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ABSTRACT

VIBRATION ANALYSIS OF COMPOSITE BEAMS USING HIERARCHICAL

FINITE ELEMENT METHOD

Amit K. Nigam

The conventional finite element formulation has limitations in performing the
dynamic analysis of composite beams. The discretization necessary for obtaining
solutions with acceptable accuracy in the determination of dynamic response parameters
leads to discontinuities in stress and strain distributions. The hierarchical finite element
formulation provides us with the advantages of using fewer elements and obtaining better
accuracy in the calculation of natural frequencies, displacements and stresses. The
hierarchical finite element formulation for uniform and variable-thickness composite
beams is developed in the present work. Two sub-formulations of hierarchical finite
element method viz. polynomial and trigonometric sub-formulations have been
developed. The efficiency and accuracy of the developed formulation are established in
comparison with closed-form solutions for uniform composite beams. The static response
of uniform composite beams is evaluated using the hierarchical finite element method.
The dynamic response of variable-thickness composite beams is calculated based on the
developed formulation. A detailed parametric study encompassing the influences of

boundary conditions, laminate configuration. taper angle and the type of taper on the



dynamic response of the beam is performed. The NCT-301 graphite-epoxy composite

material is considered in the analysis and in the parametric study.



Acknowledgements

It is a genuine pleasure for me to be able to take this opportunity to acknowledge
the numerous people without whom this work would not have been possible. First and
foremost, I want to express my most sincere gratitude to Dr. Rajamohan Ganesan.
Throughout my research, he provided me endless support that I consider to be
unparalleled by other research advisors. Above and beyond this, he afforded me his time,
patience, and tolerance in addition to his keen, incisive insight and guidance. In short,
Dr. Ganesan enhanced the value and experience of my graduate research immeasurably,
and for this [ thank him.

[ would be amiss to neglect to mention how much [ appreciate my time sharing an
office with Shashank Venugopal and Vijay Kowda. Not only are they the ideal
officemates, but are also good friends. We have shared a chemistry in our office like no
other, and we have all had tremendous fun. [ will always look back on the time we shared
with a smile.

Outside of my research environment, there have been a few people whose
aspirations and encouragement kept my spirits up throughout my indentured servitude to
Concordia University. I wish to thank my mom, Suman Nigam and my father Dr. Mohan
S. Nigam. Their confidence in me helped me face the slings and arrows of the M.A.Sc.
program with decisive certainty. My mother has pushed me to excel academically for as
long as [ can remember, and [ am as proud to present to her this accomplishment as she is

to see it. [ love them both dearly.



TABLE OF CONTENTS

ADSETACE....c..eeniiieieieriitniiieerriintertetieieistcttoenesnteretessiontennneernsesennnrerennnes iii
Acknowledgement.........cccuieieieierninrieinieieieinieiiioietecttitnerieeineereceosssnoncesenes v
CONTENTS. .o eeeeieiiiitiitiieteittiresoaccntrssssssssossansessssnsnsnsnssessssnsnne vi
LIST OF FIGURES......cocutttitiuiniicneiiiotcrrnsmcceceracnsessesteaseesssnsesncansnsscannnsn xi
NOMENCLATURE.....c.ceutimeuienreinrincenresctsesessesossootsirnsransassnsescssessseseses XX
Chapter 1  INTRODUCTION......cccituiuieienieiariesecociinmerennenceescsassssnsencns 1
1.1 Dynamic Analysis in Mechanical Design.............................. 1
1.2 Composite Materials and Structures in Mechanical Design......... 2
1.3 Finite Element Method in Mechanical Design........................ 3
1.4 Literature SUIVeY......oc.oiiiiiniiiii i, 4
1.4.1 Dynamic analysis of composite beams...................... 4
1.4.2 Hierarchical Finite Element Method........................... 8
1.5  Scope and Objective of the thesis..............coooveiiiiiiiioiinn. 12
1.6 Layoutofthethesis......c.cocooiniiiiiiiiiiiiiiiiiiiiiiiiiienn. 13

Chapter2 DYNAMIC ANALYSIS OF ISOTROPIC BEAMS USING

HIERARCHICAL FINITE ELEMENT METHOD........cccceuu....... 14
2.1 INtrodUCtION. ..o et s 14
2.2 The Conventional Finite Element Method............c.ceevvna..... 19

vi



22.1 Weak formulation based on the Euler — Bernoulli

theory. ... 19
2.2.2 Interpolation functions...............ooceiiiiiiiiinii.. 20
2.2.3 Formulation for the Timoshenko beam element............ 26

2.2.4 Vibration Analysis based on the Conventional

Formulation...........c..ooii i 30
22.4.1 Free vibration...............c.oooiiiiiiiiiiinn... 30
2.2.4.2 Forced vibration.............c.....c.ooioii. 33
2.2.5 Example Applications..............c.cooooiiiiiiiiiiiL 34
2.2.5.1 Free vibration analysis of a Euler-Bernoulli
beam.......cooiiiiii 35
2.2.5.2 Forced vibration analysis of a Euler-Bernoulli
beam......cooiiiiiiii 37
2.2.5.3 Free vibration analysis of the Timoshenko
beam. ...t 45
The Hierarchical Finite Element Method........................ . 47
2.3.1 Trigonometric Hierarchical Formulation..................... 47
2.3.1.1 Formulation based on Euler-Bernoulli theory.....47
2.3.1.2 Formulation based on Timoshenko theory........ 53
2.3.2 Polynomial Hierarchical Formulation....................... 58
2.3.2.1 Formulation based on Euler-Bernoulli theory....58
2.3.2.2 Formulation based on Timoshenko theory........ 61
2.3.3 Example Applications.............cocooiiiiiiiiiii. 64

vii



Chapter 3

24

2.5

2.3.3.1 Free vibration analysis of a Euler-Bemnoulli

DeAM. . ..inniiii i 76
Program development and flowchart................................. 79
Conclusions and Discussion ..........c.ooiieieiieiieiiiiineninnnn.... 82

Dynamic Analysis of Composite Beams using Hierarchical Finite

Element Method..........ccuceeirmiinriiinrniieiiieiirieiccntietieneincncnns 90
3.1 Introduction..........coooiniin i 90
3.2  The Hierarchical Finite Element Formulation for Composite

322

3.23

Weak formulation for uniform composite beam based on

the Euler-Bemoulli theory.................... 91
HFEM formulation for uniform composite beams......... 93
3.2.2.1 Formulation based on Euler — Bernoulli theory.....93

3.2.2.2 Formulation based on Timoshenko beam

viii



Chapter 4

3.24.1 Examples based on Euler - Bernoulli

theory.. .o 104
3.2.4.2 Examples based on Timoshenko beam
theory.....ooiniii 110

3.2.5 Static analysis of uniform-thickness composite beam using

3.2.6 Analysis of Variable Thickness Composite beams........ 124

3.2.7 Example applications for variable-thickness composite

3.2.7.1 Examples based on the Euler-Bernoulli
formulation...............ooooiiiiiii 128

3.2.7.2 Examples based on the  Timoshenko

formulation..................ooo 134
3.3 Conclusions and Discussion..............ccoeeevueeiniiniennnenenn.. 137
Parametric Study on Variable Thickness Composite Beams......... 145
4.1 Introduction........cc.oiiii e 145
4.2 Parametric Study on Free Vibration for Mid-Plane Tapered

Composite Beams...........ccooiiiiiiiiiiiiiiiiiiee 148
42.1 The effect of boundary conditions on the natural

frequencies...........cooiiiiiiiiiiii i 148
422 The effect of laminate configuration on the natural

frequencies.........oeeiiiiniiii e 151



4.2.3 The effect of taper angle on the natural frequencies......155
424 The effect of internal degree of freedom on the natural
freqUenCies. .. ..o.uveieinii e 158
425 The effect of different taper types on the natural
frequencies.........coooeiiiiiii e 159
43 Parametric Study on Forced Vibration of Mid-Plane Tapered
Composite Beams. .......c..coeiiniiiniiiiiiiiiiiee e 163
4.3.1 The effect of taper angle on the response of the mid plane
tapered composite beam.................c.ooi 163
4.3.2 The effect of laminate configuration on the response of the
mid-plane tapered composite beam......................... 165

433 Response of mid-plane tapered beam to sinusoidal

loading......coonmininii e, 167

44  Overall Conclusions and Discussions. ..........ccc.oeeeeeiinennn.e. 170

4.5  SUMMAIY....ciiiiinii e 171

Chapter S Conclusions and Future Work.........c.ceeeuveieieienrenireieceennencennen 173
5.1 ConClUSIONS.....c.cuiiiiii e 173

5.2 Contributions..........ocoieeiiiiiiiiiiii e 176

5.3 Recommended Future Work.............c.ocoooiiiiiiiiiiiniin... 176
REfOIeNCeS....nenieieiiieiiiiiiiiiieiiititieriirieiteieeceeceeciacenseenseeenserasassnssnns 178
APPENDIX-Lcccoaiiiiiiiiiiiieiretteritirteeretieceneacsneseceaceeensanscsnsennsnnn 188
APPENDIXAIL.c.onnririiieiiietiieiieniettanicetncseeracensencessernesssesnssnsons 189



Figure 2.1

Figure 2.2
Figure 2.3

Figure 2.4

Figure 2.5

Figure 2.6

Figure 2.7
Figure 2.8
Figure 2.9
Figure 2.10
Figure 2.11
Figure 2.12

Figure 2.13

Figure 2.14

Figure 2.15

LIST OF FIGURES

Beam kinematics for EB model. In the Timoshenko model, J(X) is not
constrained by normality ..................oiiii i, 15
Idealization of a beam member as an assembly of finite elements......... 17

Two node beam elements have six DOF’s, regardless of the model used.17

Definition of total section rotation §and EB section rotation in the
Timoshenko beam model............................. 18
Finite element discretization and a typical element........................... 22
The two node Timoshenko (linear) element showing element
COOTAINALES. ...vetniniiiie et e e eeea e 27
Beam discretization for the free vibration problem .......................... 35
Modeling the Fixed-Fixed beam for the forced vibration analysis......... 37
Force applied on the beam for forced vibration............................... 38

Modeling the Simply-Supported beam for the forced vibration analysis..41
Modeling the Fixed-Fixed beam for the forced vibration analysis......... 43
The cross-section of the Timoshenko beam............................... ... 45
Modeling the Simply-Supported Timoshenko beam for the free vibration
ANALYSIS. ... onitii e 45
The two-node Euler-Bernoulli beam element showing element co-

o] (o 11 1 G ST 48

Xi



Figure 2.16

Figure 2.17

Figure 2.18

Figure 2.19

Figure 2.20

Figure 2.21

Figure 2.22

Figure 2.23

Figure 2.24

Figure 2.25

Figure 2.26

Figure 2.27

Figure 2.28

The second trigonometric hierarchical shape function (N,) and its
derivative (Vg )eeeu ot 51

The third trigonometric hierarchical shape function ( N, ) and its derivative

The fourth trigonometric hierarchical shape function (N;) and its
deniVative (Vg ).ooonenoninii it 52

Beam modeled by just one hierarchical finite element ....................... 65

Modeling the Fixed — Fixed Beam for the forced vibration analysis using

Force applied on the beam for forced vibration............................... 73
Modeling the Fixed — Fixed Beam for the forced vibration analysis using
hierarchical method — 1 hierarchical term perelement ...................... 74

Cross-section of a Timoshenko beam ..........oooooviiiiiei . 76

Flowchart used for the finite element vibration analysis...................... 81
Comparison of frequencies of Euler-Bernoulli beam obtained using
conventional FEM and trigonometric HFEM ................................ 82
Comparison of frequencies of Euler-Bernoulli beam obtained using
conventional FEM and polynomial HFEM .................................. 83

Convergence to Q,.9Q,,Q; and Q,of the Simply-Supported beam with
increasing number of trigonometric terms in 1-element modeling......... 84

Xii



Figure 2.29

Figure 2.30

Figure 2.31

Figure 2.32

Figure 3.1

Figure 3.2

Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11

Figure 3.12

Figure 3.13

Figure 3.14

Convergence to ,,9Q,,Q, and Q,of the Simply-Supported beam with

increasing number of polynomial terms in 2-element modeling............ 85
Comparison of frequencies of the Timoshenko beam obtained using

conventional FEM, trigonometric HFEM and Polynomial HFEM.........86
Comparison of frequencies of the Timoshenko beam obtained using
trigonometric HFEM...... ..o, 86

Comparison of frequencies of the Timoshenko beam obtained using
polynomial HFEM... .. ... oo e 87
Typical beam in three dimensions...................c..coooiiiiiiiiininannnn.. 92

Uniform composite beam of Ex. 1. (a) Fixed- fixed (b) Simply-

SUPPOItEd. ...c.eeeeiiii e 104
Fixed - Free beam for the static analysis using HFEM.. ................... 114
Displacement distribution obtained using trigonometric HFEM...........119
Rotation distribution obtained using trigonometric HFEM ................ 120
Bending moment distribution obtained using trigonometric HFEM .....120
Shear force distribution obtained using trigonometric HFEM ...........121
Displacement distribution obtained using polynomial HFEM.............121
Rotation distribution obtained using polynomial HFEM .................. 122
Bending moment distribution obtained using polynomial HFEM ........122
Shear force distribution obtained using polynomial HFEM................ 123
Schematic of a composite mid-plane taper beam .................ccoc...... 126
Variation of Z palong the x-axis ... 127
Force applied at the free end of the tapered composite beam.............. 133

xiii



Figure 3.15

Figure 3.16

Figure 3.17

Figure 3.18

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Comparison of frequencies of composite Euler-Bernoulli beam by
conventional FEM and trigonometric HFEM................................ 139
Comparison of frequencies of composite Euler-Bernoulli beam by
conventional FEM and polynomial HFEM................................... 139

Convergence to Q,,9Q,,Q; and Q,of the Simply-Supported composite

beam in 2-element modeling...................oiii 140
Comparison of frequencies of the composite Timoshenko beam obtained

using conventional FEM, trigonometric HFEM and polynomial

Natural frequencies of beams with different boundary conditions having
configuration [+ 45, ], e 149

Fundamental frequency obtained using different formulations for the
Fixed-Free mid-plane tapered composite beam.............................. 150
Natural frequencies obtained for different laminate configurations for the
Fixed-Free mid-plane tapered composite beam ............................. 152
Natural frequencies obtained for different laminate configurations for the
Fixed-Fixed mid-plane tapered composite beam............................. 153
Natural frequencies obtained for different laminate configurations for the
Simply-Supported mid-plane tapered composite beam..................... 153
Natural frequencies obtained for different laminate configurations for the
Free-Fixed mid-plane tapered composite beam.............................. 154
Fundamental frequency for various lamination angles (+6) for Fixed-

Free tapered beam ..o 155

Xiv



Figure 4.8

Figure 4.9

Figure 4.10
Figure 4.11
Figure 4.12

Figure 4.13

Natural Frequencies obtained using different taper angles for the Free-
Fixed mid-plane tapered composite beam.....................coooeiiia.... 157

Schematic diagram of a composite internal taper beam (overlapped-

BIOUPE). ..o 160
Force applied at the free end of the tapered composite beam.............. 164
Force applied at the free end of the tapered composite beam.............. 165
Force applied at the free end of the tapered composite beam.............. 167
Force applied at the free end of the tapered composite beam.............. 169

XV



Table 2.1

Table 2.2

Table 2.3

Table 2.4

Table 2.5

Table 2.6

Table 2.7

Table 2.8

Table 2.9

Table 2.10

Table 2.11

Table 2.12

Table 2.13

Table 2.14

Table 2.15

LIST OF TABLES

Percentage of error in the natural frequencies of a Euler-Bernoulli

beam. ..., 36
Values of maximum displacement for Ex. 2..............cc.c..oeoiiin..... 39
Values of maximum velocity for EX. 2.............o.oooiiiiiiiiiiiiiininan, 40
Values of maximum acceleration for EX.2..............ccoooeiiiiiinininn. 40

Values of maximum displacement for Simply-Supported beam in Ex.2...41
Values of maximum velocity for Simply-Supported beam in Ex.2.........42

Values of maximum acceleration for Simply-Supported beam in Ex.2...42

Values of maximum displacement for Fixed-Free beam in Ex.2........... 43
Values of maximum velocity for Fixed-Free beam in Ex.2.................. 44
Values of maximum acceleration for Fixed-Free beam in Ex.2.............44

Natural frequencies of the Timoshenko beam modeled using linear
elements.. ... 46
Natural frequencies obtained by using different numbers of trigonometric
hierarchical terms with just 1 element ..................cooooiiiiaL 66
Natural frequencies obtained by using different numbers of polynomial
hierarchical terms with just 1 element ...............................o.oL 66
Comparison of the two formulations with varying DOF and number of
Elements. ... ... i 69
Errors in the natural frequencies in the conventional formulation and the

advanced formulation...........cooeeeei oo e, 70

Xvi



Table 2.16

Table 2.17

Table 2.18

Table 2.19

Table 2.20

Table 2.21

Table 3.1

Table 3.2

Table 3.3

Table 3.4

Table 3.5

Table 3.6

Table 3.7

Table 3.8

Table 3.9

Table 3.10

Table 3.11

Table 3.12

Error associated with the cases considered in Table 2.14..........o.o....... )

Maximum response of the beam in Ex.

element.... ... 75
Maximum response
element. .. ... 75
Maximum response

element.... .. ..o 75
Natural frequencies

formulation.............ooi i 77
Natural frequencies of a Timoshenko beam using Polynomial
formulation. ... 77
Natural frequencies of the Fixed-Fixed composite beam of Ex. 1.........106
Natural frequencies of the Simply-Supported composite beam of Ex. 1.106
Natural frequencies of the Fixed-Fixed composite beam of Ex. 1........ 107
Natural frequencies of the Simply-Supported composite beam of Ex. 1.107
Natural frequencies of the Fixed-Fixed composite beam of Ex. I.........109
Natural frequencies of the Simply-Supported composite beam of Ex. 1.109
Natural frequencies of the Fixed-Fixed composite beam of Ex. 1.........109

Natural frequencies of the Simply-Supported composite beam of Ex. 1.110

Natural frequencies (x10°) of the Simply-Supported composite

Timoshenko beam of Ex. 2 obtained using the trigonometric HFEM ...111

Natural frequencies (x10°) of the Simply-Supported composite

Timoshenko beam of Ex. 2 obtained using the polynomial HFEM ......111
Natural frequencies (x 10") for the slightly tapered beam................. 130

Natural frequencies (x 10° ) of the tapered composite beam of Ex. 2.....132

Xvii



Table 3.13

Table 3.14

Table 3.15

Table 3.16

Table 3.17

Table 3.18

Table 4.1

Table 4.2

Table 4.3

Table 4.4

Table 4.5

Table 4.6

Table 4.7

Table 4.8

Natural frequencies (x10° ) of the tapered composite beam of Ex. 3.....132
Maximum values of the free end displacement (m) and rotation (degrees)
ofthebeam of EX. 4. .....ormiriii e, 134

Natural frequencies (x10° ) of the tapered composite beam of Ex. 1.....135

Natural frequencies (x10° ) of the tapered composite beam of Ex. 2.....136
Stiffness matrix for the tapered beam in Ex. 2 for the case 1T4........... 141
Mass matrix for the tapered beam in Ex. 2 for the case 1T4............... 141

Mechanical properties of unidirectional graphite-epoxy composite material

Frequencies (x10°) for different boundary conditions for
[£45,], laminate...........oocoooieieiiiie e 149
Natural frequencies (x10°) for different boundary conditions for
[0/90],, 1aminate ............cccoviiieiiiieeee e, 151
Natural frequencies(x10°) for different boundary conditions for
[0/90/-45/45), laminate.............cccooeiiiiiiiiiieeeee . 152
Natural frequencies (x10°) for different taper angles for a Fixed-Free

mid-plane tapered composite beam.............cccoiiiiiiiiiiiiiiininn . 156
Natural frequencies (x10*) obtained using different formulations for a
Fixed-Free mid-plane tapered composite beam.............................. 158
Natural frequencies (x10°) for different types of tapers having different

boundary conditions.............cooeeiiiiiiiii e 161

Xviii



Table 4.9

Table 4.10

Table 4.11

Table 4.12

Table 4.13

Natural frequencies (x10°) for different types of tapers having different
laminate configurations. .. ......coovnmiimiineiiiiii i eenees 162
Comparison of the forced response for different taper angles.............. 164
Comparison of the forced response of laminates with different
CONFIGUIALIONS ..o oonot et 166
Comparison of the forced response for different taper angles ..............168
Comparison of the forced response of different laminate

CONfIGUIAtIONS. ..o eeeinie it e 169

xix



Nomenclature

Young’s modulus

mass moment of inertia

transverse deflection, as a function of X or x only
slope of the beam (function of x)

transverse deflection, as a function of X and time ‘t’

amplitude of the hierarchical function applied to transverse displacement
amplitude of the hierarchical function applied to rotation

amplitude of the hierarchical function applied to transverse displacement
amplitude of the hierarchical function applied to rotation

amplitude of the polynomial term

variable defining the coefficients of the hierarchical terms added to

transverse displacement

variable defining the coefficients of the hierarchical terms added to
rotation

variable defining the coefficients of the hierarchical terms added to
transverse displacement

variable defining the coefficients of the hierarchical terms added to
rotation

p co-ordinate system

q co-ordinate system

XX



) |

L

A

>

3|

[N]
QI
(K]

[M]

rotation of the longitudinal axis
mean shear deformation angle
modal matrix

taper angle of the variable-thickness beam
laminate width

strain component in the x direction on the reference plane
curvature in the x direction

mass density of the laminate material
area of cross-section of the laminate
mass per unit length

distributed transverse load (function of X and t)
beam span

beam element length
non-dimensional co-ordinate

time

square of the natural frequency, @
arbitrary function of time

weight function

interpolation function matrix
generalized force matrix

beam element stiffness matrix

beam element mass matrix



[K,]
[M,]
[X,]

(M,]

[B]
[D]

element stiffness matrix in the in the q co-ordinate system
element mass matrix in the in the q co-ordinate system
element stiffness matrix in the in the p co-ordinate system
element mass matrix in the in the p co-ordinate system

constant used in the closed form solution of beams

equivalent nodal force vector
ply stiffness in the laminate co-ordinates
transformed ply stiffness matrix

ply stiffness in the laminate reference

laminate axial stiffness matrix (relating normal and shear forces per unit

width to mid-plane strain components)

bending-stretching coupling matrix

laminate bending or flexural stiffness matrix (relating bending and
twisting moments per unit width to curvatures)

in-plane force resultant

bending moment resuitant

laminate flexural rigidity

first element in [ D]

in-plane shear modulus

out-of-plane shear modulus

transverse shear stiffness of the laminate



(F]

{d}
[T]

nTm

shear stiffness of the laminate

shear correction factor

ply thickness

slope of the centerline of a ply in the tapered laminate
intercept of the centerline of a ply in the tapered laminate
poisson’s ratio between the fiber direction (1) and the transverse direction
(2)

natural frequency of the beam

global degrees of freedom vector

transformation matrix

laminate height

common variable for all nodal variables (degrees of freedom) in local co-

ordinates

modal force

non-dimensional frequency

refers to solutions with n beam elements and m trigonometric terms in

each element
refers to solutions with n beam elements and m polynomial terms in each

element

Xxiii



Chapter 1

INTRODUCTION

1.1  Dynamic Analysis in Mechanical Design

Mechanical components and structures are subjected to forces of time dependent
nature. Analysis and design of such components and structures subjected to dynamic
loads involve consideration of time-dependant inertial forces and dissipation forces in
addition to time-dependant elastic forces. A dynamic analysis does not have a single
solution as in the case of static problem. Instead, the analyst must establish a succession

of solutions corresponding to all times of interest in the response history.

One of the ways in which a component or structure can get damaged or become
useless is through a dynamic response to time-dependant loads, resulting in too large
deflections or too high stresses or fatigue damage. The dynamic loading on a structure
can vary from a recurring cyclic loading of the same magnitude to the other extreme of a
short time intense non-recurring load, termed as shock or impact loading. A number of
different types of dynamic loads exist between these two extremes of harmonic
oscillation and impact loading. In both the cases, the free vibration response of the

component becomes a controlling aspect.



1.2 Composite Materials and Structures in Mechanical Design

Basically, a composite material consists of two or more constituent materials or
phases that have significantly different macroscopic behavior and a distinct interface
between each constituent (on the microscopic level). This includes the continuous fiber-
reinforced laminated composites that are of primary concern herein, as well as a variety

of composites not specifically addressed.

The term composites is usually referred to materials that are combinations of two
or more organic or inorganic components, of which one serves as the matrix and the other
as fibers. Individual fiber is usually stiffer and stronger than the matrix. The central
concept behind composites is that the fibers and the matrix can blend into a new material
with properties that are better than those of the constituent parts. In addition, by changing
the orientation of the fibers, the composites can be optimized for strength, stiffness,
fatigue, heat and moisture resistance, etc. It is therefore feasible to tailor the material to
meet specific needs. Composite materials also have much higher strength to weight and

stiffness to weight ratios than the conventional materials.

Tapered composites are formed by terminating or dropping off some of the plies
in primary structures. Their elastic tailoring properties and potential for creating more
significant weight savings than commonly used laminated components allow an
increasing use of tapered composites in commercial and military aircraft applications. A

typical example is a helicopter yoke, where a progressive variation in the thickness of the



yoke is required to provide high stiffness at the hub and relative flexibility at the mid-
length of the yoke to accommodate flapping. The first commercial composite rotor-blade
yoke assembly made from glass-fiber/epoxy composite was fabricated at Bell Helicopter
Textron. Constructed completely from S-2 glass, the dual yoke assemblies in the Bell 430
helicopter endure several times more flight hours than traditional titanium or steel yokes,
and also provide improved safety. Much more tolerance to damage than conventional
materials and the elimination of corrosion are also displayed by these composite
components. Other applications include composite-aircraft wing skins, helicopter flex-

beams, flywheels, etc.

1.3  Finite Element Method in Mechanical Design

The analysis of laminated composite beams is usually based on three approaches,
classical theory of elasticity, theory of mechanics of materials, and variational methods.
The governing equations of motion are generally nonlinear partial differential equations,
which are extremely difficult to solve in the closed form. The availability and
sophistication of modern digital computers has made possible the extensive use of the
finite element method for analyzing complex structures. Finite Element Method (FEM) is
one of the most powerful numerical analysis tools in the engineering and physical
sciences. In spite of its tremendous potential, the FEM has some drawbacks too. Specially
for the analysis of uniform and tapered composite beams, the conventional FEM lacks on
some counts. The Hierarchical Finite Element Method (HFEM), provides us with critical

advantages of using fewer elements and obtaining better accuracy in the calculation of



natural frequencies, displacements and stresses of uniform and thickness-tapered

composite beams.

