INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

SCENARIO-DRIVEN REQUIREMENTS

ENGINEERING: METHOD AND TOOL

Meng Tian

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements for the Degree of
Master of Computer Science at
Concordia University
Montréal, Québec, Canada

February 2003

© Meng Tian, 2003

i+l

National Library Bibliothéque nationale
of Canada du Canada
isitions and uisitions et
S%li%graphic Services ::qm bibliographiques
395 Wellington Street 385, rue Wi
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your Sl Votre réldrence
Our fis Notre riférence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propniété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése mi des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-77721-9

ABSTRACT

Scenario-Driven Requirements Engineering: Method and Tool

Meng Tian

Scenarios have been used in different areas such as military, economy, software
engineering, human computer interaction, and theatrical arts. In software and user
interface requirements, a scenario is a description of a person's interaction with a system.
It describes what the user wants to do but does not describe how this is to be done.
Scenario-based requirements engineering brings an integrated answer to the following
questions: Who, What, Where, When, and Why. This thesis illustrates different meanings
and describes different examples that illustrate the power of scenarios in different areas.
In addition, a survey of the current existing tools for scenario-based requirement
engineering is presented. In the second part, we propose a progressive, iterative and
interleaved process of using scenario at different requirement engineering stages
including elicitation, analysis and validation. This process model has been applied to our
SUCRE (Scenario and Use Cases for User-Centered Requirement Engineering), which is
an XML-based system for scenario-driven requirement engineering. SUCRE is a tool for
working with scenarios. Within the SUCRE system, scenarios are stories that capture
information about users and their tasks, including the context of use. In our SUCRE
system, scenarios are stored in an XML-based database and described using XML
notation. Besides the SUCRE system prototype, we discuss the XML-based structure of
the scenario database we are developing. The paper concludes with a discussion on the

evolution of the process model and the XML-based SUCRE system.

iii

Acknowledgments

[wish to express my deepest appreciation to my supervisor Dr. Ahmed Seffah for
providing me such a wonderful opportunity to work on this research area and for his
assistance in the preparation of this manuscript. It is his supervision, encouragement, and

support that have made this work possible.

I would like to thank Mrs. Carla De Waele for her help in developing part of our
framework. My great gratitude is also extended to Dr. V. S. Alagar for his comments and

continuous support.

My sincere thanks to my parents for their love and support. Many thanks to all my friends

for their encouragement and help.

Contents

LIST OF FIGURES vl
LIST OF TABLES Vil
CHAPTER 1 - SCENARIO-BASED REQUIREMENTS
ENGINEERING: TERMINOLOGY AND FOUNDATIONS.....
1.1 ORIGINS eeeeeteseneeesesenresssastsbbe otes e at et e anr et b e et ttn bt e sen s rnnsnennnreeeessrnnnneesnnneeeseeeanenenneene 1
1.2 GENERAL DEFINITION AND EXAMPLE reererareemarerasreaeeresenrenns 1
1.3 SCENARIOS IN SOFTWARE ENGINEERINGceneeeeeereeevereeeeeeeeeeaeeeeeeesssesssessssesssssssessssessneesssessenssssssssens 3
1.3.1 Scenarios in Requirement EICIQIIONoooooeueoeeniecirioieiiiieeeeeeeeeeeveeee e, 4
1.3.2 Scenarios in Requirement Validarioncocooeoeiiuiieeeeiiieeieeeeeeeeeeeee e 10
1.4 SCENARIOS IN HUMAN COMPUTER INTERACTION (HCD) oo 15
1.4.1 Scenarios in UITPrOIOIVDE ... eee e eseeeeesenesssnseneeeeneee 15
1.5 SCENARIOS IN THEATRICAL ARTS AND OTHER FIELDS ..ot eeeeeeeeeeeeeeeeeeneeeneas 21
1.5.1 S¢enarios in TREQIITCAI ATISoeueoeeeeeeeeeeeeeeeeeeeeeeeeeee e e e e e e reeeeeee e e e eea e e e nnns 21
1.3.2.5CNArI0S i OREE AFEAS........oc.oooeeeeeeeeeeeeeeee e evees e eeeeseenaeeaeeeeaseaneeesnnnannnn 22
1.6 SCENARIO IN OUR RESEARCH WORK ...nvieeeeeeeeeeereeeeeeeeseeseseessesessmsesassssssssessssssssssssssnns 22
1.7 SUMMARY eeseeneeerecesetesae e tasrate s aatanssbeaansbnrsreeaseesatenessrans rereereeeeraanrnne .23
CHAPTER 2 - TOOLS FOR WORKING WIT
SCENARIOS 24
2.1 AN AUTOMATED TOOL FOR REQUIREMENTS ENGINEERINGcovriiieenieiinieerneeemeecreeereseeeeesnsessesreasernnnen 24
2.2 PRIME-CREWS ENVIRONMENTcootimtiietecceeee e st nesvesesaseensassesssoseessensssssassssssessasenseneesesenmenne 26
2.3 CREWS-SAVRE TOOL........ccccuven..... eeetteeeeeeveeresesteerieteeeesanatatiaaa—etesraranteaesnnreeeernresatsaneeren 28
2.4 SCENARIO PLUS ...t ettt ete e e ee s este e eseem e sm e ss s ne s s sssneenasessansanssessannsnsesensonesenas 32
2.5 SUMMARY wo.ooitereeieeevreceeeaeesssaessesteseesernssnessesnsssesensemssensessasesessessesassaesasessonasnsssnnennes 33
CHAPTER 3 - SUCRE: AN XML-BASED SYSTEM FOR
DOCUMENTING AND USING SCENARIOS 34
JIWHYXML? .. eeteeereesteesseererssssessstessassmessneessssesansesesaseesanenanreeerneeeeanetessreetensersesaaea 34
3.2 OVERVIEW OF SUCRE SYSTEM ...cccueeiiteeinereceeereeseeresiesesssmseaneseeoessensesasassesesieas 35
3.2, SUCRE OBJECIIVEScouomeeeeeeeceeteeeee et ceie et e s v e ss st esn sttt ere s s ann 35
3. 2.2 SUCRE AFPCRITECIUTC. ..o e eea e en st neeon 36
3.2.3 Process Actors and Their ReSPORSIBIlIIEscococoovvveieeviceeieiairneeeeee e 38
3. 2.4 SVSIEM FOAIUIES ...ttt eeeee et e e et s et st anasaas e s essensssensenensesnssesanerens 39
3.2.5 Advantages 0f SUCRE SVSIEMcooveeeeeeeeeeeeeeeeeeeeeeeeteeeeeteaeeeeseasens s s asestenesesesssssssnananns 51
3.3 SUMMARY w..niteeceeecieeeeee e s maenee s s se e sesrrsres s s e essnsessesesesssssnassasbess e sasenssesensesase e srseeneesneebtebeeeeneeesaes 53
CHAPTER 4 - SUCRE PROTOTYPES 55
4.1 SCENARIOTOOL ARCHITECTUREcouveteeeereeteeteeireensesessessesssesnseessssesnsessssnsessssessssensassessessssessesnsseaneon 55
B LT QVBIVIEW ... e e e e e e e e s e et a e e e e e e e e e e s e e enm e e eae e e eraeaas 55
4.1.2 De1ailed ATCRILECIULEc..oooeeeeoeeeeeeeeeeeeeeeeeeeeeee e ee e eaan st e e e nenene 58
4.1.3Design RALIONAIecoccooiiiiiciiiti ettt ettt ettt 67
4.1.4 Listing of Main FURCHONAIILYcccccovimimiiimirnneeee ettt 69
4.2 SUCRE PROTOTYPE ...ccuvveeeermensacresesriaassosessssssessessesssssrsssssssssesssonssssesossansessesssssssssensesssensessseseesnsmssons 71
B 2.1 USEE INIEESACES ...ttt ettt e ee et eassas e s eassesesessestesanestesnaeanas 71

4. 2.2 List Of FURCHONALILY.............coneeeeetereeteeeeeee e e
4.3 UNDERLYING DTD AND EXAMPLE XML FILE
430 DTD.oeeeeeeeeerene et ae et e e e a et bt et st et e e enseesesenens
4.3.2 An Example of XML Document Using Underlying DTDoooooooooeeeoeeeeeeeeoeeeeeeeeoen.
4.4 SUMMARY

CHAPTER 5 - CONCLUSION AND FUTURE WORK.........

S.2 FUTURE WORKvvemtemeneceeeeaeneesesensessmestssssassseeaseesesesesaseses s e e ee s et e e e e

REFERENCES

76
76
77
78

79
80

81

vi

List of Figures

Number Page
Figure 1.1 Iterative requirement elaboration proCessc.ceeeeecuvrevemennes 4
Figure 1.2 Iterative prototyping ProCeSSES.........c.ceceerererremrermrerareeseremssnessennans 6
Figure 1.3 A tree-like scENario SIUCHUIE........cccceecemeerereererenurmeersreeeeeceeenenns 7
Figure 1.4 Method stages for scenario-based requirement engineering 11

Figure 1.5 Three normal scenarios paths generated from a use case fragment 13
Figure 1.6 Use case diagram of ATM SyStemcccceeeeeevcnrenernneccnenenenenene 16
Figure 1.7 Sequence diagram (scenario) for successful login of use case Identifyl7

Figure 1.8 Sequence diagram (scenario) for error login of use case Identify 17

Figure 1.9 User interface prototype execution of ATM system.................... 20
Figure 2.1 Overview of the CREWS-SAVRE tool architecture................... 29
Figure 3.1 Architecture of scenario component in SUCRE system............... 37
Figure 3.2 An example of completion rule.ccooevenenenniiieeceenn o . 46
Figure 4.1 Overview of ScenarioTool's architecture..........cccccceveecevrecnnnnnene. 56
Figure 4.2 ScenarioTool's architeCture...........cccceeeceeeeereercrcreerseereerresesenens 58
Figure 4.3 Workflow of ScenarioController...........coeococcencnencncncniccerenennnne 67
Figure 4.4 Future look of ScenarioTool's architectureccccceceuereenunnne 68
Figure 4.5 SUCRE UI ProtOtypec.coveureececereeenceeeenieuseeeaeeseesesesensesesenenecs 71
Figure 4.6 Choose scenario COmMPpPONENLc.ceeveeeceererecrereerereerirnrssannsenens 72
Figure 4.7 Note for the word “Memo™............ccoeceermererinmreereerereereerereceaennne 73
Figure 4.8 Add 2 new SCENATIO......cc.ccevereeecrceeieeerceeentecee et 74
Figure 4.9 Toolbar containing all functionalitycc.ccceceeneceenernrrerenennn. 76

vii

List of Tables

Number Page

Table 1.1 Input, output, tasks of each phase of the prototyping process....... 9
Table 1.2 Exceptons and generic requirements for abnormal partems 13
Table 3.1 Bref overview about sub-processes and tools used...................... 45

Table 3.2 The templates that detail the actors’ profiles and their tasks......... 49

viii

Chapter 1 — Scenario-Based Requirements Engineering:

Terminology and Foundations

1.1 Origins

According to Moltke and Clausewitz [1], the concept of scenarios has already been in
existence for more than 2000 years. The earliest outlines of possible scenarios, or what
could be interpreted as such, were concerned with military survival and their aim of
vanquishing the enemy. At that time, scenarios were primarily embodied as military
strategic planning. For example, attack your enemy where he is weakest, build on your
strength [1]. Then, in the early seventies, the scenario concept appeared in the field of
economy. Specifically, it is the models of military strategic planning that entered the
business environment. Presently, scenarios have been applied to widespread areas and
disciplines such as software engineering, human computer interaction, digital arts, and

organization operation.

1.2 General Definition and Example

The American Heritage College Dictionary gives the following definition of scenario [2]:

1) An outline of a dramatic or literary plot
2) A screenplay
3) An outline or model of an expected or supported sequence of events.

For example,
Joe is flying to Sydney. On the way to the airport, he found that he did not have
enough money for a taxi. He went to the local ATM and identified himself He

specified that he wanted $100 from his savings account.

According to Carroll, scenarios have characteristic elements: setting (context of the
environment), agents or actors, sequences of actions and events, and goals. Every
scenario involves at least one agent and at least one goal. The agent performs a sequence

of activities to achieve a certain goal in the circumstances of the setting [3].

For the flying to Sydney scenario:

Setting: the setting is a taxi, with a person seated inside who is going to the airport. The
setting also includes the amount of money at hand.

Agents or actors: Joe is the only agent in this example.

Goals: the goals are going to the airport and flying to Sydney. A subgoal is having
money to pay the taxi driver.

Actions and events: taking a taxi is an action that facilitates the goal of going to the
airport. Going to an ATM, identifying himself, and withdrawing $100 are all actions that

facilitate the goal of paying the taxi driver.

Other definitions of scenarios are:

A scenario is a time-ordered sequence of object interaction to Sulfill a specific
need [30].

A scenario is an instantiation of a generic task bype, or a series of generic tasks
linked by transitions. It specifies the characteristics of the group that should carry
it out, and the social protocols which should be in place. It describes what the
users should (try to) do at the requirements level, but not how they should do it at
any of the lower levels of the framework [31].
Scenarios can be used to help understand socio-technical systems [4, 5], to elicit and
validate requirements [6, 7, 8], to perform behavioral analyses [6, 9], to analyze
requirements [10, 11], to analyze software architecture [12], to understand requirements
[13], and to develop initial OOA models [15]. Adopted under different circumstances,
scenarios mean a different thing. Some authors define scenarios as sequences of events
[14, 15], while other authors interpret it as behavior drawn from use cases [16]. In
addition, different authors present scenarios in different forms. Some use tabular or

diagrammatic notations to present scenarios [14, 15]. Others present scenarios as user

interface storyboards [17] or natural language description [16].

The following sections of this chapter illustrate several usages of scenarios, and how

scenarios are defined for these usages.

