INFORMATION TO USERS

This manuscript has been reproduced from the microfiim master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

PATH FINDING IN 2D GAMES

CosMIN ADRIAN MANDACHESCU

A THESIS
N
THE DEPARTMENT
OF

COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
ForR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CoNCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

APRIL 2003

© CosMIN ADRIAN MANDACHESCU, 2003

i+l

National Library Bibliothéque nationale
of Canada du Canada
Acquisitions and Acquisitions et .
Bibliographic Services services bibliographiques
Waellington S 395, Wellington
?sm ON KiAm Om:: ON K1A ON4
Canada Canada
Your fie Votre riférence
Our fls Notre rébédeance
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise . de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-77991-2

Abstract

Path Finding in 2D Games

Cosmin Adrian Mandachescu

A major problem faced by game developers these days is the ability to effectively plan
the motion from a Source object to a Target situated in an environment with several
Obstacles.

This paper proposes a framework for game design in which all objects have a
precalculated bounding box. Polygons with four or more edges (depending on the
accuracy desired and the shape of the object) represent the bounding boxes. They
are automatically generated at the creation of the object and are filtered to minimize
the number of vertices while preserving the overall aspect of the object.

The vertices of all the bounding boxes from a region of interest (situated in the
vicinity of the direct path from the Source to the Target) are dynamically triangulated
using a triangulation algorithm. The result of such a triangulation is a 2D mesh
situated in the empty space available for movement. None of the edges generated by
triangulation will cross any hard object (source, target, obstacle.)

A path from the Source to the Target is then derived by navigating on the edges
generated by triangulation as well as on the contours of the hard objects. Further
smoothing is done by removing redundant points from the discrete path while avoiding

collisions.

iii

Acknowledgments

[want to extend my gratitude to all the people who helped me with my thesis.

I will start with Dr. Peter Grogono who introduced me to computer graphics and
helped me discover the beauty of it. Due to the computer graphics course that he
has taught [have decided about five years ago to pursue a career in this field. Dr.
Grogono has supervised my thesis and helped me a great deal with his constructive
comments and suggestions and also with the overall structure of my thesis.

[owe many thanks to Robert Carrier from Genicom Consultants and Madeleine
Jean from ToonBoom Technologies for their professional support and their partial
sponsorship of this thesis.

Thank you Mark Demay for taking the time to read it and for giving me vour valuable
feedback.

Next [want to thank the members of the examining committee for their informative
and well documented remarks.

Finally, [would like to thank my wife Lidia for her never ending support during all
the months it took me to finalize my thesis. [never would have finished it if it wasn’t

for her. To my wife Lidia and my son Robert this thesis is dedicated.

iv

Contents

List of Figures

List of Tables

1 Introduction

1.1

Graphics; animation; games
Outline of the problem

Possible solutions

2 Background and Related Work

2.1

2.2

Tile Design
2.1.1 Planasyvougo
2.1.2 Advance Planning.
2.1.3 Hexagonal Tiles
Real 2D Design
2.2.1 Motion Planning in Robotics

2.22 Steering Behaviors

3 Design

3.1

Map Editor

vii

[S]

- = W

o o o O

3.1.1 TileEditor
3.1.2 Object Processor,
3.1.3 Space Processor
32 Game e
321 EventHandler.
3.2.2 Object Processor L.
3.2.3 Path Processor

4 Implementation

4.1 Implementation of the Map Editor
4.1.1 Data Structures and Algorithms
4.2 Implementation of the Game
4.2.1 Data Structures and Algorithms

5 Results

6 Conclusions and Future Work
6.1 Conclusion

6.2 Future Work

A Source Code

Bibliography

vi

53

59
59
61

63

69

List of Figures

(3]

e

()]

~1

10

11

13

14

15

16

18

Problem 2
Solution 2
Random Tracing L. 7
Contour Tracing 8
Robust Tracing 8
Breadth-first searcho 10
Bidirectional

breadth-first search 10
Dijkstra 11
Depth-first searcho, 11

[terative-deepening

depth-first searcho 11
A*Search 12
A*¥. Nopathtogoal 13
Hexagonal Tiles 14
Visibility Graph 15
Voronoi Diagram 15
Exact Cell Decomposition 16
Graph Representation of Figure 16 16
Approximate Decompositiono 0000 L. 17

vil

Seek Target 19

Obstacle Avoidance 20
Path Following 21
Map Editor 25
Input sprite 28
Traced contour 28
Contour - 170 points 29
Contour - 120 points 29
Point set 30
Delaunay triangulation 30
Voronoi diagram 30
Convex Hull 30

(a) PSLG, (b) Constrained Delaunay. (c) Conforming Delaunay . .. 31

Game description 33
Spritemaps 37
View Menus 38
View of the map editor 39
Tracing (left) 4 Neighbors (right) 47
Different characters 48
Main view of the game 49
Shortest Path after Contour::Dijkstra 52
Shortest Path after Contour::Smooth 52
Sample Scene, 53
Polygonal Contour 54
Constrained Delaunay Triangulation 55
Conforming Delaunay Triangulation 56
Shortest Path - Object View 56

vill

Shortest Path - Polygon View 57

Rich Scene a7
Polygonal Contour, 58
Triangulationo 61
Visibility Graph 61
[nput and output of Minkowski Sum computation 62

ix

List of Tables

o

Tracing the contours of variousscenes 55
Results of various triangulations of the contour extracted from Figure 41 55
Results of applying Dijkstra algorithm to find a path for a chosen

trajectory o o i o e e e e e e 36

Chapter 1

Introduction

1.1 Graphics; animation; games

One of the most common forms of art is the visual representation of the perceived
reality. Art is not identical to reality but it is able to reflect it in a great detail.
Since the beginning of time people were able to effectively express themselves and
describe their surroundings through sketches, drawings and paintings. New tools and
techniques were always developed to complement the existing ones. Computers are
one of the greatest innovations of the last century. Since their creation computers are
being used with great results in many areas but the most fascinating of all is the field
of computer graphics and, in particular, the employment of computer graphics in the
creation of entertainment.

With the help of computers people can, among other things, create, modify and
display visual forms of art. Because of their speed they are the ideal tool used to
create animation and bring images to life. Animation is not a representation of motion
only, but can also be a representation of physical changes that can be light, natural

phenomena, different physical states and changes in color.

An important part of the computer animation world is the creation and consump-
tion of computer games. They are interactively animated visual art. Graphics, in a
game, are the first thing that will strike a user. [t can tell a lot about the quality of
the game based on a few, simple to describe, criteria like the amount of detail used in
its drawings or the realism of its animation. [t is very important, for the success of a
game, that independent or user driven characters in a game employ a high degree of

realism in their movement.

1.2 Outline of the problem

Path planning is an important research area in the field of Robotics. It is also impor-
tant for a set of 2D strategy games because: (1) some of the characters of such games
need to move in their 2D world from one point to another; (2) the characters may
or may not have prior knowledge of the world; (3) the characters may need to plan
their movement before they start moving or they may move without a plan; (4) the
characters may move on a discrete 2D grid or thev may move on the real 2D space.
Searching for a suitable path requires the consideration of several factors of which
the most common are the game intended to run on, ability to avoid obstacles, speed,
and path length. Figure 1 provides an illustration of the problem while Figure 2

illustrates the expected solution.

Figure 1: Problem Figure 2: Solution

Being one of the most common problems in computer games, path finding has
a multitude of solutions. They are not trivial and, although possibly very different,
all otimal solutions have the common goal of reaching a target in the shortest time
possible while avoiding stationary or moving obstacles. Artificial Intelligence and
Robotics are the two areas to which a lot of path planning research is attributed.

The type of games usually benefiting from a Path Finding algorithm are

e First person shooters.

Action adventure games.

Point and click adventures.

e Squad based action games.

Real time strategy games.

1.3 Possible solutions

If one has to design a game that requires a path finding algorithm there are several
options available, depending on the processor speed, amount of memory, complexity
of the game, user group for which the game is targeted, and other factors.

[f the game is intended to be simple and has limited resources then a simple path
finding algorithm may be the most suitable. The best pick might be to design a
tile based game (see Section 2.1) and apply one of the well known shortest paths
algorithms like Dijkstra or Breadth first search. The tiles of such a game will be
considered as the nodes for the algorithm. If these algorithms are more complex than
the game demands, then a simple trial and error algorithm can be used. If speed is
an issue, then the well known A* algorithm will be chosen. However, more advanced

players require a lot more realism from a game than tiles provide. Simple or awkward

solutions are rarely accepted and might detract heavily from the overall quality of
the game.

A more ccmplex game might dedicate more resources to implementing a suitable
path finding algorithm. Continuous 2D/3D movement of characters in a game com-
plicates the solution since there are no intermediate states that can be used as nodes
for an algorithm. The main problem faced by a path finding algorithm is the avoid-
ance of obstacles. One way to solve this is to search the field of robotics for a suitable

collision detection algorithm and adapt it to the specifications of the game.

1.4 Contributions of Thesis

This paper proposes a step by step solution to the problem of planning a path for
an autonomous character in a 2D game. The main goal of this thesis is to define
the necessary steps required to create games in which autonomous characters are
able to find short enough paths between obstacles. Games do not necessarily need
the absolute shortest paths but rather paths that can be found quickly and have
an acceptable degree of smoothness. [will define all the necessary data structures
required to achieve the goal and show a technique, along with the necessary algorithms
that will allow a game designer to implement a complete solution to the path planning

problem.

