INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

SOLVING CONCENTRATOR LOCATION AND TERMINAL
ASSIGNMENT PROBLEMS USING SIMULATED ANNEALING

Gene H.M. Kapantow

A Thesis
In
The Faculty
of
Commerce and Administration

Presented in Partial Fulfilment of the Requirements
for the Degree of Master of Science in Administration at
Concordia University
Montreal, Quebec, Canada

October 1996

© Gene H.M. Kapantow 1996

aTm

Your file Votre référence

Our file Notre référence

L’auteur a accordé une licence non
exclusive permettant a la

of Canada du Canada
Acquisitions and Acquisitions et .
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada

The author has granted a non-

exclusive licence allowing the

National Library of Canada to

reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-25995-1

Canadi

ABSTRACT

Solving Concentrator Location and Terminal Assignment Problems
Using Simulated Annealing

Gene H.M. Kapantow

Centralized computer networks are hierarchical communication infrastructures in
which a central computer services a large number of terminals or workstations. For
a large network, some concentrators are commonly used to increase the cost
efficiency. Several terminals are connected to a concentrator via low capacity lines,
and each concentrator is connected to the central computer via a high capacity line.
A concentrator is generally subject to technological constraints on the amount of
traffic it can manage, and each terminal has its capacity requirement. The problem
then is to determine the number and location of concentrators and to allocate the
terminals to these concentrators at minimum cost. This is known as the
concentrator location problem. If the number and location of concentrators are
already known beforehand, the problem then reduces to determining the allocation
of terminals only. This is known as the terminal assignment problem. These
problems are NP-complete. Therefore, finding a polynomial time algorithm to solve
them to optimality is highly unlikely. This study aims to develop some efficient
algorithms based on simulated annealing to solve these problems. The results are

compared to those given by some existing heuristics.

Acknowledgment

First and foremost, I would like to thank the Lord Jesus Christ for providing
everything I need in this life. Without his constant love for me, I doubt if I would
have been able to pursue my M.Sc. studies.

I have many people to thank for their belp and support. First, I would like to
express my deepest gratitude to my thesis supervisor, Dr. Jean-Marie Bourjolly., for
the support, guidance, concern and valuable inputs he has given me during the
course of this thesis. I am also indebted to him for introducing me to the simulated
annealing algorithm.

I would also like to thank Dr. Samuel Pierre as my thesis co-supervisor for the
valuable inputs he has given me during the course of this thesis. Many thanks also
go to Dr. Mohan Gopalakrishnan for the help he has given me during the course of
my M.Sc. studies and for the valuable inputs he has given in this thesis.

I would further like to thank my friend. Daniel Tomiuk, for his help and
friendship not only during the course of this thesis but also during the whole course
of my M.Sc. studies. I am also mmpressed by his intelligence and discussions which
are always interesting and fruitful. My discussions with him have helped me much
in doing my thesis. I am fortunate to have him as my friend.

A note of gratitude is also due to the administrative staff of the M.Sc. program.
Particularly, I thank Mrs. Heather Thomson, Mrs. Theresa Sarazin-Wadey and the
former M.Sc. program’s assistant director, Mrs. Karen Fiddler, for their kind help
during the course of my M.Sc. studies.

Finally, I would like to express my deepest gratitude to my father, my sisters

and my brothers in law for all the support they have provided.

v

Dedication

~ /P fond memocy of my YV other ~

“Who had always been there when I needed her”

Contents

3

List of Figures

List of Tables

Introduction

Formulation of the Problems

2.1
2.2

Problem Formulation............c.oooeueeeooemeeeoeeeeeeeeeeeeeeeeeeeeeeeeee
Related Problemscoouiuimmiooeoeeeeeeeeeeeeeeeeeeeeeeeeeeee

An Overview of Some Heuristics

3.1

3.2

Heuristics for the Terminal Assignment Problems..............oooooooonn
3.1.1 Original Greedy Algorithm..............o.ooeeeeemeeeeeeeeeeeeeeeo

3.2.1 Center of Mass (COM) Algorithimcoeveeemeeeeeeeeooeeoeoo
3.2.2 ADD AIGOXItRIM.....ceeeeeeceeceeeeeeeeeeee e

ix

3.2.4 Neighbourhood Search Algorithmcoooooveveeeeeeoeeoee 20
3.2.5 Exchange Algorithm..........c.cooooeeemeemimieieeieeeeeeeeeeee e 21
3.2.6 Improvement to the Exchange Algorithm................ccoveeeveeeoeoo 22

3.3 SUIMMATY ...ttt e e e e eessaee e m e e s e e 23
4 An Overview of Simulated Annealing 24
4.1 INtrodUuCtion ...ttt e 24
4.2 The Simulated Annealing Algorithmcoooiueeueeeeeeeeeeeeeeeeeeeeenan 26
4.2.1 Generic AlGOrIthmc..oueveueeeeeneeieeeeceeeeee e 26

4.2.2 Implementing the Algorithm...........ccc.oeooeoieiomeoeeeeeeeeeeeeen. 29

4.2.3 Some Applications of the Simulated Annealing Algorithm........... 32

4.3 SUININATY.....conireeeeeeeeeeeeetteee e eeetee e ee e e e sesessee e s s e e e 34
5 Design of Algorithms for the Problems of this Study 35
5.1 Obtaining an Initial Solution and Generating a Neighbour-..................... 36
5.1.1 Terminal ASSIgNMENLt..........ooemeeemeeeeeeeeeereeeeeeeeeeeeeeeeeeeee e 36
5.1.1.1 Obtaining an Initial Solution.........ccccoooveemveeeeeeeeeenennn 36

5.1.1.2 Neighbour Generation..............ccocooeeeeeeeeeeeeeeeeeeeeeen 38

5.1.2 Concentrator LOCAtiOnccoceveememeveecereereeeneeeeeeeeeeeeeeeeee e, 42
5.1.2.1 Obtaining an Initial Solution..........cccooovevveeeeeeeeeeneeen 42

5.1.2.2 Neighbour Generation..............coooeeeeemoeeeomeeeeeeeeeeeeenn 43

5.1.2.2.1 Drop Procedure............ocooveeeuemeeeeeeeeeeenn, 43

5.1.2.2.2 Add Procedure..............cccovruieeeeneeeeeeeeeeeeeennnn, 45

5.1.2.2.3 Swap Procedure...........ccocoooovomoeemeeeeoeeeen, 47

5.1.2.3 Selection of a Candidate Configuration 48

5.1.2.4 An Improvement to the Algorithms.............cccovvvvveveiiiii 49

5.2 Choosing an Annealing Schedule.............cccoueeeeeoeeeereeeeeeeeeeeeeeeeee 50
5.2.1 Initial Temperature.............ccccoeuvierieeieeeeeeeeeeeeeeeeeeeeeee e, 50

5.2.2 Number of Iterations at each Temperature...............cooevvveeeveeeenn, 51

5.2.3 Temperature Decrement and the Stopping Criterion.................... 52

5.3 SUIMMATY......otiiieriereeeceetee et ettt st eseee s e e e s e e e e e es oo 52

6 Implementation of the Algorithms
6.1 Terminals Assignment..............ccoeeeeevceeveeereeeeeeeeennanns

6.1.4 Program Structureccccooveeevvereereeeeaannnnnn..
6.2 Concentrator Locationccceveeceeeeeeeeeneeeeeenennens
6.2.1 Inputand OQutput........cocceeeemreeeaeeeeeeeeeeeeennns
6.2.2 [Initial Solution............ccccoeeevemveeieieeennne.
6.2.3 Neighbour Generationcocoveeeveeeemeeeeennnnn.
6.2.4 Program Structure...........cccooeveeoeeeeecveeererenn.n.

Computational Experiments

7.1 Terminal ASSIENIMENtoocoevvneveeeeeeeeeeeeeeeeeeeeeeeeeeeenn,
7.2 Concentrator LoCationooeeeeeeeeooeeeooeeein,
7.3 SUMMATY ..o ens
Conclusion

8.1 Research Results.....c.cccooovmmmieomoeeeeeeeeeee,
8.2 Future ConsiderationsS...........ooeeeveeeeeeeeeeeeeeeeeeeeenn
References

................................

.................................

................................

................................

................................

................................

................................

................................

................................

................................

................................

................................

................................

54
55
55
58
61
62
65
65
68
70
72
75

76
76
81

89
89
91

94

List of Figures

1.1

4.1
4.2

6.1
6.2
6.3
6.4

6.5
6.6

6.7
6.8
6.9

6.10
6.11

An example of a centralized computer netWorkccooeeveeeeeeemeeeeeeeeeenn 5
Iterative improvement algorithm in pseudo-PASCALoooonvoioenooo, 25
Generic simulated annealing algorithm in pseudo-PASCAL.............oovoovononoi.. 28
The opening window of the terminal assignment program.............................. 55
File dialog window of the terminal assignment program......................cooo....... 56
An example of a graphical output of the terminal assignment program 58
The data structure used in calculating the initial solution

for the terminal assignment Programcoccecoeeieeemeeeeeeeeeeeeeeeeeeeeeeeeeenn 59
Method selection window of the terminal assignment program...................... 61

Pseudo-PASCAL of the main program for solving the terminal

ASSIENMENTE PIODICM...c..oceeeeeeieeee et et e e e 63
Input data’s dialog window of the concentrator location program.................. 66
An example of a graphical output of the concentrator location program........ 67
Data structure used in calculating the initial solution for

the concentrator 10Cation PrOGTaAML.ocuvieeuviveieneeceeeeee e 68
Method selection window for the concentrator location problem..................... 71
Pseudo-PASCAL of the main program for solving the concentrator

l1ocation ProObIEm ..ot 73

List of Tables

7.1 The Improvements Gained by the BRS and CRS Methods over

the Greedy AIGOTILRILoovoveeeeeeee e 78
7.2 Comparison between the “Best” Modified Greedy Algorithm and

the SA AIGOTItRM. ... e 80
7.3 The improvements Gained by Different Methods of the Simulated

Annealing Algorithm over the ADD Algorithm..........oooeoemeeoeoeeeee 82
7.4 Comparison between the Improvements Gained by Two multipliers............. 83
7.5 Comparison between the Simulated Annealing Algorithm

and the ADD AIGOTItRI.......c..oouieieieeeeeeeee et 85
7.6 Comparison of the Simulated Annealing with the Exchange Algorithm

(SITATION Program)ccooeeeuceeuiiereieeesieeeee et es s e ee e 87

CHAPTER 1

Introduction

1.1 Background and Purpose of the Study

The size and complexity of computer networks have been growing very fast in the
last decade. In the past, a computer network usually only served a small number of
users. Nowadays, it is common to find a computer network that serves hundreds or
even thousands of users. It seems that this incredible growth will continue as the
customers’ needs and the telecommunication technology keep growing. As the size
and complexity of computer networks grow, so too does the need for good design
strategies.

Designing a modern computer network is a very difficult task (Gavish. 1982).
“The overall complexity of the problem had led to the development of solution
procedures in which the problem is partitioned into a hierarchy of subproblems that
are solved one at a time” (p.356). One of these subproblems is the concentrator
location problem, on which this study is focused.

Basically, the concentrator location problem is used to determine the number
and location of concentrators and to allocate the terminals to these concentrators at

minimum cost in a centralized computer network. @ When the number of

concentrators and their geographical locations are given, the problem then reduces
to allocating the terminals to the existing concentrators only, which is known as the
terminal assignment problem (Boorstyn & Frank, 1977; Kershenbaum, 1993). The
formal definitions of these problems are given in Chapter 2.!

The concentrator location and terminal assignment problems are considered as
very difficult problems.? In most cases, it is unlikely to find polynomial time
algorithms to solve them. Hence, researchers have focused their efforts on
developing heuristics that provide an approximate solution in a reasonable amount
of time. This study aims to develop some efficient heuristic algorithms to solve these
problems. The algorithms developed are based on simulated annealing which was
introduced by Kirkpatrick, Gelat and Vecchi (1983). The results are compared to
those given by some existing heuristics.

The rest of this chapter will give an introduction to centralized computer
networks. In Chapter 2 the formal definitions of the problems being solved are
given along with their complexity. In Chapter 3, some existing heuristics are briefly
described. In Chapter 4, an overview of simulated annealing is presented. In
Chapter 5, the algorithms that are developed in this study are described:; Chapter 6
gives the details of their implementations. In Chapter 7, the computational
experiments are described in detail Finally, the result of the study and some

future considerations are given in Chapter 8.

! See equations (2.1)-(2.4) for the concentrator location problems and equations (2.6)-(2.9) for the
terminal assignment problems.
2 See Chapter 2.

1.2 An Introduction to Centralized Computer
Networks

Kershenbaum (1993) defined a centralized computer network as “a network where
all communication is to and from a single site” (p.179). The simplest model of this
network is a star topology, where each terminal is connected directly to the central
computer by monopolizing a low capacity line. It is called a star because the central
computer plays a crucial role in the network, and the network resembles a star with
the central computer in the middle. For large networks, this topology can be
improved upon in terms of cost efficiency by using concentrators between clusters of
terminals and the central computer. The terminals are connected to a concentrator
via low capacity lines, and each concentrator is connected to the central computer
via a high capacity line.

As in general computer networks, a centralized computer network is
constructed from a set of communication facilities, which includes the transmission
media that interconnect locations on the network and a set of devices which are
often known as network nodes in the general networks (Kershenbaum, 1993). The
transmission media can be twisted pair cable, coaxial cable, optical fiber, terrestrial
microwave, satellite microwave, and radio. Each of them has its own physical
characteristics in terms of its capability in transmitting data. The different
characteristics of these transmission media are beyond the scope of this study and
the interested reader is referred to Stallings (1994) for a detail description of each
media type. In this study the different characteristics of each transmission media

type are simply represented in terms of costs.

Network nodes are devices that are used to construct a network. Throughout
this study, there are three types of network nodes that are mainly used, ie.,
terminals, central computers, and concentrators. The definitions of these nodes are
given by Kershenbaum (1993, p.3), these are:

Terminals: Simple devices, usually serving a single user; sources
and destinations of low volume traffic. They usually include a
keyboard and CRT and can also include disk drives and a printer.
A personal computer, workstation, or a telephone may serve as a
terminal.

Central Computers (sometimes are referred to as hosts or servers):
A large computer serving many users providing computicg
capability or access to a database. A Source and/or destination of
a major amount of traffic. A large workstation might be a host.

Concentrators: Devices which join the traffic on low speed lines
into a single stream which can use a higher speed line.