1.3 Scenarios in Software Engineering

In software engineering, scenarios have been used to help elicit requirements, analyze
requirements, detect ambiguities in requirements, uncover missing features and
inconsistencies among specified features, and verify and validate requirements [3]. In the

following subsections, we will give examples to illustrate how scenarios are used in these

aspects.

1.3.1 Scenarios in Requirement Elicitation
Scenarios are helpful in requirements elicitation as people can relate to these more readily
than an abstract statement of what they require from a system. Furthermore, scenarios are

particularly useful for adding details to an outline requirement description.

Usually, the requirement elaboration process involves three components as described by
Colin Potts et al.: document requirements, discuss requirements, and evolve requirements

[13]. As shown in Figure 1.1, it is an iterative process.

Document Requirements
Evolve Reguirements

Figure 1.1 Iterative requirement elaboration process

Discuss Requirements

Documenting requirements consists of gathering information from stakeholders, studying
existing documents, and drafting requirement documentation. The requirement document
contains domain knowledge of the system to be constructed, system constraints,

background information, and existing documentation.

Discussing requirements involves presenting the generated requirements to stakeholders,
collecting suggestions and opinions via questions, answers, and reasons, and finally,

achieving the agreement. There are many ways to demonstrate the requirements such as

prototypes, text description accompanied by graphical visualization. In this stage, the

discussion results need to be recorded for future reference and refinement.

Finally, according to the discussion results, evolve requirements by freezing a

requirement or changing it, or adding more information into the requirements.

Markus and Uolevi [18] proposed a systematic approach, which manipulates the three
components mentioned above. In addition, it uses prototype techniques to present the
gathered requirements. The approach combines prototypes, use cases, and scenarios all
together to elicit initial software requirements. Here is a definition of scenarios given by
Markus and Uolevi [18]:
Scenarios are defined as narrative descriptions or stories in a specific context
bound in time [19] or as specific instances containing descriptions of the
environment, the context, the actors, and the actions with definite beginning and
end poinis [20]. They are also presented as specific instances of use cases where
a scenario describes a path of actions through a use case [21].
The steps [18] of the approach are shown in Figure 1.2. It demonstrates the gradual

process from *“what a system does” to “how to accomplish the functionality in the

system.”

> Inntal > Use case > Protut\pe > Prototype > Demonstratson > Sesson

phase analvsis design canstruction session anahy s
‘ S ———
- - - ~Optional -
Concluding
phase

v

Figure 1.2 Iterative prototyping processes [18]

Initial phase: This corresponds to the document requirements component in Figure 1.1.
This phase also identifies the user classes and the primary tasks that each user class needs
to accomplish [18]. The use cases and scenarios can be documented to templates. which
can be based on the ones presented by Kulak and Guiney [21]. This phase can be
executed once, or iterated through the process, depending on whether major changes

occur in the system definition [18].

Use case analysis: This involves analyzing the generated use cases and requirement
documents to decide whether or not the prototyping process should be continued. If the
goals of the prototyping process set in the initial phase are not achieved, or they are
deemed unreasonable to prototype, the process iterations are aborted and the concluding

phase is executed [18]. Otherwise, the use cases to prototype have to be selected.

Prototype design: In this stage, scenarios are generated based on the prototype context,
which describes the prototype environment. Prototype structure design starts with a

prototype skeleton. A prototype skeleton describes the problem and use case events [18].

It answers the “What” question — what the system does during the course of requirement
elicitation. Scenarios are used to answer the “How” question — how to manipulate the
system. A use case event could have many scenarios, as shown in Figure 1.3. All of these
scenarios present design options and alternatives for a certain problem. According to
Markus [18], the starting and end points of each scenario are determined in the prototype
skeleton, so that each scenario can focus on a specific problem area and the common,

overlapping parts in scenarios need not be designed multiple times.

Prototype __ '| Use case " Use case > Use case |__ 0
skeleton event event event > What 2
Scenano Scenario Scenario

Alternative How ?
. screen screen screen
scenarios

‘/\‘(/\‘

Scenario Scenario Scenario Scenario
screen screen screen screen

Figure 1.3 A tree-like scenario structure [18]

Prototype construction: Obviously this phase is to implement prototypes according to
the prototype design. The prototypes should be able to link the scenario screens together

so that an alternative scenario can be selected from any screen of the prototype.

Prototype demonstration session: This phase is the same as the discuss requirements
component in Figure 1.1. First, the system analyst demonstrates to stakeholders how to
use the prototype. Then, the stakeholders start the prototype over. The system analyst

then stimulates discussion about each screen by asking questions, presenting the

scenarios, recording stakeholders’ reactions, and documenting discussion and feedback

for each possible solution.

Session analysis: The feedback about a specific scenario screen describes the suitability
of the solution that is presented by the scenario to the problem that is presented by the use
case. The results from the last phase are analyzed to evolve and refine use case events
and scenarios of the requirements. As shown in F igure 1.2, the prototype may be used to

serve as the basis for the iteration, beginning from the use case analysis phase.

Concluding phase: The output of this phase is a single document, which contains system
description, the prototypes constructed, the problems prototyped, used use cases,
scenarios, feedback recorded in the demonstration session, and other requirement
documents. This document will be available for the following stages of the system

development and future reference [18].

The proposed method is summarized in Table 1.1. This table illustrates the inputs,
outputs, and tasks of each phase. The bolded letters in the Inputs column indicate new

inputs to the process; otherwise, inputs are the outputs from previous phases.

Table 1.1 Input, output, tasks of each phase of the prototyping process [18]

Inputs Phase Outputs
Domain knowledge Initial phase Prototype goals
Stakeholder vision System context
Documents User classes
Use case descriptions
Scenarios
Other requirements
Prototyping goals Use case analysis Go / no-go decision
System context Description of the selected
User classes use case
Use case descriptions
Other requirements
Analyst knowledge

Description of the selected
use case
System context

Prototype design
1. Design context
2. Select scenarios
3. Design prototype
structure
4. Design screens

Prototype context
Scenarios to implement
Screen descriptions
Scenario storylines
Prototype structure

Prototype context
Description of the selected
use case

Scenarios to implement
Screen descriptions
Possible previous version
of prototype

Multimedia objects

Prototype construction
1. Construct screens
2. Link screens
3. Test prototype

Use case prototype
New multimedia objects

Use case prototype
Scenario storylines
Stakeholders views
Facilitator skill

Prototype demonstration
session
1. Introduction
2. Prototype presentation
3. Conclusion

Session recordings

Session recordings

Session analysis

New use cases

More detailed use cases
New scenarios

Other requirements

Prototyping goals
System context

Use case descriptions
Other requirements

Concluding phase

Process report

This method has been used to experiment with a system that handles the mobile payments
of car parking fees. As Markus et al. state: “A structured approach to scenarios, when
accompanied by throwaway prototyping of the user interface, can provide a satisfactory

expression and rigorous analysis of a user’s functional requirements. [18]”

1.3.2 Scenarios in Requirement Validation

Scenarios can also be used to validate requirements. This section introduces a method and

tool proposed by Sutcliffe et al. [8] to show how scenarios can help in validation. In this

method and tool, scenarios are defined as:
One sequence of events that is one possible pathway through a use case. Many
scenarios may be specified for one use case and each scenario represents an
instance or example of events that could happen. Each scenario may describe
both normal and abnormal behavior. [8]

Scenarios can be seen as pathways through a specification of system usage and

representation of the system behavior [8]. Thus, by inspecting the behavior of the future

system, they enable validation.

The method, expressed in data flow diagram (DFD) format is shown in Figure 1.4:

10

Formatting
Users Guidelines
Domain details
1. Elicituse
case

OSM Library

3. Generate
Scenarios

Validation Frames

N

Users

4. Validate
Scenarios

Key: O Method Stages Method Resources
Figure 1.4 Method stages for scenario-based requirement engineering [8]

In general, the method is a 4-step process [8]:

1. Elicit and document use cases

2. Analyze generic problems and requirements
A library of reusable, generic requirements attached to models of application classes,
termed Object System Models (OSMs), is provided. Basically this step takes the use

cases elicited in the first step and maps them to the appropriate generic application

11

classes in OSMs and then suggests high level generic requirements, attached to the
classes as design rationale ‘tradeoffs’.

3. Generate scenarios
In this step, scenarios are generated by walking through each possible event sequence
in the use case, and each pathway becomes a scenario. Therefore, for a certain use
case, one or many scenarios could be generated for it. This step not only generates
scenarios for normal behavior, but also for exceptional and error conditions.

4. Validate system requirements using scenarios
Validation is accomplished with the help of a requirement management tool, called
CREWS-SAVRE. More detailed information about this tool is introduced in Chapter
2 of this thesis. This step involves the interaction between the software engineers and

the tool.

The rest of this section recites the case study in Sutcliffe [8] to show the role that
scenarios play in step 3 and step 4. This case study is based on a security dealing system
at a major bank in London. Securities dealing systems buy and sell bonds and gilt-edged
stock for clients of the bank. The use case in our example includes the agreement on the
price between dealer and buyer. Partial use case and the normal scenarios generated from
the use case are shown in Figure 1.5. The difference between each scenario is the timing
of event E40 that ends action 40, and whether action 40 or action 45 occurs. The paths for
abnormal sequences are illustrated in Table 1.2, from which we can see that the generic

requirement is the solution to the exception.

12

SCENARIOI SCENARIO2 SCENARIO3

event S20

gvent 520] [event S.fO |

PART OF USE CASE
vent S20
Action20
(dealer
picks up
telephone)
event E20
THEN
svent S30 |
Actionl0 - .
(buyer | nyE ANWHILE Eam—
requests
quote) Actiond0 GENERATES
event E30 MEANWHILE * eV
rHEN event E40) —
HEN (dgalcr
vent S350 event S45 m;‘,‘i‘ss ———
Action3(Actionds | OR information
(dealer- {decaler -
system refuses svent 40
shows price deal)
vent £30 gvent E45
event S60 event S110

1 gVﬁnl 510' Levent S30] | gvent $30 |

Levent S30] [event S40 §

ent S45 |

Figure 1.5 Three normal scenarios paths generated from a use case fragment [8]

Table 1.2 Exceptions and generic requirements for abnormal patterns [8]

Time

Exception

Generic Requirement

event does not happen - omitted

time-out, request resend, set default

event happens twice (not iteration)

discard extra event, diagnose duplicate

event happens in wrong order

buffer and process. too early - halt and wait.
too late - send reminder, check task

event not expected

validate vs. event set, discard invalid event

information - incorrect type

request resend, prompt correct type

incorrect information values

check vs. type. request resend, prompt with
diagnosis

information too late (out of date)

check data integrity, date/time check. use
default

information too detailed

apply filters, post process to sort/group

information too general

request detail, add detail from alternative
source

13

CREWS-SAVRE provides two approaches to validate requirements [8]:

D

2)

It presents each scenario to the user alongside the requirement documents, to enable
user-led walkthrough and validation of system requirements. For example, the user
explores a normal course event, the start of the action: “the dealer enters information
into the dealer-system”, and chooses the alternative course (exception) relevant to the
selected event: “What if the information is incorrect?” If the alternative course is not
handled in the requirement specification, one or more candidate generic requirements
that are appropriate for the abnormal event are provided to the user. In our example,
two generic requirements, ‘the system shall check for data entry mistakes’ and ‘the
system shall restrict possible data entry’, are provided. The user should pick up one of
the two options as a solution to the abnormal situation and add it to the requirement

document.

According to Sutcliffe [8], the second approach automatically cross-checks a
requirements document and a scenario using a collection of patterns which
encapsulate ‘good’ socio-technical system design and requirement specification. The
CREWS-SAVRE tool applies one or more validation frames to each event or event
pattern in a user-selected scenario to detect the missing or incorrect system
requirements [8]. Each validation frame specifies a pattern of actions, events, and
system requirements. A validation frame contains two parts. The first part defines the
pattern of events, action type, and agent type. The second part defines generic
requirements needed to handle the event/action pattern. The frames categorize each
requirement as a functional, performance, usability, interface, operational, timing,

resource, verification, acceptance testing, documentation, security, portability,

14

quality, reliability, maintainability, or safety requirement. Hence, automatic
requirements-scenario cross-checking is possible using patterns of event, agent and

action types in the scenario and requirement types in the requirement document [8].

1.4 Scenarios in Human Computer Interaction (HCI)

Scenarios have been identified as an effective means for analyzing human computer
interaction [23]. In addition, scenarios bring significant benefits in consensus among all

stakeholders during requirement development for interactive systems [22].

In the HCI field, a widely accepted definition of scenario is:
Scenarios are stories — stories about people and their activities. Scenarios
highlight goals suggested by the appearance and behavior of the system; what
people try to do with the system; what procedures are adopted, not adopted,
carried out successfully or erroneously; and what interpretations people make of
what happens to them [3].

In short, a scenario in HCI is rich in details about the context of use. Scenarios can be

used in HCI design [3], deriving the UI prototype [24], and helping HCI research to

redress the balance between generality and accuracy in theories [25].

1.4.1 Scenarios in UI Prototype

This section introduces an iterative, four-step process approach, which makes use of use
cases, scenarios represented as sequence diagrams, and Colored Petri Nets (CPNs) to
derive a prototype of the Ul from scenarios [24]. This approach not only derives Ul

prototype from scenarios, but also helps generate a formal specification of the system.

15

The first step is to construct use cases for the system. For each use case, scenarios are
acquired and presented in a form of sequence diagram. The sequence diagram consists of
objects, time lines, and messages conveyed among different objects. Messages
interchanged are enriched with constrains, which represent the Ul information (e.g. in
Figure 1.7, Insert card is message, inputData(ATM.Insert _card) is a constrain). Typical

use case diagrams and sequence diagrams of ATM are shown in Figure 1.6, Figure 1.7

(succeed in login) and Figure 1.8 (fail to login).

