 86, 26));
JButton_return.addActionListener(new Java.awt.event.ActionListener() {
public void actionPerformed(ActionEvent e){
JButton_return_actionPerformed(e);
}
h:

jButton__help.setActionCommand("jButton_help");
JButton_help.setText("Help");
JButton_help.setBounds(new Rectangle(19, 33, 60, 22));
jButton_help.addActionListener(new Java.awt.event. ActionListener() {
public void actionPerformed(ActionEvent e){
JButton_help_actionPerformed(e);
}
s

String(] storeList;
final int row=4;

97

storeList=new String[row];
storeList[0]="All_stores";

storeList[1]="Store_1";
storeList[2]="Store_2";
storeList[3]="Store_3";
jComboBox_store=new JComboBox((Object[])storeList);

JComboBox_store.setBounds(new Rectangle(178, 53, 156, 27));
JComboBox_store.add ActionListener(new Jjava.awt.event.ActionListener() {
public void actionPerformed(ActionEvent e) {
jComboBox_store_actionPerformed(e);
}
b;
JLabell.setFont(new java.awt.Font("Dialog", 1, 13));
jLabell.setText("Choose store(s):");
JjLabell.setBounds(new Rectangle(53, 53, 108, 26)):

panel4.add(jRadioButton2, null);
panel4.add(jRadioButton1, null);
panel4.add(jToggleButtonl, null);
panel4.add(jButton_return, null);
panel4.add(jLabell, null);
panel4.add(jComboBox_store, null);
panel4.add(jRadioButton3, null);
this.add(panel2, null);
this.add(panel4, null);
this.add(panel5, null);
bGroup.add(jRadioButton1);
bGroup.add(jRadioButton2);
bGroup.add(jRadioButton3);
OrderChoose="Product";
this.setLayout(null);
panel5.setBounds(new Rectangle(4, 14, 383, 111));
panel5.setLayout(null);
this.setForeground(Color.red);
this.setBackground(SystemColor.activeCaptionBorder);
this.addWindowListener(new Jjava.awt.event. WindowAdapter() {
public void windowClosing(WindowEvent ¢) {
this_windowClosing(e);
}
H:
panel2.setBounds(new Rectangle(41, 128, 332, 20)):

panel2 setLayout(nulil);
panel5.add(jButton_help, null);

98

panelS5.add(labell, null);
JRadioButton lL.isSelected();

}

void jRadioButtonl_actionPerformed(ActionEvent €) {
OrderChoose="Product”;

}

void jRadioButton2_actionPerformed(ActionEvent e) {
OrderChoose="Catagory";

}

void jRadioButton3_actionPerformed(ActionEvent e) {
OrderChoose="Customer":

}

void jToggleButton!_actionPerformed(ActionEvent e)

{
if (OrderChoose=="Product")

{
OrderProducts fl=new OrderProducts(storeName,OrderChoose);
f1.setTitle("Order Detail Information (Products)");
fl1.pack();
f1.setSize(400,300);
fl.setVisible(true);

}
else if (OrderChoose=="Catagory")

{
OrderCategories f2=new OrderCategories(storeName,OrderChoose):
f2.setTitle("Order Detail Information (Categories)");
£2.pack();
f2.setSize(400,300);
f2.setVisible(true);

}

else if (OrderChoose=="Customer")
{
OrderCustomers f3=new OrderCustomers(storeName,OrderChoose);
f3.setTitle("Order Detail Information (Customers)");
f3.pack();
f3.setSize(400,300);
f3.setVisible(true);
}
}

void this_windowClosing(WindowEvent e) {
setVisible(false);

99

}

!

void jButton_return_actionPerformed(ActionEvent e) {
setVisible(false);
}

void jButton_help_actionPerformed(ActionEvent e) {

salesOrderInfo_TopicBox dlg2 = new salesOrderInfo_TopicBox(this);

Dimension digSize = dlg2.getPreferredSize();
Dimension frmSize = getSize();

Point loc = getLocation();
dig2.setModal(true);

dlg2.show();

}

void jComboBox_store_actionPerformed(ActionEvent e){
String temp=new String();
temp=((String)jComboBox_store.getSelectedItem());
storeName=temp.trim();

