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ABSTRACT

Fuzzy Logic Based Localization for Mobile Robots

Mohammad Molhim, Ph.D. Student
Concordia Unviersity, 2002

This thesis deals with the localization and map updating problems of mobile
robots. We introduce three new fuzZy logic based localization and map updating
algorithms for mobile robots that are equipped with a ring of sonar sensors. The
first algorithm deals with the global localization problem, the second deals with
detailed localization and location updating, and the third deals with map updating.

Sonar sensors are inexpensive but inaccurate. To deal with sonar uncertainty,
we introduce models for angular and radial uncertainty of sonar readings based on
possibility theory, mainly possibility distributions (fuzzy sets).

The concept of the fuzzy 10cal composite map is introduced. This map utilizes
the uncertainty models associated with sonar readings to give a description of the
robot’s surroundings. This map consists of a set of components, each of which
represent the shortest distance between the robot and a detected object, and the
orientation of the detected object with respect to the robot.

In the proposed global localization algorithm, the constructed fuzzy local com-
posite map is matched with the given global map to identify the robot’s location. In
cases where multiple locations are obtained, the robot moves to accumulate range
information to be used to reduce the number of candidate locations. This process
continues until a unique location is obtained.

In the proposed detailed localization and map updating algorithms, two sets

iii




of fuzzy composite map components are identified. The first set includes the compo-
nents that have matching counterparts in the global map and are used to update the
robot’s location. The second set includes the components that do not have matching
components in the global map and are used to update the robot’s global map by
adding new line segments.

The proposed algorithms are designed for implementation on any mobile robot
equipped with a ring of sonar sensors. Moreover, these algorithms are dynamic
algorithms where the robot’s location and map can be estimated and updated in
real-time. The proposed algorithms are implemented on a Nomad 200 mobile robot
in an indoor environment. The results demoristrate the effectiveness of the proposed

algorithms.
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Chapter 1

Introduction

»

The study of robotics has evolved as a result of the industrial need of achieving ac-
curacy and speed for different industrial applications. During the last two decades
these needs have encouraged researchers to focus on the design and control of armed
robots (robot manipulators) which can efficiently replace human operators. The
results of this research have led to advances in industrial applications for automo-
tives, manufacturing, inspection, material handling and vision systems, among many
others {1, 2, 3, 4, 5].

The key issue for the success of armed robots in industrial applications is
that the industrial environments of the armed robots are structured so that the
uncertainty (noise and errors) in its all levels (modeling, actuating, and sensing) is
reduced to a negligible level. For example, in an environment where the robot has
to grasp a certain part from a specific location there are special feeders that are de-
signed to precisely locate the parts in the location from where the robot must grasp
them. Moreover, there exists different kinds of grippers that are connected to the
end effector of the robot to make sure that the parts are securely grasped. In such
structured environments, the robots rarely rely on their sensing abilities to reason

about the actions that must be taken in each situation. The more structured the




environment, the less sensing and reasoning are needed. Most industrial environ-
ments where robot manipulators are needed are structured so they do not require
external sensing, and robots perform repetitive motions to accomplish certain tasks.

During the last decade, researchers have been trying to find solutions for indus-
trial applications where the robots must work in unstructured environments. The
tasks of the robots require that they leave their locations to accomplish their tasks.
Moving from one location to another requires sensing and reasoning so that the
robots can take the appropriate actions to accomplish their tasks. This requirement
has led to the design of mobile robots, and has added more challenges for robotics
researchers where there is uncertainty at all levels. Mobile robots have many appli-
cations such as transferring materials in a factory, fire fighting, cleaning, painting,
maintaining nuclear plants and helping handicapped people [6, 7, 8, 9, 10, 11, 12].

Mobile robots operating in such environments must be able to cope with sig-
nificant uncertainty in their location. Traveling between two locations, simply going
from location A to B (navigation) without artificial guiding aids (magnetic strips,
artificial beacons, etc.), is a challenging task. On the other hand, this task is con-
sidered trivial compared to industrial manipulators.

For mobile robot applications, sensing and reasoning are considered to be the
two primary elements for performing tasks successfully without the interference of
humans. By sensing, the robot can estimate its location inside its environment,
identify different environmental features, avoid obstacles while approaching its goal,
and follow different paths to achieve its tasks. There are different types of sen-
sors available for mobile robots: ultrasonic (Sonar), odometry, infrared, laser range
finders, and cameras. The difficulty with any sensing methodology is accurate data
results and interpreting these data. In reasoning, the robot makes use of the sensory
information to reason about its state and then to determine what actions must be

taken to achieve a certain task. For a mobile robot, most reasoning problems are




geometric in nature, such as determining its current location in a certain environ-
ment, i.e., localization, determining the path that has to be followed to reach its
goal location, and avoiding obstacles while approaching its goal. These tasks become

more challenging with the presence of uncertainty in the robot’s sensors.

1.1 Problem Definition

For a mobile robot to navigate an environment, it must have the answers to the

following questions [13]:
e What is my current location?
e What is my current map?

Providing an answer to the first question requires designing localization algorithms
that rely on sensing the robot’s environment and then reasoning and estimating its
current position and orientation, i.e., location. The second question is answered
by providing map updating algorithms that update the robot’s map based on the
sensory data provided by the robot’s sensors.

To localize and update its map, the mobile robot relies on the data provided
by two types of its devices: proprioceptive and exteroceptive. Odometers are propri-
oceptive devices (or internal sensors) that can provide reliable location information
over short distances. Sonar sensors, laser range finders, and cameras are exterocep-
tive devices (or external sensors) that can be used for mobile robot localization and
map updating. |

There is no perfect sensor that can provide accurate location information for
mobile robots. Each sensor has drawbacks that prevent it from being a perfect
candidate for mobile robot localization and map updating. Odometers suffer from
two types of errors: systematic and non-systematic [14]. The source of the first type

of error is the robot’s parameters which can have differences in the wheel dimensions




and alignment. In addition, there is uncertainty about the contact point between
the robot’s wheels and the floor. The source of the second type of error comes
from the robot’s movements, such as wheel slippage and the floor’s characteristics.
Most of the exteroceptive devices have drawbacks that result from their design, the
interaction of their signals with the objects of the working environment, and their
sensitivity to environmental phenomena. These drawbacks introduce uncertainty in
the information provided by these sensors. Furthermore, some of these sensors are
too expensive to be used on mobile used in low cost applications. This is the case
with laser range finders and cameras. Alternately, sonar sensors are inexpensive and
are often used for mobile robot localization, navigation and map updating [15, 16,
17, 18, 19, 20, 21, 22].

There are two main drawbacks that affect sonar based localization and map
updating algorithms: the beam width of the sonar sensor and false reflections. The
beam width introduces uncertainty in the position and orientation (raedial and
angular uncertainty, respectively) of the detected objects and it therefore affects the
quality of the location information provided by the localization algorithms. False
reflections provide inaccurate information about the robot’s surroundings and this
is in turn affects the functionality of the localization and map updating algorithms.
Therefore, a modeling of the uncertainty associated with these sensors is needed so
that they can be used effectively to solve mobile robot localization and map updating
problems. '

Localization algorithms are divided into two types. The first type provides
algorithms to solve the problem of estimating the robot’s location in its navigation
environment given that the map of the environment is known and the robot has a
complete lack of knowledge about its current location. This problem is known as
the Global Localization (23], First Localization [24], or Getting Lost problem [25].
The robot faces this problem when it is activated without knowledge of its initial

location. The solution to this problem depends on providing localization algorithms



that match the information provided by the robot’s sensors, usually represented by
a local composite map of the robot’s environment, and the global map which is
provided for the robot. As a result of this matching, the localization algorithms
can provide a unique candidate location or multiple candidate locations. Further
movements by the robot can help in collecting and accumulating sensory information
to reduce the number of candidate locations until there is one unique location. In this
thesis, this algorithm is referred to as the global localization algorifhm. The second
type of localization algorithms deals with the problem of providing an estimate of
the robot’s current location given that its initial location is known. In other words,
this type of algorithms updates or maintains the robot’s location based on its sensory
data while it is moving. The current location of the robot is estimated based on
the fusion of sensory information obtained by the robot’s proximity sensors and
odometers; this estimate is used to update the robot’s odometers. In this thesis,
this algorithm is referred to as the location updating algorithm.

For a mobile robot to be able to adapt to the changes in its environment,
map updating algorithms are necessary to update the robot’s map based on the
recognition of new objects. The current location of the robot is estimated using
the location updating algorithm and is used along with the current sonar data to
recognize new objects. These objects are extracted in the form of line segments and
added to the robot’s map to update it. Updating the robot’s map requires a reliable
estimation - of the robot’s current location. Therefore, location updating is needed
concurrently with map updating.

This thesis can be considered as one of the research projects carried out to
provide solutions for localization and map updating problems for mobile robots
equipped with low cost sensors, namely sonar sensors. We have constructed mod-
els that represent the uncertainty associated with the readings provided by these
sensors. These models are used to construct a fuzzy local composite map which

represents the robot’s surroundings. This map is used along with the robot’s global




map to estimate the robot’s location and update its map.
Provided next is a literature review of the research projects concerned with

mobile robot localization and map updating.

1.2 Literature Review

A variety of mobile robot localization and map updating algorithms have been de-
veloped in order to reliably estimate the robot’s location and update its map while
achieving its tasks. Given in this section is an overview of research projects that
deal with the localization and map updating problems of mobile robots. This sec-
tion is divided into three parts. Since any sonar based localization or map updating
algorithm must be able to deal with the uncertainty associated with sonar sensors,
the first part of this section reviews review research projects related to the modeling
of uncertainty in sonar data. The second part deals with research projects related
to the problem of global localization. The last part reviews different projects related

to location and map updating problems.

1.2.1 Modeling Uncertainty in Sonar Sensors

Sonar sensors are widely used in mobile robot applications primerly for their low
cost and the ease with which the sonar data can be processed to provide range
information. Furthermore, sonar sensors have a better range compared to infrared
sensors, and a lower cost compared to laser range finders.

There are two major drawbacks to sonar sensors: beam width and false re-
flections. The beam width causes uncertainty when measuring the position and
direction of the detected objects. In addition to the beam width, some environmen-
tal factors may cause uncertainty in the measured distances, such as temperature
and humidity. False reflections cause the sonar sensors to detect objects at distances

farther away than their actual distances.




The presence of the beam width has a noticeable effect on the certainty of
the data obtained by sonar sensors. First, the beam width causes uncertainty in
the measured distances. This uncertainty results from the fact that the beam is
reflected from the portion of the target closest to the sensor and not at the direct
line of sight of the sonar sensor. Second, when there is an object detected by the
sensor, there is uncertainty in the direction of the detected object. In this thesis,
these two types of uncertainty related to sonar sensors are referred to as radial and
angular uncertainty, respectively. Chapter 2 introduces more details about these
two types of uncertainty.

In the literature regarding the above mentioned uncertainties, there are several
proposed methods for modeling the uncertainty in sonar readings. Crowley [26] con-
siders that the echo received by a sonar sensor comes from an arc shaped region. In
this region, the length of the arc represents the angular uncertainty while the width
of this region represents the radial uncertainty. Gasés and Martin [27] model the
errors in sonar readings by using trapezoidal fuzzy sets. However, their model does
not take into account the effect of the beam’s width. Demirli and Tirksen [28, 29]
model the angular and then the radial uncertainty in sonar readings by using trape-
zoidal membership functions which are constructed from empirical studies. Elfes [30]
and Cho and Lim [31] model the angular and radial uncertainty in sonar sensors by
using Gaussian probability density functions. These functions are proposed based
on the> shape of the sonar beam and not on its actual behavior. Kleeman and Kuc
[32] introduce statistical models of the angular and radial uncertainty of sonar sen-
sors. These models are limited to an array of only two sonar sensors separated by a

known distance.

1.2.2 Global Localization

Guibas et al. [33] introduce a theoretical solution for the global localization problem

by dealing with it as a geometric problem. The map of the robot’s environment is




represented as polygon P and the data obtained from a range finder is represented
as a star-shaped polygon V. In addition, the robot’s orientation in its environment
is assumed to be known by reading the compass on the robot. The localization
problem is then solved by finding a point in P (or a set of points) for which the
portion of P that is visible is a translation congruent to V. The authors assume that
the robot’s environment, the range finder, and the compass are all perfect, i.e., that
they do not have any noise, and they use simulation to demonstrate their results.
In an attempt to make this method applicable in practice, Karch and Noltemeier
[34] introduce a description of a distance function that models the resemblance be-
tween the noisy range data and the noisy robot’s environment. However, calculating
such a distance function is time consuming and restricts the implementation of the
localization algorithm in practice. As a result, the authors introduce a simplified
simulation of their findings but no experimental results are reported.

The two methods mentioned above result in more than one candidate location
of the robot in its environment when there are identical features at different places
in the robot’s environment. However, no additional steps are taken to reduce these
locations or to obtain one unique location. A theoretical work introduced by Dudek
et al. [35] deals with this situation. Dudek and his colleagues try to find the optimal
path that the robot follows so that it can, at the end of the path, uniquely identify
its location. Using its range finder, the robot probes the environment at different
locations on this path. In addition, the robot’s range finder is switched off while
the robot is traveling from one probing location to another. The authors show that
finding this path is NP-hard. Therefore, they introduce a greedy strategy by which
the robot will travel a predetermined distance to uniquely localize itself. The authors
assume that the robot’s orientation is known and that the robot has a perfect range
finder.

Drumbheller [36] introduces a practical method for mobile robot localization.

His approach is based on a 360° scan of the environment while the robot is stationary.



In this approach, the possible matches between the environment model and the
sonar contour obtained from the scan are determined. Then, possibilities that are
inconsistent with the fact that the beam can not penetrate solid objects are excluded.
This is referred to as a sonar barrier test. Based on these matches, the stationary
location of the robot is obtained.

Crowley et.al [37] introduce a practical approach to solving the global local-
ization problem. This approach is based on a principal component analysis of laser
readings. The robot’s environment is represented as a family of surfaces in the eigen
space which is built from the principal components of the laser readings. Consecu-
tive laser reading sets obtained from the environment are projected as points in the
map of the environment. Each point is associated with a family of surfaces in the
robot’s environment which results in a candidate location (position and orientation).
A Kalman filter is used to reduce the number of these locations and to select the
most likely location consistent with the small movements of the robot.

Ducket and Nehmzow [38] introduce another practical approach for the giobal
localization problem. They introduce a localization method that is based on evi-
dence accumulated from odometric readings and both sonar and infrared readings.
Information collected from different iterations is combined to reduce the number
of candidate locations using the Bayes rule. In this study the uncertainty in sonar
readings is not taken into account.

A dynamic localization method is introduced by Crowley [26] for a mobile
robot navigating in a known environment. In this method, the robot navigates its
environment and stores a large amount of data used to extract line segments. These
segments are extracted using Kalman filtering. The line segments are matched to
the given global map to estimate the robot’s location.

Demirli and Tiirkgen [28, 29] introduce a global fuzzy logic based localization
algerithm. The algorithm consists of two parts, the first one is called initial local-

ization and the main issue here is to determine an approximate location of the robot




in the environment after matching the sonar readings to a real map of the environ-
ment given to the robot. The second part is called detailed localization where the
uncertainty in the robot’s location is reduced to a fuzzy region. This fuzzy region
identifies a collection of the robot’s locations, each with a degree of certainty or
confidence. This region is determined based on the combination of two fuzzy sets
representing the location of the robot from a different wall in the environment. The
proposed algorithm relies only on sonar readings obtained from the walls of the
robot’s environment to estimate the robot’s location. However, readings obtained
from other environmental features such as corners are not taken into account. The
proposed algorithm may provide more than one candidate location of the robot in
its environment. However, no further steps are taken to reduce the number of candi-
date locations. The proposed algorithm relies on the sonar readings obtained from
one place in the robot’s environment while the robot is stationary.

Mota and Ribeiro [39] introduce a mobile robot localization algorithm based on
a 2D laser image obtained from a laser range scanner and a reconstructed 3D model
obtained from a video image. This algorithm consists of two layers. In the first layer
a coarse estimate of the robot’s location is obtained based on a 2D laser scanner and
a 3D reconstructed map of the robot’s environment. This is achieved by matching
the information obtained from the 2D laser scanner with the 3D reconstructed map.
The result of this matching process is a set of candidate locations for the robot in
its environment. In the second layer, the set of candidate locations is analysed and
clustered to obtain a reduced set of candidate locations. The most likely solution is
then obtained by using a weighted clustering algorithm.

Wijk and Christensen [40] introduce a localization algorithm that depends on
naturally selected localization points in the robot’s environment. The robot’s en-
vironment is given in the form of pairs of £ and y coordinates that represent the
features in the map; these features are called reference features. The reference fea-

tures are extracted based on a triangulation based fusion algorithm (TBF). In TBF,
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the robot is trained to extract these features from its environment. It is assumed
that the robot always has full knowledge of its orientation in the environment. Once
the robot has the map of its environment, it can navigate to extract current features
from the sonar readings. A simple graph matching algorithm is used to make the
match between reference and current features. The result of this matching is a linear
transformation that can be used to estimate the global.location of the robot. It is
important to mention that if the robot does not know its orientation, the obtained

transformation will be non-linear and requires more processing steps.

1.2.3 Concurrent Localization and Map Updating

Saffiotti and Wesley [41] introduce a perception-based self-localization method using
fuzzy sets. It is important to mention that in their method, the authors assume that
the robot has an approximate hypothesis of its own location in the environment, i.e,
they do not solve the global localization problem. The perceptual-based localiza-
tion technique depends on matching fuzzy perceptual clues included in the map and
current clues extracted by the robot’s sonar sensors. The results of the matching
process are represented by fuzzy sets, and the robot’s approximate location is de-
termined. This matching process relies on collecting information while the robot
is moving to decide what type of clue is current. For example, if there is evidence
that there is a wall in the proximity of the robot, a segment must be established
to be used in updating the robot’s position. The authors do not introduce models
for angular and radial uncertainty for constructing the current obtained features by
sonar. However, they assume that the measured sonar traces have arbitrary fuzzy
sets. This method is applied in long scale environments such as corridors.

A similar approach is presented by Gasés and Martin [27]. In their approach
the robot describes an object in the environment based on four sonar readings ob-
tained from this object. The uncertainty in the measured distances is represented

by using trapezoidal fuzzy sets which are constructed based on confidence intervals.
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These fuzzy sets are established without experimentally studying the relationship
between the sonar readings obtained from an object and the actual distance to the
object. In this study, the angular uncertainty in sonar readings is not considered. In
their work, Gasdés and Martin propose a method for updating the current location
of the robot. This method depends on constructing a partial map of the robot’s
environment by using sonar traces and matching this map to the global map. The
partial map is constructed in the form of fuzzy line segments. Constructing line
segments to be used in the location updating process has a significant effect on the
location updating frequency. This creates the need to rely on the odometers for
longer traveled distances.

Cox [42] introduces a localization algorithm that updates the robot’s location
in a known map. The algorithm depends on optical range data that are matched
to the robot’s environment in an attempt to update the odometers. The matching
algorithm finds an optimal linear transformation that provides the best match be-
tween the range data and the environmental model. This transformation is obtained
by using the least square algorithm. The obtained transformation is then used to
obtain the robot’s location in the environment. This location is combined with the
information provided by the robot’s odometers to provide an update to its current
location.

Hoppenot and Colle [43] introduce a localization algorithm that depends on
Cox’s idea. In their localization method, the sonar measurement impact points
are estimated based on the robot’s current position as obtained by the odometers.

These points of impact are then matched to the nearest segment of the robot’s
environment. The authors use only seven sonar sensors distributed on half ring.
The authors completely ignore the angular and radial uncertainty associated with
sonar sensors.

A fusion algorithm is proposed by Neira et al. [44] to update the robot’s

location while traveling. This method relies on fusing two types of complementary
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sensory information obtained from a laser sensor. The first type of information
is range images which are used to determine the locations of walls in front of the
robot, and the second type is intensity images which are processed to determine the
locations of vertical edges which represent door and window frames. An extended .
Kalman filtering algorithm is used to fuse the two types of sensory information. The
proposed algorithm is implemented and satisfactory localization errors are reported.

Boem and Cho [45] include two cylinders of different diameters in the robot’s
environment to determine its location based on triangulation. The sonar readings
obtained from scanning the environment are used to detect the presence of the
cylinders. From the position of each cylinder, the robot can determine its location.
For this algorithm to work, these two cylinders must be present in the robot’s
environment.

Updating the map of the environment where the robot navigates has become
an important direction for research in today’s robotics community. Some authors
face the problem by assuming that the robot’s location is accurately estimated based
on the robot’s encoders (odometers) [46, 47]. |

Crowley [26] uses a recursive line fitting algorithm to build a line-based model
of the robot’s map from the robot’s sonar readings. This approach does not take
into account the uncertainty associated with sonar readings.