1.4  Literature Survey

In the following sub-sections a comprehensive and up-to-date literature survey on
relevant topics is presented. Important works done on the dynamic analysis of composite
beams by analytical, experimental and finite element methodologies have been
chronicled. Details for both the uniform and thickness-tapered composite beams have
been presented. After a brief history of the hierarchical finite element method, seminal
works on the HFEM analysis of beams and plates are given. Finally, the works on the
HFEM analysis of composite beams have been presented, though the quantity of such
works is of course very limited.

1.4.1 Dynamic analysis of composite beams

There is a wealth of literature available for the vibration analysis of laminated
plates and shells. In comparison, study on the analysis of laminated beams has been
scarce despite their applicability in important structures such as turbine blades, helicopter
blades, robot arms, etc. Also, the analysis of laminated beams has been restricted to

eigenvalue analysis.

Abarcar and Cunniff [1] obtained experimental results for the natural frequencies
and the mode shapes of cantilevered beams with solid cross-sections made out of

graphite-epoxy and boron-epoxy composites. They also clearly established that there is



interaction between bending and twisting. Teoh and Huang [2] made a theoretical
analysis of the vibration of composite beams based on a Timoshenko beam model. Teh
and Huang [3] extended the work to show that the bending-torsion coupling of
orthotropic beams with solid cross-section is dependent on fiber orientation and the
wavelength of the mode. The paper by Kapania and Raciti [4] details the developments in
the vibration analysis of laminated composite beams. In recent years several authors have
tried to predict the natural frequencies of laminated beams of uniform- thickness. Miller
and Adams [5] studied the vibration characteristics of orthotropic clamped-free beams
using classical lamination theory. Vinson and Sierakowiski [6] have given exact solutions
based on classical lamination theory, which neglects the effects of the rotary inertia and
shearing deformation. Chen and Yang {7} and Chandrashekhara et al. [8] have carried out
the free vibration analysis of composite beams based on first order shear deformation
theory. Recently Chandrashekhara and Bangera [9] have studied the free vibration
characteristics of laminated composite beams using a third order shear deformation
theory. They have corrected generalized force and generalized strain relations to consider
the Poisson effect by ignoring the forces in the y direction, which is along the breadth of
the beam. Their solution involves inversion of certain matrices and is limited to the type
of beam theory that the analyst would be using. It would be appropriate to correct stress-
strain relations rather than to correct the generalized force and generalized strain relations
[10]. Abramovich [11] presented exact solutions based on the Timoshenko-type
equations for symmetrically laminated composite beams with ten different boundary
conditions. The rotary inertia and shear deformation effects were investigated for simply

supported straight beams. Singh and Abdelnassar [12] examined the forced vibration



response of composite beams considering a third order shear deformation theory.
Krishnaswamy et al. [13] obtained the govemning equations of laminated composite
beams using the Hamilton’s principle and presented the analytical solutions. Abramovich
and Livshits [14] studied the in-plane free vibrations of non-symmetrically laminated
cross-ply composite beams based on Timoshenko-type equations. Khedier and Reddy
[15] investigated the free vibration of cross-ply laminated beams with arbitrary boundary
conditions by the state space approach (matrix transfer method) and higher order shear
deformation theory. Eisenberger et al. [16] used the dynamic stiffness analysis of
laminated beams using a first order shear deformation theory. Abramovich et al. [17]
treated vibration of multi-span non-symmetric composite beams. Zappe and Lesiutre [18]
presented a smeared laminate model based on the first order shear deformation theory for

the dynamic analysis of laminated beams.

The dynamic analysis of uniform and tapered composite beams, using finite
element method has been conducted only in few existing works and the number of such
works is substantially less as compared to the works on the analysis of laminated plates.
A review of the literature (see, eg., [4]) indicates this clearly. Yuan and Miller [19,20]
have developed beam finite elements. The models include separate rotational degrees of
freedom for each lamina but do not require additional axial or transverse degrees of
freedom beyond that necessary for a single lamina. A set of higher order theories with C*
finite elements having five, six and seven degrees of freedom per node for the analysis of
composite and sandwich beams have been presented by Manjunatha and Kant {21]. An

interlaminar stress continuity theory via the multi-layer approach has been presented by



Lee and Liu {22]. This theory satisfies the continuity equations of both interlaminar shear
stresses and interlaminar normal stresses at a composite interface. Shi, Lam and Tay [23]
discuss an efficient finite element modeling technique based on the higher order theories
for the analysis of composite beams. They illustrate how to choose the proper strain
expressions to formulate accurate elements under the same number of nodal degrees of
freedom. Shi and Lam [24] present a new finite element based on the third order beam
theory. They use Hamilton’s principle to obtain the variational consistent equation of
motion in matrix form corresponding to the third order shear deformation theory. They
also study the influence of mass components resulting from the higher order
displacements on the frequencies of flexural vibrations. Hodges et al. [25] solved the

equations of motion using a mixed finite element and an exact integration method.

The effect of non-uniformity has been discussed by several authors. The paper by
Karabalis and Beskos [26] contains a comprehensive list of references on the subject.
Venkatesh and Rao [27] developed a curved element based on the classical laminatic;n
theory. The element has two nodes and eight degrees of freedom per node. The bending,
stretching and twisting actions can be modeled by this element. Nabi and Ganesan [28]
developed a general finite element code based on the first order shear deformation theory.
Oral [29] has formulated a three-node finite element with six degrees of freedom per
node, three displacements and three independent rotations for a linearly tapered
symmetrically laminated composite beam using first order shear deformation theory. This
element is obtained from a five-node parent element by constraining the shear angle

variation along the length to be linear. Rao and Ganesan [30,31] considered the harmonic



response of tapered composite beams by using a finite element model based on a higher
order shear deformation theory. They include the Poisson’s effect and also consider the
effects of in-plane and rotary inertia. More broadly, a detailed review of the recent
advances in the study of tapered laminated composite structures is given in the paper by
He, Hoa and Ganesan [32]. This review article focuses mainly on the stress analysis,
fracture behavior and the optimization for static response of tapered composite plates.
1.4.2 Hierarchical Finite Element Method (HFEM)

The finite element method has been serving as a powerful tool for the analysis of
structures. The finite element method in general, is a special case of the Rayleigh-Ritz
method, with the main difference between the two lying in the choice of admissible
functions used in the series representation of the solution [33]. The standard Finite
Element method consists of dividing the domain of interest into a number of smaller —
although not necessarily identical-convex sub-domains called Finite Elements. The
solution is then approximated by locally admissible polynomial functions, which are

piecewise smooth only over each individual sub-domain.

There are various procedures that exist for the refinement of the finite element
solutions. Broadly these fall into two categories: The first, and the most common,
involves refining the mesh while keeping the degree of the elements fixed. This is termed
as the h-version of the finite element method, or simply the finite element method. The
second method involves keeping the mesh size constant and letting the degree of the
approximating polynomial to tend to infinity [34,35]. This approach is better known as

the p- version of the finite element method or the Hierarchical Finite Element Method



(HFEM). Clearly, the HFEM has much in common with the classical Rayleigh-Ritz
method; however, greater versatility and improved rates of convergence always result,

since local (as opposed to global) admissible displacement functions are used [36].

Hierarchical functions were initially introduced by Zienkiewicz et al. [37] with
the objective of introduction of p-graded meshes in an a priori chosen manner. Initial
applications included the analysis of the nuclear reactor vessels [38]. Subsequently, new
and useful families of p-type elements were introduced by Peano et al. [34,39-40].
Explicit discussion of hierarchical functions has been done by Zienkiewicz et al. [41].
The use of non-uniform p-refinement in finite element method done hierarchically was
initiated by Kelly et al. [42] and Gago et al. [43]. These papers as parts [ and II
respectively, deal with error analysis and adaptive processes applied to finite element
calculations. In part [, they derive the basic theory and methods of deriving error
estimates for second order problems. In part II, they provide in detail a strategy for
adaptive refinement and concentrate on the p-convergent methods. It is shown that an
extremely high rate of convergence is reached in practical problems using such
procedures. They also present applications to realistic stress analysis and potential
problems. Babuska et al. [35] describe the mathematical aspect of the convergence of the
finite element solution for p-refinement. Szabo [44] showed that uniform p-refinement
also allows the global energy norm error to be approximately extrapolated by three

consecutive solutions.



The transition of the hierarchical finite element method from the developmental
stages to the application stages has been rather arduous. In general, it offers superior
performance to the h-version, but it took a long time for its merits to be recognized at the
commercial level [45]. Polynomial functions are more common in the finite element
analysis. With regards to the HFEM, Legendre polynomials in the Rodrigues form are
quite popular. They have, for example been applied to linear analysis of plates in
references [46,47] and to non-linear dynamic analysis of beams and plates in the
frequency domain in references [48-52]. In these references, it has been shown that
convergence is achieved with far fewer degrees of freedom in the HFEM than that in the
h-version of the FEM. Bardell et al. [53] applied the h-p method to study linear vibrations

of shells.

Beam eigenfunctions, exact solutions of the linear problems, are hyperbolic-
trigonometric or only trigonometric, depending on the boundary conditions. Since the
non-linear mode shape is either similar (though generally different) to a linear mode, or
to a combination of linear modes (52], a beam element built with these eigenfunctions
should require a reduced number of degrees of freedom for accuracy in dynamic analysis.
Another advantage of these functions is that the linear stiffness matrices and the mass
matrices are diagonal, and therefore they are well-conditioned and they have several
computational benefits. Also, since higher order polynomials are ill-conditioned [54],

some researchers advised the use of trigonometric displacement shape functions [54-59].
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The idea of using trigonometric terms in the finite element method is not new.
Pian [60] described the concept of using more co-ordinates than the element nodal
displacements in deriving element stiffness matrices. Krahula and Polhemus [59] used the
Fourier series for a rectangular plane stress element. The desirability of using higher
order finite elements for vibration problems has been shown by many authors. Thomas
and Documaci [60] have shown that high order finite elements yield improved results for
the vibration of tapered beams. Dawe [61] suggested that an increase in efficiency would
result in the vibration analysis of plates using the Mindlin theory, if finite elements of
order higher than those used in previous Timoshenko beam models were utilized.
Houmat [55] investigated linear plate vibration by the HFEM and compared
trigonometric shape functions with Legendre Polynomials. The trigonometric HFEM was
found to yield better accuracy with less d.o.f for s-s-s-s and s-f-s-f plates (s, fand ¢ stand
for simply supported, free and clamped boundary conditions respectively). For fuily
clamped and free plates both sets of shape functions yield the same accuracy with the
same number of d.o.f. Leung and Chan [56] used polynomials and trigonometric
functions to analyze linear vibrations of beams and plates and found that accuracy is
achieved with a reduced number of shape functions. Beslin and Nicolas [57] proposed a
set of hierarchical trigonometric functions to predict flexural motion of plate-like
structures in the medium frequency range. Barrette et al. [62] have used the trigonometric
functions of Beslin as local trail functions to conduct the vibration analysis of stiffened
plates by Hierarchical FEM.

Han et al. [63] have extended Bardell’s [36] model of HFEM for free vibration

analysis of plates, to geometrically non-linear static analysis of symmetrically laminated
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rectangular plates. They also extended their analysis to the linear free and forced
vibration analysis of symmetrically laminated rectangular plates [48,49]. Ribeiro and
Petyt [52] conducted the non-linear vibration analysis of laminated plates using the

hierarchical finite element method and the harmonic balance method.

1.5 Scope and Objectives of the Thesis

The objectives of the present thesis are, (1) to develop and evaluate the
hierarchical finite element formulation for the static and dynamic analysis of composite
beams; (2) to analyze the thickness-tapered composite beams for dynamic response using
the developed hierarchical finite element formulation; and, (3) to conduct a detailed
parametric study of tapered composite beams. The influences of damping are not

included in the analyses.

Hierarchical finite element formulations are developed, viz. the trigonometric and
polynomial formulations. Both the formulations are analyzed for their performance in the
static and dynamic analysis of uniform beams. The more accurate formulation among the
two is then applied for the analysis of thickness-tapered composite beams. The developed
methodology not only gives more accurate and faster convergence, but also, uses less
number of elements, which is extremely advantageous in the analysis of composite
structures. Finally, a detailed parametric study of thickness-tapered composite beams is

conducted.
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1.6 Layout of the Thesis

The present chapter provided a brief introduction and literature survey regarding

the hierarchical finite element method and the dynamic analysis of composite beams.

In chapter 2 the hierarchical finite element method is developed and applied to the
dynamic analysis of isotropic beams. Both the hierarchical sub-formulations, viz.
trigonometric and polynomial formulations are developed and validated using closed
form solutions. Finally a detailed comparison is made between the conventional and the

hierarchical finite element formulations.

Chapter 3 gives the application of hierarchical finite element method to uniform
and thickness-tapered composite beams. The static and dynamic analysis of uniform
composite beams is performed and finally, the dynamic analysis of thickness-tapered

composite beams is performed.

Chapter 4 is devoted to the parametric study, which includes the effects of the
boundary conditions, the laminate configuration, taper angle and the type of taper on the

natural frequencies of the tapered beams.

Chapter 5 brings the thesis to its end by providing the conclusions of the present

work and some recommendations for future work.
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Chapter 2

Dynamic Analysis Of Isotropic Beams Using Hierarchical Finite Element Method

2.1 Introduction

Beams are the most common structural components found in civil, mechanical
and aerospace structures. A beam is a rod-like structural member that can resist
transverse loading applied between its supports. In practical structures beam members
can take up a great variety of loads, including biaxial bending, transverse shears, axial
forces and even torsion. Such complicated actions are typical of spatial beams, which are
used in three-dimensional frameworks and are subjected to forces applied along arbitrary
directions. A plane beam resists primarily loading applied in one plane and has a cross-
section that is symmetric with respect to that plane. A beam is prismatic if the cross-

section is uniform. Our study is primarily based on straight, prismatic and plane beams.

Mathematical Models: Beams are actually three-dimensional solids. One-dimensional
mathematical models of plane beams are constructed on the basis of beam theories. All
such theories involve some form of approximation that describes the behavior of the

cross-sections in terms of quantities evaluated at the longitudinal axis. More precisely,



the kinematics of a plane beam is completely defined if the following functions are given:

the transverse displacement W(X)and the cross-section rotation 6, (X )= (X}, where X

denotes the longitudinal co-ordinate in the reference configuration. (Figure 2.1)

Two beam models are in common use in structural mechanics:

Euler-Bernoulli (EB) Model. This is also called classical beam theory or the engineering
beam theory. This model accounts for bending moment effects on stresses and
deformations. Transverse shear forces are recovered from equilibrium but their effect on
beam deformations is neglected. Its fundamental assumption is that cross-sections remain

plane and normal to the deformed longitudinal axis. The rotation occurs about a neutral
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Figure 2.1 Beam kinematics for EB model. In the Timoshenko model, (X) is not
constrained by normality

axis that passes through the centroid of the cross-section. The rotation, (X) and the
displacement, W(X) are related as indicated in Figure 2.1.

Timoshenko Model. This model corrects the classical beam theory by including first-order

shear deformation effects. In this theory, cross-sections remain plane and rotate about the
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same neutral axis as the EB model, but do not remain normal to the deformed
longitudinal axis. The deviation from normality is produced by a transverse shear that is

assumed to be constant over the cross-section.

Both the EB and Timoshenko models are based on the assumptions of small
deformations and linear elastic isotropic material behavior. In addition both models

neglect changes in dimensions of the cross-sections as the beam deforms.

To carry out the finite element analysis of a framework structure, beam members
are idealized as the assembly of one or more finite elements, as illustrated in Figure 2.2.
The most common elements used in practice have two end nodes. The ¥ node has two
degrees of freedom: the nodal displacement W,, and the nodal rotation 6, about the Z-

axis, positive counterclockwise and expressed in radians (Figure 2.3). The cross-section
rotation from the reference to the current configuration is called 8 in both models. In the

EB model this is the same as the rotation y of the longitudinal axis. In the Timoshenko
model, the difference ¥ =y -0 is used as a measure of mean shear deformation. These

angles are illustrated in Figure 2.4.

C' Versus C° Beam Element: In the Finite Element Method, a Euler-Bernoulli model

such as the one shown in Figure 2.3(a) is called a C' beam because this is the kind of
mathematical continuity achieved in the longitudinal direction when a beam member is

divided into several elements (Figure 2.2). On the other hand the Timoshenko element

shown in Figure 2.3(b) is called a C° beam element because both transverse

16



displacement, as well as the rotation, preserve only C° continuity [64]. It would be easy

to mistake the C°element unsuitable for the practical use. And indeed the kinematics
looks strange. The shear deformation implied by the drawing appears to grossly violate
the basic assumptions of beam behavior. Furthermore, a huge amount of shear energy

would be required to keep the element straight as depicted.

current configuration finte element idealization

% of current configuration
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| | —p
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Figure 2.2 Idealization of a beam member as an assembly of finite elements
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Figure 2.3  Two-node beam elements have six DOFs, regardless of the model used
If the two-node element of Figure 2.3(b) were constructed with actual shear properties

and exact integration, an overstiff model results. This phenomenon is well known in the
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Figure 2.4  Definition of total section rotation 6 and EB section rotation y in the
Timoshenko beam model.

FEM literature and receives the name of shear locking [65]. To avoid locking while
retaining the element simplicity it is necessary to use certain computational schemes.

The most common are:

1. Selective integration for the shear energy.

2. Residual energy balancing.

As a result of the application of the aforementioned schemes the beam element behaves
like a EB beam although the underlying model is Timoshenko’s. This represents a

curious paradox: shear deformation is used to simplify the kinematics, but then most of

the shear is removed to restore the correct stiffness. As a result, the name “C* element”
is more appropriate than “Timoshenko element” because capturing the actual shear

deformation is not the main objective.
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2.2 The Conventional Finite Element Formulation

2.2.1 Weak Formulation based on the Euler — Bernoulli Theory

In the Euler — Bernoulli beam theory the transverse deflection w of the beam is

governed by the fourth order differential equation [65].

aa;'z" ~-¢'(X,t)=0 for O< X <L @.1)

+pA

8'1 ba“vtz
oX*| o9x*

where b = b(X) and w is the dependant variable. The function b = EI is the product of the
modulus of elasticity, E, and the moment of inertia, I, of the beam. p is the mass density
of the material, A is the area of cross-section of the beam, ¢’ is the transversely
distributed load and w is the transverse deflection of the beam. [n addition to satisfying
Equation (2.1), w must also satisfy appropriate boundary conditions; since the equation is
of fourth order, four boundary conditions are needed to solve it. The weak formulation of

the equation will provide the form of these four boundary conditions.

The weak form in solid mechanics problems can be obtained either by the
principle of virtual work or from the governing differential equations. Here we obtain the
weak form by making use of Equation (2.1). The approach of the seperation of variables
is applied for w(X,t) and it can be expressed as the product of two functions — one in
spatial co-ordinate ‘ X ’and the other in time ‘¢’ as,

w(X,t)=W(X)t ()=w(X)e™ (2.2)
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where @ will correspond to the frequency of free vibration of the beam.
Using Equation (2.2), the weak form for an element of length, /, that is obtained is as

follows [65],

1 2 2 2 2 !
[12er LY _rpavw —vg’ fix+| v g 20 | 2 g d W 2.3)
ol dx” dx” dx dx” dx dx- 0

where, A =" and x is the local co-ordinate for the element.

2.2.2 Interpolation Functions

The conventional formulation for the Euler-Bernoulli beam element proceeds
ahead of the variational form derived above, by the determination of the interpolation
functions. The variational form in Equation (2.3) requires that the interpolation functions
of an element be continuous with non zero derivatives up to order two. As discussed in
the introduction, this element is named as the C' element. Also, the approximation of the
primary variables over a finite element should be such that it satisfies the interpolation

properties (i.e. it satisfies the essential boundary conditions of the element), viz.

W(x,)=W, W(x,,,)=W,;08(x,)=0,; 0(,)=0,; 2.4)

where x, and x,,, define a typical element (see Figure 2.5) and «x_,, =x +/. In

satisfying the essential boundary conditions in Equation (2.4), the approximation

automatically satisfies the continuity conditions. Hence, we pay attention to the



satisfaction of Equation (2.4), which forms the basis of the interpolation procedure. Since
there are four boundary conditions in an element (2 per node), a four-parameter

polynomial is selected for W:
W (x)=c, +c,x+c,x° +c,x° (2.5)

In accordance with the assumption of the EB beam theory, the expression for 8 (x) will

be,
0(x)= %(x) =c, +2c,x +3c,x* (2.6)

Since the polynomial should satisfy the essential boundary conditions, the following

expressions can be obtained,

W) =W, =c, 2.7)
0(0)=0, =c, (2.8)
W({)=W, =c, +c,l+c,? +c,l’ (2.9)
0()=0, =c, +2¢,l +3c,I? (2.10)

The above equations can be put in the matrix form as,

w) 1 0o 0o 0]
8| (01 0 0|
w,(T11 ¢ 2 P @1
0, 0 1 20 3|,
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Figure 2.5 Finite element discretization and a typical element

[nverting this matrix and obtaining ¢, in terms of W,,0,,W, .0, and substituting the results

into Equation (2.5) we will obtain,

W(x)= NW,+ N8, +N,W, + N8, (2.12)
where,

2 3
N,=1-3[’§—+2[i3 (2.13)
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2 3
N, =x- 2 X (2.14)

3xt 2%
== _ = 2.15
o p (2.15)
2 3
N,=—"—+ 2.16
* [ 2 (2.16)

N, =1 J.,=0 (@=1) (2.17)

Nil =1 N| =0 (i#3) (2.18)
d'x =0 (Lr e={)

Al l aNy 0 (i=4) (2.20)
dx x=l dx x=l

i=1234.

It is critical to note the procedure and conditions for the formulation of the interpolation
functions in the case of conventional FEM. We would make relevant changes in this

formulation to obtain the Hierarchical FEM formulation.
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Generation of the Finite Element Model:

The Finite Element Model of the governing differential Equation (2.1) is obtained

by substituting the finite element interpolation functions for W, and the interpolation

functions N, in Equations (2.13-2.16) for the weight function v in the weak form given

by Equation (2.3). Since there are four nodal variables, four different choices are used for

V,ie.v =N,  toobtain a set of four algebraic equations.

The i* equation will be:

2

4 1 2
if[fsz ddxf" dd:z/’ —ApAN.N, —N.Q’le(—Q )=0
0

or,

g{j(”dx }L}u quch

This equation can be written as.

2[1{ MM, P, ~F, =0

j=l

where,

x=l}

ﬂ‘ dw
U , = 4 =
i dx x=0 dx x={

Hence,

(2.21)

=0 (2.22)

(2.23)
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(2.24)

(2.25)

(2.26)

Here K, is the coefficient of the stiffness matrix, M p is the coefficient of the mass

matrix, and F;is the force vector.

Now by making use of the MATHEMATICA® software, we obtain the stiffness, mass

and the force matrices for a Euler-Bernoulli beam element having 4 degrees of freedom

(DOF).

2 6/ -12
41> -6l
12

sym

(2.28)

4/?
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156 221 54 -—13/
4> 131 =3/1°
)= P4 (2.29)
420 156 —22/
41
6 o
F1=2Y] ]|
1216 o)
-] |[Q,

[t can easily be verified that the terms ‘1121

[] in Equation (2.30) represent the

“work equivalent” forces and moments at nodes 1 and 2 due to the uniformly distributed
load over the element. When ¢’ is a complicated function of x, the mechanics of material

type approach becomes less appealing, whereas Equation (2.22) provides a

straightforward way of determining the “‘generalized work equivalent force” components.

2.2.3 Formulation for the Timoshenko Beam Element

The basic assumptions for the Timoshenko Beam theory and its contrast with the
Euler-Bernoulli Theory have been explained in detail in the introduction. This theory
takes into account the effect of shear deformation. We will now proceed with the

formulation for the Timoshenko Theory.

The co-ordinate system used to define the geometry of a 2-node Timoshenko

beam element is shown in Figure 2.6. The x co-ordinate and the non-dimensional & co-

ordinate are related by the equation,

E=x/l (2.31)
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The potential energy, PE, and the kinetic energy, KE, of the prismatic Timoshenko beam

element are [64],

1 1 d0 1 dw
E[El j (: Z ] ldg +kGAI [9 —72) ldéJ (2.32)
£=0 g =1
o ¢ ,
X

Figure 2.6  The two-node Timoshenko (linear) element showing element co-ordinates.

2 I I
@ [A [wiide + 1o 21d§] (2.33)
0 Q

Generic displacements for this element are the transverse displacement w and the
rotation of beam cross-section 6 . A close examination of the terms in the above two
equations shows that both w and 6 are differentiated only once with respect to § . Since
the primary variables are the dependent unknowns themselves (and do not include their

derivatives), the Lagrange interpolation of w and 6 is appropriate here. The minimum

admissible degree of interpolation here is linear, so that 4% GE and 49 i are not equal
to zero.
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The variables w and 6 do not have the same physical units; they can be
interpolated, in general, with different degrees of interpolation. The displacement

functions assumed for this element are,

w=gq, +4,§ (2.34)

0=4,+q¢& (2.35)

The polynomial terms in the assumed displacement field are used to define the transverse

displacements and the rotation of beam cross-section at the two nodes of the element.

The quantities needed to form the element stiffness and the mass matrices are obtained in

the matrix form:

f}=1CHg}: B}=1DHa}: (})% =[Flg}: o —(;]fjgw = (H g}
(2.36-2.39)

where,

C=[1,0,&,0]; D=(0,1,0,&1; F=1[0,0,0, 1/];

Hz[ov l,'l/l,E_']; qu[q[vq21q31q4]

Substituting the above equations in the equations for PE and KE we get,



PE =_{a¥ K, g} KE =20 {g¥ 1M, g} 240

where, [ K q] and [M .| are, respectively, the element stiffness and mass matrices,

expressed in the q co-ordinate system as
l 1 1 i

(K,1=El [[FI"[FUdE + kGA [(HT (HYdE ; M, = ij[ClT[C]laﬁ +pl I (DI (Dl
0 0 0 0

(241)
The element stiffness matrix, [K 1. and the element mass matrix, [M |, expressed in

the q co-ordinate system will be obtained by integrating explicitly the expressions given

by the above equation.