}

public String checkStr(String str)
{
char(] ctr=new char{str.length()+10];
String f=""d";
int j=0;
for(int i=0:i<str.length():i++)
{
char ch=str.charAt(i);
if(ch==f.charAt(0)){
ctr[j]=ch:
J=+L;
ctr[j]=ch;
Jj=i+1;
Jelse{
ctrfj]=ch;
J=j+1;
)
}
return new String(ctr);

}

100

Module S. Tracing Chosen Category Products Sales Order

/Mmplement for tracing sales order information of the chosen category products for all
stores or one store

1mport java.awt.*;
1mport java.awt.event.*;
import javax.swing.*;
import java.io.*;

import java.util. *;
import java.sql.*;
import java.lang.*;
import jdbc.*;

import viewBean.*;

public class OrderCategories extends Frame {
String storeName=new String();
String orderChoose=new String();

Panel panell = new Panel();

Label labell = new Label();

Panel panel2 = new Panel();

JComboBox jComboBox !;// = new JComboBox();
JLabel jLabell = new JLabel();

JButton jButton! = new JButton();

String itemName=new String();

final String dbDriver="sun.jdbc.odbc.JdbcOdbcDriver";

ResultSetMetaData rsmd;

JCheckBox jCheckBox 1 = new JCheckBox();
boolean isTracing=false;

JButton jButton_cancel = new JButton();
JButton jButton_help = new JButton();
JTextField jTextFieldl = new JTextField();
JLabel jLabel2 = new JLabel();

public OrderCategories(String name,String choose) {
storeName=name.trim();
orderChoose=choose.trim();

try {
jbInit();

}

catch(Exception e) {
e.printStackTrace();

}

101

}

private void jbInit() throws Exception {
this.setLayout(null);
panell.setBounds(new Rectangle(7, 74, 395, 89));
panell.addHierarchyBoundsListener(new java.awt.event.HierarchyBoundsAdapter() {
public void ancestorMoved(HierarchyEvent ¢) {
panell_ancestorMoved(e);

}
s
panell.setLayout(null);
label1.setFont(new java.awt.Font("Dialog", 1, 18));
label 1 .setForeground(Color.red);
labell.setText("Sales Order Information (Categories)");
labell.setBounds(new Rectangle(19, 8, 332, 27));
panel2.setBounds(new Rectangle(5, 173, 379, 116));
panel2.setLayout(null);

jLabell.setFont(new Java.awt.Font("Dialog", 1, 14));

jLabell.setText("Choose a Category:");

jLabell.setBounds(new Rectangle(27, 14, 144, 25)):

jButtonl setFont(new java.awt.Font("Dialog", 1, 14));

jButtonl.setText("Search");

jButtonl.setBounds(new Rectangle(156, 67, 84, 23));

jButtonl.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(ActionEvent e) {

jButton_actionPerformed(e);

}
H;
this.setBackground(SystemColor.activeCaptionBorder);
this.addWindowListener(new Jjava.awt.event. WindowAdapter() {
public void windowClosing(WindowEvent e) {
this_windowClosing(e);
}
H:

jCheckBox 1. .setFont(new Jjava.awt.Font("Dialog", 1, 14));
jCheckBox1.setText("tracing");
JCheckBox1.setBounds(new Rectangie(37, 66, 75, 27)):
jCheckBox .addActionListener(new java.awt.event.ActionListener() {

public void actionPerformed(ActionEvent e) {

JCheckBox 1_actionPerformed(e);

}
H:
JButton_cancel.setFont(new java.awt.Font("Dialog", 1, 14));
JButton_cancel.setActionCommand("Cancel");
jButton_cancel.setText("Cancel");

102

jButton_cancel.setBounds(new Rectangle(260, 67, 86, 23));
jButton_cancel.addActionListener(new java.awt.event. ActionListener() {
public void actionPerformed(ActionEvent €) {
jButton_cancel_actionPerformed(e);
}
s
JButton_help.setActionCommand("jButton_help");
JButton_help.setText("Help");
jButton_help.setBounds(new Rectangle(30, 43, 69, 26));
JButton_help.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(ActionEvent e) {
jButton_help_actionPerformed(e);
}
H;

Jdbc items=new jdbc();
items.setClassname(dbDriver);
items.setIsQuery(true);

items.setUrl("jdbc:odbc:source-store1");
String itemQuery="SELECT [Categories].[CategoryName]"+
" FROM Categories;";
items.setQuery(itemQuery);
int itemNum;
String[] itemList;
try{
items.go();
Vector itemVector=items.getResult();
itemNum=items.getRowCount();
final int row=itemNum;
itemList=new String[row];
String[] temp=new String[1];
for(int i=2 ; i<=row;i++){
temp=(String[])itemVector.elementAt(i-1);
itemList[i-2]=temp[0];
}
JComboBox =new JComboBox((Object[])itemList);
}catch (Exception ex) {
ex.printStackTrace();