1.5 Overview of Thesis

This thesis is organized into six chapters and one appendix, where the first six chapters
are labeled Chapters 1, 2, 3, 4, 5, and 6 and the appendix is labeled Appendix A.
Chapter 1 introduces the reader to the problem of path planning and 2D games in
general, and motivates the goals of this work.

Chapter 2 presents previous solutions to the path planning and is organized in 2

sections. The first section analyzes the previous path planning work done in 2D
games and more specifically in the tile games design. The second section presents the
more advanced path planning from robotics research.

Chapter 3 will describe the design of the program used to create game maps that are
suitable for the path planning solution presented in this thesis. it also describes the
design of a game that uses these generated maps. The implementation of the game
editor and the game are further described in Chapter 4.

Chapter 5 shows the results obtained and uses several snapshots of a sample scene
created with my program along with the algorithms applied to achieve our main goal
which is to find a path between obstacles. Some of the measurements are compiled
into a set of tables.

Finally in Chapter 6 [present the conclusion of this thesis and suggest some of the

possible future work.

Chapter 2

Background and Related Work

Strategies developed to solve the problem of finding a path can be divided in two

categories: Tile Design and Real 2D Design with each set having several approaches.

2.1 Tile Design

In this approach the background image as well as the characters, are made of tiles
- rectangular pixmaps of predetermined size. Characters can move only on the tile
grid and some background tiles may be designed as obstacles.

With Tile Design an optimal path can be chosen with each step the character
takes, which we call the “plan as you go” approach, or the entire path may be calcu-

lated in advance, before the first step is taken.

2.1.1 Plan as you go

With this approach the source character does not know in advance about the position

and shapes of the obstacles in the scene. It only knows the position of the target.

e Movement in a random direction

The character situated at the source moves toward the goal. If an obstacle is
encountered, the character picks a random direction to move on. Eventually,
if there are not many obstacles it reaches the goal (Figure 3(a)). However,
in certain situavions the character might get completely blocked especially if
concave obstacles are encountered (Figure 3(b)). Another drawback of this

technique is the fact that characters will behave oddly, choosing awkward paths.

Figure 3: Random Tracing

e Tracing around the obstacle

With this technique obstacles are avoided by tracing around them (Figure 4(a)),
that is moving along their contours. Tracing represents the process of generating
a path by recording all the steps that the source object takes in its search for
the selected target position. The problem here comes in deciding when to stop
tracing. A typical heuristic may be: “Stop tracing when you are heading in
the direction you wanted to go when you started tracing”. This would work in
many situations, but Figure 4(b) shows how one may end up constantly circling

around without finding the way out [Sto99)].

e Robust tracing

Figure 4: Contour Tracing

. “ iITILﬁ

(b)

Figure 5: Robust Tracing

A more robust heuristic comes from work on mobile robots: When blocked,
calculate the equation of the line from the current position to the goal. Trace
until that line is crossed again. Abort if the character ends up at the starting
position again. This method is guaranteed to find a way around the obstacle
if there is one, as is seen in Figure 5(a). (If the original point of blockage is
between the character and the goal when the character crosses the line, the
tracing must not stop, or more circling will result.) Figure 5(b) shows the
downside of this approach: it will often take more time tracing the obstacle

than is needed, making it look pretty simpleminded though not as simple as

endless circling. A happy compromise would be to combine both approaches:
always use the simpler heuristic for stopping the tracing first, but if circling is

detected, switch to the robust heuristic [Sto99].

2.1.2 Advance Planning

[f the “Plan as you go” method does not adequately address the requirements of the
game then a more advanced technique can be employed. In the Advance Planning
method, the path is calculated entirely in advance, before the first step is taken.

Several shortest path algorithms can be used in this case

e Breadth-first search

With breadth-first search the tiles of the map are used as nodes for the network.
The algorithm starts at the source node and examines all immediate neighboring
nodes, then the nodes two steps away, then three, and so on, until the target
node is found. With each step the visited nodes are marked and only new nodes

are considered for the path. The following algorithm is used:

queue Q
node source, tmpl, tmp2;
source.top = NULL;
push source on Q;
while Q is not empty
tmpl = pop from Q;
if (tmpl == target node)
while tmpl != NULL
path += tmpl;
tmpl = tmpl.top;
return path;
else
for each neighbor tmp2 of tmpl
if tmp2.visited

continue;

tmp2.top = tmpl;

tmp2.visited = TRUE;

push tmp2 on Q;
return NULL;

While breadth-first search guarantees to find the shortest path, its main dis-
advantage is that it searches all possible paths instead of directing its search
toward the goal (Figure 6). Also, different steps in the path calculation have
different weights. Diagonal steps are longer than orthogonal ones. An improved
solution can be achieved with a bidirectional search, starting from source and

goal at the same time (Figure 7).

Figure 7: Bidirectional
Figure 6: Breadth-first search breadth-first search

e Dijkstra’s algorithm

Illustrated in Figure 8, Dijkstra’s algorithm is more effective than breadth-first
search. It searches for the shortest path based on node weight (length) and
dynamically updates the weight of each node if better paths are found. Its
main disadvantage, just like breadth-first search, is that it doesn’t focus on the
direction of the goal. The algorithm can be made more efficient by using a

bidirectional search.
e Depth-first search

10

Figure 8: Dijkstra

As in breadth-first search, whenever a vertex v is discovered during a scan of
the adjacency list of an already discovered vertex u, depth-first search records
this event by setting v/s predecessor field 7{v] to u. Unlike breadth-first search,
whose predecessor subgraph forms a tree, the predecessor subgraph produced by
a depth-first search may be composed of several trees, because the search may
be repeated from multiple sources [THC94a]. The algorithm is illustrated in
Figure 9. As an improvement. the iterative-deepening depth first search starts
searching paths that have a length at least the length of a straight line from

source to the goal (Figure 10).

Figure 9: Depth-first search Figure 10: Iterative-deepening
depth-first search

I1

e A¥* algorithm
The A* (pronounced A star) algorithm is an old workhose in the academic Al
community, used since 1968 for solving different kinds of problems. In essence,
the A* algorithm repeatedly examines the most promising unexplored location
it has seen. When a location is explored, the algorithm is finished if that
location is the goal; otherwise, it makes note of that location’s neighbors for

further exploration [DeL00].

A* has a couple of interesting properties. [t is guaranteed to find the shortest
path, as long as the heuristic estimate, h(n), is admissible—that is, it is never
greater than the true remaining distance to the goal. It makes the a very efficient
use of the heuristic function: no search that uses the same heuristic function
h(n) and finds optimal paths will expand fewer nodes than A*, not counting
tie-breaking among nodes of equal cost. In Figure 11 we see how A* deals with

situations that gave problems to other search algorithms [St099).

" W
AN

R -

(a) (b) (c)
g S e R R S

Figure 11: A* Search

The case in which A* is most inefficient is in determining that no path is possible
between the start and goal locations; in that case, it examines every possible

location accessible from the start before determining that the goal is not among

12

them, as shown in Figure 12 [DeL00]

Figure 12: A*. No path to goal

All the pictures from this chapter have been created with the Pathdemo program

created by Bryan Stout. [t accompanies the book Game Programming Gems [DeL00)].

2.1.3 Hexagonal Tiles

Similar to the rectangular tile approach this tiling design uses a hexagonal grid for
its cells (Figure 13). Path finding is the same as with the rectangular tiles except
that more calculations are required due to the increased number of possible directions.
The main advantage is that it allows a greater degree of movement and, generally, the
maps have a better look. Its main disadvantage is that the artwork is more difficult
to create. Tiles are designed to be for general purpose, much like a puzzle that has to
be put back togheter in various ways. The difficulty with the hexagonal tiles comes
when users have to reassemble the puzzle using hexagonal tiles instead of rectangular
ones. This will not affect in any way the performance of the algorithms that calculate

the shortest path.

13

Figure 13: Hexagonal Tiles
2.2 Real 2D Design

With the Real 2D Design the objects and the background are made of nonuniform
drawings (which can be later converted into polygons) that can take any shape and
size. The notion of tiles and path search among adjacent cells can not be used here.

Objects can move in any direction and their movement path can take any shape.

2.2.1 Motion Planning in Robotics

Finding a path through static known obstacles can be be solved by dividing the

problem into two steps:

e Define a graph to represent the geometric structure of the environment.

e Search the shortest path within this structure.

In the early 80’s Lozano-Perez introduced the concept of a robot’s configuration space
[LP83], [Lat91]. The robot is represented as a point - called a configuration - in a
parameter space encoding the robot’s degrees of freedom (dofs) - the configuration
space. The obstacles in the workspace map as forbidden regions into the configuration
space. The complement of these regions is the free space. Path planning for a
dimensioned robot is thus "reduced” to the problem of planning a path for a point

in a space that has as many dimensions as the robot has dofs.

14

The geometric structure of the free space can be found in several ways, most

common being the roadmap approach and the cell decomposition approach.

The Roadmap Approach

The idea is to create a precomputed set of connected path edges on which an object
may move. The shortest path will lie within this set of connected edges. There are
few types of roadmaps among which we mention the Visibility Graph and the Vorono:

Diagram.

Visibility Graph Here obstacles are represented by polygons. Vertices from each
polygon (obstacle) are connected to the vertices of all the other polygons as
long as the straight line connection does not enter the interior of any other
polygon (obstacle). A graph (called roadmap) is formed in this way. Finding
the shortest path, within this weighted graph, is reduced to searching only on

the connected roadmap using a shortest path algorithm. Figure 14 from [Lat91]

is an example of a roadmap.