Using the probabilistic modeling of uncertainty in sonar readings, Elfes [30]
introduces the Certainty Grid approach for map building. In the Certainty Grid
approach, sonar readings are placed in the grid by using probability profiles that
describe the certainty about the existence of objects at individual grid cells. The grid
based approach does not take into account the false reflections of sonar readings.
The Certainty Grid approach requires large amounts of sonar data to build the
robot’s map. This approach requires the robot to stop periodically to take sensor
readings.

Poloni et.al. [48] introduce a fuzzy logic based Certainty Grid approach for
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mobile robot map updating. In this approach, the robot’s map is represented in
terms of two fuzzy sets. The first fuzzy set represents the erﬁpty grids, and the
second fuzzy set represents the occupied grids. The proposed approach requires
collecting large amounts of sonar data to update the robot’s map. Therefore, the
robot is required to stop at different locations to collect sufficient sonar data. During

its stop, the robot is rotated in certain degrees to explore its surroundings.

1.3 Motivations

Modeling uncertainty in sonar readings using the probability theory is achieved
based on the assumption that this uncertainty can be described by a normal prob-
ability distribution and that it is small enough, that linear approximations can be
correctly used [30]. These assumptions are provided to justify the use of Kalman
filtering in solving mobile robot localization and map updating problems.

Modeling uncertainty in sonar readings requires taking into account the effect
of the beam’s width and false reflections. The effect of the beam width can be
captured by modeling the angular and radial uncertainty. False reflections can be
avoided by combining information from adjacent sensors.

Fuzzy sets are able to capture the uncertainty in sonar readings [27], however,
building fuzzy models requires interpreting the behavior of sonar sensors using well
established theoretical tools.

Modeling uncertainty in sonar readings based on one sonar sensor may result
in poor uncertainty models. To overcome this problem, sonar readings provided by
adjacent sonar sensors are combined to reduce uncertainty associated with only one
sensor and for filtering false reflections.

Sonar uncertainty models should be constructed based on a general configu-
ration of these sensors used on mobile robots. In other words, constructing these

models for a specific configuration is not feasible [32].
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Global localization algorithms provide either one candidate location or mul-
tiple candidate locations. Therefore, dynamic global localization algorithms are
needed so that the robot can make use of the newly accumulated range information
about its surroundings to reduce the multiple candidate locations to one location.
However, this reduction is not possible in the case of the static global localization
algorithms [28, 36]. In addition, global localization algorithms that depend on prob-
ing the robot’s environment at different locations [38, 35] are not efficient since the
robot is not able to make use of the information that can be obtained between any
two probing locations. |

Localization requires practical real time approaches that enable the robot to
reason about and estimate its location. Theoretical localization algorithms [33, 34],
which assume perfect sensing, do not represent practical solutions. This is due to
the fact that sensor uncertainty is not avoidable.

Sensors for mobile robots are required to be capable of providing real time
signals that can be interpreted on-line with low-cost processing. This opens the
door to the design of localization algorithms that do not depend on storing large
amount of sensory data [27]. Storing raw sensory data results in a large database.
The size of the database depends on the length of the path that the robot follows.

To make the use of mobile robots feasible in practical applications, it is nec-
essary to reach a trade off between costs and benefits. Often this prevents the use
of expensive sensors [44, 43, 42, 37] in favor of inexpensive devices such as sonar
Sensors.

Because they are inexpensive, most mobile robots have a ring of sonar sensors.
These sensors are arranged around the robot so that more range information about
the robot’s surroundings can be obtained. Therefore, localization algorithms should
be designed in a general fashion for a class of robots with the ring configuration.

The ring of sonar sensors provides information about the nature of the ob-

jects in the robot’s environment. Natural landmarks such as walls and corners can
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be recognized and their global coordinates can be used for localization. However,
structuring the robot’s environment with artificial landmarks for the purpose of
localization is not a practical approach and is not considered in this thesis [45].

Sonar based localization algorithms must take into account the uncertainty
associated with sonar sensors. It is impractical to introduce sonar based localization
algorithms based on the assumption that these sensors are precise [43]. It is necessary
that sonar based localization algorithms provide correct location information to the
robot so that it can achieve its tasks effectively. This location information can be
obtained by providing suitable uncertainty models of sonar readings.

Map updating algorithms need to be dynamic so the robot does not have to
stop to collect sensory data used to update the map [48]. Sonar based map updating
algorithms must take into account the uncertainty associated with sonar readings.
Relying on the robot’s odometers to update the map is not a practical solution since
odometer errors accumulate while the robot is navigating [46, 47]. Therefore, map
updating algorithms must be designed to work with sensor based location updating
algorithms to make sure that the robot’s location is updated while the map updating

process is taking place.

1.4 Objectives, Methodology and Contributions

1.4.1 Objectives

This thesis aims to prdvide sonar based dynamic algorithms for global localization,
and concurrent localization and map updating problems. These algorithms rely on
sonar sensors which are inexpensive. However, these sensors have drawbacks that
introduce uncertainty to the readings provided by the sensors. Therefore, appropri-
ate uncertainty models are introduced to represent the uncertainty associated with
sonar readings. These models are used in the proposed algorithms to estimate the

robot’s location and update its map.
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The objectives of this thesis are to:

Develop uncertainty models for sonar readings. These models represent the

angular and radial uncertainty in sonar readings.

Develop a global localization algorithm.

Develop concurrent localization and map updating algorithms.

Verify and implement the proposed algorithms in a real environment.

1.4.2 Methodology

To overcome the beam width effect of sonar sensors, the behavior of these sensors
is studied when they detect objects in the robot’s environment. This is achieved
by providing an appropriate experimental set-up and carrying out sets of experi-
ments that enable us to understand the behavior of the sonar sensors. The exper-
iments study the behavior of the sonar readings when they are coming from walls
and corners since these two objects are available in the environment of any mobile
robot. Based on the experimental results, fuzzy logic based models (possibility dis-
tributions) are constructed to represent the angular and radial uncertainty in sonar
readings obtained by one sensor.

A solution is introduced for the false reflections problem based on combining
range information from adjacent sensors. Adjacent sonar sensors with small differ-
ences in the range readings are considered to be reflected from the same objects.

Localization is accomplished by matching the sonar readings obtained from the
robot’s environment, i.e., a local map, with the robot’s global map that is given in the
form of walls and corners. The sonar readings are associated with the appropriate
uncertainty models which are given in the form of possibility distributions (fuzzy
sets). This results in constructing a fuzzy local composite map which represents

the current proximity of the robot. This map consists of a set of components, each
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representing the shortest distance between the robot and a detected object, and the
orientation of the detected object with respect to the robot. These components are
represented by possibility distributions (fuzzy sets).

In the proposed global localization algorithm, a matching algorithm is devel-
oped to match the obtained 'fuzéy local composite map and the robot’s global map
to obtain all of the robot’s possible locations in the global map. For the matching
process to be successful, at least two non-parallel components of the fuzzy local
composite map must be associated with objects in the robot’s global map. Gener-
ally, the result of the matching process is either one candidate location or a number
of candidate locations of the robot in the global map. In the case of multiple can-
didate locations, the robot moves to accumulate range information in the form of
a new fuzzy local composite map. A new set of fuzzy locations is identified from
this map and a new hypothesized set of candidate locations is constructed based
on the old set of candidate locations. This is achieved by taking into account the
traveled distance of the robot obtained by the robot’s odometers. A fuzzy pattern
matching technique is used to match the hypothesized set of locations with the new
set of candidate locations. Then, the new candidate locations with a lower degree of
match are eliminated. This process is continued until a unique location is obtained.

The proposed fuzzy logic based location updating algorithm relies on the prin-
ciple of fusing sensor information to estimate the current location of the robot. The
current location of the robot is obtained by combining the location of the robot ob-
tained by the odometers over short traveled distances and the location of the robot
obtained based on the sonar readings. To estimate the robot’s location based on
sonar readings, the components of the fuzzy local composite map are transformed
into the global coordinates. As a result of this transformation, two sets of the fuzzy
local composite map components are identified. The first set consists of the compo-

nents that have matching components in the global map. The second set consists of
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non-matching components. Fuzzy triangulation technique is applied to each com-
ponent of the first set to estimate either the z or the y coordinates of the robot’s
location. As a result of this triangulation technique, more than one component may
describe the z or the y coordinate. Then, the principle of combining information
from different sources is applied to obtain one z and one y coordinate. The result
of this combination is the robot’s location based on sonar readings. The robot’s
location is also estimated based on the odometer readings by taking into account
the robot’s previous location and the distance traveled. Then, a fuzzy logic based
fusion technique is applied to the location obtained from the sonar readings and the
odometers. The result of the fusion operation is the current location of the robot.
This location is obtained in the form of possibility distributions (fuzzy sets). A
defuzzification technique is applied on these distributions to obtain crisp values that
can be used to update the robot’s odometers.

Our proposed map updating algorithm is used to update the robot’s map by
adding new line segments. This is achieved by relying on the set of non-matching
components to identify new objects in the robot’s environment. The process of
updating the robot’s environment consists of three parts: the first part is respon-
sible for initializing new line segments, the second part is responsible for creating
new line segments from initialized segments, and the third part is responsible for
updating the created line segments. Updating the robot’s map requires that the
current robot’s location is reliable. Therefore, the location updating algorithm is

implemented concurrently with the map updating algorithm.

1.4.3 Contributions

This thesis introduces models for angular and radial uncertainty of sonar readings
reflected from walls and corners; It shows how to select the appropriate uncertainty
models based on the range information and the number of adjacent sensors detecting

the same object. Then, these models are used to obtain the shortest distances
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between the robot and the detected objects in the robot’s environment. These short
distances are used in the proposed fuzzy logic based dynamic localization and map
updating algorithms to obtain the robot’s location and update the robot’s map. The
method used to construct the uncertainty models can be generalized for any robot
with a ring configuration.

Combining information from adjacent sensors solves the false reflection prob-
lem of the sonar readings. In addition, the thesis introduces reduced models of
uncertainty in sonar readings when they are reflected from the same walls and cor-
ners. The reduced models are derived based on the knowledge of the angle between
any two adjacent sensors in the sonar ring and the number of the adjacent sensors
detecting the same object.

The concept of the fuzzy local composite map is introduced. This map is.
constructed based on the sonar readings and their associated models of angular and
radial uncertainty. The fuzzy local composite map is used in the localization and
map updating algorithms to estimate the robot’s location and to update its map.

A dynamic fuzzy logic based global localization algorithm is proposed to solve
the mobile robot global localization problem where the location information is accu-
mulated while the robot is exploring its map. In this algorithm, the robot makes use
of the range information obtained while it is exploring its environment and locates
itself in a known environment. The algorithm can be implemented on any mobile
robot with a ring of sonar sensors. Using this algorithm, natural landmarks such
as walls and corners are identified and their coordinates are used to estimate the
robot’s location. In addition, identifying corners has‘an effect on the number of
steps needed to obtain a unique location. The proposed algorithm is implemented
on a Nomad 200 robot in a real environment. The implementation shows how the
robot can identify its location when it is lost in its environment. In addition, the
obtained location has a small degree of error when compared to the real location of

the robot. This is due to modeling the uncertainty of sonar readings based on the

20




actual behavior of sonar.

A dynamic fuzzy logic based location updating algorithm is proposed to enable
the robot to update its location while navigating its environment. This algorithm
does not rely on artificial landmarks either. The proposed algorithm takes into
account the false reflections and the uncertainty associated with sonar readings, and
it is generalized for robots with a ring configuration. Moreover, the algorithm does
not depend on large amounts of sonar data to be used in the location updating
process. The proposed location updating algorithm is tested on a Nomad 200 robot
in a real environment. Experimental results are compared with the results obtained
by relying only on odometers to estimate the robot’s location. These experiments
show that the proposed algorithm has a small degree of error in the estimation of
the robot’s location.

A map updating algorithm is proposed to enable the robot to update its
global map while navigating. The proposed algorithm does not wait to obtain large
amounts of sonar data in order to establish line segments. It is a real-time algorithm
where sonar readings reflected from new objects are used immediately to initialize,
create and update line segments that represent the new objects in the environment.
In addition, the algorithm is able to handle the uncertainty associated with sonar
readings. The proposed algorithm is implemented on a Nomad 200 mobile robot

and the effectiveness of the algorithm is demonstrated experimentally.

1.5 Thesis Organization

The thesis is organized as follows:

e Chapter 2 deals with sonar sensors, their operation principles, uncertainty,

and the factors that affect their performance.

e Chapter 3 reviews different concepts of uncertainty, different methods to model

uncertainty, fuzzy logic, fuzzy sets, the operations of fuzzy sets, possibility
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theory, and the construction of possibility distributions. These concepts are

necessary for modeling sonar sensors’ uncertainty.

e Chapter 4 is based on the possibilistic approach, and models of angular and
radial uncertainty of sonar sensors are constructed. These models are obtained
in the form of possibility distributions. These distributions are used to iden-
tify the detected objects. This is achieved by estimating the position and

orientation of the detected objects.

e Chapter 5 includes a description of the proposed fuzzy logic based localization
algorithms. The first section of this chapter proposes a fuzzy logic based
localization algorithm as a solution for the global localization problem. In
the second section algorithms for the location and map updating problems are
proposed. The location updating algorithm is implemented concurrently with

the map updating algorithm.

e Chapter 6 implements the proposed localization and map updating algorithms
on the Nomad 200. The experimental results and a discussion of the these

results are reported in this chapter.

e Chapter 7 concludes the thesis and introduces guidelines for future work.
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Chapter 2

Sonar Sensors

2.1 Introduction

This chapter introduces different aspects related to sonar sensors. Sonar physical
principle of operation is explained, the design of sonar sensors is introduced, different
factors that affect the performance of sonar sensors are discussed, and different types
of uncertainty resulting from the effect of these factors are identified.
Exteroceptive sensors mounted on any mobile robot are used to enable the
robot to sense and explore its surroundings. Undoubtedly, the most popular exte-
roceptive sensors used on mobile robots are sonar sensors. This is mainly due to
their low cost and their capability of providing real time range data. Their oper-
ation is based on the time-of-flight (TOF) principle using the properties of sound
waves. Understanding the behavior of sonar sensors is very important to engineer
models that can deal with the errors obtained when we use these sensors for mobile
robot applications. This will enable us to avoid using expensive sensors, yet still
achieve a high level of performance. In mobile robot applications, it is important to
keep the cost of the mobile robot as low as possible so it is affordable for practical

applications such as cleaning, mail delivery, painting, and material handling.
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2.2 Time of Flight Measurement (TOF)

Time-of flight (TOF) range finders measure the round-trip time needed by a pulse
of emitted energy to reach a reflecting object and echo back to a receiver. Time of
flight measurements provide an easy and direct way of obtaining range data without
expensive processing.

An ultrasonic range finder is an example of a sensor that uses the time of
flight measurement principle. This type of sensor is known as Sonar, which stands
for SOund Navigation and Range. Sonar was initially developed to be used in un-
derwater applications [49]. However, these sensors, after modification, are used for
airborne applications such as in the case of mobile robots. Most conventional sonar
ranging systems employ a single transducer that acts as both a transmitter and
receiver. This is called a monostatic transceiver. After the sonar sensor emits sound
waves, a void period follows during which the internal circuitry is reset. The trans-
ducer then becomes a receiver, receiving the detected echos in a time variable gain
amplifier. This amplifier has a gain factor that increases with time to compensate
for the attenuation of sound in air. The output of the amplifier is then sent to a
thresholding circuit as shown in Figure 2.1. The time-of-flight (TOF) measurement
is obtained by measuring the difference in time from the beginning of the pulse
transmission to the first time the threshold exceeded. The traveled distance d is

obtained as [50]:
vt
2

where v is the speed of sound in air (343 m/s) and t is the round-trip time of

d

the sound wave. The minimum range of the transducer is determined by the time

required for the transducer to switch from transmitter to receiver.
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Figure 2.1: The Polaroid ultrasonic ranging system [51]
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2.3 Sonar Sensor Design

Sonar transducers are usually modeled as a flat piston of radius a in an infinite baffle.
The piston is vibrating at a certain frequency f and yielding acoustical energy with
a wave length A\. The wave length is directly proportional to the speed of sound as
follows:

A= —
f

When the radius of the transmitting aperture a is much larger than the acoustic
wavelength A, the acoustic waves propagate in the form of a beam as shown in Figure
2.2. The obtained beam has two different regions, the first of which starts at the
surface of the sensor and ends at the range approximately equal to %; this region is
called the near zone. The second region is called the far zone and starts just after
the near zone. In the far zone region, the beam diverges with half-angle 3, which is

obtained as:

/Bo = sin~* (%];/l)

From this equation it is clear that the beam width is a function of the wave-
length of the acoustic pulse. Since the wavelength depends on the frequency, so
does the beam width. This means that a narrow beam width can be obtained with
a high frequency of emitted acoustic energy. However, practically it is impossible
to eliminate the presence of this beam width. An ideal range sensor is one that has
no beam width and has a high range accuracy independent of the surface charac-
teristics of targeted objects. This type of sensor is called a ray-trace scanner [51].
Many mobile robot researchers deal with sonar as a ray-trace scanner [35, 34, 36, 41]

which does not represent the actual behavior of sonar sensors.

2.4 Performance of Sonar Sensors

The performance of a sonar sensor is affected by the following factors:
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Figure 2.2: Radial beam pattern of the sonar transducer.

e Beam Width
The presence of the beam width has an effect on the reliability of data obtained
by a sonar sensor. The beam width is responsible for two major types of
uncertainty in sonar readings. The first type results from the fact that when
the sonar sensor is used to measure the distance of a certain object from the
sensor, it is assumed that the sonar beam detects the portion of the object
that is along the line of sight of the sensor. However, according to the presence
of the beam width, the portion of the object closest to the beam is detected.
Therefore, the reading provided by the sensor may not represent the actual
distance between the sensor and the object. The second type of uncertainty is
related to the direction of the detected objects with respect to the line of sight
of the sensor. It is assumed that the direction of the detected object is the
same as the incidence angle of the sensor. However, since the presence of the

beam width causes detection of the portion of the object that is not along the
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line of sight of the sensor, the direction of the detected portion of the object
is within the beam width of the sensor. Therefore, we can define two types of
uncertainty related to sonar sensors; angular and radial uncertainty. Certainty
refers to the degree of possibility that the value of a physical parameter belongs
to a certain interval. In the case of sonar sensors, the direction of the detected
object belongs to the interval that represents the beam width with different
degrees of possibility. Similarly, the set of possible values of the position of the
detected object is represented by an interval where each element belonging to
this interval has a certain possibility of being the actual position of the object.
Chapter 4 demonstrates we show how to construct the angular and radial

uncertainty models associated with sonar readings.

1. Radial Uncertainty
When a sonar sensor is pointing in a normal direction at a wall, the error
in the readings obtained by the sensor is mainly due to environmen-
tal factors (temperature, humidity, etc.) discussed later in this chapter.
However, when the sensor is directed at a certain angle from the surface
normal of the wall, the effect of the beam width starts to contribute to
the error in the sonar readings. Consider the sonar sensor in Figure 2.3
which has a beam width described by the angle 8. If the sonar beam
is directed at a certain incidence angle -y from the surface normal of the
wall, then the expected reading is the measurement of the distance along
the line of sight of the sensor. However, due to the fact that the beam is
reflected from the portion of the target closest to the sensor, the reading
obtained by the sensor is the measurement of the distance between the
sensor and the first detected part of the object. The difference between
the expected reading and the reading given by the sensor is defined as the
radial uncertainty. The radial uncertainty is affected by the value of the

incidence angle v and the beam width 8. The radial runcertainty has a
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noticeable effect on the location information provided by a mobile robot

that is relying on the sonar to estimate its position.

Detected Object
Expected
Sonar beam Reading
Measured
Reading
o
Sonar sensor

Figure 2.3: The effect of the beam width on the sonar readings.