The term concentrator in this study is used as a general term for all devices that
function similarly with the definition given above, this includes multiplexers and
cluster controllers.? It should be noted that all these simple definitions are given
only to familiarize the reader with the concepts of this study. In real life however,
the boundaries between these devices sometimes become blurred. For example, as
mentioned above, a workstation can function both as a terminal and a central
computer, similarly many of today's terminals can function as concentrators too
(Kershenbaum, 1993).

Figure 1.1 shows an example of a centralized computer network. This example
is known as a star-star topology, because all terminals are connected directly to
concentrators and each concentrator is connected directly to the center. This

topology can be refined by interconnecting onto one line concentrators in close

3 A specific description of each of these devices can be seen in Ramos & Schroeder (1994)

proximity to one another in a hierarchical manner. Similarly, terminals can also be
allowed to share a common line.* However, this study will focus only on the star-
star topology for it is typically used as the starting point when designing more

complex networks.

. central computer
O concentrator

~ terminal
= high capacity line

— low capacity line

Figure 1.1. An example of a centralized computer network

In a star-star topology, three levels can be distinguished: level 1 is represented

by the central computer, level 2 is made of the concentrators, and level 3 is made of

4 If a line is shared by several terminals. it is called a multidrop (Stallings. 1994) or multipoint
(Doll. 1978) line.

the terminals. A concentrator is generally subject to technological constraints on
the amount of traffic it can manage. In addition, each terminal has its capacity
requirement also known as the weight of the terminal. It denotes the amount of
traffic exchanged between the terminal and the central computer. These constraints

will determine the number of terminals a concentrator can control

1.3 Summary

This chapter has presented the background and the purpose of this study along with
an introduction to centralized computer networks. It also has briefly introduced the
concentrator location and the terminal assignment problems. The next chapter

gives the formal definitions of these problems.

CHAPTER 2

Formulation of the Problems

2.1 Problem Formulation

As mentioned in the previous chapter the main problem addressed in this study is
the concentrator location problem for star-star topology networks where all
terminals are connected directly to concentrators and each concentrator is connected
directly to the central computer. This is known as the star-star concentrator
location problem (SSCP) (Mirzaian & Steiglitz, 1981).

To simplify, one can assume the potential locations of the concentrators are
known, and the number and locations of the terminals is given. The problem
becomes one of selecting some locations of concentrators and a least cost assignment
of terminals to the chosen concentrators that satisfies a set of additional constraints.

Formally, the problem is to minimize the total cost Z given by

Z2=Y e+ dy @1

i=l j=0 J=l

subject to

Sx=1, 2 2.2)

=0

D way<ky, Vi 2.3)

i=l

xi,y €§0,1}, Vi,V (2.4)

where

{1, if terminal ¢ is connected to a concentrator at site j

i - 0, otherwise
1, if a concentrator is located at site j
i - {0, otherwise
n = the number of terminals to be assigned
m = the number of potential locations of concentrators
Cij = the cost of connecting terminal i to concentrator j
d; = the cost of locating a concentrator at site j!
wi = the weight of terminal i
k; = the capacity of concentrator j

Thus, the first component of the objective function (equation 2.1) is the cost of
assigning terminals to concentrators, whereas the second component is the cost of
locating concentrators and connecting them to the central computer. Equation (2.2)
is needed to make sure that every terminal is assigned to exactly one concentrator.
Equation (2.3) ensures that the capacity constraint on each concentrator is not

violated. Moreover, this model allows some terminals to be connected directly to the

! The value of d; usually consists of the setup cost for the concentrator at site j and the cost for
connecting that concentrator to the central computer

central computer as shown in equations (2.1) and (2.2) where j starts from O to m. In
this case, the site O represents the central computer.

In some cases a specific set J of concentrators has already been chosen,
therefore, the problem reduces to the allocation problem, which is known as the
terminal assignment problem. Because a set of concentrators is chosen beforehand,
the second component of equation (2.1), which is the cost of locating concentrators
and connecting them to the central computer, can be removed from the objective

function. The problem, then becomes one of minimizing the total cost Z given by

=33 ey (2.6)

i=] jeJ
subject to
dxi=1l, Vi 2.7
Jjel
dwxi<k, Y 2.8)
i=1
x; €{0,1} 2.9)

This problem usually occurs if one wants to add some terminals to an existing

computer network.

2.2 Related Problems

The concentrator location problem, which is shown by equations (2.1) - (2.4), is also
known as the capacitated facility location problem, where the concentrators

represent the facilities and the terminals represent the demand nodes2. When the

2 See Cornuejols. Nemhauser & Wolsey (1990) for the details of the location problems.

capacity constraints, ie. equation (2.3), are relaxed, the problem becomes the
uncapacitated facility location problem. The latter problem can further be modified
by assuming that the network designers know in advance the number of facilities to

be located. If p is the number of facilities, this modification can be written as

Sw=p @.5)

J=l
The problem then becomes the p-facility location problem. Moreover, if dj=0 for all J»
where d; is the cost of locating a facility at site j, we then have the Dp-median
problem. All of these problems are members of a family of location problems
(Krarup & Pruzan, 1990).

Although this study only addresses the concentrator location problems and the
terminal assignment problems, most of the other location problems mentioned above

can be solved by using the algorithms developed in this study, especially the ones

intended for solving the concentrator location problems.

2.3 Problem Complexity

Mirzaian and Steiglitz (1981) showed that almost all of the star-star concentrator
location problems (SSCP) are strongly NP-Complete. However, if the capacity of the
concentrators is less than two or all the connection costs are the same (ci=c, for all ¢
and j), then these problems are solvable in polynomial time. They showed that
except for these two cases, the concentrator location problems are NP-Complete

(even for the special cases where the capacity of concentrators is three or unlimited).

10

Therefore in most cases, it is unlikely to find a polynomial time algorithm to solve
these problems.

The terminal assignment problems in general are also considered to be
difficult. However, if all terminals have the same weight (wi=w, for all i), they can
be solved in polynomial time; otherwise they are NP-complete (Abuali, Schoenefeld,
& Wainwright, 1994). In cases where all terminals have the same weight, the
alternating chain algorithm3 can be used to solve the terminal assignment problems
to optimality (Boorstyn & Frank, 1977; Kershenbaum, 1993). However, when the
terminals have different weights, Kershenbaum (1993) states that “this complicates
the implementations . . . so an optimal solution is no longer guaranteed” (p.215).
Therefore he suggests to use the greedy algorithm, possibly with local exchanges to

solve these kinds of problems.

2.4 Summary

This chapter has presented the formal definitions of the concentrator location and
the terminal assignment problems. The definitions of some related problems such as
the uncapacitated facility location, p-facility location, and p-median problems were
also presented.

The chapter also showed that the concentrator location and the terminal
assignment problems are NP-Complete. Therefore, finding a polynomial time
algorithm to solve them to optimality is highly unlikely. The next chapter gives an

overview of some well-known heuristic algorithms for solving them.

3 See Chapter 3 for a description of the alternating chain algorithm

11

CHAPTER 3

An Overview of some Heuristics

In this chapter, some heuristic algorithms for solving the terminal assignment and
the concentrator location problems are presented. As previously mentioned, the
concentrator location problem is a special case of the facility location problems. Most
of the algorithms for solving the facility location problems are also applicable to
solve concentrator location problems (Boorstyn & Frank, 1977). Therefore some
general facility location algorithms are presented too. The term concentrator and
terminal in the concentrator location problems are equivalent with the terms facility
and demand, respectively, in the general facility location problems. In this chapter
these terms are used interchangeably. Some terminal assignment heuristics are
presented in the first part and followed by facility (concentrator) location heuristics

in the second part.

12

3.1 Heuristics for the Terminal Assignment
Problems

3.1.1 Original Greedy Algorithm

The basic idea of this algorithm is to assign every terminal to the nearest
concentrator. In the absence of the capacity constraint on concentrators, the
assignment can be done without any difficulties. In the presence of capacity
constraints, which is the most common problem in real-life, the assignment becomes
difficult because of the possibility that some terminals cannot be assigned to the
nearest concentrators. In the latter case, this algorithm will assign each terminal to
the “best available”! concentrator. It means that if the remaining capacity of the
nearest concentrator is less than the terminal weight, this algorithm will assign that
terminal to the next best available concentrator. The result of this algorithm is a
configuration in which every terminal is connected to a concentrator.

The terminal to be assigned first is the one with the smallest connection cost
overall, followed by the one with the second smallest cost , the third smallest cost
and so on, subject to the capacity constraint of every concentrator. This process
continues until all terminals have been assigned or the algorithm fails to find a

feasible solution.

! By “best”. we mean the least cost. If the connection costs are determined only by the distances. then
by “best”. we mean the nearest.

13

3.1.2 Modified Greedy Algorithm?

The major advantages of the original greedy algorithm are that it is relatively easy
to implement and requires little computing time. However, it has some
disadvantages too. The most obvious one is that it tends to strand the terminals
that are considered last. It is common that if some regions are not covered properly
by concentrators with sufficient capacity, the last terminals considered might be
assigned to concentrators that are very far away. Another serious problem is that
this algorithm may easily fail to find a feasible solution even if feasible solutions
exist. This is because the order of assigning terminals is based solely on the
connection cost without considering the weight of terminals.

To deal with these problems, the original greedy algorithm can be modified as
described in Kershenbaum (1993). The purpose of this modification is to give
preference to the terminals that would suffer the most by not being connected to the
nearest concentrators. These terminals will be referred to as critical terminals.
Instead of using the connection cost as a criterion in choosing the order of
assignments, a tradeoff function that reflects this preference is used. Let us say that
ci1 is the cost of connecting terminal i to the first best available concentrator and ciz
is the cost of connecting terminal i to the second best available concentrator. Then
a tradeoff function, ¢;, can be constructed as:

ti = ci1 — aciz 3.1)
where a is a parameter between 0 and 1, reflecting the preference that is given to

the critical terminals.

2 It is also referred to as “the greedy algorithm with tradeoff &~ (Abuali. et al.. 1994).

14

If the value of a is set to 0, it shows that no preference is given to the critical
terminals and the criterion becomes the same as that of the original greedy
algorithm, ie, & is equal to the connection cost of the first best available
concentrator. The bigger the value of a the more preference is given to the critical
terminals. In the case where a terminal, due to its weight, can only be connected to
one remaining available concentrator, the tradeoff value of that terminal has to be

set to —o, so that it will be assigned right away.

3.1.3 Alternating Chain Algorithm

Kershenbaum (1993) classified this as a semi-greedy algorithm, which is based on
the following facts :

1. Al terminals should be assigned to their nearest best concentrators, except
if the capacity constraints would be violated.

2. A terminal that has already been assigned to its best concentrator can be
moved to another concentrator only if it will create room for another
terminal which otherwise would have deviated farther.

3. If an optimal partial solution with p terminals exists, an optimal partial
solution with p+I terminals can be found by finding the least expensive
way to add the (p+I)st terminal.

Based on these facts, one can start by trying to assign each terminal to its best

concentrator. If all terminals can be assigned to their best concentrators, the
optimal solution is found. If after assigning p terminals the remaining terminals

cannot be assigned to their nearest concentrator due to the capacity constraints, it

15

will start looking for the least expensive way to add the (p+I)st terminal. In this
state, the partial solution for p terminals is optimum.

In order to find the least expensive way to add the (p+I)st terminal,
alternating chains?® of all possibilities of adding new terminals and relocating some
terminals already in the solution are constructed. An alternating chain with the
least cost is the one to be chosen. Kershenbaum (1993) explained in detail how to
implement this algorithm efficiently. If all terminals have the same weight, this
algorithm guarantees that the optimal configuration can be found in polynomial

time.

3.2 Heuristics for the Facility Location
Problems

The algorithms presented in this section can be classified either as construction
algorithms or improvement algorithms. The construction algorithms are those that
attempt to build a good solution from scratch, whereas the improvement algorithms
are those that try to improve an existing (initial) solution which is usually obtained
from a construction algorithm.

Most research on the performance of heuristic facility location algorithms
reached the conclusion that the exchange (interchange) heuristic is the most robust
heuristic algorithm (Densham & Rushton, 1992). Kuehn and Hamburger (1963)
were the pioneer of this kind of heuristics. Their heuristic consists of two parts.
They named the first part as the main program and the second one as the bump and

shift routine. What they called the main program now is known as the ADD

3 Also known as augmenting paths (Kershenbaum. 1993).

16

algorithm, which is one of the most widely used construction algorithms; the bump
and shift routine is known as the exchange or interchange algorithm which is the
basis of most improvement algorithms (Cornuejols, et al., 1990).

There are some recent books that discuss some location facility heuristics in
detail. Kershenbaum (1993) and Daskin (1995) are among these. All of the
algorithms discussed in this section are taken from these two books. Kershenbaum
presents three construction heuristic algorithms that were developed specifically to
solve concentrator location problems. Those are COM, ADD, and DROP algorithms.
Daskin describes some algorithms with more general applications to facility location
problems. As construction algorithms he presents ADD and DROP and as
immprovement algorithms he includes neighbourhood search and exchange

algorithms.

3.2.1 Center of Mass (COM) Algorithm

The Center of Mass (COM) algorithm is described in detail in Kershenbaum (1993).
The basic idea of this algorithm is to identify the natural cluster of traffics. One
starts by assuming that each terminal is in a cluster by itself, and then creates a
new cluster by combining two clusters that are close to each other subject to some
given constraints. The constraints can be a desired weight for a cluster, a distance
limit between two clusters to be combined or a desired number of clusters..

Let us assume that for each terminal i, we have its coordinates, (x:,y:), and

weight, wi. If terminals i and j are to be combined, then a new cluster formed with

17

these two terminals is represented by their center of mass, (x,yx), which can be
calculated as follows:

_ WiXi + WiXj (3-2)

Wi+ wj

=Wii+M{,yj (33)
Wi+ Wj)

The weight of the cluster k, wsx, is the summation of w;: and wj. For further
consideration, terminal { and j are removed from the calculation and replaced by
cluster k. This algorithm stops if no new clusters can be formed that satisfy the

given constraints.

3.2.2 ADD Algorithm

This is a greedy algorithm. At the beginning all terminals are connected to the
center. This presupposes that the capacity of the center is large enough to
accommodate all terminals. Then, every potential concentrator is examined: one
computes the savings that can be made if it is added to the configuration. The
concentrator that can save the most money is selected first. This algorithm stops
when the addition of a new concentrator will not result in any savings.