Figure 14: Visibility Graph Figure 15: Voronoi Diagram

Voronoi Diagram Figure 15 [Lat91] shows a Voronoi diagram which represents a

set of paths composed of points that are equidistant from at least two obstacles.

15

As opposed to the visibility graph this path keeps the moving object as far away

as possible from touching the obstacles.

The Cell Decomposition Approach

Another way to partition the free space is to decompose it into a set of smaller areas

free of obstacles. Two methods are available with this approach:

Exact Decomposition. Vertical lines are drawn from each vertex until an inter-
section with itself, other polygon, or the edge of the space is detected - figure 16.
A dual connectivity graph (figure 17) is extracted and will be used to find the
shortest path. The shortest path is drawn by connecting the centers of these

subspaces.

Figure 17: Graph Representation of Figure 16

16

Approximate Decomposition. This approach uses a recursive method to con-

tinue subdividing the cells until one of the following scenarios occurs:

o Each cell lies either completely in free space or completely in the obstacle
region

e An arbitrary limit resolution is reached

This method is also called a "quadtree” decomposition because a cell is divided
into four smaller cells of the same shape each time it gets decomposed. After
the decomposition step, the free path can then be easily found by following the
adjacent, decomposed cells through free space. A connected graph of the free
adjacent cells is built and the shortest path computation reduces to a search

within this graph. An example of this approach is shown in figure 18.

Figure 18: Approximate Decomposition

Figures 14 through 18 have been reproduced from [Lat91].

2.2.2 Steering Behaviors

Craig Reynolds [Rey99] has described a set of principles that can be used used as a
basis for the movement of autonomous characters in animation or computer games.
Although the term behavior means a set of complex actions and characteristics of a

human, animal, or a complex mechanism, here it is used as a synonym for motion.

17

An autonomous character is an entity in a computer game or animation that requires
little or no interaction from the user and is able to improvise its actions. It differs
from the avatar in a computer game or virtual reality whose actions are directed in
real time by a human plaver. It is also different from the scripted character from a
movie or an animation whose actions are well determined.

For the purpose of clarity the motion of a character is divided into three layers:
e Action Selection: strategy, goals, planning

e Steering: path determination

e Locomotion: animation. articulation

We will only focus on steering and, while mentioning different steering types, we
will emphasize the behaviors that can be applied to path finding. First, a simple,
generic vehicle is defined. Complex shapes can also be steered in a similar fashion
but we will keep the definitions as general as possible. The vehicle model is defined
by its mass, position and velocity vectors, a maximum force and a maximum speed
as well as its orientation.

The physics of steering is simple. At each time frame a steering force is applied
to the vehicle’s point mass. By dividing the steering force by the vehicle’s mass we
obtain a new acceleration which, in turn, multiplied by the current time frame will
give us a new velocity vector. The new velocity vector is added the the old one
resulting in a new speed and direction for the vehicle. The steering force is applied
in incremental steps giving the vehicle a smooth overall trajectory. Although this
velocity alignment model is simple, it is well suited for computer games characters. A
more realistic model would have a lot more factors taken into account for movement
calculation.

Different types of steering behaviors are:

18

Seek (or pursuit of a static target) acts to steer the character toward a specified
position in global space. The behavior adjusts the character so that its velocity
is radially aligned toward the target. The desired velocity is a vector in the
direction from the character to the target. The steering vector is the differ-
ence between this desired velocity vector and the character’s current velocity

vector[Rey99|. (Figure 19)

current
velocity

seek
steering

seek path

desired
velocity

Figure 19: Seek Target

Pursuit or Evasion are similar to seek except that the vehicle steers toward or,
respectively from, a moving target. Optimal techniques for pursuit or evasion
exist in the field of control theory [[sa65]. In natural systems evasion is of-
ten “intentionally” nonoptimal in order to be unpredictable, allowing it to foil

predictive pursuit strategies, see [CM96].

Offset pursuit refers to steering a path which passes near, but not directly into a
moving target. The basic idea is to compute a target point which is offset by
a given radius from the predicted future position of the vehicle, and then use

seek behavior to approach that offset point [Rey99].

Arrival behavior is identical to seek while the character is far from its target. But

instead of moving through the target at full speed, this behavior causes the

19

character to slow down as it approaches the target, eventually slowing to a stop

coincident with the target [Rey99].

Obstacle avoidance behavior relates to avoiding obstacles and not necessarily to
collision detection. The distance between obstacles is considered large compared
to the size of the vehicle. This assumption allows to approximate obstacles by
large circles for the sake of simplicity. This behavior is similar to the offset
pursuit behavior. The goal of the behavior is to keep an imaginary rectangle
of free space in front of the character. The rectangle lies along the character
forward axis and its height is equal to the diameter of the character’s bounding
circle. A collision test is done for each obstacle which is close enough and lies in
front of the vehicle. The simple test considers only the center point (origin) and
the radius of the circle that approximates the obstacle. If collision is detected
the character is steered away from the closest colliding obstacle. An unrelated

obstacle avoidance technique is described in [EW96] (Figure 20)

o

\

=

Figure 20: Obstacle Avoidance

Wander is a type of random steering in which the steering direction is retained and,
with each frame a small displacement (in a random direction) is applied to it.
This avoids an awkward movement generated by applying a random steering
force with each frame. The awkwardness of the latter movement comes from
the fact that the object changes direction and the magnitude of its displacement

with each step. In the former approach the steering direction is kept and only

20

small displacements are applied to it making the path a continuous curve as
oppose to a set of random, connected segments. Another way to implement

wander would be to use coherent Perlin noise [Per85).

Explore is a type of wander behavior in which the character exhaustively covers a

region of space.

Path following behavior enables a character to steer along a predetermined path,
such as roadway, corridor or tunnel. It does not constrain the character to rigidly
follow the path but rather it produces a motion in which the the character moves
very close to the path but it is also allowed to wander along it. This behavior is
similar to a person walking across a hallway. The goal is to steer the character
such that with each step it will move closer to the centerline of the path. This is
accomplished by predicting the future position of the character with each step.
This position is then projected on the centerline of the path and a steering force
is applied to the character’s point mass to steer the character toward the path

(Figure 21).

Figure 21: Path Following

Flow field following is a type of behavior in which the character steers to align its
motion with the local tangent of a flow field (also known as a force field or a

vector field).
Separation, Cohesion and Alignment relate to a group of characters. In each

21

case the steering behavior determines how a character relates to other characters

in its local neighborhood.

Flocking behavior can be obtained by combining the separation, cohesion and

alignment to produce the boids model of flocks, herds and schools [Rey87].

Leader Following behavior causes one or more characters to follow another moving
character designated as the leader. The implementation is similar to arrival
behavior with the arrival point slightly behind the leader. If a follower finds
itself in front of the leader it steers laterally before resuming arrival behavior.

To avoid bumping into each other the followers use the separation behavior.

By combining some of the steering behaviors we can create a path finding model.
[f we have a source and a target objects we can draw a straight line path from the
source to the target. Then we combine the path following behavior, to keep the
source close to the desired path, with obstacle avoidance. The arrival behavior is
used as the source approaches the target. If the target is moving we can also add the
pursue behavior to our combination. Since the steering behaviors are well defined

and relatively independent they can be implemented separately and used concurrently.

Chapter 3

Design

My thesis proposes a solution to the Path Finding problem that can be viewed as
a combination of a modular design and some efficient techniques used to represent
shapes as well as algorithms for navigating the 2D space. [will use “divide and
conquer” since characters or obstacles in a game are small enough to make this tech-
nique an obvious choice. Also, movements of a character from one frame to another
are small compared to the the full size of its navigational space. Shapes will be rep-
resented by polygons which are very flexible making this design scalable if more (or
less) detail is desired in a character. We have to keep in mind that the more detail
we use the more computation is required. Characters, obstacles as well as all the
other objects from the game are expected to be hand drawn by an artist using a
paint-like program that produces RGB pixmaps. I will not provide nor describe the
paint program used to create the art but [will describe the output format that is
expected from it. The polygons from my design will be the actual contours of the
2D art that will be extracted after the characters (or the other objects) are drawn
and will be saved in data structures used by the game. They will be hidden from
the player and only made “visible” to the algorithms using them. They will be the

geometrical representation of characters. As for the 2D space that is available for

23

movement (the empty space) I will represent it as a triangulated mesh. This rep-
resentation, which will be automatically generated by a triangulation algorithm, is
suitable for navigational algorithms. especially when a character has to navigate in
tight spaces between obstacies.

To accomplish everything described above [will have to separate my design into
two parts. First [will define a map editor used for the creation of the background

maps. The design of the actual game will be done in the second part.

3.1 Map Editor

The Map Editor is an independent program used to create and modify maps. It is a
simple tool that must be able to load graphics from a file and selectively paste them
onto a canvas. The generated canvas is saved and used as a background scene for the
game. Extra functionality will be added to the design of the Map Editor which will
enable it to perform some otherwise expensive tasks. Much like a good compiler that
evaluates some of the program’s tasks at compilation time, the Map Editor will run
a few computation-intensive algorithms whose output will be used by the game.

In Figure 22 we show the design diagram of the editor.

We must specify here that game maps cannot be generated automatically from
graphics files unless terrain generators are used. Qur game model does not address
this possibility nor is it able to use the output of such terrain generators unless they
obey certain rules. For the purpose of our design we will consider the maps to be
generated interactively by a human player.