2. Angular Uncertainty
As the beam width contributes to the error in the readings obtained by
the sonar sensor, it also contributes to the measurement error in the
direction of the detected objects. Due to the nature of the beam of the
sonar, it can not be considered as a ray-trace scanner. The direction of a
detected object can be described as within the beam width of the sensor.
In other words, it is impossible to describe the direction of the detected
object by using crisp values. For example, in Figure 2.3 we can not say
that the direction of the detected object is -y, however, we can say that
the direction of the detected object belongs to the interval [y + g, v - g]
This interval represents the angular uncertainty of the sonar sensor. The
angular uncertainty affects the performance of sonar based localization
and navigation algorithms. In localization, the robot orientation which

is basically estimated from the direction of the objects detected by sonar

29




will have errors. In navigation, the beam width can make the robot view

small objects as wider, and openings as closed passages.

e Target Characteristics
Kleeman and Kuc [32} introduce a classification of the types of surfaces in-
cluded in any mobile robot’s environment. The classification is introduced
for two reasons: the first factor is surface irregularities, and the second factor
is the wavelength of the acoustic signal A. Surface irregularities are said to
have Gaussian distribution with a zero mean and a standard deviation of o,.
According to these factors, there are three types of surfaces. The first type is
a smooth surface where o, << A. When an acoustic pulse detects a smooth
surface it echos back with the same incidence angle. The detection of the re-
flected pulse occurs when it falls on the receiver element and produces a signal
with an amplitude greater than the threshold value. This kind of reflection
is called specular reflection or mirror-like reflection. In a mobile robot’s en-
vironment, most of the objects can be classified as smooth surfaces and can
include: metallic desks, painted walls, and doors. The second and third types
are moderately rough and rough surfaces, where o; = A and g; >> ) respec-
tively. For rough and moderately rough surfaces, part of the echo energy is
scattered in different directions due to surface irregularities. The energy of the
echo pulse reflected from these surfaces is less than that of a smooth surface.
The reflection of the acoustic pulse from rough or moderately rough surfaces
is called diffused reflection. Outdoor envirbnmental objects such as concrete

and textured walls are classified as rough surfaces.

Each surface has a certain angle after which the echo of the directed sonar
beam is not reflected to the receiver. This is due to the fact that the surface
normal of the object comes out of the beam boundaries as the incidence angle

of the sonar beam becomes shallow as illustrated in Figure 2.4. This angle
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is called the critical angle and it is a function of the operating frequency and
surface roughness. If the incidence angle is more than the critical angle of the
surface the reflected pulse may not be detected or it will be detected after being
bounced off some objects in the environment as shown in Figure 2.5. The latter
phenomenon is called false reflection. False reflection occurs when an object
is detected far from its real location; they can be eliminated by combining
readings from consecutive sensors. If a set of adjacent sensors provides close
readings, this means their readings are not false reflections. This is explained

in more detail in Chapter 4.

Reflected
signal

Object

S

Sonar sensor

Figure 2.4: The incidence angle increases above a certain critical angle and reflected
waves are no longer detected by the sonar sensor

e Environmental Phenomena

Sonar readings are affected by the following environmental phenomena:

1. Atmospheric Attenuation

The power of the acoustic wave depends on the traveled distance. The
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Figure 2.5: False reflections.

following equation describes this relation:

P,
P= A7 R?

(2.1)

where P is the intensity (power per unit area) at distance R, and F is
the maximum (initial) intensity. The medium in which the sound waves
travel also affects the power of the acoustic wave. The following equation

describes this effect:

P = P %F (2.2)

where k is the attenuation coefficient for the medium. The variable k is
affected by the humidity and dust existing in the air, and is also affected
by the operating frequency. To obtain the governing equation for the two

effects, the above two equations are combined:
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P 2R
P= W (2.3)
This equation shows that the intensity is inversely proportional to the
square of the traveled distance. The farther the distance traveled, the
weaker the power of the acoustic wave which means the weaker the echo.

This will affect the reliability of the measured distance obtained by the

sonar in terms of radial uncertainty.

2. Temperature
Temperature affects the speed of sound in the air. This will directly affect
the data obtained by sonar. However, this effect can be eliminated by
using a correction factor based on the ambient temperature, which can

be measured by an external sensor mounted on the robot.

The correction of range is based on the ambient temperature in the prox-
imity of the sensor. However, there is a possibility of a temperature
gradient between the sensor and the target which will affect the reliabil-
ity of the sonar readings in terms of radial uncertainty. This uncertainty

can not be eliminated.

The next chapter reviews different approaches for uncertainty modeling. Adopted
is one of the approaches developed by Molhim [52] for modeling the radial and angu-
lar uncertainty in sonar readings. These models are used to correct sonar readings

when used for mobile robot localization.
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Chapter 3

Fuzzy Logic Based Uncertainty
Modeling

3.1 Introduction

This chapter addresses different definitions of uncertainty. In addition, there are
reviews of traditional and new approaches to modeling uncertainty. We focus on
the new approaches that belong to “General Information Theory”, which includes
mainly fuzzy logic and possibility theory. Then, a review of the different aspects
associated with fuzzy logic theory such as fuzzy sets and their basic operations is
discussed. Different concepts related to possibility theory such as possibilistic mea-
sures and their distributions are also investigated. We explain how to construct
possibilistic histograms based on interval values set statistics obtained from experi-
mental data and their empirical random sets. Demonstrated next is how continuous
approximation between the candidate points of possibilistic histograms can be used
to obtain possibility distributions (fuzzy sets). |

Next, we review different points of view about the definition of uncertainty,

its types, and causes according to Zimmerman {53], Klir [54], and Dubois and Prade

[55].
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3.1.1 Zimmerman’s Point of View

Zimmerman [53] defines the “certainty” as “the case when one has the appropriate
quantitative and qualitative information to describe, prescribe or predict determin-
istically and numerically a system, its behavior or other phenomena”. Anything not
described by this definition shall be called “uncertain”. Furthermore, Zimmerman
introduces a classification of uncertainty causes based on the quality and quantity

of the available information. He classifies the causes of uncertainty as follows:

e Lack of Information:
Lack of information may be considered the most frequently occurring type of
uncertainty. For example, in decision logic one calls “decision under uncer-
tainty” the case in which a decision making process lacks information about
the possible states of nature that may occur. This kind of unavailable infor-
mation can be considered a quantitative lack of information. The counterpart
of this kind of information lack is qualitative. With qualitative, the decision
making process has information about the probabilities of the occurrence of
various states but is not sure which state will occur; this is called “decision
making under risk”. Another situation that can be described by the lack of
information is “Approximation”. This depends on the situation presented.
For instance, one can decide that the available information is sufficient for the
situation and he/she may not be able to or does not want to gather more
information to make an exact description. Transition from a situation of “un-
certainty” caused by a lack of information to a situation of “certainty” can be
achieved by increasing the available information or collecting higher quality

information; the ability to make the transition depends on the situation.

This study faces this type of uncertainty when dealing with the global localiza-
tion problem. Initially the robot does not have information about its location

in the global map. To overcome the lack of information, the robot then starts
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collecting more sensory information so that it can find its location in the map.

e Abundance of Information:
This is due to the capability of a system to process large amounts of data at the
same time. To reduce complexity, people tend to classify the available data in
understandable forms by using a coarser grid or rougher “granularity”, or by
concentrating on the most important features while neglecting the least useful
information for that situation. To do so, especially in scientific activities, some

kind of “scaling” is used.

An example of abundance of information exists in our proposed concurrent
localization and map updating algorithm. The readings obtained from the
sonar sensors are classified into two types: those reflected from features of the
global map and those reflected from new features added to the global map.
The first group of sonar readings are used to update the current location of
the robot. The second group of sonar data is used to update the global map

in terms of new line segments.

e Conflicting Evidence: |
bThis situation occurs when the available information describing two different
behaviors of a system conflicts. The reason for this conflict may be erroneous
available information, it may also be information concerning irrelevant features
of the system being used, or the model which the observer has of the system is
wrong. In this situation, correcting the available information can initiate the

transition from “uncertain” to the state of “certain”.

The false reflection phenomenon of sonar readings is a good example of con-
flicting pieces of evidence. When a sonar sensor is used to measure the distance
between the robot and any object in the environment, the readings obtained
by the sonar may not represent the actual distance between the robot and

the object due to the false reflection phenomenon. To overcome this type of
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uncertainty, the readings obtained from consecutive sensors are considered to

be able to estimate the actual distance between the robot and the object.

e Ambiguity:
Ambiguity is a situation in which certain information has a different meaning
based on the situation. From a mathematical point of view, it is a situat.ion
in which we have a one-to-many mapping. This type of uncertainty can be
classified under lack of information because adding more information about

the situation may put us in a situation closer to certainty.

This type of uncertainty is common in the global localization problem; it exists
in situations where the robot matches its local map to the global map and
more than one match is obtained. In this case, the robot attempts to reduce
the number of candidate locations by céllecting more information through the

exploration of its environment.

e Measurement:
Measurement means describing the physical properties of a system or object;
these may include weight, temperature, length etc. The precision of the mea-
sured quantity depends on the accuracy of the used tools. The quality of
measuring technology has increased with time but it has not achieved perfec-
tion. In this situation there is uncertainty about real measures and the only

available information is the indicated measurements.

This is a typical example of the accuracy of sonar readings when used to
estimate the distance between the robot and any object in the environment.
Due to the factors mentioned in Chapter 2, the measured distances by sonar

are different from actual distances.

o Belief:
This cause of uncertainty appears when subjective information is available as a

kind of belief in a certain situation. This belief is built by an observer (expert)
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from past subjective information about the system or by statistical data about

the system.

3.1.2 Kiir’s Point of View
Klir [54] found that there are six definitions of “uncertain” in the dictionary:

e not certainly known, questionable, problematical.

vague, not definite or determined.

doubtful, not having certain knowledge, not sure.

ambiguous.

not steady or constant, varying.

liable to change or vary, not dependable or reliable.

When the definitions underwent a more detailed investigation, Klir found that
uncertainty can be captured by two classes; vagueness and ambiguity. The former
is related to the difficulty of making sharp or precise distinctions in the world. The
latter is associated with one-to-many relations which means situations with two or
more alternatives where the choice between them is left unspecified. In addition,
Klir introduced a recent definition of uncertainty based on its connection to infor-
mation theory. The most fundamental aspect of this connection is that uncertainty
included in any situation is a result of an information deficiency. Information may
be incomplete, imprecise, fragmentary, not fully reliable, vague, contradictory, or

deficient in some other way.

3.1.3 | Dubois and Prade’s Point of View

Dubois and Prade state that imprecision and uncertainty can be considered as two

complementary aspects of a single reality; the reality of imperfect information. It
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has been observed that much of this information often cannot be obtained as pre-
cise and definite for various reasons; imperfect measuring instruments, the fact that
the sdle source of information is a human being, and information that is imprecise,
incoherent, and in many cases incomplete. Dubois and Prade clearly distinguish
between the concepts of imprecision and uncertainty: imprecision is associated with
the contents of a piece of information, while uncertainty is associated with its truth.
Imprecision refers to a lack of knowledge about the value of a physical parameter.
The possible values of the parameter are represented by a certain interval obtained
experimentally or from an expert. This interval represents the imprecision in the
physical parameter. Certainty refers to the degree of truth that the value of the
physical parameter belongs to a certain interval. In other words, each element be-
longing to this interval has a certain possibility to be the actual value of the physical
parameter. This possibility is associated with a weight that is derived from the avail-
able knowledge about the physical parameter. When there are different imprecision
intervals representing the value of the physical parameter, these intervals are used
to construct a new interval without sharp boundaries. This interval is represented
by a fuzzy set as is explained later in this chapter. Each element belonging to this
interval has a degree of truth for being the actual value of the physical parameter.
Therefore, this new interval represents the uncertainty of the physical parameter.

Uncertainty can be judged by means of different qualifiers such as probable,
possible, or necessary. Probable has two different meanings: one is related to sta-
tistical experiments and the other is related to subjective judgment. Like probable,
possible has two interpretations; physical (as a measure of material difficulty of per-
forming an action), and subjective judgment. On the other hand, necessary has a
much stronger notion, in either the physical or the subjective sense. A piece of infor-
mation will be called precise when the subset associated with its value or component
cannot be subdivided.

There are different qualifiers associated with imprecision, for example, vague,
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fuzzy, or ambiguous. Ambiguity is allied with language. But vagueness or fuzziness
in a piece of information resides in the absence of a clear boundary for the set of
values attached to this piece of information.

From the above overview about uncertainty and its causes, it is our opinion
that Dubois and Prade’s definition of uncertainty is more comprehensive and prac-
tical than the others. The readings obtained from sonar sensors contain uncertainty
in their values and directions. This uncertainty is captured using sonar data which
is imprecise due to the factors that affect the behavior of sound waves in the en-
vironment. The direction from which the sonar readings are obtained belongs to
the field of view of the sensor but with a degree of truth. Similarly, there is un-
certainty in the distance of the detected objects. Chapter 4 establishes models of
uncertainty for the distance of the detected objects (radial uncertainty) and their
directions (angular uncertainty) based on the imprecise sonar data collected through

our experimentation.

3.2 Modeling Uncertainty

3.2.1 Traditional Models for Uncertainty

Traditionally, two methods of representing imperfect information were used: proba-
bility theory and what is known as interval analysis. Probability theory is a tested
mathematical theory that has a clear set of axioms and has been developed exten-
sively. The basic axioms in probability is that the probability of disjoint events
can be added. There are three schools that interpret probability theory in differ-
ent ways. The first school’s interpretation is based on the “Calculus of Chance” in
games of chance where the probability of an event is defined as proportional between
the number of favorable cases and the total number of possible cases. The second

interpretation belongs to what is known as the “Frequencies School” in which the
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probability of an event is defined as the limit of the frequency of this event’s appear-
ance. The third school is called the “Subjective School”, by which the probability is
defined as proportional to the sum an individual would like to pay if a proposition
that he asserts prove false. In mobile robot applications, the “Frequencies School”
is used for interpretation, the modeling of sensory data and making decisions about
the robot’s environment, and the actions taken to achieve certain tasks [56, 57, 58].

Interval analysis, used extensively by physicists tends to represent the inac-
curacy in a measuring instrument in the form of interval through the measured
quantity. Mathematically, one evaluates the image of a function whose arguments
are subsets. Interval analysis has no gradation; while one does not know the exact
value of a parameter, one does know the exact limits of its domain of variation.

It commonly occurs that imprecision of the error-of-measurement kind is present
at the heart of a series of trials intended to exhibit a random phenomenon. In such
cases, it can be observed that one can hardly represent the information in a purely
probabilistic form without introducing further hypothesis. In fact, a hypothesis fun-
damental to the applicability of probability to statistics is that there should be a
relation between the sample space and the event space; to every event there is an
associated set of sample points that realizes the event (which is nonempty if the
event is not impossible), and for every pair of distinct events there is at least one
sample point that realizes one but not the other. This hypothesis therefore allows
the sure event to be partitioned into elementary events, each corresponding to a
specific sample point. In the case of the collection of statistical data, this amounts
to supposing that the result of each experiment can be associated with one and only
one element of this partition.

A probabilistic model is suitable for the expression of precise but dispersed
information. Once the precision is lacking, one tends to question the validity of the

model.
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3.2.2 New Methods for Modeling Uncertainty

Nowadays, non-probabilistic mathematical methods for representation of uncer-
tainty are developed. Klir [59] calls these methods “General Information Theory
(GIT)”. GIT consists of fuzzy sets, systems, and logic [60]; fuzzy measures [61}; ran-
dom set [62] and Dempester-Shafer evidence theory [63]; possibility theory [64]; and
others. The importance of such theories become evident when used in engineering
applications. Fuzzy systems theory is the most prevalent component of GIT. Tradi-
tional fuzzy semantics is based on the interpretation of fuzzy sets as representations
of human and cognitive categories. The other components of GIT are measurement
methods other than cognitive modeling.

In this thesis we model the uncertainties associated with sonar readings us-
ing possibility distributions. These distributions are obtained based on possibilistic
measures which are defined based on evidence theory. In addition, these distribu-
tions are fuzzy sets. Therefore, next we introduce the concept of fuzzy logic and
fuzzy sets. In addition, we introduce two different forms to represent fuzzy sets.

Then, basic operations on fuzzy sets are reviewed.

3.3 Fuzzy Sets and Logic

Fuzzy sets were introduced in 1965 by Dr. Lotfi Zadeh [65], a professor at the
University of California in Berkeley, as a means to model the uncertainty of the
real world. They are used to represent imprecise, ambiguous, or vague information.
Fuzzy logic which was introduced in 1973 by the same professor [66], is a superset
of conventional Boolean logic that has been extended to handle intermediate values
between ”completely true” and ”completely false”. -

Boolean logic has two values often defined as true or false, on or off, black or
white. However, in the real world there are many situations where events are not

black or white but some shade of gray. Fuzzy logic is a continuous form of logic
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that allows us to describe the shades of gray. If you are asked to describe your day
in Boolean logic it would be good or bad. Fuzzy logic might recognize the day as
being very bad, bad, poor, average, better than average, good, very good.

Zadeh defines the process of “fuzzification” as a methodology to geﬁeralize
any specific theory from a crisp to a fuzzy form. This is achieved by applying the
“extension principle” [65]. Researchers have applied this principle on many areas
such as control, reasoning, mathematical programming, decision making, pattern
recognition, and many others.

In addition to its role in modeling and processing imprecise or ambiguous in-
formation, fuzzy logic is used to model complex systems. These systems are difficult
to be described using mathematical relations. In addition, mathematical modeling
becomes more difficult when there are uncertainties and ambiguities in the systems
to be modeled. The ideas of fuzzy modeling are found in the early papers of Zadeh.
Zadeh’s approach was later expanded into fuzzy systems modeling by Sugeno and
Yasukawa [67], Bezdek [68] and Chiu [69]. Fuzzy modeling is a qualitative modeling
scheme by which we qualitatively describe system behavior using natural language.
The relation between the inputs and outputs of the system is given in the form
of IF-THEN rules. There are two approaches of fuzzy systems modeling: one is
subjective where the system behavior is established vbased on the knowledge of an
expert [70] and the other is objective where the system behavior is established from

input-output data via fuzzy clustering algorithms [71, 72, 73].

3.4 Classical and Fuzzy Sets

Let U be the universe of discourse which consists of all possible elements that are
associated with a particular context or application. A crisp set A defined on U may
be represented by listing all the elements that satisfy the definition of A in the case
that A is finite (the list method). If A is infinite, it can represented by specifying
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the rules that must be satisfied by elements of U to be considered elements of A
(rule method). The former method is limited. On the other hand, the later method
is more general. The membership function p4(z) of a classical set A defined on U

by using the rule method is defined by:

1, if ued
0, if u¢A

pa(u) =

This means that an element u is either a member of set A (with pa(u) = 1) or not
a member (with pa(u) = 0). In classical logic, the membership value of u can be
taken as the truth value of the proposition “u belongs to A”. In this situation there
is only one possible truth value of this proposition: false or true.

A fuzzy set, introduced by Zadeh [65], is a set with graded membership.
In a fuzzy set each element of U belongs to the set A with a membership degree
characterized by a real number in the closed interval [0,1} (i.e., pa(u) € [0,1]).
An element may belong to the fuzzy set with lesser degree than another element,
however, they both belong to the same fuzzy set. In fuzzy logic, the membership
value of u represents the degree of truth of the proposition “u s A”.

Since a fuzzy set may contain elements with zero degree membership and
elements with one degree membership, then we can consider the concept of a crisp

set to be a special case of the more general concept of a fuzzy set.

3.4.1 Basic Characteristics of Fuzzy Sets

We now introduce some important characteristics that are linked to fuzzy sets. These

characteristics are shown in Figure 3.1 along with the following explanation:

1. The support of a fuzzy set A within a universal set U, is the crisp set that

contains all elements of U that have nonzero degree membership in A, that is:
supp(A) ={u €U | pa(u) >0}
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2. The core of a fuzzy set A within a universal set U, is the crisp set that contains

all elements of U that have one degree membership in A, that is:

core(A) ={ueU |pa(u)=1}

Note that the core of a fuzzy set is a subset of its support.

3. The height of a fuzzy set A is the largest membership grade obtained by any

element in that set, that is :

h(A) = sup,epia(w)

A fuzzy set with a height equal to 1 is called normal and with h(4) < 1

subnormal.

4. An a-cut of a fuzzy set is a crisp set A, that contains all the elements in U

that have membership values in A greater than or equal to ¢, that is:
a—cut(Ad)={ueU |pa(u)>a}

The core of a fuzzy set is an a-cut with o = 1.

3.4.2 Representation of a Fuzzy Set

There are two methods to represent fuzzy sets:

1. Set of ordered pairs representation [65]: a fuzzy set A in U may be represented
as a set of ordered pairs of a generic element u and its membership value, that
is:

A={(u, pa(v)) |ueU}

When U is discrete A is commonly written as:

m

A=) palw)/u = pa(us)/ur + -+ + pa(tm)/tm

=1
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Figure 3.1: The support, core, alpha-cut and height of a fuzzy set

In this equation the summation sign does not represent arithmetic addition, it
represents the collection of all points v € U with the associated membership

function pa(u).

When U is continuous (for example, U = R), A is commonly written as:

A= [ pa(w/u
u
where the integral sign does not represent integration; it represents the collec-

tion of all points u € U with the associated membership function p4(u).

Example: Let A = integer close to 10, then:
A=1/74+.5/8+.8/9+1/10+ .8/11+ .5/12+ .1/13

Three points to note from A:

e The integers not explicitly shown all have membership values equal to zero.

e The membership values were chosen by a specific individual, except for the
unity membership value when x = 10, they can be modified based on our

own personal interpretation of the phrase “close.”
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e The membership function is symmetric about z = 10, because there is no
reason to believe that integers to the left of 10 are close to 10 in a different
way than are integers to the right of 10. But again, we are free to make

other interpretations.