Balance
Customer

Figure 1.6 Use case diagram of ATM system [24]

Figure 1.6 also shows the convention of use case diagram in UML notation. Use cases are
represented as ellipses, and actors are depicted as icons connected with solid lines to the
use cases they interact with. One use case can call upon the services of another use case.
Such a relation is called a uses relation and is represented by a directed solid line. The
extends relation can be seen as a uses relation with an additional condition upon the call

[24].

16

:Customer ATM B

:
e

Insent_card
{nputData(ATM.Insert_card)

Enter_pin

+ inpuData{ Account.password Connect

Check

Select_op
tinputData(Transacuon.kind)} }

Card_ok Pin_ok

Confirm
» mputData(ATM_Select_op)!

Figure 1.7 Sequence diagram (scenario) for successful login of use case Identify [24]

L :Customer I ATM] :Bank Account

Insert_card
1inputData(ATM.Insert_cand)

Enter_pin
1 inpuData(Account.password)
Connect
Check
—p
Pin_error . Invahid_pin
ouputData("Pin Incorreet™)} Invalid_card

Eject_card
{ inputData(ATM.Eject_card)

Figure 1.8 Sequence diagram (scenario) for error login of use case Identify [24]

In the sequence diagrams above, the horizontal dimension represents the objects, and the
vertical dimension represents time. Horizontal solid arrows represent the messages from
the lifeline of the object sender, to the lifeline of the object receiver. UI information is

expressed in the curly braces following a message.

17

Once the Ul constrains of the messages are specified in the sequence diagrams, they can

be used to determine the corresponding widgets appearing in the UI prototype. According

to Mohammed and Rudolf [24], widget generation adheres to a list of rules, which is

based on the terminology, heuristics and recommendations found in IBM’s guide to user

interface design [26] and which includes the following eight items:

A burton widget is generated for an inputData constraint with a method as
dependency, e.g., Insert_cardY) {inputData(ATM.insert_card)} in Figure 1.7.
An enabled textfield widget is generated in case of an inputData constraint
with a dependency 1o an attribute of type String, Real, or Integer, e.g.
Enter_pin() {inputData(Account.password)} in Figure 1.7.

A group of radio buttons widgets are generated in case of an inputData
constraint with a dependency to an attribute of type Enumeration having a
size less than or equal to 6, e.g., Select_op() {inputData(Transaction.kind)} in
Figure 1.7.

An enabled list widget is generated in case of an inputData constraint with a
dependent attribute of type Enumeration having a size greater than 6 or with
a dependent attribute of type collection.

An enabled table widget is generated in case of an inputData constraint with
multiple dependent attributes.

A disabled textfield widget is generated for an outputData constraint with a
dependency to an attribute of type String, Real, or Integer.

A label widget is generated for an owtputData constraint with no dependent
attribute, e.g., Pin_error() {outputData("Pin Incorrect”)} in Figure 1.8.

A disabled list widget is generated in case of an outputData constraint with a
dependent attribute of type Enumeration having a size greater than 6 or with
a dependent attribute of type collection.

A disabled table widget is generated in case of an outputData constraint with
muitiple dependent artributes.

The second step is to derive CPNs from both the use case diagram and all the sequence

diagrams. The result is two kinds of CPNs: use case CPNs and scenario CPNss.

The next step is to merge all scenario CPNs for a given use case in order to produce an

integrated CPN that models the behavior of a use case. This step is repeated for each use

case. Then, these CPNs must be integrated with the directly generated CPN from the

18

given use case diagram to create a global CPN, which captures the behavior of the
system. In the ATM case, the CPN for successful login scenario and the CPN for error
login are grouped into one CPN for the use case ‘Identify’. Repeat the same procedure to
‘Withdraw’, ‘Deposit’ and ‘Balance’ use cases, then combine all CPNs with the use case

CPN generated in the second step to represent the functionality of an ATM system.

The last step is to generate a user interface prototype from the global CPN specification
constructed in step 3. The prototype generation consists of five operations as detailed by
Elkoutbi and Keller [27]: generating graph of transitions, masking non-interactive
transitions, identifying UI blocks, composing Ul blocks, and generating frames from
composed Ul blocks. The user interface prototype generated for ATM systems by this

approach is shown in Figure 1.9.

19

Password

Select Operation @ wvithdraw
" Depasit
¢ Balance

Ea Choose

USE CASE !dentity SELECTED.
CLICKBUTTON insert_card
ENTER Password

Select Operation

CLICK BUTTON Confirm

EL e IR &' -~

Figure 1.9 User interface prototype execution of ATM system

Choose the /dentifv use case from the UseCases menu. After pressing Insert_card button,
the Password field and Select Operation radio buttons are enabled. Moreover, the
Simulation Window functions as a log window to record actions performed and inform
users of the reactions needed. Whenever the execution needs a decision since there may
be several options/alternatives that exist, a dialog box will appear for scenario selection

(e.g. regularldentify and errorIdentify scenarios in Figure 1.9).

20

1.5 Scenarios in Theatrical Arts and Other Fields

1.5.1 Scenarios in Theatrical Arts

Scenarios are used widely in movies. They are used to tell a story and illustrate

concretely how to perform the story. Richard Kostelanetz gives the following definition

of scenario [28]:

If the standard theatrical script has dialogue interspersed with stage instructions
and the standard work of music has notes and durational instructions written on
staves in horizontal lines, an alternative script, by definition, offers other kinds of
text, 1o induce radically different kinds of performance. ...Instead, there is not just
one kind of alternative but several possibilities, such as general instructions for
performance activities or a sequence of drawings (with or without words) or a
collection of verbal lines to be spoken as the performer wishes, among other
hypotheses. It is my polemical purpose to suggest that all these possibilities
belong to a single category, which I call Scenarios.

What role do scenarios play in theatrical art? In short, scenarios guide and direct the

actors to perform. Richard presents us with a good explanation about the role scenarios

play:

A script is the playwright's road map for the performers, telling them how to
proceed. If the playwright provides his or her instructions in a familiar form, the
performer are likely to drive straight to his or her destination without a pause. If,
however, the map omits some instructions or has unconventional notations, or it
marks a path forbidden to cars. or the route is full of one-way streets that proceed
in the contrary directions, then the map will induce the travelers to make routes
they had not experienced before, perhaps making perceptions they would have
otherwise missed. Alternative scenarios serve a similar function in the lives of
performing artists.

To better understand Richard’s explanations of a scenario in theatrical arts, a recited

scenario example from his book follows [28]. The example is called ‘NASOPLOSIVE

CHANT for 2 or more chanters’, which provides performance instructions to actors.

NASOPLOSIVE CHANT for 2 or more chanters
PERFORMACE INSTRUCTIONS

1. Begin by setting up a steady, rhythmic pulse of about 2 or 3 beats a second:
when all performers feel this pulse securely, go on to part I.

2. Begin part I by all saying the indicated sound (“NOOB") in unison, in a
monotone, in the rhythm you have set up, one syllable per beat. Keep up a
relatively continuous stream of sound as in a chant.

3. After a time (you be the judge of how long, or appoint a member of the

performing group to decide), begin to leave short silences at random intervals

(like commas), still keeping the beat, but no longer in unison. Gradually

become more expressive in your pronunciation.

On a signal from an appointed member of the group. go on to the next section.

Begin part Il in unison, as part I was performed, but make both syllables

(NOOBA) fit into the time of the previous one. Follow steps 3 and 4. Change

which syllable you accent at will.

6. Follow the same procedures for part III, IV, and V, making each syllable the
same length as the syllables in the part II (in other words, keep the beat set up
while adding a greater variety of syllable combinations).

7. Part VI is self explanatory. The piece ends when the performers and/or
audience have had enough.

IR

1.5.2 Scenarios in Other Areas
Scenarios can be used in other areas such as prompting reuse of design patterns in
business industries [29, 30], evaluating collaboration tools [31], and conducting business-

planning [1].

1.6 Scenario in Our Research Work

The previous sections illustrated the different definitions of scenarios in different
contexts. Primarily, our research work focuses on the software engineering area. We
adopt Sutcliffe’s definition of scenarios. Scenarios are defined as:
One sequence of events that is one possible pathway through a use case. Many
scenarios may be specified for one use case and each scenario represents an

instance or example of events that could happen. Each scenario may describe
both normal and abnormal behavior. [8]

22

In addition, we also consider scenarios as stories or narrative descriptions of the
interactions between the system and the users and of user activities and system responses
[18]. In our case, scenarios can be formalized using use cases. Furthermore, scenarios
used in our work bear the characteristics mentioned by Carroll: setting (context of the
environment), agents or actors, sequences of actions and events, and goals. Every
scenario involves at least one agent and at least one goal. The agent performs a sequence

of activities to achieve a certain goal in the circumstances of the setting [3].

1.7 Summary

This chapter documented the concept of scenarios, beginning with its origin. Then, it
gave a couple of definitions of scenarios. Subsequently, this chapter illustrated different
uses of scenarios in different areas such as software engineering, human computer
interaction, movie arts, business planning, and business model reuse. For each use of the
scenarios, a definition of scenarios for that use was introduced and an example was
introduced to show how scenarios are used. Finally, the definition of scenarios used in
our research work was given. The next chapter will discover the existing tools dealing

with scenarios and illustrate the disadvantages of each tool.

23

Chapter 2 — Tools for Working with Scenarios

A lot of tools exist for requirement engineering in the industry. Some of them are
information management and traceability tools such as DOORS developed by Telelogic
Company [40], CaliberRM developed by Starbase Corporation [32] and Rational
RequisitePro developed by Rational Software Company [33]. Some are CASE tools such
as AxiomDsn developed by Structured Technology Group, Inc. for the modeling of the
design of a software system [34] and EasyRM requirement manager developed by
Cybernetic Intelligence GmbH for managing documentation such as glossary,
requirement, and reference [35]. Among those tools, most of them have nothing to do
with scenarios. As H. Zhu et al. concluded: “existing commercial tools for requirements
engineering either do not support scenario analysis at all (e.g., DOORS) or only provide
facilities for editing use cases (e.g., Rational’s ROSE). [37]” In fact, there are only a few
software tools that deal with scenarios in requirement engineering. In the following

subsections, several tools of this kind are discussed.

2.1 An automated tool for requirements engineering

This tool was introduced by Hong Zhu and Lingzi Jin, at the School of Computing and
Mathematical Sciences, Oxford Brookes University, Oxford, UK [37]. They presented
this automated tool for scenario-driven requirements analysis in the NDRASS
(Requirements Analysis Support System) system. Hong Zhu et al defined the notion of
scenarios as a set of situations of common characteristics that might reasonably occur in

the use of a system [37]. They also defined the characteristics of a scenario [37]:

24

User agents: a scenario must have a specific type of user, or a set of types of

users, that participates in the use of the system in the scenario, and/or a subset of

the equipment in the environment system that is involved in the operation of the

system.

Use purpose: a scenario is the set of situations when the user or users use the

system with a specific goal or purpose.

Operation condition: a scenario must occur under certain operational conditions

and certain states of the environment system.
The NDRASS system has its own requirement definition language NDRDL-2, where ND
stands for Nanjing University. This language defines the structure of requirement
definition and description of scenarios. A parser for the NDRDL-2 language has been
developed to translate the language into machine-recognizable internal form, which can
also be processed by the automated tool. In this tool, scenarios are presented using
multiple views — data flow diagram (DFD), entity relationship diagram (ERD), and state
transition diagram (STD). However, these diagrams are slightly extended from the classic
DFD, ERD and STD. This extension lies in that the requirement definition language
NDRDL-2 defines the notation of DFD, ERD and STD. This tool contains four

interactive and iterative activities to accomplish scenario analysis:

1) It identifies scenarios by analyzing the agents, goals, and conditions. It then describes
scenarios in the notation defined by NDRDL-2. A scenario description contains six
fields: the name and numbering of the scenario, a short description of scenario,
extended DFD, extended ERD, and extended STD [37]:

<Scenario-Description>::=
Scenario [<Scenario-Number>:] <Scenario-name>;

[<Introduction>;] [ER-description>;]
[<DF-description>;] [<CF-description>]

25

2) It checks the consistency and completeness of a set of scenarios. NDRASS system
consists of a set of automatic checkers, which provide automated tool support for
checking consistency and completeness of the information and knowledge in the
requirement definition [37]. These checkers are syntax checker, scenario/model
consistency and completeness checker, model/knowledge consistency checker, and
test adequacy checker [37].

3) It supports automatic synthesis of requirement models from a set of scenarios. The
NDRASS system consists of a set of automatic synthesisers and generators, which
provide automatic tools support for model generation [37].

4) It supports automatic validation of requirement definitions by analyzing the

consistency between a set of scenarios and requirement models.

Since scenarios are presented using different views -- DFD, ERD and STD, it increases
the inconsistency and ambiguity among scenarios, and the complexity of scenarios. In
addition, both scenario and requirement descriptions use NDRDL-2 notation, which has
not been generally accepted yet. It requires a lot of practical case studies be carried out in

real industry.

2.2 PRIME-CREWS environment

PRIME-CREWS stands for PRocess Integrated Modeling Environment — Co-operative
Requirements Engineering With Scenarios. PRIME-CREWS environment supports the
use of scenarios in the construction of goal models and in the validation of the model
[36]. In this environment, scenarios represent concrete examples of current and future

system usage [36]. PRIME-CREWS implements an approach proposed by Peter Haumer

26

et al [36]. This approach bridges the gap between concrete examples of current system
usage (scenarios) and the conceptual current-state models [36]. Current-state model
partially defines the functionality and history of the existing system [36]. The
requirements for the future system are based on the current-state model. Peter Haumer et
al. proposed to capture observations of current system usage using rich media (e.g. video,
picture, screen dumps, and speech) and to interrelate those captured observations (called
Real World Scene) with the current-state model [36]. From this point of view, scenarios
can also be understood as instances of use cases recorded in the form of real-world
scenes. More precisely, they [36] proposed to relate the parts of the observations which
have caused the definition of a goal or against which a goal was validated with the
corresponding goal. Thereby an interrelation between the conceptual goal model and the
recorded observations are established. The interrelations between the components of the
current-state model and the corresponding parts of the observations provide the benefits
for [36]:

e Explaining and illustrating a conceptual model to, e.g., untrained
stakeholders or new team members, and thereby improving a common
understanding of the model;

e Detecting, analysing and resolving different interpretation of the
observations;

e Comparing different observations using computed annotations based on the

interrelations;
® Refining or detailing a conceptual model during later process phases.