The Map Editor has a user interface connected to three modules. The UI is used
by a plaver to interact with the main modules of the editor: the Tile Editor, the

Object Processor and the Space Processor. The description of these modules follows.

24

Map Editor UI

. . ' Space Processor
Tile Editor

(Load j . Object Processor ; (Tnangulator)

(Select J (Contour Tracer) E\'Iesh Genorator)

(Paste j @Box Generator)

(Save j g[BBox Manager]g

Figure 22: Map Editor

3.1.1 Tile Editor

The artwork for a game is created in a separate process by people with artistic talent
and requires specialized software. For a tile based 2D game the final product is a set
of pixmaps representing the “building blocks”™ for the graphical interface of the game.
These pixmaps have usually identical sizes but this is not a rule. To simplify their
management pixmaps are packaged together into a single file which is often referred
to as the tile set.

A tile editor must be able to use such a tile set to create a background for a game.
A more general tile set would have all pixmaps of equal size with the larger drawings
broken into smaller tiles. This constraint will simplify not only the design of the tile
editor but also the addition of new tile sets to the game.

We design our tile editor to have the most basic functionality which can be grouped

into four parts:

e Load. To load a tile set we must know in advance several characteristics of the

set:

N
w

Width and height of a tile
The number of tiles on a row
The number of rows in the set

The number of pixels between the edge of the tile set and the first tile (on

the x and y axis)
The number of pixels between two tiles on the same row

The number of pixels between tiles of two consecutive rows

The file format of the tile set is of little importance since we can always convert
it to a “supported” format. Internally the loader will convert the file into an

RGBA format.

Select. After loading, the tiles are displayed in a designated window from
which users can select them. Only one tile can be selected at a time and its

selection is marked by a highlighted contour.

Paste. Selected tiles can be pasted onto a canvas by indicating a set of coor-
dinates with a mouse click. The coordinates are then rounded to a grid such
that pasted tiles do not overlap. Pasting is done by simply replacing the pixels
from the designated “spot” on the canvas with the pixels of the selected tile.
One or more tiles from the tile set is an empty pixmap and may be used to
erase a previously “pasted” tile. The canvas onto which the tiles are pasted
can have an arbitrary color which may be visible under a tile. Although tiles
are rectangular the drawing contained by them can have any shape leaving the

unused space completely transparent.

Save. Background maps are created by repeating the select and paste process.

When finished, the map will be saved in a file.

3.1.2 Object Processor

A background map. in its final form, contains objects that represent the static obsta-
cles for the game. All the other objects that may change their position or orientation
between two consecutive frames are added in a separate process and will be dealt
with separately.

The role of the Object Processor is to identify the objects (obstacles) from a
background map (presented as an RGBA pixmap) and to extract, classify and store
all relevant information about them. To accomplish its tasks the Object Processor is

divided into three components :

The Contour Tracer contains a computation intensive process which has
the goal of finding all the objects from a map and trace their outer contours.
Objects might have holes in them (inner contours) which the process will
identify correctly as holes but, since they are not relevant for path tracing,
they will be traced and ignored. The holes have to be traced because they
represent a contour and in order to find all the outer contours the process must
find all contours and discard the inner ones. To find the contour of an object
within a pixmap the object must differentiate itself from its surrounding. This
is accomplished in the Tile Editor by having a distinctive color or transparency
value (the A from RGBA) for the background pixels. The contour of an
object is stored in a data structure as a set of consecutive points. A point is
defined by a pair of z and y coordinates. Additional objects can be added to the
game by tracing their contours in a separate process. All the objects that may
be animated throughout the game can only be traced separately since single

objects might have different contours for consecutive time frames.

The process is shown in figure 23 (input) and figure 24 (output). The resulting
contour for this particular sprite (pixmap) has 1190 points. The total number

of points is high but can be substantially reduced in the next step.

27

Figure 23: Input sprite Figure 24: Traced contour

The Bounding Box Generator imports the traced contours and applies a
series of algorithms to them in order to reduce their number of points while
preserving their shape. A contour traced in the previous step contains one
point for each corresponding edge pixel such that two consecutive points rep-
resent the coordinates of two adjacent pixels. The total number of points
can be greatly reduced if we replace consecutive collinear points by the two
points representing the ends of the corresponding segment. Further more we
can have a tolerance of £5° or more for collinear points, i.e. three consec-
utive points making an angle of 180° + 5° are considered collinear. Typi-
cally. a bounding box of an object in 2D, consists of four points that are
Pi{Zmin: Ymun)s Po(Tmin, Ymaz)s Ps(Tmazs Ymaz)s Pi(Tmazs Ymin)- Such an approach
approximates every shape with a rectangle and might be suitable for many
applications including games. However, a more complex shape is better ap-

proximated by using more points.

Figure 25 shows a bounding box which has been filtered down to 170 points
without a visible loss of detail. If more filtering is applied the contour loses

detail as can easily be seen in Figure 26.

28

Figure 25: Contour - 170 points Figure 26: Contour - 120 points

The Bounding Box Manager is responsible for the storage and the manage-
ment of the bounding boxes. [ts main tasks consist of searching for a particular
contour given the coordinates of one of its points, as well as finding the closest
contour given a specific set of coordinates. To improve searching, each contour
is stored together with its generic (rectangular) bounding box. This will ensure

a fast selection of potential candidates for the more refined search.

3.1.3 Space Processor

After identifying and classifving all the objects (obstacles) from a map we are left with
an unoccupied area (space). This space is the main terrain available for movement
for the animated characters. It too can be covered with artistic drawings giving the
user a more pleasant view of the game. These drawings don’t have any functional
value and can be added to the game at a later stage or simply be excluded from the
Contour Tracer. The role of the Space Processor is to create a navigational mesh
that will cover the entire available space and will exclude all the obstacles. Such a
mesh is obtained by performing a Delaunay triangulation on the contour points of all
the obstacles traced by the Contour Tracer. The mesh will be invisible to the game
player and only be used for path computation.

At this stage we need to define several geometric terms as follows:

29

e A Delaunay triangulation of a point set (Figure 27) is a triangulation of the
point set with the property that no point in the point set falls in the interior of
the circumcircle (circle that passes through all three vertices) of any triangle in

the triangulation (Figure 28).

Figure 27: Point set Figure 28: Delaunay triangulation

¢ A Voronoi diagram of a point set is a subdivision of the plane into polyg-
onal regions (some of which may be infinite), where each region is the set of
points in the plane that are closer to some input point than to any other input
point (Figure 29). (The Voronoi diagram is the geometric dual of the Delaunay

triangulation.)

Figure 29: Voronoi diagram Figure 30: Convex Hull

30

e The Convex Hull of a point set S is the smallest convex polygon in the plane
that contains all of the points in S. A polygon is convex if and only if for any
two points in the polygon boundary, the segment connecting the two points is
contained entirely inside the polygon. Also no extension of the segments on the

boundary of the convex polygon lies inside the polygon (Figure 30).

£
A =
;LWYA

Figure 31: (a) PSLG, (b) Constrained Delaunay, (c) Conforming Delaunay

e A Planar Straight Line Graph (PSLG) is a collection of points and seg-
ments. Segments are edges whose endpoints are points in the PSLG, and whose

presence in any mesh generated from the PSLG is enforced (Figure 31(a).)

e A constrained Delaunay triangulation of a PSLG is similar to a Delaunay
triangulation, but each PSLG segment is present as a single edge in the trian-
gulation (Figure 31(b).) (A constrained Delaunay triangulation is not truly a

Delaunay triangulation.)

e A conforming Delaunay triangulation of a PSLG is a true Delaunay trian-
gulation in which each PSLG segment may have been subdivided into several
edges by the insertion of additional points, called Steiner points. Steiner points

are necessary to allow the segments to exist in the mesh while maintaining the

31

Delaunay property. Steiner points are also inserted to meet constraints on the

minimum angle and maximum triangle area (Figure 31(c)) [She96].

The navigational mesh created by the triangulation process is similar to the 2D
grid from the tile-based games but has several advantages. Each triangle from the
mesh can be compared to a grid cell, except that a triangle can cover a larger area
since its vertices connect the obstacles from the game. With non-uniform triangles
the mesh can represent very well the fine detail from the input which will generate
many small triangles per surface unit, as well as large spaces that need only few large
triangle for accurate representation. This representation will help the collision detec-
tion algorithms since large unoccupied spaces will be processed very fast compared to
the processing of the same spaces in a 2D grid game design. Another advantage of the
triangulated mesh representation is that one triangle is connected to three adjacent

“cells” rather than four resulting in faster computation of the next direction.

3.2 Game

We proceed next to the design of the game itself. The idea is to keep it as simple as
possible and emphasize only the aspects related to our goal which is Path Finding.
The main components of the game are illustrated in Figure 32 and are described in

the following subsections.

Path Processor

[Mesh Navigator J

? Event Handler

g&(eyboard Handler J '

(Triangulator)

&bstacle Avoidance)

(Mouse Handler)

Object Processor
: @Iotion Processor)

Figure 32: Game description

3.2.1 Event Handler

Our game must be interactive and, therefore, it must have a way to receive input
from a user. The Fvent Handler receives events from the user and dispatches them
to the appropriate receptors. For the purpose of this game we will consider as external
devices only the mouse and keyboard. Other devices like joystick and steering wheel
can be easily added at a later stage.