2. Functional representation: In this representation functional description is used
to represent fuzzy sets. An example is the functional description of a trapezoidal-

shaped fuzzy set shown in Figure 3.2:

;l“;':% If ag<u<ay
/J'A(U) = 1 If as<u<ag
1-— ‘%&_“7“4 If az<u<ay
p(w)
1.0
ai as as aq u

Figure 3.2: Trapezoidal fuzzy set

Comparing the above two types of a fuzzy set representation, it is obvious that
the ordered pairs representation will be chosen for computer implementation. Due
to complexity of the operations when using functional representation discretizations

are necessary in practical applications.
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3.5 Classical Set Operators

In classical set theory there are three main operations that are defined on classical
sets; intersection, union and complement. These operations are defined by the two-
valued logical operators and, or and not, respectively. They are defined for the two

sets A and B which are defined on U as follows :

e The union of A and B, represented as AUB, is a new set that contains all of the
elements in either A or B. The membership value of any element belonging to
this new set is given as paup(u) = max(pua(u), pp(u)). For example, if u € A
(pa(u) =1) or u € B (up(u) = 1), then paup(u) = 1. Similarly, paup(u) =0
if u ¢ A (pa(u) =0) or u ¢ B (up(u) = 0). The union operation can be
defined as:

AUB={u|lue A OR wue€ B}

e The intersection of A and B, denoted AN B, contains all the elements that are
simultaneo;lsly in A and B. The membership value of any element belonging
to this new set is given as panp = min(ua(u), up(u)). For example, if u € A
and u € B, then psnp = 1. Similarly, pang = 0if u ¢ A and v ¢ B. The

intersection operation can be defined as :

ANnB={u|lu€e A AND wue€ B}

e The complement A is a new set contains all the elements that are not in A.
The membership value of any element belonging to this new set is given as
pi(u) = 1 — pa(u). For example, if u € A, then pz(u) = 0. Similarly,

pi(u) =1if u ¢ A. The complement operation can be defined as:

A={u] u¢ A}
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In classical logic, the logical operators and, or and not are used to evaluate
the truth value of different propositions. The truth tables for these logical operators

are given as follows:

A|B|ANB
010 0
110 0
01 0
111 1

Table 3.1: The truth table of the logical operator AND

A|B|AUB
010 0
110 1
0|1 1
1411 1

Table 3.2: The truth table of the logical operator OR

Al A
110
011

Table 3.3: .The truth table of the logical operator NOT

In the next section, we extend the operators of classical set theory to fuzzy
sets operators. In Chapter 5, the operators of fuzzy sets are used in our fuzzy logic
based localization algorithms to combine shortest distance information provided
by the sonar sensors. This information is used to estimate the robot’s location.
In addition, fuzzy operators are used in the fusion process of the fuzzy location
information provided by the sonar sensors and the odometers to update the current
location of the robot. The shortest distance information takes into account the
uncertainties in sonar readings which are modeled by possibility distributions (fuzzy

sets) as shown in Chapter 4. Therefore, the shortest distance information is given
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in the form of possibility distributions (fuzzy sets) and so is the estimated robot’s

location.

3.6 Basic Operations on Fuzzy Sets

The extension of standard operators of classical set theory such as union, intersec-
tion, and complement to the fuzzy sets operators is not unique, due to the extension
of the range of membership function to the interval [0, 1] instead of the restricted
set of {0,1}. The following are some examples of the these operations.

Consider the two fuzzy sets A and B defined on U:

e The union of A and B is a fuzzy set in U denoted by AU B, whose membership

function is defined as:

paup(u) = max(pa(u), pp(u)]

This is a natural extension of the crisp union operator defined on classical
sets. Note that Vu € A,0 < pa(u) < 1. Similarly, Vu € B,0 < pp(u) < 1.

Consequently, 0 < paup(u) < 1.

e The intersection of A and B is a fuzzy set ANB in U with membership function

defined as:
tanp(u) = minfua(u), pp(u)
° The complement of A is a fuzzy set in U denoted by A, whose membership
function defined as
pi=1- palu)
These basic operations are shown in Figure 3.3.
In fuzzy logic, the linguistic operators and, or and not are modeled through

the use of fuzzy set operators: intersection, union and complementation, respec-

tively. Intersection, union and complementation are also interchangeably used with
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conjunction, disjunction and negation, respectively. These operators are used to
evaluate the truth value of fuzzy set propositions such as “ X'is A AND'Y is B”, or
“X is A ORY is NOT B”, where A and B are fuzzy sets.

In the classical set theory there is only one unique definition for each operation.
However, there are number of possible definitions that can be chosen to implement
intersection, union and complementation in fuzzy set theory. Triangular norms (t-
norms) and triangular (t—conofms), developed by Schweizer and Sklar [74] in the
context of statistical metric spaces, are adopted and used as fuzzy set intersection
and union operators. A significant body of literature has appeared concerning the
appropriate definitions for intersection and union of fuzzy sets [65, 75, 76, 77, 78, 79].
Zadeh [65] has stated that the selection of fuzzy operators depend on the situation.
For example, when we take the intersection of two fuzzy sets, we may want the larger
fuzzy set to have an impact on on the result. However, if we apply the intersection
operator as defined above this objective will not be achieved. Complementation
can also be defined using different functions. These functions are called negation
functions.

In the following three subsections we introduce the definitions of negation

functions, t-norms and t-conorms, respectively.

3.6.1 Negation Functions
The complement A of a fuzzy set A can be defined point-wise by a mapping n: [0, 1] —
[0,1] as

pi(u) = n{pa(u)), forallu e U (3.1)

where A denotes the complement of A.

Bellman and Giertz [80] suggest the following axioms as being natural for a

negation operation n:

N1. n(0) = 1; n(1) = 0;
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N2. n is strictly decreasing and continuous mapping;

N3. n is involutive, i.e., n(n(a)) = a for all a € [0, 1].

Axiom N1 is obviously for recovering crisp complementation.

It is natural to expect n(a) > n(a’) when a < @' and this is assured by N2.

Finally, the involution property N3 preserves the well-known property of com-
plementation A=A

Negation functions can be formally defined as follows: ‘

Definition 1 A function n, as defined in (3.1), is called a negation function if it is

non-increasing and satisfies axiom N1.
Definition 2 A negation function is called strict if it satisfies N2.
Definition 3 A strict negation function is called strong if it also satisfies N3.
Examples of negations
Example 1 The standard negation:

n(a) = (1 — a).

Example 2 Another strong negation, different from the standard one, is defined by
Yager [81] as:
n(a) = (1 -a?)? p>0.

Example 3 The negation function introduced by Dubois and Prade [82] does also

satisfy N1I-N3.
l1-a
= A>—1.
ma(a) 1+ Aa’ ”
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3.6.2 Triangular Norms (t-norms)

let ¢ :[0,1] x [0,1] — [0, 1] be a function that transforms the membership functions
of fuzzy sets A and B into the membership function of the intersection of A and B,

that is
t{pa(u), up(w)] = panp(u) (3.2)

For the function ¢ to be qualified as an intersection operator it must satisfy the

following axioms:

t1. Boundary condition:

t(0,0) = 0;t(a,1) =t(1,a) =a
t2. Monotonicity
t(a,c) <t(b,d) when a<b and c¢<d

Which means that the value of the conjunction should not decrease when the
value of at least one proposition increased. We should be more willing to ac-

cept “b and d” than “a and ¢.”

t3. Associativity
t(a,t(b,c)) = t(t(a,b),c)

This means that the order of conjunction is not important.

t4. Commutativity
t(a,b) = t(b,a)

This means that conjunction does not depend on the order of a, and b. This

is expected since there is no reason to assign different truth values to t(a,b),

and (b, a).
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3.6.3 Triangular Conorms (t-conorms, s-norms)

In the case of classical sets, intersection and union are related via complements by
DeMorgan laws:
ANB=(AUB)
AUB=(ANB)
In the case of fuzzy sets DeMorgan laws are also applied to establish a rela-
tionship between conjunction and disjunction via a negation function n.

For a t-norm ¢, we can define its (conjugate pair) with respect to any strong

negation n as:
t(a, b) = n(s(n(a), n(b))), , (3.3)

since n is involutive, this holds if and only if,

s(a, b) = n(t(n(a), n(b))), (3.4)

where s is caﬂed a t-conorm and it is the n-dual of a t-norm ¢ with respect to a
negation function n.

t-conorm s : [0,1] x [0, 1] — [0, 1] is a function that transforms the membership
functions of fuzzy sets A and B into the membership function of the union of A and

B, that is

sliua(), pa(w)] = pavs(u) (3.5)

For the function s to be qualified as a union operator it must satisfy the

following axioms :

s1. Boundary condition

s(1,1) = 1,5(0,a) = s(a,0) = a

s2. Monotonicity

s(a,c) < s(b,d) when a<b and c<d
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Which means that the value of the disjunction should not decrease when the
value of at least one proposition increased. We should be more willing to ac-

cept “b or d” than “a or ¢.”

s3. Associativity
s{a, 5(b,c)) = s(s(a,b), )

This means that the order of disjunction is not important.

s4. Commutativity

s(a,b) = s(b,a)

This means that disjunction does not depend on the order of a and b. This

is expected since there is no reason to assign different truth values to s(a,b),

and s(b, a).

3.6.4 Fuzzy Sets Intersection and Union: Examples

There are several examples of t-norms and t-conorms. We list here the most fre-

quently used, and important ones.

Example 4 Zadeh [65] proposes to use:
tmin(@,b) = min(a,b), as a conjunction. (minimum)

Smax(a, b) = max(a,b), as a disjunction. (mazimum)

Min-max are the most popular in fuzzy literature. They are described as non-
interactive operators. It means that if A is modified, it is not necessary that the

results of the above operations change.

Example 5 One pair of the probabilistic like operators is:
tproa.(a,b) = ab, as a conjunction. (algebraic product)

Ssum(a,b0) = a+b— ab, as a disjunction. (algebraic sum)
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Prod-sum operators reflect a trade-off between A and B, they are described as
interactive operators, because the outcome of the combination using one of these
operators depends on A as well as B, this means that any modification of A or B

will change the result of these operators.

Example 6 Bold intersection and union:
trora(a, b) = max(0,a + b — 1), as a conjunction (bold intersection).

Spota(@, b) = min(1,a +b), as a disjunction (bold union).

Example 7 Drastic product and sum:

a if b=1
tw(@,b)=4¢ b if a=1
0 otherwise

where t,, 18 a conjunction operator (Drastic product).

a if b=0
Sw(@,b) =< b if a=0
1  otherwise

where 8, 1s a disjunction operator (Drastic sum).

Next, we review the possibilistic approach for modeling uncertainty.

3.7 Possibility Theory Approaches

Possibility theory is a component of ”General Information Theory (GIT)”. Proba-
bility and possibility are logically independent, they exist in parallel and are related
within GIT in a formally analogous manner [59]: probability and possibility mea-

sures arise in Dempster-Shafer evidence theory as fuzzy measures defined on random
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sets; possibility and their dual necessity measures represent extreme ranges of prob-
ability intervals; and the distributions of all these generally non-additive measures

are fuzzy sets.

3.8 Two Approaches for Possibility theory

There are two approaches to possibilify theory; the first one is introduced by Zadeh
[83] as an extension of fuzzy set theory. The second approach is introduced by Klir
and Folger [84] based on Dempster-Shafer’s theory of evidence. Zadeh’s approach is
plausible and it deals with possibility theory as a tool for representing information.

However, the second approach introduces the possibility theory in an axiomatic way.

3.8.1 Zadeh’s Approach

This approach depends on the concept of fuzzy sets theory. Let z be a variable
that takes values in the universe of discourse U and let A be a fuzzy set in U.
The proposition “ z is A” can be interpreted as putting a fuzzy restriction on z
and this restriction is characterized by the membership function pa(u). pa(u) is
interpreted as the degree of possibility that x = u. If, for example, = represents a
person’s height and A is the fuzzy set “ tall” given that the only knowledge available
is that the person is tall “ z is A”, but we do not know exactly his height, then
1.4(180(cm)), where 180 € supp(A), could be interpreted as the degree of possibility
that the person’s height is 180 cm. Then, the possibility distribution associated

with z, denoted as Il , is defined in terms of the membership function of A as:

I (u) = pa(u)
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3.8.2 The Axiomatic Approach

Klir and Folger [84] and Klir and Yuan [60] develop the possibility theory within the
framework of Dempster-Shafer’s evidence theory. Since this approach was proposed
based on axiomatic basis, this enables the researchers to derive possibility distri-
butions, that represent the uncertainty in a certain phenomenon, based on math-
ematical properties that are associated with the possibility theory. This approaéh
is adopted in this thesis to represent radial imprecision and angular uncertainty in
sonar readings.

Next, we review the basic theories that are used to develop possibility theory.
We review fuzzy measures and evidence theofy. Then, we show how possibility
measures, used to construct possibility distributions, are derived based on evidence

theory.

3.9 Fuzzy Measures

A fuzzy measure assigns a value to each possible crisp set to which the element
in question might belong. This value indicates the degree of evidence or certainty
of the element’s membership in the set. This is different from the assignment of
membership grades in fuzzy sets. In the later case, a value is assigned to each
element in universe of discourse, signifying its degree of membership in a particular
set with unsharp boundaries. Fuzzy measure theory is not of interest of this thesis,
however, we need to introduce the concept of fuzzy measure theory to understand

its special branches; evidence theory and possibility theory.

Definition 4 (Fuzzy measures)
Given a universal set §) and the set of all its crisp subsets (power set) P(Q), a

function
g: P(Q) — [0,1]
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is defined such that g(A) indicates the degree of certainty that an element of
belongs to a certain crisp set A. In order to achieve this purpose, function g must

meet the following requirements:
gl. g(¢) =0and g(Q) =1
g2. VA, B € P (Q), if A C B, then g(4) < g(B)

The first requirement is called boundary requirement and it says that, the
empty set does not contain any element, therefore, it cannot contain the element
of our interest, either. On the contrary, the universal set, contains all elements,
therefore, the presence of our element in the universal set is sure. The second
requirement is called the monotonicity requirement, which states that the evidence
of the membership of an element is a subset of another set must be smaller or equal to
the evidence that the element belongs to the big set itself. Since both ANB C A and
ANB C B for any two sets A and B, it follows from the monotonocity requirement

of fuzzy measures that the inequality:
9(AN B) < minfg(A), g(B)] (3.6)

is satisfied for any three sets A, B, AN B € P. Similarly, since both A C AU B
and B C AU B for any two sets, the monotonocity of fuzzy measures implies that

the inequality

9(AU B) > max[g(4), g(B)] (3.7)

is satisfied for any three sets A, B, AUB € P.

3.10 Evidence Theory

Evidence theory is based on two dual non additive measures: belief and plausibility
measures. Given a universal set {2, assumed here to be finite, a belief measure is a

function:
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Bel: P(Q) = [0,1]

such that Bel(¢) = 0, Bel(2) =1 and

Bel(A1UARU. . .UA,) > > Bel(A;)— Y Bel(AjNAg)+. . .+(—1)""'Bel(A1NA;N. . .NA,)
’ < (3.8)

For each A € P(Q), Bel(A) is interpreted as the degree of belief that a given
element of {2 belongs to the set A.

When the sets Ay, As, ..., A,, in Equation (3.8) are pair-wise disjoint, the
inequality requires that the degree of belief associated with the union of the sets is
not smaller than the sum of the degrees of belief pertaining to the individual sets.
This basic property of belief measures is thus weaker version of additivity property
of probability measures. This implies that the probability measures are special cases
of belief measures for which the equality in (3.8) is always satisfied.

We can show that (3.8) implies the monotonicity requirement (g2) of fuzzy
measures. Let A C B (A, B € P(2)) and let C = B— A. Then, AUC = B and
ANC = ¢. Applying now A and C to (3.8) for n = 2, we obtain

Bel(AU C) = Bel(A) > Bel(A) + Bel(C) — Bel(ANC).
Since AN C = ¢ and Bel(¢) = 0, we have
Bel(B) > Bel(A) + Bel(C)

and, consequently, Bel(B) > Bel(A).
Let A; = A and Ay, = A in (3.8) for n = 2. Then, we can derive the following

property of belief measures:

Bel(A) + Bel(A) < 1 (3.9)

Each belief measure is associated with a plausibility measure, PI, defined by:

PI(A) =1 — Bel(4) (3.10)
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for all A € P(2). Similarly,
Bel(A) =1 - PI(A) (3.11)

Belief and plausibility measures are therefore mutually dual. However, plau-
sibility measure can also be defined independent of belief measures.

A plausibi]ity measure is a function:
PI: P(Q) — [0,1]
such that PI(¢) =0, PI(Q) =1, and

PI{(AINAN...NA,) 2 D PI(Aj)= > PI(A;UAL)+. . +(=1)"" PI(4;U45U. . UA,)
J i<k

(3.12)

for all possible families of subsets of §).
Let A; = A and Ay = A in (3.12) for n = 2. Then, we can immediately derive

the following fundamental property of plausibility measures:

PI(A)+ PI(4) > 1 (3.13)

Belief and plausibility measures can conveniently be defined by a function

m: P(2) — [0,1] (3.14)
such that m(¢) =0 énd
> m(A)=1 (3.15)
AeP(Q)

This function is called a basic probability assignment. For each set A € P(Q),
the value m(A) express the degree to which all available and relevant evidence
emphasizes the claim that a certain element of Q belongs to set A. This value m(A)
associated with only one set A does not represent any additional claim regarding

subsets of A. If there is some additional information strengthening the claim that
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the element belongs to a subset of A, }say B C A, it must be expressed by another
value m(B). .

Even though there is a similarity between Equation (3.15) and the equation for
probability distribution func‘-cion, there is a fundamental difference between them.
The latter is defined on 2, while the former is defined on P().

Basic probability assignment has the following properties:
e it is not required that m(Q) = 1;
e it is not required that m(A) < m(B) when A C B; and

e no relationship between m(A) and m(A) is required

It follows from these properties that the basic assignments are not fuzzy mea-
sures. However, given a basic probability assignment m, a belief measure and a-

plausibility measure are uniquely determined for all set A € P() by the formulas :

Bel(4) = Y. m(B) (3.16)
B|BCA

PI(A)= Y. m(B) (3.17)
B|BNA#¢

From Equation (3.16), m(A) and Bel(A) has the following meaning: m(A)
represents the degree of evidence or belief that an element belongs to the set A
alone, and Bel(A) represents the total evidence or belief that the element belongs
to A as well as to the various special subsets of A. The plausibility measure PI(A),
as defined in (3.17), has different meaning: it represents not only the total evidence
or belief that an element belongs to A or to any of its subsets, but also the additional

evidence associated with sets that overlap with A. Hence,
PI(A) > Bel(A) (3.18)
for all A € P(Q).
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Every set A € P(Q2) for which m(A) > 0 is usually called a focal element of
m. Focal elements are subsets of 2 on which the available evidence focus. When
{2 is finite, m can be fully characterized by a list of its focal elements A with the
corresponding values m(A). The pair (F,m), where F and m denote a set of focal
elements and associated basic assignment, respectively, is often called a body of
evidence.

Total ignorance is expressed in terms of the basic assignment by m(Q) = 1 and
m(A) = 0 for all A # Q. That is, we know that the element is in the universal set,
but we have no evidence about its location in any subset of Q2. It follows from (3.16)
that the expression of total ignorance in terms of the corresponding belief measure
is exactly the same: Bel(2) = 1 and Bel(A) = 0 for all A # ). However, the
expression of total ignorance in terms of the associated plausibility measure quite
different: PI(¢) =0 and PI(A) =1 for all A # ¢. This expression follows directly
from (3.17).

3.11 Possibility and Necessity Measures

Possibility theory is a special branch of evidence theory that deals with bodies of
evidence whose focal elements are nested. In this case, the plausibility measure is
a possibility measure Poss and the belief measure is a necessity measure Nec. A
possibility measure Poss is a mapping from P(£2) to [0, 1].

The necessity and possibility measures have the following properties for all A,

B e P(Q):

Nec(A N B) = min[Nec(A), Nec(B)] (3.19)

Poss(AU B) = max[Poss(A), Poss(B)] (3.20)

When we compare the above two equations with the general properties (3.6)
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and (3.7) of fuzzy measures, we can see that possibility theory is based on the
extreme values of fuzzy measures. From this point of view, necessity and possibility
measures are sometimes defined axiomatically by (3.19) and (3.20).

Since necessity measures are special belief measures and possibility measures
are special plausibility measures, they satisfy equations (3.9)-(3.11) and (3.13).