}

JComboBox L.setBounds(new Rectangle(173, 16, 170, 25));
JComboBox |.addActionListener(new Java.awt.event.ActionListener() {
public void actionPerformed(ActionEvent €) {
jComboBox 1 _actionPerformed(e);

}

103

s
jTextFieidl.setBounds(new Rectangle(128, 53, 115, 25));

jTextField1.addActionListener(new java.awt.event.ActionListener() {

public void actionPerformed(ActionEvent) {
jTextField!_actionPerformed(e);
}
H;
jTextFieldl.setEditable(false);
jTextFieldl.setText(storeName);
jLabel2.setFont(new java.awt.Font("Dialog", 1, 13));
JjLabel2 setText("Store name:");
jLabel2.setBounds(new Rectangle(34, 51, 89, 29));
panel2.add(jLabell, null);
panel2.add(jComboBox 1, null);
panel2.add(jCheckBox 1, null);
panel2.add(jButtonl, null);
panel2.add(jButton_cancel, null);
this.add(jButton_help, null);
this.add(panell, null);
panell.add(jLabel2, null);
panell.add(labell, null);
panell.add(jTextFieldl, null);
this.add(panel2, null);
}
void jComboBox [_actionPerformed(ActionEvent e) {
String temp=new String();
temp=checkStr((String)jComboBox I .getSelectedItem());
itemName=temp.trim();
System.out.printin(itemName);
}
public String checkStr(String str)
{
char[] ctr=new char[str.length()+10];
String f=""d";
int j=0;
for(int i=0;i<str.length();i++)
{
char ch=str.charAt(i);
if(ch==f.charAt(0)){
ctr(j]=ch;
j=j+L
ctr{j]=ch;
j=j+l
}else{
ctrjj=ch;
=+l

104

}
}

return new String(ctr);

}

public String getViewName()

{
Calendar ¢ = Calendar.getInstance();
Java.util. Date myDate=c.getTime();
String temp=(new Integer(myDate.getHours())).toString();
temp=temp+(new Integer(myDate.getMinutes())).toString();
temp=temp+(new Integer(myDate.getSeconds())).toString();
return temp;

}

void jButtonl_actionPerformed(ActionEvent e) {
Jjdbc inv=new jdbc();

orderDisplayCategory salesOrder=new orderDisplayCategory(itemName,storeName);
inv.setClassname("sun.jdbc.odbe.JdbcOdbeDriver");
inv.setIsQuery(true);
String itemQuery="select [Products].[ProductName], [Customers].[CompanyName],"+
“[Order Details].[Quantity], [Products].[UnitsInStock], "+
“[Order Details].[UnitPrice], [Categories].[CategoryName], "+
"[Orders].[OrderDate], [Orders].[ShippedDate] FROM "+
"(Customers INNER JOIN Orders ON [Customers].[Customer[D]"+
"=[Orders].[CustomerID]) INNER JOIN ((Categories INNER "+
"JOIN Products ON [Categories].[CategoryID]=[Products]."+
“[CategoryID]) INNER JOIN [Order Details] ON [Products]."+
“[ProductID]=[Order Details].[ProductID]) ON [Orders]."+
"[OrderID]=[Order Details).[OrderID] WHERE [Categories].[CategoryName]="";

itemQuery=itemQuery+itemName + "";";
Vector resultVector:
viewBean jdbcBean = new viewBean();
jdbcBean.setClassname("sun.jdbc.odbc.JdbcOdbcDriver"):
jdbcBean.setView Url("jdbc:odbc:trace-store0");
String viewName=new String();
viewName=getViewName();
JjdbcBean.setViewName(viewName);
JdbcBean.setQuery(itemQuery);
try {

JjdbcBean.creatViewer();

String[] metaData;

if (storeName=="All_stores")

105

{

itemQuery = "SELECT [D1].[ProductName], "+
"sum([D1].[Quantity]) as [Total Sales Order],"+
" avg([D1].[UnitPrice]) as [Average Sales Price] FROM "+
viewName+" D1 GROUP BY [D1].[ProductName]; ";