A new set of generalized co-ordinates p is chosen in order to satisfy inter-element
compatibility. The relation between the p co-ordinates and the q co-ordinates is found by

applying the element “boundary conditions™ and is

[qi =[Tlp] (2.42a)

where,

pT =[w,.8,,w,.0,] (2.42b)

The generalized co-ordinates w;,8 ,w,,0, are the transverse displacement w and the

rotation of the beam cross-section 8 at the two nodes of the element. The transformation

matrix [T] is,
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0

0 1 0
) (2.43)
0

-— 0 O O

The element stiffness and the mass matrices are transformed to the p co-ordinate system

by using the relations

(K =TT [K,NT]; M, ]=[TI"[M][T] (2.44)

The element stiffness matrix, [K o) and the mass matrix, [M , 1, are then

assembled into the system stiffness and mass matrices by direct summation. We will use
the subroutine developed for the assembly of the elements for this purpose, the details of
which will be provided in the program development section. After that any of the known
techniques that solves a generalized eigenvalue problem can then be used to find the
frequencies (eigenvalues) and mode shapes (eigenvectors). In the present study, the

Generalized Jacobi method [66] has been used to solve the eigenvalue problem.

2.2.4 Vibration Analysis based on the Conventional Formulation

2.2.4.1 Free Vibration Analysis

The salient aspects of flexural vibration of beams are discussed here. Both the
Euler- Bernoulli and the Timoshenko Beam Theories and the corresponding formulations
are considered in the application of the conventional Finite Element Method. Upon

obtaining the (K] and [M] matrices in both the cases, we can find the natural frequencies
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by solving the eigenvalue problem by any of the standard procedures. In this study, the
Generalized Jacobi method [66] has been used for the solution of the eigenvalue problem.
Exact solutions based on both the theories are available in the literature [67] and they will

be used to validate the results obtained using finite element formulation.

The exact solutions, obtained using the Euler - Bernoulli Theory, for the transverse
vibrations of beams having different boundary conditions are given below: The following
legend is common for all the cases;

* mode; L — length of the beam:;

®; - natural frequency of the {
A - area of cross-section of the beam; p - mass density of the beam

EI - flexural rigidity of the beam

(1)  Simply Supported Beam

o =T |EL (2.45)
L ypA

(i) Fixed -~ Fixed Beam

® = (ﬁj ,ﬂ (2.46)
L pA

where, i=1,2,3,4,..., and K, denotes the values of constants given as follows,

K, =4.732, K, =7.853, K, =10.996,, K, =14.137, and so on [67].
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(iii) Fixed — Free Beam

m,:(ﬁj ﬂ 2.47)
L \}pA

where, i =1,2,3,4,....and K, denotes the values of constants given as follows,

K, =1.875, K, =4.694, K, =7.855, K, =10.996, and so on.

The exact solution obtained using the Timoshenko Beam Theory, for the transverse

vibrations of simply-supported beams is given below [67].

(1) Simply Supported Beam
2 n.l 2
o= _LTh (£ (2.48)
A; 2 A kG
where,
a= —El‘, )\_‘. =£’ rl = L
pA { £ A

In the above, EI is the flexural rigidity, p is the mass density, L is the length of

the beam, A is the cross- sectional area, k is the shear correction factor, [ is the moment

of inertia of the cross- sectional area with respect to the z axis, i.e. the centroidal axis and

i is the index for the frequency.
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2.2.4.2 Forced Vibration Analysis

Forced vibration is the motion caused by external force acting on a vibrating
system. The system will oscillate with an amplitude that depends upon the amplitude of
excitation, the frequency of the driving force and the natural frequency of the system.
When the forcing frequency matches the natural frequency of the system, the amplitude

will be at its maximum and resonance is said to be taking place.

The solution assumed as standard in this study for the forced vibration of beams is
obtained by formulating the dynamic equations for beams with reference to a discrete
number of nodal co-ordinates. These co-ordinates are the translational and rotational
displacements defined at the nodes of the finite elements of the beam. The dynamic
equations for a linear system without considering the damping effects can be

conveniently written as,

M+ (KU Y= {FE)} (2.49)

where, F(t) is the force vector and [M] and [K] are, respectively, the mass and stiffness
matrices of the structure. These matrices are assembled using the appropriate

superposition (direct method) of the matrices that correspond to each beam segment of

the structure.

The solution of the dynamic equations (i.e. the response) of a linear system can be
obtained by the modal superposition method. This method requires the determination of

the natural frequencies o, (i = 1, 2, 3... N), where N is the order of the stiffness matrix,
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and the corresponding normal modes which are conveniently written as the columns of
the modal matrix [§]. The linear transformation vi= EI)]{V(:)} applied to the dynamic
equations reduces them to a set of independent equations (uncoupled equations) of the

form,
i +olv, =P(t) (2.50)

where, [U] is the matrix of nodal point deflections, [V] is a time dependent vector of

generalized displacements, n = 1,2,3,...,N and P,(z) =¢,] Q(t) is the modal force.

Alternatively, the response is also determined by the numerical integration of the
dynamic equations. The linear acceleration methods, namely the Wilson-0 and Newmark

- B methods [66] have been employed for this purpose.

2.2.5 Example Applications

In this section a complete set of example problems will be solved using the
formulations developed in the preceding sections. It will house sets of examples — one for
Euler- Bernoulli Beams and the other for the Timoshenko beams. Solutions are validated
by comparing them with the results obtained using the available exact solutions or other
approximate methods. Both the fps and SI system of units have been used for the

examples. This is done to obtain direct comparison with various references.
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2.2.5.1 Free Vibration Analysis of a Euler-Bernoulli Beam
Problem Description
An A-36 steel [ beam with a cross-section of type 8123 and with both ends simply

supported [68] is as shown in Figure 2.7. The problem is defined by the following
mechanical and geometrical parameters: cross-sectional area (A) = 6.71 in*: moment of
inertia (I) = 64.2 in*; modulus of elasticity (E) = 30 Mpsi; and mass density of the beam
(p) = 0.000733 Ibf —sec*/in*. The beam is modeled using three beam elements. The

natural frequencies and mode shapes are sought.

ol

9 in. | 9 in. ] s
T |

Figure2.7  Beam discretization for the free vibration problem

-

The problem is solved by the conventional finite element method. The use of the

MATHEMATICA® software is made for symbolic computing.

The first four natural frequencies of the beam obtained by modeling it using 3

beam elements are; ©, = 74.519 rad/sec, , =301.36 rad/sec, ®, =743.81 rad/sec and

o, =1383.10 rad/sec.

35



The first four natural frequencies of the beam obtained by modeling it using 6

beam elements are; @, = 74.459 rad/sec, ®, = 297.52 rad/sec, ®, =672.79 rad/sec

and ®, =1205.50 rad/sec.

The natural frequencies of the beam obtained by the closed form solution for a

simply-supported beam are; ®, = 74.461 rad/sec, ®, =297.844 rad/sec, ®; =670.149

rad/sec and o, =1191.378 rad/sec.

Table 2.1 gives a comparison between the results obtained by the current
formulation and the results given in the reference [68]. As can be seen the accuracy in
higher modes gets better as we refine the mesh which is an essential feature of the

conventional finite element method.

Table 2.1  Percentage of error in the natural frequencies of a Euler-Bernoulli beam

Number of Elements Mode Present Results Results given in [68]
1 0.08 0.08
3 2 118 [.18
3 10.99 11.00
1 0.01 0.01
6 2 0.08 0.08
3 0.39 0.39
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2.2.5.2 Forced Vibration Analysis of a Euler-Bernoulli Beam

Problem Description

For the fixed - fixed beam [69] shown in the Figure 2.8, (a) the natural frequencies and
mode shapes, and (b) the response to a concentrated force of 10000 Ib suddenly applied at
the center of the beam for 0.1 sec and removed linearly as shown in the Figure 2.9 are
sought. A time step of integration At =0.01 sec is used. The properties of the beam are:
length (L) = 200 in.; moment of inertia (I) = 100 in*; Young’s modulus (E) = 6.58 Mpsi;
and mass per unit length (Z) = 0.10 Ibf.sec’/in*. The beam is divided into four

elements of equal length as shown in Figure 2.8.

The problem is solved by first obtaining the stiffness and the mass matrices for
the beam by the methodology described in the previous sections. Then the Generalized

Jacobi Method [66] is applied to obtain the natural frequencies ®, and the corresponding

modal shapes ¢,. The ®, and ¢, obtained for the beam are listed below:

? Q Q Q Q

e

Figure 2.8 Modeling the Fixed — Fixed Beam for the Forced Vibration Analysis
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F (t) (Ib)
A

>

Figure 2.9

0.1

0.2  time(sec)

Force applied on the beam for forced vibration

The eigenvalues for the fixed — fixed beam obtained by the Generalized Jacobi method

[66] are 10* x (0.2064,1.5933,6.2710,22.446,61.395,159.39) .

The eigenvectors obtained by the Generalized Jacobi method for the above problem are

listed as follows (by columns).

3.2051x 10™
-7.5434x 10

-3.3013 x 10™

-1.5157 x 10!
2.8917 x 10

2.7393x 10°'®

8.3171x 10" -3.2333 x 10

3.2051 x 10™

7.5434 x 10

1.5157 x 10"

2.8917 x 102

1.9352x 10" 1.8579x 10" -3.2920x 10" -6.6817 x 10
54203 x 10° 4.7578x 10? -3.5498 x 10 -4.8653 x 107
3.5606 x 10" 3.7361 x 10" -3.7975x 1077 3.1435x 10"
1.0892 x 107 7.7369x 10°  1.2986 x 10> 1.2638 x 10"
1.9352x 10" -1.8579x 10"  3.2920x 10" -6.6817 x 102

-5.4203 x 107 47578 x 10°  -3.5498 x 10>  4.8653 x 10
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The natural frequencies corresponding to the above eigenvalues are ®, = 45.432 rad/sec,
©, = 126.23 rad/sec, ®, =250.42 rad/sec, w, =473.77 rad/sec, ®, =783.55 rad/sec,

o, =1262.5 rad/sec.

The solution to the above dynamic analysis problem is obtained by both the

methods, viz. direct integration method and the mode superposition method.

Tables 2.2, 2.3, and 2.4 give the maximum values of the responses i.e.
displacement, velocity and acceleration respectively over the time specified for all the

degrees of freedom in the finite element mesh after applying the boundary conditions.

Table 2.2 Values of maximum displacement for Ex. 2
MAXIMUM RESPONSE - DISPLACEMENT (inches)
D.OF. WILSON -0 NEWMARK - Mode Superposition
Method Method Method
(Direct Integration) | (Direct Integration)

3 0.6502 0.6548 0.6502
4 0.0187 0.0186 0.0187
5 1.2328 1.2421 1.2328
6 0.0000 0.0000 0.0000
7 0.6502 0.6548 0.6502
8 0.0187 0.0186 0.0187
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Table 2.3  Values of maximum velocity for Ex. 2

MAXIMUM RESPONSE - VELOCITY (inches/sec)

D.OF. WILSON -6 NEWMARK -8B Mode Superposition
Method Method Method
(Direct Integration) | (Direct Integration)

3 15.9802 19.8910 15.9798
4 0.5199 0.8798 0.5199
5 27.0415 34.5923 27.0413
6 0.0000 0.0000 0.0000
7 15.9802 19.8910 15.9798
8 0.5199 0.8798 0.5199

Table 2.4  Values of maximum acceleration for Ex.2

MAXIMUM RESPONSE —~ ACCELERATION( inches/sec?)

DOF. WILSON -6 NEWMARK —B | Mode Superposition
Method Method Method
(Direct Integration) | (Direct Integration)

3 1279.9089 1599.7288 1279.8960

4 164.9535 193.5179 164.9512

5 1242.5861 2514.4064 1242.5556

6 0.0000 0.0000 0.0000

7 1279.9089 1599.7288 1279.8960

8 164.9535 193.5179 164.9512

The results obtained for the maximum displacement of the forced vibration

problem for the fixed-fixed beam of Example 2 are in excellent agreement with those

given in reference [69]. We will now analyze the maximum response of the beam in

Example 2 for other boundary conditions.
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Simply Supported Beam of Ex. 2

F
1 2 3 4
Q o Q Q Q
A
1 2 3 4 5

P A

Figure 2.10 Modeling the Simply - Supported beam for the forced vibration analysis

Table 2.5 Values of maximum displacement for Simply-Supported beam in Ex.2

MAXIMUM RESPONSE - DISPLACEMENT (inches)

D.OF. WILSON -6 NEWMARK - Mode Superposition
Method , Method Method
(Direct Integration) | (Direct Integration)
1 0.0741 0.0762 0.0741
2 3.3544 3.4154 3.3544
3 0.0534 0.0548 0.0534
4 4.7838 4.8861 4.7838
5 0.0000 0.0000 0.0000
6 3.3544 34154 3.3544
7 0.0534 0.0548 0.0534
8 0.0741 0.0762 0.0741
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Table 2.6  Values of maximum velocity for Simply-Supported beam in Ex.2

MAXIMUM RESPONSE - VELOCITY (inches/sec)

D.OF. WILSON -6 NEWMARK - Mode Superposition
Method Method Method
(Direct Integration) | (Direct Integration)
| 1.1301 1.3837 1.4415
2 50.7667 53.0035 64.4400
3 0.7957 1.0195 1.0080
4 71.9038 62.9541 90.8140
5 0.0000 0.0000 0.0000
6 50.7667 53.0035 64.4400
7 0.7957 1.0195 1.0080
8 1.1301 1.3837 1.4415

Table 2.7 Values of maximum acceleration for Simply-Supported beam in Ex.2

MAXIMUM RESPONSE - ACCELERATION(inches / sec?)

D.OF. WILSON -6 NEWMARK —B | Mode Superposition
Method Method Method
(Direct Integration) | (Direct Integration)

I 130.0088 256.7592 130.0097

2 1095.9703 2192.6142 1278.8967

3 201.6205 193.7600 201.6223

4 1587.3911 2580.1884 1829.0061

5 0.0000 0.0000 0.0000

6 1095.9703 2192.6142 1278.8967

7 201.6205 193.7600 201.6223

8 130.0088 256.7592 130.0097
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Fixed—Free Beam of Ex. 2

F ()

Q Q Q [e

l

P

Figure 2.11 Modeling the Fixed — Free Beam for the Forced Vibration Analysis.

Table 2.8  Values of maximum displacement for Fixed-Free beam in Ex.2

MAXIMUM RESPONSE - DISPLACEMENT (inches)

D.OF. WILSON —6 NEWMARK —B__| Mode Superposition
Method Method Method
| (Direct Integration) | (Direct Integration)
l 1.1492 1.2583 1.2525
2 0.0415 0.0440 0.0448
3 3.7502 3.9589 3.9999
4 0.0592 0.0605 0.0610
5 6.8302 7.0507 7.1009
6 0.0627 0.0618 0.0621
7 9.9651 10.0752 10.1868
8 0.0627 0.0597 0.0616
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Table 2.9  Values of maximum velocity for Fixed-Free beam in Ex.2

MAXIMUM RESPONSE - VELOCITY (inches/sec)
DOF. WILSON -6 NEWMARK — 8 | Mode Superposition
. Method Method Method
(Direct Integration) | (Direct Integration)

I 16.2166 20.0637 16.2166
2 0.5613 0.8996 0.5613
3 34.8962 39,5176 37.1797
P 0.4757 0.5040 0.4793
5 49.8044 56.3777 53.7276
6 1.0573 1.4764 1.0470
7 99.5557 106.9976 98.8751
8 1.1825 1.9614 1.1794

Table 2.10 Values of maximum acceleration for Fixed-Free beam in Ex.2

MAXIMUM RESPONSE — ACCELERATION( inches / sec? )
D.OF. WILSON -0 NEWMARK - | Mode Superposition
Method Method Method
(Direct Integration) | (Direct Integration)
l 1260.2287 1596.9102 1260.2454
2 161.5970 185.2860 161.6018
3 1307.6690 2472.1470 1307.7105
4 17.7090 19.2595 17.7107
5 1062.9925 1594.0649 1062.9907
6 219.8572 237.9279 219.8677
7 2186.7303 4243.5505 2186.8117
8 194.6379 356.0901 194.6579

Tables 2.5 through 2.10 give the maximum response of the beam in Example 2 with

different boundary conditions.
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2.2.5.3 Free Vibration Analysis of the Timoshenko Beam
Problem Description
For the simply — supported Timoshenko beam shown in the Figure 2.13, the natural

frequencies are to be obtained using the application of the conventional FEM. The
properties of the beam are: length (L) = 10 ft.; moment of inertia (I) = 0.0278 f1.*; area of
cross-section (A) = 1/3 ft*; Young’s modulus (E) = 4.17x10°lbf / f.%; shear modulus

(G) = 1.649x10° Ibf / ft.%; shear correction factor (k,) = 0.85 and mass density (p) =

15.20 Ibf —sec?/ ft.

H
H=1ft;b=1/3 ft

Figure 2.12 The cross-section of the Timoshenko beam

l l
A A

F !

Figure 2.13 Modeling the Simply-Supported Timoshenko beam for the free vibration
analysis
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As can be seen form the displayed results, since a linear element has been used in
the conventional FEM for a Timoshenko beam, the results do not converge rapidly to the
exact solution, even when 25 elements are employed for modeling the beam. When
quadratic elements are employed, the values of frequencies converge to the exact solution

more rapidly.

Table 2.11  Natural frequencies of the Timoshenko beam modeled using linear

elements
NUMBER OF ELEMENTS ; (DOF)*
MODE EXACT :
soLuTioN | 10:(20) | 20;(40) | 25;(50) | 30; (60)'
(rad/sec)
l 464.52 541.36 484.67 477.53 467.15

~

1765.38 2120.50 1865.70 1834.30 1812.36

3 3624.44 4639.00 | 3974.00 | 3894.40 | 3888.61

* Numbers in parenthesis refer to the number of system degrees of freedom
excluding the restrained ones.
!' results obtained by taking into considering the shear locking effect
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2.3  The Hierarchical Finite Element Method (HFEM)

2.3.1 Trigonometric Hierarchical Formulation

As has been mentioned in the previous chapter (section 1.3), the HFEM has
inherent advantages over the conventional FEM. Hence in order to understand the
method better and to apply it to obtain greater numerical efficiency, it has been the object

of attention for researchers in recent past.

In the formulation of the finite element model using the conventional formulation,
we assumed a cubic displacement function for W (Equation 2.5). In the hierarchical
formulation, we modify the approximating function, (i) by adding trigonometric functions
and (ii) by adding polynomial functions. We shall study both these cases simultaneously
and ascertain the pros and cons of them as we proceed in our analysis.
2.3.1.1 Formulation Based on Euler - Bernoulli Theory

The co-ordinate system used to define the geometry of a two-node Euler-
Bernoulli beam element is shown in Figure 2.14. The x co-ordinate and the non-

dimensional co-ordinate & are related by the equation,

E=xll (2.51)

The transverse displacement W, of the above beam element is expressed as,

lv

wE)= c+eg+eft +ef’+ Z Cr+4Sin[8r§] (2.52)
r=1

where &, =rm, =123...N
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N
[
N

Figure 2.14 The two-node Euler-Bernoulli beam element showing element co-

ordinates

and c, are coefficients to be determined.

The element degrees of freedom in this case are the same as in the conventional
case, viz. transverse displacement (W ) and slope (0 = a%x ), the rotation of the beam

cross- section). The polynomial terms in the assumed displacement field are used as
before to define the element nodal degrees of freedom and the trigonometric terms are
used to give additional freedom to the interior of the element. The above equation can be

written in the matrix form as,

wE)=[glc] (2.53)

where,

g=[LEE?E, sinS £]l (2.54)

C=[Cl,Cz,C3,C4,CH4]T (2.55)
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Now, upon evaluating W and the product /6 , at node 1 (i.e. x =0, & =0) and at node 2

(x =1, € =1) we get the following matrix,

(w,] [t 000 0 ]fc]
0, 01 00 4, Ca
JWlle 1 1 1 0 Jc‘}r (2.56)
1, 01 2 3 (-1)3,||c,
w.,] [0 000 L les)

The above matrix can be written in the following form,

[p]=[r]] (2.57)

c]=[+]"[r] (2.58)

Upon substitution of [c] in Equation (2.53) we get,

w =[gJrl"[p] (2.582)

or,

w =[N]p] (2.58b)

S Interpolation Function Matrix.

where, [V]=[g]r]" (2.58¢)

=g 82, sinf E] ] (2.58d)

Hence the individual interpolation functions wouid be,

N, =1—3§2+2§3

N, =§-26%+&’ (2.59)
N3 =£Z__2§3

N, =_§2+§3
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and the trigonometric hierarchical shape functions are,

N, =-6£+(6,+(1) 8.} +(-8, - (1) 5, ) + Sinf5, £]

(2.60)
whered =rz,r=123...N

Hence, the displacement field for the element, in terms of the nodal degrees of freedom

and the hierarchical degrees of freedom, can now be written as,

N
W=NWw +N2(19|)+N3W2 +N4(192)+Z N, W,., (2.61)

r=l

Figure 2.15  The first trigonometric hierarchical shape function ( N 5) and its derivative
(N5)

The values of N,,N,,N, and N,at £=0(x = 0) and at & =1(x = /) are the same as

given in Equations (2.17) - (2.20).
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The hierarchical term(s) N, _, has the values as follows at each node.

N ,.=0 at £=0 and ¢=1

r+4

N, =0 at £=0 and ¢=1

Figures 2.15 — 2.18 show the values of the trigonometric hierarchical shape
functions N, Ng,N,,Nyand their derivatives at various locations within the element.
These functions provide zero displacement and zero slope at each node. This feature is

highly significant, since these functions only provide additional freedom to the interior of

the element and do not affect the element’s nodal degrees of freedom.

Figure 2.16  The second trigonometric hierarchical shape function (Ng) and its
derivative ( Ng)
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Figure 2.17 The third trigonometric hierarchical shape function ( NV, ) and its derivative
(N37)

Figure 2.18 The fourth trigonometric hierarchical shape function ( N, ) and its
derivative ( V)
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Generation of the Finite Element model
To generate the finite element model using the trigonometric HFEM., we use the
weak form as given in Equation (2.3) and make suitable changes for the non-dimensional

co-ordinate system that we have chosen for this formulation.

n 1 11 l'lN I 1
Z{ ! ]{El‘ ‘Y' ‘dfz’]dé- j,lpAN,N,ldg}W, - IN,qldg:—Q, =0 (2.62)
P 0 0

=l [3 0 d§~
Accordingly.
! 2 27
N d°N
K, = L Eld 1,' ‘ 1,’ d& (2.63)
P\ det de?
!
M, = [(pAN, N 1hig (2.64)

0

The element stiffness matrix and the mass matrix are then assembled into the system
stiffness matrix and the mass matrix by the usual overlay procedure.
2.3.1.2 Formulation Based on Timoshenko Theory

The Trigonometric Hierarchical finite element formulation for the Timoshenko
beam element will involve changes to the displacement and rotation (displacement and
rotation fields are independent in the Timoshenko element) fields that are similar to that

corresponding to the conventional formulation based on the Euler -Bernoulli theory.
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Hence. in this case the displacement and the rotation fields are moditied as follows
w= ql + (135 + ‘InllSin[an§] (2.65)

0 =q,+q, +q,,Sin[0,5] (2.66)

3
I
12
o
<

where o = mn,

and &=x//

In the Equations (2.65) and (2.66). m, and m,define the coefficients of the hierarchical

terms added to the displacement and rotation expressions and are defined as;

m =2m+3; m,=m +1
The potential energy (PE) and the kinetic energy (KE) of the prismatic Timoshenko beam

element remain the same as in the conventional case.

[EIJ(I‘MJ Idé + k(;l_f( ;‘;“’j ch,} (2.67)
dg

)

2 | I
KE = p‘;’ [,4 [wide + 1 jollng (2.68)
0 0

[t is imperative to mention here that if the polynomial terms are used by
themselves they will be sufficient to describe the displacement and the rotation of the
beam cross-section within the element. The additional trigonometric sine term allows for

better description of the transverse displacement and the rotation of the beam cross-
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section within the element. I[nter-element compatibility is achieved by matching the

generalized co-ordinates at the element end nodes.

The quantities needed to form the element stiffness and mass matrices are obtained in the

matrix form and are given as follows:

1 \dO 1 Ydw
= C M = D . —_——= F ; -] - |—= H
b=tctig}: B)=0if: [} 12 =11} o-(1 |5 =i}
(2.69-2.72)
where,
C=[(1,0,&,0, Sin[8 E].0l; D=[0,1,0,&,0, Sin[d E]1: (2.73)
6
F = [0 0 0 11 0, (TM }:os[8m§]]: (2.74)
. (9 .
H=1[0,1,-1/, &, —[%}‘os[&né], Sinfd,&11: (2.75)
9" =14,19:.95:94+ 91+ G2 | (2.76)
Substituting the above equations in the equations for PE and KE we get,
1 L
PE ={a¥" (K, Hak: KE =—a’{q}"[M,]{q} (2.77)

2
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where, [K,] and [M, ] are, respectively, the element stiffness and mass matrices.

expressed in the q co-ordinate system as.

(K, 1= EI [FI'[FVdE + kGA [[H]" [HVdE ; [M,]=pA [[CY [CYdk¢ + ol [{D [DVetz

(2.78)

The element stiffness matrix. [ K . |- and the mass matrix, [ M o |- expressed in the

q co-ordinate system will be obtained by integrating explicitly the expressions given
above. A new set of generalized co-ordinates p is chosen in order to satisty inter-element
compatibility. The relation between the p co-ordinates and the q co-ordinates is found by

applying the element “boundary conditions™ and is given by.

[q}=(TI[p] (2.79)

where.

p' =[w,.60,.w,.0,..... w,.0 | (2.79a)

and the generalized co-ordinates w,.6,.w, and 6, correspond to the transverse

displacement w and the rotation of the beam cross-section € at the two nodes of the

element. The generalized co-ordinates w,, and 6, are the amplitudes of the trigonometric

functions for the transverse displacement w and the rotation of the beam cross-section 6

in the interior of the element. The transformation matrix T for M=1 is.
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(1 0 0 0 0 0]
0 L 0000
-1 0 1 000
T = (2.80)
0 -1 0100
0 0 0010
(0 0 00 0 1]

As can be seen from the above matrix, the transformation matrix is composed of a
fixed 4 x 4 block and a variable number of diagonal 2 x 2 blocks and zero coefficients
outside these blocks. Hence, the above matrix is for M = |. The order N of the matrix T
depends on the number of trigonometric terms M chosen. The matrix T is simply found
by expanding it along the diagonal with as many 2 x 2 blocks as the number of terms

used. The order N of the element stiffness. mass and transformation matrices is.