The PRIME-CREWS environment offers tools for multimedia management, for goal

modeling and for visualization of various annotations based on the interrelations [36].

The support of requirement validations is realized through tools that enable the user to

27

view the relationships between goals and scenarios in various ways, and the tool to

calculate a number of metrics [37].

PRIME-CREWS has its disadvantage. Innovative projects will benefit less from the tool
when there is no precursor system. According to Haumer [36], the PRIME-CREWS
environment implements an approach that bridges the gap between concrete examples of
current system usage (scenarios) at the instance level and the conceptual current-state
models at the type level. However, this approach does not equally apply for any kind of
project. It is well suited for projects in which the functionality of the old system could be
observed, and in which this functionality has to a large degree, been provided by the new
system (even if the system implementation changes significantly due to, for example,
technological progress) and/or in which observed shortcomings provide the basis for

deniving new goals for the new systems.

2.3 CREWS-SAVRE Tool

The CREWS-SAVRE tool was implemented to support the 4-step method proposed by
Sutcliffe et al. [8]. This method is for scenario-based requirement engineering that
integrates with use case approaches to object oriented development. The steps of the
method are demonstrated in Section 1.3.2 of this paper. This tool provides use case and
scenario editing tools, a scenario generation tool, and semi-automatic validation of
incomplete and incorrect system requirements. Scenario has been defined as a linear
sequence of events on a path in a use case [8]. CREWS-SAVRE supports six main

functions, which correspond to the architecture components shown in Figure 2.1 [8].

28

natural CREWS-SAVRE 100l

language e .
descriptions - . environment
Ne cdse '
modeller:
author rool validater system-eny
............v...-...-......, 2 models
USC Casc
facts domain /use scenario
case modeller generator use case
user’ . — user/
do ! in scenario gencerated scenarios software
expert facts ,) scenarios engineer
scenario g scenario -
author tool presenter

generated scenariosv
REQUISITEPRO

: <> REQUIREMENTS
mi‘%‘ffﬁé’t’é’? s MANAGEMENT
validated TOOL

requirements

Figure 2.1 Overview of the CREWS-SAVRE tool architecture [8]

Incremental specification of use cases and high-level system requirements (the
domain/use case modeller supports method step 1 in Section 1.3.2);

Automatic generation of scenarios from a use case (scenario generator supports step
3 in Section 1.3.2);

manual description of use cases and scenarios from historical data of previous system
use, as an alternative to tool-based automatic scenario generation (use case/scenario
authoring component supports step [in Section 1.3.2);

Presentation of scenarios, supporting user-led walkthrough and validation of system
requirements (scenario presenter supports step 4 in Section 1.3.2);

Semi-automatic validation of incomplete and incorrect system requirements using
commonly occurring scenario event patterns (requirements validator supports step 4
in Section 1.3.2);

Guiding natural language authoring of use case specification.

CREWS-SAVRE provides two ways to validate the system requirement: first, by
applying one or more validation frames to each event or event pattern in a user-selected

scenario to determine missing or incorrect system requirements. According to Sutcliffe et

29

al. [8], validation frames specify a pattern of actions, events and system requirements.
Second, by presenting each scenario to the user alongside the requirement documents in
order to enable user-led walkthrough and validation of system requirements [8]. In
addition, exception events are also generated to help users identify the incompleteness of
the requirement model in view of how the system will deal with the exception events

[38].

Although this tool facilitates the requirement elicitation and validation, it has some
shortcomings:
1) The user uses CREW-SAVRE’s domain and use case modeller components to create
use case specification.
First, for a domain, the software engineer specifies all actions in the domain,
defines agents and objects linked to these actions, assigns types {e.g.
communicative, physical} to each action, and specifies permissible action
sequences. From this initial domain model, the user can choose the subset of
domain actions which form the normal course of a use case. [8]
From the creation of use case specification, we can see that it is software engineers
who define agents and actions of a system, but not users. Software engineers preset
the models and users can only choose from the preset models instead of creating the
models themselves. Users are not fully involved in use case specification. An analogy
will make this point clear. If you want to buy a fruit cheesecake from a grocery store
and the store only offers two kinds of cheesecake — strawberry and cranberry, you can

only choose from these two kinds. If you prefer blueberry or kiwi cheesecake, the

store cannot fulfill your need. However, if you choose to make the cheesecake by

30

3)

yourself, you can have any kind of cheesecake that you want. Some varieties may not

be found in any store.

In this approach, the generated use case are mapped to the appropriate generic
application classes in the OSMs (Object System Models) library, which contains
reusable, generic requirements attached to models of application classes. Therefore,
when the generic specification is recruited to the requirement specification, the
resulting specification document is not application-specific, and may be too general to

be efficient for later phases such as design.

CREWS-SAVRE provides a way to present each scenario to users together with
requirement documents to validate system requirements. Requirement documents are
a contract between users and software engineers. Users prefer to read the requirement
documents written in natural language. However, designers usually write requirement
documents in a precise language (e.g. modeling language), that is easier for them to
understand and facilitates the design phase. Therefore, it is more difficult for users to
understand the requirement documents. In addition, most users may be domain
experts but not professionals in computers, and they may not have enough knowledge

to understand the requirement documents written in a precise language.

31

2.4 Scenario Plus

Scenario Plus was developed by Ian Alexander. It generates and models goals. It also
captures, verifies, animates and plays back scenarios [39]. Designed for use by
stakeholders who want to describe their requirements to software developers, Scenario
Plus consists of a set of add-on tools such as the use case toolkit, diagrams toolkit, and
extensions toolkit to enable DOORS (Dynamic Object Oriented Requirements System)
[40] to be used for scenario-based requirement elicitation and analysis [39]. Scenario Plus

is also capable of generating test scripts.

DOORS is an information management and traceability tool, which was developed by
Telelogic. As described in Telelogic’s web site [40], requirements are handled within
DOORS as discrete objects. Each requirement can be tagged with an unlimited number of
attributes allowing for easy selection of subsets of requirements for specialist tasks.
DOORS includes an on-line change proposal and review system that lets users submit
proposed changes to requirements, including a justification. DOORS offers unlimited
links between all objects in a project for full multi-level traceability. Impact and
traceability reports as well as reports identifying missing links are available across all
levels or phases of a project life cycle. Verification matrices can be produced directly or
output in any of the supported formats including RTF for MS-Word, Interleaf and

FrameMaker [40].

32

2.5 Summary

This chapter introduced several tools for requirement engineering, which deal with
scenarios. Among them, some are research tools, and some are commercial tools. In
addition, the disadvantages and shortcomings of each tool were illustrated in this chapter.
In the next chapter, a requirement engineering tool will be proposed to cover most of the

disadvantages mentioned here.

33

Chapter 3 - SUCRE: An XML-Based System for Documenting

and Using Scenarios

3.1 Why XML?

XML (Extensible Markup Language) is a metalanguage used to define other languages
[41]. Any form of data in a database can be described and manipulated by a language.
Therefore, XML can be used to define the form of data [42]. XML is a markup language
that specifies neither the tag set nor the grammar for that language [41]. It is a document
type definition (DTD) that defines the grammar and tag set for a specific XML
formatting. Simply speaking, DTD defines the way an XML document should be

constructed [41].

XML, a language geared toward markup, with only the slightest restrictions, allows us to
create as many tags as we like, and insert them wherever we want in our documents. Tags
can be embedded in other tags, and parsers can be used to specifically pull out the
information that immediately follows named tags. Therefore, it increases the flexibility of

data formatting [43].

With XML, transfer of XML-based scenario can become standardized easily. Tags can be
combined into Document Type Definitions (DTDs) to form a template of sorts, which can
be used to standardize scenarios of different types. Using standard DTDs will not only

make the scenarios consistent, but scenarios can be easily categorized and retrieved [43].

34

3.2 Overview of SUCRE system

SUCRE (Scenario and Use Cases for Requirements Engineering) is an XML-based
system for scenario-driven requirement engineering. The SUCRE system aims to provide
requirement engineers with a semi-automated tool to elicit, validate and share user
requirements captured as scenarios. The SUCRE system has five components called
Scenarios, User Archetypes, Usability Goals, Prototypes, and Use Cases. In its current
state, the scenario component of the SUCRE system is being constructed. The scenario

component offers different features such as scenario editing and scenario analysis.

As mentioned in Chapter 1, scenarios can have different meanings and can be
documented using different formats such as tabular or diagrammatic notations, user
interface storyboards or textual. In our SUCRE system, we consider a scenario as stories

that can be formalized using use cases.

3.2.1 SUCRE Objectives

One of the most difficult problems in user requirement engineering is the communication
gap that exists between different end-users, stakeholders, and software engineers.
Software engineers tend to speak using technical terms while the stakeholders and end-
users use natural language. As a result, the software engineers may not have a clear
understanding of what is specifically needed in the system they are building. The
customers and end-users would often be surprised when they notice that the final product

does not fulfil their expectations [18].

35

There are several solutions to this problem. A well-known solution is to use prototypes.
This presents something concrete that the stakeholders can react to [44]. Since scenarios
allow different stakeholders to describe and review the problem in their own language
instead of some abstract model, they are also a solution to the problem [45]. In Chapter 2,
we have already investigated several tools working with both use cases and scenarios and
illustrated their shortcomings. In our proposed SUCRE system, we combine prototype,
scenarios and use cases In a single and comprehensive framework to avoid most of the

shortcomings in other tools.

3.2.2 SUCRE Architecture
To bridge the gap between the natural language used by stakeholders and formal
modeling language used by developers, we propose a progressive, iterative and

interleaved process model of requirement engineering (as shown in Figure 3.1).

36

Inconsigtency

Acquire and Identify Initial
requirement description

v

[Scenario Collection]

v

Edit Scenarios
—————P

il

Discover and Scenario DB (in XML)
Resolve scenarios® [—®| Add more info. such as
inconsistency and author info. to scenario.
ambiguity

Figure 3.1 Architecture of scenario component in SUCRE system

Self-détect ambiguity
using guidelines

-Filter the scenarios for info.
regarding users and tasks
-Fill in the template

I
) 4

[Use case template]

v

Generate use case
models and
seaquence diagrams

v

[Sequence Diagramsj

v

Generate prototype
to be validated by

Incompiplete

Analyze Scenarios’
completeness

)

Analyze semantic
completeness using rules

Valiﬁan’on

stakeholders

rValid use case modelsj

Document valid use case models

37

Figure 3.1 shows that SUCRE is a tool support for eliciting requirements, where
scenarios play an important role. This tool involves different kinds of actors, and each

actor performs different tasks. The following sections describe Figure 3.1 in more detail.

3.2.3 Process Actors and Their Responsibilities

Our system users include end-users, stakeholders, usability experts, and requirement
engineers. Among them, end-users, stakeholders, and usability experts are all responsible
for eliciting scenarios. Stakeholders and end-users also validate the scenarios. Both
usability experts and requirement engineers operate on scenarios and generate the use-

case models, and finally, document use case models.

End Users

In theory, end-users are people who know what to build and what the system does.
However, in the real world, users do not have clear and complete ideas about the desired
system. Therefore, they need to work together with professionals who can help them in
requirement elicitation. In our proposed system, end-users can work with usability

experts to elicit requirements.

Usability Expert

In our system, usability experts are responsible for eliciting scenarios directly from end-
users and stakeholders. In order to retrieve all necessary requirements in a comprehensive
way, usability experts use several techniques such as interviews, questionnaires, and

rapid prototypes to get feedback. After collecting a large set of scenarios, usability

38

experts will be responsible for cleaning up the scenarios, describing them in an XML

form, and inputting clear and consistent scenarios into the scenario database.

Stakeholders

Stakeholders are people who may not use the system directly. However, their opinions
will affect what the system does or how the system looks. For example, end-users,
managers, engineers involved in maintenance, domain experts, and trade unions are all

stakeholders.

Requirements Engineer

First, requirement engineers together with usability experts clean up scenarios to resolve
the inconsistency and incompleteness. Then they extract information regarding users and
tasks from scenarios and fill in the use case templates. Subsequently, requirement
engineers generate use case models based on the templates and validate the generated use

case models. Finally, requirement engineers document the use case models.

3.2.4 System Features
The proposed process model (as shown in Figure 3.1) involves different tasks. This

section is going to explain each of them in detail.

Acquire and Identify Initial Requirements

This feature is to acquire the essential requirements from end-users and stakeholders, and

present requirements in natural language descriptions of scenarios. Then it identifies a set

39

of scenarios by analyzing the settings, agents, and goals. Several approaches to identify
scenarios are proposed in Jacobson et al. [16] and Maiden et al. [46]. The requirement
contents should include purpose, scope and general constraints of the desired software, a
brief description of the overall functionality of the system, functional requirements, non-
functional requirements, and domain knowledge. Since end-users and stakeholders do not
usually have software development knowledge, they may ignore some information,
which is important for later requirement development. Furthermore, the information
provided may not always be well organized. Therefore, in SUCRE, quite often the end-
users and stakeholders will rely on the help of usability experts. Usability experts make
use of methods such as interviews and questionnaires to retrieve the acquisition, and
generate scenarios according to guidelines. These scenarios will then be useful, and easier
for later analysis. According to Rolland, guidelines are of two types: style guidelines
provide recommendation on the style of writing narrative prose; content guidelines advise
the author on the expected contents of his/her prose [47]. Both guidelines have the form
of plain text, which can be prompted to the usability expert when writing down scenarios.