}

else if (storeName=="Store_1")
{
itemQuery = "SELECT [D1].[ProductName], "+
"sum([D1].[Quantity]) as [Total Sales Order],"+
" avg([D1].[UnitPrice]) as [Average Sales Price] FROM "+
viewName+" DI WHERE [D1].Store_Location='Store 1"+
" GROUP BY [D1].[ProductName]; ";
}

else if (storeName=="Store_2")

{
itemQuery = "SELECT [D1].[ProductName], "+
"sum([D1].[Quantity]) as [Total Sales Order],"+
" avg([D1].[UnitPrice]) as [Average Sales Price] FROM "+
viewName+" D1 WHERE [D1].Store_Location="Store 2""+
" GROUP BY [D1].[ProductName]; ";

}

else if (storeName=="Store_3")
{
itemQuery = "SELECT [D1].[ProductName], "+
"sum([D1].[Quantity]) as [Total Sales Order],"+
" avg([D1].[UnitPrice]) as [Average Sales Price] FROM "+
viewName+" D1 WHERE [D1].Store_Location='Store 3"+
" GROUP BY [D1].[ProductName]; ";
}
inv.setQuery(itemQuery);
inv.setUrl("jdbc:odbc:trace-store0");
inv.go();
resultVector=inv.getResult();
final int a=inv.getColumnCount();
final int b=inv.getRowCount();
String[][] tableData;
tableData=new String(b-1](a];
for(int m=2;m<=b;m++)
{
metaData=(String[])resultVector.elementAt(m-1);
for(int n=1; n<=a;n++)
{
tableData[m-2]{n-1]=metaData[n-1];
}
}

106

salesOrder.setMetaData((String(])resultVector.elementAt(0));
salesOrder.setTableData(tableData);
} catch (Exception ex) {

}

ex.printStackTrace();

if(isTracing)

{

if (storeName=="All_stores")

{

itemQuery= "select D1.ProductName, D1.CompanyName as [CustomerName],"+
" D1.Quantity, D1.UnitPrice, D1.OrderDate "+
"FROM "+ viewName +" DI WHERE D1.Store_Location='Store 2";";
inv.setQuery(itemQuery);
try {

inv.setUrl("jdbc:odbc:trace-storeQ");

inv.go();

resultVector=inv.getResult();

String[] metaData;

final int a=inv.getColumnCount();

final int b=inv.getRowCount();

String[][] tableData;

tableData=new String[b-1][a];

for(int m=2;m<=b;m++)

{
metaData=(String[])resultVector.elementAt(m-1);
for(int n=1; n<=a;n++)
{

tableData[m-2][n-1]=metaData[n-1];

}

}
salesOrder.setMetaDatal ((String[])resultVector.elementAt(0));

salesOrder.setTableDatal (tableData);
} catch (Exception ex) {
ex.printStackTrace();

}

itemQuery= "select D1.ProductName, D1.CompanyName as [CustomerName),"+
" D1.Quantity, D1.UnitPrice, D1.OrderDate "+
"FROM "+ viewName +" D1 WHERE D1.Store_Location="Store 1";";
inv.setQuery(itemQuery);

try {
inv.go();
resultVector=inv.getResult();
String[] metaData;
final int a=inv.getColumnCount();

107

final int b=inv.getRowCount();

String{][] tableData;

tableData=new String[b-1][a];

for(int m=2;m<=b;m++)

{
metaData=(String[])resultVector.elementAt(m-1);
for(int n=1; n<=a;n++)

{
tableData[m-2]{n-1]=metaData[n-1];
}

}
salesOrder.setMetaDataZ((Sm'ng[])resultVector.elementAt(O));

salesOrder.setTableData2(tableData);
} catch (Exception ex) {
ex.printStackTrace();

}

itemQuery= "select D1.ProductName, D1.CompanyName as [CustomerName], "+
" D1.Quantity, D1.UnitPrice, D1.OrderDate "+
"FROM "+ viewName +" DI WHERE D1 .Store_Location="Store 3"
inv.setQuery(itemQuery);

try {

inv.go();

resultVector=inv.getResult();

String[] metaData;

final int a=inv.getColumnCount();

final int b=inv.getRowCount();

String[](] tableData;

tableData=new String[b-1][a];

for(int m=2;m<=b;m++)

{
metaData=(String{])resultVector.elementAt(m-1);
for(int n=1; n<=a;n++)