The Keyboard Handler is necessary because the keyboard represents a convenient
way of sending commands to the game by simply pressing a key. In our case we have
animated characters moving within the borders of the game and we want to be able

to interactively make the characters appear or disappear. By pressing different keys

33

we can control the creation/destruction of various characters, for example we can use
E to create an eagle and W to create a woodpecker. With the kevboard we can
also control some aspects of the character’s motion like Start, Stop, move to the Left,
Right, Up or Down. We can also increase or decrease the speed of a character by
pressing predetermined keys.

The Mouse Handler receives various events like Select or Destroy a character.
The mouse is also used to put a character in motion and to set or change its velocity.
Simply select a character with a mouse click and, while keeping the mouse button
pressed, chose a new direction and release the mouse button. The selected character
will move on the direction set from the point where the mouse was pressed until the
point where the mouse was released. The new speed will be a ratio of the length of
the direction vector and the time it took to generate the new direction. That means
that characters can reach fast speeds if the mouse is moved quickly, with the opposite

being true as well.

3.2.2 Object Processor

This component controls the animation of all the characters as well as their creation
and destruction. All characters available in the game can be duplicated and move
independently. Their management consists of animating as well as showing and hiding
the characters according to users requests (given by pressing different keys or mouse
clicks.) Animation for these characters is achieved in two ways. The characters may
change their position, direction of movement and speed from frame to frame. They
also change their shape with moving. This is achieved by keeping a set of several
different pixmaps for each character. Each pixmap from the set corresponds to a
different time frame. The Object Processor is responsible for drawing each object’s
pixmaps in consecutive order while they are animated or drawing one of their pixmaps

(from the set) when they don’t move.

34

3.2.3 Path Processor

The Path Processor contains a triangular mesh generated by the triangulator and its
main task consists of finding the shortest path from one point (Source) to another (
Target) while avoiding obstacles. The triangulator generates a set of non-intersecting
edges that connect the obstacles from the game. For static obstacles the triangulation
was done in the Map Editor and saved into a file. This approach saves the processor
for other computations during game play. Dynamic obstacles require the triangulator
to generate the connecting edges every time objects move in a very active game.
However, in this game I don’t support dynamic triangulation at this stage. The Mesh
Navigator is responsible for effectively choosing the edges on which to navigate during
the shortest path calculation. It needs to keep the vertices along with their weight
and neighbor list in a very efficient data structure (described in section 4.1.1) to

be able to generate the shortest path in real time.

35

Chapter 4

Implementation

To simplify the implementation I choose a graphics engine that provides a rich inter-
face and has a lot of functionality included. [have evaluated several game engines
that seem good candidates for my design but most of them lacked appropriate doc-
umentation and examples. After some research I found the Qt library which is a
free GUI library that can be used as a game engine as well. Its documentation can
be found at [Tro02]. Its main advantage over most free graphics engines are rich
documentation, plenty of examples, is developed in C++, it is largely used and has
its own FAQ list, it comes together with the source code and last but not least the
code developed with Qt runs on any platform (Unix, Linux, Windows, Mac) without
any modification. Qt is mainly a GUI library and, therefore, most of its functionality
deals with creating many types of buttons, lists, sliders, menus etc. It also has a
powerful Canvas module that [will use to implement the game.

As for the implementation, the Editor and the Game will be developed in C++,
using some powerful goodies that come with it like the Standard Template Library
(STL). The entire code of this project was written by me in C++ with the only
exception being the triangle library (used for triangulation) which I took from

[She96].

36

4.1 Implementation of the Map Editor

One of the functionalities of the Map Editor is to load sprite maps which are graphics
files containing art for the game. After some searching [found a rich sprite library
(SpriteLib) created by Ari Feldman. The SpriteLib contains many maps for various
types of games. The Map Editor will only use the two maps containing tile blocks to

built the environment (Figure 33).

Figure 33: Sprite maps

The tile blocks are small pixmaps assembled together into a file. The two sprite
maps used here contain 16 by 16 pixel pixmaps with a 1 pixel separation between
them. The square shape of the pixmaps does not limit its content to be square,
i.e. the art drawn into a pixmap does not need to cover its entire surface. It is
important to know the specification of the sprite maps since they are not all the
same. Usually, with free sprites, the game has to adapt to the specifications of the
maps. A player using the Map Editor will only select these pixmaps and paste them
onto a background map with the latter to be used by the game.

The main view of the Map Editor is shown in Figure 35. The editor is divided
in two areas which we call views. On the left side we have the Tile View and on

the right side the Map View. Both views are implemented using the Canvas Class

37

provided by the Qt library [Tro02]. The Tile View is used to display sets of sprites

which can be loaded from one or multiple files.

Figure 34: View Menus

Figure 34(a) shows the menu associated with the Tile View. The two options
available are Load Tiles and Add Tiles. Both options are used to load sets of tiles
into the Tile View and while the first option crases the ~ntire view before loading the
sprites, the second option adds a new set of tiles at the end of the previously loaded
set.

The Map View displays the edited background map. The options available for

this view are shown in figure 34(b) and they have the following functionality:

New erases the entire map and creates a new empty background of a user specified

width and height.

Load opens up a previously saved background map. The currently displayed map

is erased.
Save writes back to disk the modified background map.

38

T

ARKIHRE AN L]

Figure 35: View of the map editor

Save As allows the user to save the current map under a different name.

Back Color opens up a color dialog and allows the user to select a new color for
the background. The background color is replaced with the selected one. To
differentiate between the color of the background and the color of the tiles we

set the alpha value of the background color to zero.

Clear Color erases all pixels from the background map that have the selected
color. A color is selected by picking it with the mouse from the background

map. Pixels are erased by replacing their color with transparent black.

Trace Contour. After pasting tiles on the background map we trace the contour of
all the objects and generate a list of polygons. Tracing the contour is equivalent
to the extraction of the boundary of a polygon. Different polygons don’t share
any common areas, do not intersect in any point, and don’t have holes. We are

not interested in the information provided by the holes and, therefore, we discard

39

them immediately after tracing. Due to the tracing technique we cannot have
intersecting polygons since by tracing two intersecting objects will generate a
single contour. Tracing the contour of an object will result in a set of connected
points which lie on its perimeter. At this stage for every perimeter pixel of each
object we generate a point in our list. A polygon is represented by a linked
list of points with the first and last points being the same. By connecting the
consecutive points of a polygon list we are able to recreate the original object’s

perimeter (see 3.1.2).

Smooth Contours applies smoothing and point reducing algorithms to the poly-
gons traced in the previous step. Consecutive collinear points are removed and
the remaining points change their coordinates to smooth the jagged edges of
the traced objects. Jagged edges are always formed at tracing because, when
tracing a contour on a pixmap every turn the algorithm takes is £90°. A 45°
straight line resembles a staircase when traced. Smoothing also changes the
coordinates of all the points from a polygon to floating point numbers from the

initial integer value obtained during tracing (see 3.1.3.)

Triangulate Uses the triangle algorithm by Jonathan Richard Shewchuk [She96]
to obtain the constrained Delaunay triangulation of all the points of all the
contours. In this triangulation every edge from the traced polygons is present
as a single edge in the triangulation. All edges belong to a triangle and none
of the triangles intersect. No edge resulted from tracing is shared between two
triangles. They only belong to a single triangle. Some edges may not belong
to any triangle if they lie on the convex hull of all the points of the entire
scene (Figure 30.) The polygons traced in the previous step are passed to the
triangulation algorithm as holes and, therefore, none of the additional edges
resulting from triangulation will lie inside a polygon. The result of this process

is a triangular mesh. The final mesh contains only the original points. No extra

40

points are added during triangulation. (see 3.1.3 and figure 31(b).)

Refined Triangulate [s similar to the above triangulations with the exception that
the triangulation is a conforming Delaunay triangulation obtained by adding ex-
tra points (called Steiner points) to the original set (see 3.1.3 and figure 31(c).)
The advantage of using the conforming Delaunay is that the resulting mesh is
made of smaller, uniform triangles. Its main disadvantage is the increased size

due to the addition of the Steiner points.

The tiles from the Tile View are stored as separate pixmaps in a list. The pixmaps
are drawn onto the view using a DISPLAY _SEPARATOR. number of pixels be-
tween them. All tiles have a width equal to TILE_WIDTH and a height equal to
TILE_HEIGHT. The width of the view area can be obtained from the view object
using the method width(). As we mentioned above, a user will select tiles from the
Tile View and paste them onto the Map View. Selection and paste are done with the

mouse according to the following:

¢ Selection. Once the user clicks in the Tile View area, the coordinates of the
mouse are used to find out which pixmap is selected by calculating its position
(index) in the pixmap list as follows:

width()—DISPLAY_SEPARATOR

Nt W = 5rspLAV.SEPARATOR + TILE_WIDTH °

.] o MouseEvent—z() .
int column = GrsprAv SEPARATOR + TILE_WIDTH *
int row = MouseEvent—y()

DISPLAY_SEPARATOR + TILE_HEIGHT '

int index = row x w + column ;

e Paste. Once a tile is selected from the Tile View it can be pasted onto the

background map starting at position P(z,y) with, z and y computed as follows:

int £ = MouseEvent — z() — (MouseEvent — z() % TILE_WIDTH) ;
int y = MouseEvent — y() — (MouseEvent — y() % TILE_HEIGHT) ;

41

4.1.1 Data Structures and Algorithms

As mentioned above, the programming language used for this project is C++. [have
also used the Standard Template Library as much as possible [SGIO03].