N=2M+4 (2.81)

The element stiffness and mass matrices are transformed to the p co-ordinate system by

using the relations

[K,1=[TV[K,NT]: [M,]=[T)[M,][T] (2.82)

The element stiffness matrix,[K ,] and the mass matrix. [M ,1. are then

assembled into the system stiffness and mass matrices by overlay procedure. We will use
the subroutine developed for the assembly of the elements for this purpose. the details of
which will be provided in the program development section. After that any of the known

techniques that solves a generalized eigenvalue problem can then be used to find the
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frequencies (eigenvalues) and mode shapes (eigenvectors). In the present study. the
Generalized Jacobi method [66] has been used to solve the eigenvalue problem.
2.3.2 Polynomial Hierarchical Formulation

In place of trigonometric functions that were used in the previous section. in this
section we use polynomials that increase the degree of approximation of the displacement
and rotation fields. The choice of the polynomials is governed by certain aspects. The
chosen set should be complete. Polynomials that have the property that the set of
functions corresponding to an approximation of lower order constitutes a subset of the set
of functions corresponding to a higher order approximation are particularly desirable.
Also. the chosen function should not contribute to the displacement values at the element
nodes. There is a wide array of polynomials that can be chosen from. In this work we

have chosen the following set:

fi(e)=x" (e -t) r=12...M (2.83)

where /is the clement length.

This function is chosen on the above mentioned basis and it fulfills the criteria when
applied to the displacement field as we shall see in the following formulations.
2.3.2.1 Formulation Based on Euler — Bernoulli Theory

The displacement field for the beam element is written as follows for this

formulation.
A

W(x)= N, +N.O, + NW, + N0, +D. N, 4, (2.84)
r=1

where,
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N, =x"(x-1)" r=12.M (2.85)

r

and A4, are the coefficients of the polynomial hierarchical terms.

The polynomial hierarchical shape functions are chosen such that,

=0 at x=0 and x=I

N, =0 at x=0 and x=I

The above equations illustrate that the function provides zero displacement and zero
slope at each end of the element. Again, it is important to mention that this property is
highly significant, since these modes contribute only to the internal displacement field of
the element, and do not therefore affect (i.e. over restrain) the displacement at the nodes.

Now the weak form for the beam element remains as follows:

1 2 2 2 2 !
j’[d VEL Y o= vg e+ vi(ﬂd ',”J--d—"El" ¥l =0 (2.86)
Na™ ax’ del d? ) ax ddt |

Let us take the case when there is just 1 polynomial term that is added and hence the
finite element equations correspond to an element having 5 DOF’s. We will make the
substitutions for W and the weight function. v, in the weak form given above in
Equation (2.86).

Hence. we get,

2.

5
1=l

l El LN, dZN' ApAN N |d IIN ‘dx-Q, =0 (2.87)
3 e A , X ew -— . X — = Z.
; (LV- ! 2 p ! ) ; q
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i[Ku ~aM, v, ~F, =0 (2.88)

where,
! N d’N

K, = jE[d Lk (2.89)
0 de”  dx”
! !

M, = [pAN,N dx F, = [N.g'dc+Q, (2.90)
0 0

By the addition of one polynomial hierarchical term, the stiffness matrix in Equation

(2.89) can be written in a matrix form as,

-Kn K, K; K, KIS- “/Vl q, [0,
Ky Ky Ky Ky Kyl q; O,
Ky Ky Ky Ky Ky iW, r= 45 p+10s 0 (2.91)
K, K, K,; K, K o, q, 0,
_K5| K, K; K, Kssj A, \‘1; 0

By making use of the MATHEMATICA® code to solve for individual terms in the

stiffness and mass matrices, we get the following,

sym

12 6 -12 6 0
4 -6l 2* 0
[K]= % 12 -6’1 0 (2.92)
4 0
4/®
5
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[m]= 24 (2.93)

5
420 4 3l

m —
> 3

2.3.2.2 Formulation Based on the Timoshenko Beam theory

[n the formulation of the Polynomial Hierarchical FEM for the Timoshenko beam

element, the displacement and the rotation fields are modeled as follows:

w=q, +q;x+q,[x " (x-1)"] (2.94)

O=q,+q,x+q,[x"(x-1)"] (2.95)
where

r, and r, define the coefficients of the hierarchical terms added to the displacement and

rotation expressions in Equations (2.94) and (2.95) and are defined as

rn=2r+3; r=n+l r=123....R
The equations for the potential energy (PE) and the kinetic energy (KE) of the prismatic

Timoshenko beam element remain the same as in the conventional case:

! 2 ] 2
PE = ! EIJ(Q) dx + kGA J-(G—ﬂ) dx (2.96)
2 ¢ b dx

= 0
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2 1l I}
KE =p—(;—[A [wiax+1]o lde (2.97)
0 0

From Equations (2.91) and (2.92) we get:

d8 d
{(w=[Cl{q} :8}=[Dl{q}: — =[Fl{q}; 6 -2 =[H]{q) (2.98-2.101)
dx dx
where,
C=[L,0,x,0, x"(x=1)",0]: D=[0,1,0,x,0, x'(x={)"];  (2.102)
F o= (00010 [+ Xe=t) +x (e—1)"}; (2.103)
H=[0,1,-1,x,-[(r+ 1){(x'*' Y1) +x (et} }],[x”' (e=1Y""11; (2.104)
9" =(9,:92+95:94+9,1-4,> ] (2.105)

Substituting the above equations in the equations for PE and KE we get,
1 I .,
PE=5{4}T[K,,J{CI}; KE=50>'{61}’[M,,]{¢1} (2.106)

where, [K ] and [M .1 are, respectively, the element stiffness and mass matrices,

expressed in the q co-ordinate system as

1 t { {
(K, 1= EL[[FT'[Flde+ kGA[(H (H1dx; [M,]=pAf(CT [Cldx+pl [[D] [D}dx 2.107)
0 0 0 0



The element stiffness matrix, [ K . |- and the mass matrix, [ M_ |, expressed in the

q co-ordinate system will be obtained by integrating explicitly the expressions given
above. A new set of generalized co-ordinates p is chosen in order to satisfy inter-clement
compatibility. The relation between the p co-ordinates and the q co-ordinates is found by

applying the element “boundary conditions™ and is given by:

[a}= [T1lpl (2.108)

where,

pl=[w,.0,,w,.0,,....w,.0] (2.108a)
The generalized co-ordinates w,.6,.w,.and 8, correspond to the transverse displacement
w and the rotation of the beam cross-section @ at the two nodes of the element. The
generalized co-ordinates w, and 6, are the amplitudes of the polynomial functions for the

transverse displacement w and the rotation of the beam cross-section @ in the interior of

the element. The transformation matrix T for R = 1 is.

L0 0 00
0 I 0 00
-1/l 0 Ul 0 00
T= (2.109)
0 -1/ 1/l 0 0
0 0 0 10
0o 0 0 I]

As in the case of the trigonometric HFEM. the transformation matrix is composed of a
fixed 4 x 4 block and a variable number of diagonal 2 x 2 blocks and zero coefficients

outside these blocks. Hence. the above matrix is for R = 1. The order N of the matrix T



depends on the number of polynomial terms R chosen. The matrix T is simply found by
expanding it along the diagonal with as many 2 x 2 blocks as the number of terms used.

The order N of the element stiffness, mass and transformation matrices is.

N=2R +4 (2.110)

The element stiffness and the mass matrices are transformed to the p co-ordinate system

by using the relations

[K,1=[TV [K,I[T]: [M,1=[T] [M,][T] (2.111)
The element stiffness matrix, [ K » |- and the mass matrix. [ M , |- are then assembled into

the system stiffness and mass matrices by direct summation. We will use the subroutine
developed for the assembly of the elements for this purpose. the details of which will be
provided in the program development section. After that any of the known techniques
that solves a generalized eigenvalue problem can then be used to find the frequencies
(eigenvalues) and mode shapes (eigenvectors). In the present study. the Generalized
Jacobi method [66] has been used to solve the eigenvalue problem.
2.3.3 Example Applications

[n this section, we will apply the hierarchical finite element method developed to
the examples that were solved in section 2.2.5 using the conventional FEM. We will then
compare the results of the HFEM with the results of the conventional FEM and the exact

solutions.
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2.3.3.1 Free Vibration analysis of a Euler-Bernoulli Beam

Ex. I Problem Description

An A-36 steel I beam with a cross-section of type 8123 and with both ends simply
supported is as shown in Figure 2.19 [68],. The problem is defined by the following
parameters: cross-sectional area (A) = 6.71 in’: moment of inertia (I) = 64.2 in’:

modulus of elasticity (E) = 30 Mpsi and mass density of the beam (p) = 0.000733

Ibf —sec’/in’. The beam is modeled using only one hierarchical beam element. The

natural frequencies and mode shapes are sought.

>ro
o

288 in.

Ky
A

Figure 2.19 Beam modeled by just one hicrarchical finite element

We will analyze this problem both by the use of the trigonometric and the
polynomial hierarchical finite elements. The following tables will give us the results
when we model the whole beam by just one element and with increasing number of

hierarchical terms.
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Table 2.12 Natural frequencies obtained by using different numbers of trigonometric

hierarchical terms with just | element

SEeE *"lﬁ? i e b Pf:"} i —i -1" e
1 5 74.4665 378.7304 946.2915
2 6 74.4665 297.8446 946.2914 1816.2973
3 7 74.4666 297.8446 670.1510 1816.2973
4 8 74.4669 297.8446 670.1510 1191.38
5 9 74.4666 297.8446 670.1511 1191.3826
6 Exact Solution 744611 297.8444 670.1499 1191.3776

*4 conventional DOF + additional trigonometric hierarchical DOF.
Table 2.13  Natural frequencies obtained by using different numbers of polynomial

hierarchical terms with just | element

'\'—'ﬁﬂ
o A

1 5 744657 378.730 -

2 6 744599 | 378.7261 | 684.1498 | 4450492
3 7 74.4599 30259 | 378.7034 | 6693930
3 8 74.4598 29415 378.585 669365
5 9 59.0023 294.128 | 377.856 672.479
6 ExactSolution | 744611 | 297.8444 | 670.1499 | 11913776

* 4 conventional DOF + additional polynomial hierarchical DOF.
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The resuits shown above give the solution of the free vibration problem stated
above. As opposed to the conventional FEM solution we have modeled the whole beam
by using just one element and we have varied the numbers of hierarchical terms
associated with this one element. Both the trigonometric and the polynomial cases have

been presented here and their comparison with the exact solution is also given.

As can be seen from the values in the Tables 2.12 and 2.13. the rate of
convergence to the exact solution is much faster in the trigonometric case than in the
polynomial case. Also, in the polynomial case the results do not converge to exact
solutions on increasing the number of hierarchical terms in the element. This could be
attributed to the fact. that the addition of hierarchical terms basically tries to make the
deformed shape of the beam element as it would be in the actual deformation. It lends
extra freedom to the inside of the element so that the element is more effective in
depicting the actual shape of the deformation. This is what makes the element more
efficient. The moditication in the shape. so that it depicts the actual shape. is brought

about by these hierarchical terms.

In our case of the present example, we see that the polynomial terms that we have
added to the one element modeling our beam do not converge to the exact solution. The
probable reason for this could be that the polynomial terms are not sufficiently effective
to alter the deformation inside the element and make it efficient enough to model the

behavior of the whole beam. Also, with increasing number of polynomial terms. the
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degree of the approximating function is such that the resulting stiffness and the mass

matrices become ill-conditioned. Hence. their correct eigenvalue solution is not possible.

[t remains to be seen that how do the values converge when we use more than |
element. We have already seen that in the trigonometric case we achieved absolute
convergence just by one element. We had to add trigonometric hierarchical terms to the
element to get convergence till the fourth frequency. In the polynomial case we didn’t
achieve this if there is just 1 element. then there is a limit to the number of polynomial
hierarchical terms that we can attach to it to avoid the matrices getting ill-conditioned.
Hence. we see how does the formulation fare when we take more than 1 element. Table
2.14 gives us the details when we use more than | element to model the beam and with

varying number of degrees of freedom (i.e. hierarchical terms).
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Table 2.14 Comparison of the two formulations with varying DOF and number of

clements
DOF*/ HFEM NO. OF
Element TYPE Elements FREQUENCIES (w.RAD / SEC)
T 2 74.467 297.844 689.91 1514.932
’ 3 74.463 297.96 670.15 1211.01
P 2* 74.576 330.58 484.14 703.50
3 74.465 297.96 670.35 1212.2
| T 2 74462 29784 67091 194
¢ 3 74.464 297.91 670.15 1199.4
P 2 74464 | 297.85 | 689.06 | 151438
3 74.465 297.96 670.15 1210.6
T 2 74.461 297.84 670.28 1191.4
7
3 ! - - - -
P 2 74.464 297.85 689.06 1514.9
3* 76.929 328.89 754.96 1076.9
T 2' - - - -
8
3 ' - - - -
P 2* 74.464 297.85 689.06 1514.9
3* - - - -
Exact Solution 74.4611 297.8444 | 670.1499 | 1191.3776

T - Trigonometric Formulation, P — Polynomial formulation

- 4 conventional DOF + additional hierarchical DOF.
! - The exact solution was already obtained, hence further cases are not considered.
* - The matrix solution was inaccurate since the matrices became Positive Indefinite.

Generalized Jacobi Method was used.
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As evident from Table 2.14 and as mentioned before, the trigonometric
formulations fare very well. The highlighted portions shown in Table 2.14 indicate that
with the addition of 2 trigonometric hierarchical terms (six degrees of freedom per
element), and using 2 elements we converge to the exact answer. Hence. further addition
of the hierarchical terms when we are using 2 elements to model the beam is not required.
In the case of using the polynomial formulation, when we use 2 elements to model the
beam and have 2 polynomial hierarchical terms added to each element (six degrees of
freedom per element), we get closest to the exact answer. Adding any turther hierarchical
terms to the elements does not increase the accuracy but tends to make the matrices ill —
conditioned. Also. adding further elements does not increase the accuracy. Table 2.16
gives us an idea about how much error is associated with each value with respect to the
exact solution.

[t would be important to mention here that the errors associated with other
formulations of finite element method viz. the conventional FEM and the advanced finite
element method [70]. The advanced FEM has 8 DOF per element. where apart from w
and @, the shear force and the bending moment are also considered as the nodal degrees
of freedom. It gives better results than the conventional finite element formulation.

Table 2.15  Errors in the natural frequencies in the conventional formulation and the
advanced formulation

No. Of Error (%) by Formulation Method
lements CONVENTIONAL METHOD ADVANCED METHOD [70]
(8 DOF)

0 —> o, w, @, @, w, w,
2 0.39 10.99 23.99 0.09 0.66 1.15
3 0.08 1.18 10.99 0.03 0.20 .15
4 0.03 0.39 1.83 0.01 0.09 0.28
5 0.01 0.17 0.79 0.01 0.05 0.15

70




Table 2.16  Error associated with the cases considered in Table 2.14

DOF“/ HFEM NO. OF
Element TYPE Elements ERROR (%)
T 2 0.008 -0.0017 2.95 21.35
’ 3 0.003 0.0372 -0.0016 1.62
P 2* 0.1543 11.103 -27.683 -69.35
3 0.005 0.0372 0.028 1.72
] T 5 0003 | om0t | ot | 5008
. 3 0.004 0.0205 -0.0016 0.6689
P 3 0.004 (0003 2.926 21.35
3 0.005 0.0372 -0.0016 1.59
T 2 0.000 0.0001 0.0178 0.0019
7
3 ! - - - -
P 2 0.004 0.0003 2.926 21.35
3* - - - -
T 2 - - - _
8
3 ! - - - -
P 2% 0.004 0.0003 2.926 21.35
2% ) _ ) )
Exact Solution 74.4611 297.8444 670.1499 | 1191.377

T — Trigonometric Formulation, P - Polynomial formulation

- 4 conventional terms + additional polynomial hierarchical terms.
! - The exact solution was already obtained, hence further cases are not considered.
* - The matrix solution was inaccurate since the matrices became Positive Indefinite.

Generalized Jacobi Method was used.
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As is evident from the Tables 2.15 and 2.16 the trigonometric hierarchical FEM
gives much better accuracy with less number of elements than the conventional and the
advanced formulations. The polynomial hierarchical formulation also gives better results
than the conventional formulation and is at par with the advanced formulation except for
the cases when the matrices get ill-conditioned. In that case other polynomials can be
used in place of this one which can give better results.
2.3.3.2 Forced Vibration analysis of a Euler-Bernoulli Beam
Ex. 2 Problem Description
For the fixed - fixed beam [69] shown in the Figure 2.20, (a) the natural frequencies and
mode shapes. and (b) the response to a concentrated force of 10000 Ib suddenly applied at
the center of the beam for 0.1 sec and removed linearly as shown in the Figure 2.21 are

sought. A time step of integration t = 0.01 sec is used. The properties of the beam are
length (L) = 200 inches, moment of inertia (I) = 100 in*. modulus of elasticity (E) = 6.58
Mpsi. and mass per unit length (m ) = 0.10 /bf.sec’/in" . The beam is divided into four

elements of equal length as shown in Figure (2.20).

F (1)

I | |

1 2 3

4 5
50" + 50" l 50" + 50" >l
¢

Figure 2.20 Modeling the Fixed — Fixed Beam for the forced vibration analysis using
HFEM
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F(t)
10000 Ib

*
0.1 0.2 time (sec)

Figure 2.21  Force Applied on the beam for forced vibration

The solution of the forced vibration problem involves the solution of the

following equation:

(KU} + MO} =[F] (2.112)

where [F] is the nodal force matrix. In the forced vibration case. we intend to find the
response to the excitation that this beam is subjected to by the application of the force. As
we did in the conventional formulation case, we will use the mode superposition method
and the direct integration techniques, viz. Wilson - @ method and the Newmark -

[ method to obtain the solution once the [K] and (M] matrices are obtained by the

hierarchical FEM - using both trigonometric and the polynomial functions.

It should be noted that the same problem was solved for the maximum deflection
in section 2.2.5 by using the conventional FEM. In the present solution we intend to

apply the HFEM to obtain the [K] and [M] for the beam and then proceed with the
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solution for the maximum deflection. In the original problem, the discretization of the

beam using two hierarchical elements, each having one hierarchical term as internal
degree of freedom. In the figure. the numbers in bold parenthesis denote the nodal
degrees of freedom (DOF), and the numbers in bold italics denote the hierarchical DOF
added to the element. The results for the maximum deflection are obtained by the
application of the HFEM and are given in the following tables. They are compared with
the results in reference [69] and the errors associated with them are given in Tables 2.17

-2.19.

F(t)

41,2 5 (3, 4) 8 6,7)

e S

Figure 2.22 Modeling the Fixed - Fixed Beam for the forced vibration analysis using
hierarchical method — | hierarchical term per element
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Formulation using Trigonometric functions:

(i) Maximum Response of the beam in Ex. 2 by modeling with 2 elements, each

element having five degrees of freedom (DOF)

Table 2.17

T

12510 (0.64%)

Maximum response of the beam in Ex. 2 using hierarchical finite element

0.0020 (0.2%)

0.0013 (0.13%)

(i1) Maximum Response of the beam in Ex. 2 by modeling the beam with 2 elements.

each element having six degrees of freedom (DOF)

Table 2.18

i

[.2323 (-0.86 % )

Maximum response of the beam in Ex. 2 using hierarchical finite element

:_: TN 2

1.2422 (-0.06 %)

0.0000 (0. 0%)

0.0000 (0.0 %)

Formulation using Polynomial functions:

(1) Maximum Response of the beam in Ex. 2 by modeling the beam with 2 elements,

each element having six degrees of freedom (DOF)

Table 2.19

1.2326 (-0.84 % )

Maximum response of the beam in Ex. 2 using hierarchical finite element

1.2406 (-0.19 %)

0.0000 (0. 0%)

0.0000 (0.0 %)
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2.3.3.3 Free Vibration Analysis of the Timoshenko Beam

Ex.3  Problem Description
For the simply — supported Timoshenko beam shown in Figures 2.23 and 2.24. the

natural frequencies are to be obtained using the application of the HFEM. The properties

of the beam are: length (L) = 10 ft.; moment of inertia (I) = 0.0278 ft*; area of cross-
section of the beam (A) = 1/3 fi*; modulus of elasticity (E) = 4.17x10°/bf / fi*: shear
modulus (G) = 1.649x10°/bf / fi*; shear correction factor (&,) = 0.85 and mass density

(p)=1520 Ibf —sec’/ fi*.

Figure 2.23 Cross-section of a Timoshenko beam

H=1 ft.;b=1/3 fi.

Il
. 10’ »l

Figure 2.24  Simply-Supported Timoshenko beam for the free vibration analysis using
HFEM

The hierarchical FEM formulation developed for the Timoshenko beam is applied
to the above probiem. Both the trigonometric and the polynomial formulations have been

put to use and their results have been compared with the exact solution. Tables 2.20 and
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2.21 give us the results for both the formulations. In these tables. nTm refers to the
solution with n elements in the complete beam and m trigonometric terms (m/2 each for
w and @) in each element. This notation applies to the polynomial terms as well. The
numbers in the parenthesis refer to the number of system degrees of freedom excluding

the restrained ones.

Table 2.20  Natural frequencies of a Timoshenko beam using Trigonometric

formulation

“l=Solutionst SO0 |
1 464.52 476.99 467.54 466.24 465.61
2 1765.38 1788.10 | 1780.00 | 1783.30 | 1781.60 | 1780.60
3 3624.44 -* 4101.90 | 3797.50 | 3756.50 | 3760.20 | 3758.20
4 5578.14 -* 7174.10 | 6239.10 | 6224.40 | 6195.60 | 6199.50

*Only 2 nodal degrees of freedom associated in this case.

Table 2.21 Natural frequencies of a Timoshenko beam using Polynomial Formulation

46452 | 53488 | 493.69 46631
2 176538 | 2108.70 | 193880 | 186830 | 180880 | 1785.50
3 3624.44 | 468070 | 4294.40 | 400790 | 3834.10 | 3771.90
7 5578.14 | 7993.60 | 7174.80 | 677250 | 6362.60 | 6228.70

* During the application of the Jacobi Method for the eigenvalue solution, the diagonal
terms become negative at a point during iteration — hence. the solution was computed at
that point and therefore might not be exact.
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In both the trigonometric and the polynomial formulations. the solution involves
modeling the Timoshenko beam with increasing number of elements and hierarchical
terms in each element. [t should be noted that the basic element considered here is linear.
hence a large number of elements are required to obtain accurate answers. The results for
the same problem are obtained by the conventional FEM and are listed in Table 2.11.
Comparison of these results with those obtained by the conventional FEM and the exact
solution shows that both the hierarchical formulations fare better than the conventional
FEM. The trigonometric formulation gives the best performance both in terms of less
number of elements and less trigonometric hierarchical terms. The polynomial
formulation on the other hand. requires more elements and more hierarchical terms per

element to achieve accuracy.
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24 Program Organization for FEA and Computation of Vibration Response

In the development of the program. care has been taken to use descriptive variable

names for every variable. for example, nnode represents the number of nodes in an

element, ndofn represents the number of degrees of freedom per node. and so on. The

program has been divided into segments to accomplish different tasks. This has been

done to allow for fluent comprehension of the program. The various tasks performed by

different routines are as follows:

» The master program

» The Timoshenko analysis program
» Compute the transformation matrix

» Compute laminate stiffness matrices

Y

Compute element stiftness matrix

Y/

Compute element mass matrix
» Assemble element stiffness and mass matrices
» Calculate Eigenvalues and Eigenvectors

> Compute dynamic displacements and rotations

using Mode-Superposition method

> Compute dynamic displacements and rotations

using Wilson- @ method

» Compute dynamic displacements and rotations

using Newmark- # method

> Compute deformations for static analysis

MAIN

TIMO

TRANMAT

ELEFREX

ELESTF

ELEMAS

ASSMAT

EIGVAL

FORVIBMS

FORVIBWT

FORVIBNB

FORVIBST
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INPUT E—

Material properties

Nodal connectivity data
Order of hierarchical finite
element method (HFEM)
Boundary Conditions
Number of elements
Number of nodes

Loads for forced vibration

Generation of numbers for assembling global stiffness and mass
matrices and calculating the numbers of degrees of freedom

ll

Initializing global stiffness and
mass matrices to zero

!

Start loop over the number of

elements

Call Functions
[. TRANMAT
2.ELEFREX
3.ELESTF
4.ELEMAS

Repeat
over the

number of
elements

Assembling the global stiffness and mass matrices (ASSMAT)
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:

Application of the boundary conditions

Call Functions

1. EIGVAL

2. FORVIBMS
3. FORVIBWT
4. FORVIBNB

Figure 2.25 Flowchart used for the finite element vibration analysis
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2.5  Conclusions and Discussion

In the previous sections the conventional and the hierarchical finite element
methodologies have been described and example problems have been solved to illustrate
their applications. The HFEM displays superior results as compared to the conventional
FEM. We shall see how the results of the formulations compare with each other and
within themselves in this section. The figures listed in this section plot the frequencies
against the modes. It should be noted that this is done purely for visual convenience since
modes and frequencies are not continuous quantities.