Hence,

Nec(A) + Nec(A) < 1 (3.21)
Poss(A) + Poss(A) > 1 (3.22)
Nec(A) =1 — Poss(A) (3.23)

Furthermore, it follows immediately from (3.19) and (3.20)

min[Nec(A), Nec(A)] = 0 (3.24)

max[Poss(A), Poss(A)] = 1 (3.25)

The possibility measure can be built from a possibility distribution, i.e., a

function II from Q to [0, 1] such that sup,.q I1(w) = 1. More specifically we have

VA, Poss(A) = sup II(w)
w€eA

Finding a possibility distribution from the knowledge of Poss can be achieved

by stating

I(w) = Poss({w})

In this chapter the possibility measure is used to establish possibility distri-
butions based on interval valued set statistics and their random sets. In Chapter

5, the possibility measure is used to perform fuzzy pattern matching between the
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robot’s fuzzy locations in an attempt to reduce the number of candidate locations
into one unique location.

We are now sufficiently equipped to discuss a methodology for constructing
possibility distributions from experimental data. This methodology is explained

next.

3.12  Possibilistic Approach for Modeling Uncer-
tainty in Physical Measurements

When we need possibilistic data, it is almost always preferable to collect them
in a form similar to their possibilistic representation. Thus objective empirical
measurement procedures are required that yield data in accordance with semantic
aspects of possibility theory. The additivity of frequency data results from the
specificity of observations of singleton. Therefore, we need non-specific data which
are possibility non-disjoint, and thus not yielding traditional frequency distributions.
This is the concept of set statistics originally advanced by Wang and Liu [85], and
developed more by Dubois and Prade [86, 87]. Joslyn Cliff used interval valued set
statistics, obtained from studying a certain physical phenomenon, and then their
empirical random sets, to develop a method for constructing possibility distributions
in the form of possibilistic histograms [88, 89, 90, 91, 64, 92].

In this thesis we use interval valued sets collected experimentally to construct
possibility distributions that represent the radial imprecision and angular uncer-

tainty of sonar readings.

3.12.1 Possibilistic Measurement

In this section we introduce some of the basic definitions that are necessary to under-

stand the methodology of constructing possibility distributions from experimental

66



data.
To derive a possibility distribution from an empirical source, it is necessary

to observe subsets B, C 2. These subsets are called general measuring record as

defined below:

Definition 5 (Measuring Record)
A general measuring record is a vector B = (Bs) = (B1, Ba,...,Bu), where s is

counter on M, M 1is the number of elements of E, 1<s< M, and B,’s are subsets

of Q2.

Definition 6 (Empirical Focal Set)

Given a general measuring record B, let FF := {BJ} = {B1,Bs,...,By} be an
empirical focal set derived by eliminating the duplicates from E, where j is counter
on N, N is the number of elements of B, 1<j< N, N<M, VB; € F¥ 3B, €
B, B, = B,.

Definition 7 ( Set-Frequency Distribution)
Given a general measurement record B and empirical focal set FE, C; := C(B,) s
the number of occurrences of B; in B VB; € FE. Then, a set-frequency distribution
is a function m” : F¥ — [0,1] where:

Gj E B
=——=,m; :=m"(B;), 3.26
ZBje]-'E O_] 7 ( .7) ( )

and from (3.15) it follows that:

m”(B;) =

Y. m(B;) =1

VB;EFE
This means that the set-frequency distribution is a basic probability assignment

function (Section 3.10).

Definition 8 (Random Set)
Given an evidence function m, 8 := {(Bj,m;) : m; > 0} is a finite random set

where B; C Q and m; := m(B;)
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The mathematics of the random sets is more detailed, but for our purposes,
and especially in the finite case, they can be seen simply as random variables taking
values on subsets of

Next, we show how possibilistic histograms are formed based on random sets.

3.12.2 Possibilistic Histograms

Possibility distributions derived from consistent empirical random sets can be prop-
erly described as possibilistic histograms, similar to ordinary (stochastic) histograms,
but resulting from overlapping interval observations, and thus governed by the math-

ematics of random sets.

Definition 9 (Possibilistic histograms)
Assume ST is consistent, then a possibilistic histogram is the possibility distribution

IT determined from the plausibility assignment formula (5.17).

The possibilistic histogram can be obtained as follows:

wEB; C;
M(w) = 3 m¥ = Ze_];i (3.27)
weB;

3.12.3 The form of Possibilistic Histograms

In order to analyze the properties of possibilistic histograms it is necessary to math-
ematically describe their components. The following definitions show these compo-

nents.

Definition 10 (Empirical focal set components and requirements)

Let Q =R, and assume a random set SE. Then

1. Let each observed subset B; € F¥ be closed interval denoted by its endpoints
Bj = [lj, 1]
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2. Let ljy and r(;) be the order and “reverse order” statistics of the left and right

end points, so that
Iy <l <... <y, vy < T(n-1) < ... STy are permutation of the lj, r;.

3. Denote the vectors of endpoints and ordered endpoints as:
E = (liylay oo lny T,y oo T, El = (1,02, ..., In), Er = (r1,72, ..., TN),
E = (ays 2y - lny vy, Tv=1)s - - -, (1)), where E is the vector of end-
-~ points, E! is the left endpoints vector, E™ is the right endpoints vector, and E

18 the ordered endpoints vector.
4. consistency requirement: if FF is consistent then

e max;l; = vy < rovy = min; 7, so that C(Il) = Lvy, 7oy, where 15 is
the j* element of E', r; is the j** element of E7, and C(I) is the core
of the poossibility distribution.

e the joint linear order on E is lyy <l < ... < vy <rany < T(N-1) <

ST(l).

Definition 11 (Possibilistic histogram components)

The following are the components of a possibilistic histogram:

o E = {er}, B' :={e,}, E" := {el.} are the sets of endpoints with duplicates
omitted from E, E' and Er, respectively, where Ve, € E, Ve € E’, Vefc, € El,
1<k<Q=IE,1<k <Q :=|EY, Q :=|E| >k >1, so that
E=FEUE and Q + Q" = Q, where E is the endpoints vector, @} is the
number of elements in E, Q' is the number of elements in E', Q" is the number
of elements in E7, k is counter on E to Q, k" is the counter on E” to Q", and

k' is the counter on E' to Q.
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[ex, €xt1) ek, eks1 € B
Gr =19 [ex, exs1] ex € EY, epyy € ET

(ek‘y €k+1] €k, €k+1 € E".

where 1 <k < Q — 1. This is shown in Figure 4.9.

T :={(z,y) e R x [0,1] : z € G,y = II(z)}

where 1 < k < Q — 1, where I(z) = > ecp; MP(B;), and mP(By) is defined in
Equation (3.26). ‘

Definition 12 (" Possibilistic histogram form)

If 11 is a possibilistic histogram, then
1. core(H):[e’Q,, egr/; is the core of the possibility distribution.
2. supp(I) :[ell,e’l"]:UkQ:—ka, is the support of the possibility distribution.

8. M([ -00, €} ))=II((e}, 0o ])=0. This identifies the elements that do not belong
to the support of the possibility distribution.

The candidate points that can be used to construct possibility histograms are

introduced next.

3.12.4 Candidate Points

Definition 13 ( Possibilistic histogram candidate points)

Assume a possibilistic histogram considered as a set of points
= {T} = {(ex, (ex))} C R x [0, 1],

then the following points are the candidate points for a possibilistic histogram:

70



e The left and right endpoints of each of the T, 1 < k< @Q —1:

( €k, H(ek) >, €L € E!

t o=

(ex, Hfexy1)), ex € E".
ro (exy1, Hler)), er € E
kT

( €kt1, H(ek+1)>7 € € ‘Er.

o The midpoint of each of the T}, 1 <k <Q —1:
er +e
hy, = (~k—é—f+—1,H(ek)>

e The midpoint of the core:

l
c:=hg = <ﬂ—g—m, 1>

e The endpoints of the support on the azis:
§1 = tll = <l(1),0>, S2 1 =1n_ = <T(1),0>.

Next, we show how to construct a possibility distribution based on the points

of its associated possibility histogram.

3.12.5 Continuous Approximation

A possibility distribution is represented by a continuous curve that passes through a
selected set of the associated histogram candidate points. One of the most significant
differences between possibilistic and stochastic histograms is that the former are
collections of the intervals T}, not discrete points. Therefore, normal interpolation
or approximation methods (such as curve-fitting or maximum-likelihood estimation)
are not appropriate. Instead, a representative set of points from the intervals T
should be selected and a continuous curve is fitted to them. This curve represents
the possibility distribution.

The points that can be selected for continuous approximation are:
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1. The set of all the interval mid- and end-points to which a continuous curve
may be fit:
K' = {t}, t, i }

2. The set of all the interval mid- and end-points to which a continuous curve
actually will be fit:
K C K'. K may be any selected subset from K’ such that it doesn’t contain

two points have the same z but differ in II.

3. The set of all these optional interval mid- and end-points to which the curve
will be fit: D := {¢, 51,82} U K C II where K may be any subset of K'. Note
that K = ¢ is allowed.

Once a set of points is selected, a variety of curve-fitting methods are available
to determine II. The simplest and most direct is to connect them with line segments,
producing a piecewise linear, continuous distribution. An advantage of the line-

segment method is that the approximated II has the same form as the fuzzy sets.

3.12.6 A Numerical Example

Consider that we obtained experimentally the two intervals B; = [zy, 23] and B, =
[x3,z4]. Each interval is observed once. This means that m(B;) = 0.5 and m(B;) =
0.5. The components of the histograms constructed based on these intervals are
shown in Figure 3.4(top). Note that N = M = 2 and @ = 3. The set of all the

interval mid- and end-points to which a continuous curve may be fit is:
K, = {hb t71‘7 tZQ) té7 h37 g}

Note that ¢! and t} are excluded from due to the conflict with s; and s,.
The set of all the optional interval mid- and end-points to which the curve will
be fit is:
D :={¢, 8,5} UK CII
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For continuous approximation, any subset K C K’ can be chosen as long as it does
not contain either set of conflicts {t},t,} or {t5,%,}. The following are three possible

candidates for K:
{hl’ tl27 27 h‘3}7 {t;a té}) ¢

Based on these candidates, D has the following possiblities: D; = {c, s1, 52} U
{hl,té,tg, hg}, Dz = {C, S1, 82} U {tq,t%} and D3 = {C, S, 52} U ¢
The three possibility distributions associated with these sets are shown in

Figure 3.4(bottom).

3.13 Fuzzy Sets and Possibility Distributions

With respect to their representation, fuzzy sets and possibility distributions have the
same mathematical description. Therefore, fuzzy sets operations can be transferred
to possibility distributions without changes.

Using the above mentioned method for constructing possibility distributions
from experimental data, possibility distributions that represent the radial impreci-

sion and angular uncertainty in sonar readings are constructed in the next chapter.
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Figure 3.4: A simple possibilistic histogram with its candidate points (top). Three
examples of piecewise linear continuous approximation (bottom)
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Chapter 4

Modeling Uncertainty in Sonar
Readings and Identifying the

Objects in the Environment

4.1 Introduction

Our proposed localization algorithms are designed for mobile robots that are equipped
with a ring of sonar sensors. The robot relies on its sonar sensors to identify objects
in its environment and use the bbjects’ location to localize itself.

In this chapter, our objective is to model the angular and radial uncertainty
of sonar readings reflected from a wall and a 90° corner by using possibility dis-
tributions. The obtained models are used to identify the objects in the robot’s
environment by estimating their position and orientation with respect to the robot.
Then, the robot can use the identified objects to localize itself.

To model the angular and radial uncertainty of sonar readings, it is important
to study their behavior when they are reflected from a wall and a 90° corner, two
common components of any indoor environment. In this chapter, a set of experi-

ments is carried out to study this behavior. Then, the results of these experiments
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are used to construct the possibility distributions that represent the angular and ra--
dial uncertainty in one sonar sensor. This is achieved using the method introduced
in Chapter 3. Since we are dealing with a ring of sonar sensors, adjacent sensors
that provide close readings are considered to be detecting the same object. In this
chapter it is shown how this information is used to avoid false reflections and obtain
reduced uncertainty models of sonar readings and how the shortest reading among
the adjacent readings is used to estimate the position and orientation of the detected

objects based on the reduced models.

4.2 The Nomad 200

The Nomad 200 (Figure 4.1) is a mobile robot produced by Nomadic Technologies
Incorporation. The robot consists of two main parts: the base and turret. The
base has three wheels that translate together (controlled by one motor) and rotate
together (controlled by a second motor). The base has a third motor to rotate
the turret. The robot has a zero-gyro radius, i.e., the robot can rotate around its
center. The turret contains most of the sensing systems and the on-board computer.
The Nomad 200 has four main sensing systems: the Sensus 100 Tactile System, the
Sensus 200 Sonar Ranging System (Figure 4.2), the Sensus 300 Infrared Proiimity
System and the Sensus 400 Basic Vision System. The Sensus 100 consists of 20
pressure switches. This system is used to alarm the robot of contact with objects.
The Sensus 200 consists of a ring of 16 sonar sensors mounted onto the robot’s
turret. The angle between any two adjacent sensors is 22.5°. The sensors used in
the Sensus 200 are standard Polaroid sensors controlled by the Polaroid 6500 board.
The Sensus 300 consists of 16 infrared sensors. These sensors are used to detect
objects within 60 cm of the robot. The distance to an object is estimated by the
intensity of the light sent by the emitter and reflected to the detector from the

object. The Sensus 400 system consists of a camera and a software interface library.
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The camera is a Sony XC-75, a 450 x 512 black and white CCD camera. The Sensus
400 system is used for vision based applications.

The Nomad 200 has an on-board computer for sensor and motor control, and
for host computer communication. It also has a complete software package for the
host computer with a graphic interface and a robot simulator.

In this thesis, the Nomad 200 is used to implement our proposed fuzzy logic
based localization algorithms (Chapter 6). In addition, we use the Sensus 200 system
in our experiments to study the behavior of sonar readings when they are reflected
from walls and corners. The results of these experiments are used to construct the
possibility distributions that represent the angular and radial uncertainty in the

sonar readings as shown next.

4.3 Experimental Setup

Our experimental setup consists of the Nomad 200 and a host computer connected
through wireless Ethernet. The robot is placed in front of a dry-wall at distance
d and at an initial direction perpendicular to the wall, i.e., v = 0. A command is
issued from the computer to the robot to fire only the sensor that is at v = 0. After
the sensor detects the echo received from the wall, the reading that represents the
distance to the wall is sent directly to the computer through the Ethernet. This
reading represents the measured distance to the wall. The direction of the robot
is increased in a 1° step by commanding the turret of the robot to rotate counter-
clockwise one step as shown in Figure 4.3(top). The sensor is then fired and the
measured distance and the direction y are registered. This procedure is continued
until no readings are received from the wall. The direction 7 is then decreased in
1° step by rotating the turret clockwise; the measured distances and direction are
registered until no echo is received. This experiment is then repeated at different

distances; d = 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, and 375
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Figure 4.2: The Sensus 200 sonar ranging system.
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cm. A similar set of experiments is done while the sensor is facing a 90° corner as
shown in Figure 4.3(bottom).
Radial imprecision is defined as the actual distance minus the measured one
(the reading from the sensor). For the wall case, the radial imprecision can be
calculated as follows:
OA

e——-r—OB:r—m (4.1)

where, OB is the actual distance between the sensor and the wall as shown in
Figure 4.4, and r is the distance detected by the sensor.

For the corner case, the radial imprecision is calculated based on Figure 4.5

as:
d

cos(45 — 7),/(2)

Tables A.1 and A.2 show an example of the experimental results for a wall when

€= Xsonar -X = Xsonar - (42)

d is approximately 50 cm with different values of y. These data are represented in
the polar coordinates as shown in Figure 4.6. Tables A.3 and A.4 show an example of
the experimental results for a corner when d is approximately 100 cm with different
values of 4. These data are represented in the polar coordinates as shown in Figure
4.7.

The most significant issue for representing the angular uncertainty in sonar
sensors is the field of view of these sensors when the readings of these sensors are
reflected from walls and corners. The field of view can be defined as the interval of
angles which contains the sensor direction when an object is detected.

Next, the experimental data are used to model the angular and radial uncer-

tainty of sonar readings based on possibility theory.
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Figure 4.3: Experiments for studying the behavior of the sonar sensor when it is in
front of a wall (top) and a corner (bottom).
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Sonar
Sensor

Figure 4.4: Error calculation for a sonar reading coming from a wall at a certain
distance d and incidence angle ~y.

Sonar sensor

Figure 4.5: Error calculation for a sonar reading coming from a corner at a certain
distance d and incidence angle .
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Figure 4.6: Polar coordinates for actual and sonar measured distances at different
angles from a wall.
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Figure 4.7: Polar coordinates for actual and sonar measured distances at different
angles from a corner.
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4.4 Modeling Angular and Radial Uncertainty of
Sonar Readings Reflected From a Wall

In this section, the angular and radial uncertainties of sonar sensors are represented
by possibility distributions. According to the empirical results presented in Tables
A.1 and A.2, we observe that when the sensor is approximately 50 cm away from
a dry-wall surface, the incidence angle has a range of [—25°25°] and the distance
readings has the radial imprecision interval' [—5,0] cm in the direction of the sonar
sensor. In the case of the corner, as Tables A.3 and A.4 show, the radial imprecision
interval is [0, 28] cm when the sensor is approximately 100 cm from the corner.

The radial imprecision intervals of the sonar sensor used in the experiments
can be considered random sets obtained from an empirical source (Section 3.12).
The possibility distributions that represent the radial uncertainty for the readings
obtained from a dry-wall and a corner can then be constructed.

The following steps show how to use the method introduced in Section 3.12
to establish the radial uncertainty models for the readings obtained from a wall.
The method is applied to the data shown in Table 4.1 which represents the radial
imprecision intervals of the sonar readings obtained at different distances from a

wall.

Distance from a wall (cm) | Radial Imprecision (cm)
50 [5,0]
75 -5, 1]
100 [-8,1]

Table 4.1: Radial imprecision intervals when the sensor is at different values of d
from a wall.

e Measuring record

1See Section 3.1.3 for the difference between imprecision and uncertainty.
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The general record is represented by the vector B := <[—5, 0],[-5,1],[-8, 1]>,

where the number of elements is M = 3.

Empirical focal set
The empirical focal set is derived by eliminating the duplicates from B. Since
there are no duplicates in B , the empirical focal set for our example is given
by: F :={[-5, 0], [-5, 1] , [-8,1]}. The number of elements in this empirical
focal set is N = 3.

Set-Frequency distribution
Using Equation (3.26) obtains the set frequency distribution as follows: m(B; =
[—5,0]) =1/3, m(B; = [-5,1]) = 1/3 and m(B3; = [-8,1]) = 1/3.

Random set

The random set obtained based on the values of m; and By is:

S = {<[_5> 0]7 1/3>7 ([—57 1]7 1/3>a ([—87 1]7 1/3>}

Empirical focal set components and requirements

Let © = R, and assume a random set S¥ as shown above, then:
1. The order and reverse order statistics of the left and right endpoints are:
—8< -5<~5,0<1<1.

2. The vectors of endpoints and ordered endpoints are: E := (—8,—5,-5,0,1),
E':=(-8,-5,-5), E" := (0,1,1), and E := (-8, -5, —5,0, 1).

3. Consistency requirement: If F¥ is consistent then:

* max;l; = lvy < vy = min; 7y, so that C(m) = [l(ny,r(v)]. Which
in this case vy = —9, and ry) = 0. The core of the possibility

distribution is [-5, 0].
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* The joint linear order on Eis -8 <-5<0<L1.

The two requirements are met which mean that F¥ is consistent.

e Possibilistic histogram components
The components of the possibilistic histogram are shown graphically in Fig-

ure 4.9 and are given as follows:

1. The sets of endpoints with duplicates omitted from E, E’, ET are: E =
{-8,-5,0,1}, E' = {—8,-5}, E" = {0,1}, where E is the endpoints
vector. Notethat 1 <k <Q=4,and 1 <K' <Q'=2,1 <k < Q" =2.

2. Gy = {[-8,-5),[-5,0],(0,1]}, where 1 < k£ < 3.
3. Ty = {(~8,1/3),(—5,1), (~1,2/3)}, where 1 < k < 3.
e Possibilistic histogram form
If IT 2 is a possibilistic histogram, then:
1. The core of the possibility distribution is C(II)= [-5, 0].
2. The support of the possibility distribution is U(IT)=[-8,1].
3; ([ -00, -8))=I1((1, oo ])=0.

e Possibilistic histogram candidate points

Assume a possibilistic histogram considered as a set of points:
7= {(ex,7(ex))} C R x [0,1]
then the possibilistic histogram candidate points are:

% The left and right endpoints of each of the T}, are:

tl:: ('831/3>’<'5’1>}t;::{<071>7<172/3>}

2We assign the same symbol for both the possibility distribution and its associated possibilistic
histogram. This is due to the fact that the former is obtained by a continuous approximate between
the points of the latter.
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* The midpoint of the core: ¢:= (—2.5,1)

* The endpoints of the support on the axis:

81 := (=8,0), 55 := (1,0)

* The midpoints of each of the T} are:
hk : { ('3571/3 >7 (”2'57 1 >7 < 057 2/3 ) }

e Continuous approximation
To obtain the possibility distribution, a continuous curve may be fitted to the

following points:

1. The set of all interval mid and endpoints to which a continuous curve
may fit:
K':={-5,0,-6.5,-2.5,0.5}

2. The set of all interval mid and endpoints to which a continuous curve

actually will fit: K = {-5,—-2.5,0}.