Some examples of guidelines are shown below [47].

Style guidelines:

1- You should avoid the use of anaphoric references such as « he », « she », « it »
« his »or « him ». Instead, you should use nouns defined in the use case glossary.
2- You should avoid the use of synonyms and homonyms. The same object or
agent should be named identically throughout all texts.

3- You should avoid sentences with more than two clauses, each clause being
composed of a subject, a verb and its complements.

4- You should mention explicitly your assumption when some action is done under
certain conditions. For example you can use ''If <condition> then Action"’.

5- You should mention explicitly the condition for stopping repeated actions. For
example you can use ''Repeat <action> until <condition>"".

40

6- You should mention explicitly the co-occurrence of several actions. For
example, you can use ‘'While <action>, <co-occurring action>"".

7- When you express an action, you should mention explicitly the agent which
undertakes the action, and the object of the action. Thus prefer the active to the
passive voice.

8- When you express an action of communication, you should mention in addition
the source and the destination of the communicated object.

9- You should write sentences at the present tense, avoid the use of the negation,
of adverbs and of modal verbs.

Contents guidelines:
The expected scenario prose is a description of a single course of actions.
Alternative scenarios, interruptions or exceptional treatments are described
separately. A course of actions typically describes sequentially ordered actions:
actions from an agent to the system, system responses to the agent,
communications between agents and possibly actions internal to the system. You
should put your sentences in the order of the scenario history. The course of
actions should be completed with the resulting end states. You should describe the
course of actions you expect, not the actions which are not expected.
Edit Scenarios
After acquiring and identifying the requirements, we get a collection of scenarios. Each
scenario will be described in an XML notation and stored in a scenario database. In
addition to original scenarios, additional information such as the scenario’s id, author,
creation date and last modification date will also be saved in the scenario database.
Before being saved in the database, the scenarios must be checked using the style and
content guidelines (as mentioned above) to detect and resolve any ambiguity. In addition,
each clause of scenarios needs to be described in Rolland’s text structure [47], which are
useful for later scenario analysis and use case model generation. However, this editing
only needs to be done after scenarios are cleaned up. When scenarios are cleaned, nouns,
verbs, adjectives, adverbs, prepositions, pronouns, and articles in scenarios are tagged.

Adjectives, adverbs, and articles can be ignored and removed from the clauses. Nouns

should have already replaced pronouns in the requirement acquisition and identification

41

step. Sequentially, subject, main verb, object, and complement required for structure
constructions are extracted from the nouns, verbs and articles. Rolland’s text structure
will look different depending on the different ways of expression. For example, for a
simple clause with subject, verb, and object, there are 11 structures to express it. Two of
them look like: SI1: [[NG](Subject)ssex [Verb](Main Verb)icms [NG](Complement) obec:
J(VG active)acnon for active action. [[NG](Subject)ose: [be Verb](Main Verb)iuo](VG

passive).cuan for passive action.

The scenario database plays a very important role in our XML-based system. It functions
as an information center and data repository to provide data in order to fulfill different
requests. It stores all scenarios collected from users at the very beginning, refined

scenarios, and categorized scenarios.

Clean Up Scenarios

The next step of our process model is to clean up the edited scenarios. First, it discovers
inconsistencies and then resolves the inconsistencies. Second, it analyzes the
completeness of scenarios. In our system, usability experts are responsible for the cleanup
work. When this step is finished, we will get a collection of tagged nouns, verbs,
adjectives, adverbs, prepositions, pronouns, and articles. In the following two

subsections, the cleanup activities are explained in detail.

1) Discover Inconsistency. It is widely recognized that for a complicated software

system, there may be a great number of scenarios. A scenario, in our case, is a particular

42

path through use cases. Several scenarios may annotate one use case and there may be
overlaps among them. Thus it increases the probability of inconsistency among scenarios.
Also, different stakeholders may provide conflicting requirements for the same
functionality. In addition, end users and stakeholders express requirements in their own
terms, according to their understandings, which can cause ambiguity in the terminology.

Therefore, we need to discover any inconsistency and ambiguity.

A few approaches exist which we can adopt to discover and resolve any inconsistency.
An approach, proposed by Keller et al., merges all XML-formatted scenarios annotating
the same use case together to resolve the overlap among scenarios [24]. Rolland et al.
proposed some rules to resolve possible linguistic ambiguities in the expression of
scenarios [47]. In addition, our tool ScenarioTool (Chapter 4) is currently being

developed in response to the problem of terminology ambiguity.

In our ScenarioTool, terminology ambiguity cleanup is a process of “find and replace”.
Usability experts parse the edited scenarios to find the hyponym, hypermnym, and
synonym, and then replace them with consistent, alternative ones from the glossary to
reduce linguistic inconsistency. It sounds simple, but in practice this process involves a
lot of natural language processing sub-processes and applies natural language processing
tools. Table 3.1 gives a brief overview about the sub-processes and tools used. Section
3.3 will elaborate on this discussion. This process may need usability experts’ interaction

to clarify ambiguity. Consider a simple example,

43

Scenariol: The XYZ system contains a subsystem — the ABC system. The system is able
to...

Ambiguity: “The system” could be either, the XYZ system or the ABC system.

Solution: In this case, we need human interaction to help solve this ambiguity. We will

prompt participant to clarify “The system” either to be XYZ or ABC.

This step plays an important role in the whole system because all other features are based
on the cleaned scenarios. If the ambiguity and inconsistency are not resolved at this stage,
the use case models and requirement specifications based on the edited scenarios will be
confused, and not at all useful in the later stages. This step can be an iterative process. If

the ambiguity is found, it will backtrack to describe scenarios and to resolve the conflicts.

Table 3.1 Brief overview about sub-processes and tools used

Sub-processes Description

Natural Language Processing Tool

Parse a given string to separate all punctuation
from words

PreTokeniser

Parse a given string to reproduce it one sentence
per line in a text file.

SentenceSeparator

Parse a given tagged string argument and returns a
String array of all the nouns it finds. The tagged
string was created using Qtag3.0' and that the
tagging notation is that of Qtag3.0.

QtagNcunFinder

Parse a given tagged string argument and returns a
String array of all the verbs it finds. The tagged
string was created using Qtag3.0 and that the
tagging notation is that of Qtag3.0.

QtagVerbFinder

Given a word, WordNet” executable with the given
word as argument, parse the WordNet output, and
returns a String array of all synonyms of the word
found by WordNet.

SynonymFinder

Given a word, WordNet executable with the given
word as argument, parse the WordNet output, and
returns a String array of all hyponyms?® of the word
found by WordNet.

HyponymFinder

Given a word, WordNet executable with the given
word as argument, parse the WordNet output, and
returns a String array of all hypernyms® of the
word found by WordNet.

HypemmymFinder

Given a word, WordNet executable with the given
word as argument, parse the WordNet output, and
returns the String definition of the given word
found by WordNet.

DefinitionFinder

! Qtag 3.0 is a Part-Of-Speech tagger. It reads a text file, analyses it, and creates an output file identical to
the input file except that all nouns, verbs, adjectives, etc. have been tagged.

2 WordNet is a lexical database for the English language that was created by Princeton University. It
contains synonyms, hypernyms, hyponyms, definitions, and more for many English words.

* One word is a hyponym of another if it has a more specific sense. For example, “digital computer is a

hyponym of “computer”.

* One word is a hypernym of another if it has a more general sense. For example, “machine * is a hypernym

of “computer”.

45

2) Analyze Scenario Completeness. It is likely that we did not collect sufficient
scenarios for the potential software in the first run. Therefore, it will backtrack to the
scenario acquisition and identification stage to cover the missing requirements. In
addition, there may be incomplete semantics in scenario clauses and sentences. Rolland et
al. [47] proposed applying rules to discover and resolve incomplete semantics. For
example. completion rules state that if the instantiated linguistic pattern of a clause has a
missing element, then the author is asked to provide the missing element [47]. Figure 3.2
gives an example of the completion rule, COLl. It denotes that for every action V there is
an object O such that if an agent performs this action V on the object, but the agent
element is missing, then the author will be asked to provide the missing element to make
the clause complete. CO1 applies when an action does not have an agent [47]. ASK
predicate indicates the need of action required from the author. All rules have a premise
and a body separated by a <<- >>. The premise defines the precondition for executing
the body [47].

CO1:v V,30: Action (V) [Agent:? ; Object:0] —»
ASK(« Complete : V by... (agent of the action) »)

Figure 3.2 An example of completion rule [47]

Filter Scenarios and Fill in Template

After cleaning up the scenarios, the next step is to analyze the edited scenarios to figure
out the actors (agents) and tasks (actions) of the potential software, the relationship
between them, and constraints. In other words, it is essential to catch the semantics of
text, in order to fill the gap between the informal representation (scenarios) and the

formal model of use cases. This step is based on the approach presented by Rolland [47],

46

who proposed using semantic patterns to capture the semantics of text within scenarios.
This process involves linguistic analysis and semantic representations of scenarios. There
exist several representations of semantics such as, Sowa' s conceptual graphs [49], or
Montague' s grammar [48] and case grammar [47]. Since case grammar focuses on the
notion of action that is central in the use case model, it becomes the best choice for our
purpose. Case grammar represents semantics using a set of semantic cases such as agent,
object, destination and source [47]. According to Rolland et al. [47], semantic cases
define the semantic roles that the different elements of an action clause play with respect
to the main verb. Patterns of semantic cases are called semantic patterns. Indeed,
semantic patterns represent the meaning of a chunk of text [47]. For example, a general
action semantic pattern looks like: Action (V) [Agent; Object]. The semantic pattern for
“the customer sends the order” is Action (send) [Agent: ‘the customer’; Object: ‘the
order’]. Usually, the meaning of a text can be represented by different expressions, for
example, “the customer sends the order”, “the order is sent by the customer”, “the
sending of the order by the customer” and many more. These different expressions are
called surface structure. Therefore, each semantic pattern can be expressed by several
surface structures. During the course of filtering, semantic patterns function as templates
to associate a semantic case (agents, object, destination, source) to different elements of
the clauses and sentences. This addresses the semantics of the clauses and of the
sentences. Semantic patterns define different semantics of the elements required in use
case models such as actions, agents, objects, initial and final states of objects, the
relationship between two objects, constraints and conditions, and the relationship

between actions (sequence, concurrency and repetition). In turn, the semantics of use

47

cases’ elements are expressed by semantic patterns. Take “the order is sent by the
customer” as an example. As a communication action, this scenario clause is not
complete in semantics. By applying the completion rule and by asking the requirement
engineer, the new scenario clause will be “the order is sent by the customer to company
X". The text structure describes the clause as follows:

[[‘order] (Subject)osjec: [‘is sent | (Main Verb)communicasion ['by customer ']

(Comp[ement)AgenhSauru [‘to
company X '] (Complement)pesinaiion] (VG passive)communication

The semantic patten instance, generated from the above text structure by applying
analysis rule, is:
Communication (‘send’) [Agent : ‘customer’ ; Object : ‘order’ ; Source :
‘customer ' ; Destination : ‘company X']
This filter process involves the application of many rules. Rolland discussed these in
detail [47]:
Analysis rules: identify action names, agents and objects.
Clarification rules: change the wording and remove possible ambiguities.
Completion rules: complete a semantic pattern not fully instantiated to accomplish the

semantic completion of a clause.
Emergence rules: help generate abnormal scenarios. They are based on flow conditions

and raise the question of what happens if the flow conditions do not hold.

For each scenario in the database, we can fill in the templates that detail the actors’

profiles and their tasks. For our example, this template looks like Table 3.2.

48

Table 3.2 The templates that detail the actors’ profiles and their tasks

Actors Tasks
Customer Task Name Send Order

Task [nput/Starting state Order form is ready to be sent

Task Output/Finishing state Order has been sent

Task dependencies [B] Fill in order form

Dependencies between several Note: [B] stands for “before”, indicates

actions. action happens before this action. [A]
stands for “after” indicates actions
happening after this action. [C]
concurrency. [I] stands for iteration

Generate Use Case Models

After filtering scenarios, information about scenarios is recorded using the templates. We
use semantic patterns to present scenarios and each semantic pattern defines different
semantics of the elements required in use case models such as actions, agents, objects,
initial and final states of objects, the relationship between two objects, constraints and
conditions, and the relationship between actions (sequence, concurrency and repetition).
Therefore, the semantics of the elements that are required in use case models are recorded

in templates. The recorded information will be used to generate use case models.

However, we face a problem — how can we categorize several tasks into one use case?
For example, actions — the user inserts his card in the ATM, the ATM checks if the card
is valid. If the card is valid, then it does something. All these actions can be grouped into
one use case — Identify. For the time being, the solution does need the interaction of a

software engineer. First, we should group together all tasks corresponding to the same

49

actor. Then, the requirement engineers can decide which tasks should be in one use case.

Once all this has been done, it is possible to generate the use case models.

According to Rolland, an important property of semantic patterns is univocity [47].
Compared to natural language, which provides many alternative ways to express the
same knowledge, semantic patterns give a unique deep level representation to support the
meaning of a chunk of text [47]. Therefore, when we use semantic patterns to present
scenarios, this property helps reduce the possibility of inconsistency and resolves

ambiguity.