For the User Interface (UI) of this project I have used the Qt library [Tro02]
which provides a rich set of widgets and also includes a Canvas module with graphics
routines like drawLine which draws a line of a specified color from two points with
integer coordinates. [will not describe the functionality of the Qt library nor the
specific modules used to create the UI since they are not relevant to this thesis. I
will however mention that [find Qt to be the most advanced UI development kit
presently available.

The basic data structures I used for this project are:
Point creates a 2D point. Method names are intended to be self explanatory.

#include <list>
class Point {

public:
Point(float p_X, float p_Y);
Point() ;
“Point () {};
Point& operator = (Point p_Value);
int operator == (const Point& p_Value) const;
int operator != (const Point& p_Value) const;

float X() { return m_X;};

float Y() { return m_Y;};

float Distance(Point& p_Point);
private:

float m_X;

float m_Y;
b
typedef list<Point> PointList;

42

Distance returns the floating point distance from this point to p_Point. The

operators are required in order to place the points in the STL list.

Segment is a simple 2 point set. [also define a list of segment and, therefore,
Segment needs to declare some operators. Segment stores its length to avoid

computing it all the time.

class Segment {

public:
Segment () ;
Segment (Point& p_P1, Point& p_P2);
“Segment () {;1};
float Length() { return m_Length; };
Segment& operator = (Segment p_Segment);

int operator == (const Segment& p_Segment) const;

int operator !'= (const Segment& p_Segment) const;

Point operator [] (int p_Index) conmst;

int Intersect(const Segment& p_Segment, Point *p_Point = NULL);
private:

Point m_A;

Point m_B;

float m_Length;
i
typedef list<Segment> SegmentList;

The method Intersect computes the intersecting point between this segment and

p_Segment. It return 1 if the segments intersect and returns the intersection in

p_Point. Otherwise it returns 0.

Polygon is a list of consecutive points with first and last points being the same.
[t keeps the boundary information (contour) extracted from the distinctive
objects from the edited map. In figure 42 is displayed the set of extracted

polygons from the objects shown in figure 41.

43

class Polygon {
public:
Polygon();
Polygon(PointList &p_List);
“Polygon();
void AddPoint(Point p_Point);
Polygon& operator = (Polygon p_Value);
PointList& GetPointList() { return m_PointList;};
int isHole();
void Smooth();
void RemoveCollinear();
void RemoveDuplicates();
// Given the segment AB return the intersection points and
// the segments intersected
int Intersect(Segment& p_AB, PointList* p_Points = NULL,
SegmentList* p_Segments = NULL);
// computes an interior point to the polygon
void InteriorPoint(Point& p_Point);
private:
// returns 1 if the three points are collinear
int Collinear(Point& p_P1, Point& p_P2, Point& p_P3);
PointList m_PointList;
//keeps its bounding box used by Intersect
float m_MinX;
float m_MaxX;
float m_MinY;
float m_MaxyY;
I
typedef list<Polygon> PolygonList;

Mesh is the structure that I chose to hold the set of all edges of all the polygons
together with all the edges resulted from triangulation. I used a Hash Map to

take advantage of the fast search available.

class HashFunc {

44

public:
size_t operator() (Point p_Point) const

{
return (size_t) (p_Point.X() + p_Point.Y());

};
typedef hash_map<Point, PointList, HashFunc> MapType;
typedef MapType::value_type ValuePair;
class Mesh{
public:
Mesh() ;
“Mesh();
void AddSegment(Segment& p_Segment);
void RemoveSegment (Segment& p_Segment);
SegmentList& GetSegments() { return m_Edges;};
MapType& GetVertices() { return m_Vertices;};
private:
MapType m_Vertices;
SegmentList m_Edges;
}

Contour is the main class of my project and does most of the work from tracing the

contour to finding the shortest path.

class Contour{
public:
Contour() ;
“Contour();
void TraceContour(unsigned char *p_Img,
int p_Width, int p_Height);
void SmoothPolygons();
void Dijkstra(Point& p_Source, Point& p_Target,
PointList& p_Points);
void SmoothPath(PointList& p_Points);
PolygonList& GetPolygons() { return m_Polygons; };
Mesh& GetTriangles() { return m_Triangles; };

45

private :
int isEdgePixel(unsigned char #p_Img, int p_Width,
int p_Height, int p_Pixel);

// turn left or right for tracing

int changeDirection(int p_PrevRow, int p_PrevCol,
int p_Row, int p_Col,
int *p_NextRow, int *p_NextCol,
int p_Direction);

PolygonList m_Polygons;

Mesh m_Triangles;

};

To create a mesh a user will have to load one or more tile sets (see figure 33) into the
left side of the editor (see figure 35). Then, using any combination of these tiles, the
user must create a map by selecting tiles from the Tile View and pasting them onto
the Map View. Once the desired map has been created the next step is to extract
the contour. With a right click of the mouse in the Map View the menu containing
all the options shows up (see figure 34.) By selecting the option Trace Contour
the boundary information is extracted and displayed on the screen. At this stage
the contours contain the maximum number of points possible - one point for each
boundary pixel. The polygons are stored in the Contour Class.

A contour is extracted by starting at the rightmost pixel and keep going until the
first edge pixel is encontered. An edge pixel is a marked (black or otherwise) pixel
that has at least one of its 4 neighbors unmarked (white.) Once a black pixel is
encountered turn left (relative to the direction of the last move) else if a white pixel
is encountered turn right. Add all edge pixels in the PolygonList defined above. Stop
and close the polygon when the tracing arrives at the starting point. Continue in the
same way for all the remaining objects. Figure 36 shows the 4-Neighbors of a pixel

as well as the principle of tracing around a contour.

46

Figure 36: Tracing (left) 4 Neighbors (right)

The program traces the contour in the method Contour::TraceContour.
After all the polygons have been traced and stored in the PolygonList of the Contour
object the contours may be smoothed with Contour::SmoothPolygons to reduce
the number of points. After tracing and smoothing, the polygons are triangulated
using the triangle program [She96]. I have also defined a Triangle class which uses
triangle to triangulate. I don’t list the Triangle class here since it has mostly methods
that deal with the specifications of ¢triangle. At this stage we have created a mesh

stored in the Contour object and displayed on the screen (see figure 43)

4.2 Implementation of the Game

The game, like the Map Editor, is implemented in C++ and uses the Qt library
[Tro02]. The Canvas module of the Qt library provides routines to draw pixmaps.
A timer is used to repaint the main view at regular intervals which I set to 90 ms.
That means that every 90 ms different pixmaps can be drawn in different places
which makes the game animated. The game is simple and its main function con-
sists of drawing animated characters that move freely within the space of the game.
The background on which the characters move is created by the Map Editor and

contains obstacles. The game can handle any number of animated characters at the

47

same time. Characters are created by pressing a specified key and duplicates are also
allowed. In this game [have 8 types of animated characters and one animated ex-
plosion. Characters are animated in two ways. One is to change their positions with
every frame and the other is to draw themselves differently every frame. Figure 37
shows some of the characters used by this game and their different pixmaps. All the
characters used have been gathered from the internet. I have spent a great deal of
time to find suitable characters for my game and to manually edit/scale/place each

frame of each character to make it suitable for this game.

e 23& BT [BEES

Figure 37: Different characters

The main view of the game, with some characters roaming freely, can be seen in

Figure 38.

4.2.1 Data Structures and Algorithms

The classes used to hold the animated characters inherit from QCanvasSprite and
the whole game is drawn on a QCanvas [Tro02]. An animated character can have
any number of pixmaps. These pixmaps are drawn one after the other in consecutive
frames. This gives a character the animated effect. The game employs the same data
structures as the Map Editor described in section 4.1.1. [have added here an extra
structure to hold a Point and its Weight. This structure is the main data type
stored in the priority queue used by the shortest path algorithm. The class is defined

as follows:

class PQElement {
public:
PQElement (Point& p_Point, float p_Weight = MAXFLOAT);

48

PQElement () ;

“PQElement () {};
PQElement operator

int
int
int
int

int

operator <

operator
operator
operator
operator

v A
"

\4

Figure 38: Main view of the game

= (const PQElement& p_Value);
const PQElement& p_Value) const;

const PQElement& p_Value)
const PQElement& p_Value
const PQElement& p_Value
const PQElement& p_Value

float GetWeight() { return m_Weight; };

Point& GetPoint ()
private:
Point m_Point;
float m_Weight;

{ return m_Point; };

49

typedef list<PQElement> PQueue;

As with the previous classes the declaration of the operators is needed in order to
store the objects in an STL list.

The algorithms used here are Dijkstra’s Shortest Path which is defined in the Con-
tour class as well as Contour::SmoothPath and Polygon::Intersect. [apply
these algorithms to find the shortest path between 2 given Points 4 and B. The
2 points define a Segment which I will refer to as AB. To find the shortest path
between A4 and B I compute the intersection of 4B with all the Polygons from my
PolygonList (stored in Contour). Let P be the intersecting Point that is the closest
one to A and @ be the intersecting Point closest to B. In the next step I use Dijk-
stra’s shortest path algorithm to find the shortest path (on the triangulated mesh)
between P and Q. This algorithm is applied on the Mesh structure [use to store
all the contours and their triangulation. After Dijkstra [have a path (represented
as a PointList) consisting of a straight line from 4 to P, the shortest path from P
to @ and another straight line from @ to B. In the last step [smooth this path by
straightening out consecutive segments that do not intersect other polygons (another
Polygon intersection check here). At the end of this stage a short enough path is
produced. A short enough is not necessarily the shortest path but is enough for a
realistic short path in a game. The algorithms employed here are my implementation

and use the specific data structures described previously. Their description follows.