3. The set of all of these optional interval mid and endpoints to which the

curve will fit D := {-2.5,-8,1} U {—5,—2.5,0}.

In Figure 4.9, the possibility distribution of the radial uncertainty of the sonar
sensor facing a wall is presented. The information that can be obtained from this
distribution is that when the distance reading obtained from the sonar sensor is
about 50 cm then there is a possibility of 1 that the error in this reading belongs
to the interval [—5,1]em. Moreover, there is a varying possibility of the error in
the sonar reading belonging to the intervals [—8,—5] and [0,1). This possibility
distribution of the radial uncertainty is valid for any incidence angle where the
sonar sensor detects a wall.

It is found experimentally that the sonar sensor can give readings when its

incidence angle belongs to the interval [—25° 25°]. This means that if one sonar
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Figure 4.8: A measurement record (top), focal set (middle), and components of
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Figure 4.9: Possibility distribution for the radial uncertainty of sonar readings when
- the sensor is at distances between 50 cm and 100 cm.
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sensor detects an object when the incidence angle of the sensor is vy, then the direc-
tion of the object with respect to the sensor belongs to the interval [y —25°, v+ 25°].
Similar observations are made in the case of corners. Thus, the angular uncertainty
of the sonar sensor is high when it is facing a wall or a corner.

In the next section, the angular and radial uncertainty in sonar readings ob-

tained from a wall are reduced based on the new information.

4.5 Reduction of Angular and Radial Uncertainty
in The Wall Case

One sensor reading is not reliable to be used in localization because of two main
reasons. The first reason is due to the fact that this reading may be a false reflection,
the second is that one sonar sensor has a high angular and radial uncertainty as
discussed in the previous section. To overcome false reflections, we combine range
information obtained from adjacent sonar sensors. The readings obtained from any
set of adjacent sensors are considered to be reflected from the same object if these
readings are within a predefined tolerance [36, 26, 29, 28]. When adjacent sonar
readings are combined, the fields of view of their associated sonar sensors overlap.
The shared part of their fields of view is used to construct the reduced angular
uncertainty model. This results in the reduction of radial uncertainty models since
it depends on angular uncertainty. For example, if two sonar sensors are detecting
the same wall, the readings coming from the two sensors may vary in their values,
but not too much according to the direction of each sensor. As remarked by Demirli
and Tirksen [28, 29|, the shortest reading is the one that comes from the sensor
with the smallest incidence angle from the surface normal of the wall. This piece of
information is used to reduce the angular and radial uncertainty in sonar sensors. In
other words, the lack of information in the beginning (Section 3.1.1) prevented the

reduction of the angular and radial uncertainty. Now, we can obtain new possibility
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distributions based on this reduction as shown next.

Figure 4.10: Two sonar sensors detecting the same wall.

Consider the case where we have two readings from two sensors as shown in
Figure 4.10, denoted (d;, 1) and (dz, ¥2) where d; is the reading obtained from first
sensor, dy is the reading obtained from the second sensor, «; is the orientation of
sensor one with respect to the robot’s coordinate system, and 7, is the orientation
of sensor two with respect to the robot’s coordinate system. Furthermore, §; and
d; denote the angle between the first sensor and the surface normal, and the second
sensor and the surface normal, respectively. Then, from a field of view of an interval

of [-25, 25], the following three cases can be identified and studied [93]:

1. Case I: 6; = 25° and §, = 2.5°
In this case d; is on the left boundary of the field of view and it is shown
in Figure 4.11 (top). Due to the fact that the angle between the two sensors
is 22.5%, v, = 2.5°. Since S2 has a smaller incidence angle, d, is expected

to be the minimum distance reading between the two, i.e., dy < d;, and the
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incidence angle v = -y, — 2.5°.

2. Case II: 4, = 11.25° and §, = —11.25°
In this case d; = d; and the incidence angleis vy = v, —11.25° or v = v,+11.25°.
This is shown in Figure 4.11 (middle).

3. Case TIT: 6, = —25° and 6, = —2.5°
This case is shown in Figure 4.11 (bottom). The shortest distance is dj, i.e.,

d; < ds, and the incidence angle is v = y; + 2.5°.

Based on this analysis, we have the following possibilities for the incidence

angle:

e When d; < dj, from cases 2 and 3:
Mrja(7) = 0.0,¥y € [y + 2.5,00) U (~00, 11 — 25]; Mrpa(7) = 1.0,Vy € [n +
2.5, 71 — 11.5}); and IIp4(7), Vy €]y — 25,7 — 11.5[ is obtained by continuous
approximation (Section 3.12) as shown in Figure 4.12 (top), where ITrj(y) is

the angular uncertainty for .

e When d; < d;, from cases 1 and 2:
Mrg(y) = 1.0,¥y € [y2 — 2.5, 12+ 11.5]; and TIpja(7) = 0.0,V € [y2 + 25, 00) U
(—00, v2 —2.5], and I4(7), Vv €]y2 +11.5, v, +25], is obtained by continuous

approximation as shown in Figure 4.12 (middle).

e When d; = ds:
Ira(y) = 0.0,¥y € [y + 2.5,00) U (—o0,71 — 25]; Ipia(y) = 1.0, for y =
71 —11.25; and Hry4(y), Yy €}y —11.5, v, —25[U}y; — 11.5, 1, +2.5], is obtained
by continuous approximation as shown in Figure 4.12 (bottom) or
Mrja(7) = 0.0,Vy € (00,72 — 2.5] U [12 + 25,00); Ipa(7) = 1.0, for y =
Y2+ 11.5; and Irja(7y), Y7y €]y2 +11.5, 72+ 25[U]y2 — 2.5, 72 + 11.5[, is obtained

by continuous approximation as shown in Figure 4.12 (bottom).
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Figure 4.11: Three possible cases for the readings obtained from two sensors.
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Figure 4.12: Reduced angular uncertainty for readings coming from a wall, d; < d,
(top), d2 < dy (middle), and d; = d, (bottom).
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From these possibility values of the incidence angle, three possibility distri-
butions are obtained and shown in Figure 4.12. These possibility distributions are
considered to be the reduced models of angular uncertainty in sonar readings coming
from a wall.

If we consider the case of three sensors (Figure 4.13) detecting the same wall,
the angular uncertainty will be dramatically reduced. For example if we have
(dy,ds, ds) coming from the same wall where d; < d3 and dy < d;, then we will

have the shortest reading from ds and therefore the angular uncertainty is given as

Mpjg, = [v2 — 2.5, 72 + 2.5]

This uncertainty model indicates that the sensor incidence angle belongs to

the interval | — 2.5% 2.5°[ with a possibility of 1.0.

25 A

Figure 4.13: Three sensors detecting the same wall.

There are three questions to be answered at this point:

94



1. How can one decide which angular uncertainty model to select?

2. How can one use the selected angular uncertainty model to obtain the associ-

ated radial uncertainty model?

3. How can one use both angular and radial uncertainty models for identifying the
detected objects, i.e., estimating their position and orientation with respect to

the sensor?

To answer the first question, one can compare the magnitude of the reading obtained
from the first sensor (d;) and the reading obtained from the second sensor (d3) to
decide which angular uncertainty model to use from Figure 4.12. For example, if
dy < dg, the model shown in Figure 4.12 (top) is selected.

To answer the second question, for the selected angular uncertainty model we
must first obtain a model for the radial uncertainty, Ilg,, at all angles belonging to

the support of the selected angular uncertainty model, i.e.:

Mrjg =Y m/e, Yy € supp Iy

where Ilpjg is the selected angular uncertainty model, ¢; is the radial uncertainty
value and 7; is its possibility. To obtain Ilg|,, we need to obtain the radial imprecision
intervals associated with each incidence angle v from our empirical results at each
distance d. Then, we can obtain the possibility distribution that represents the
radial uhcertainty model at each incidence angle by following the same procedure
for constructing possibility distributions from interval data as explained in Section
3.12.

Next, the radial uncertainty model ITdh, is obtained by using the distance

reading d as:
Hdh' = Z?I‘z/(d + Ei)
However, the obtained possibility distribution for each v does not take into

account the reliability of this incidence angle, i.e., its possibility. Therefore, any
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angle belonging to the support of the angular uncertainty model is considered a
source of information with reliability equal to the possibility value of this incidence
angle. By considering the reliability of the source (the possibility of the incidence
ahgle) the possibility distribution of the radial uncertainty associated with each

incidence angle is changed, as proposed by D. Dubois and H. Prade [94] as follows:

apy = 2_mi/(d+€) (4.3)
where 7} = min(m;, IIrja(y)) and Ipje(y) is the reliability of the incidence angle -y
(its possibility). Then IIj, is the possibility distribution of the radial uncertainty
after taking into account the reliability of the incidence angle.

' For example, if we have a case where d; < dy, the angular uncertainty model
which is shown in Figure 4.12 (top) is selected. The next step is to construct the
radial uncertainty model for each angle belonging to [—11.5%,2.5°]. First, obtain
the radial imprecision intervals for each incidence angle at each distance d from our
empirical results obtained in Section 4.3.

For instance, with incidence angles of —11.5° and 2.5° if d; is approximately 50
cm, according to Tables A.1 and A.2, the incidence angle of 2.5° € [—3°,3°] and the
associated radial imprecision interval is [—1,0]. On the other hand, if the incidence
angle is —11.5° € [-12°,12°], its associated radial imprecision interval is [—-2, 0].

Tables 4.2 and 4.3 are obtained from the experimental data for different val-
ues of d at incidence angles 2.5° and —11.5° respectively. By following the same
procedure in Section 3.12 to build possibility distributions from interval data, the
possibility distributions for radial uncertainty at 2.5° and —11.5° can be obtained
as demonstrated in Figures 4.14 and 4.15, respectively. Note that the reliability of
the incidence angles 2.5°, and —11.5° is one, and therefore no change will take place
in their possibility distributions according to Equation (4.3). This is valid for the
angles belonging to the interval [-11.5°,2.5°].

By combining information from adjacent sensors, the angular uncertainty in

sonar readings is reduced from [—25°,25°] to [2.5°, —25°] when two adjacent sensors
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detect the same object, and from [-25° 25° to [—2.5° 2.5°] with three adjacent
Sensors.

Finally, the last question is answered in Section 4.7 of this chapter.

Distance from a wall (cm) | Radial imprecision (cm)
50 ' -1, 0]
75 [-1, 1]
100 [1, 1]

Table 4.2: The reduced radial imprecision intervals when the incidence angle is 2.5°
for different values of d from a wall.

Distance from a wall (cm) | Radial imprecision (cm)
50 [-2,0]
75 [-2,0]
100 [-3,0]

Table 4.3: The reduced radial imprecision intervals when the incidence angle is
—11.5° for different values of d from a wall.

If one sonar sensor receives an echo and the other does not, no reduction in the
angular and radial uncertainty is possible. In this case the possibility distributions
obtained in the previous section represent the models for the angular and radial

uncertainty of the reading obtained by this sensor.

4.6 Modeling Angular and Radial Uncertainty for
Sonar Readings Reflected From a Corner

Following the same procedure used for the wall, we find that the field of view of the
corner is the same as that of the wall, i.e., [-25° 25°]. In Tables A.3 and A .4, the
radial imprecision intervals of sonar data obtained from a corner at different inci-

dence angles is obtained by using Equation (4.2). The reduced angular uncertainty
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Membership value
1.0 d =[50,100] (cm)
-3 -2 -1 0 1 Radial imprecision (cm)

Figure 4.14: Reduced radial uncertainty model when the incidence angle is 2.5° for
different values of d from a wall.

Membership value

1.0 d =[50,100] (Cm)

-6 -5 -4 -3 -2 ~1 0 1
Radial imprecision {(cm)

Figure 4.15: Reduced radial uncertainty model when the incidence angle is —11.5°
for different values of d from a wall.
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models are similar to those obtained for the wall as shown in Figure 4.12.

Tables 4.4, 4.5 and 4.6 are constructed in a similar way to Tables 4.1, 4.2, and
4.3. These tables are used to obtain the radial uncertainty models and then the
reduced radial uncertainty models when the sensor is facing a 90° corner at different

distances. These models are shown in Figures 4.16, 4.17 and 4.18.

Distance from a wall (cm) | Radial imprecision (cm)
100 [2, 28]
125 1, 37]
150 -1, 43]

Table 4.4: Radial imprecision intervals when the sensor is at different values of d
from a corner.

Distance from a wall (cm) | Radial imprecision (cm)
100 [-2, 4]
125 [-2, 4]
150 [1, 7]

Table 4.5: The reduced radial imprecision intervals when the incidence angle is 2.5°
for different values of d from a corner.

Distance from-a wall (cm) | Radial imprecision (cm)
100 [2, 19]
125 [0, 24]
150 -1, 26]

Table 4.6: The reduced radial imprecision intervals when the incidence angle is
—11.5° for different values of d from a corner.

Next, we show how the uncertainty models of the sonar readings are used to

identify the detected objects.
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Membership value

1.0

-2 -1 28 43

Radial imporecision (cm)

Figure 4.16: Radial uncertainty model when the sonar sensor is at different values
of d from a corner.

Membership value
1.0

-2 -1 : 4 7
Radial imprecision (cm)

Figure 4.17: The reduced radial uncertainty model when the incidence angle is 2.5°
for different values of d from a corner.
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Membership value

1.0

2 0 % 2%

Radial imprecision (cm)

Figure 4.18: The reduced radial uncertainty model when the incidence angle is
—11.5° for different values of d from a corner.

4.7 ldentifying The Objects in The Robot’s En-

vironment

Most existing mobile robots have many sonar sensors distributed on a ring around
the robot (known as a ring configuration). If there is a set of consecutive sonar
sensors giving close readings, i.e., the difference between these readings is less than
a threshold determined experimentally, then this signifies that these sensors detect
the same object in the environment. This object may be a corner or a wall. Since
mobile robots, as mentioned earlier, have a ring of these sensors, then another set
of the sensors may also give close readings and indicate that they detect another
object. Given the orientation of sonar sensors with respect to the robot’s coordinate
system, and also given the map of the environment, it is possible to recognize which
sensors are facing walls and which are facing corners if the angle between the two
sets of sensors is approximately 45°. Then, fr(;m this information one can select
the appropriate uncertainty models to obtain the position and orientation of these

objects with respect to the robot as shown next.
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4.7.1 Orientation of The Detected Objects

The orientation of the detected object is obtained based on the angular uncertainty
models which are selected based on the sonar readings reflected from the object.
These models are shown in Figure 4.12. For example, if we have two sensors de-
tecting the same object and the relation between their readings is d; < dg, then the
orientation of the detected object can be estimated based on Figure 4.12 (top). This
figure shows that there is a possibility of one that the orientation of the detected
object belongs to the intervai [y — 11.25% v + 2.5°]. Moreover, the orientation of
the detected object belongs to the interval ]y — 11.25°, v — 25°[ with a possibility
value of less than one. Similarly, if we have three sensors detecting the same object
when dy < dy and dy < d3, then the orientation of the detected object belongs to
the interval [y — 2.5%, v + 2.57].

4.7.2 Shortest Distance to The Detected Object

Our objective is to identify the shortest distance between the sensors and the de-
tected object, i.e., the position of the detected object with respect to the sensor.
One can use the reduced angular and radial uncertainty models obtained in the pre-
vious section to do this. Consider the case in Figure 4.10. When d; < dj, we select
the angular uncertainty model, Ilp4,, shown in Figure 4.12 (top). In addition, a
radial uncertainty model Ilg,}, for each angle v belonging to the support of angular
uncertainty model is obtained. The shortest distance between the sensor and the

object can then be calculated as:
Hsd1 = ﬂ Hdl cos7)s (4'4)
y€suppllr|a,

where:

Hd1 cosy — Z WT/(T COS(’Y))

rEsuppHdlh
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Equation (4.4) means that we rotate the radial uncertainty model for each
angle in the support of the angular uncertainty model Il }, by its corresponding
angle v. For each angle, the obtained possibility distribution is represented by
14, cosv- We then combine the obtained possibility distributions conjunctively to
get the shortest distance Il,4,. However, for simplicity, this rotation operation is
performed only at the two limits of the core of the Ilpq,, as is shown in Figure 4.19.
As a result, we obtain two possibility distributions that represent the two extreme
shortest distances between the sensor and the wall. These distributions are combined
to obtain one possibility distribution that represents the shortest distance between
the sensor and the wall.

The above mentioned possibility distributions are combined by using the method
of aggregation of information from different parallel sources as proposed by Dubois
and Prade [94]. In this method, uncertain information from different sources can be
combined by using a combination operator. However, there is no unique operator to
perform the combination operation. The selection of this operator depends on the
reliability and agreement of the sources. Since the shortest distance to an object is
obtained by considering the two extreme points of the core, we can consider them to
be coming from reliable sources with the same weight of 1.0. Therefore, the reliabil-
ity factor is not relevant for selecting our fusion operator. Generally there are two
types of fusion operators; the conjunctive operator is used when the sources agree
(Section 3.6.2), and the disjunctive operator is used when the sources conflict (Sec-
tion 3.6.3). The information from these two possibility distributions always agree.
Therefore, we use the conjunctive operator (minimum)? to obtain the possibility
distribution that represents the shortest distance between the sensor and the wall.

This also applicable for corners as demonstrated in Figure 4.20.

The fuzzy logic based localization algorithms are proposed in the next chapter.

These algorithms rely on the angular and radial uncertainty models in estimating

3 Any t-norm function that has the properties introduced in Section 3.6.2 can be used as well.
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Figure 4.19: Conjunctive fusion of two pieces of information to obtain the shortest

distance to a wall.
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Figure 4.20: Conjunctive fusion of two pieces of information to obtain the shortest

distance to a corner.
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the location of the robot based on the odometers and the sonar sensors.
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Chapter 5

Fuzzy Logic Based Localization

5.1 Introduction

In this chapter we propose threé fuzzy logic based dynamic algorithms for mobile
robots equipped with a ring of sonar sensors. The first algorithm is a global local-
ization algorithm which is used to solve the global localization problem of mobile
robots. The second algorithm is a location updating algorithm which is used to
update the robot’s current location while navigating its environment. The third
algorithm is a map updating algorithm which is used to update the robot’s map by
extracting line segments from the sonar readings and adding them to the robot’s
map. The map updating algorithm requires that the current location used to ex-
tract the line segments is reliable. This is achieved by using the location updating
algorithm concurrently with the map updating algorithm.

Mobile robot localization describes the task of driving a mobile robot to a
known location in the robot’s environment coordinates system. It inherently requires
the process of location estimation in which a hypothesis for the robot’s location is
obtained from the interpretation of the readings obtained by the robot’s sensors.

In the area of mobile robotics there are two well known localization problems;

global localization, and concurrent localization and map updating. The objective
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of the global localization algorithms is to initialize the robot’s location given that
no hypothesis is available. Due to the ambiguities of the data provided by the
robot’s sensors, global localization might require the integration of the sensors data
collected while the robot is navigating its environment. Concurrent localization
and map updating describe the process of updating both the robot’s location and
environment at each step along the robot’s path by using the current sensory data

and the previously available knowledge about the robot’s environment.

5.2 Global Localization Problem

This section proposes a global localization algorithm to solve the global localization
problerh of mobile robots. The proposed algorithm depends on a collection of sonar
readings obtained by the robot’s sensor at each sonar scan. A sonar scan consists
of the sonar readings at each localization cycle. The localization cycle consists of
sensing, matching, and location estimation. In our approach, a fuzzy local composite
map is constructed from sonar data and matched to the given global map of the
environment to identify the robot’s location. As a result of this matching process,
either a unique fuzzy location or multiple candidate fuzzy locations are obtained. To
reduce the multiple candidate locations, the robot moves to a new location and a new
local fuzzy composite map is constructed. This results in a new set of candidate fuzzy
locations. By considering the robot’s movement, a set of hypothesized locations is
identified from the old set of candidate locations. The hypothesized locations are
matched with the new candidate locations and the candidates with a low degree of
match are eliminated. The process continues until a unique location is obtained.
The matching process is performed by using the fuzzy pattern matching technique.
The proposed method is implemented on a Nomad 200 robot and the results are
reported in Chapter 6.