Validate and Document Use Case Models

After use case models are generated, stakeholders will be responsible for validating these
models and providing feedback. The feedback helps usability experts and requirement
engineers to address the inconsistency and incompleteness of scenarios as well as to
refine the use case models. As mentioned in Section 3.2.1, prototyping is a solution to
bridge the gap between stakeholders and software engineers. Therefore, in order to make
validation easier for stakeholders, we generate rapid prototypes and present them to the
end-users or stakeholders for validation and evaluation. Mohammed and Kell proposed
an approach of deriving sequence diagrams from scenarios and then generating
prototypes from the sequence diagrams [24]. Since we have scenarios associated with the
use cases in the generation of use case models, we can follow Kell’s approach to create
the sequence diagrams from scenarios, then generate prototypes from sequence diagrams

for later validation. According to the advice and suggestions of stakeholders, existing

50

scenarios may need to be modified, and new scenarios can be added. In either case, a new
iteration of the process model is about to start. The iteration goes on and on until both

requirement engineers and users (end users and stakeholders) come to an agreement.

Once the use case models are generated and validated, it will be possible to document the
valid use case models. As steps are completed, our scenarios in the database are refined
progressively with respect to completeness and clarity. These scenarios are useful for
documenting use case models. In addition, since the template records the requirement

information, it is also a source that can be used to document use case models.

3.2.5 Advantages of SUCRE System

The following are the main advantages of our SUCRE system:

1) Our SUCRE system involves greater user participation and provides more accurate
requirements. Instead of retrieving use case directly from users, we gather scenarios
directly from users. In the latter case, it is the users rather than the developers who
identify the agents and goals. During the course of acquisition, usability experts, who
are not only domain experts but also play the role of requirement cngineers, help
users find their needs and guide them towards the appropriate direction. This is
helpful for the later design phase. They can then organize the initial acquisition to a
form that is easily understood by designers and software engineers. Moreover,
usability experts are able to refine the scenarios according to the guidelines.
Compared to the general requirements in Sutcliff [8], usability experts will help users

to generate requirements specific to their potential software system. In this manner,

51

3)

the acquisition achieved will be more accurate and fit the users better. An analogy can
make this clear. Assuming a man wants to buy a suit, he can go to a suit store and
pick out a suit that is supposedly his size from styles available in-store. He can then
ask for minor modifications. Alternately, he can present his preferred style, one that
came with the help of a designer, and ask the tailor to make it specifically for him.

Comparatively, the latter case will provide the man with a better fitting suit.

Usability experts are people who have knowledge and experience about how to
motivate users to talk about their needs, how to organize events such as interviews,
and how to gather information from users. They also have techniques for grouping
people together. Usability experts can be from different disciplines such as
psychology, or from different computer research fields such as human center
interaction (HCI). Therefore, the participation of usability experts makes requirement
acquisition more efficient and effective. If users provide requirements all alone, it is
very possible that they will miss and ignore information that could be requirements.
In addition, users may not discover all of their needs on their own. It is very likely
that the acquisition process will be repeated a number of times. This wastes both
users’ and software engineers’ time. However, the expertise of usability experts can
motivate the users to find their needs to a large extent, and help reduce the chance of

repetition of requirement acquisition.

The end-result that the SUCRE system provides is specific to a certain system. It is

more efficient than a general one for the design phase. Since the final requirement

52

4)

5)

6)

specification is accurate and fits users better, it decreases the possibility of tracing
back to requirement acquisition from the design stage or even the implementation
stage. In addition, during the whole process of the SUCRE system, we keep checking
inconsistency and incompleteness in scenarios, and between scenarios and models, to
make sure that we will eventually achieve clear, correct, and complete use cases for

designers to use.

Since we get the user fully involved, users are aware of the functionality of the
potential system. Moreover, since users provide scenarios for steps necessary to
perform a certain job, it is easier and faster for users to become familiar with the new
system. In other words, the command structures are intuitive and cognitive to users.

Therefore, training for the potential software in the future is easier.

In the validation stage, we use prototypes instead of asking users to read the
specification documents. It is easier for users to understand the potential system and

to provide us precise feedback to refine our scenarios and use cases.

The ‘univocity’ property of semantic patterns reduces the possibility of inconsistency

and resolves ambiguity while semantic patterns are used to present scenarios.

3.3 Summary

This chapter demonstrated the objective, architecture, actors, and features of the proposed

SUCRE system, which is an XML-based system for scenario-driven requirement

53

engineering. In addition, this chapter introduced what XML is and illustrated the reasons
why XML has been chosen to present scenarios in the SUCRE system. In the next
chapter, the prototype and main functionality of the SUCRE system will be presented. In
addition, it will provide examples of DTDs and XML files, which are used to present

scenarios in SUCRE’s scenario database.

54

Chapter 4 — SUCRE Prototypes

Carla De Waele, an undergraduate student at Concordia University, developed part of the
SUCRE prototype, which is called ScenarioTool. This tool implements the cleanup
functionality — resolves the terminology inconsistency. In addition, another prototype is
being developed to access the XML-based database of scenarios. This chapter

summarizes these works.

4.1 ScenarioTool Architecture

4.1.1 Overview

Figure 4.1 illustrates the different packages that comprise ScenarioTool. A package
usually consists of more than one class. The packages are organized in different layers.
The first layer is the user interface. Each layer below the first layer, holds classes that
represent a further abstraction from the user interface and become progressively more

technical.

The Model-View-Controller (MVC) design pattern is adopted in the ScenarioTool
architecture. Package GUI is the view, which manages the way the ScenarioTool is
displayed. The packages in domain layer and technical services layer function as a model,
which manages whatever data or values the tool uses. The package scenarioTool is the
controller, which determines what happens when the user interacts with the

ScenarioTool. It also delegates the look-and-feel-specific aspects to the model. The lines

55

connecting different packages represent the relationships that exist between the classes of
the different packages. For example, some classes in the GUI package communicate
directly with the classes in the scenarioTool package and vice versa. However, classes in
the GUI package do not communicate directly with classes in either the Tools or

SwingWorkers packages and vice versa.

Presentation Layer package GUI

Application Layer package scenarioTool

package Tools package SwingWorkers

Domain Layer

Technical Services
Layer

Figure 4.1 Overview of ScenarioTool's architecture

The following is a short description of each package:
1. package GUI: Its purpose is to display the panels, windows, and various components

of the User Interface on the screen.

56

!\)

package scenarioTool: This is the main component of the software. It captures the
interaction and acts as a controller for the whole program, providing indirection

between the presentation layer and the lower layers.

package Tools: This is concerned with any natural language processing including
parsing of text, as well as a connection to external natural language processing

programs.

package SwingWorkers: This is concerned with any time-consuming natural
language processing task. Its purpose is to fork separate threads for time-consuming

tasks, so that the user’s interaction with the GUI is not halted.

Qtag Executable: The directory called “qtag” contains the Qtag 3.0 executable jar
file, which is a Part-Of-Speech (POS) tagger. It parses a given text file and outputs a
tagged text file where each noun, verb, adjective, adverb, preposition, pronoun, and

article is tagged.

WordNet executable: WordNet is an executable external program that must be
downloaded separately. It is not, in any way, “contained” within the ScenarioTool
system. You can think of it as a separate system that ScenarioTool talks to. However,
if WordNet is not on the local computer, ScenarioTool won’t work. When WordNet
is downloaded, it automatically defines a path to itself in the computer’s “path.exe”

file, which allows ScenarioTool to invoke it from within any directory.

57

4.1.2 Detailed Architecture
Figure 4.2 illustrates the types of relationships that exist between the classes within a

package and between the different packages.

package GU!
mainGUI GlossaryGUI StatusFeedback
7
VA
package scenarioTool / T
v
GlossaryEntry _+ Glossary @] ScenanioController
—
package Tools / package SwingWorkers
PreTokeniser SentenceSeparator ¢
: ExecWorker -
NounFinder VerbFinder
y
QtagNounFinder QtagVerbFinder SwingWorker
SynonymFinder HyponymFinder
HypemymPFinder DefinitionFinder : <<invokes>>
WordNet Executable <<invokes>> Qtag Executable
<file> qtag.jar
<file> wn.exe <file> BLT.dat
and all accompanying files
Legend:

has a reference to a single instance of

whole contains parts (when whole is destroyed, parts are destroyed)

—>
——> creates objects of OR functions receive obijects of type
’__
—>

1s a subclass of (i.e., the “extends” relationship)

Figure 4.2 ScenarioTool's architecture

58

The following is a short description of each class that is depicted in Figure 4.2 and of the

executables that ScenarioTool invokes:

package GUI

mainGUI:

The main GUI displays the main frame and all of its components. It is created by
ScenarioController at the start of the program and remains as a single instance
throughout one ScenarioTool session. When created, it is given a reference to the
single instance of ScenarioController. When it is closed, it uses its reference to
ScenarioController to call the exit() function, which terminates the ScenarioTool

session, and the program exits.

GlossaryGUI:

This is a secondary GUI window. It displays the frame that represents ScenarioTool's
glossary. It is created by ScenarioController and exists as a single instance for as long
as its "close" button is not pressed. When it is created, it is given a reference to the
single instance of ScenarioController. GlossaryGUI may create some temporary
objects of type Glossary or GlossaryEntry within the scope of its member functions.

However, it does not hold any reference to persistent instances of either class.

59

StatusFeedback:
This is a secondary GUI window. ScenarioController creates it whenever a time-
consuming task is in progress. It informs the user that she/he must wait for the system

to perform its task.

package scenarioTool
GlossaryEntry:

Each instance of this class represents an entry in a glossary. It only has three
attributes. Namely, a String "term", a String "definition", and an ArrayList
"synonymList". Only an instance of the Glossary class can create a persistent

GlossaryEntry object.

Glossary:

Only one instance of this class can exist at any one time. However, during the course
of a ScenarioTool session, it is possible that more than one instance is instantiated. It
only has one attribute. Namely, an ArrayList of GlossaryEntry objects. So, a Glossary
object can contain one or more GlossaryEntry objects. It creates its GlossaryEntry

objects as a result of a request by ScenarioController.

ScenarioController:
This is the mediator class between all classes of the GUI package and those of other
packages. Its purpose is to capture user inputs and act upon them. Therefore, it is the

ActionListener, MouseListener, DocumentListener, ListSelectionListener, and

60

CaretListener for GUI components. Only one instance of ScenarioController exists

for any one session of ScenarioTool.

ScenarioController creates two Glossary instances at the beginning of the program.
One is called "glossary” and the other "PERMANENTglossary". The first is a
working copy of the glossary, which is updated every time the user interacts with the
GlossaryGUI instance. The second, "PERMANENTglossary”, holds the last saved
version of the glossary. It is initialized at the beginning of program with information
from a text file that remains in permanent memory, "PERMANENTglossary.txt".
When the user presses the "SAVE" button on the GlossaryGUI instance, the working
copy of the glossary is copied into the PERMANENTglossary. When the user exits
the ScenanioTool session, the PERMANENTglossary is written off into

"PERMANENTglossary.txt".

ScenarioController creates single instances of PreTokeniser, SentenceSeparator,
NounFinder, VerbFinder, QtagNounFinder, QtagVerbFinder, SynonymFinder,
HypernymFinder, HyponymFinder, and DefinitionFinder. It therefore holds a
reference to each of them, and calls upon them when it needs to. ScenarioController

also creates instances of ExecWorker whenever necessary.

61

package Tools

PreTokeniser:

This is a natural language processing tool. It has no attributes, only a single member
function. This function parses a given string argument by separating all punctuation
from words (i.e., putting white space between them), and returns the resulting string.
Only one instance of PreTokeniser exists for any one ScenarioTool session.

ScenarioController creates it.

SentenceSeparator:

This is a natural language processing tool. It has no attributes, only a single member
function. This function parses a given string argument and reproduces it one sentence
per line in a text file called "sentenceSeparated_output.txt”. Only one instance of
SentenceSeparator exists for any one ScenarioTool session. ScenarioController

creates it.

NounFinder:

This 1s a natural language processing tool. It has no attributes, only a single member
function. This function parses a given POS-tagged string argument and returns a
String array of all the nouns it finds. It assumes the PennTreebank tagging notation.
Only one instance of NounFinder exists for any one ScenarioTool session.
ScenarioController creates it. NOTE: The instance of this class is currently not being
used by the program. It was developed because initially, the program attempted to use

the Bnill Tagger as POS tagger, which outputs text in PennTreebank notation.

62

However, because of problems with the tagger, the Qtag 3.0 was used as POS tagger

instead and it outputs text in a different notation.

VerbFinder:

This is a natural language processing tool. It has no attributes, only a single member
function. This function parses a given POS-tagged string argument and returns a
String array of all the verbs it finds. It assumes the PennTreebank tagging notation.
Only one instance of VerbFinder exists for any one ScenarioTool session.
ScenarioController creates it. NOTE: The instance of this class is currently not being
used by the program. It was developed because initially, the program attempted to use
the Brill Tagger as POS tagger, which outputs text in PennTreebank notation.
However, because of problems with the tagger, the Qtag 3.0 was used as POS tagger

instead and it outputs text in a different notation.

QtagNounFinder:

This is a natural language processing tool. It has no attributes, only a single member
function. This function parses a given tagged string argument and returns a String
array of all the nouns it finds. It assumes the tagged string was created using Qtag 3.0
and that the tagging notation is that of Qtag 3.0. Only one instance of
QtagNounFinder exists for any one ScenarioTool session. ScenarioController creates

it.

63

QtagVerbFinder:

This is a natural language processing tool. It has no attributes, only a single member
function. This function parses a given tagged string argument and returns a String
array of all the verbs it finds. It assumes the tagged string was created using Qtag 3.0
and that the tagging notation is that of Qtag 3.0. Only one instance of QtagVerbFinder

exists for any one ScenarioTool session. ScenarioController creates it.

SynonymFinder:

This is a natural language processing tool. It has no attributes, only a single member
function. Given a word, this function invokes the WordNet executable with the given
word as argument, parses the WordNet output, and returns a String array of all
synonyms of the word found by WordNet. Only one instance of SynonymFinder

exists for any one ScenarioTool session. ScenarioController creates it.