{
tableData[m-2][n-]=metaData[n-1];
}

}
salesOrder.seth[etaData3((String[])resultVector.eIementAt(O));

salesOrder.setTableData3(tableData);
} catch (Exception ex) {
ex.printStackTrace();
}
}

else if (storeName=="Store_1")

{

108

itemQuery= "select D1.ProductName, D1.CompanyName as [CustomerName], "+
" D1.Quantity, D1.UnitPrice, D1.OrderDate "+
"FROM "+ viewName +" D1 WHERE D1.Store_Location='Store 1';";
inv.setQuery(itemQuery);
try

inv.setUrl("jdbc:odbc:trace-store0");

inv.go();

resultVector=inv.getResult();

String[] metaData;

final int a=inv.getColumnCount();

final int b=inv.getRowCount();

String[][] tableData;

tableData=new String{b-1][a];

for(int m=2;m<=b;m++)

{
metaData=(String[])resultVector.elementAt(m-1);
for(int n=1; n<=a;n++)

{
tableData[m-2][n-1]=metaData[n-1];

}

}

salesOrder.setMetaDatal ((String[])resultVector.elementAt(0));
salesOrder.setTableDatal (tableData);
} catch (Exception ex) {
ex.printStackTrace();
}

}

else if (storeName=="Store_2")

{

itemQuery= "select D1.ProductName, D1.CompanyName as [CustomerName], "+
" D1.Quantity, D1.UnitPrice, D1.OrderDate "+
"FROM "+ viewName +" D1 WHERE D1.Store_Location='Store 2';";
inv.setQuery(itemQuery);
try
inv.setUrl("jdbc:odbc:trace-store0");
inv.go();
resultVector=inv.getResult();
String[] metaData;
final int a=inv.getColumnCount();
final int b=inv.getRowCount();
String[][] tableData;
tableData=new String[b-1](a];
for(int m=2;m<=b;m++)
{
metaData=(String[])resultVector.elementAt(m-1);
for(int n=1; n<=a;n++)

109

{
tableData[m-2][n-1]=metaData[n-1];
}
}
salesOrder.setMetaDatal ((String[])resultVector.elementAt(0)):
salesOrder.setTableDatal (tableData);
} catch (Exception ex) {
ex.printStackTrace();
}
}
else if (storeName=="Store_3")
{
itemQuery= "select D1.ProductName, D1.CompanyName as [CustomerName], "+
" D1.Quantity, D1.UnitPrice, D1.OrderDate "+
"FROM "+ viewName +" D1 WHERE D1.Store_Location='Store 3';";
inv.setQuery(itemQuery);
try {
inv.setUrl("jdbc:odbc:trace-store0");
inv.go();
resultVector=inv.getResult();
String[] metaData;
final int a=inv.getColumnCount();
final int b=inv.getRowCount();
String[][] tableData;
tableData=new String[b-1][a];
for(int m=2;m<=b;m++)
{
metaData=(String[])resultVector.elementAt(m-1);
for(int n=1; n<=a;n++)
{
tableData[m-2][n-1]=metaData[n-1];
}
}
salesOrder.setMetaDatal ((String[])resultVector.elementAt(0));
salesOrder.setTableDatal (tableData);
} catch (Exception ex) {
ex.printStackTrace();
}
}
}
salesOrder.setTitle 1 ("Sales Order Detail Display (Category)");
salesOrder.setTitle("Sales Order Detail Display (Category)");
salesOrder.tableGo();
salesOrder.pack();
salesOrder.setVisible(true);
if(isTracing){

110

if (storeName=="All_stores"){
salesOrder.setSize(680,680);
}
else{
salesOrder.setSize(680,370);
}
}

else{
salesOrder.setSize(680,240);
}

setVisible(false);

}

void jCheckBox 1_actionPerformed(ActionEvent e) {
if(jCheckBox l.isSelected()==true){
isTracing=true;
}else{
isTracing=false;
}
}

void this_windowClosing(WindowEvent e) {
setVisible(false);
}

void jButton_cancel_actionPerformed(ActionEvent e) {
setVisible(false);

}

void jButton_help_actionPerformed(ActionEvent e) {
orderCategories_TopicBox dlg2 = new orderCategories_TopicBox(this);
Dimension digSize = dlg2.getPreferredSize();
Dimension frmSize = getSize();
Point loc = getLocation();
dig2.setModal(true);
dlg2.show();

111