Polygon::Intersect. Check intersection of this Polygon with a given Segment
If there is an intersection return 1 and also store every intersection Point in the
given PointList and every intersecting Segment in the SegmentList. If there
is no intersection return 0. To speed up the process I check first if any of the
two Points of the given Segment lies inside the bounding box of the Polygon.
The algorithm passes through all the Points of this Polygon (two consecutive

Points form a Segment) and checks their Segment’s intersection of with the

50

given Segment. Let 4,B be the given Segment’s Points and C and D be two
consecutive Points on the contour of the current Polygon. The directed line

segments AB and CD are given by the equations:
AB=A+rx(B-A);relo0,1] (1)

CD=C+sx(D-C);se|0,1] (2)

If AB and CD intersect, then equation 3 is true for some r and s

A+rx(B-A4)=C+sx(D-C) (3)

By solving equation 3 for z and y we can find the values of r and s. If r € [0, 1]
and s € [0, 1] then the two segments intersect. and their intersection point P is

given by the equation 4.
P=A+rx(B-4) (4)
[OR098] [Kir92]

Contour::Dijkstra [have implemented Dijkstra’s Shortest Path algorithm follow-
ing the description from [THC94b]. Again STL has been of great help here.
Polygon::Intersect (described above) has returned the closest and farthest in-
tersected Polygon Segments. [t did not search for the intersections with the
entire triangular mesh, specifically it didn’t search within the segments resulted
from triangulation. This approach effectively narrows the search and saves on
computations. For implementation I used the priority queue PQueue which
is defined above to be a list<PQElement>. [have also defined a hash_map
[SGI03] to hold the computed predecessor of each vertex. The full implementa-

tion of Dijkstra’s algorithm is available in the section A.

Contour::SmoothPath. The shortest path generated by Contour::Dijkstra con-

tains a path composed of segments from the contour of the polygons as well as

51

segments generated by the triangulation and represents only the shortest known
path. This path is not smooth and is visibly longer than necessary but it is calcu-
lated quickly and contains a small number of points. Contour::SmoothPath
will smooth this path by removing unnecessary points. The idea is that 2 con-
secutive Segments AB, BC might be reduced to the segment AC if by this
elimination we don’t create Polygon collisions. Figure 39 illustrates the output
of the Dijkstra’s algorithm run on the triangulated mesh. The path has 41

Points. After Smooth we are left with a better path and with only 7 Points.

Figure 39: Shortest Path after Figure 40: Shortest Path after
Contour::Dijkstra Contour::Smooth

Chapter 5

Results

The results of this project are shown in Fig. 41 through Fig. 48 and Table 1 through
Table 3. The computer used for this project has an AMD Athlon XP 1800 CPU and
256 MB memory. Figure 41 and Figure 47 are two scenes created with the MapEditor
described in section 4.1. The former figure contains a scene with objects that have
more or less a straight boundary, while the latter figure contains a set of objects with

non-straight boundaries.

Figure 41: Sample Scene

After extracting the object boundaries (tracing the contours) from the two scenes

53

and applying a set of smoothing algorithms (see section 4.1) we are left with a set
of Polygons shown in Fig. 42 and Fig. 48. We show in table 1 the results of contour
tracing and smoothing applied to the two maps. We can see that both maps generate
about the same number of output points and it takes about the same time to extract
and smooth their boundaries. The final number of points differ by a large amount

because of their shapes.

Figure 42: Polygonal Contour

Next we triangulate the polygons of Figure 41 using the two available triangulation
methods. With the constrained Delaunay triangulation we have the same number of
output points as we pass at the input and the result of triangulation is shown in
Figure 43. Figure 44 shows the result of applying the conforming Delaunay algorithm
to the same input set of polygons. The number of edges resulted from the latter
triangulation is significantly larger because of the addition of Steiner points (see
3.1.3 and Fig. 31(c).) Table 2 shows the time it takes to triangulate the same input
set of points using the two algorithms. The lower half of the Table 2 shows the result

of applying triangulation to the same input image that has not been smoothed (see

54

|__Input [Trace time || Polygons | Total points | Smooth [Final points | Output
Figure 41 21 ms 7 2560 points | 2 ms 327 points | Figure 42
Figure 47 22 ms 15 2519 points 1 ms 1117 points | Figure 48

Table 1: Tracing the contours of various scenes

| Triangulation | Input points || Resulting edges | Time | Output |
Constrained Delaunay 327 639 8 ms Figure 43
Conforming Delaunay 327 4626 81 ms Figure 44
Constrained Delaunay 2560 4641 81 ms | Not Provided
Conforming Delaunay 2560 10025 251 ms | Not Provided

Table 2: Results of various triangulations of the contour extracted from Figure 41

Table 1.)

Figure 43: Constrained Delaunay Triangulation

Finally, Figure 45 and Figure 46 show the shortest path computed using Dijkstra’s
algorithm and smoothed with Contour::Smooth. The chosen trajectory is shown as a
straight dotted line while the final, shortest found path is shown as a bold dash-dotted

line. The statistics of the final algorithms are shown in Table 3.

(@)1
()]

Figure 44: Conforming Delaunay Triangulation

| Number of edges [[Time for Dijkstra || Shortest Path | Time to smooth | Final path |

639 2 ms 18 points 0 ms 8 points
4626 169 ms 54 points 0 ms 13 points
4641 68 ms 56 points 1 ms 7 points
10025 198 ms 271 points 9 ms 12 points

Table 3: Results of applying Dijkstra algorithm to find a path for a chosen trajectory

Figure 45: Shortest Path - Object View

96

Figure 46: Shortest Path - Polygon View

"1

Figure 47: Rich Scene

Figure 48: Polygonal Contour

58

Chapter 6

Conclusions and Future Work

6.1 Conclusion

Path Planning in a 2D game is a complex task which require custom made algorithms
depending on the specifications of each game. While some games employ simple plan
as you go techniques others require the computation of the entire path before any
movement starts. In this thesis we have developed a step by step solution for Path
Planning for a 2D game where the input is an image representing the background of
the game and the output is a short, obstacle avoiding path between two selected points
on the image. We have successfully combined the solutions of various problems from
computational geometry (triangulation) and pattern recognition (contour tracing
) and applied them to our solution of the Path Finding algorithm. We have defined
a compact and sufficient set of necessary data structures used to accomplish our
goal. We have made an effective use of computer graphics and imaging techniques to
demonstrate our solution. We make the claim that our approach has a clear advantage

over other path planning approaches because of the following:

e It is a well defined incremental approach to find a short enough path for a 2D

game populated with obstacles.

e [t can handle any type of nonuniform obstacles like the drawings from a game.

59

It adapts well to the various shapes of the obstacles. The contours generated
contain minimal number of points necessary to reconstruct the shape. Shapes
with straight boundaries contain fewer points than nonuniform shapes. Fewer
points means fewer edges resulted from triangulation and faster computation of

the shortest path.

While it searches for a path on a 2D triangular mesh, the final shortest path
does not have to be a part of that mesh. In other words we have combined
the advantages of using known shortest path algorithms like Dijkstra’s with a

smoothing technique that is allowed to take shortcuts.

By using a combination of C++ with STL we have minimized the amount of

code that a programmer has to write.

The triangulation technique offers the possibility of removal some redundant
edges (see 6.2). The result of that will be a general mesh with not only triangles
but nonuniform shapes as well that will be smaller and, therefore faster to

process.

The triangulation used is more effective than using a Visibility Graph since it
generates fewer edges and a shortest path algorithm runs faster on fewer edges.
As can be seen in the figure 49 the triangulation of this simple scene generates
25 edges (including the edges of the traced contour). The Visibility Graph of
the same scene generates 58 edges (figure 50. We can safely claim that the
edges resulted from triangulation are a significantly smaller subset of the edges

resulted from Visibility Graph computation.

60

Figure 49: Triangulation Figure 50: Visibility Graph

6.2 Future Work

The ultimate goal of work initiated in this thesis is to create a framework for the
design of 2D games that require an advanced way of path planning in which the path
must be determined before the first step is taken. While the solution described has
successfully accomplished the initial goal it also raises new problems that should be

addressed in future work.

Smaller Navigational Mesh. If we start out with a scene that contains many
irregular shaped objects (see fig. 47 and table 1), after extracting the bound-
aries and smoothing the contours we are left with a large number of contour
points. This happens because segments, defined by two consecutive boundary
points, often change their direction and therefore cannot be eliminated by the
algorithm from the method Contour::SmoothPolygons. Triangulation of
such polygons will generate a high number of edges that are very close to each
other because polygon segments have a short length and represent one triangle
edge each. This problem can be solved by removing the edges resulted from

triangulation that connect the same objects but are too close from each other.

Faster Shortest Path Calculation. While Dijkstra’s shortest path calculation is

very efficient and guarantees to find the shortest path it does not consider the

61

direction of the goal. Another future work task would be to replace Dijkstra’s
algorithm with bidirectional Dijkstra (start searching from source and target
at the same time) or with the 4* algorithm which considers the direction of

the goal and constantly tries to move in that direction before exploring others.