The savings obtained by adding a new concentrator, say, j, to the current
configuration are the difference between the savings obtained by moving a few
terminals from concentrators currently in the configuration to it and the cost of the
concentrator j itself. The number of terminals that will be moved to the new
concentrator depends on the capacity of the concentrator j. The savings namely, s;,

can be written as

18

s, = .Z(cv' —c..)ad. (3.9

cij = the cost of connecting terminal i to concentrator j
¢/ = the cost of connecting terminal i to the concentrator with which it

currently associated
dj = the cost of locating concentrator j
I(j)= the set of terminals for which one can save money by moving them to

concentrator j, subject to the capacity of concentrator j.

3.2.3 DROP Algorithm

This is another greedy algorithm, that works in the reverse direction of the ADD
algorithm. At the beginning all possible sites of concentrators are considered in use.
In the case that there are no capacity constraints on concentrators, the terminals are
simply ‘connected to their nearest concentrator. The algorithm then investigates
each concentrator to find out which one will bring the most savings if it is dropped
from the configuration. The algorithm stops if it no longer finds a concentrator
whose removal will save some money.

In the presence of capacity constraints, evaluating each concentrator to be
dropped will involve solving a terminal assignment problem, because some
terminals may not be connected to their nearest concentrators. Hence at the
beginning, this algorithm will solve a terminal assignment with all concentrators

present. Then in order to evaluate each potential drop, it will need to solve another

19

terminal algorithm problem with a specific concentrator removed. This will cause
the running time of this algorithm to be extremely large. Therefore, Kershenbaum
(1993) points out that for the capacitated case it is better to tackle the problem using
the ADD algorithm because the quality of the solutions obtained from the ADD and
DROP algorithms are comparable, while the running time of the DROP algorithm is

much larger.

3.2.4 Neighbourhood Search Algorithm

Daskin (1995) presents this algorithm for solving general facility location problems,
especially the uncapacitated cases. It also assumes that the demand’s sites* are the
only possible places for the facilities to be located. Moreover, there is no cost
associated with locating a facility. These assumptions are common for the p-median
problems.

It starts with a given initial solution, which may be calculated with one of the
construction algorithms. Let us say that the initial solution consists of p clusters of
demand nodes, where one facility is located in each cluster.6 The nodes within a
cluster are referred to as the neighbourhood of the facility in that cluster. At first,
one has to make sure that each demand node is assigned to its best (least cost)
facility. Since the facilities are uncapacitated, it is feasible to do so. Then, the
algorithm will check if the facility in each cluster is optimally located. If it is not, the

facility has to be relocated in one of the nodes in that cluster to obtain the optimal

4 The term demand is equivalent to the term terminal in the concentrator location problem.
% The term facility is equivalent to the term concentrator in the concentrator location problem.
& In the concentrator location problem. it means that p concentrators are used.

20

solution for that specific cluster or neighbourhood. This is known as 1l-median
problem, which can be solved to optimality (Daskin, 1995).

Whenever there is a change in the location of any facility, all assignments have
to be reexamined to make sure that each demand node is assigned to its best facility.
If there are some nodes that are moved from one cluster to another, the locations of
the facilities in the clusters that are involved in the exchanges have to be
recomputed because the neighborhoods have changed. This algorithm stops when

there is no change in any neighborhood anymore.

3.2.5 Exchange Algorithm

Daskin (1995) gives an implementation of the exchange algorithm for solving the
uncapacitated case of facility location problem. However, it is also applicable for
solving the capacitated cases. The main idea of this algorithm is to improve an
initial solution obtained using a construction algorithm by exchanging a facility that
is not in the solution for a facility that is in the solution. One starts with a given
initial solution obtained either from the ADD or DROP or another construction
algorithm. This algorithm then searches the best exchange that can be made for
each facility in the solution and takes the best of them. In other words, if there are
m facilities in the solution, there will be m best possible exchanges, one for each
facility. This algorithm chooses the best of them for further consideration. If the
chosen exchange can reduce the total cost then it is accepted and all demands are
reassigned to their nearest facilities. This algorithm stops if exchanging any of the
facilities in the solution with any facilities not in the solution does not produce any

further total cost reductions.

21

The main steps of this algorithm can be summarized as follows:
1. Get an initial solution
2. Find the best replacement site for each facility site in the solution.
3. Find the best pairs overall from step 2.
4. Ifthe exchange obtained in step 3 can reduce the total cost then

- do the exchange |

- reassign all demands to their nearest facilities

- go to step 2

Otherwise, stop the algorithm.

3.2.6 Improvement to the Exchange Algorithm

Daskin (1995) proposed a further improvement to the exchange algorithm. The
improvement is aimed at overcoming the dependency toward the initial solution in
terms of the number of facilities to be located. It is clear that if the number of
facilities given by the initial solution is suboptimal. then the solution that can be
obtained by the exchange algorithm will be suboptimal too. To overcome this
problem. the combination of the ADD and DROP algorithms are used.

Thus after an exchange is made, the ADD and DROP algorithms are applied
separately to see how much savings each of them can produce. If both of them can
save money, the one that can save the most is chosen, and then the algorithm
continues trying to exchange another pair of facilities again. This algorithm stops
when either adding, dropping or exchanging concentrators cannot generate

additional savings.

22

3.3 Summary

This chapter has given an overview of some well-known heuristic algorithms for
solving the terminal assignment and the concentrator location problems. The next
chapter presents an overview of simulated annealing which is the framework used

in the algorithms developed in this study.

23

CHAPTER 4

An Overview of
Simulated Annealing

4.1 Introduction

The iterative improvement algorithm as shown in Figure 4.1 is the most widely used
framework in solving combinatorial optimization problems. The obvious advantage
of this approach is that it is generally applicable and flexible. Unfortunately, very
often the methods based on this approach get stuck in a local but not global
optimum. Essentially, this is because they behave as do greedy algorithms, i.e., they
only accept new configurations that reduce the total cost. Methods based on this
approach are known as simple local search methods. The quality of the solutions
obtained by these algorithms depends mostly on the initial solutions. Unfortunately,
there are no guidelines available for determining how to choose an initial solution.
Moreover, for many problems, the upper bound on computational time is not known

(Aarts & Korst, 1989).

24

procedure Iterativelmprovement; {for minimizing a function}

begin
Initialize(InitialConfig)
CurrentConfig := InitialConfig;
repeat

Generate(CandidateConfig € Neighborhood of CurrentConfig);
ACost := Cost(CandidateConfig) - Cost(CurrentConfig);
if ACost <0 then
CurrentConfig := CandidateConfig;
until Cost(CandidateConfig) - cost(CurrentConfig) > 0, for all
CandidateConfig in the neighbourhood of CurrentConfig
end;

Figure 4.1. Iterative improvement algorithm in pseudo-PASCAL

However, this approach provides some advantages in terms of applicability
and flexibility. The information needed to use this approach consists only of the
solution specification, a cost function, and a neighbourhood structure. All of these
are not difficult to construct and can be straightforwardly specified for most
problems. This is why modified iterative improvement algorithms are still widely
used.

Aarts and Korst (1989) present three modification alternatives to improve the
iterative improvement method. First, one can apply iterative improvement method
with a large number of initial solutions, so that many such local minima can be
found, then choose the best of them as the final result. Second, in order to increase
the possibility of finding the global minimum, one can enlarge the neighbourhood of
a solution, but this inevitably leads to an increase in the complexity of the problem’s
solution. Third, one can allow, with a certain probability, to accept a new solution

that increases the cost in order to avoid getting caught too early in a local minimum.

25

The simulated annealing algorithm is one of the methods that follows the third

alternative.

4.2 The Simulated Annealing Algorithm

4.2.1 Generic Algorithm

The simulated annealing algorithm is based on the strong analogy between its
behavior and that of the physical annealing processes of solids. Annealing, in
condensed matter physics, denotes a thermal process to get low energy states of a
solid in a heat bath. There are two steps involved in this process. First, the
temperature of the heat bath is increased up to a maximum at which all particles of
the solid arrange themselves randomly in the liquid phase. In a second step the
temperature of the heat bath is decreased slowly until the particles solidify. If the
temperature is decreased slowly enough, the particles tend to solidify in a structure
of minimal energy (Van Laarhoven & Aarts, 1987).

Metropolis, Rosenbluth, Rosenbluth, Teller & Teller (1953) introduced an
algorithm to simulate the physical annealing process for a given temperature, T,
which is known as the Metropolis Procedure. It works as follows: Given a current
state i of the solid with energy E:, a small perturbation of the current state is made
to generate a new state j with energy E;. If E; is less than or equal to E;, the new
state j is accepted as the current state. Otherwise, the new state j is accepted with a

certain probability, say, P.,, as given by

(4.1)

_E,--E,-)

Pe=
ex"(kT

26

where ks is a physical constant known as Boltzmann Constant. In order to allow
the solid to reach thermal equilibrium, this algorithm has to generate a large
number of transitions at each temperature.

Kirkpatrick, Gelatt and Vecchi (1983) generalized this algorithm to solve
combinatorial optimization problems. They showed that by replacing states in the
physical system by configurations and the energy function by a cost function, the
Metropolis procedure can be used directly to solve combinatorial optimization
problems. In this case, the temperature becomes simply a control parameter in the
same unit as the cost function.

If we are given a configuration called CurrentConfig, another configuration,
say, CandidateConfig, can be formed by choosing it randomly from the
neighbourhood of CurrentConfig. The notion of the neighbourhood in this case
corresponds to the small perturbation in the Metropolis procedure. Let us say that
ACost is the difference between the cost of CandidateConfig and that of
CurrentConfig, and temp denotes the temperature. By assuming ks=1, the equation

(4.1) can be modified to be;

P.= exp(— ACost) 4.2)
temp

Figure 4.2 shows the pseudo-PASCAL of the generic simulated annealing
algorithm. Lk and temp: denote the number of transitions and the temperature
value, respectively, generated at the kt iteration. Initially the value of tempo should
be set high enough so that the probability of accepting a configuration worse than
the current one during the early stages of the process is high. This enables the

algorithm not to get caught too early in a local minimum. As the value of temps

27

approaches zero, the probability of accepting worse configurations will approach zero

making simulated annealing similar to the iterative improvement algorithm. In the

procedure SimulatedAnnealing; {for minimizing a function}
begin
Initialize (InitialConfig, Lo,tempo);
CurrentConfig := InitialConfig;
k=0;
repeat
forl:=1to Lk do
begin
Generate(CandidateConfig € Neighborhood of CurrentSolution);
ACost := Cost(CandidateConfig) - Cost(CurrentConfig);
if ACost <0 then
CurrentConfig := CandidateConfig;

else
] (ACost
if exp| —
temps
CurrentConfig := CandidateConfig;

) > random(0,1) then

end;
k:=k+1;
Calculate(Ly);
Calculate(tempk);
until StoppingCriterion is true;
end;

Figure 4.2. Generic simulated annealing algorithm in pseudo-PASCAL

context of a minimization problem, as the temperature becomes very small only
configurations yielding lower costs will be accepted. Therefore, while the simulated
annealing algorithm inherits the advantages of the iterative improvement method
which are generally applicable and flexible, it also overcomes the disadvantage of
the local search algorithm, which gets stuck early on in the vicinity of some local

minima.

28

Van Laarhoven and Aarts (1987) provide theoretical analysis of the simulated
annealing algorithm. They show that under certain conditions on the initial
temperature, the number of iteration at each temperature, the rule for decreasing
the temperature and the stopping criteria, the result obtained with the simulated
annealing algorithm converges to the global optimum with a probability of one. One
of the following conditions has to be satisfied to guarantee the global optimum:

1. For each value of the control parameter temps, an infinite number of transitions is
generated, i.e., Lr—»o0, and limk_,.tempr=0.

2. For each value temp: one transition is generated and tempx approaches zero not

faster then , where I is a constant.

log(k)

Algorithms that employ the first condition are known as homogeneous
algorithms, and those that employ the second one are known as inhomogeneous
algorithms. Practically, both of these conditions are almost impossible to be satisfied
because they require an amount of computation time that is infinitely large.
Therefore, most of the current applications of the simulated annealing algorithm use
some sort of approximation. Consequently, there is no guarantee anymore that the
configuration representing the global minimum will be found with these

applications.

4.2.2 Implementing the Algorithm

The simulated annealing algorithm is not a completely specified algorithm. It is a
generic algorithm that needs some decisions to be made before it can be applied to

solve a specific problem. These decisions can be divided into two groups, namely,

29

generic and problem specific decisions. The first group consists of the decisions
about: (1) the initial temperature, (2) the number of iterations at each temperature,!
(3) the rule for decreasing the temperature and (4) the stopping criteria. The values
given to these parameters make up the annealing schedule. The second group of
decisions which are problem specific consists of (1). How to formulate the problem,
(2) How to calculate the initial solution, (3) How to generate a neighbour and (4)
How to evaluate the cost. In this section only the first group will be discussed in
more details. Because the latter group is problem specific, it will be discussed
separately in Chapter 5.

The chosen annealing schedule will determine the convergence of the
algorithm to the optimal solution. However, as mentioned in the previous section,
an amount of computation time that is infinitely large is needed both for the
homogeneous and inhomogeneous algorithms to ensure finding an optimal solution.
Therefore, some sort of approximation that provides a finite-time annealing schedule
is preferred in practice. There exists a variety of approximation schedules proposed
in the literature. The reviews of most of these schedules can be found in Van
Laarhoven & Aarts (1987) and Eglese (1990).

One class of annealing schedules that is widely used is the so-called
“conceptually simple annealing schedule.” This is called a simple schedule because
all decisions in this class are based only on empirical rules rather than theoretical
results (Aarts & Korst, 1989).2 Most of the annealing schedules in this class are

based on the one that was proposed by Kirkpatrick (1984).

!t is also referred to as the length of Markov chains in the literature.
2 For the more elaborate and theoretically based schedules see Van Laarhoven & Aarts (1987).

30

The value of the initial temperature, tempo, in most of the simple schedules is
set beforehand to be high enough so that almost all cost increasing transitions are
accepted. Kirkpatrick (1984) proposed the following rule of thumb to obtain the
initial temperature:

One first finds the “melting temperature” by starting at arbitrary

temperature, attempting a few hundred moves, and determining the

fraction of the moves which are accepted. If that fraction is less than,

say, 80%, the temperature is doubled (p.978).

A more elaborate way to calculate an initial temperature is derived directly

from equation (4.2) which was proposed by Johnson et al. as cited in Van Laarhoven

and Aarts (1987)2 as follows:
ACost
tempo= ——— 4.3
p l’l(Pu'-I) ()

The notation m‘” denotes the average increase in cost of all cost increasing
transitions generated. This can be approximated by generating a number of random
transitions, recording all ACosts that are greater than zero, and then computing the
average of the ACosts. P. denotes the probability of accepting a worse configuration
which has to be determined beforehand. Osborne and Gillett (1991), for example,
set P, =0.3.