Figures 2.26 and 2.27 give us the comparison of the modal frequencies for the
free vibration problem. The results have been obtained using the conventional FEM and
the trigonometric and polynomial formulations of the HFEM. These results are then

compared with the exact solution. The important thing to note is that apart from the less

—4— Exact Solution
B -©- 3C (6 DOF)
~4— 6C (12 DOF)
B --Q-- 1T3 (5 DOF)
B -~- 174 (6 DOF)

Figure 2.26 Comparison of frequencies of Euler-Bernoulli beam obtained using
conventional FEM and trigonometric HFEM
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—#— Exact Solution
RN -©- 3C (6 DOF)
Xl —-e— 6C (12 DOF)

Q- 2P2 (8 DOF)

Figure 2.27 Comparison of frequencies of Euler-Bernoulli beam obtained using
conventional FEM and polynomial HFEM

number of elements required for the modeling of the 1-D structure, there is a considerable
decrease in the number of system degrees of freedom. These numbers have been
specified in the legend of the Figure and they exclude the constrained DOF due to the
boundary conditions. For the polynomial formulation, we had to resort to a minimum of
two elements, as the results were lacking accuracy for 1 element. Figures 2.28 and 2.29
give us an idea of the manner of convergence of the 1-element and 2-element solutions

for the trigonometric and polynomial formulation respectively. The frequency
parameters, Q, (Q, =, x(hx(G/ p)'”z)), for different modes are plotted versus the

number of trigonometric and polynomial terms for the simply-supported beam. These
figures conform that the HFEM solutions converge from above to the exact solutions

represented by dashed lines. As can be seen, convergence to the exact solutions in the
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lowest two modes is much faster than in the third or fourth mode. This is due to the fact
that the higher is the mode the more complex is the mode shape. Therefore, the higher the
mode is, more number of hierarchical terms are needed to describe accurately this mode.
It can also be seen that in the polynomial case, convergence is not obtained for the fourth
mode frequency. This can again be explained by the fact that the combination of the
polynomial terms that we make for the simply-supported beam, does not accurately
describes the shape in which the beam deforms in the fourth mode. Also, addition of
more terms in the polynomial case makes the solution numerically more expensive and
sometimes inaccurate. Hence we see that the trigonometric formulation is more accurate
than this set of chosen polynomials in describing the higher modes in the vibration of
simply supported beams. Similar comparison for the results of forced vibration case

shows that maximum response of the beam is obtained by using less number of elements

| -©~ Exact Solution B

Figure 2.28 Convergence to Q,Q,,Q; and Q,of the Simply-Supported beam with
increasing number of trigonometric terms in 1-element modeling
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-©- Exact Solution §

Figure 2.29 Convergence to Q,,Q,,Q, and Q,of the Simply-Supported beam with
increasing number of polynomial terms in 2-element modeling

and less number of system degrees of freedom in the modeling of beam. Figure 2.30
shows the frequencies obtained for the Timoshenko beam by the conventional and
hierarchical formulations. As in the Euler-Bernoulli beam case, considerably less number
of elements are required to obtain the exact solutions. Also, in Figures 2.31 and 2.32, a
comparison between different cases of the same formulation is illustrated. Since the

element is linear, a large number of elements are required to model the modes correctly.
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at Soluto
25C (50 DOF)
5T8 (50 DOF)

Figure 2.30 Comparison of frequencies of the Timoshenko beam obtained using
conventional FEM, trigonometric HFEM and polynomial HFEM

Exact Solution
278 (20 DOF)
3T8 (30 DOF)
478 (40 DOF)
5T8 (50 DOF)

Figure 2.31 Comparison of frequencies of the Timoshenko beam obtained using
trigonometric HFEM
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I —+— Exact Solution

B -©- 6P6 (48 DOF)

BN —«— 10P6 (80 DOF)
| -0 20P6 (160 DOF) |

Figure 2.32 Comparison of frequencies of the Timoshenko beam obtained using
polynomial HFEM

To sum up, in this chapter the Hierarchical Finite Element Method has been
presented and its formulation has been applied to the free and forced vibration analysis of
both the Euler- Bernoulli and Timoshenko beams made of isotropic materials. Two
variations of the HFEM have been studied viz. Trigonometric and Polynomial HFEM. To
start with, the conventional finite element formulation is presented and its derivation is
detailed to stress the conceptual changes that are made in it for the HFEM. The problems
of free and forced vibration are also solved using the conventional formulation so that a
comparison can be made with regard to the HFEM results. The detailed formulation of
the HFEM for both the trigonometric and the polynomial cases is also given to stress the
major aspects of the method. Free and forced vibration problems are then solved using

the developed HFEM techniques. Programs are developed both in MATLAB® and
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MATHEMATICA® (for symbolic computing) software environment. The results
obtained using the HFEM method are then compared with the results obtained using the

conventional formulation and the exact solutions.

Both the forms of HFEM are found to give highly accurate results, viz.
frequencies in free vibration and maximum responses in forced vibration, with
substantially less number of elements and system degrees of freedom. The effect of
adding internal degrees of freedom enhances the performance of the element and hence a
single more efficient element can do the work of many conventional elements combined.
Also, the number of system degrees of freedom can be varied without changing the mesh
of elements. Results can be achieved to any desired degree of accuracy by simply
increasing the numbers of hierarchical terms in each element. There is, however a
limitation in the polynomial case; upon increasing the number of polynomial hierarchical
terms as taken in this study beyond a limit, the resulting stiffness and mass matrices
become ill-conditioned and hence, their solutions become inaccurate. In spite of this
drawback, the polynomial formulation gives better results than the conventional
formulation, although the trigonometric formulation yields the best results among the
three. Example problems have been solved both for the Euler-Bernoulli and the
Timoshenko models. The trigonometric HFEM formulation gives the best resuits

followed by the polynomial HFEM and then the conventional formulation.

Now we have laid the foundation for the application of HFEM in the dynamic

analysis of 1-D structures. The inspiring results for isotropic materials should lead us to
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similar computational efficiency for structures made of composite materials. In the next
chapter, we shall explore the applications to composite structures using the HFEM

methodology.
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Chapter 3

Dynamic Analysis of Composite Beams using Hierarchical Finite Element Method

3.1 Introduction

Composite materials, especially laminated composites are being increasingly used
in the aerospace and automobile industries. This is mainly because these materials exhibit
high strength-to-weight and stiffness-to-weight ratios. The in-service loadings on
aerospace and automobile structures are dynamic in nature. There is therefore a need for
accurate prediction of the dynamic response characteristics of composite structures in

order that they can be designed against failure due to dynamic loads.

The application to isotropic beams in the preceding chapter showed us that the
hierarchical finite element formulation performs much better than the conventional finite
element method in terms of faster convergence and use of less number of elements. In
composite structures, the in-plane strains and stresses in different plies of the laminate are
functions of the curvature of the laminate, in accordance with the classical laminated
plate theory [71]. As a result, the continuity of the in-plane stresses and strains in each

ply of the laminate depends upon the continuity of curvature across adjacent elements.
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This continuity is not enforced and guaranteed in the conventional finite element
formulation, which requires the use of many elements to obtain reasonable accuracy. The
use of many elements results in the presence of corresponding discontinuities. In the case
of variable-thickness composite laminates, additional complexities arise due to the
presence of drop-off plies. Hierarchical finite element method (HFEM) makes it possible
to model a structure using very few elements; In some cases the use of just one
hierarchical finite element provides accurate solutions. These features of the HFEM make
it an attractive choice to overcome the limitations associated with the finite element

formulation in the dynamic analysis of composite beams.

3.2 The Hierarchical Finite Element Formulation for Composite Beams

3.2.1 Weak Formulation for uniform composite beams based on the Euler -

Bernoulli Theory

Consider a beam of composite material loaded in the x-z plane only (Figure 3.1).
Also, for simplicity ignore the hygrothermal effects which add onto the strain terms in the
constitutive equations. Because the beam considered is so narrow (b<<L), strains are
ignored in the y-direction, implying that all Poisson effects can be ignored (classical
beam assumption). Lastly, there is no y-direction dependence of any quantity involved in
the set of governing equations. With these assumptions the force-displacement equations

are reduced to [6]:

N, _ Ay By | e, @3.1)
Mx BH Dll Kx .
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+y L

b<<L

Figure 3.1  Typical beam in three dimensions

In the above equation, N denotes the normal force in the x direction per unit width,
M _ denotes the bending moment in the x direction per unit width, €. denotes the strain
component in the x direction on the reference plane and x , denotes the curvature in the x

direction.

If the beam has mid-plane symmetry, then there is no bending-stretching coupling

so that B,, =0 and the matrix Equation (3.1) becomes uncoupled, i.e.,

N,=Ag: (3.2)

X

R
I

=-D, (3.3)

X

de
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Then using Equations (3.1) - (3.3), Equation (2.1) can be rewritten for a composite beam

as:
9 [ bp, % |4 padw _ g’ (6)=0 for O<x<L (3.4)
dox* dx* ar*

where b is the width of the beam and D,, is the bending stiffness of the composite beam.

Rest of the terms have already been detailed in Equation (2.1). This is the governing
equation for the forced undamped vibratory motion of a composite beam. The weak form

for the above differential equation is obtained in the same way as done for beams of

isotropic materials and is as follows:

Ll g2 2 2 iy T
I d—YbD“u,V——KpAvW—vq' + vi bD“d—v,V —ﬂbD“d—v,V =0 (3.5)
N " ac " ad [ae e |

If however, the 1-D laminated beam theory is used instead of the cylindrical bending

theory, then the coefficient D,, will change to %) . where D, is the first element in
9

the inverse of the matrix [D |.

3.2.2 HFEM formulation for uniform composite beams

3.2.2.1 Formulation based on Euler — Bernoulli Theory

The hierarchical finite element formulation for the composite beams proceeds in the
same way as the procedure described in the previous chapter for isotropic beams. The
difference being that now it is applied to the differential equation of the composite beam
in Equation (3.4) instead of the isotropic beam in Equation (2.1) and that the term EI is

replaced with bD,, . The salient steps in the HFEM formulation are mentioned below:

The transverse displacement of an element of length !/ is approximated as,
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W(& )= ¢ +eob +ci§ ? +C4E./3 +Cr+-$S[n[8r§] (3.6)

where 8, =rm, r=1,23....

and & =ux/!

The derivation that is similar to the one as described before in section 2.3.1.1, gives us

the following expression for the displacement field, w

w=Nw, +N,(0,)+ Nyw, + N,(18,)+ N, w., (3.7)
where the shape functions N, i =1,2,34... are as

follows

N, =1-3%7+2°

N, =§-2*+&’ (3.8)
N, =3§2 _2&:3

N, =—§1 +§3

and

N,o=-38+08, +C1)8 F2 + (8, ~(1)8, F° +5in3 £
(3.9)
whered, =, r=123....

The expressions for the shape functions and their properties are the same as detailed in
the previous chapter. The finite element model for the composite beam is obtained by
making use of the weak form equation (Equation (3.5)) and the shape functions given in
Equations (3.8) and (3.9). Writing the resulting equation in the non-dimensional co-

ordinate system the equation becomes,
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7=

i{li}j[w,,‘;&[vd[v} jprNNldg}u quldg 0,=0 (3.10)

Hence,
[ d*N d°N,
K.,=—=11bD,—+—- 3.11
i l3 0[ tl dg_ dé' }& ( )
1
M, =J.(pANile}i§ 3.12)
0

The element stiffness matrix and the mass matrix are then assembled into the system

stiffness matrix and the mass matrix by the usual overlay procedure.

The polynomial hierarchical finite element formulation for the composite beams
would differ from the above trigonometric formulation in the nature of the hierarchical
shape functions chosen for the formulation. The shape functions for the polynomial
formulation will be as described in the previous chapter and will be applied to the weak

torm for the composite beams given by Equation (3.5).

Hence, the displacement field for the beam element would be,

wx)=Nw +NB, +N,w, +NO, + N A (3.13)

r+4

where the hierarchical shape functions are,

N, =x"(x=1)" r=12,..M (3.14)

r+d

and A, are the coefficients of the polynomial hierarchical terms.

The function is chosen such that,

N,,=0 at x=0 and x=I

r+
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N’ .=0 at x=0 and «x=I

The above equations illustrate that the hierarchical shape function provides zero
displacement and zero slope at each end of the element. Again, it is important to mention
that this property is highly significant, since these modes contribute only to the internal
displacement field of the element, and do not therefore affect (i.e. over restrain) the
displacement at the nodes.
3.2.2.2 Formulation based on Timoshenko Beam Theory

The application of the trigonometric hierarchical finite element to thick composite
beams would require us to adopt the Timoshenko beam theory. In accordance with the
Timoshenko theory for thick beams, the displacement and the rotation fields for an

element of length /, will be approximated as follows:

w=gq, +q§ +q,,Sin[8 E] (3.15)
8 =¢q,+q.8 +q,,5in6,&] (3.16)
where 8, = mm, m=123....M;

and & = x/!

Further, m; and m,define the coefficients of the hierarchical terms added to the

displacement and rotation expressions in Equations (3.15) and (3.16) and are defined as

m =2m+3; m,=m +1

The potential energy (PE) and the kinetic energy (KE) of the prismatic Timoshenko beam

element in non-dimensional co-ordinate system will have the same form as that of
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Equations (2.67) and (2.68) for isotropic beams. There will however, be suitable changes

as we compute the expressions for composite beams.

In the case of composite beams the following changes in the expressions of
potential and kinetic energies are required. As described in the previous section, in
accordance with the cylindrical bending theory for composite beams [71), £/ is replaced

by bD,,. The consideration of transverse shear effects in composite beams leads to the

addition of the following terms in the constitutive equation for laminates [72],

o, Hys Hg Y-

where, H, =k, F,

i

[, j=4,5

i
and is named as the transverse shear stiffness of the laminate. The parameters k, are the

shear correction factors and the coefficients F are defined as follows,

F,=X(C)e, (3.18)
k=1 k
where, C; are the ply stiffness constants referred to the laminate’s reference direction.

t, is the thickness of an individual layer and n is the total number of layers.

For a transversely-isotropic composite material G, =G,, = G . We know that the

constitutive equation of a laminate with transverse shear includes the coefficient, F,,
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where i, j = 4,5 [72]. The potential energy expression for a thick composite beam would

include the coefficient F,, where,

Fis =Y (Cis),t, = Y.(Cyysin*@ +Cyscos?0) 1, (3.18a)
p=l p=l

Hence, the expression for the potential energy will become as given in Equation

(3.19)
i
PE:%[bD j(%ﬁ] IdE +ka55](9 —ld—"’) ld§} (3.19)
o\ [ 48
2 ! i
= p‘;’ [A [widt +1]o Zlng (3.20)
= 0 0

where p in Equation (3.20) is the mass density of the material.

The quantities needed to form the element stiffness and the mass matrices are
obtained in the matrix form as explained in section 2.3.1.2 and are repeated here for

continuity:

bl=iCrig}: B)=t01igk (|9 =1rik o-(1 o -t

(3.21-3.24)
where,

C=[1,0,&,0, Sin[8,£],0]; D=[0,1,0,&,0, Sin(8,E11; (3.25)
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F = [0 0 0, /I, 0, (aTm)cos[a,.éll; (3.26)

H=[0,1,-1/1,&, -(B—lt]cos[smgl, Sinf8,£11; (3.27)

4" =(9,-92-95:95+ @i+ G ] (3.28)

Substituting the above equations in the equations for PE and KE we get,

PE=%{q}T[K,, Hat: KE=%m2{q}T[Mql{q} (3.29)

where, [K ,Jand [M ,lare, respectively, the element stiffness and mass matrices,

expressed in the q co-ordinate system as

[K,1=bD,, [(FITFVdE +kbFy, [[HI[H W& ; [M,1=pA[(CT [Clidk +pl [[DI (D

(3.30)

The element stiffness matrix, [K ,land the mass matrix, [M | expressed in the q co-

ordinate system will be obtained by integrating explicitly the expressions given above. A
new set of generalized co-ordinates p is chosen in order to satisfy inter-element
compatibility. The relation between the p co-ordinates and the q co-ordinates is obtained
by applying the element “boundary conditions” and is given by

[q]=[T][p] (33D
where, p’ =[w.0,,w,,0,,....w,_.0,]

The generalized co-ordinates w,,8,,w,,0,are the transverse displacement w and the

rotation of the beam cross-section 6 at the two nodes of the element. The generalized co-
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ordinates w,, and 8, are the amplitudes of the trigonometric functions for the transverse

displacement w and the rotation of the beam cross-section 0 in the interior of the

element. The transformation matrix T for M=l is,

(1 0 0 0 0 0]
0 1 0000
A_|"1 01000 532)
0 -1 0100
0 0 0010
(0 0 000 ]

As can be seen from the above matrix, the transformation matrix is composed of a fixed 4
x 4 block and a variable number of diagonal 2 x 2 blocks and zero coefficients outside
these blocks. Hence, the above matrix is for M = 1. The order N of the matrix T depends
on the number of trigonometric terms M chosen. The matrix T is simply found by
expanding it along the diagonal with as many 2 x 2 blocks as the number of terms used.

The order N of the element stiffness, mass and transformation matrices is,

N=2M +4 (3.33)
The element stiffness and mass matrices are transformed to the p co-ordinate system by

using the relations

(K,1=[TI"[K,IIT]; [M,]=[T]"(MIIT] (3.34)

The element stiffness matrix [K » 1. and the mass matrix [M ], are then assembled into

the system stiffness and mass matrices by direct summation. We will use the subroutine

developed for the assembly of the elements for this purpose, the details of which have
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been provided in the program development section. After that any of the known
techniques that solves a generalized eigenvalue problem can then be used to find the
frequencies (eigenvalues) and mode shapes (eigenvectors). In the present study, the
Generalized Jacobi method [66] has been used to solve the eigenvalue problem.

3.2.3 Free Vibration Analysis of uniform composite beams using HFEM

The free vibration response of uniform composite beams is sought by applying the
hierarchical finite element methodology developed in the previous section. Two cases are
considered for modeling the uniform composite beams, viz. cylindrical bending theory
for mid-plane symmetric composite beams and 1-D Laminated Beam Theory. The results
are obtained by the application of the hierarchical finite element method and they are

consequently compared with the closed form solutions available in reference works.

The exact solutions corresponding to the Euler-Bernoulli Theory, for the
transverse vibrations of uniform mid-plane symmetric composite beams, having different
boundary conditions are listed below. Their respective references are also mentione. The

following legend is common for all the cases;
®, - Natural frequency of the n* mode; L - length of the beam;
A —area of cross-section of the beam; b - width of the beam; p - density

D, - bending stiffness coefficient
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) Cylindrical Bending Theory

(a) Simply Supported Beam [6]

©, = nm- bD“ (3.39)
r pA

where, n = 1,2.3,...

(b) Fixed - Fixed Beam [67]

(K" ] D (3.36)

where n=1,2,3,... and K, denotes the values of constants given as follows,

K, =4.732, K, =7.853, K, =10.996, K, =14.137, and so on.

(ii) 1- D Laminated Beam Theory

(a) Simply Supported Beam

Iy
_nn’ £/D“) (3.37)
L PA ’

@

n

where n = 1,2.3,... and D;, is the first term of the inverse of [D] matrix.

(©) Fixed — Fixed Beam

2 b .
W, = [ K, ] [_/D_“] (3.38)
pPA

L
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where n = 1,2,3,... ; D,, is the first term of the inverse of [D] matrix and K, denotes the

values of constants given as follows.

K, =4.732, K, =7.853, K, =10.996, K, =14.137and so on.

The exact solution according to the Timoshenko Beam Theory for the transverse
vibrations of uniform composite beams is given as follows [73]:

Simply — Supported Beam

o e
P kbF, +[ﬂ) bD,,

where n = [,2,3,...; D,,- bending stiffness coefficient ; k- shear correction factor; G —
shear modulus; L - length of the beam; A- area of cross-section of the beam.

The closed form solutions for the natural frequencies for different cases as listed
above highlight the important feature, that all the above cases are applicable for unit
width. The width, b, in all the above cases, cancels and hence is not a determining factor

in the natural frequencies of the beams.

3.2.4 Example Applications

In this section a complete set of example problems will be solved using the
formulations developed in the preceding sections. Examples are solved considering both
the Euler- Bernoulli and Timoshenko Beam Theories. The cylindrical bending theory and

the 1-D laminated beam theory are also considered. Solutions are validated by comparing
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them with results obtained using the available exact solutions or other approximate
methods.

3.2.4.1 Examples Based on Euler — Bernoulli Theory

Ex. I Problem Description

Uniform composite beams with different boundary conditions as shown in the Figures 3.2
(a) and (b), are made up of T300/5208 graphite-epoxy having the following mechanical

properties at 70-degree farenhite.

E, =144 GPa; E, =12.14 GPa; G,=4.48 GPa; p =1660.80 Kg/m’;v,; =0.2].

0.3048 m ,

—r—
N

(a)

0.3048 m ,

—-— D
L

(b)

Figure 3.2  Uniform composite beam of Ex. 1. (a) Fixed- fixed (b) Simply-Supported
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The geometric properties of the beams are: length (L) = 0.3048 m; individual ply

thickness (¢,) = 0.1524 mm. There are 32 plies in the laminate and the configuration of

the laminate is [0°/90°],,. The laminate thickness of 4.8768 mm is obtained by

multiplying the number of plies, 32 in this case with the ply thickness, i.e.0.0001524 m.

The given problem is solved using both the hierarchical formulation and the
conventional finite element formulation. For the HFEM, both the sub-formulations, viz.
trigonometric and polynomial formulations are used to obtain the results. While solving
the problem with either formulation, the beams are discretized such that the number of
degrees of freedom used in the analysis by HFEM and by conventional FEM are
comparable. This is done to make a comparison between the two formulations vis-a-vis
the number of elements required, the number of nodal degrees of freedom to obtain the

desired accuracy.

The analysis is done based on both the cylindrical bending theory and the 1-D
laminated beam theory. Tables 3.1 and 3.2 give the results for the fixed-fixed and simply-
supported beams based on the cylindrical bending theory for mid-plane symmetric
composite laminate having the configuration [0°/90°],,. Comparison is made between
the trigonometric HFEM and the conventional formulation and the results are then
compared with the exact solutions. I[n the tables, nTm refers to the solution using n
elements in the complete beam with m trigonometric terms in each element. Similarly,
nC refers to n conventional elements used to model the beam. The numbers in the

brackets refer to the system degrees of freedom excluding the constrained ones.
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(a) Cylindrical bending of mid-plane symmetric composite beams

@) TRIGONOMETRIC FORMULATION

Table 3.1 Natural frequencies of the Fixed-Fixed composite beam of Ex. |

Mode | Exact Solution | 2T1 (4 DOF) | 2T2 (6 DOF) | 3C (4 DOF) | 4C(6 DOF)
1 2420.62 2420.82 2420.62 2428.51 2421.82
2 6666.67 6674.85 6667.15 6800.12 6728.67
3 13070.94 13459.22 13131.71 15815.97 13349.15
4 21604.89 32190.75 21694.10 31431.34 25255.41

Table 3.2  Natural Frequencies of the Simply-Supported composite beam of Ex. |

Mode | Exact Solution | 2T1 (6 DOF) | 2T2 (8 DOF) | 3C (6 DOF) | 4C(8 DOF)
1 1066.93 1067.01 1066.93 1067.78 1067.20
2 4267.73 4267.83 4267.73 4318.17 4284.56
3 9602.40 9885.59 9613.31 10657.88 9777.84
4 17070.93 21706.89 17070.92 19817.55 18947.29

Two hierarchical trigonometric elements have been used to model the beams in
Ex. 1. The numbers of hierarchical trigonometric terms per element are taken to be one
(2T1) and two (2T?2), thereby keeping the discretization of the beam same and increasing
the internal degrees of freedom per element. In both the cases of fixed-fixed and simply —
supported boundary conditions, it is observed that the accuracy associated with the
natural frequencies increase with the increase in internal degrees of freedom. This is
achieved by adding more hierarchical trigonometric terms per element. It is also noticed
that for the same number of system degrees of freedom (DOF) in the trigonometric
HFEM and the conventional FEM, the trigonometric HFEM gives more accurate results
for the natural frequencies. This is significant as it establishes greater efficiency that the
trigonometric HFEM possesses. The trigonometric HFEM uses less number of elements

than the conventional formulation and increases the accuracy by adding internal degrees
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of freedom rather than the nodal degrees of freedom as the conventional FEM does. The

addition of the internal DOF better simulates the mode shapes of the vibration of beams

than the nodal DOF and hence gives more accurate results. In the trigonometric HFEM,

the accuracy of higher modes can be increased by increasing the number of internal

degrees of freedom.

Tables 3.3 and 3.4 give the resuits for the two beams using the polynomial

HFEM. The conventional formulation results are also given for comparison. nPm refers

to the solution using n elements in the complete beam with m polynomial terms in each

element.

(i) POLYNOMIAL FORMULATION

Table 3.3  Natural frequencies of the Fixed-Fixed composite beam of Ex. |
Mode Exact 2P1 2P2 3P2 3C 4C
Solution (4DOF) | (6 DOF) | (10DOF) | (4DOF) | (6 DOF)
| 2420.62 2420.82 2420.82 2420.72 2428.51 2421.82
2 6666.67 6681.12 6674.73 6677.92 6800.12 6728.67
3 13070.94 13555.81 | 13385.68 | 13085.62 | 15815.97 | 13349.15
4 21604.89 32574.33 | 30757.10 | 22016.52 | 31431.34 | 25255.41
Table 3.4  Natural frequencies of the Simply-Supported composite beam of Ex. 1
‘Mode Exact 2P1 2P2 3pP2 3C 4C
Solution (6DOF) | 8DOF) | (12DOF*) | (6 DOF) | (8 DOF)
1 1066.93 1067.01 1067.01 1066.93 1067.78 1067.20
2 4267.73 4268.99 4267.73 4269.31 4318.17 4284.56
3 9602.40 9906.20 9873.40 9602.40 106p7.88 | 9777.84
4 17070.93 21706.90 | 21706.90 | 17346.30 | 19817.55 | 18947.29

(*Further increasing the DOF in the Polynomial Formulation does not improve the accuracy.)

107




The polynomial HFEM works in a similar way as the trigonometric HFEM albeit
with a difference. It uses polynomials as internal degrees of freedom. Tables 3.3 and 3.4
detail the results obtained for Ex. 1 and compare them with the conventional FEM results.
It can be noticed from the tables that the polynomial HFEM is more accurate than the
conventional FEM for the lower modes. For higher modes though, for the same number
of system degrees of freedom, the conventional FEM gives better resuits than the
polynomial HFEM although the polynomial HFEM uses less number of elements than the
conventional FEM. The polynomial HFEM also has another limitation in terms of adding
polynomials as internal degrees of freedom. As the degree of the polynomials to be added
gets higher, the matrices become positive indefinite and hence the solution for the natural
frequencies are unachievable. Inspite of these limitations, the polynomial HFEM gives

better results for the lower modes than the conventional FEM.

Results obtained for Ex. 1 in the preceding tables were based on the cylindrical
bending theory. Tables 3.5 through 3.8 list the results obtained for the same problem by
considering the [-D laminated beam theory. As done in the previous case, both the
trigonometric and the polynomial formulations are presented and are compared with the

conventional and the exact solutions.