Fitting Through Obstacles The Shortest Path computed in this thesis does not
take into consideration the shape and size of the source character and might
generate a shortest path within narrow empty spaces through which the source
character does not fit making it an invalid path. Future research in this direction
will always consider the shape and size of the source and will generate paths
that lie outside of the Minkowski Sum convolution spaces. Refer to figure 51 to

see the input and output of Minkowski Sum computation.

(a) (b) ()

Figure 51: Input and output of Minkowski Sum computation

Animated Obstacles Another challenge for future work will be to be able to gen-
erate a path through moving obstacles. This will require a faster, custom made
triangulation algorithm that will be specialized in generating meshes without
triangulating every point of the contours but only points situated at certain

distances from one another (in the same polygon .)

62

Appendix A

Source Code

Here is Dijkstra’s shortest path algorithm implementation for this project:

void Contour::Dijkstra(Point& p_Source, Point& p_Target,
PointList& p_Points)

{

PointList pl;

SegmentList sl;

PolygonList::iterator pit;

PointList::iterator ptit;

SegmentList::iterator sit;

Point NearPoint = p_Target; // first intersection with a Polygon

Polygon *NearPoly = NULL;

Segment *NearSeg = NULL;

float NearDistance = p_Source.Distance(p_Target);

Point FarPoint = p_Source;

Polygon *FarPoly = NULL;

Segment *FarSeg = NULL;

float FarDistance = 0.0;

float dist;

p-Points.clear();
if (m_Triangles.GetSegments() .empty())
{
cout << " 1111 Triangulate first !!!! " << endl;

return;

63

}
// find first the intersections with the polygons
Segment s(p_Source, p_Target);

for(pit = m_Polygons.begin(), pit !'= m_Polygons.end(); ++pit)

{
if(pit->Intersect(s, &pl, &sl))

{
sit = sl.begin();
ptit = pl.begin();
for(; ptit != pl.end() && sit != sl.end(); ++ptit, ++sit)
{
dist = p_Source.Distance(*ptit) ;
if(dist < NearDistance)
{
NearDistance = dist;
NearPoint = (*ptit);
NearPoly = &(*pit);
NearSeg = &(*sit);
}
if(dist > FarDistance)
{
FarDistance = dist;
FarPoint = (*ptit);
FarPoly = g (*pit);
FarSeg = &(*sit);
}
}
}
}
if(!(NearPoly && FarPoly))
{

// There are no intersections with polygons
p-Points.push_back(p_Source);
p-Points.push_back(p_Target);

return;

64

}

// Now Find the shortest path from NearSeg to FarSeg

Queue pq;

Queue::iterator pqit;

hash_map<Point, PQElement, HashFunc> PredMap;

hash_map<Point, PQElement, HashFunc>::iterator prit;

typedef hash_map<Point, PQElement, HashFunc>::value_type PredValue;
MapType: :iterator mit;

MapType& map = m_Triangles.GetVertices();

Point p, v;
Point pl = («NearSeg) [0];
Point p2 = (*NearSeg) [1];
Point p3 = (xFarSeg) [0];
Point p4 = (*FarSeg) [1];
PQElement ele;
float du, dv;
for(mit = map.begin(); mit '= map.end(); ++mit)
{
p = (*mit) .first ;
if(p == p1)
{

dv = NearPoint.Distance(pl);
pq.push_back(PQElement(p, dv));
PredMap.insert(PredValue(p, PQElement(NearPoint, dv)));

}

else if(p == p2)

{
dv = NearPoint.Distance(p2);
pq.push_back(PQElement(p, dv));
PredMap.insert(PredValue(p, PQElement(NearPoint, dv)));

}

else

{
pq.push_back(PQElement(p));

}

65

}
pq-push_back(PQElement(FarPoint));
pqit = min_element(pq.begin(), pq.end());
ele = *pqit;
while(!'pq.empty())
{
pqit = min_element(pq.begin(), pq.end());
ele = *pqit;
pq.erase(pqit);
du = ele.GetWeight();
P ele.GetPoint();
mit = map.find(p);

if(mit !'= map.end())

{
for(ptit = (*mit) .second.begin();
ptit != (*mit).second.end(); ++ptit)
{
v = *ptit;

dv = du + p.Distance(v);
prit = PredMap.find(v);
if (prit != PredMap.end())

{
// the node is already in PQ and has known weight
if(dv < (*prit).second.GetWeight())
{
(*¥prit) .second = PQElement(p, dv);
pqit = find(pq.begin(), pg.end(), PQElement(v));
if(pqit !'= pq.end())
{
*pqit = PQElement(v, dv);
}
}
}
else
{

// insert new node into PQ

66

PredMap.insert(PredValue(v, PQElement(p, dv)));
pqgit = find(pq.begin(), pq.end(), PQElement(v));
if(pqit !'= pq.end())
{

*pqit = PQElement(v, dv);

}
// add the target as well
if(p==p3 1|l p==pd)
{
dv = du + p.Distance(FarPoint);
prit = PredMap.find(FarPoint);
if(prit !'= PredMap.end())
{
// the node is already in PQ and has known weight
if(dv < (*prit).second.GetWeight())
{
(*prit) .second = PQElement(p, dv);
pqit = find(pq.begin(), pq.end(), PQElement(FarPoint));
if(pgit != pq.end())
{
*pqit = PQElement(FarPoint, dv);

// insert new node into PQ
PredMap.insert(PredValue(FarPoint, PQElement(p, dv)));
pqit = find(pq.begin(), pq.end(), PQElement(FarPoint));
if(pqit !'= pq.end())
{

*pqit = PQElement(FarPoint, dv);

67

}

else if(p == FarPoint)

{
// we got to the FarPoint, time to break.
pq.clear();
break;

}

}
// Now create the path

p_Points.push_front(p_Target);
p_Points.push_front(FarPoint);
prit = PredMap.find(FarPoint);

p = (*prit) .second.GetPoint();
while(p != NearPoint)

{

p_Points.push_front(p);

prit = PredMap.find(p);

p = (*prit).second.GetPoint();
}

p_-Points.push_front(NearPoint);
p_Points.push_front(p_Source);

return ;

}

68

Bibliography

[CMO6]

[DeL00]

[EW96]

[[sa63]

[Kir92]

[Lat91]

Dave Cliff and Geoffrey Miller. Co-evolution of pursuit and evasion II:
Simulation methods and results. In Pollack and Wilson, editors, From
Animals to Animats 4: Proceedings of the Fourth International Conference
on Simulation of Adaptive Behavior. ISBN 0-262-63178-4, MIT Press.,

1996. http://www.cogs.susx.ac.uk/users/davec/pe.html.

Mark DeLoura. The basics of A* for path planning. In Game Programming

Gems, pages 254-263. Charles River Media, 2000.

Parris Egbert and Scott Winkler. Collision-free object movement using
vector fields. [EEE Computer Graphics and Applications, pages 18-24,
1996. http://www.computer.org/cga/cg1996/gdtoc.htm.

Rufus Isaacs. Seek and pursuit. In Differential Games: A Mathematical
Theory with Application to Warfare and Pursuit, Control and Optimiza-
tion. John Wiley and Sons, New York, 1965.

David Kirk. Faster line segment intersection. In Graphics Gems III, pages

199-202. Academic Press, 1992.

Jean-Claude Latombe. Robot Motion Planning. Kluwer Academic Pub-

lishers, 1991.

69

[LP83)

[OR098]

[Per85]

[Rev99]

[SGI03]

[She96]

[Sto99]

T. Lozano-Perez. Spatial planning: A configuration space approach. /[EEE
Transactions on Computers, pages 108-120, February 1983. Vol C-32, No.

2.

Joseph ORourke. Segment-Segment intersection. In Computational Ge-
ometry in C (2nd Edition), pages 220-225. Cambridge University Press,
1998.

Ken Perlin. An image synthesizer. SIGGRAPH 85
Proceedings, Computer Graphics, pages 287-296, 1985.

http://www.mrl.nyu.edu/perlin/doc/oscar.html.

Craig Reynolds. Flocks, Herds, and Schools: A distributed behavioral
model. SIGGRAPH ’87 Conference Proceedings, Computer Graphics,
pages 25-34, 1987. http://www.red3d.com/cwr/boids/.

Craig Reynolds. Steering behaviors for autonomous characters. Confer-
ence Proceedings of the Games Developer Conference, pages 763-782, 1999.

http://www.red3d.com/cwr/steer/.

Alexander Stepanov SGL Standard Template Library.
http://www.sgi.com/tech/stl/. 2003.

Jonathan Richard Shewchuk. Triangle: Engineering a 2D Quality Mesh
Generator and Delaunay Triangulator. In Ming C. Lin and Dinesh
Manocha, editors, Applied Computational Geometry: Towards Geometric
Engineering, volume 1148 of Lecture Notes in Computer Science, pages
203-222. Springer-Verlag, May 1996. From the First ACM Workshop on

Applied Computational Geometry.

Brvan Stout. Intelligent path-finding.
http://www.gamasutra.com/features/19990212/sm_01.htm, 1999.

70

[THC94a| Ronald L. Rivest Thomas H. Cormen, Charles E. Leiserson. Depth-first
search. In Introduction to Algorithms, pages 477-479. McGraw-Hill Book

Company, 1994.

[THC94b] Ronald L. Rivest Thomas H. Cormen, Charles E. Leiserson. Shortest paths
and relaxation. In Introduction to Algorithms, pages 518-532. McGraw-

Hill Book Company, 1994.

[Tro02] Trolltech. Qt library. http://doc.trolltech.com/3.0, 2002.