A simple way to determine the number of iterations at each temperature, say,
Ly, is by setting it to be the same at every iteration (Lx = L, for each k). The value of
L usually depends polynomially on the size of the problem being solved (Van
Laarhoven & Aarts, 1987). The more elaborate approach is that the value of Lk is

not fixed but consists of accepting a sufficient number of transitions* subject to a

3p. 60
4 Osborne and Gillett(1991) considered the cost increasing transitions only in their algorithms.

31

constant upperbound (Kirkpatrick, et al., 1983). The upperbound is usually chosen
polynomially relative to the problem size.

The rule for decreasing the temperature that is widely used is the following:

tempe-1 = a*tempr) 4.4)
where a is a constant smaller than but close to 1. In practice, the typical value of a
is in between 0.80 and 0.99 (Eglese, 1990).

A simple choice for the stopping criterion is by fixing the final value of tempr,
say, & or by limiting the number of temperature steps. Chardaire and Lutton
(1993), for example, set the number of temperature steps to twenty five. Another
proposed method is that the algorithm stops after the configuration does not change
for a certain number of consecutive temperature changes (Kirkpatrick, et al., 1983).

In practice, however, most of the proposed schedules still have very long
running-times. If one tries to shorten the running-time, one usually ends up with a
poor result (Eglese, 1990). Therefore, some researchers tried to make other
modifications toward the algorithm. The simplest modification that can be made is
to store the best solution found so far. This modification is easy to implement and
will most likely produce better results than those obtained by the original algorithm

for the same running-times as shown in some research reviewed by Eglese.s

4.2.3 Some Applications of the Simulated Annealing
Algorithm

Aarts and Korst (1989) list a number of applications of simulated annealing in the
various areas of combinatorial optimization problems. Traveling Salesman

Problems and VLSI Design are the two main areas where a large number of

5 See Eglese (1990) for other possible modifications

32

simulated annealing applications were developed. Other areas include Graph
Partitioning, Quadratic Assignment, Linear Arrangement, Graph Colouring,
Scheduling, Matching, Facility Layout, Image Processing, Code Design, Biology and
Physics.

Some other applications are collected by Vidal (1993). One of them is the
application of simulated annealing to concentrator location problems, which was
developed by Chardaire and Lutton® This is the only application of simulated
annealing in this area that we are aware of The application was developed to solve
the star-star concentrator location problem, which is similar to our study. It runs
under the UNIX operating system.

The annealing schedule used is a variant of the simple one. The initial
temperature was set high enough so that about half of the cost increasing transition
attempts were accepted. The stopping criterion was based on k& (the number of
temperature steps), which was set to be around 25. Based on this value, they found
that the value of o was 0.91. The number of transitions to be executed at each k was
slightly increased for every temperature decrease. The increasing factor was
between 1 and 1.05.

In the study, three kinds of transformations were applied to generate the
neighbours of a solution. These were additions, deletions and displacements of
concentrators. These transformations are similar to the ones used in our study,
except in the way that they were implemented. In the study being reviewed, the
authors only considered the concentrators that were adjacent to the one being

removed when reassigning its terminals to the remaining concentrators. The same

€ pp. 175-199

33

principle was used to select terminals to be moved to a newly added concentrator.
They did this in order to reduce the program’s running-time. However, we
intuitively believe that this strategy hindered their final results. The effects of this
strategy can be very serious if the capacity constraints are tight, since most likely
the initial configuration contains some terminals that are connected to concentrators
that are far away from them. Moreover, if the capacity constraints are tight, even
considering all concentrators might not be sufficient. In this case, the terminal
assignment procedure has to be applied.

The authors compared their application with an implementation of the
Lagrangian relaxation developed by Cournuéjols, et al.,” which they considered to be
the best relaxation method developed thus far. They found that if the number of
terminals is more than two hundreds, their method almost always generated better

solutions with less CPU time.

4.3 Summary

This chapter has presented the concepts of the simulated annealing algorithm.
Recall that the simulated annealing algorithm is a generic algorithm which can be
used to solve a large number of combinatorial optimization problems. In order to
solve a specific problem, some features of this algorithm must be specified
beforehand. The next chapter discusses how this features are specified in this study
to develop specific algorithms for solving the terminal assignment and concentrator

location problems.

7 As cited in Chardaire & Lutton (1993).

34

CHAPTER 5

Design of Algorithms for
the Problems of this Study

As mentioned in the previous chapter! there are some features that must be
specified before the simulated annealing algorithm can be used in solving a specific
problem. These are the annealing schedule, the problem formulation, the initial
solution, the neighbour generation method and the configuration cost evaluation
method. The problem formulation has been described in Chapter 2. The cost
evaluation is carried out by calculating all connection costs of a configuration as
shown in equation (2.6) for the terminal assignment problem and equation (2.1) for
the concentrator location problem. In this chapter we address the issues related to
obtaining an initial solution, generating a neighbour and choosing an annealing

schedule for each algorithm that we developed.

1 See section 4.2.2

35

5.1 Obtaining an Initial Solution and
Generating a Neighbour

This section discusses the methods that are developed in this study for obtaining an
initial solution and generating a neighbour. The discussion starts within the

terminal assignment context and moves to the concentrator location problem.

5.1.1 Terminal Assignment

5.1.1.1 Obtaining an Initial Solution
An initial solution for the terminal assignment problem is calculated based on the
modified greedy algorithm as described in Chapter 32. This algorithm is chosen
because while it overcomes some weaknesses of the original greedy algorithm, it is
still relatively easy to implement and requires little computing time. The main steps
of this modified algorithm are as follows:
step 1: Find the best available concentrator for each terminal that has not yet been
assigned. If there is a terminal that cannot be fitted to any concentrator,
terminate the process and report the failure; otherwise proceed to the next
step.
step 2: Find the second best available concentrator for each terminal, if it exists.
step 3: Calculate the tradeoff value for each terminal:
- If a terminal does not have a second best available concentrator, set the
tradeoff value to —», otherwise calculate the tradeoff value according to

equation (3.1).

2 See section 3.1.2

36

step 4: Compare all results obtained in step 3, and choose the smallest overall.

step 5: Do the assignment for the terminal and concentrator obtained in step 4.

step 6: If all terminals have already been assigned (success) or the remaining
terminals cannot be fitted into the remaining capacity of any concentrators

(failure) then terminate the process, otherwise go back to step 1

It should be noted that although this modification can improve the quality of

the solution given by the original greedy algorithm,® it cannot guarantee that a

feasible solution can be found for every problem that has feasible solutions.

Kershenbaum (1993) listed three cases where a feasible solution is not found:

1. The total capacity of concentrators is less than the total weight of terminals.

2. The total capacity of concentrators is equal to or more than the total weight of
terminals, but there is no way to assign all the terminals. For instance, there
are four terminals, each with weight 2 to be assigned to three concentrators
each having a capacity of 3. Even though the total weight of the terminals is
less than the total capacity of the concentrators, no feasible solutions exist.

3. The total capacity of concentrators is equal to or more than the total weight of

terminals and feasible solutions exist, but the algorithm fails to find one.

The third case is the one that we want to avoid. However, except for the first
case, it is hard to detect early on in the execution of the algorithm if the problem

being solved has feasible solutions or not.

3 See section 3.1.2

37

If the algorithm fails to find a feasible solution, and we suspect that this failure
belongs to the third case, a dummy concentrator that can accommodate all
unassigned terminals can be introduced to the solution, and this can be used as an
initial solution for the simulated annealing algorithm. The connection costs between
this dummy concentrator with all terminals have to be set very high to discourage
establishing these connections. Thus, we can expect that all terminals that are
connected to this dummy concentrator will move to the real concentrators as the

simulated annealing algorithm proceeds.

5.1.1.2 Neighbour Generation
In general, a neighbour of a configuration is generated by making a small change to
the current configuration. Therefore, at first, the meaning of a small change should
be defined. In this study a small change is defined as either moving a terminal
from one concentrator to another or swapping two terminals from two different
concentrators. Having clarified the meaning of a small change, the next step is to
determine how to do it. Based on the definition of a small change, there are two
questions that should be answered before it can be implemented. First. the question
of what action is to be carried out; whether simply moving a terminal or swapping
two terminals. Second, the question of which terminals to be moved or swapped.
Two methods are tried here.

The first method, named CRS (completely random selection), consists of
randomly choosing both the action to be performed and the terminals involved. One
starts by choosing two concentrators randomly, and then a terminal is randomly

chosen from each of them. However, we must allow simple moves to happen, and

38

also address questions such as the possible emptiness of both concentrators. In
order to allow both simple moves and swaps and to prevent the occurrence of the
problems we have just mentioned, some modifications are made.

The first modification is that the first concentrator to be chosen has to have at
least one terminal connected to it. This however, is not a necessity for the second
concentrator. This restriction is needed to ensure that at least one terminal is
chosen so that there is at least one action that can be accomplished. Having chosen
two concentrators, a terminal is then chosen randomly from the first concentrator.
After that, a random number between 1 and (p+g), inclusively, is generated, where D
18 the number of terminals being connected to the second concentrator and q is the
number of terminals than can be added to it. The value of g is computed based on
the remaining capacity on the second concentrator, called R, and the weight of the
chosen terminal from the first concentrator, called w;. The formula to compute q
can be written as follows:

q = trunc(R2/w) (5.1)
where truncis the function to truncate a real value to the largest integer value that
is less than or equal to it.

The value of the random number generated will determine what action is to be
done. If it is greater than p, simply move the terminal that is chosen from the first
concentrator to the second concentrator. If it is between 1 and p, inclusively, the
action to be done is swapping and the value of the random number represents the
terminal number on the second concentrator that will be swapped with the chosen
terminal from the first concentrator. However, before the swapping is made, we

have to check whether it is possible or not.

39

Let us say that the remaining capacity on the first and the second
concentrators are R: and Rz respectively. The chosen terminal from the first
concentrator is ¢; and its weight is w;, and the chosen terminal from the second
concentrator to be swapped with ¢, is £z and its weight is w2. If ¢; is moved out, the
remaining capacity on the first concentrator becomes Rr+w;. This means that the
weight of ¢z has to be at most R+w;. Moreover, in order to make enough room for ¢;
on the second concentrator, Rz+w: has to be bigger that w:. Therefore, ws has to be
bigger than or equal to (wi— R but less than or equal to (Br+wi). This can be
written as:

wr R2) w2 < Rrtwi) 5.2)

If inequality (5.2) cannot be satisfied by the chosen terminals, the algorithm will

start again from the beginning by choosing another pair of concentrators. The main

steps of this approach are as follows:

step 1 : Choose randomly a concentrator that at least has one terminal being
connected to it.

step 2 : Choose another concentrator randomly.

step 3 : Choose a terminal randomly from the first concentrator.

step 4 : Generate a random number between 1 and (p+q), inclusively.

step 5: If the random number obtained in step 4 is bigger than p, simply move the
terminal obtained in step 3 to the second concentrator.
Otherwise, if inequality (5.2) can be satisfied then swap the terminal, which
is identified by the random number generated from the second concentrator

with the one obtained in step 3; otherwise go to step 1.

40

The second method, named BRS (best random selection), is a modification of
the first one. This time, the action to be done is not chosen randomly but depends on
the “savings” that can be made. If there are no actions that can save money, the
one with the minimum cost increasing effect is chosen. One starts by randomly
choosing two concentrators. Similarly to the CRS approach, the first concentrator
must have at least one terminal connected to it. Then, all possibilities of moving a
terminal from the first concentrator to the second one and swapping two terminals,
one from each concentrator, are examined.
Moving a terminal from the first concentrator to the second is possible only if
there is enough room available on the second concentrator to accept the terminal
being moved. Swapping terminals is possible only if both concentrators have
terminals connected to them and inequality (5.2) is satisfied.
The main steps of this second approach are as follows:
step 1 : Choose randomly a concentrator that has at least one terminal connected to
it.

step 2 : Choose another concentrator randomly.

step 3 : If there is room available on the second concentrator obtained in step 2,
evaluate which terminals from the first concentrator can fit into it and
select the one offering the most saving.

step 4: If both the first and the second concentrators have terminals connected to
them, calculate which pair of terminals, one from each concentrator, that
satisfy inequality (5.2), can save the most if they are swapped.

step 5: Compare the savings obtained in Step 3 and 4, and choose the best one.

step 6: Do the action according to the result obtained in step 5.

41

5.1.2. Concentrator Location

5.1.2.1 Obtaining an Initial Solution
The initial solution for the concentrator location problem in this research is
calculated by using the ADD Algorithm as described in Chapter 3. The main steps
of this algorithm can be summarized as follows:
step 1 : Assign all terminals to the center and set it as the current configuration.
step 2: For every concentrator not in the current configuration, examine the
savings obtainable if it is added to the configuration according to equation
3.49):
- compute the saving that can be obtained if a given terminal is moved to
the concentrator being considered. Repeat for each terminal.

- If this saving is positive consider moving the terminal in question to
the concentrator being examined; otherwise just ignore it.

- Sum up the savings obtainable for each concentrator subject to its
capacity. If the total weight of terminals exceeds the capacity of the
concentrator then take the first terminals that can save the most
money without violating the capacity constraint of the concentrator
being examined.

- Subtract the cost of locating concentrator j from the savings obtained in
the previous step to obtain the actual savings.
step 3 : If the actual savings exist
- Add the concentrator that can save the most money to the current

solution.

42

- Move the terminals for which money can be saved to the new
concentrator.
- Go back to step 2.

Otherwise, terminate the process.

The results given by the ADD algorithm are not optimum most of the time,
because once a concentrator is chosen, it cannot be dropped from the configuration
at a latter stage. It follows that if a bad decision is made at some point, it must be
carried to the end. To get a better result, some modifications should be made such
as allowing a previously chosen concentrator to be dropped or to be replaced by a
concentrator not present in the current solution. One way to do this is by using

simulated annealing (see Chapter 4).

5.1.2.2 Neighbour Generation

In keeping with the above observation, given a configuration, a neighbour solution
can be obtained in three ways, i.e., (1) dropping a concentrator, (2) adding a new
concentrator, or (3) swapping a concentrator currently used with a concentrator that
is not being used. As a matter of fact, swapping concentrators can be seen as a
combination of dropping and adding processes. In this research, two methods for

dropping, and two methods for adding concentrators, are investigated.