108



(b) 1- D Laminated Beam Theory

) TRIGONOMETRIC FORMULATION

Table 3.5 Natural frequencies of the Fixed-Fixed composite beam of Ex. |

Mode | Exact Solution | 2T1 (4 DOF) | 2T2 (6 DOF) | 3C (4 DOF) | 4C(6 DOF)
1 2419.73 2419.95 2419.73 2427.62 2420.93
2 6664.20 6672.32 6664.68 6797.65 6726.20
3 13066.12 13454.40 13126.89 15811.15 13344.33
4 21596.91 32182.77 21686.12 31423.36 2524743

Table 3.6  Natural frequencies of the Simply-Supported composite beam of Ex. 1

Mode | Exact Solution | 2T1 (6 DOF) | 2T2 (8 DOF) | 3C (6 DOF) | 4C(8 DOF)
1 1066.54 1066.62 1066.54 1067.39 1066.81
2 4266.16 4266.26 4266.16 4316.60 4282.99
3 9598.85 9882.04 9609.76 10654.33 9774.29
4 17064.62 21700.58 17064.60 19811.24 18940.98
(ii) POLYNOMIAL FORMULATION

Table 3.7 Natural frequencies of the Fixed-Fixed composite beam of Ex. |

Mode | Exact Solution | 2P1 (4 DOF) | 2P2 (6 DOF) | 3C(4 DOF) | 4C(6 DOF)
1 2419.73 2419.93 2419.93 2427.62 2420.93
2 6664.20 6678.65 6672.26 6797.65 6726.20
3 13066.12 13550.99 13380.86 I5811.15 13344.33
4 21596.91 32566.35 30749.12 31423.36 25247.43
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Table 3.8  Natural frequencies of the Simply-Supported composite beam of Ex. |

Mode | Exact Solution | 2P1 (6 DOF) | 2P2 (8 DOF) | 3C (6 DOF) | 4C(8 DOF)
l 1066.54 1066.62 1066.62 1067.39 1066.81
2 4266.16 4267.36 4266.16 4316.60 4282.99
3 9598.85 9602.65 9869.85 10654.33 9774.29
4 17064.62 21700.59 21700.59 19811.24 18940.98

The results obtained for 1-D laminated beam theory essay the same conclusions,
in terms of finite element method efficiency, as those obtained for the cylindrical bending

theory.

3.2.4.2. Based on Timoshenko Beam Theory

Ex. 2 Problem Description

A beam as the one shown in the Figure 3.2 (b), is made up of T300/5208 graphite-epoxy
with the following mechanical properties at 70-degree farenhite.

E, =144 GPa; E, = 12.14 GPa; G,;=4.48 GPa; G,,=4.90 GPa; p =1660.80 Kg/m’;
vi2=0.21 D, =817.1272 N.m.

The geometric properties of the beam are: L = 0.0243 m; individual ply thickness (¢ DE
0.1524 mm; Laminate thickness (h) = 4.8768 mm; area of cross-section (A) = 9.8755
mm* ; moment of inertia (I) = 1.9573x10™"" m*. There are 32 plies in the laminate and

the configuration of the laminate is [0° /90° ], . The boundary conditions for the beam are

Simply- Supported. The laminate thickness of 4.8768 mm is obtained by multiplying the

number of plies, 32 in this case, with the ply thickness, i.e. 0.0001524 m.
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The problem in Ex. 2 (L/h =5 is solved by the HFEM based on the Timoshenko

beam theory. Results are presented for both the hierarchical formulations, viz.
trigonometric and polynomial formulations and the conventional finite element
formulation based on the Timoshenko beam theory. All the results are also compared
with the exact solution available in the reference [73].

The conventional Timoshenko beam element chosen for this analysis is a linear
element. In the hierarchical finite element analysis, the internal degrees of freedom are
added to a linear element and hence a large number of hierarchical terms are required to
obtain the desired accuracy. As can be seen, 2T8 formulation gives exact results until the
fourth mode. In the polynomial formulation though, the resulting stiffness and mass

matrices become ill-conditioned and hence the accuracy of the solutions is limited.

Table 3.9 Natural frequencies (x10°) of the Simply-Supported composite
Timoshenko beam of Ex. 2 obtained using the trigonometric HFEM

Mode Exact 1T2 2T4 2T8 1C 4C 8C
Solution 4) (12) (20) (2) (8) (16)

l 1.27 1.34 1.27 1.27 10.65 2.03 1.58

2 3.36 10.65 3.35 3.34 14.73 3.02 4.12

3 543 14.79 5.50 5.43 -* 5.87 6.38

4 7.45 23.72 7.53 7.45 -* 10.87 6.92

(*Only 2 DOF after application of the boundary conditions, hence just 2 values are obtained)

Table 3.10 Natural frequencies (x10°) of the Simply-Supported composite
Timoshenko beam of Ex. 2 obtained using the polynomial HFEM

Mode Exact 1P2 2P4+** 1C 4C 8C
Solution 4 (12) 2) ®) (16)

1 1.27 1.69 1.44 10.65 2.03 1.58

2 3.36 10.65 4.22 14.73 3.02 4.12

3 5.43 14.78 4.87 -* 5.87 6.38

4 745 21.41 6.57 -* 10.87 6.92

(*Only 2 DOF after application of the boundary conditions, hence just 2 values are obtained)
(**Increasing the order further makes the matrices positive indefinite and ill-conditioned.)
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3.2.5 Static analysis of uniform-thickness composite beam using HFEM

[n the application of the hierarchical FEM to isotropic beams in the previous
chapter, we saw that substantial computational efficiency is achieved. We now intend to
apply the hierarchical formulations for the static analysis of Euler-Bernoulli composite
beams in order to systematically bring out certain key aspects of the HFEM. In
engineering analysis, from a designer’s point of view, the quantities of paramount
importance are the bending moment and shearing force distributions, which are found,
respectively, from the second and third derivatives of the displacement. The conventional
FEM will give a sufficiently accurate answer for the displacement distribution, however,
the bending moment and shear force distribution, will at best be crude, and at worst
misleading, in a coarsely meshed problem. The HFEM offers us an efficient way to
increase the accuracy of the second and third derivatives of displacement by the addition
of hierarchical terms to each element.

In addition to obtaining the stiffness matrix as done in the vibration analysis, for
the static analysis we will have to obtain the force matrix as well. In Equation (3.10), the
last two terms on the left-hand side give us the force matrix. Hence the force matrix for

an element will be,
[

F=[NAd& -, (3.40)
]

where f (f = ¢’ (x) as per Equation (3.10)) is the distributed loading over the element and
Q, represents the natural (or internal force) boundary conditions of the element (Q, and
Q, denote the resultant shear forces, and @, and Q,denote the resultant bending

moments at the nodes).
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Hence, the statement for the static problem can be written as,

[K]l{q}={F}} (3.41)
where [K] is the stiffness matrix of the beam, {q} is the matrix having generalized co-
ordinates associated with the DOF and {F, }is the force matrix.

To illustrate the application of the HFEM to the static analysis of a composite
Euler-Bernoulli beam, we consider the following example. A uniform-thickness
composite beam is made up of T300/5208 graphite-epoxy and is subjected to a linearly
varying distributed load as shown in Figure 3.3 and has the following mechanical
properties at 70-degree ferenhite.

E, =144 GPa; E, = 12.14 GPa; G,,= 4.48 GPa; p = 1660.80 Kg/m’; vy = 021;
D, =817.13 N.m.

The geometric properties of the beam are: width (b) = 0.0254 m; length (L) = 0.3048 m;
individual ply thickness (¢ ,) = 0.1524 mm. There are 32 plies in the laminate and the

configuration of the laminate is [0° /90", .

Solution of the above problem is obtained using the trigonometric and the polynomial
Hierarchical FEM formulations. The beam is modeled using the cylindrical bending

theory.

Exact Solution

The exact solutions for the deflection, slope, bending moment and the shearing force are
given as follows [74] and they will be compared with those obtained with the

conventional and the hierarchical finite element methods.
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£,= 100 N/m

Figure 3.3  Fixed - Free beam for the static analysis using HFEM

Deflection:

~

e
w= f"

== (0L -10Lx + x°)
120L6D,,

Slope:

- IX Gy _6ricex)
24LbD,,

Bending Moment:

M =-bD,, L’f— /e
dx 120L

= ——2_ (400’ -60L*x+20x*)

(3.42)

(3.43)

(3.44)
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Shear Force:

dsPV f k) 4
SF=-bD, LY - __Jo (L6012 +60x 3.45
LRNE l2OL( <) (3.49)

where, L - length of the beam; f,- distributed loading on the beam;

b - width of the beam; p - density; D, - bending stiffness coefficient

Solution using Trigonometric HFEM

In the non-dimensional co-ordinate system, the load equation for the given

loading will become as,

f=1005 (N) 0<E <1 (3.46)

The solution of the given static problem by trigonometric HFEM is obtained by modeling
the beam with trigonometric hierarchical elements and obtaining the stiffness matrix. For
the static case, we will also obtain the force matrix as given in Equation (3.40). We
model the beam with one hierarchical element that has two trigonometric terms as
internal degrees of freedom. The stiffness and force matrices are obtained according to
Equations (3.11) and (3.40). They are then plugged in Equation (3.41) and the resulting

equation is given as follows:

[ 8795.51 134044 -8795.51 1340.44

i 0 q] [45720] [R]
i
1340.44 272377 -134044 136.188 | 0
0
I
1

0 R
0 g, | 03097 ] |Mm
-8795.51 -1340.44 879551 —1340.44 0 [gq,| [106680]| |0
0 0

134044  136.188 134044 272.377

0 223942 q,| [~1.6592] [0
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0 q. F,

________ = (3.48)

K, q, F,

—— e e —

Equation (3.47) gives the complete equation for the static analysis of the given problem,
done by modeling the beam with one trigonometric hierarchical finite element. It should
be noted that the top left part of the [K] matrix in Equation (3.47), is the 4x4 matrix that
we would obtain if we model the beam with one conventional finite element. The bottom
right hand part is a diagonal matrix and the remaining two parts are null matrices. The
trigonometric hierarchical shape functions that we obtain are second derivative
orthogonal, both with respect to themselves and the original four Hermite cubic
functions. It is this property that makes the mentioned sub-matrices null and diagonal. [n
Equation (3.48) the deformation equation has been presented in the symbolic form with
the subscripts “c” for conventional and “h” for hierarchical contributions. Since the
problem considered here is a fixed-free beam, upon application of the boundary

conditions and suitable matrix manipulation, we get the following:

fa.}=l.I'{F.} (3.49)

a. =[x, 1'{F,} (3.50)

Hence for the above case, we will get the following,
3.8112x107°
9| 138120 3.51)
q, 1.7050x 10~
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and,
2.5471x10~
qgs| _ ] 2.5471x10 (3.52)
qe -7.4090x107°
Now w can be expressed as follows,

wg )= ichC(§)+ith &) (3.53)

where, N _(€) and N,(§)are the shape functions given in Equations (3.8) and (3.9)
respectively. They have been mentioned differently as conventional and hierarchical
shape functions to bring into focus the details of the hierarchical method and the nature of
the resulting stiffness matrix. Consequently, the slope, bending moment and shear force
can also be found once the expression for the displacement is obtained. Figures 3.4 — 3.7
give the distribution of these quantities along the beam, obtained by trigonometric HFEM

and also compares them with the exact and conventional FEM solutions.

Solution using Polynomial HFEM

The solution to the static analysis problem for the composite Euler-Bemoulli
beam is now sought by the polynomial HFEM. The procedure outlined in the
trigonometric HFEM case is applicable here although the element considered will be the
polynomial hierarchical finite element. The equation obtained upon substitution of

suitable quantities in Equation (3.41) are as follows:
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[8795.51 134044 -8795.51 134044 | 0 0 Tal [ 4572
]
134044 272377 -134044 136.188 ' 0 0 s 0.3097
-8795.51 —134044 879551 -—1340.44 | 0 0 g; | | 10.6680
134044 136188 134044 2723771 0 0 gy | | 204645
0 0 0 0 | 00436807 -0.0008695] g; 0.004385
0 0 0 0  1-0.0008695 0.00002693 | g, | |-0.00008729]
(3.54)
I
K. + 0 q.| | F.
|
1
________ b = (3.55)
!
' Pr— -_——
0 E K, qx F,
i i |

Hence, upon application of the boundary conditions for the fixed-free beam and suitable

matrix manipulation we get the following results:

.=k} (3.56)
{a.}=I&.I'{F.} (3.57)
{q;}z 38112x107 358
q, 1.7050x107* ’
qs) [ 0.10038 .59
q.|  |1.8882x107° '

Now w can be expressed as follows,
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4 2
wlx)=>"q.N(x)+ > q,N,(x) (3.60)
c=l h=1

where, N (x)and N,(x)are respectively the Hermite shape functions and the polynomial

hierarchical shape functions given in Equation (3.14). Consequently, the slope, bending
moment and shear force can also be found once the expression for the displacement is
obtained. Figures 3.4 through 3.11 in the following pages show the distribution of the

displacement, rotation, bending moment and shear force along the length of the beam.

- Exact Soluion :
--+- Conv. Solution
—«— T HFEM

Figure3.4  Displacement distribution obtained using trigonometric HFEM
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. —'-— Exac olutin ‘
| Conv. Solution

] «:— act lution '
B -+~ Conv. Solution
B —— Tri HFEM

Figure 3.6  Bending moment distribution obtained using trigonometric HFEM
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-~ Exact Solution
--+~- Conv. Solution
—— Tri HFEM (1T2)
—— Tri HFEM (1T4)

Figure 3.7  Shear force distribution obtained using trigonometric HFEM

" Exac Solution
+- Conv. Solution
- ---{ —— Poly HFEM

Figure 3.8  Displacement distribution obtained using polynomial HFEM
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7 ’-: t olto )

: Conv. Solution
i —— Poly HFEM

Figure3.9  Rotation distribution obtained using polynomial HFEM

—-:‘— ct Solio
--+- Conv. Solution
(e . Poly HFEM

Figure 3.10 Bending moment distribution obtained using polynomial HFEM
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| -2 act Solution §
-+- Conv. Solution
| —— Poly HFEM

Figure 3.11  Shear force distribution obtained using polynomial HFEM

The results obtained by both the trigonometric and the polynomial formulations
have been illustrated. Significant improvements can be observed in the bending moment
and shear force distributions as compared to that obtained by the conventional finite
element formulation. The rotation, bending moment and shear force distributions are all
obtained by the consecutive differentiation of the displacement distribution.
Differentiation, as an operator increases the error. Hence, we see that although the
conventional formulation gives satisfactory results for the displacement and rotation
distributions, the error continuously increases with each differentiation and the errors
associated with the bending moment and shear force are significant. In comparison, the
expressions obtained by applying the hierarchical formulations, depicts more accurately

the manner in which the beam deforms. This is because the hierarchical formulations
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consider the internal degrees of freedom. Hence, the resulting expressions involving
higher derivatives of the displacement field are accurate. It should be mentioned here that
the polynomial formulation does not fare as well as the trigonometric formulation, but is

significantly better than the conventional formulation.

3.2.6 Analysis of Variable-Thickness Compeosite Beams

In the analysis done till now, we have analyzed uniform- thickness isotropic and
composite beams. The hierarchical finite element formulation has been very effective in
giving us computational efficiency and faster convergence. The application to both the
static and dynamic analyses has been carried out and excellent results have been
obtained. We now intend to apply the hierarchical FEM to the dynamic analyses of

tapered composite beams and evaluate the efficiency of the method.

Variable-thickness composite beams have significant structural applications.
Their high stiffness-to-weight and strength-to-weight ratios, superb fatigue
characteristics, excellent damage tolerance and structural tailoring capabilities lend it a
tremendous advantage. It therefore becomes essential to have a clear idea about their
structural behavior. Much of the research works done on tapered composite beams have
centered on understanding failure mechanisms and efforts to increase the structural

integrity of the tapered sections.

The dynamic response of tapered composite beams needs to be understood clearly
for their optimum use. Exact analytical solutions are hard to obtain since the

mathematical modeling involved is too complex. Hence, it is essential to have a very
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efficient approximate method to study the dynamic behavior of these beams. Hierarchical
FEM has shown great promise in the case of uniform- thickness beams, and hence gives
us the hope that it will work for tapered beams as well. In this study, we consider the
mid-plane tapered composite beams (Figure 3.12) and apply the hierarchical finite

element method.

The weak form for composite beams is as given in Equation (3.5) and is given below,

{ 2, 2 2 2 {
j fi—fbD“ﬂ—prvwwq' vl bD“d—v,V —ﬂbol,ﬁ—v,v =0 (3.61)
o\ dx? dx’ dx de* | dx dx* |

The classical lamination theory [75] states that,
2 [3
D, = [tp E;+é] (a“)p (3.62)

where (Ql )p is the transformed stiffness coefficient of a ply, #, is the ply thickness, Z , 18

the distance between the centerline of the ply and the centerline of the laminate, and m is

the total number of plies. For a mid-plane tapered composite beam, shown in Figure 3.12,

the height of the centerline of each ply (Z ,) is a function of x (see Figure 3.13) and is

expressed as:

Z,=mx+g (3.63)
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The element stiffness and mass matrices (Equations (3.11) and (3.12)) for the mid-plane
tapered composite beam are obtained using the Equation (3.62) for the bending stiffness
coefficient, D,. By performing the symbolic computation using the software
MATHEMATICA®, the stiffness and mass matrices for the mid-plane tapered composite
beam are obtained. The mass matrix for a mid-plane tapered composite beam will have
the area of cross-section as a variable quantity and hence will have to be included in the

integral in Equation (3.65).

Thick Section

I

Resin Pocket

Thin Section

/ - /_,_..— -
///F,## -

\\ Taper Angle, §

—————> X

Figure 3.12  Schematic of a composite mid-plane tapered beam
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N

@)

—>

Figure 3.13  Variation of Z, along the x-axis

Hence, according to the Euler-Bernoulli formulation, the expressions for the stiffness and

mass matrices for a mid-plane tapered composite beam element will be as follows:

.-,-=,isf[ D, &) LN - déN 3 (3.64)
%j{ [m[t (m&l+g); +I”J(—..) 4N, déN }’§ (3.64 a)

M, = j(p AGIN, N, 1)de = [(p (((nthin — nthick)A, £, +(nthick A, N, N [)dE ~ (3.65)

where nthick and nthin are respectively the number of plies in the thick and thin sections
of the tapered beam and A, is the area of cross section of a single ply, all other quantities
hold the same meaning as explained in Equations (3.11) and (3.12). In analyzing the
variable-thickness composite beams for their dynamic characteristics by using

trigonometric HFEM, we model the beam using one hierarchical element only and
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variable number of trigonometric terms. Since there is a variation in the number of plies
across the length of the beam, the expression of the bending coefficient, D,,, will be
different for different sections having different number of plies. Hence the integration in
Equation (3.64) has to be broken into as many parts as the number of sections. The
calculation of the bending coefficient, D,,, for the section having the resin pocket also
needs special mention. To consider the resin pocket in calculating the D,,, the resin
pocket is divided into a suitable number of isotropic plies and their contribution to the
expression of D, is considered as given in Equation (3.62), i.e. in the same way as we

consider the remaining plies of composite material (see Figure ALl in Appendix-I).

There is a difference though, the resin material is isotropic in nature and hence the
expression for the transformed reduced stiffness coefficient, Q,,, would be as given in
Appendix-I. Hence, in this way the expression for D,, is calculated for the section that
contains the resin pocket (For more details see Appendix-II). Similar methodology is
adopted for the calculation of D, wherever the resin pocket appears. After obtaining the
expressions for D,, for the different sections across the length of the beam, the stiffness

is calculated by using Equation (3.64).

3.2.7 Example applications for variable-thickness composite beams

As the analyses results for uniform composite beams in section 3.2.4 have shown,
the trigonometric HFEM seems to be the best amongst the formulations that we have
seen. Hence, we will apply it for the calculation of the natural frequencies of tapered
composite beams. Since no closed form solution is available for the vibration of tapered

composite beams, the validity of the program and the formulation is checked by obtaining
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the results for a tapered beam with a very small taper angle (6 =0.1061") and comparing
them with the closed form solution for an equivalent uniform-thickness composite beam.
The results were in very good agreement and are given in Example 1. Henceforth, we
will apply the formulation to actual tapered composite beams. We will apply both the
Euler-Bernoulli and the Timoshenko formulations to solve the examples on variable-
thickness composite beams.

3.2.7.1 Examples based on the Euler-Bernoulli Formulation

Ex.l Problem Description

This example is being solved to establish the validity of the program as described before.
A mid-plane tapered laminate having 36 plies in the thick section and 34 in the thin
section has the following mechanical properties:

E =144 GPa; E,= 12.14 GPa; G,,= 4.48 GPa;p = 1660.80 Kg/m®’. The value of the

bending stiffness for the uniform composite beam having 36 plies is, D,, =

1.3435%10° N.m
The mechanical properties of the Resin are: £,=3.93 GPa; v =0.37; G,,= 1.034 GPa.
The geometric properties of the tapered laminate are: height (H) = 5.49 mm; length (L) =
82.29 mm (L/H=15). The laminate has the following configuration: Thick section:
[0,/+45,/£45,], and thin section: [0, /+45, /+45,/45)] and the boundary conditions
are simply-supported.

The validation problem is solved by applying the Euler-Bernoulli formulation for
beams. The present problem is first solved as a uniform-thickness laminate problem. This

is done by considering that the laminate is composed of 36 plies and that no plies are
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dropped over its length. It is then solved for the natural frequencies by making use of the
closed form solution available for uniform-thickness composite beams.
The solution for, the first three natural frequencies of the uniform laminate considered

are,

®, =1.77x10* Hz
o, =7.08x10* Hz
®, =15.93x10* Hz

Now the same laminate is considered as a tapered beam problem by dropping 2 plies over
a length of 0.0823 m and making an angle of 0.1061 degrees. This is as close as we can
get to the uniform-thickness beam. The natural frequencies obtained for this tapered
laminate should be very close to that of the uniform beam if our formulation and program
are correct. This will serve as our comparison meter and hence the results that we obtain
by our program for this tapered laminate will be compared to the exact solutions for the

uniform beam described above.

Also, the tapered beam problem will be solved first by the conventional method i.e. using
elements having 4 DOF (w,,8,,w,,8,) and then the trigonometric HFEM will be applied
to it wherein we will make use of 1 and 2 trigonometric terms.

Table 3.11 Natural frequencies (x10° ) for the slightly tapered beam

‘Mode .| .--ExactSol. - |:Conventional* | - 1TI1* - - 1T2%.
(UniformBeam) | (2DOF)--- .{  -(3DOE). (4 DOF)

1 0.1769 0.192 0.173 0.173

2 0.708 0.881 0.879 0.692

3 1.593 - 2.2 2.19

* Results are for Tapered Beam described above.
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Table 3.11 gives a comparison of the results obtained by the formulation and the program
for the mid-plane tapered composite beam with the exact solution obtained for the
uniform-thickness composite beam. Results for the mid-plane tapered laminate are
obtained using both the conventional formulation and the trigonometric HFEM. As is
evident from the Table 3.11, the values obtained using the program for the mid-plane
tapered laminate are very close to those of the exact solution for the uniform beam. This
should be the case, since the taper angle that we have considered, is very small and makes
the beam nearly very similar to the uniform- thickness beam. After validating the
formulation and the program as in the previous example, we can now apply the
trigonometric HFEM to actual tapered beams. Examples 2 and 3 that follow will take into
consideration different taper angles.

Ex. 2 Problem Description

The mid-plane tapered composite beam considered in this example has the following
mechanical properties:

E =144 GPa; E,=12.14 GPa; G,,=4.48 GPa; p =1660.80 Kg/m’.

The mechanical properties of the resin are: E,=3.93 GPa; v =0.37; G,,= 1.034 GPa.
The geometrical properties of the mid-plane tapered beam are: height (H) = 1.2192 mm;
length (L) = 12.2 mm (L/H=10). There are 8 plies in the thick section and 4 in the thin
section. The laminate configuration of the thick section is [+ 45, ]S and that of the thin
section is [i45l. The taper angle will be equal to 1.43 degrees. The boundary

conditions of the beam are fixed-free.
The problem at hand is solved, first by the conventional method i.e. with 4 DOF per

element. In the conventional case, it is solved by using | and 2 elements. Then the
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problem is tackled by making use of the Trigonometric HFEM. The results for various
cases are listed below:

Table 3.12 Natural frequencies (x10° ) of the tapered composite beam of Ex. 2

Mode 1C 2C IT1 1T2 1T4 1T2
(2 DOF)* | (4DOF)* | (3 DOF)* | (4DOF)* | (6 DOF)* (No Resin)
1 0.474 0.453 0471 0.470 0.470 0.468
2 2.69 2.29 2.32 2.26 2.26 2.24
3 - 6.69 8.06 6.10 5.84 6.06

*DOF excluding the restrained ones
Ex. 3 Problem Description

The mid-plane tapered beam problem considered in this example has the following
mechanical properties,

E =144 GPa; E,=12.14 GPa; G,=4.48 GPa; p =1660.80 Kg/m’;

The mechanical properties of the resin are, £,=3.93 GPa; v =0.37; G,, = 1.034 GPa;
The geometric properties of the tapered beam are height (H) = 7.3152 mm; length of the
taper (L) = 36.6 mm (L/H =5). The number of plies in the thick section is 48 and in the
thin section is 24. The configuration of the thick section is [O J1E45,/£45,/-45, ]S and
that of the thin section is [0, /+45 . ]s. The angle of taper is equal to 2.86 degrees. The
boundary conditions of the beam are fixed-free.

Table 3.13 Natural frequencies (x10° ) of the tapered composite beam of Ex. 3

Mode 1C-:-| “ATL. | 1T2. | IT3 1T4 1T4
(2DOF)* | (3DOF) | (4DOF).| (5DOF) | (6DOF) | (No Resin)

1 0.449 0.447 0.447 0.447 0.447 0.447

2 2.68 2.24 2.20 2.20 2.20 2.20

3 - 8.11 5.91 5.73 5.73 5.73

*DOF excluding the restrained ones




In both the Examples 2 and 3, the mid-plane tapered composite beam problem is
solved using both the conventional and the trigonometric HFEM. In the HFEM, the
beams are modeled using only 1 element and variable number of trigonometric
hierarchical terms. It is observed that upon increasing the number of hierarchical
trigonometric terms, the values of frequencies of higher modes of the tapered composite
beam change, untill they converge to a definite value. This can be taken as the value of
the frequency for that mode. To determine the effect of the presence of resin pocket on
the natural frequencies of the tapered composite beam, the program was modified to
obtain the natural frequencies without considering resin pockets and considering the
relevant part as composed of composite plies. As evident from the values, no appreciable
changes were recorded in the natural frequencies. Hence, the results obtained using the
T4 formulation for the natural frequencies for the first three modes of the tapered
composite beams of Examples 2 and 3 can be taken as the most accurate solutions
achievable by the HFEM.