Next, the global localization problem is formulated.
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5.2.1 Formulation of The Global Localization Problem

Formulation of the global localization problem is solved like a matching problem in
which the fuzzy local composite map, M! | obtained by the robot’s sensors from
the robot’s working environment, is matched to the given global map G where ¢
represents a sequential index (¢ = 1 in the beginning). Solving this matching problem
consists of generating a set of fuzzy candidate location(s) £%, k € {1...n}, where
k is the index for the fuzzy candidate locations and n is the number of the fuzzy
candidate locations. Each candidate location is obtained by identifying a correlation
between the fuzzy local composite map and the global map. If there is only one
correlation, then there is only one possible place in the robot’s environment where
the robot could have obtained this fuzzy local composite map, i.e., the robot has one
unique location (k = 1). However, if there is more than one correlation, then there
are different places in the environment where the robot could have obtained the same
fuzzy local composite map, i.e., the robot has more than one candidate location in
the environment (k > 1). In the latter case, the robot must move to obtain a new
local fuzzy composite map, i.e., ¢ = ¢ + 1. This means that a new set of fuzzy
candidate locations £, where k € {1...m}, is obtained based on the detection of
new objects in the robot’s environment. This assumes that the robot’s odometers
provide reliable location information when traveling short distances. By taking into
account the distance traveled by the robot(obtained by the robot’s odometers) the
hypothesized set £§j‘”" is formed from the first set of fuzzy candidate locations
of L;ci_l) . Then, the fuzzy candidate locations in £§j“)” and the fuzzy candidate
locations in £: are matched to reduce the number of candidate locations. This

matching process is divided into three stages:

e The matching between the orientation of each candidate location belonging to
the new set of the fuzzy candidate and the orientation of each fuzzy location

belonging to the set of the hypothesized fuzzy locations. The resultant degree
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of match is A}, , where k= {1,...,n} and j = {1,...,m}.

e The matching between the z component of each candidate location belonging
to the new set of the fuzzy candidate and the x component of each fuzzy
location belonging to the set of the hypothesized fuzzy locations. The resultant

degree of match is A, .

e The matching between the y component of each candidate location belonging
to the new set of the fuzzy candidate and the y component of each fuzzy
location belonging to the set of the hypothesized fuzzy locations. The resultant

degree of match is Ay, .

The above stages are followed in the given order. At any stage if the degree of
match is less than the threshold, the associated new fuzzy location is disregarded.
By the end of this matching process, if there is more than one candidate location a
new fuzzy local composite map is constructed and the process continues until one
unique location is obtained.

Next, we show how the objects of the global map are represented to be used in
the matching process with the objects extracted by the sonar readings in the form

of a fuzzy local composite map.

5.2.2 Global Map Representation

The global map of the robot’s environment is given in terms of line segments and
corners. Each line segment is represented by three attributes: the starting coor-
dinates (X, L) YSOL].) , ending coordinates (XeOLj,Y;OL]_), and the negative surface
normal to the line segment NL;, where j is the line segment index. The corner
has two attributes; the corner coordinates (Xoc,, Yoc,) and the corner angle NC,,
where 7 is the corner index. These attributes are shown in Figure 5.1. The global

map can be represented using the attributes that follow:
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‘where Gy is either:

gj = {(XSOLJYSOL-): (XeoL-’YCOL-)7NLj}7
J J 2 J

or:

Cr = {(Xoe,, Yoc,), NC, },

and m is the number of the objects in the global map.

( )
NC
\ N %2 NC,  90°
(Xeor,»Yeor,) = (Xoc:,Xocy) OL, /
G 0°
Y 0 N
<
NL< NLj3
OL1 OL3

(XSOLI 7Y801,1)

Figufe 5.1: Elements of the global map.

As is explained later, the above elements of the global map are matched to
the fuzzy local composite map to identify and estimate the robot’s location in the
environment.

Next, we show how a fuzzy local composite map is constructed based on the

sonar readings obtained from the robot’s environment.
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5.2.3 Constructing a Fuzzy Local Composite Map

In the beginning of the global localization algorithm, the robot identifies a local
composite map based on the sonar readings it obtains from its sensors. The local
composite map consists of sonar readings obtained from adjacent sensors with close
readings, i.e., the difference between the neighboring readings is within a predefined
tolerance. This is done to filter out false reflections and to reduce angular and radial
uncertainty. An example of a local composite map is shown in Figure 5.2 where the

map is represented as:

Local = {(dis,do,d1), (ds,ds), (ds,d7), (d11, d12,d13)}

Then a simplified local composite map is represented as:

sLocal = {min(dls, d(), dl), min(d3, d4), min(dﬁ, d7)7 min(du, d12, dlg)}
ds ds
dg
d; dr
do
dis
di3 dis diy

Figure 5.2: Local map.

This local composite map is transferred to a fuzzy local composite map by

taking into account the angular and radial uncertainty in sonar readings; this map
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can be represented as:

M = {(pyq;, Msq;19) }, Vi € 1 (5.1)

where I = {i | d; € sLocal}, Iy, is the angular uncertainty model associated
with d; and used to determine the orientation of the detected object as shown in
Section 4.7.1. Also Il,4,, is the shortest distance obtained between the robot and
the detected object as shown in Section 4.7.2. The map in Figure 5.2 is transferred
into the fuzzy local composité map and it is illustrated in Figure 5.3.

At this stage both the local map and the global map are defined. In the
following section, we explain the matching process between these two maps. The
outcome of this matching process gives the robot’s possible location(s) in the global

map.

5.2.4 Matching The Local Map to The Global Map

Once the fuzzy local composite map is constructed, it is matched to the given global
map to find the robot’s possible location(s) in the environment. In this matching
process, the global map is searched to find the possible locations from which the
robot could have obtained this fuzzy local composite map. The searching algorithm

is explained by the following steps:

Stepl. Initialize:

dtemr = (); Move step size=1 cm; Rotate step size=1°.

Step2. The constructed fuzzy local composite map is transformed into the coor-
dinates of the robot’s global map. This transformation is achieved by the
translation of the center of the fuzzy local map to be d; away from the object

G}, in the global map, in the beginning k£ = 1, and by rotating the fuzzy local
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Figure 5.3: Example of a possible fuzzy local composite map of Figure 5.2.
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composite map to align a;;, where a;; € suppllp|q,, with the angle of the first

object in the global map.

Step3. For each component of the fuzzy local composite map,i.e., ¢ € I, search the
global map to find an object that is d; away from the center of the local map
and where its angle belongs to [a;, ai4]. If there is such an object record two
degrees of match; the radial degree of match, 4, and the angular degree of

match, ®g,, which are given as:

Oy, =4, (Ls) (5.2)

P, = g, (Ni) (5.3)

where Ly is the distance between the center of the local map and the object
that is matched with ** component of the local fuzzy composite map, and
Ny is the angle of the object that is matched with 7** component of the local
fuzzy composite map. If each component of the fuzzy local composite map
has a matching component in the global map, the combined degree of match

1s recorded as follows:

® = min(P,y, o) (5.4)
where:
(I)d = IIl_il’l q>d57 Viel (55)
and:
(I)@ = m_in (I)@i, Viel (56)

If one of the fuzzy local composite map components does not have a matching

object in the global map, then ® = 0.

Step4. Stay on the same search point and continue rotating the local map until a,4

becomes parallel to the angle of the object Gy, while continuously applying the
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check in Step 2. For cases which pass the test in Step 3, update the degree of

match &P as follows:

O™ = max (PP, P) (5.7)

Step5. If the above test fails when Gy is a wall, move to another search point by
moving parallel to the current wall in a predefined step. At each new search
point, repeat steps 2, 3 and 4. When the end of the wall is reached, go to Step
6. If the current object is a corner go, directly to Step 6.

Step6. Apply the following steps:

e Update the overall degree of match as follows:
(I)k — (btemp (58)

e Jump to the next object in the global map, i.e., k=k+1.

e Repeat steps 2,3, 4 and 5.

When a component of the fuzzy local composite map does not match an object
in the global map, this means that this component is obtained based on the detection
of an unknown object in the robot’s environment. Therefore, at least two non-
parallel components of the fuzzy local composite map are required to have matching
objects in the global map so that the robot’s candidate location can be estimated.

This process is explained next.

5.2.5 Estimation of The Robot’s Location

Each robot’s candidate location is estimated based on the shortest distances between
the robot and the detected objects in the global map. For each candidate location,

the z, y and @ components of this location are computed as:
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Mx = () xjsq,

i€l

My = () Hy}sq,
iel

Io = () Ho|sa;
iel

where Ilxisq;, IIy)sq; and llgsq; are the possibility distributions of the z, y and
f components, respectively, coming from the elements of the fuzzy local composite
map transformed into the global coordinate system. These locations are referred
to as fuzzy locations due to the fact that the three location related components (z-
component, y-component, and orientation) are represented with possibility distribu-
tions. One can obtain the fuzzy robot’s location as a region by taking the Cartesian
product of Iy and IIy as shown in Figure 5.4 where each point (z,y) that belongs
to this region has a degree of possibility of Hxxy(z,y) = min{Ilx(z),y(y)} of

being the actual position of the robot.
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Figure 5.4: Fuzzy location region.
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As mentioned earlier, when there is more than one candidate location of the
robot obtained by the matching process, each location is represented as a fuzzy
location in the global map. The robot travels to obtain a new local composite
map from which a new set of fuzzy locations is obtained. These new locations are
matched to the old locations by taking into account the distance traveled. The-
number of candidate locations is then reduced by applying fuzzy pattern matching.

This process continues until a unique location is obtained.

5.2.6 Fuzzy Pattern Matching

When the robot extracts new features based on the sonar readings and obtains
multiple fuzzy locations, it moves to a new location to obtain a new local composite
map. Then the robot identifies a new set of fuzzy locations and checks for agreement
with the old fuzzy locations by taking into account the distance traveled. This
process is continuous until a unique location is found.

Let NV, O and H represent new, old and hypothesized locations, where H is
obtained from O by taking into account the traveled distance. Consider the location
related components and let IIxp, I1y, and Ilgy, represent the possibility distributions
of z-component, y-component, and orientation associated with a hypothesized fuzzy
location. Let Ilx, Ily, and Ilg represent the possibility distributions of z-component,
y-component, and orientation associated with a new fuzzy location. Dubois and
Prade [95] use possibility and necessity measures, introduced in Section 3.11, to
represent the degree of match between the N and H components. These measures
are denoted as Poss(Ilgp; ) and Nec(Ilgy; Il¢), where C is one of the location

related components. The possibility and necessity measures are defined as:

Poss(Ilgy; g) = igg min(mep(c); me(c)) (5.9)
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NGC(HCh; Hc) = lélgv max(WCh(c); 1-— ’H'C'(C)) (510)

The degree of possibility Poss(Ilgp; Il¢), measures to what extent it is possible
that N and H belong to the same value, i.e., it represents the degree of overlap of
IIcy, and T, On the other hand, Nec(Ilgy; 1) measures to what extent it is
necessary that the value to which Ilcs belongs is among those that are compatible
with Il¢, therefore it represents the degree of inclusion of Ilgy into II¢. Graphical

representations of Poss(Ilgp; [Ic) and Nec(Ilgy; Ilc) are given in Figure 5.5.

- Tlen Il

Poss(Ilc, I1o)

Nec(Ilgy; le)

Figure 5.5: Scalar measures of matching between two fuzzy patterns.

In this thesis we are interested in the degree of overlap between two fuzzy
locations, referred to as location pairs, which are composed of a new candidate
location NV and a hypothesized location H. Therefore, we are interested in the

possibility measure Poss(Ilgy; II¢). If the robot actually was at the old location
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and, after traveling, it actually reached the new location, then the degree of overlap
(possibility) between the possibility distributions representing the components of
these locations is expected to be high. Therefore, the possibility measure can be
considered as a hypothesis test where location pairs with low degrees of possibility
are rejected and remaining locations form the set of candidate locations. Details of
this process are explained next.

In the next section, our fuzzy logic based global localization algorithm is sum-

marized.

5.2.7 Localization Algorithm

The dynamic localization algorithm is explained in the following steps and summa-

rized in Figure 5.6:

1. Obtain a local composite map, then form a fuzzy local composite map and

match it to the given global as shown in Section 5.2.4.

The result of this matching process may be one unique fuzzy location or
multiple candidate fuzzy locations in the global map. If there is more than
one candidate location, form the first set of fuzzy candidate loéations, L =
{Loci1, ..., Loci,. .., Loci, }, where Loc,-k:(H[;(’k],H%i’k], H[é’"]), i is the index
for the sets of fuzzy candidate locations, and n is the number of candidate lo-
cations. In the beginning ¢ = 1. In addition, H[)i(’k] and H[}’}’k] are the possibility
distributions for the z and y componenigs of fuzzy location k in the global map

and are defined as follows:

i,k
Mt = 3 my/a (5.11)
z;€X
5™ = 5= mi/y; (5.12)
y;€Y
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Figure 5.6: Localization algorithm.
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and H[é’k] is the fuzzy orientation of this location in the global map defined as:

TEH = 3 7,70, (5.13)

0;c0

Each candidate location has a value that represents the quality of matching
between the local fuzzy map and the global map. This degree of matching is

obtained in Section 5.2.4 as ®F.

. If there is more than one candidate location, move to a new location on a
straight path. Then, repeat Step 1 and obtain £} = {Loc;, . .., Loci, - . . , Loci, },

where ¢ = 2 and m 1s the number of new candidate locations.

. Under the assumption that the robot’s odometers are accurate when traveling
short distances on a straight path, the old candidate locations are matched
with the new candidate locations taking into account the distance traveled.
The matching step is done by using the fuzzy pattern matching technique as
explained in Section 5.2.6. This matching process helps reduce the number of

candidate locations recently obtained. This is explained in the following steps:

e For each location in the new set of fuzzy candidate locations L%, first
check its orientation with the orientation of each location in the old set

of fuzzy candidate locations £; ', i.e., compute:
’ékj = A(Hg‘l’k];ﬂg’ﬂ), fork=1,...,n;7=1,...,m

The location pairs (formed by a location from the old set of fuzzy locations
and another from the new set of fuzzy locations) with a high degree of
match (greater than a specified threshold) form the reduced sets of old

and new candidate locations.
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e For each location that belongs to the reduced set of old fuzzy locations
obtained from the orientation test, obtain a hypothesized fuzzy loca-
tion by taking into account the distance traveled . The hypothesized

z-component of an old location is obtained by:

i1k i1,k
H.[Xh = U HEzHcg)so)a (5.14)
V0€suppl'l[g;1’k]
where HE’;}I’QS 0) is defined as:
i—1,k
Mty = X m/(z; + Leoso), (5.15)
z;€X

and the hypothesized y-component is given by:

i—1,k i—1,k
Hg/h = U HEy+lsi]n ) (5.16)

V0€suppl'lg_ Lk]

[i—1,k]

where ITi /G0y

) is defined as:

[yidne = 2 5/ (; +Lsind). (5.17)

yEY

It should be noted that the hypothesized z and y components above
are computed using a disjunctive combination. This is due to the fact
that the orientation of the robot is fuzzy, meaning that the robot could
have moved in a number of directions with different degrees of possibility.
Therefore, the robot could have arrived at a number of different locations,
thus increasing the uncertainty of the arrived location. Therefore, this
operation requires a disjunctive combination operator. This step is shown
in Figure 5.7 where, for simplicity, the operation is performed only at the

two limits of the core of the orientation.

e For each location that belongs to the reduced set of new fuzzy locations,
match the z-component with the z-component of the hypothesized fuzzy

locations, i.e., compute:
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Figure 5.7: Obtaining a hypothesized location based on the traveled distance.

’}(kj = A(H[)Zl’k];l—l[)i(’j]), fork=1,...,n,;j=1,...,m.(k)
e Repeat this process for the y-component to compute Ag,kj.

e Location pairs with high degrees of match, both in z and y components,

remain candidate locations.

4. Steps 1-3 can be repeated until a unique fuzzy location is obtained.

The implementation of the algorithm is demonstrated with examples in Chap-

ter 6.

5.3 Concurrent Localization and Map Updating

Fuzzy logic based concurrent localization and map updating algorithms for mobile
robots are introduced in this section. These algorithms depend on sonar readings
obtained from the robot’s environment to update the robot’s location and map.
Sonar readings are used to construct a fuzzy composite map. This provides in-
formation about the location of detected objects in the global map. These objects
either belong to the original map or are new objects in the environment that need to
be added to the global map as line segments. Identification of the detected object is
performed by fitting the fuzzy composite map to the global map. As a result of this
fitting process, the fuzzy composite map components can be classified into two sets.

The first set includes the components that have a match in the global map. These
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are used to obtain the robot’s location based on sonar readings, and then combined
with the robot’s location obtained from odometers over a short distance in order to
update the robot’s current location. The second set includes the components that
do not have matching components in the global map. These are used to update the

map itself in terms of line segments.

5.3.1 Localization Algorithm

The proposed fuzzy based localization and map updating algorithms are explained in
this section. These algorithms depend upon a collection of sonar readings obtained
by the robot’s sensor at each sonar scan. A sonar scan consists of the sonar readings
at each localization cycle which consists of sensing, localizing, and location updating.
The obtained sonar readings in one scan are used to build a fuzzy composite map.
This fuzzy composite map is fit into the global map. The components of the fuzzy
composite map that fit into the global map are identified and grouped in one set.
The same is done for the components that do not fit into the global map. For
each fitting component, the shortest distance between that component and its fitted
object in the global map is calculated. Each calculated shortest distance represents
either an z or a y coordinate of the robot’s position in the global map. All obtained
z components are combined to obtain one representative coordinate. The same is
done for the y components. These coordinates represent the robot’s position when
only taking into account the sonar readings. The odometer readings are then used
to calculate the expécted position of the robot. Then, information from the two
locations is fused to obtain the current robot’s location. The obtained location is
used to correct the odometers. Finally, the set of the unfitted components is used
to extract lines segments to be used in the map updating algorithm. These steps

are explained in details next.
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5.3.2 Fitting The Fuzzy Local Composite Map Into The
Global Map

Consider a fuzzy local composite map obtained from sonar readings. The compo-
nents of this map are fit into the global map. The components that fit successfully
are used to update the robot’s position. The ones that do not fit successfully are
used to create new line segments. Next, we show how we test each component of
the fuzzy map to see if it fits or does not fit into the global map. This is explained

in the following steps:

e For each element of the fuzzy local composite map, search the global map of
the robot to find the set of objects that have negative surface normals in the

support of Ilg|sq;. This set is represented as:
A; = {O1,...,Oj,...,0k}Vi el

where O; is an object in the global map whose negative surface normal €

supplle|sq; and k is the number of elements in A;.

e For each A;, find the coordinates that represent this component in the global

map. These coordinates are obtained as:
Xi = X, + d; cos(y;)

where X, is the z coordinate for the robot’s current location; Y, is the y
coordinate for the robot’s current location; d; is the sonar reading obtained
from the sensor that represents the i component of the fuzzy local composite

map; y; is the angle of this sensor in the global frame.

e For each A;, find the relationship between each element in A;, ie., O; and

(Xi,Y;) as follows ( note that for each A; there is only one pair of (X;,Y;)):
(X-So]- - XT)(}/;DJ' - Y;o]-) - (XSOj - Xsoj)(y;oj - }/7.‘)

A=
(XT - Xi)(Y;Oj - Y90j) - (Xer - XSOJ-)(Y;' - }/;)

(5.18)
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(Xsoj - X)) * (YY)~ (Xi - Xr)(}/;oj -Y)

*

= 5.19
X - X) (Ve ~ Vo) = (K, X Vo1 1)
(XT}/Z - Y"‘Xz) (X30~ - Xeo-) - (XT - X'i)(Xso-}/ecr - Xeo-)/;o-)

XE — 2 7 J 7 J J (5.20)

(Xr — Xi)(Y;oJ- - Ye"j) - - Y;)(Xst’j N Xe"j)
(XT}/;—}/TX’l)(}/So ‘_}/50‘)_(}{"*}/'5)()(30-)/;0- —Xeo-Y50~)

Yy = ;e st el (5 07)
(XT - X'l) (}/;o]- - }/eo_i) - (YT - }/'i)(Xso]- - Xeo]-)

D =/(Xi — Xg)? + (Yi — Yp)? (5.22)

where A* is a ratio that determines if there is an intersection between the line
L (Figure 5.8 ) that links the current location of the robot and the (X;,Y;),
and any global line segment O;, p* is the ratio that determines if (X;,Y;) is
within the start and the endpoints of any line segment that belongs to the
global map, and (Xg, Yg) is the intersection point between the line L and the

object O;. These ratios are utilized as follows:

1. fO<pu*<1,0< A* <1,and D < (3, then there is a match between the
object O; and the component .4;, where (; is a threshold value determined

experimentally.