5.1.2.2.1 Drop Procedure

The two methods for dropping a concentrator are RC (the concentrator that is

dropped is randomly chosen) and LS (drop the least significant concentrator, i.e., the

43

one that has the least contribution in lowering the configuration cost). The
contribution of each concentrator to lowering the cost of the current configuration, if

dropped, is calculated by using the following formula:

Q- zlel(j)(c: - c’f)"df (5.3)

where

® =the contribution of concentrator j
¢, = cost of connecting terminal i to its best available concentrator other

than concentrator j
cij = cost of connecting terminal i to concentrator j
di =cost of locating concentrator j

I(j) = all terminals currently connected to concentrator j

Thus, @ is the amount of money that will be lost if concentrator j is dropped
from the configuration and each terminal that was previously connected to it is
moved to its best available concentrator. Equation (5.3) is similar to equation (3.4)
used by the ADD Algorithm to evaluate which concentrator is to be added to the
configuration. The smaller the value of @;, the less significant the contribution of
concentrator j. If @ is negative, it means that dropping concentrator j will save
some money. Therefore, the concentrator with the smallest value of @; is the one we

consider to be dropped.

44

After a concentrator is dropped, all terminals that previously were connected
to it have to be reassigned to the remaining concentrators in the configuration based
on their connection costs. In other words, this procedure will reassign these
terminals to their best available concentrators.

The main steps of the Drop Procedure can be summarized as follows:
step 1: Drop a concentrator from the configuration, either by using RC method or

LS method.
step 2 : Reassign each terminal that was connected to the concentrator dropped in

step 1 to its best available concentrator in the configuration.

5.1.2.2.2. Add Procedure

The concentrator to be added to the configuration is chosen from all concentrators
not currently in the configuration. Two methods of choosing the concentrator are
investigated in this research; these are, RC (the concentrator to be added is
randomly chosen) and COM (the concentrator to be added is the closest to the center
of mass).

The center of mass (Xcosr, Ycosr) 1s calculated as follows:

(Z:e:(j)x‘)+x°

nlu)‘*‘l

X, coMm = (5.4)

(5.5)

45

where (x:;, y) are the coordinates of the terminals currently connected to the
concentrator j, (xoys) denotes the central computer's coordinate and nr is the
number of terminals connected to concentrator j. The concentrator to be chosen is
the one that is the closest to (Xcos, Ycor). This COM method is applicable only if the
input data are the locations or coordinates of the terminals and concentrators. If the
input data is a cost matrix, only the first method (RC) can be used.

After a concentrator is added to the configuration, we have to select the
terminals to be moved into it. Those terminals have to be the ones that can save the
most by moving to this new concentrator. Therefore, each terminal has to be
investigated to see how much money it can save. The savings, s;, can be calculated
using the following formula:

s,=¢/ —¢; (5.6)

where

¢! = the cost of connecting terminal i to the concentrator with which it is

currently associated.

Cij the cost of connecting terminal i to the new concentrator j.

The positive s: indicates that it is better to move terminal { to the new
concentrator. If the total weight of the terminals with positive s: exceeds the
capacity of the new concentrator, only the first terminals that can save the most
without violating the capacity constraint are moved.

The main steps of this Add Procedure are as follows:

step 1: Add a concentrator into the configuration either by using RC or COM.

46

step 2 : For each terminal, calculate the obtainable savings if it is moved to the new
concentrators according to equation (5.6).
step 3 : Move the terminals that can save money:
- If the total weight of the terminals that can save money exceeds the
capacity of the new concentrator then move the first terminals that can

save the most.

5.1.2.2.3 Swap Procedure

As mentioned before, the Swap Procedure can be seen as a combination of dropping
and adding concentrators. At first two concentrators that are to be swapped are
chosen, one from active concentrators (those currently in the configuration) and one
from nonactive concentrators (those not currently in the configuration). Then the
chosen active concentrator is dropped from the configuration according to the Drop
Procedure. The next step is adding the chosen nonactive concentrator to the
configuration according to the Add Procedure. Because two methods for dropping
and two methods for adding concentrators are investigated, four combinations for
swapping are possible. Those are:

1. RC-RC: Drop randomly and add randomly.

2. LS-RC: Drop the least significant and add randomly.

RC-COM: Drop randomly and add the closest to the center of mass.

w

LS-COM: Drop the least significant and add the closest to the center of mass.

~

47

65.1.2.3 Selection of a Candidate Configuration

Having described the three procedures for generating neighbour solutions, we then
move to the next step which is to decide which one of them is to be used. Before
deciding which procedure is to be used, one has to decide whether the number of
concentrators in the configuration will be kept constant or not. Moreover, one has to
choose beforehand what methods are to be used in choosing concentrators to be
added to (RC or LS) or dropped from (RC or COM) the configuration.

Keeping the number of concentrators constant can reduce the running-time of
the program, but on the other hand deciding how many concentrators to be placed is
a difficult problem. However, the number of concentrators given by the ADD
Algorithm in the initial solution may be used as a starting point. Thus, one can
select some numbers close this, and choose the one that produces the lowest
configuration cost. If one decides to do this, the Swap Procedure is the only one that
will be applied to get the candidate configuration. Moreover, if the given number of
concentrators is less than the one given by the initial solution, the program will drop
the least significant concentrators at the starting point. On the other hand if it is
more that the number given by the initial solution, the program will add
concentrators randomly.

If one decides to let the computer find the “best” number of concentrators, the
three procedures (Add, Drop, and Swap) are applied. It will produce three different
candidates with different number of concentrators. The one with the best
configuration cost is chosen as the candidate configuration for further consideration

in the program.

48

5.1.2.4 An Improvement to the Algorithms

The methods developed in this study for reassigning terminals after a concentrator
is dropped from or added to the configuration will work well if the capacity of every
concentrator is very large. In this case, each concentrator will rarely reject any
terminal to be connected to it. Therefore, each terminal can be assigned to its best
concentrator most of the time. When the capacity constraints are tight, these
methods may fail to assign some terminals to their best concentrators. The tighter
are the capacity constraints, the worse the reassigning methods may perform.

Therefore, in the cases where the capacity constraints are tight enough, a
modification to these reassigning methods is needed. One possible modification is by
applying the terminal assignment procedure to the candidate configuration. Thus,
every time there is a change in the configuration, the terminal assignment
procedure should be applied to get a better assignment before going to the next step
in the simulated annealing procedure. However there is a tradeoff here.

Applying the terminal assignment procedure after every dropping, adding or
swapping concentrators will increase the program’s running-time significantly, due
to the fact that the terminal assignment itself is another simulated annealing
procedure. To deal with this problem, the terminal assignment procedure can be
applied only after a certain number of iterations in the simulated annealing
procedure. For example, in an implementation, the terminal assignment procedure
is applied only if the control parameter (temperature) changes. Moreover, in the
cases where the program’s running-time is very crucial, it can be applied only at the

end of the program. This is to make sure that we have the ‘best terminal

49

assignments for the chosen concentrators. These modifications reduce the running-

time, but at the same time the quality of the solution may decrease.

5.2 Choosing an Annealing Schedule

As previously mentioned that there are four parameters that must be specified to
make up an annealing schedule. Those are the initial temperature, the number of
iterations at each temperature, the rule for decreasing the temperature and the
stopping criterion. This section discusses how these parameters are obtained in this

study.

5.2.1 Initial Temperature

The initial temperature is chosen so that during the iterations in this temperature,
the probability for accepting a worse configuration is approximately equal to a
constant called P.. In this study, P. is computed according to equation (4.3). To
calculate the average increase in cost, the algorithms developed in this study
generate a number of random transitions (neighbouring configurations) at the
beginning, and they record the ACosts of all cost increasing transitions® and finally
compute the average of them.

Many authors argue that the value of P. has to be high enough. Kirkpatrick
(1984), for example, suggests to use 0.80. However, the results from preliminary
testing show that for the algorithms developed in this study, setting P.. to 0.80

yielded only in increasing of the programs’ running-times without improving the

4 The transitions that produce ACosts greater than zero

50

quality of solutions. Therefore, P, for all algorithms developed in this study is set to

0.10.

5.2.2 Number of Iterations at Each Temperature

The number of iterations at each temperature &, called Lz, is not fixed but depends
on a sufficient number of cost increasing transitions accepted, say, Lnin, subject to a
constant upperbound, say, Lma:. A constant upper bound is needed because as the
temperature approaches zero, the probability for accepting a worse configuration
will approach zero too. Therefore, Li will approach infinity.

Intuitively, the value of Lmi should be much smaller than that of L.
Therefore, in the algorithms for solving the terminal assignment problem L. is set
as a small portion of Lmax., i.e., 2% for BRS and 1% for CRS. A different strategy is
used by the algorithms for solving the concentrator location problems. In this case,
the value of Lmi» is computed as a portion, which is 5% of the number of the cost
increasing transitions generated when the initial temperature is being computed.

Lumas for all algorithms is computed as a multiplication of the number of the
dominant factor in generating a neighbour. It can be written as follows:

Lma=q*n (6.7
where q is a multiplier and 7 is the dominant factor (7= the number of terminals for
the terminals assignment problem and 7=the number of potential sites of
concentrators for the concentrator location problem).

In the terminal assignment problem, since an attempt is always made to
choose two terminals in order to generate a neighboring configuration, the number

of terminals becomes the dominant factor. It is different with the concentrator

51

location problem where two concentrators are always chosen to generate a
neighbouring configuration. Therefore, in this case, the number of concentrator
becomes the dominant factor.

The value of the multiplier g in equation (5.7) will determine the quality of
solutions. It is clear that the larger it is, the higher the probability for getting a
better solution. However, at the same time the program’'s running-time may
Increase significantly. Therefore, choosing the right value of q is a difficult task. In
this study, this value is determined through experimentation. The details of this are

described in Chapter 7.

5.2.3 Temperature Decrement and
the stopping Criterion

The temperature is decreased according to Equation (3.2), which is tempi-1 =
a*tempr). For the terminals assignment problem, « is set 0.992 for the BRS and
0.90 for the CRS method. For the concentrator location problem, « is set to 0.85 for
all methods. Finally, an algorithm stops if after ¢ consecutive temperature steps the
configuration cost does not change. For the terminal assignment problem, ¢ is set to
3, whereas for the concentrator location problem it is set to 4. All values of « and ¢

are obtained from preliminary experimentation.

5.3 Summary

This chapter has described how the algorithms were developed in this study to solve
the terminal assignment and concentrator location problems. Three main topics

were addressed, which are (1) how an initial configuration is computed, (2) how a

52

neighbouring configuration is generated, and (3) how an annealing schedule is
chosen. The next chapter describes how these algorithms are implemented with an

emphasis on the data structures and the program structures.

53

CHAPTER 6

Implementation of
the Algorithms

The algorithms to solve the concentrator location and the terminal assignment
problems that were explained in the previous chapter, are programmed in DELPHI
1.0', which is a PASCAl-based compiler. These programs run under the MS-
Windows 3.12 environment.

Our programs feature several user-friendly windows to interact with users.
Through these windows, users can enter the information needed to run these
programs, such as the data file name, the simulated annealing parameters and the
method for generating neighbours. Figure 6.1, for example, shows the opening
window of the terminal assignment program, which is identical to that of the
concentrator location program.

This chapter gives the implementation details of these programs with an
emphasis on the data structures and the program structures. It starts with the

terminal assignment program followed by the concentrator location program.

IDELPHI is a trademark of Borland International. Inc.
2MS and Windows are trademarks of Microsoft Corporation.

54

Run Window Help

Figure 6.1. The opening window of the terminal assignment program.

6.1 Terminal Assignment

6.1.1 Input and Output

The input data for this terminal assignment program is either a connection cost
matrix or coordinates of the terminals and the concentrators. In the latter case, the
program assumes that the connection costs are given by the distances. Therefore, it
will calculate the distances between all pairs of terminals and concentrators and
keep them in a cost matrix. The input data’s dialog window for this terminal
assignment program is shown in Figure 6.2.

If the number of terminals is n and the number of concentrators is m, an (n x
m) matrix is needed to represent the cost matrix. Using a regular matrix in
PASCAL under the MS-Windows 3.1 environment has the effect of limiting the

matrix size to 64 KBytes. Actually, this limitation originates from the memory

55

B b

THEAE

Figure 6.2. Input data dialog window of the terminal assignment program

management of MS-DOS? which is unfortunately kept by MS-Windows 3.1. In order
to overcome this 64K limitation, all of the matrices used in this program are
modified by using pointers. The following is an example of how this can be done :
Regular matrix in Pascal :
CostMatrix = Array [1..n,1..m] of Longint;
Modified matrix :
MlintegerRowType = array(1..m] of Longlnt;

CostMatrix = array[1..n] of “MlIntegerRowType;

3 MS-DOS is a trademark of Microsoft Corporation.

56

Accessing data in both matrices is very similar. Ifin a regular matrix a cell can be
accessed by CostMatrixfrow,column], in a modified matrix it can be accessed by
CostMatrix{row]*[column].

In case the input data are the coordinates of terminals and concentrators,
another data structure is needed to store them before being transformed to a cost

matrix. If a coordinate is represented by point(x,y), it can be translated to the

PASCAL code as:
point =record
x :longint;
y :longint;
end;

All coordinates of terminals and concentrators are recorded in an array as
follows:

Coordinates = Array(1..n+m] of point;

Moreover, the capacity of each concentrator is stored in a [I x m/ array of integer,
and the weight of each terminal is stored in a /1 x n] array of integer.

The result of this terminal assignment is stored in a (n x m) Boolean matrix. If
the value of cell (i,j) of this matrix is true that means terminal i is connected to
concentrator j. The actual implementation of this matrix uses the same structure as
that of the cost matrix, except that the data type is Boolean. The outputs are
presented both in text and graphics. An example of a graphical output of the

terminal assignment program is given in Figure 6.3.

57

Conﬁguration

Layout [Current Solution) [~]~

(<] [#][=][e] BIR]

Configuration Cast: 750 7 7
Output Number ~ : 1

——

Figure 6.3. An example of a graphical output of the terminal assignment program

6.1.2 Initial Solution

To implement the modified greedy algorithm* in computing an initial solution as
explained in the previous chapter, two main data structures are used, namely, a
sorted linked-list to maintain the order of available concentrators for each terminal,
and a (I x m) array to keep track of the remaining capacity of each concentrator.

The tradeoff values® are calculated based on the first and second best available

concentrators for each terminal. Therefore, in practice, it is better to create a sorted

1 See section 3.1.2 for a description of this algorithm
5 See equation (3.1) for the formula

58

list of concentrators that shows the order of the best available concentrators for each

terminal. This data structure is illustrated in Figure 6.4.