HyponymFinder:

This is a natural language processing tool. It has no attributes, only a single member
function. Given a word, this function invokes the WordNet executable with the given
word as argument, parses the WordNet output, and returns a String array of all
hyponyms of the word found by WordNet. Only one instance of HyponymFinder

exists for any one ScenarioTool session. ScenarioController creates it.

64

HypernymFinder:

This is a natural language processing tool. It has no attributes, only a single member
function. Given a word, this function invokes the WordNet executable with the given
word as argument, parses the WordNet output, and returns a String array of all
hypernyms of the word found by WordNet. Only one instance of HypernymFinder

exists for any one ScenarioTool session. ScenarioController creates it.

DefinitionFinder:

This is a natural language processing tool. It has no attributes, only a single member
function. Given a word, this function invokes the WordNet executable with the given
word as argument, parses the WordNet output, and returns the String definition found
by WordNet of the given word. Only one instance of DefinitionFinder exists for any

one ScenarioTool session. ScenarioController creates it.

package SwingWorkers

ExecWorker:
This is a subclass of SwingWorker. SwingWorker's construct () method is

overridden. It invokes Qtag 3.0 to perform its task while the GUI remains operational.

SwingWorker:
This is a class written by the Java community. It is an abstract class. It can be sub
classed to create a dedicated thread, which can be used to perform time-consuming

tasks while keeping the GUI operational.

65

WordNet Executable

WordNet is a lexical database for the English language that was created by Princeton
University. It can be downloaded at www.cogsi.princeton.edu/~wn. It contains

synonyms, hypernyms, hyponyms, definitions, and more, for many English words.

ScenarioTool makes a system call (Java's Runtime.exec ()) in order to run the
WordNet executable. WordNet needs its own application environment and therefore,
Java's runtime environment is completely taken up by WordNet, putting ScenarioTool
temporarily out of commission. ScenarioTool takes up Java's runtime environment

again once WordNet exits, and the program becomes responsive once more.

Qtag Executable:
Qtag 3.0 is a POS tagger (see its README file under the directory called "qtag"). It

reads a text file, analyses it, and creates an output file identical to the input file except
that all nouns, verbs, adjectives, adverbs, prepositions, pronouns, and articles, have

been tagged.

ScenarioTool makes a system call (Java's Runtime.exec ()) in order to run the
Qtag Executable. Qtag needs its own application environment and therefore, Java's
runtime environment is completely taken up by Qtag, putting ScenarioTool
temporarily out of commission. ScenarioTool takes up Java's runtime environment

again once Qtag exits, and the program becomes responsive once more.

66

4.1.3 Design Rationale

The following describes the rationale for ScenarioTool’s current architectural design
described in Section 4.1.1 and Section 4.1.2. Because ScenarioTool is designed for
integration into a larger project, it was designed so that integration would require changes

to the least amount of classes necessary.

ScenarioController is the centre of the system. It conveys messages between all GUI
classes and core classes. The GUI displays the user interface. ScenarioController captures
the user’s input and delegates tasks to core classes. Then, the core classes return
information to ScenarioController, and ScenarioController redirects this information back
to GUI classes. In turn, GUI classes display the information to the user. The workflow is
shown in Figure 4.3. So, the entire control of ScenarioTool is in the hands of
ScenarioController. ScenarioController is also the creator of every other class instance in
the system. Both of these properties (i.e., its centralized location and its role as system
initiator) make ScenarioController the “spokesperson” for ScenarioTool. Once
ScenarioTool is integrated into a larger project, any changes required will be limited to

the ScenarioController class.

Users

Input + *
UI Class

v ¢

ScenarioController

v 4

Core Classes

Figure 4.3 Workflow of ScenarioController

67

It is very likely that the ScenarioController class will become too bloated once
ScenarioTool reaches its full potential. This can happen because the entire requirement
elicitation process goes on when software engineers filter the edited scenario text for
information regarding actors and their tasks, fill in templates of actor profiles, and filter
these profiles to automatically produce use case maps. In that situation, more Controller
classes can be created, each of which can handle a separate step in the entire requirements
elicitation process. For example, one could add an “ActorController”, which would be
responsible for capturing the user’s input from an entirely different set of GUI classes.
This would delegate tasks to an entirely different set of core classes, and would
ultimately control a different step in the requirements elicitation process — that of filling
in templates of actor profiles. There would then be the need for a class that supervises all

controllers, and that starts the system. Figure 4.4 explains this:

STARTUP class
v
ScenarioController ActorController e AnotherController
<<controls>> <<controls>> <<controis>>

- package GUI_n

- package GUI_1
- package Tools_1
- package
SwingWorkers_1

- package GUI_2
- package Tools_2
- package
SwingWorkers_2

- package Tools_n
- package
SwingWorkers_n

Figure 4.4 Future look of ScenarioTool's architecture

68

Finally, ScenarioTool’s architecture is a layered one for the purpose of comprehension
and maintenance. Separating the GUI classes from more domain-specific classes makes it
easier for someone new to understand the function of each. It is also easier to maintain

the software, because it may be easier to spot the location of a bug or to add classes.

4.1.4 Listing of Main Functionality
The following is a list that describes ScenarioTool’s main functionalities. It does not

include functionalities that were intended but not yet completed.

o Insert Text

o Cut, Copy, Paste Text Excerpts

o Select Word or Text Excerpt

o Find All Nouns

o Find All Verbs

o Find Definition of Highlighted Noun
o Find Definition of Highlighted Verb
o Find Definition of Selected Word

o Find Synonyms of Highlighted Noun
o Find Synonyms of Highlighted Verb
o Find Synonyms of Selected Word

o Find Hyponyms of Highlighted Noun
o Find Hyponyms of Highlighted Verb

o Find Hyponyms of Selected Word

69

Find Hypemyms of Highlighted Noun
Find Hypemyms of Highlighted Verb
Find Hypemyms of Selected Word
Find Synonyms Within Text of Selected Word
Find Hyponyms Within Text of Selected Word
Find Hypernyms Within Text of Selected Word
Replace Synonym With Alternative Synonym
Replace Hyponym With Altemative Hyponym
Replace Hypernym With Alternative Hypernym
Clear All Highlights
Create/Maintain Glossary

® Glossary: Add/Delete Term

* Glossary: Add/Delete Synonym

s Glossary: Add/Delete/Modify Definition

® Glossary: Display List of Terms

® Glossary: Display List of Synonyms

* QGlossary: Display Term Definition

® Glossary: Save Glossary

* Glossary: Open Glossary

70

4.2 SUCRE Prototype

The SUCRE prototype was developed in Java. As mentioned in Chapter 2, scenarios are
stored in an XML-based database. The underlying document type definition (DTD) is

given in Section 4.3.

4.2.1 User Interfaces

The main interface is split into two areas, as shown in Figure 4.5. The first area lists the
five major features to be supported by the SUCRE system -- scenarios component, user
archetype, usability goals, prototype, and Ul model. The Scenario component is
responsible for scenario editing. In its current state, the Scenario component is now being

implemented. Area two is a working area.

Usability i Use Cases
Goals | Prototype

Uses

Archggype

Figure 4.5 SUCRE Ul prototype

71

Figure 4.6, Figure 4.7 and Figure 4.8 exemplify several finctionalities such as, search a

scenario with a given index, add and edit new scenarios, and others.

User Usability , Use Cases
Archglype Goals Prototype

ScenarioName ~ [A8C N l

An accountant wishes to open a folder on the system desktop in order to

- access a memo on budgets. However, the folder is covered up by a budg

" et spreadsheet that the accountant wishes to refer to while reading the m

EThe spreadsheet is so large that it nearly fills the display. The acco

/g:t\ pauses for several seconds, resizes the spreadsheet, moves it partic

Note Icon Iy out ofthe display, opens the folder, opens the memo, resizes and repc
sitions the memo, and continues working.

Author's Name |ccd | Author'semail |abc@hotmail.com |

Author's Address {2001 st-mathieu west ap#55] Author'sURL [www.cs.concordia.ca |

¢

Index chive Add Note Highlightér

) TraceChange
Forward Glossary Properties

Backward

Figure 4.6 Choose scenario component

After choosing the Scenario icon in the interface, SUCRE automatically shows the

scenario with index 1 in the UI (Figure 4.6).

72

4.2.2 List of Functionality

The functionalities that have been implemented include the following:

The Index field displays the ID (e.g. integer) of the current scenario. Given a scenario
index, search in the scenario database and display the matched scenario in the Ul
(Figure 4.6). By default, it is always the first scenario in the scenario database that
gets displayed. The small Note Icon (Figure 4.6) in the text area indicates that a note
exists for explaining certain words or phrases (e.g. note for word “memo” in Figure
4.7). It is the same as writing down notes in the margin of a book while reading. It
facilitates scenario editing. The notes can be seen by pressing the small icon (Figure

4.7).

User Usability | Use Cases
ﬁlqmpg__ ‘ Goals 1 Prototype

Scenario Name [ABC This is a memo

An accountant wishes to open a folder
accessamemoonb “However, the folder
et spr! atthe accountant wishes to refe
em&#The spreadsheetis so iarge tnhat it nearly fill
-unt pauses for several seconds, resizes the spre
lly out of the display, opens the folder, opens the ¢
sitions the memo, and continues working.

Author's Name [ccd J——Ws_ei—— —————

Author's Address _:|2001 st-mathieu west apt#55| WSURL {wmw.cs.concordia.ca

s ,_:r__ s ',',"' : v_': -: ‘:.‘":'..

Figure 4.7 Note for the word “Memo”

73

The Forward button retrieves the next scenario in the database. Usually, it is the one
with the index (currentindex + 1).

The Backward button retrieves the previous scenario in the database. Usually, it is the
one with the index (currentindex - 1).

It reads a scenario from a scenario database, and fills in the fields in the user interface
as shown in Figure 4.6.

It creates a new scenario. Users provide the information related to the scenario by

filling in the fields in the UL Then, the scenario is added into the scenario database

(Figure 4.8).

User Usability Use Cases
Scenario Archggype Goals Prptotype
Scenario Name
Author's Name | | Author's email | |
Ruthor's Address | | AuthorsURL | |
Ok || clear
PR EeEE e

Figure 4.8 Add a new scenario

74

The following are the functionalities that need to be added to the UI in the future:

Archive: Create scenario templates, which can be used in different applications such
as ATM, bank. When creating scenarios for similar applications, use the template as a
starting point. This is the same idea as the resume templates in MS Word.

Add note: Highlight the text on which note is going to be added. Then edit the note
and add a small note icon on the highlighted text for a certain scenario.

Show property: show the property of a scenario such as the creation date, author
information, and comments.

Track change: track the change record of a given scenario.

Utility Tools contains functionality such as print, a spell check, and so on.

All functionalities are grouped in a toolbar, which can be dragged and dropped anywhere

(Figure 4.9).

75

User Usability : Use Cases
Archggype | Goals f Prototype

Scenario Name '[Aac_ | |

An accountant wishes to open a folder on the system desktop in order to
access a memo on budgets. However, the folder is covered up by a budg
et spreadsheet that the accountant wishes to refer to while reading the m
emgThe spreadsheet is so large that it nearly fills the display. The acco
unt pauses for several seconds, resizes the spreadsheet, moves it partiz
Ity out of the display, opens the folder, opens the memo, resizes and repc

sitions tha marmn _and cantinnac wnrlina

e

Author's Name Icrcd | _'-ff::_-unpors:gnnaijt, [abc@hotmail.com

Author's Address [2001 st-mathieu west apt#55] Author's RL [www.cs.concordia.ca |

Figure 4.9 Toolbar containing all functionality

4.3 Underlying DTD and example XML file

This section demonstrates a document type definition (DTD) we developed. It gives an

example of XML based scenario using this DTD.

4.3.1 DTD
<!-~ ScenarioCollection.dtd -->

<!-- ScenarioCollection is the root of the document -->
<!ELEMENT ScenarioCollection (scenarios)+>

<IELEMENT scenarios (ScenarioName, CreatedDate, ModifiedDate, Author+, Notes*,

Highlighter*, BodyText)>
<!ATTLIST scenarios id ID #REQUIRED>

76

<!-- ScenarioName contains the name of the scenario —>
<!ELEMENT ScenarioName (#PCDATA)>

<!-- CreatedDate remembers the data when the scenario is created -->
<!'ELEMENT CreatedDate (#PCDATA)>

<!-- ModifiedDate records the last modified data —>
<!ELEMENT ModifiedDate ({PCDATA)>

<!-- Author contains information about the author -->
<!ELEMENT Author (name, address, city, state, postalcode, country, email*, url*)>

<!-- name, address, email, url are all elements inside Author -->
<!ELEMENT name (#PCDATA)>

<!ELEMENT address (#PCDATA)>

<!ELEMENT email (#PCDATA)>

<!ELEMENT url (#PCDATA)>

<!-- Notes keep track of the notes added by the users, need to remember where it is and
what it is -->

<'ELEMENT Notes (NotePos, NoteText)+>

<!ELEMENT NotePos EMPTY>

<!ATTLIST NotePos In CDATA #IMPLIED>

<!ATTLIST NotePos col CDATA #IMPLIED>

<!ELEMENT NoteText (#{PCDATA)>

<!-- HighLighter remembers the position of the highlighted part -->
<!ELEMENT HighLighter (startpos, endpos)+>

<!ELEMENT startpos EMPTY>

<!ATTLIST startpos In CDATA #IMPLIED>

<!ATTLIST startpos col CDATA #IMPLIED>

<'ELEMENT endpos EMPTY>

<!'ATTLIST endpos In CDATA #IMPLIED>

<'ATTLIST endpos col CDATA #IMPLIED>

<!-- BodyText keep the contents of the scenario -->
<!ELEMENT BodyText ({PCDATA)>

4.3.2 An Example of XML Document Using Underlying DTD

<?xml version="1.0"7>
<!DOCTYPE ScenarioCollection SYSTEM "ScenarioCollection.dtd">

<ScenarioCollection>

77

<scenarios id="1">
<ScenarioName>ABC</ScenarioName>
<CreatedDate>April-04-2002</CreatedDate>
<ModifiedDate>April-29-2002</ModifiedDate>
<Author>
<name>ccd</name>
<address>2001 st-mathieu west apt#555 Montreal Quebec</address>
<email>abc@hotmail.com</email>
<url>www.cs.concordia.ca</url>
</Author>
<Notes>
<NotePos In="20" col="50"></NotePos>
<NoteText>This is a memo</NoteText>
</Notes>
<HighLighter>
<startpos In="10" col="15"></startpos>
<endpos In="18" col="25"></endpos>
</HighLighter>
<BodyText>
An accountant wishes to open a folder on the system desktop in order to
access a memo on budgets. However, the folder is covered up by a budget
spreadsheet that the accountant wishes to refer to while reading the memo.
The spreadsheet is so large that it nearly fills the display. The account
pauses for several seconds, resizes the spreadsheet, moves it partially out
of the display, opens the folder, opens the memo, resizes and repositions
the memo, and continues working.
</BodyText>
</scenarios>
</ScenarioCollection>

4.4 Summary

This chapter presented the current work of the SUCRE system. Two prototypes are under
development now — ScenarioTool and access interface to XML-based database of
scenarios. This chapter then demonstrated the architecture and rationale of ScenarioTool
and showed the developed access interface to the scenario database. It also illustrated
functions which have already been accomplished and which will be developed in the
future. At the end of this chapter, examples of DTD and XML file, which are used to

present scenarios in SUCRE’s scenario database, were presented.