Ex.4  Problem Description

In the previous two examples, the free vibration analysis of the mid-plane tapered
composite beams was undertaken. Now we intend to conduct the forced vibration

F AN

100

'
0.1 0.2 time (sec)

Figure 3.14  Force applied at the free end of the tapered composite beam
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analysis of the mid-plane tapered composite beam of Example 3. The loading at the free
end of the beam is shown in the Figure 3.14.
The solution to the forced vibration problem is obtained using both the Newmark-

B direct integration method and the mode superposition method. Both the methods give

answers that are in excellent agreement. The beam is modeled using one element and
varying number of hierarchical trigonometric terms. Since the boundary conditions of the
beam are fixed-free, the maximum values of the two degrees of freedom viz.
displacement and rotation that are associated with the free end have been evaluated. They
are numbered as degrees of freedom (D. O. F.) 3 and 4 respectively, and their values are

listed in Table 3.14.

Table 3.14 Maximum values of the free end displacement (m) and rotation (degrees) of
the beam of Ex. 4

D.OF 1C 1Tl 1T2 1T3 1T4 1T4
(2 DOF) (3 DOF) (4 DOF) (S DOF) | (6 DOF) { (No Resin)
3 0.0027 0.0028 0.0028 0.0028 0.0028 0.0028
4 0.1395 0.1364 0.1360 0.1360 0.1327 0.1327

3.2.7.2 Examples based on the Timoshenko Formulation

The mid-plane tapered beam problems of examples 2 and 3 of the previous section are
solved here using the Timoshenko formulation. The L/H ratio for these problems are 10
and 5 respectively, so it would be of interest to see the results for beams having such
ratios. Secondly, it would serve to compare the answers obtained using the Euler-

Bernoulli formulation and the Timoshenko formulation for the same problems.
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Ex. 1  Problem Description

The mid-plane tapered composite beam considered in this example has the following
mechanical properties:

E =144 GPa; E,=12.14 GPa; G,,=4.48 GPa; G,;,=4.90GPa; p =1660.80 Kg/m’.
The mechanical properties of the resin are: E,=3.93 GPa; v =0.37; G,, = 1.034 GPa.
The geometric properties of the mid-plane tapered beam are: height (H) = 1.2192 mm;
length (L) = 12.2 mm (L/H=10). There are 8 plies in the thick section and 4 in the thin

section. The laminate configuration of the thick section is [i 45, ]s and that of the thin

section is [i 45l. The taper angle will be equal to 1.43 degrees. The boundary

conditions of the beam are fixed-free.

The problem is solved using the trigonometric hierarchical formulation based on
the Timoshenko theory. Results are obtained by modeling the beam by a single
Timoshenko beam element and adding 2 and 4 trigonometric terms to the element. Table
3.15 gives the natural frequencies of the first three modes of the mid-plane tapered beam
analyzed using the Timoshenko formulation. Comparison of the values in Tables 3.12

and 3.15 clearly indicate that the results obtained for this mid-plane tapered beam are the

Table 3.15 Natural frequencies (x10° ) of the tapered composite beam of Ex. 1

Mode , IT2 1T4 1T4
- (4 DOF)* (6 DOF)* (No Resin)

1 0.5246 0.4733 0.4623

2 3.5462 2.2281 2.2023

3 61.2270 6.7508 6.6235

*DOF excluding the restrained ones
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same with both the Euler-Bernoulli and the Timoshenko formulations. This can be
attributed to the fact that the length to height (L/H) ratio for this beam is 10 and hcnce
ignoring the transverse shear effects on the beam does not have a profound effect on the
results.

Ex. 2 Problem Description

The mid-plane tapered beam problem considered in this example has the following
mechanical properties:

E,= 144 GPa; E,= 12.14 GPa; G,, =4.48 GPa; G,,=4.90 GPa; p = 1660.80 Kg/m"’.

The mechanical properties of the resin are: E,=3.93 GPa; v =0.37; G,,= 1.034 GPa.

The geometric properties of the tapered beam are: height (H) = 7.3152 mm; length of the
taper (L) = 36.6 mm (L/H = 5). The number of plies in the thick section is 48 and in the
thin section is 24. The configuration of the thick section is [O Jx45,/245,/-45, ]s and
that of the thin section is [O JJE45, L. The angle of taper is equal to 2.86 degrees. The
boundary conditions of the beam are fixed-free.

Table 3.16 Natural frequencies (x10”) of the tapered composite beam of Ex. 2

Mode 1T4 1T8 ' 1T8
(6 DOF)* (10 DOF) (No Resin)
1 0.3874 0.3861 0.3798
2 1.3590 1.3350 1.3256
3 2.8920 2.6752 2.6689

*DOF excluding the restrained ones

The problem is solved using trigonometric hierarchical formulation for thick
tapered composite beams and the natural frequencies for the first three modes are given in

Table 3.16. The beam is modeled using one trigonometric hierarchical element having
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four and eight trigonometric terms respectively. The results obtained in this case are
different from those obtained for the same example in the previous section, where the
example was solved using the Euler-Bernoulli formulation. It is imperative to note that
since the length to height (L/H) ratio is 3, it implies that the beam under consideration is a
thick beam, hence the results obtained using the Timoshenko formulation will be more

accurate than those obtained using the Euler-Bernoulli formulation.

3.3 Conclusions and Discussion

The Hierarchical Finite Element Method developed and applied to isotropic
beams in the previous chapter has been applied in this chapter to uniform-thickness and
variable-thickness composite beams. The uniform-thickness composite beams have been
modeled using the cylindrical bending theory and the 1-D laminated beam theory. Both
the forms of HFEM are applied, and as with the case of isotropic beams, the
trigonometric HFEM gives better results than the polynomial form. Results for both the
Euler-Bernoulli and Timoshenko beams have been presented. The static analysis of
uniform-thickness composite beams is also performed and detailed resuits for the bending
moment and shear force are presented and compared with the conventional formulation
and the exact solution. The application of the HFEM is further extended to the thickness-
tapered composite beams. The dynamic analysis of tapered composite beams is
performed.

Application of the hierarchical finite element method to composite beams, as in
the case of isotropic beams, yields the same advantages of numerical efficiency and faster
convergence. Less number of elements are required to model and obtain precise answers

for the static and dynamic analysis of composite beams. The system degrees of freedom
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are also substantially less. The graphs in Figures 3.15 and 3.16 give us a comparison of
the convergence of natural frequencies obtained using the trigonometric HFEM,
polynomial HFEM and the conventional formulation to their exact solutions. There is a
substantial reduction in the number of elements required to obtain results that are almost
the same as exact answers. Also, much less number of system degrees of freedom are
required. Figure 3.17 gives us the convergence to the exact solution with increase in the
number of trigonometric terms (Q, the non-dimensional frequency = x(h/(E/ p)”z) X
The non-dimensional frequencies for different modes are plotted versus the number of
trigonometric and polynomial terms for the simply- supported beam. For the Timoshenko
beam, Figure 3.18 illustrates the convergence of the three methods and shows that the
trigonometric method gives the best results.

The results stated for the static analysis done for uniform composite beams also
reaffirm that the hierarchical formulation with less number of elements and system
degrees of freedom yields much better results than the conventional formulation. It
should be noted that significant improvements in the bending moment and shear force
diagrams are achieved. These quantities are critical parameters in the design of any
structure and accurate prediction of these with minimal computational efforts is achieved
by the hierarchical method.

Analysis of the mid-plane tapered composite beams is done using the
trigonometric HFEM. The thickness-tapered beams are modeled by using just one
element and varying number of trigonometric terms. As mentioned before, due to the

linear nature of the bending stiffness, D,,, the nature of the stiffness matrix is different

from that of the uniform-thickness beam.
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Exact Solution
3C (6 DOF)
4C (8 DOF)
2T1 (6 DOF)
272 (8 DOF)

Figure3.15 Comparison of frequencies of composite Euler-Bernoulli beam by
conventional FEM and trigonometric HFEM

Exact Solution
3C (6 DOF)
4C (8 DOF)
3P2 (12 DOF)

Figure 3.16 Comparison of frequencies of composite Euler-Bernoulli beam by
conventional FEM and polynomial HFEM
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1 - Exact Solution K

Figure 3.17 Convergence to Q,,Q,,Q, and Q,of the Simply-Supported composite
beam in 2-element modeling

§ —+— Exact Solution
-©- 8C (16 DOF)
-p~ 274 (12 DOF)
-+~ 2T8 (20 DOF)
Q- 2P4 (12 DOF)

Figure 3.18 Comparison of frequencies of the composite Timoshenko beam obtained
using conventional FEM, trigonometric HFEM and polynomial HFEM
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The stiffness and mass matrices for the formulation having one element and four

hierarchical trigonometric terms (1T4), without applying the boundary conditions, are

given in Tables 3.17 and 3.18 to point out certain important aspects of the procedure.

Table 3.17 Stiffness matrix for the tapered beam in Ex. 2 for the case [ T4

23177e4 1.8101e2 -2.3177e4 1.0198¢2 | -8.7759e3 -8.6919e3 1.0491e5  1.9870e4
1.8101e2  1.6128 -1.8101e2 5.9723e-1 | -5.9499el -5.2909¢l 7.0830e2  1.1450e2
-2.3177e4 -1.8101e2 2.3177e4 -1.0198e2 8.7759¢3 8.6919e3 -1.0491eS5 -1.9870e4
1.0198e2  5.9723el -1.0198¢2 6.4790e-1 | -4.7654el -5.3219el 5.7264¢2 1.2810e2
-8.7759¢3  -5.9499el  8.7759e3 -4.7654el 1.7342e4  4.1176e4 -2.0406eS -1.1012e5
-8.6919e3  -5.2909el  8.6919e3 -5.3219el 4.1176e4  5.6312e5 5.3338e4  -1.5469¢6
1.0491e5  7.0830e2 -1.0491e5 5.7264e2 -2.0406e5 5.3338e4 6.1620e6  2.4453e6
1.9870e4  1.1450e2 -1.9870e4 1.2810e2 -1.1012e5 -1.5469¢6 2.4453e6 1.8037e7
Table 3.18  Mass matrix for the tapered beam in Ex. 2 for the case 1 T4

8.2533e-6 1.3509e-8 2.4222e-6 -7.3023e-9 1.1312e-6 1.7151le-6 -1.3325e-5 -4.2754e-6
1.3509¢-8 2.8977e-11 6.9372e-9 -2.006le-11 | 2.8952e-9 2.8304e-9 -3.6486e-8 -8.2490e-9
2.4222e-6 6.9372e-9 5.7414e-6 -1.0588e-8 9.9805e-7 -1.0314e-6 -1.2269e-5 2.6444e-6
-7.3023e-9 -2.006le-11 -1.0588e-8 2.4519e-11 | -2.6912e-9 1.4152e-9 3.4679e-8 -4.1245¢-9
1.1312e-6  2.8952¢-9 9.9805e-7 -2.6912e-9 3.4696e-7 7.1782e-8 -4.5949e-6 -2.3872e-7
1.7151e-6 2.8304e-9 -1.0314e-6 1.4152e-9 7.1782e-8 1.5084e-6 -7.1150e-7 -5.0854e-6
-1.3325e-5 -3.6486e-8 -1.2269¢-5 3.4679e-8 | -4.5949¢-6 -7.1150e-7 6.3503e-5 2.7488e-6
-4.2754e-6 -8.2490e-9 2.6444e-6 -4.1245e-9 | -2.3872e-7 -5.0854e-6 2.7488e-6 2.0723e-5

Table 3.17 gives the stiffness matrix for the tapered beam in Ex. 2 for the T4 case. The

shaded part is the usual 4x4 sub-matrix that we will obtain if we follow the conventional

formulation. The sub-matrices in the unshaded parts are generally null matrices in the

case of the application of the HFEM method to uniform beam problems, as we have seen

in the analysis done in previous sections (see for example the stiffness matrix in Equation
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(3.47) in section 3.2.5). In the tapered case, as we can see in Tables 3.17 and 3.18, these
sub-matrices are not null matrices. In the case of a tapered beam, the coefficient D,, is
not a constant but it varies in a linear manner. Hence, the products of D, () (see
Equations (3.62) and (3.63)), the second order derivatives of the trigonometric
hierarchical shape functions and the hermite shape functions of the conventional finite
element method are not orthogonal. Hence the sub-matrices mentioned here in the [K]
and [M] matrices are not null matrices. The diagonally shaded part in this case, shows a
sub-matrix, which as opposed to the case of the uniform-thickness composite beam, is not
a diagonal matrix. This is because of the fact that due to the linearly varying nature of the
coefficient D,,, the coefficients involving trigonometric hierarchical shape functions also
become non-orthogonal among themselves and hence, we have a fully populated matrix

for this sub-matrix.

[n spite of the fact that the nature of these matrices is different from what we have
seen in the uniform-thickness beam examples until now, they still add to the internal
degrees of freedom of the element. Hence, the performance of the element is improved in
the way that we have so far seen in many examples although its application does invoke
certain computational inefficiencies and we loose some of the advantages that are

inherent in and characteristic of the hierarchical FEM.

The stiffness matrix corresponding to the (r +1)* order approximation is formed

by adding one row and one column to the r* order matrix (for all r > 4), while leaving

the entries of the r* order matrix unaffected, i.e. the matrix K" is embedded in the
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matrix K™ [76]. Hence, we see that this property of the HFEM is intact, but the second
feature wherein the hierarchical shape functions are chosen such that they exert no
influence on the nodal degrees of freedom is compromised. Hence, there results a
coupling due to the population of the two unshaded sub-matrices (see Table 3.17). This
indirectly influences the nodal degrees of freedom and is a situation that would prove
computationally expensive in vibration or static analysis. Also, such a “design™ would
restrict us to add any number of hierarchical shape functions to an individual element
without them having any influence whatsoever on neighboring elements. This limits our
capability to manipulate at will, the mesh size and the hierarchical degree of
approximation in individual elements within the mesh. Since the internal hierarchical
degrees of freedom influence the nodal degrees of freedom of an element, hence, in the
assembly of elements in such a case, an overlay procedure similar to the one adopted in

the conventional FEM will have to be adopted in this case as well.

The results obtained for the dynamic analyses of uniform composite beams show
that the accuracy obtained is the same as that for isotropic beams. The inherent features
and advantages of the HFEM as pointed out for the case of isotropic beams hold good for
uniform composite beams too. In addition, the static analysis performed for the uniform
composite beams gives accurate results for the bending moment and shear force using
minimum number of elements. Finally, the free and forced vibration analyses of the
thickness-tapered composite beams is done. The trigonometric HFEM is applied to it
since it has been the best method for uniform beams. Due to the varying thickness of the
beams, the bending stiffness becomes a linear function and hence renders the

orthogonality property of the hierarchical shape functions ineffective in the calculation of
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the stiffness and mass matrices. This results in a fully populated stiffness and mass
matrices and increases the computational effort required to obtain a solution.
Nonetheless, the efficiency and accuracy of the solution for the tapered beams are

forthcoming.
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Chapter 4

Parametric Study on Variable-Thickness Composite Beams

4.1 Introduction

[n the previous chapter, the hierarchical finite element analysis methodology for
both the uniform and the thickness-tapered composite beams has been developed. Both
the forms of HFEM viz. polynomial and trigonometric forms were developed. The
HFEM was applied first to uniform composite beams and subsequently to thickness-
tapered composite beams. The HFEM was applied to the static and dynamic analyses of
uniform-thickness composite beams and to the dynamic analysis of thickness-tapered

composite beams.

The design of a tapered structure involves considerations of stiffness, static
strength, dynamic stability and damage tolerance. Major considerations in designing a
thickness-tapered composite beam are laminate configuration, ply orientation and taper
angle of the laminate. We now intend to conduct a comprehensive parametric study for

the thickness-tapered composite beams.
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The parametric study is conducted on the mid-plane tapered composite beams.
The material chosen is T300/5208 graphite-epoxy. The properties are listed in Table 4.1.
The specifications of the composite laminate and the geometric properties are detailed in
individual problems. All the problems are solved using both conventional and

hierarchical finite element formulations.

The mid-plane tapered laminate is analyzed considering all types of variations:
variations in the boundary conditions, variations in the stacking sequences and variation
in taper angle. For each case, results for the lowest three natural frequencies are obtained
and plotted in figures to elaborate on the interpretations. Where applicable, results are
plotted for both the conventional and the hierarchical formulations and suitable
comparisons are made. After each figure, appropriate interpretations are provided to
explain how these variations affect the natural frequencies of the beams. For example,
how the variations in the boundary conditions are related to the global degrees of
freedom, and how this will effect the natural frequencies, how the variations in the
inclination angles affect the natural frequencies through changes in the flexural rigidity of
the laminate, and so on are detailed. Also, a comparison between the results obtained
using both the formulations is done with the help of figures. Each subsection ends in a

table that summarizes the results mentioned in it.
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Table 4.1 Mechanical properties of unidirectional graphite-epoxy composite material

(6]
Density (p, Kg/m®) 1660.80
Longitudinal Modulus 144
(E,,GPa)
Transverse Modulus 12.14
(E,,GPa)
E'3 (= Ez )
In-Plane Shear Modulus 448
(G, ,GPa)
Shear Modulus (=G,)
(G5, GPa)
Out of Plane Shear 4.90
Modulus (G, GPa)
Poisson’s Ratio (v,) 0.21
Va 0.017
Table 4.2 Mechanical properties of isotropic resin material
Elastic Modulus (E, GPa) 3.93
Shear Modulus (G, GPa) 1.034
Poisson’s Ratjo (v ) 0.37

Finally, overall conclusions that relate to the two kinds of formulations and
changes within the mid-plane taper configuration are provided that serve as factors to be
considered in design. These conclusions can guide the designer on the choice of the taper

angle, and other parameters involved in the analysis such as the boundary conditions.
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42  Parametric Study on Free Vibration of Mid-Plane Tapered Composite

Beams

Problem Description:

A mid-plane tapered composite beam as the one shown in Figure 3.12 has the following
geometric properties: height (H) = 1.219 mm; length (L) = 12.2 mm (L/H=10).

The configuration of the thick section of the beam is [i 4531 and that of the thin section
is [£45],. There are 8 plies in the thick section and 4 in the thin section. The angle of

taper is equal to 1.43". The mechanical properties of the graphite-epoxy and the resin are

listed in Tables 4.1 and 4.2.

The lowest three natural frequencies are to be determined for all possible changes
that can be performed on the composite beam such as, the change in the boundary
conditions, the change in the inclination angle and the change in the fiber orientation. The
natural frequencies are obtained using both the formulations, conventional and
hierarchical as described in the previous chapters. Tables and Figures are provided for

comparison and commenting purposes.

4.2.1 The Effect of Boundary Conditions on the Natural Frequencies
To consider the effects of different boundary conditions on the natural frequencies
of the above-mentioned mid-plane tapered beam, values of the lowest three natural

frequencies are obtained using the hierarchical finite element formulation.
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Table 4.3 Frequencies (x10°) for different boundary conditions for [i 45 2L laminate

2 5.57 3.57 2.26 1.75
3 10.91 8.05 5.84 5.36

Table 4.1 gives us the detailed results for the lowest three natural frequencies for
different boundary conditions for the above-mentioned example. One trigonometric
hierarchical element with four internal degrees of freedom (1T4) is used to model the
beam. As expected, there is a considerable variation in the values of the frequencies with
change in the boundary conditions. The fixed-fixed type of support gives the highest
value of natural frequencies, whereas the free-fixed type gives the lowest value (the
frequency of the first mode of the fixed-fixed beam is nearly 900 % more than that of the
| 2 Sy Sepvonea |

-o— Fixed-Free
il --®- Free-Fixed

Figure 4.1  Natural frequencies of beams with different boundary conditions having
[+ 452L configuration
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first mode in the free-fixed support). The simply supported type comes as the second
highest and the fixed-free is the third. An interesting observation with regard to the mid-
plane taper is that changing the location of fixity from one end to another (i.e. making the
fixed-free support as free-fixed), will significantly reduce the initial mode frequencies
(more than 50% for the first mode). In general, the degree of restrain and the position of
restrain affect the value of the natural frequency. Figure 4.1 gives the graphical
representation of the variation of natural frequencies for different boundary conditions.
The fixed —fixed beam having the maximum restraint has the highest values for the
frequencies of successive modes of vibration. The other three cases under consideration,
viz. simply-supported, fixed-free and free-fixed, all have two degrees of freedom
restrained but vary in the manner of restrain. Restraining the displacements at both the
ends of the beam, has the effect of increasing the values of natural frequencies compared

to restraining both the displacement and rotation at one end.

: “ —o— nventioal o :
: | ~©- Trigonometric (1 element) S

Figure4.2  Fundamental frequency obtained using different formulations for the
Fixed-Free mid-plane tapered composite beam
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Figure 4.2 shows the convergence of the fundamental frequency for the mid-plane
tapered composite beam under consideration. The trigonometric hierarchical formulation
shows excellent convergence with just one element and increase in the degrees of
freedom. In comparison, the conventional formulation uses more elements and does not
converge to a value although having the same number of degrees of freedom.
4.2.2 The effect of laminate configuration on the natural frequencies

The same input data is used as in the last subsection, except that the kind of
laminate configuration is chosen differently to see the effect of different fiber orientations
on the natural frequencies of mid-plane tapered composite beams. The lowest three
natural frequencies are determined for the following types of laminates, that have the

following configurations at the thick sections are angle-ply [i452]s, cross-ply

[0/ 90]2: and quasi-isotropic [0/90/-45/ 45L laminates. The values are determined by

trigonometric hierarchical finite element method using only one element to model the
beam. The element has eight degrees of freedom including four internal degrees of

freedom (1T4).

Table 4.4 Natural frequencies (x10°) for different boundary conditions for
[0/90], taminate

Mode | - Fixed—Fixed |Simply- Supported Fixed-Free Free-Fixed
1 3.1843 1.3800 0.7217 0.3351
2 8.7776 5.6312 3.5113 2.7784
3 17.179 12.659 9.1541 8.4616

Tables 4.3, 4.4 and 4.5 give us the values of the lowest three frequencies for different

boundary conditions for the mentioned laminates.
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Table 4.5 Natural frequencies (x10°) for different boundary conditions for
[0790/-45/45], 1aminate

2 8.5824 5.5212 3.4378 2.7421
3 16.832 12.422 8.9659 8.3015

The results are shown graphically in Figures 4.3, 4.4, 4.5 and 4.6. As evident, for all
types of boundary conditions the cross-ply laminate gives the highest values of the
natural frequencies, followed by the quasi-isotropic and the angle-ply laminate
configurations in the cases taken.
The nature of the values of natural frequencies for different laminate configurations can
be explained by the Equation (3.54), which states that,

. Angl Ply [4/5]25 -

-©~ Cross ply ([0/90]2s)
-+ Quasi-Isotropic ([0/90/-45/45]s) [

Figure4.3  Natural frequencies obtained for different laminate configurations for the
Fixed-Free mid-plane tapered composite beam
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| —— Angie Ply ([+45/-45]2s)
-©~ Cross ply ([0/90]2s)
-4~ Quasi-Isotropic ([0/90/-45/45]s)

Figure 44  Natural frequencies obtained for different laminate configurations for the
Fixed-Fixed mid-plane tapered composite beam

I —— Angle Ply ([+45/-45]2s)
f -©- Cross ply ([0/90])2s)
-e— Quasi-Isotropic ([0/90/-45/45]s) |

Figure 4.5 Natural frequencies obtained for different laminate configurations for the
Simply-Supported mid-plane tapered composite beam

153



. —— nglePly (+4-42
N —©- Cross ply ([0/90]2s)
i —e— Quasi-Isotropic ([0/90/-45/45]s)

Figure 4.6  Natural frequencies obtained for different laminate configurations for the
Free-Fixed mid-plane tapered composite beam

m 3 _
Dy, =Z|:tp§2p+%:l (Qu)p (4.1)
p=l

The change in the fiber orientation has a direct effect on the flexural rigidity of the

laminate, bD,;, where D, is the bending or flexural laminate stiffness relating the

bending moment M, to curvature . (Q” )p is the transformed stiffness coefficient of a

ply, which can be defined as:

@u), =(cos* 6)@,, +sin* 6)Q,, +2(cos? 6)sin? )0, +4 (cos*6)sin?6)0,,  42)
where Q,,,0,,,Q,, and Qy;are coefficients of the ply stiffness matrix, and they are

functions of the mechanical properties of the ply.
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Figure 4.7 Fundamental frequency for various lamination angles (+6) for Fixed-
Free tapered beam

It is obvious from Equations (4.1) and (4.2) that, the flexural rigidity of a ply, and
consequently the laminate, is a function of ply orientation. In addition, the natural

frequency is directly proportional to D,, and hence, there is a significant drop in the

natural frequency for the lamination angles greater than +4 =10° (Figure 4.7). Results
similar to those shown in Figure 4.7 are obtained for other taper angles as well.
4.2.3 The Effect of Taper Angle on the Natural Frequencies

We now intend to consider the effect of taper angle on the natural frequencies of
the mid-plane tapered composite beams. The mechanical properties are as listed in Tables
4.1 and 4.2. The height (H) of the tapered beams considered here is 10.97 mm

respectively.
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The number of plies in the thick section of the tapered laminate are 72 and in the thin
section are 24. The configurations for the thick and thin sections are respectively,

[04 /245, /£ 45; /-45, ]sand [O4 /£45, ]S. Three taper angles have been selected for

comparison, viz. 2, 429 and 6 degrees. The results will be obtained using the

trigonometric hierarchical formulation (1T2) and the boundary conditions of the beam are

Fixed-Free.
Table 4.6 Natural frequencies (x10°) for different taper angles for a Fixed-Free
mid-plane tapered composite beam
Mode 2°Taper Angle 4.29° Taper Angle 6° Taper Angle
1 0.0808 0.373 0.7319
2 0.3526 1.627 3.1943
3 0.9407 4.34] 8.5218

Table 4.6 details the results for the comparison of natural frequencies for different
taper angles. The tapered composite beam having an angle of 2 degrees has the lowest
values for natural frequencies. The tapered beams having taper angles as 4.29 degrees
and 6 degrees give the successive higher values.