The concentrators in each T: list are sorted according to their connection cost

with terminal i in increasing order. The concentrator with the smallest connection

cost with terminal i is Ci; and the second smallest is Ciz. In general, if the

T

Ti

Tha

.....

.....

Cn Cie
Ca Coz
Ca Ciz
Cnl Cn.'

Coj

........

Gij

.........

C2m

¥ Cim

¥ Cam

Figure 6.4. The data structure used in calculating the initial solution for the

terminal assignment program

connection cost of terminal i{ and concentrator J is denoted by Cost(T:,C;), the

following expression is true for every T::

Cost(T:,Ci1) <Cost(T;,Ci2)<..... <Cost(T;,C;) <....... <Cost(T:,Cim)

Therefore, the tradeoff value of each terminal i can be computed by taking the

first two available concentrators in each T: list starting at Ci; and use them as the

59

input for equation (3.1). Because the capacity constraints are not taken into
consideration when forming the list, there may be some concentrators in a 7; list
that cannot accommodate terminal i, due to its weight. In other words, the first two
elements of the list 7: are not always the two best available concentrators. To speed
up the search for available concentrators, whenever the procedure finds a
concentrator in a T: list that cannot accommodate terminal i, it removes that
concentrator immediately from the T: list, so that the list becomes shorter for the
next search.

Ifa T: list only has one concentrator left that can accommodate terminal i, the
procedure simply sets its tradeoff value to minus infinity. Moreover, if a T list does
not have any available concentrators left, the procedure will stop and report a
failure. If no failure occurs, the terminal i that has the minimum tradeoff value will
be assigned to its best available concentrator. It implies that a terminal with only
one feasible concentrator left has the priority to be assigned first, because its
tradeoff value is -«0.® This prevents the algorithm to easily fail finding a feasible
solution.

After terminal i is assigned to concentrator Cij, the T: list is removed from the
overall list. Therefore, as the algorithm proceeds the size of the linked-list will keep
going down and at one point the linked-list will become empty, which indicates that
all terminals have already been assigned or otherwise a failure is reported. Then

the procedure will stop.

6 In the application. this value is set to the largest minus integer (-MaxLongint=-2147483648).

60

6.1.3 Neighbour Generation

As explained in Chapter 5, there are two methods used in generating neighbours,
which are CRS (Completely Random Selection) and BRS (Best Random Selection).
Figure 6.5 shows the dialog window for selecting the method to be used in

generating a neighbouring solution.” Regardless of the chosen method, the first step

=l . Parameter Dialog

Figure 6.5. Method selection window of the terminal assignment program

in the neighbour generation process is to choose a pair of concentrators. Since the
number of concentrators is given, no special data structure is needed. The selection
of concentrators can be done simply by generating two different random numbers
that are ceiled by the number of concentrators in the configuration. The values of

random number generated represent the concentrators to be chosen.

7 The value of the multiplier has to be defined in this window too.

61

The next step is to choose what action is to be done toward the chosen
concentrators. As described in the previous section, the action can be either a move
of a terminal from the first concentrator to the second one or a swap between two
terminals, one from each chosen concentrator. Regardless of the chosen action, one
has to make sure that it is possible to be accomplished. It means that inequality
(5.2) has to be satisfied. To implement this, three data structures are involved,
Those are two [Ixm] arrays of integer, one for storing the capacity of each
concentrator and the other one for storing the remaining capacity in each

concentrator, and one [Ixn] array of integer for storing the weight of each terminal.

6.1.4 Program Structure

Figure 6.6 shows the main program for solving the terminal assignment problem
written in pseudo-PASCAL. This program is an instance of the simulated annealing
algorithm (Figure 4.2). The final result of this program is stored in a Boolean matrix
called BestConfig. The program starts with an initialization process of some
parameters and configurations as listed from line 3 to 11. The initial configuration
is obtained by using the modified greedy algorithm (line 3).

Due to the nature of simulated annealing that it accepts a worse configuration
with a certain probability, the current configuration is not always the best
configuration.® Therefore, two different configurations are needed to store each of
them. Those are CurrentConfig, which is used to store the current configuration

and BestConfig, which is used to store the best configuration found so far. At the

& See Chapter 4

62

beginning, both CurrentConfig and BestConfig are set equal to the initial

configuration (lines 4 & 5).

1 Procedure TeminalAssignment (BestConfig):

2 begin

3 ModifiedGreedyAlgorithm (InitConfig):

4 SetEqual (CurrentConfig.InitConfig);

5 SetEqual (BestConfig. CurrentConfig);

6 Initialize(LMax, LMin MaxCostUnchange.InitTemp.alpha);

7 NewCost := ConfigurationCost(CurrentConfig):

8 BestCost := NewCost:

9 CurrentCost := NewCost:

10 temp := [nitTemp:

11 CostUnchange :=0:

12 repeat

13 L:=0:

14 UpCostChange :=0:

15 repeat {inner loop starts}

16 Inc(L):

17 SelectTwoConcentrators (concl.conc2):

18 case TerminalSelectMethod of

19 1 : RandomSelection (concl.conc2.terml.term2.savings):
20 2 : BestSelection (concl.conc2.term!.term2. savings):
21 end:

22 if savings > 0 then

23 begin

24 UpdateConfiguration (CurrentConfig.concl.conc2.terml.term2):
25 NewCost := ConfigurationCost(CurrentConfig):

26 if NewCost < BestCost then

27 begin

28 SetEqual (BestConlfig.CurrentConfig):

29 BestCost := NewCost:

30 end:

31 end

32 else

33 if exp(savings/temp) > random(0.1) then

34 begin

35 UpdateConfiguration (CurrentConfig.concl.conc2. term1.term2):
36 NewCost := ConfigurationCost(CurrentConfig):

37 Inc(UpCostChange):

38 end:

39 until (UpCostChange=LMin) or (L=LMax): {inner loop ends}
40 if CurrentCost = NewCost then

41 Inc(CostUnchange)

42 else

43 begin

44 CostUnchange :=0:

45 CurrentCost := NewCost;

46 end:

47 temp := temp*«:

48 until CostUnchange = MaxCostUnchange:

49 end;

Figure 6.6. Pseudo-PASCAL of the main program for solving the terminal
assignment problem

63

In line 6, some parameters are initialized. Those are LMax, LMin,
MaxCostUnchange, InitTemp and alpha. LMax and LMin will determine when the
iterations at a certain temperature stop as shown in line 39. LMax is the
upperbound of the number of iterations whereas LMin is the maximum number of
cost increasing transitions that can be accepted at a certain temperature.
MaxCostUnchange denotes the maximum number of consecutive temperature steps
allowed for the configuration cost to be unchanged. This value determines when the
program will stop as shown at line 48. InitTemp is the initial temperature and
alpha is the decreasing factor for the temperature.®

Three variables representing configuration costs are used, namely, NewCost,
CurrentCost and BestCost. NewCost is used to store the cost of the newly accepted
configuration at the current temperature. CurrentCost is used to store the cost of
the configuration accepted in the previous temperature. BestCost is used to store the
cost of the best configuration found so far. Each time the temperature changes, the
value of CurrentCost is compared to that of NewCost (line 40). If their values are
equal, it means that the configuration cost does not change. If the configuration cost
does not change for a consecutive number of temperature steps, 1ie.,
MaxCostUnchange, the program stops (lines 40-48).

After initializing several configurations and parameters, the program
continues with the neighbour generation process. Inside the inner loop which starts
at line 15, the main processes of the neighbour generation are accomplished. First
two concentrators are chosen randomly (line 17), then the method of how to generate

a neighbour is chosen; either randomly (line 19) which represents the CRS method,

9 See section 5.2 for the detail description of how to determine these parameters.

64

or based on the best savings that can be obtained (line 20) which represents the BRS
method. After a neighbouring configuration is chosen, the obtainable savings are
evaluated. If there are savings (line 22), the chosen neighbouring configuration is
set to be the CurrentConfig (line 24), and then if the cost of CurrentConfig becomes
better than that of the BestConfig, the CurrentConfig is set to be the BestConfig
(lines 26-30). If there are no obtainable savings, the neighbouring configuration is

accepted with a certain probability as the CurrentConfig (line 33-38).

6.2 Concentrator Location

6.2.1 Input and Output

The input data of the concentrator location program is similar to that of the terminal
assignment program. It can be a cost (distance) matrix or coordinates of the
terminals and potential concentrators. However, in the concentrator location
problem, the center, called Co must be considered as a potential concentrator. Thus,
the number of potential concentrators becomes m+1 and consequently the size of all
data structures that represent the potential concentrators also becomes m+I1. For
example, the size of the cost matrix becomes (n x (m+1)), where n is the number of
terminals. It should be noted that it is possible to include the center in the terminal
assignment problem by treating it as a regular concentrator.

As that in the terminal assignment, the concentrator location program also
needs to know the capacity of each concentrator, which is stored in a (I x (m+1))
array, and the weight of each terminal, which is stored in a (I x n) array. Moreover,

this program requires the cost for locating each concentrator (d;), which is stored in

65

(I x (m+1)) array. If the input data are the coordinates of the terminals and the
potential concentrators, the unit costs of both high and low capacity lines are also
needed. Figure 6.7 shows the input data’s dialog window of the concentrator
location program.

Since it is likely that not all of the potential concentrators will be in the final
configuration, there should be a way to distinguish which concentrators are in use
(active) and which of them are not (nonactive). Therefore, in this program there are

two single arrays that record this information, one for the active concentrators and

[=| _ DataFile Dialog

@ Coordinates {Locations] .
;Ct:ouu.ui. B :
Mmoo Tomints i35

‘Number of Concontrators [op =

- | -Dataile Nome: i o
D '--coupﬁ'ois(llc; Uni:

Figure 6.7. Input data's dialog window of the concentrator location
program

66

the other one for the nonactive concentrators. Two arrays are used, instead of one,
in order to make the swapping process workable, which will be explained later in
this chapter.

The configurations or the solutions are stored in the (n x (m+1)) Boolean
matrices, where true means that the connection is established and false means that
it is not. As those in the terminal assignment program, the outputs of this
concentrator location program are presented both in text and graphics. Figure 6.8

shows an example of a graphical output of this program.

Configuration Layout (Best Solution)

»

éizz;Conﬁguriﬂnh Cost . : ..2704 S
. OutputNumber = : . ..2

Figure 6.8. An example of a graphical output of the concentrator location program

67

6.2.2 Initial Solution

In implementing the Add algorithm a sorted linked list, as shown in Figure 6.9, is
used. For each potential concentrator j, a sorted list of terminals is constructed. The
terminals in each C; list are sorted in decreasing order based on the amount of
money that can be saved if they are moved from the concentrator to which they are
currently associated to concentrator j. Thus, T'I; is the best candidate terminal to be
moved to concentrator j, and TY; is the i** best candidate terminal to be moved to

concentrator j. The saving that can be obtained if terminal { is moved to

Ct o Th . A' T2, . . T . A' Tk
., Savings T savings '. savings " “savings T ° ' savings
v ’
Cz Tk . T2 : . Ti . Tke
savings T savings v savings " > savings v savings
v
Cs T T2y Tis Tka
Tsavings v savings . v “savings > savings = """ ¥ —savings
G | . TL COTe - Th Tk;
> e -~ ————
'savings | . savings _8avings savings \d savings
v
¢ Cm ! A'/ Tlm T'Zm k Tlm Tkm
[savings | ", 8avibgs | saviogs | " savings savIngs |
| N ——

Figure 6.9. Data structure used in calculating the initial solution for the
concentrator location program

68

concentrator j is denoted as savings which is written underneath Ty. From now on,
it will be referred to as Ti;.savings. Only the terminals for which money can be
saved are included in the list. Hence, for C; there are k; terminals that can save
money if they are moved to it, and for C; there are k; terminals.

The total savings that can be made by each concentrator j are calculated by
adding up the Tij.savings in that C; list subject to the capacity of concentrator J.
Based on the savings they can make, the C; lists are sorted in decreasing order, so
that

Cisavings > Cz.savings 2.... 2Cj.savings 2... >Cn.savings
where Cj.savings denotes the obtainable savings if concentrator j is added to the
configuration. Therefore, the concentrator that can save the most money will always
be on top of the list.

By using this data structure the updating time can be reduced. If we take a
close look at the Add algorithm, it is obvious that as it proceeds, the terminals only
move to the concentrators that are closer to them. It implies that T3j.savings never
increases. As a result, the values of Cj.savings will never increase either.

For example, let us say that C: is the concentrator that is on top of the list and
T: and T? are the terminals with which money can be saved if they are moved to C;.
After adding C: to the configuration, the C; list should be deleted from the overall
list, and the remaining list should be updated. To update the remaining list, first we
have to find out which concentrator lists contain T; and T> and then recalculate the
new savings that can be made if these terminals are moved from their new home, C;,
to the concentrator being evaluated. Having moved 7; and T to the closer

concentrator, C;, the savings that we can obtain by moving them again to other

69

concentrators should decrease. In some cases, there may be no savings anymore. If
no savings can be made, these terminals are deleted from the list, otherwise they
should be relocated to keep the list sorted. Having deleted or relocated these
terminals, the new total savings of the concentrator being evaluated (Cj.savings)
should be recalculated. These new savings will not be more than the savings that it
could make previously. Therefore, we do not need to compare this concentrator
with all others, but only with those that saved less previously. Thus, by keeping the
list sorted, the time needed to update it can be reduced, because only a portion of the
linked-list needs to be reevaluated.

The result of this Add Algorithm is stored in a (I x n) array of integer. The
indices represent the terminal numbers, and the contents of the array are the
concentrator numbers in which the terminals are assigned to. However, this data
structure is not suitable to be used in the simulated annealing algorithm.
Therefore, this result is transformed to a (n x (m+1)) Boolean matrix as was used

in the terminal assignment program.

6.2.3 Neighbour Generation

As explained in Chapter 5, there are three different procedures in generating a
neighbouring solution. i.e., add, drop, and swap procedures. Add procedure itself
can be done in two ways, namely, RC (randomly chosen) and LS (the least
significant). Drop procedure can also be done in two ways, namely, RC (randomly
chosen) and COM (the closest to the center of mass). Because a swap can be done

by applying drop and add procedures sequentially, it does not have its own method.

70

The dialog window for choosing the procedure (method) to be used in generating
neighbouring solutions is shown in Figure 6.10.

In order to choose a concentrator randomly (RC method) two lists of
concentrators are used, one for the active (in use) concentrators and one for the
nonactive (not in use) concentrators. These lists are implemented as (I x (m+1))
arrays. The first list, namely, the active list, is used in the process of choosing a
concentrator to be dropped from the configuration (drop procedure), whereas the
second one, namely, the nonactive list, is used in the process of choosing a
concentrator to be added to the configuration (add procedure). Having the active list
allows the calculation of the configuration cost becomes faster since the program
does not need to check every potential concentrator but can go directly to the

concentrators pointed to by the active list.