78

Chapter 5 — Conclusion and Future Work

In this thesis, we reviewed different approaches for using scenarios. We investigated
several tools for working with scenarios in requirement engineering. We discovered that
few tools support the use of scenarios such as CREWS, CREWS-SAVRE and Scenario
Plus. Among these tools, we deeply analyzed those that combine both scenarios and use
cases. All these tools are based on the same scenario-based requirement process. First,
they extract scenarios from use case models, then analyze the extracted scenarios. This
approach assumes that use cases are written before scenarios. However, as known,
stakeholders do not usually express their need in use cases. Instead, they prefer to use
natural language. The aim to put stakeholders at ease, bridge the gap between
stakeholders and requirement engineers, and overcome the shortcomings of existing tools
motivates us to propose our SUCRE system. SUCRE combines use case and scenarios. In
SUCRE, we start developing from scenario and then extract use cases. In other words, it
lets stakeholders express their requirements like telling stories. Then, SUCRE analyzes
the collected scenarios and generates the use cases. This approach involves the user
directly and provides more accurate requirements. The help of usability experts saves
requirement engineers’ time and work. The gathered requirements are more consistent
and complete. Finally, stakeholders have increased awareness of the system functionality,

so less training will be required.

79

We proposed a scenario database to store our scenarios and adopted the most outstanding
metadata management solution currently available — XML. This increases the flexibility

and portability of our data.

5.2 Future work

The SUCRE prototype is the first part of a long-term ongoing research project. The
expected benefit is to let software engineers be able to semi-automatically elicit a set of
requirement from scenarios. To achieve this goal, the following questions need to be

answered:

1) How can we extract the relationships among use cases from scenarios such as
aggregation and association?
2) How can we improve the analysis of consistency and completeness of scenarios?

3) How can we improve the template used to generate use cases from scenarios?

Further to these questions, we need to improve our SUCRE system by developing more

features.

80

References

[1] Ute von Reibnitz. (1998). Scenario Techniques. Hamburg, New York, McGraw-Hill

Book Company GmbH.

[2] Margery S. Berube et al. (1993). The American Heritage College Dictionary. 3™

edition. Boston, New York, Houghton Mifflin Company.

[3] John M. Carroll. (2000). Making Use Scenario-Based Design of Human-Computer

Interactions. London, England, The MIT Press Cambridge, Massachusetts.

[4] Morten Kyng. (1995). Creating Contexts for Design. In John M. Carroll, ed.
Scenario-based design: Envisioning work and technology in system development,

New York, John Wiley.

[5] Ken Eason, Susan Harker and Wendy Olphert. (1996). Representing Socio-Technical
Options in the Development of New Forms of Work Organisation. Europen Journal

of Work and Organizational Psychology, vol. 5, no. 3, pp. 399-420.

[6] Colin Potts, Kenji Takahashi and Annie I. Anton. (1994). Inquiry-Based

Requirements Analysis. [EEE Software, vol. 11, no. 2, pp. 21-32.

[7] Alistair. G. Sutcliffe. (1997). A Technique Combination Approach to Requirements

Engineering, In Proceedings 3™ IEEE International Symposium on Requirements

81

Engineering(RE97), IEEE Computer Society Press, Annapolis, MD, January 05 - 08,

1997, pp. 65-74.

[8] Alistair G. Sutcliffe, Neil A. M. Maiden, Shailey Minocha, and Darrel Manuel.
(1998). Supporting Scenario-based Requirements Engineering. [EEE Transactions on

Software Engineering, vol. 24, issue 12, (December), pp. 1072-1088.

[9] Alistair Cockburn. (1995). Structuring Use Cases with Goals. [Internet] (1999)
Available from <http://members.aol.com/acockburn/papers/usecases.htm> [Accessed

April 5, 2003].

[10] Alistair G. Sutcliffe and Shailey Minocha. (2001). Scenario-Based Analysis of Non-
Functional Requirements. In The Seventh International Workshop on RE: Foundation

Sfor Software Quality (REFSQ'2001), Interlaken, Switzerland, 2001, pp. 68-84.

[11] Alistair Sutcliffe. (1998). Scenario-Based Requirement Analysis. Requirements

Engineering Journal vol 3, no. 1, pp. 48-65.

[12] Rick Kazman, Gregory Abowd, Len Bass, and Paul Clements. (1996). Scenario-

Based Analysis of Software Architecture. [EEE software, vol 13, no. 6, (November),

pp. 47-55.

82

[13] Colin Potts, Kenji Takahashi and Annie Anton. (1994). Inquiry-Based Scenario

Analysis of System Requirements. /EEE software, vol 11, no. 2, pp. 21-32.

[14] Mitchell Lubars, Colin Potts and Charles Richter. (1993). Developing Initial OOA
Models, In Proceedings of the 15th international conference on Software
Engineering, IEEE Computer Society Press, Baltimore, Maryland, United States,

1993, pp. 255-264.

[15] Kenneth S. Rubin and Adele Goldberg. (1992). Object Behavior Analysis.

Communications of the ACM, vol.35, no.9 (September), pp. 48-62.

[16] Ivar Jacobson. (1992). Object-Oriented Software Engineering: A Use-case Driven

Approach, Addison-Wesley.

[17] John Karat and John L. Bennett. (1991). Using Scenarios in Design Meetings—A
Case Study Example. In John Karat (ed.) Taking Software Design Seriously:
Practical Techniques for Human-Computer Interaction Design, San Diego, CA,

USA, Academic Press Professional, Inc. pp. 63-94.

(18] Markus Mannio and Uolevi Nikula. (2001). Requirements Elicitation Using a
Combination of Prototypes and Scenarios. Telecom Business Research Center,
Lappeenranta University of Technology, Lappeenranta, Finland. [Internet]. Available

from < hup: www.tbre.ti- pubtilet TBRC 500000331.pdf> [Accessed April 5, 2003].

83

[19] Larry L. Constantine and Lucy A. D. Lockwood. (1999). Software for Use: A
Practical Guide to the Models and Methods of Usage-Centered Design. Addison

Wesley Pub Co.

[20] Karen McGraw and Karan Harbison. (1997). User-Centered Requirements: The
Scenario-Based Engineering Process. Mahwah, New Jersey, Lawrence Erlbaum

Associates, Inc.

[21] Daryt Kulak and Eamonn Guiney. (2000). Use Cases — Requirements in Context,

Addison-Wesley Pub. Co.

[22] Scott P. Overmyer. (1999). The Use of Scenarios in Developing, Validating, and
Specifying Requirements for Interactive Systems: A Case Study from a NASA
Project. In The Fifth International Workshop on Requirements Engineering:

Foundation for Software Quality (REFSQ'99), Heidelberg, Germany, 1999, paper 9.

[23] Bonnie A. Nardi. (1992). The Use of Scenarios in Design. ACM SIGCHI Bulletin

vol24, no. 4 (October), pp 13-14.

[24] Mohammed Elkoutbi and Rudolf K. Keiler. (2000). User Interface Prototyping based

on UML Scenarios and High-level Petri Nets [Internet]. Available from

84

<http://www.iro.umontreal.ca/~labgelo/Publications/Papers/atpn-2000.pdf>

[Accessed April 5, 2003].

[25] Richard M. Young and Phil Barnard. (1987). The use of Scenarios in Human-
Computer Interaction Research: Turbocharging the Tortoise of Cumulative Science.

ACM SIGCHI Bulletin vol. 17, no. SI, (May) pp. 291-296.

[26] IBM Incorporation. (1991). Systems Application Architecture: Common User

Access — Guide to User Interface Design — Advanced Interface Design Reference.

[27] Mohammed Elkoutbi and Rudolf K. Keller. (1998). Modeling Interactive Systems
with Hierarchical Colored Petri Nets. In Proc. of 1998 Adv. Simulation Technologies
Conference. Soc. for Comp. Simulation Intl. HPC98 Special session on Petri-Nets.

Boston, MA, April 1998. pp. 432-437.

[28] Richard Kostelanetz. (1980). Scenarios: Scripts to perform. Brooklyn, N.Y.,

Assembling Press Participation Projects Foundation, Inc.

[29] Alistair G. Sutcliffe. (1995). Requirements Rationales: Integrating Approaches to

Requirements Analysis. In Proceedings of Designing Interactive Systems (DIS'95),

ACM Press, New York, 1995, pp. 33-42.

85

[30] Peter Coad, David North and Mark Mayfield. (1995). Object Models: Strategies,

Patterns and Applications. New Jersey, Prentice-Hall.

[31] Charles Sheppard. (1997). Scenarios for Evaluation of Collaboration Tools.
[Internet]. Available from <http://zing.ncsl.nist.gov/nist-icv/documents/node7.html>

[Accessed April 5, 2003].

[32] CaliberRM. (2002). In Starbase Corporation. [Internet]. Available from

<http://www.borland.com/caliber/> [Accessed April 5, 2003].

[33] Rational RequisitePro. (2002). In Rational Software Company. [Internet]. Available

from <http://www.rational.com/products/reqpro/index.jsp> [Accessed April 5, 2003].
[34] AxiomDsn. (1999) In Structured Technology Group, Inc. [Internet] February 21,
2003. Available from <http://www.stgcase.com/casetools/axiomdsn.html> [Accessed

April 5, 2003).

[35] EasyRM. (2000). In Cybernetic Intelligence GmbH. [Internet]. Available from

<http://www.easy-rm.com/> [Accessed April 5, 2003].

86

[36] Peter Haumer, Klaus Pohl, and Klaus Weidenhaupt. (1998). Requirements
Elicitation and Validation with Real World Scenes. /[EEE Transaction on Software

Engineering, vol. 24, no. 12 (December), pp. 1036-1054.

[37] Hong Zhu and Lingzi Jin. (2002). Scenario Analysis in an Automated Tool for
Requirements Engineering, Journal of Systems and Software vol 61, no. 2, (March),

pp. 145-169.

[38] Neil A. Maiden, Shailey Minocha, Alistair G. Sutcliffe, Darrel Manuel, and Michele
Ryan. (1999). A co-operative scenario based approach to acquisition and validation of
system requirements: how exception can help! Interacting with Computers vol 11, no.

4 (April), pp. 645-664.

[39] Ian Alexander. (1997). In Scenario Plus. [Internet] May 10, 2002. Available from

<http://www.scenarioplus.org.uk/> [Accessed April 5, 2003].

[40] DOORS. (2001). In Telelogic Company. [Internet] Available from

<http://www.telelogic.com/products/doorsers/> [Accessed April §, 2003].

[41] Brett McLanughlin. (2001). Java and XML. 2" edition. Sebastopol, CA, O’Reilly &

Associates.

[42] Charles Ashbacher. (2000). Teach yourself XML in 24 hours. Sams Publishing.

87

[43] Adrienne Tannenbaum. (2001). Metadata Solutions Using Metamodels,
Repositories, XML, and Enterprise Portals to Generate Information on Demand.

Addison-Wesley Professional.

[44] Kimmond, R.M. (1995). Survey into the acceptance of prototyping in software
development. In Proceedings from the sixth [EEE International Workshop on Rapid

System Prototyping (RSP’95), Chapel Hill, North Carolina, June 1995, pp. 147-152.

[45] Klaus Weidenhaupt, Klaus Pohl, Matthias Jarke, and Peter Haumer. (1998).
Scenarios in System Development: Current Practice, /[EEE Software, vol 15, no. 2,

(March/April) pp. 34-45.

[46] Neil Maiden, Shailey Minocha, Keith Manning, and Michele Ryan. (1997). A
Software Tool for Scenario Generation and Use. In Proceedings of the Third
International Workshop on Requirements Engineering: Foundation for Software

Quality. Barcelona, Spain, 1997.

[47] Colette Rolland and Camille Ben Achour. (1998). Guiding the Construction of

Textual Use Case Specifications. Data and Knowledge Engineering, vol. 25, no. 3

(April), pp. 125-160.

88

[48] David R. Dowty, Robert E. Walls, and Stanley Peters. (1981). Introduction to

Montague Semantics. Reidel-Klawer.

[49] John F. Sowa. (1984). Conceptual Structures: Information Processing in Mind and

Machine. Addison-Wesley Systems Programming Series. Boston, MA, USA,

Addison-Wesley Longman Publishing Co., Inc.

89