Figure 4.8 illustrates these results for all the three taper angles that we have taken.
The change in the taper angles affects directly the entries of the element stiffness and
mass matrices. Generalizing from the results obtained above, the higher the taper angle,
the higher the values of the natural frequencies. Equations (3.62)—(3.64) give a clear
relationship stating that the stiffness matrix is a function of (the slope) the taper, and that
they are in direct proportion. Hence, higher taper angle leads to a stiffer laminate, which

eventually leads to higher values of the natural frequencies. This effect is similar to the
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effect of the change in the fiber orientation. The change in the fiber orientations affects
the flexural rigidity of the laminate, and hence, the element stiffness matrix. Also, it can
be recalled from vibration analysis that the dynamic matrix, [a] is the product of the
inverse of the mass matrix and the stiffness matrix. Hence, higher values of the stiffness
matrix due to higher taper angles and lower values of the mass matrix due to decreasing
value of the length of the taper for the case considered, lead to higher values of the

coefficients of the dynamic matrix. Accordingly, this will lead to higher eigenvalues and

consequently higher natural frequencies.

Figure4.8  Natural Frequencies obtained using different taper angles for the Free-
Fixed mid-plane tapered composite beam
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4.2.4 The effect of internal DOF on natural frequency

We now intend to explore the effect of increasing the internal degrees of freedom
in a trigonometric hierarchical element used here to model the mid-plane tapered
composite beams.

The geometric specifications for the problem are: height (H) = 7.3152 mm;
Length (L) = 36.6 mm. The laminate configuration at the thick section is

[0, /45, /£45,/-45,] and at the thin section is [0, /%45, /45, .. There are 48 plies

in the thick section and 24 in the thin section. The angle of taper is equal to 2.86°. The

boundary conditions of the beam are Fixed-Free.

Table 4.7 Natural frequencies (x10*) obtained using different formulations for a
Fixed-Free mid-plane tapered composite beam
Mode 1C 2C ITI1 1T2 1T3 1T4
(2 DOF) (4 DOF) (3 DOF) (4 DOF) (5 DOF) (6 DOF)
1 4.49 4.47 447 4.47 4.47 4.47
2 26.80 24.36 2240 22.03 22.03 22.03
3 - 82.26 81.10 59.16 57.30 57.30

Table 4.7 gives the natural frequencies for the first three modes obtained using
conventional and trigonometric hierarchical finite element formulations for the problem.
In the conventional FEM, the accuracy of the solutions obtained, is increased by refining
the mesh i.e. increasing the number of elements and consequently the nodal degrees of

freedom. Hence, in the above case, when two elements (2C) are used to model the beam,

! For the case of fixed-free beam modeled by one element in the conventional formulation, there will be two degrees of
freedom. Hence. there will be only two obtainable modes (two values of natural frequencies).
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values of the natural frequencies are refined for more accuracy. But increasing the
number of elements, especially in the case of tapered composite beams, can be
numerically expensive and also it introduces more discontinuities in the curvature. HFEM
on the other hand, offers an alternative by increasing the internal degrees of freedom and
improving the accuracy of the solutions. As we have seen in previous examples as well,
the HFEM formulation having the same number of system degrees of freedom as the
conventional formulation (see for eg. 2C and 1T2 having 4 system DOF each in Table
4.7), gives more accurate results. In the trigonometric HFEM as well, increasing the
internal degrees of freedom, gives more freedom to the inside of the element and it is able
to represent the mode shapes more accurately. Hence, we see that the values of
frequencies change till the system degrees of freedom in the trigonometric HFEM
become 6 (1T4).
4.2.5 The effect of different taper types on the natural frequency

[n the previous sections we have conducted detailed parametric studies on one of
the types of tapered composite beam, i.e. mid-plane tapered composite beam. It would be
interesting to learn as to what effect the parameters would have on other kinds of tapered
composite beams. Hence, an overlapped-grouped tapered composite beam as described in

Figure 4.9, will be analyzed for its free vibration characteristics in this section.

Botting et al. [77] and Fish and Vizzini [78] have shown that tapered laminates

can be tailored for stiffness and strength by altering the internal ply-drop configuration.
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Taper Angle

Figure4.9  Schematic diagram of a composite internal taper beam
(overlapped-grouped)

The overlapped—grouped structure (Figure 4.9) was one of the ply-drop configurations
that they analyzed for delamination initiation and growth and damage tolerance. They
applied the finite element method to different ply-drop configurations and showed that
altering the ply-drop configuration could decrease the stress state at the ply-drop. Our
concern in this study is to apply the HFEM to these internal tapered beams for their
dynamic analysis and compare the results with those obtained for the mid-plane tapered
beam.
Problem Description
An internally tapered composite beam as the one shown in Figure 4.9 has the following

geometric properties: height (H) = 1.524 mm; length (L) = 12.2 mm (IL/H=10).
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The configuration of the thick section of the tapered beam is [-*_- 45, /- 45]5 and that of the
thin section is [+45/ 45).. There are 10 plies in the thick section and 6 in the thin section.
The angle of taper is equal to 1.43". The mechanical properties of the graphite-epoxy and

the resin are listed in Tables 4.1 and 4.2.

Table 4.8 Natural frequencies (x10°) for different types of tapers having different
boundary conditions

Natural Frequencies (x10°)
Mid-Plane Taper Overlapped-Grouped Taper
Mode No. Mode No.
Type of
Condition ‘ 2 3 1 2 3

Fixed-Fixed | 2.7124 74716 14.639 1.8304 5.0445 9.8956

Simply-Supp. | 1.1866 | 4.7924 | 10.783 | 0.7901 3.2387 | 7.2913

Fixed-Free 0.5725 29316 71.7341 0.4409 2.0621 5.3011

Free-Fixed 0.3089 2.4280 7.2546 0.1778 1.5624 4.8325

Table 4.8 gives detailed results for the given problem for the internally tapered
composite beam of Figure 4.9. Results for the mid-plane tapered composite beam for the
same configuration of the laminate are also given for comparison. As seen in the case of
the mid-plane taper, natural frequencies of different modes for different boundary
conditions vary considerably for the internal taper as well. The ascendancy of the values
of frequencies for different boundary conditions is also the same, being the maximum for
fixed-fixed case and the minimum for free-fixed case. This is because the factors

affecting the values of the natural frequencies, viz. the degree of restrain and the position

161




of restrain are the same. Another feature of importance is that for the same number of
plies and the same ply configuration, the values of frequencies of different modes for the
mid-plane tapered beam are higher than those of the overlapped-grouped tapered beams.
The rearranging of the internal ply-drop in the laminates has an effect on the stiffness of

the laminate and hence affects the values of the natural frequencies.

Table 4.9 Natural frequencies (x10°) for different types of tapers having different
laminate configurations

‘Natural Frequencies (x10°)
Mid-Plane Taper Overlapped-Grouped Taper
Mode No. Mode No.
Ply Group | 2 3 l 2 3
[+45,], 2.02 5.57 10.91 1.2838 3.5297 6.9011
(Angle-Ply)
[0/90],, 3.1843 8.7776 17.179 2.6528 7.3484 14.449
(Cross-Ply)
[0/90/45/-45], | 3.1097 8.5824 16.832 1.9458 5.3948 10.752
(Quasi-Isotropic)

Table 4.9 gives a comparison of the values of natural frequencies for different
ply-groups for the mid-plane and overlapped-grouped tapered composite beams. The
boundary conditions of the beams are fixed-fixed. As in the case of the effect of boundary
conditions on the frequencies of different modes, different ply-groups have the same
effect on the overlapped-grouped tapered composite beams as they have on the mid-plane

tapered composite beams. Hence, for the overlapped-grouped tapered composite beams,
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the angle-ply configuration has the lowest values of natural frequencies for all the modes
considered. The cross-ply laminate has the maximum value and the quasi-isotropic
laminate has the intermediate value. The flexural rigidity of the laminate is a function of
the ply orientation and hence is affected by any change in the laminate configuration.
Consequently, the values of the natural frequencies show the corresponding change. A

more detailed explanation has been given in section 4.2.2.

4.3  Parametric Study on Forced Vibration of Mid-Plane Tapered Composite

Beams

In the previous section a detailed study was performed on the free vibration of
mid-plane tapered composite beams. In the current section, we intend to extend the study

to the forced vibration analysis of the mid-plane tapered composite beams.

A laminate that has a configuration of [0, /+45,/%45,/-45,], . i.e. having 48

plies in the thick section and 24 in the thin section ([0, /£45, ],) and having a taper

angle of 2.86° is considered. The height (H) of the laminate is 7.3152 mm. The length
(L) of the laminate is 36.6 mm. The boundary conditions of the laminate are fixed-free.

The mechanical properties of the laminate are as detailed in Tables 4.1 and 4.2.

4.3.1 The effect of taper angle on the response of the mid-plane tapered composite
beam

To consider the effect of the taper angle on the forced response of a tapered

composite beam, a tapered beam having the specifications mentioned below is subjected
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to the loading as given in Figure 4.10. The number of plies in the thick section of the

tapered laminate is 72 and in the thin section is 24. The configurations for the thick and
thin sections are respectively, [0 J1E45, /145, /“4531, and [O /145, L. Three taper
angles have been selected, viz. 2, 4.29 and 6 degrees. The results will be obtained using
the trigonometric hierarchical formulation (1T2) and the boundary condition of the beam

is Fixed-Free.

F) &M

100

0.1 0.2 time (sec)

Figure 4.10 Force applied at the free end of the tapered composite beam

The height (H) of the tapered beams considered here is taken to be 10.97 mm.

Table 4.10 gives us the values of the maximum deflection of the degrees of
freedom associated with the displacement and rotation at the free end of the fixed-free
mid-plane tapered composite beam.

Table 4.10  Comparison of the forced response for different taper angles

DOF - =) .2° Taper Angle- | 4.29° Taper Angle ;| 6" Taper Angle
3 0.0019 (m) 0.0002 (m) 0.0001 (m)
4 0.0360 ° 0.0078 ° 0.0040 °
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The forced vibration analysis for this problem is done using the direct integration
technique of Newmark- 8 method. The results are compared with that obtained using the
mode superposition technique and they are in excellent agreement. The deflection and the
rotation at the free end, both decrease in value as the taper angle is increased. As
discussed while considering the effect of the taper angle on the natural frequencies,
Equations (3.54-3.56) illustrate clearly the direct relationship between the stiffness

matrix and the taper angle.

We concluded that higher taper angle leads to a stiffer laminate. Hence, the
maximum deformations, viz. deflection and rotation would consequently be less for a

stiffer laminate (i.e. for a laminate having high taper angle).

4.3.2 The effect of laminate configuration on the response of the mid-plane tapered
composite beam
To consider the forced response of different laminate configurations, we consider
a tapered composite beam having the following geometric properties:
height (H) = 1.219 mm; length (L) = 12.2 mm (L/H=10).
F 4 (N)

1

>

0.1 0.2 time (sec)
Figure 4.11  Force applied at the free end of the tapered composite beam
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There are 8 plies in the thick section and 4 in the thin section. The angle of taper
is equal to 1.43°. The mechanical properties of the graphite-epoxy and the resin are listed
in Tables 4.1 and 4.2. The laminate configurations that are considered for the analysis
here have the angle-ply [+45 ) ], , cross-ply [0/ 90, ]: and quasi-isotropic [0/90/-45/ 45]r
configurations at the thick section. The boundary condition of the beam are fixed-free.
The stiffness and mass matrices for the problem are determined by trigonometric
hierarchical finite element method using only one element to model the beam. The
element has eight degrees of freedom (DOF) including four hierarchical DOF. The
loading at the free end of the beam is as given in Figure 4.11.

Table4.11  Comparison of the forced response of laminates with different

configurations
DOF Cross-Ply Angle-Ply Quasi-Isotropic
3 0.0001 (m) 0.0003 (m) 0.0001 (m)
4 0.0172° 0.0421° 0.0180°

Table 4.11 gives us the maximum response of the mid-plane tapered composite
beam having different laminate configurations in the forced vibration problem. The
degrees of freedom labeled 3 and 4 are the displacement and rotation at the free end of
the fixed-free beam. The deformations are values of the maximum displacement and
rotation at the free end. Angle-ply laminate has the maximum value of the deflection,
quasi-isotropic laminate has an intermediate value and cross-ply laminate deflects the
least.

Fundamentally, deflection is a function of the force applied and the stiffness of

the structure. In the present case, the force applied is the same, hence the stiffness of the
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beams with different laminate configurations is the differentiating factor. As mentioned
before, according to Equations (4.1) and (4.2) the stiffness of a laminate is a function of
the ply orientation. Hence from the direct relationship given by these two equations, the
cross-ply laminate has the maximum stiffness and the angle-ply laminate has the
minimum with quasi-isotropic laminate having an intermediate value. Consequently, the
deflections are in the reverse order.
4.3.3 Response of mid-plane tapered beam to sinusoidal loading

[n the previous subsections, we analyzed the forced response of mid-plane tapered
composite beams when the foading was as shown in Figure 4.11. We will now analyze
the response of the beams to sinusoidal loading.

The number of plies in the thick section of the tapered laminate considered for
this problem is 72 and in the thin section is 24. The configurations for the thick and thin

sections are respectively, [O4 /£45, /£ 45, /-45, ]x and [04 /+ 454],- Three taper angles

as selected previously are chosen, viz. 2, 4.29 and 6 degrees. The results will be obtained
using the trigonometric hierarchical formulation (1T2) and the boundary condition of the
beam is Fixed-Free. The height (H) of the tapered beams is 10.97 mm. The loading at the

free end of the beam is as given in Figure 4.12.

F(t) (N)
200 -

0.1 0.2 t (sec)
-200
T

Figure 4.12 Force applied at the free end of the tapered composite beam
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Table 4.12  Comparison of the forced response for different taper angles
DOF 2° Taper Angle 4.29° Taper Angle 6" Taper Angle
3 0.0019 (m) 0.0002 (m) 0.0001 (m)
4 0.0370° 0.0080° 0.0041°

Table 4.12 above gives a comparison of the deflections at the free end of the mid-
plane tapered composite beams having different taper angles. As we had seen in section
4.3.1, the larger the taper angle is, the higher is the stiffness of the laminate. Hence,
laminates having larger taper angles will have less deflection. Therefore, we see that

the laminate having taper angle of 2° has the maximum deflection while a taper angle

of 6° leads to minimum deflection.

Another important feature that is evident in this example of sinusoidal loading is
that keeping the laminate and the taper angles same, the deflections at the free end of the
fixed-free beam are nearly same in this case and in the example dealt with in section
4.3.1. The difference being that the magnitude of the maximum load applied at the free
end in the sinusoidal case is twice than that in the previous case. Hence, the kind of

loading has a profound effect on the values of deflection.

We will now analyze mid-plane tapered composite beams having different
laminate configurations subjected to sinusoidal loading. We consider a tapered composite
beam having the following geometric properties:

height (H) = 1.219 mm; length (L) = 12.2 mm (L/H=10).
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There are 8 plies in the thick section and 4 in the thin section. The angle of taper
is equal to 1.43°. The mechanical properties of the graphite-epoxy and the resin are listed
in Tables 4.1 and 4.2. The laminate configurations that are considered for the analysis
here are angle-ply [+ 45, ] , cross-ply [0/90, ]x and quasi-isotropic [0/90/— 45/45), .The
boundary condition of the beam is fixed-free. The stiffness and mass matrices for the
problem are determined by trigonometric hierarchical finite element method using only
one element to model the beam. The element has eight degrees of freedom (DOF)
including four hierarchical DOF (1T4). The loading at the free end of the beam is as

given in Figure 4.13.

F(t) (N)
2 1

0.1 0.2 t (sec)
2 |

Figure 4.13  Force applied at the free end of the tapered composite beam

Table 4.13  Comparison of the forced response of different laminate configurations
DOF - Cross-Ply - Angle-Ply Quasi-Isotropic
3 0.0001 (m) 0.0003 (m) 0.0001 (m)
4 0.0176° 0.0431° 0.0184°
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Table 4.13 gives the values of deflection at the free end of the fixed-free mid-
plane tapered composite beams. As in the previous case, the angle-ply configuration has
the maximum values of the deflections and the cross-ply has the minimum. Since the
loading is sinusoidal in nature, the maximum value of the load applied is twice that in the

previous case (section 4.3.2).

44  Overall Conclusions
Based on the results obtained in the preceding sections for different variations in
the tapered composite beams, we can summarize some key conclusions to aid the
designer in making informed decisions in the design process of tapered composite beams.
1) The hierarchical formulation developed in this thesis is much more
efficient than the conventional formulation. [n numerous examples
throughout the thesis, we have seen that the HFEM uses far less number of
elements than the conventional FEM and gives more accurate answers
much faster. In terms of the system degrees of freedom (DOF) of the
structure, the HFEM gives more accurate answers than the conventional
FEM having the same number of system DOF. The inclusion of the
internal degrees of freedom in the HFEM, lends more freedom to the
inside of the element thereby increasing its efficiency to model the
structure. Hence, more accurate results are obtained much faster using less

number of elements and degrees of freedom.
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2)

3)

4)

3)

6)

7)

8)

In modeling thickness-tapered composite beams, the HFEM offers the
critical ability to model them with minimum number of elements and still
get more accurate answers and speedy convergence.

The trigonometric HFEM formulation is more efficient than the
polynomial HFEM. Also, the trigonometric functions offer the ease of
manipulation as compared to higher order polynomials.

The natural frequencies of the mid-plane tapered composite beams are
always higher than the corresponding values for overlapped-grouped
tapered composite beams, regardléss of the method of formulation applied.
With regard to the boundary conditions, the free-fixed boundary
conditions give the lowest values of the natural frequencies for both the
types of tapers. Likewise the fixed-fixed type gives the highest values of
the frequencies for both kinds of tapers.

With regard to the fiber orientations, the angle-ply group minimizes the
values of the natural frequencies in both types of tapers. This is because
the angle-ply laminates have the maximum stiffness.

The higher the taper angle is, the higher is the value of the natural
frequencies as explained in section (4.2.3).

The nature of loading in forced vibration affects the values of deflection.

4.5 Summary

In this chapter, a thorough parametric study on the mid-plane tapered composite

beams is conducted. The composite beams chosen are practical in terms of mechanical

171



properties and geometric description. The overlapped-grouped configuration of the

internally tapered composite beams is also studied and suitable conclusions are made.

All possible variations in the thickness-tapered composite beams are made to
make a comprehensive analysis of their dynamic behavior. Variations in boundary
conditions, laminate configurations and taper angles are made. For each variation, the
results for the lowest three natural frequencies are obtained and plotted in figures to
elaborate on the interpretations. Suitable comparisons are made between the conventional
and the hierarchical formulations to establish the advantages of the new method. Each
subsection ends in a table that summarizes the results mentioned in it. In the last section

overall conclusions are provided that would serve the design process.



Chapter §

Summary

5.1 Conclusions

In the present thesis the hierarchical finite element formulations for the analysis of
composite beams have been developed. The developed formulations have been adapted
so as to be applicable and appropriate to thick and thin composite beams. The vibration
analysis of uniform-thickness and variable-thickness composite beams has been
conducted using the developed formulations. Two sub-formulations of the Hierarchical
Finite Element Method (HFEM), viz. trigonometric and polynomial formulations, have
been considered and their applications to uniform-thickness and variable-thickness

composite beams have been made.

Prior to the introduction of the HFEM formulation, the conventional finite
element formulation has been derived in detail to systematically bring out the efficiency,
accuracy and the advantages of the HFEM formulation. This has been done to make
evident the basic aspects of the conventional method and the enhancements that are made

in it through the HFEM.
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The conventional finite element model for the beam structure considers two
degrees of freedom per node, viz. displacement and slope so as to satisfy the geometric
boundary conditions. The hierarchical formulation enhances the capability of the element
by making the degree of the approximating function to tend to infinity. This is done by
making use of trigonometric and polynomial functions. The four cubic displacement
modes used in the conventional formulation are retained. The higher order modes are
selected from a variety of polynomial and trigonometric functions. Accordingly, the

stiffness and mass matrices are set up.

The programming, involving symbolic computation, is done using MATLAB®
and MATHEMATICA® software. At the end of each formulation, suitable problems on
the free and forced vibration have been solved and the results are validated with the exact
solutions. A comparison between the results obtained using the conventional and the
hierarchical formulations is inherent in all the problems. The HFEM is also applied to the
static analysis of composite beams to highlight specific points of the method. To
elaborate on the analysis in the present thesis, a parametric study using both the types of

formulations is provided.

The parametric study considers various changes in the composite laminates to
demonstrate their influences on the natural frequencies and the maximum response to

forced vibration. These changes include the change in the boundary conditions, change in
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the laminate configuration, change in the internal degrees of freedom, change in the taper

angle and finally change in the type of internal taper. The difference in the composite

laminate’s responses is remarkable for each change within the same type of taper.

The study done in this thesis is of great importance to the mechanical designer,

who designs and develops composite structures to withstand dynamic loads. The

important and principal conclusions are:

Y

3)

The hierarchical finite element method increases element effectiveness by
adding internal degrees of freedom to the element. This is achieved by
adding trigonometric or polynomial functions to the approximating
function. The trigonometric sub-formulation is more accurate than the
polynomial sub-formulation as demonstrated in this thesis.

Both the hierarchical sub-formulations perform better than the
conventional formulation, both in terms of accuracy and speed of
convergence. Also significant is that both the sub-formulations use less
number of elements and system degrees of freedom to arrive at a more
accurate answer.

The parametric study performed on the variable-thickness composite
beams gives a comprehensive understanding of their behavior under
different physical conditions. Values of the natural frequencies and the

maximum response to forced vibration for beams having different taper
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angles, boundary conditions, laminate configurations and types of internal

tapers allow the designer to develop appropriately the optimum design.

5.2  Contributions

The primary contributions have been mentioned in respective chapters and are

summarized as follows:

1) The trigonometric hierarchical finite element method has been proposed
and applied to the analysis of variable-thickness composite beams.

2) A set of polynomials is proposed for the polynomial hierarchical
formulation that fares better than the conventional FEM formulation.

3) Both the forms of hierarchical formulations, viz. trigonometric and
polynomial sub-formulations have been applied to the static analysis of
uniform-thickness composite beams subjected to a uniformly varying load.

4) Forced vibration analysis of uniform and variable-thickness composite

beams is carried out using both the sub-formulations.

5.3 Recommended Future Work
The following recommendations may be considered for future studies:
i) The HFEM considered in this thesis can be extended to other types of
internally tapered variable-thickness composite beams.
ii) The HFEM can be applied to the stress analysis of the tapered composite

beams.
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iii)

iv)

For the polynomial sub-formulation, other suitable polynomials could be
chosen that are more efficient than the present one.

The hierarchical formulation could be extended to the analysis of
composite plates.

The effect of damping has not been considered in this analysis. Further
work can be done to include this effect in the free and forced vibration of

composite beams and plates.
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APPENDIX - I

Resin Pocket divided into plies

'\

Composite Material Ply

Figure AL.1 Division of resin pocket into plies for analysis

For composite materials,

©, )p = (cos'0)Q, +(in*0)0,, + 2(cos?0 )sin0 )Q,, +4 (cos*0 Jsin20)0,, (ALI)

where,
E, v, E, E,
= s = — = Q 23 5 = = ’
o [-v,v,, Cr [-v,,0,, O ? O [-v,,0,,
and Qy; =G,
. . L= E
For the case of an isotropic material, 9, = Q,, = —
_.U'
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APPENDIX - II

The calculation of the stiffness matrix of the tapered composite beam by the
trigonometric hierarchical finite element method would involve modeling the whole
beam by one element and increasing the number of trigonometric terms in the element.
Since there is a continuous drop in the number of plies over the length of the beam, the
value of the bending coefficient, D,,, which is dependent on the number of plies, will also
vary over the length of the beam. Hence we would consider sections of the beams where
the number of plies are the same. This would also necessitate that we split the integration

for the calculation of the stiffness matrix into as many parts as the number of sections of
the beam. Each section would have a different expression for the bending coefficient, D,,,
and the expression for the stiffness for the tapered beam of Figure AIl.l would be as

follows,

d*N d’N 4N, d*N,
K, [!(b(D“(é)), e }1+I7[5[b(0“(§)),, e }1&) (AIL1)

where (D)), and (D,,()), are the expressions for the bending coefficient, D,,, for
the two sections . The calculation of the expressions for D,, for individual section is

details as follows. We will take a section that has a resin pocket in it so that we can see

how we take the influence of the resin pocket into account.

The expression for the bending coefficient, D,,, is as given in Equation (AIL2),

where m1 is the number of plies in the section considered, m is the slope of the taper and
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Thin Section
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resin —)I o

—

&1

Division into sections having different number of plies

\ Taper Angle

Figure AIL.1 Schematic of a composite mid-plane tapered beam showing the division
into different sections

m

3
D, =Z[t,,(mx+g)f, +l’—;J @), (AIL2)

p=l

g is the intercept on the y-axis. Considering one ply at a time, the expression of D,, for

the ply having an angle of 8, will be as follows (see Figure AIL1),

3
D“(el)zl:tp(m.x-i- g} +:—;J(§”(9|)) (AIL3)

where,
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(Ql(e,))= (cos“(-)l)Qll 4-(sin‘el)Q22 +2(coszf),)(sin29[)QlZ +4 (coszel)(sinzﬁ,)Q33
(AIl.4)

and the values of the coefficients Q,,, 0., Q,,, @;; are given in Appendix-I.

Similarly, expressions of D,, for other plies having angles, 8, and 9, can also be

obtained and summed to obtain the final expression for, D,,, of the given section. In the
case of the resin pocket, the resin pocket is divided into a number of plies and each ply is
again considered in the same manner as done for composite plies. As given in Figure

AIlL 1, the expression for D,, for the resin pocket will be,

3
D, (resin) = [(trzsin Ymx+g )? +[’l‘—‘2“‘- ( Q,, (resin) ) (AILS)
where,
Q, (resin)=Q,, = and ¢ is as given in the Figure AIL1.

l _Uz resin

The program developed in MATLAB® has provision to detect the presence of a

resin pocket and calculate the D,,(resin)as given in Equation (AILS). It then adds the
calculated D, (resin)to the D, obtained for other composite plies. Hence we obtain the
final expression for the coefficient, D,,, for the considered section. Similarly, the
expressions of D,, for all the sections are obtained by the program and used in the

calculation of the stiffness matrix.
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