J=] Parameter Dialog

m-bunfc«wmm I__EW r‘ Indial Configuration

O meunsm O smdonc;iaomm

L n.at:aﬁgnua-nf& o
a Neighbour Generation Method o

Figure 6.10. Method selection window for the concentrator location problem

71

To accelerate the process of reassigning a terminal to another concentrator, a
sorted list of concentrators, called lookup, is constructed for each terminal The best
concentrator for each terminal is located on top of every list. Thus, in order to
reassign a terminal, one just needs to go to that terminal’s lookup list to find its new
best available concentrator.

However, one has to make sure that the chosen new home is being used in the
current configuration. One way to accomplish this is by looking at the concentrators
present in the active list. However, it will take time if we have to search the entire
active list every time a terminal needs to be reassigned. Therefore, a new data
structure, named inuse list is used. This is a Boolean array of concentrators. If a

concentrator is in use, its value is set to be true; otherwise, its value is set to be false.

6.2.4 Program Structure

Figure 6.11 shows the main structure of the concentrator location program, which is
very similar to that of the terminal assignment program. It starts by calculating the
initial configuration (InitConfig). Then, all other configurations, parameters and
lists are initialized.

Besides the initial configuration, there are two other configurations used in
this program which are the current configuration (CurrentConfig) and the best
configuration (BestConfig). These two configurations are used in the same way as
those in the terminal assignment program. The parameters that are initialized at

line 6 are also function similarly with those of the terminal assignment program.

72

1 Procedure ConcentratorLocation(BestConfig):

2 begin

3 AddAlgoritm(InitConfig);

4 SetEqual(CurrentConfig. InitConfig):

5 SetEqual(BestConfig. InitConfig):

6 Initialize(LMax, LMin. MaxCostUnchange. InitTemp.alpha):

7 Initialize(ActiveList, NonActiveList. CapUsedList. InUsedList):
8 Generate(LookUpList);

9 NewCost := ConfigCost(CurrentConfig):

10 CurrentCost := NewCost:

11 BestCost := NewCost;

12 temp := InitTemp:

13 repeat

14 L:=0:

15 UpCostChange :=0:

16 repeat

17 Inc(L):

18 Case Method of

19 1. ChooseRandomlyQ: {a concentrator to be dropped}
20 ChooseRandomly(Q: {a concentrator to be added}
21 2: ChooseLeastSignificant(: f{a concentrator to be dropped}
22 ChooseRandomly(: {a concentrator to be added}
23 3 ChooseRandomly(: {a concentrator to be dropped)
24 CenterOfMass(: {a concentrator to be added)

25 4 ChooseLeastSignificant (:{a concentrator to be dropped}
26 CenterOfMass(: {a concentrator to be added)}

27 end: {End of Case}

28 GenerateNeighbour():

29 TerminalAssignment(Q:

30 CalculateSavings(Q:

31 if savings > 0 then

32 begin

33 UpdateConfig(CurrentConfig):

34 NewCost := ConfigCost(CurrentConfig):

35 if NewCost < BestConfig then

36 begin

37 BestCost :=NewCost:

38 SetEqual(BestConfig. CurrentConfig):

39 end:

40 end

41 else

42 if exp(savings/temp) > random(0.1) then

43 begin

44 UpdateConfig(CurrentConfig):

45 NewCost := ConfigCost(CurrentConfig):

46 Inc(UpCostChange):

47 end;

48 until (UpCostChange = Lmin) or (L. = Lmax):

49 if CurrentCost = NewCost then

50 Inc{CostUnchange)

51 else

52 begin

53 CostUnchange :=0;

54 CurrentCost := NewCost:

55 end;

66 temp = temp*a

57 until CostUnchange = MaxCostUnchange:

58 end; {End of Concentrator Location}

Figure 6.11. Pseudo-PASCAL of the main program for solving the concentrator
location problem

73

After completing the initialization process, the program continues with the
neighbour generation process. The four methods for choosing concentrators to be
added and dropped are listed from line 19 to line 26. The method to be used has to
be chosen beforehand by users. Depending on what method is chosen, this program
will run one out of these four methods at a time, and then a neighbouring solution is
generated (line 28). The quality of a neighbouring solution can be improved by
applying a better terminal assignment, so that at line 29 the terminal assignment
procedure is called.

After a neighbouring solution is generated, the savings that can be made by
this new configuration are calculated (line 30). If there are savings, the current
configuration is updated by accepting the new configuration as the current
configuration. Moreover, if the cost of this newly accepted configuration is less than
the cost of the best configuration found so far, then it is set to be the best
configuration (line 38). If there are no savings, the new configuration can be
accepted as the current configuration with a certain probability (lines 42 - 47).

It should be noted that in this pseudo code, the terminal assignment procedure
1s called within the inner loop. This is desirable, because each time a concentrator is
added, dropped or swapped with another one, all terminals have to be reassigned,
since the assignments are specific to a set of concentrators. However, it will take a
long time to run the whole program, because the terminal assignment program itself
is another simulated annealing application. Therefore, in this research some
modifications of this program are tried. First, the terminal assignment procedure is
moved outside of the inner loop, ie., after line 48. However, if the running-time is

still extremely large, the terminal assignment procedure can be called only twice:

74

once at the beginning and once the end of the program. Moreover, for the
uncapacitated cases where the terminal assignment procedure is not needed, it is
removed completely from the program.©

Similarly to the terminal assignment program, this program stops when the
cost of the current configuration does not change for a consecutive number of

temperature steps (line 57). The counter for this is shown at line 50.

6.3 Summary

This chapter described the implementation details of the algorithms developed in
this study with an emphasis on the data structures and the program structures. The
chapter also showed some examples of the input/output window interface where the
programs interact with users.

The next chapter presents the experiments conducted for the algorithms
developed in this study. It includes the comparison between the results of the
algorithms developed in this study with those of some well-known heuristic

algorithms.

10 See section 5.1.2.4

75

CHAPTER 7

Computational Experiments

In this chapter, some computational experiments for the algorithms developed in
this study are presented. All experiments were carried out on a PC with an Intel
Pentium 75 MHz processor. This chapter starts with the discussion of the how the
experiments were setup and conducted for the algorithms developed for solving the
terminal assignment problems and will move to the experiments for the algorithms
developed for solving the concentrator location problems.

Recall that n is the number of terminals, m is the number of potential
concentrators, k; is the capacity of concentrator j and w: is the weight of terminal i.

Throughout this chapter, the size of a network will be referred in terms of (n,m).

7.1 Terminal Assignment

The main purpose of this experiment is to compare the results obtained from the
algorithms developed in this study to those given by the modified greedy algorithm.
Five different sizes of networks were considered in this experiment. In terms of

(n,m), those were (100,20), (200,40), (300,60), (400,80) and (500,100). We assumed

76

that the capacity of all concentrators were uniform with kj=k=12. The weight of
each terminal was randomly generated between 1 and 3.

For each problem size, five different collections of terminals and concentrators
were randomly generated on a 200 x 200 unit rectangular grid. The two methods
developed in this study, CRS and BRS, were applied to these data. The multiplier
used for the BRS method was 2 and for the CRS method was 66.! These values
were chosen from preliminary experiments so that the running times of both
methods were not very different. The BRS method needs fewer iterations than does
the CRS method, this is because it always searches for the best neighbour that can
be generated from the chosen concentrators. On the other hand, the CRS method
simply chooses a neighbour randomly. This means that it needs a large number of
iterations in order to obtain a good result.

The initial solution for each method was computed using the modified greedy
algorithm with the tradeoff value of 0. By using this tradeoff value, the modified
greedy algorithm became similar to the original greedy algorithm. Moreover, eleven
modified greedy algorithms with different tradeoff values, ranging from 0.1 to 1.0,2
were also applied to the data. The best of them for each problem size was then
compared to the results given by the simulated annealing (SA) algorithm.

Table 7.1 shows the improvements gained by the methods developed in this
study over the initial solution that were computed using the greedy algorithm along
with their running times. The percentage improvements gained by the CRS and

BRS methods are given in the shaded columns. The running times of the greedy

! Recall that the multiplier will determine the upperboud of the number of iterations at each
temperature.
2 Incremented by 0.1.

77

algorithm are not presented in this table because they were very fast, even for the

problems of size (500,100), they took only less than 3 seconds.

Table 7.1. The Improvements Gained by the BRS and CRS Methods
over the Greedy Algorithm

(200,40) 1
2 3974 3578
3 5362 4980
4 4573 4200
5 4082 3536
Avg.
(300.60) 1 6156 5394
2 4779 4457
3 4447 4129
4 6701 5853
5 4628 4303
Avg.
(400,80) 1 7268 6425
2 5968 5314
3 5095 4814
4 7348 6313
5 6074 5420
Avg.
(500,100) 1 7871 6869
2 6446 5975
3 6421 5799
4 7323 6605
5 6002 5613
Avg

78

For all the problem sizes considered in this study, the BRS method performed
slightly better than did the CRS one, as shown from the average improvement for
each problem size, where the BRS method always gave a better result. If we take
the overall average, regardless of the problem size, 9.35% (standard deviation =
2.58%) of improvement over the greedy algorithm’s result was given by the BRS
method and only 8.65% (standard deviation = 2.65%) improvement was given by the
CRS method. The largest improvement gained in this study was also given by the
BRS method, which was 10.59% (for the problems of size (400,80)). Therefore for
further comparison, we will consider only the results from the BRS method.

In Table 7.2, the results obtained from the BRS method are compared to those
obtained from the best modified greedy algorithm that were examined in this study.
As mentioned above, 11 different tradeoff values for the modified greedy algorithm
were applied to the data generated in this study. The best of them for each data size
was presented in the table along with the tradeoff parameter (a) that was used to
produce it. From this table, we can see that the BRS method performed better than
the best modified greedy algorithm did, and this for every problem size examined in
this study. The smallest improvement was for the problems of size (100,20) which
was 4.02%, whereas the largest improvement obtained was for the problems of size
(400,80) which was 6.99%. The overall average improvement, regardless of the
problem size, was 5.51% with a standard deviation of 3.01%.

Moreover, we believe that the running times of the BRS and CRS methods in

solving the data sets generated in this study are still acceptable (see Table 7.1). For

79

the largest data set tested, i.e. (500,100), the average running time was 1087

seconds (18.12 minutes).

Table 7.2. Comparison between the "Best" Modified
Greedy Algorithm and the SA Algorithm

(100,20)

(200.40)

(300,60)

(400,80)

(500,100)

AvE.

80

7.2 Concentrator Location

Two steps of experiments were conducted in this part. First, all algorithms
(methods) developed in this study were compared to each other in order to obtain the
best of them. Second, the best algorithm was compared to the ADD algorithm,
which was the one used to compute the initial solutions. In addition, we compared
our algorithm to the best algorithm available in the program called SITATION,
which is written by Daskin (1995) for solving the uncapacitated facility location
problems.

The data used in this study were randomly generated on a 200 x 200 unit
rectangular grid. We assumed that the concentrators to be located were all identical
in terms of the capacity and the installation costs. Therefore, the cost for locating a
concentrator at site j was determined only by its distance to the central computer.
The capacity of each concentrator was assumed to be 12, and the weight of each
terminal was randomly generated between 1 and 2. The cost of a high capacity line
was assumed to be twice the cost of a low capacity line. Moreover, the first half of
the terminal sites were considered as the potential sites of the concentrators to be
located.

Recall that based on the procedure of dropping and adding a concentrator, four
different methods are possible for generating a neighbour. Those are RC-RC (drop
randomly and add randomly), LS-RC (drop the least significant and add randomly),
RC-COM (drop randomly and add the closest to the center of mass) and LS-COM
(drop the least significant and add the closest to the center of mass). To find out
which one was the best, two different sizes of networks were considered, i.e.,

(100,50) and (200,100). For each of them, five different data sets were randomly

81

generated. Then the four methods were applied to these data. The number of
concentrators was kept constant with the number obtained by the initial solution.
The multiplier used was 6 and the terminal assignment procedure was not applied.
The results given by each method are presented in Table 7.3. The percentage
improvement obtained by each method over the results of the ADD algorithm are
presented in the shaded columns. The improvements given by RC-RC method

surpassed those of the other methods, both for the problems of sizes (100,50) and

Table 7.3. The Improvements Gained by Different Methods of the Simulated
Annealing Algorithm over the ADD algorithm

(100,50)

(200.100)

(200,100). Only the improvements obtained by the RC-COM method that were close
to those obtained by the RC-RC method. Therefore, for the additional experiments,

we considered only the RC-RC method.

82

As previously mentioned, the value of the multiplier will determine the quality
of the solutions.® The bigger it is, the higher the probability for getting a better
solution. However at the same time the program’s running times could increase
significantly. Therefore, after choosing the best method, we then tried to find an
acceptable multiplier in terms of the quality of the solution and the acceptable
running-times.

Table 7.4 shows the improvements over the results of the ADD algorithm given
by two different multipliers, which are 3 and 6, along with their running times.
Contrarily to the previous experiments, the terminal assignment procedure was
applied this time. However, in order to save time, the terminal assignment
procedure was applied only twice; once at the beginning and once at the end of the

program.

Table 7.4. Comparison between the Improvements Gained
by Two Multipliers

(200,100)

3 See section 5.2.2.

83

For the problems of size (100,50) the multiplier of 6 gave a better improvement
(2.80%) than that of the multiplier of 3 (2.52%). However, for the problems of size
(200,100) the results were almost identical. The overall average improvements
given by these two multipliers are also very close. Regardless of the problem size,
the mean percentage improvement gained by the multiplier of 6 was 3.43%
(standard deviation = 1.76%) whereas the gain by the multiplier of 3 was 3.29%
(standard deviation = 1.66%). Moreover, in both problem sizes, the running times of
the multiplier of 6 were much longer than those of the multiplier of 3. Based on
these facts, the multiplier of 3 was chosen for the further experiments.

In Table 7.5, our implementation of the simulated annealing with the
multiplier of 3 is compared to the ADD algorithm. In this comparison, our algorithm
allowed the number of concentrators in the configuration to change at every
iteration. In addition, the terminal assignment procedure was applied at the
beginning and at the end of the program.

It seems that for the small size problems, the improvement was not much
better. For example, for problems of size (100,50), the average improvement was
only 2.83%. However, for the larger problems tested in this experiment, the
simulated annealing (SA) algorithm performed better. For the problems of size
(400,200), for example, the SA algorithm improved the results given by the ADD
algorithm by about 5.12%. For this size of problem, it took 5116 seconds (1 hour 42

minutes) on average to get the result.

84

Table 7.5. Comparison between the Simulated Annealing and the ADD
Algorithm

(100,50) 1
2 3856 14 3793 14
3 3917 15 3770 14
4 4052 15 3914 15
5 3886 13 3804 13
Avg.
(200,100) 1 6966 27 6565 27
2 6529 27 6384 28
3 6588 26 6354 26
4 6757 27 6332 26
5 6763 27 6346 26
Avg.
(300.150) 1 9521 40 9212 38
2 10044 41 9467 40
3 9338 40 9170 40
4 9530 37 9354 37
5 9325 39 8912 38
Avg.
(400,200) 1 12150 53 11455 53
2 12077 53 11577 54
3 12241 50 11734 51
4 12100 50 11261 50
5 12247 50 11674 51
Avg.

Finally, we compare our program with the program written by Daskin (1995),
called SITATION. As mentioned before, this program solves a number of
uncapacitated facility location problems. One of them is the uncapacitated fixed
charge location problem (UFCLP). This problem is very similar to the concentrator
location, where the concentrators act as the facilities and the terminals act as the
demand nodes. The only main difference is that the center does not exist in the

UFCLP. However, by setting the connection cost between concentrators and the

85

central computer to 0, our program can mimic this problem. In addition, we also
have to set the capacity of each concentrator to be large enough to handle the
uncapacitated nature of the UFCLP. Moreover, all demand nodes should be
considered as the potential location of the facilities.

Ten different data sets of size (150,150) were randomly generated in this study
in order to make this comparison. The size of (150,150) was chosen because that is
the largest size that can be managed by the SITATION program. The distances
between nodes were randomly generated between 10 and 150. The demand of each
node was randomly generated between 10 and 25, and the fixed cost for installing a
facility was randomly generated between 500 and 1000.

The SITATION program provides several algorithms for solving a problem. All
of them were applied to the data under study in order to get the best one. The two
exchange-based algorithms gave the best results. These two algorithms differ only
on how they calculate the initial solution. The first one was based on the ADD
algorithm, whereas the second one used the DROP algorithm to obtain an initial
solution. We then compared these results to the SA algorithm. The summary of
this comparison is presented in Table 7.6. Two different multipliers for the
simulated annealing, which were 2 and 6, were tested and their result are presented
in this table along with their running times. All results represent the

improvements gained over the results obtained by the ADD algorithm.

86

Table 7.6. Comparison of the Simulated Annealing Algorithm with the Exchange
Algorithm (SITATION Program)

~} O U & W N e

42674| 42433
42657 42240
42967 41437

Avg.

Pt
[]

From Table 7.6, we can see that both methods of our simulated annealing
algorithm performed better than the exchange algorithms did. On average, the
simulated annealing algorithm with the multiplier of 6 could improve the result
given by the ADD algorithm by about 3.42% (standard deviation = 1.44%). The
average running-time was 1194 seconds (19.9 minutes). The simulated annealing
algorithm yielded good results even for the multiplier = 2, in which case it could
improve the ADD algorithm’s results by about 3.19% (standard deviation = 1.25%).

The average running-time was only 312 seconds (5.2 minutes).

7.3 Summary

This chapter has presented some computational experiments for the algorithms

developed in this study. The results of the experiments showed the algorithms

87

developed in this study produced better results than did some existing heuristics for
the data sets that we tested. The next chapter presents the conclusion of this study

along with some future considerations.

88

CHAPTER 8

Conclusion

8.1 Research Results

The concentrator location and terminal assignment problems are considered as very
difficult problems. Therefore, in most cases, it is highly unlikely to find polynomial
time algorithms to solve them. In this study, we have successfully developed some
heuristics based on simulated annealing to provide “good” if not optimal solutions to
these problems. These have been shown to be better than the results obtained from
some existing heuristics for the data sets that we tested.

The algorithm that we developed for solving the terminal assignment problems
consists of two different methods for generating a neighbour, namely CRS
(completely random selection) and BRS (best random selection) methods.! Recall
that the CRS method chooses a neighbour randomly, whereas the BRS method
searches for the best neighbour that can be generated from two randomly chosen
concentrators. We have shown that for the problems generated in this study, the

BRS method performed slightly better than did the CRS method. Therefore, the

! See section 5.1.1.2

89

BRS method was employed in the simulated annealing algorithm that was used for
the experiments conducted in this study.

The smallest mean percentage improvement gained by the simulated
annealing algorithm over the original greedy algorithm was 7.83% for the problems
of size (100,20)2 and the largest mean percentage improvement was 10.59% for the
problems of size (400,80). When compared to the greedy algorithm modified to
incorporate some tradeoffs, the lowest improvement was 4.02% for the problems of
size (100,20) and the largest one was 6.99% for the problems of size (400,80).

Four methods for generating a neighbour have been tried in our simulated
annealing algorithm for solving the concentrator location problem. Those are the
RC-RC (both the concentrators to be dropped and to be added are randomly chosen),
LS-RC (the concentrator to be dropped is the least significant concentrator, ie., the
one that offers the least contribution in lowering the configuration cost, and the
concentrator to be added is randomly chosen), RS-COM (the concentrator to be
dropped is randomly chesen, and the concentrator to be added is the closest the
center of mass) and LS-COM (the concentrator to be dropped is the least significant
one, and the one to be added in the closest to the center of mass) methods.? For the
data generated in this study, the RC-RC method proved to be the best choice.
Therefore, it was selected to be the method employed in the simulated annealing
algorithms that were compared to some well-known heuristic algorithms.

The largest mean percentage improvement gained by our simulated annealing
algorithm over the ADD algorithm was 5.12 % for the problems of size (400,200).

This was the largest problem size tested in this study. Our algorithm was then

2 100 terminals and 20 (potential) concentrators.
3 See section 5.1.2.2

90

compared to the best available algorithms present in the SITATION program.¢ The
results showed that for the data generated in this study, our simulated annealing
algorithm method produced better results than did the SITATION program.> The
mean percentage improvement of our algorithm over the ADD algorithm was 3.42%,
whereas the best algorithm of the SITATION program produced only 2.86%

improvement.

8.2 Future Considerations

Although we have shown that the simulated annealing approach generated better
results than did some ex.isting heuristics, we believe that our implementations of
the simulating annealing algorithm can still be improved in the following areas:

1. Annealing Schedule: Most of the decisions in the annealing schedules used in
our algorithms, such as the upperbound on the number of iterations at each
temperature, the maximum number of cost increasing transitions allowed at
each temperature, the probability of accepting a cost increasing transition and
the stopping criteria were determined through experimentation. Although
improvements were obtained, we believe that more extensive schedule
experimentation could yield even better results.

2. Data Structures: One possibility to reduce the programs’ running times is by
using more efficient data structures. Therefore, searching for better data
structures is an important endeavour. One possible improvement that comes to

mind is to use a linked-list instead of a Boolean matrix to represent a

4 It was written by Daskin (1995) to solve a number of uncapacitated facility location problems.
5 Ten different data sets of the size of (150,150) were used in this comparison.

91

configuration. This modification will accelerate the calculation of configuration
costs. When it comes to calculating the cost of a configuration implemented in a
Boolean matrix, one has to check every terminal for each concentrator in the
configuration to see whether it is connected to the concentrator being considered
or not. It is not necessary to do so if a linked-list is used, because each
concentrator in the configuration only contains the terminals that are connected
to it. Therefore, one can restrict oneself to those terminals in order to calculate
the configuration cost. We believe that for large size problems, this modification
can improve significantly the programs’ running times. In addition, a linked-list
occupies less computer's memory than does a Boolean matrix, so that it may be
possible to solve larger problems.

3. Neighbour Generation: Another possible way to improve the algorithms in
terms of the quality of the solutions and running times is by using a better
method for generating a neighbour. We believe that by doing some more
elaborate studies, a better method can be obtained. Moreover, the
neighbourhood structure may also be modified.

4. A dummy concentrator for the terminal assignment program: We previously
mentioned® that the algorithm used to compute an initial solution for the
terminal assignment program, ie., the modified greedy algorithm, cannot
guarantee that a feasible solution can be found for every problem that has
feasible solutions. We proposed to add a dummy concentrator with enough
capacity to accommodate all unassigned terminals whenever the program fails

to find a feasible solution. In the current application, users have to add this

6 See section 5.1.1.1

92

dummy concentrator manually by themselves to the input data file. In future
applications this should be an automated process of the program. Thus,
whenever the program fails to find a feasible solution but the total capacity of
the concentrators is larger than the total weight of the terminals, it should be

able to create a dummy concentrator to accommodate all unassigned terminals.

93

References

Aarts, E., & Korst, J. (1989). Simulated annealing and Boltzmann machines: A

stochastic_approach to combinatorial optimization and neural computing.

Chichester: John Wiley & Sons.

Abuali, F.N,, Schoenefeld, D.A., & Wainwright, R.L. (1994). Terminal assignment
In a communications network using genetic algorithms. Proceedings of 22nd
ACM Computer Science Conference (pp. 74-81). Phoenix, Arizona.

Ball, M., & Magazine, M. (1981). The design and analysis of heuristics. Networks
11, 215-219.

Boorstyn, R.R., & Frank, H. (1977). Large-scale network topological optimization.
IEEE Transactions on Communications, COM-25, 29 -47.

Chardaire, P, & Lutton, J.L. (1993). Using simulated annealing to solve
concentrator location problems in telecommunication networks. In R.V.V. Vidal
(Ed.), Applied simulated annealing (pp. 175-199). Berlin, Germany: Springer-
Verlag.

Cornuejols, G., Nemhauser, G.L., & Wolsey, L.A. (1990). The uncapacitated facility
location problem. In P.B. Mirchandani & R.L. Francis (Eds.), Discrete location
theory (pp. 119-171). New York: John Wiley & Sons, Inc.

Current, J.R., ReVelle, C.S., & Cohon, J.L. (1986). The hierarchical network design

problem. European Journal of Operational Research, 27, 57-66.
Daskin, M.S. (1995). Network & discrete location: Models, algorithms and

applications. New York: John Wiley & Sons, Inc.

Densham, P.J., & Rushton, G. (1992). A more efficient heuristic for solving large p-
median problems. Papers in Regional Science: The Journal of the RSAL 71,
307-329.

Doll, R.D. (1978). Data communication. New York: John Wiley & Sons Inc.

94

Eglese, RW. (1990). Simulated annealing: A tool for operational research.

European Journal of Operation Research, 46, 271-281.

Garey, M.R., & Johnson, D.S. (1979). Computer and intractability: A guide to the
theory of NP-completeness. San Francisco: W.H. Freeman and Company.

Gavish, B. (1982). Topological design of centralized computer networks:
Formulations and algorithms. Networks, 12, 355-377.

Gavish, B. (1985). Augmented langrangean based algorithms for centralized
network design. IEEE Transactions on Communications, COM-33, 1247-1257.

Gavish, B. (1991). Topological design of telecommunication networks: Local access

design methods. Annals of Operations Research, 33, 17-71.

Greene, J.W., & Supowit, K.J. (1986). Simulated annealing without rejected moves.
IEEE Transactions on Computer-Aided Design, CAD-5, 221-228.

dellet, PM. (1990). Simulated annealing for a constrained allocation problem.
Mathematics and Computers in Simulation, 32, 149-154.

Kershenbaum, A. (1993). Telecommunications network design algorithms. New

York: McGraw-Hill, Inc.

Kershenbaum, A., & Boorstyn, R.R. (1983). Centralized teleprocessing network
design. Networks, 13, 279-293.

Kirkpatrick, S. (1984). Optimization by simulated annealing: Quantitative studies.
Journal of Statistical Physics, 34, 975-986.

Kirkpatrick, S., Gelatt, Jr., C.D., & Vecchi, M.P. (1983). Optimization by simulated
annealing. Science, 220, 671-680.

Krarup, J., & Pruzan, M. (1990). Ingredients of location analysis. In P.B.
Mirchandani & R.L. Francis (Eds.), Discrete location theory (pp. 1-54). New
York: John Wiley & Sons, Inc.

Kuen, A A, & Hamburger, M.J. (1963). A heuristic program for locating
warehouses. Management Science, 9, 643-666.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., & Teller, E. (1953).
Equation of state calculations by fast computing machines. Journal of Chemical
Physics, 21, 1087-1092.

Mirchandani, P.B., & Francis, R.L. (Eds.). (1990). Discrete location theory. New
York: John Wiley & Sons, Inc.

Mirzaian, A. (1985). Langrangian relaxation for the star-star concentrator location
problem: Approximation algorithm and bounds. Networks, 15, 1-20.

95

Mirzaian, A., & Steiglitz, K. (1981). A note on the complexity of the star-star
concentrator problem. IEEE Transactions on Communications, COM-29, 1549-
1552,

Narasimhan, S., & Pirkul, H. (1992). Hierarchical concentration location problem.
Computer Communication, 15(3), 185-191.

Osborne, L.J., & Gillet, BE. (1991). A comparison of two simulated annealing
algorithms applied to the directed steiner problem on networks. ORSA Journal

on Computing, 3(3), 213-225.
Pirkul, H., & Nagarajan, V. (1992). Locating concentrators in centralized computer

networks. Annals of Operations Research, 36, 247-262.

Ramos, E., & Schroeder, A. (1994). Contemporary data communications: A practical
approach. New York: Macmillan Publishing Company.

Rose, C. (1992). Low mean internodal distance network topologies and simulated
annealing. IEEE Transactions on Communication, 40, 1319-1326.

Sechen, C. (1988). VLSI placement and global routing using simulated annealing.

Boston: Kluwer Academic Publishers.

Stalings, W. (1994). Data and computer communications (4t ed.). New York:
MacMillan Publishing Company.

Van Laarhoven, P.J.M., & Aarts, EH.L. (1987). Simulated annealing: Theory and
applications. Dordrecht, The Netherlands: Kluwer Academic Publishers.

Vidal, R.V.V. (Ed.). (1993). Applied simulated annealing. Berlin, Gerlmany:
Springer-Verlag.

Wong, D.F., Leong, HW., & Liu, C.L. (1988). Simulated annealing for VLSI design.
Boston: Kluwer Academic Publishers.

96

et ITAIRLLTL \WATY)

16

|

14

I

.25

Lo

150mm
6

APPLIED = IMAGE.Inc

P

D
DR

NP N

N a
P ARTSO
S Lot
N @