2. f0< p <1,and V '5 (o, then there is a match between the object
O; and the component 4;. However, in this case the line L has no
intersection with the object O; and V is the distance between (X;,Y;)
and the object O;.

o If one of the previous conditions is satisfied, the object O; is used to update

the robot’s location.
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e If the previous two conditions fail, then there is no match between the object
O; and the component ¢, and (X;,Y;) is then used as the seed for a new line

segment creation.

(XSOj I Xsoj )

(X, Y7)

Figure 5.8: Local map

5.3.3 Fuzzy Triangulation

The obtained possibility distributions that represent the shortest distances between
the robot and the detected objects (the ones that have matching components in the
fuzzy local composite map) are used to update the robot’s location components, z,
y and . As mentioned earlier, the shortest distance between the robot and wall can
update either the z or the y component of the robot’s location in the global map.
The shortest distance between the robot and the corner can update both the = and
the y coordinates of the robot location in the global map. However, before updating
the robot’s coordinates, the shortest distances are used to calculate the x and y
coordinates with respect to the detected objects. These coordinates are obtained as

follows:

Mxpa, = Y 7/ (Xo, — sd; cos(Ny)), ¥(sd;); € suppllyg, (5.23)
J
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yje, = Y_m;/ (Yo, — sdisin(Ny)),V(sd;); € suppllyg, (5.24)
J

H@Itdi = Z 7Tj/(K,1i + /\,),V(Az)] € suppﬂmgdi (525)
J

The objective of the above equations is to obtain the robot’s coordinates based
on the shortest distances between the robot and the detected objects. This is
achieved by using the global map given to the robot. The global coordinates of
the detected objects are given as (Xo,, Yo,, No,)- Note that according to the type
of the detected objects, the parameters (Xo,, Yo,, V) can represent the coordinates
of a wall or a corner. In the case of a wall these parameters can be described as
in Section 5.2.2 by (X, ,Yso,,, NLg) and in the case of a corner they become
(Xocy, Yoc,, NC). In Equation (5.25), ko; is the angular difference between the
orientation of the first sonar sensor in the sonar ring (since it represents the ori-
entation of the robot) and the orientation of the i*" sensor which has the shortest
distance to an object. Equation (5.25) represents the rotation of the angular possi-
bility distributions of the sensors that provide the shortest distance information to
the current orientation of the robot.

Finally, the robot’s coordinates in the global map are obtained by combining

all possibility distributions that represent the z, y and # coordinates as follows:

HXso = ﬂ HXltdi (5-26)
il

Iy,, = ﬂ Iy g, (5.27)
i€l

Ie,, = ) e}, (5.28)
i€l

These locations are referred to as fuzzy locations due to the fact that the
three location related components (z-component, y-component, and orientation)
are represented with possibility distributions.

For example, Figure 5.9(a) shows a fuzzy composite map fitted to the global
map. In Figure 5.9(b), the shortest distance between the robot and each object is
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shown. Then in Figure 5.9(c), these short distances are transformed into z and y
components. In this figure there are four z components and three y components of
the shortest distances that can be used to obtain the robot’s coordinates. Finally,
in Figure 5.9(d), Equations (5.26, 5.27, 5.28) are used to obtain the robot’s z, y,
and @ coordinates.

One can obtain the fuzzy robot’s position as a region by taking the Cartesian
product of I, and Ily,, asshown in Figure 5.4 where each pbint (z,y) that belongs
to this region has a degree of possibility of Ilx,,xv,,(z,y) = min{Ilx, (z), Iy, (v)}
of being the actual robot’s position. Based on this figure, the possibility that the

robot’s position in the global map belongs to the flat region is 1.0.

5.3.4 Sensor Fusion for Localization

The idea of sensor fusion is to combine location information from different types
of sensor. The objective of the fusion is to obtain location information with less
uncertainty. In this paper, the traveled distance of the robot since the previous time-
step provided by the odometers is considered to update the robot’s current location.
Then, this obtained location is fused with the location information obtained by the

sonar. The robot’s location based on the odometers is obtained as:

Ux,, = D> m/(Xs +lcos(fy)),Vz; € supplly, (5.29)
x5
Hyod = Z’ﬂ'yf/(Yf + lsin(éf)),\/yf < suppHyf (530)
yrf
Io,, = > mo, /(¢ +6y),V0; € supplle, (5.31)
b5

where Ilx,, Ily,, and Ilg, are the possibility distributions that represent the
current coordinates of the robot. The symbols | and ¢ are the traveled distance
and the angular rotation since the previous time-step provided by the odometers.

Finally, 6; is the crisp value that represents the current location of the robot and is
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Figure 5.9: (a) Fuzzy composite map is fit to the global map; (b) Shortest distances
between the robot and different objects are obtained; (c) Combination of the shortest
distances; (d) The fuzzy region that represents the estimated position of the robot.
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obtained using the center of gravity method as follows:

é . EQESuppHef Hfﬂ(ef)
/ Zﬁfesuppﬂef 71'(9f)

Since we obtain the robot’s location based on two types of sensors (sonar and
odometers), we can fuse these two sources of location information to obtain the
robot’s current location and update the robot’s odometer to start a new localization
cycle. The components of robot’s current location after fusion are obtained as

follows:

HXf = HXod ﬂ HXso
HYf = HYod ﬂ HYso
Hef = Heod ﬂ H@so

To update the odometers, the above possibility distributions must be defuzzi-

fied to obtain crisp values and this is done by using the center of gravity method:

szESuppHXf xfﬂ-(zf)

foEsuppfo 7T(Cl7f)

.’L’f:

Z:yE.'suppl'ny yfﬂ-(yf)

Zy;e.suppﬂyf 7T(yf)

Yf =

0_ _ Zﬂésuppﬂef ofﬂ-(gf)
d ZGfesuppH@f 7T(0f)

5.3.5 Line Segments Extraction

In this section we present a method to group sonar readings into line segments that
can be used to update the global map. This process takes place in the presence of
pieces of evidence that support the fact that these sonar readings are not coming
from the original global map features. In other words, the components of the fuzzy

local composite map which do not have matching objects in the global map are
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used to build new objects. These objects are built in the form of line segments.
Estimating the parameters of the new line segments requires that the robot’s current
location is valid. This means that there is a sufficient degree of match between the
fuzzy composite map and the global map. |

Fuzzy composite map components do not fit to the global map and the updated
robot’s current location can be used to either initialize a line segment, create a line
segment, or update the parameters of a created line segment. This process is shown

in Figure 5.11. The three cases of this process are explained as follows:

1. Initialization of a new line segment
In this case the component of the fuzzy composite map is used to obtain the
starting point and the normal to the surface of a candidate line segment. These

are obtained as follows:

X, = X, + Scos(y) (5.32)

Y, = Y, + Ssin(y) (5.33)

Lvoesuptipy, 0imria, (0:)

0, = (5.34)

. ZVGEsuppledi Tr|d; (01)
where 7 is the angle of the sensor that detected this new object, and S is the

crisp value of the shortest distance obtained by:

g 2vd; esuppllyy 47sd (i) (5.35)

ZVdj €suppH g Tsd (d])

The above obtained pararﬁeters are considered the initial information about a
newly detected object in the environment. This information will be stored for
use in the process of the creation of a new line segment as will be discussed

next.

2. Create a new line segment

If we have an initialized line segment and a component of the fuzzy composite
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map that does not fit into the global map, the coordinates of this component
are then checked with the initialized segment parameters to see if a relationship

exists between them. This relation is determined as follows:

VX - X2+ (YY) <r (5.36)

e (0s) > o (5.37)

where 7 and « are threshold values determined experimentally. Equation(5.36)
determines the distance of the newly obtained (X;, Y;), which is associated with
a component of the fuzzy map that does not fit into the global map, from the
starting point of an initialized line segment. Equation(5.37) determines the
orientation of (X;,Y;) with respect to an initialized segment. If both of these
relationships are satisfied, the coordinates of the component are considered
as the ending coordinates of the initialized line segment. This step will com-
plete the parameters of the initialized segment and results in a newly created

segment.

. Updating the parameters of a created segment

If we have a created line segment and a component of the fuzzy composite
map that does not fit into the global map, the coordinates of this component
can be used to update the parameters of the line segment. Figure 5.10 shows
a line segment and the coordinates of two different components labeled as A
and B. The A coordinates are used to update the starting coordinates of
the line segment. Similarly, the B coordinates are used to update the ending
coordinates of the line segment. For the A coordinates to be used to update the
starting coordinates of the line segment, the value of the parameter u*, given by
Equation(5.19) must be less than zero, when applied to the parameters of the

created line segment and the A coordinates. This means that the coordinates
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of A are outside the boundaries of a new line segment. Then, if this is satisfied,
we proceed by checking how far A is from the starting coordinates of the new
line segment. If the distance between the starting coordinate of the new line
segment and A is less than a threshold value, then the A coordinates can be
used to update the starting coordinates of the line segment. Similarly, this is
applied to the B coordinates, however, the p* value must be greater than 1
so that the B coordinates can be used to update the ending coordinates of a

new line segment.

(Xs, Y5)

o™

(Xe, Ye)

Figure 5.10: Created line segment.
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Figure 5.11: Line segments extraction algorithm.
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Chapter 6

Experimental Results and

Discussions

In this chapter we implement our proposed fuzzy logic based localization and map
updating algorithms on a Nomad 200 mobile robot. This chapter includes two
sections. The first section deals with the global localization problem and the second

one deals with the concurrent localization and map updating problems.

6.1 Applications of The Global Localization Prob-

lem

6.1.1 Example

For this example, consider the map given in Figure 6.1. The robot is located at an
arbitrary location in the environment, i.e., it has no knowledge of its global location.
The first step is for the sonar sensors to collect data from the robot’s environment.
Then, sonar readings coming from adjacent sensors are considered to be coming

from the same object if the difference between the neighboring readings is within a
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predefined tolerance which is determined experimentally as 10 cm. Combining adja-
cent sonar readings also helps eliminate false reflections, reducing angular and radial
uncertainty in sonar readings as explained in Section 5.2.3, and then constructing
the robot’s local composite map. Each element in the local composite map consists
of at least two sonar readings coming from the same object. This local composite

map is represented as:

LOC&ll = {(dg = 1596, le = 1520), (d13 = 3653, d14 = 3603)}(mm)
| 6.6 m |
! —=
2.58 m
'y
1.2 m 90°
+ 180° —*— 0°
3.69 m
270°
Y
| ]
4.1 m

Figure 6.1: The global map.

This local composite map is transferred into the fuzzy local composite map by
taking into account the angular and radial uncertainty of the sonar readings. This
fuzzy local composite map is shown in Figure 6.2.

By matching the fuzzy local composite map with the global map, we can

obtain candidate locations of the robot in the environment by applying the first
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Figure 6.2: Angular uncertainty of the fuzzy local composite map.

step in our proposed localization algorithm (Section 5.2.7). These locations are
shown in Figure 6.3 and are labeled as Locyq, Locya, Locys, and Locyy.

The z, y and 6 components of the candidate locations are computed as ex-
plained in Section 5.2.5 and shown in Figure 6.4 for Locy, ! .

After getting all candidate locations, the robot moves to a new location for a

new local composite map, which is given as:
Localy={(ds = 3044,ds = 2988), (dy = 1596,d; = 1545) }(mm).

Then we obtain the candidate locations Locay, Locyy, Locys, Locys as shown
in Figure 6.5. The z, y and # components for Locys are shown in Figure 6.6.

Now we obtain hypothesized fuzzy locations for the fuzzy locations obtained
in the previous local composite map using Equations (5.14) and (5.16) and. the z
and y components shown in Figure 6.7 for Locia .

First, we match the orientations and then the z, and y components of the loca-
tions that have agreement in the orientation. The degree of possibility of matching
in each case is computed by using Equation (5.9). This process is explicitly demon-
strated between Loci, s and Locys in Figure 6.8. In this figure, the degree of match
between orientations is 1.0, and between z and y components is 1.0 and 1.0, re-
spectively. After matching all of the hypothesized fuzzy locations with all of the

current fuzzy locations, we obtain the decision tree shown in Figure 6.9. In this

! Locy s is the actual location of the robot.
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Figure 6.3: Candidate locations of the robot.
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Figure 6.4: The z, y and 6 components of Loc;s.

figure, the orientation and the z component are matched between Locy; and Locy,,
however, there is no match between the y components of these two locations. There
is a match in the orientation and z components of Locy3 and Locys but there is no
match between the y components. Locations Locy4 and Locy; match in the orien-
tation and y components, however, there is no match between their z components.
Therefore, we obtain Locys as the actual current location and Loc;, as the actual
previous location.

Figure 6.10 shows the two sets of candidate locations in the same map. From
this figure it is clear that Loc;, is the previous location and Locys is the current

location.

6.1.2 More Examples

Figure 6.11 shows the different results obtained by applying the proposed algorithm
at different locations in the robot’s environment. In these experiments we obtain

unique candidate locations of the robot represented by black circles.
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Figure 6.5: Fuzzy candidate locations in the second scan.
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Figure 6.7: Hypothesized fuzzy location, Locyz .
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Figure 6.8: Fuzzy matching between Locy, and Locys: (a) z-components match, (b)
y-components match.
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Figure 6.9: Tree search to obtain the current location.
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Figure 6.10: The two sets of candidate locations shown in the same map.
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In Figure 6.11(a), the robot was able to obtain one unique location after sev-
eral attempts. The last sonar scan resulted in two candidate locations. However,
one of these locations conflicted with the robot and environment geometries since
the robot ring was in contact with one of the environment walls. This impossible
location was eliminated and then one unique location was identified. Figure 6.11(b)
shows a situation where the robot had enough sensory information to uniquely lo-
calize itself. In Figures 6.11(c,d,f), during its movements the robot had multiple
candidate locations. When new sonar information became available, the robot was
able to reduce the number of these locations and obtain one unique location. Fi-
nally, in Figure 6.11(e), the robot initially attempted to localize itself based on the
sonar readings obtained from only two walls. As a result, the robot obtained three
candidate locations. Then, after its movement, the robot was able to detect a new
wall which reduced the number of candidate locations into two competing locations.
In the end, the robot was able to recognize two corners in addition to the walls
which gave the robot the ability to obtain one unique location. The detection of the
two corners reduced the number of iterations needed to find a unique location.

Table 6.1 reports the location components as the parameters of the possibility
distributions that are associated with these locations. The possibility distributions
that represent the X and Y coordinates are used to obtain the fuzzy region that
describes the robot’s position in the global map. This is done by taking the Cartesian
product of IIx and Iy as shown in Figure 6.12. This fuzzy region identifies a
collection of the robot’s positions, each with a certain degree of possibility. Table
6.2 provides the number of iterations needed to obtain each unique location, the total
number of candidate locations obtained until the robot identified unique locations,
and the degree of match between the fuzzy local composite map and the global map
for these locations. Table 6.3 provides the actual measurements of the unique fuzzy

locations.
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Figure 6.11: Different unique fuzzy locations in the global map.
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Table 6.1: Components of identified fuzzy unique locations in the global map.

Test X (mm) Y (mm) © (deg)

a | (2590,2610,2640,2660) | (4194,4203,4213,4233) | (152.5,152.5,166.5,180)
b | (2385,2385,2393,2403) | (2328,2347,2377,2396) | (242.5,256.5,270,270)
¢ | (2227,2237,2247,2257) | (2077,2087,2097,2106) | (220,220,233.5,247.5)
d | (1879,1899,1928,1948) | (1690,1700,1729,1729) | (175,188.5,202.5,202.5)
e | (1575,1585,1614,1614) | (4251,4271,4273,4283) |  (355,8.5,22.5,22.5)
f | (2793,2813,2843,2843) | (3960,3980,4010,4030) (85,85,90,90)

Figure 6.12: Fuzzy location region.
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Table 6.2: Number of iterations and candidate locations obtained until a unique
location is identified.

Test | Number of Iterations | Number of Locations | &
a 7 14 0.93
b 1 1 0.92
c 9 17 0.85
d 6 26 0.94
e 6 13 0.83
f 3 11 0.88

Table 6.3: Actual components of the unique locations in the global map.

Test | Xact (mm) | Yact (mm) | Oact (deg)
a 2615 4205 157
b 2390 2382 267
¢ 2239 2088 225
d 1916 1720 195
e 1595 4270 24
f 2820 3995 88
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6.2 Applications of The Concurrent Localization
and Map Updating Problem

In this section we implement our location and map updating algorithms in a real
environment at the Fuzzy Systems Research Lab.

The Nomad 200 is programmed to follow the path illustrated in Figure 6.13.
The robot has initial knowledge about its location in the global map. While the
robot moved along its path, it was stopped at places A, B, C, and D (as shown in
Figure 6.13) to obtain measurements of its position. In addition, the robot’s position
obtained from the odometers was registered. Then, the error in the robot’s position
was calculated as the difference between the measured position and the position

provided by the odometers. This error is obtained as follows:

error = \/(ymeasured - yodometer)2 + (xmeasured - iL'odometer)2 (61)

The obtained error versus the localization iterations is plotted using a dashed
line as shown in Figure 6.14. This figure demonstrates that the error obtained by
relying only on the odometers accumulates with time. For example, when the robot
is at location A, the error provided by the odometers is 73 cm (see Figure 6.13 for
the robot’s path). This error is accumulated over the robot’s path until it reaches
location A. This error comes from the error in the z and y coordinates of the robot’s
position. However, the contribution to error from the y coordinate is larger since
the robot was traveling along the y direction.. At location B, the error is 93 cm
and accumulated as a result of the turns performed by the robot. The accumulated
error at location B starts to decrease until the robot reached location ‘C, where it
increased to 82 cm as a result of the robot’s movement in an opposite direction to
its original movements. Finally, at location D the error is 187 cm and accumulated
as a result of the robot’s turns and the movement of the robot in the z direction.

These results support the fact that odometers are not reliable over long paths. This
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is due to unequal wheel diameters, misalignment of wheels, finite encoder resolution,
uneven floors, and wheel slippage.

In a second test, the robot followed the same path, however, our proposed lo-
calization algorithm is used to update the robot’s position while it is moving along
its path. The robot stopped at places A, B, C, and D as shown in Figure 6.13 so
that measurements of its position could be taken. At the same time we registered
the position information obtained from the proposed localization algorithm at these
locations. We calculated the error in the robot’s position as the difference between
the position obtained by the measurements and the position obtained by the pro-
posed algorithm. This error is obtained as explained in Equation (6.1). The error
versus the number of localization iterations needed to reach each point is plotted
and shown by the dashed-dotted line in Figure 6.14. This line shows that the error
in the robot’s position, corrected by our localization algorithm, is very small and
its maximum value is around 2 cm. This is an acceptable range of error when using
sonar sensors for localization. Similar approaches introduced by other researchers
[43] show a larger range of errors when using sonar sensors for location updating in
a similarly sized environment as the one used for our experiments.

The Nomad 200 is programmed to follow another path as shown in Figure 6.15.
The robot was stopped at locations A and B so that measurements of its location
could be taken. From Figure 6.16, the error obtained by our proposed localization
algorithm is 1.9 cm. The error obtained by the odometers at location A was 95 cm
and 190 cm at location B.

As Figures 6.14 and 6.16 show, the error obtained by our localization algorithm
is not only less than the one obtained by the odometers, but also less than what is
repbrted in the literature [43, 40]. This result shows the usefulness of the localization
algorithm for mobile robot applications when specific tasks are to be achieved by
the robot.

Our proposed localization algorithm is designed for mobile robots with a ring
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configuration. This is a very important feature to mention since this configuration
allows the detection of objects that are in different directions from the robot, and
because the coordinates of these objects are used to update the robot’s location.
Therefore, this helps in increasing the frequency of location updates as shown in
Figures 6.13 and 6.15. The intensive marks that are shown on the original map
boundaries are the sonar points that are used to update the robot’s location while
the robot is following its path. Other algorithms are implemented on different robot
configurations where these configurations impose some restrictions on the time when
the robot can update its location [27]. In [27], the robot has to stop to accumulate
a certain number of localization iterations to update its location.

The proposed localization algorithm is very robust to noisy sonar data. This is
due to the fact that we filter erroneous sonar readings by combining range informa-
tion obtained from adjacent sonar sensors. In addition, the modeling of angular and
radial uncertainty of sonar readings results in obtaining location information with
a small amount of error. The black dots shown in Figures 6.13 and 6.15 are noisy
sonar readings that we chose not to use for localization or map updating. Some of
the noisy readings are shown to be consistent with the global map, however, they
are obtained in different scans by using only one sonar sensor.

Our map updating algorithm relies on the robot’s current location to identify
new objects in the robot’s environment. Then, these objects are represented in the
form of line segments and are added to the robot’s global map. To make sure that
the robot’s current location is reliable, we implement the map updating algorithm
concurrently with the location updating algorithm. The map updating algorithm is
implemented in a real environment as shown in Figures 6.13 and 6.15. In Figure 6.13,
one object was added to the robot’s environment and while the robot was following
its path, this object was identified using sonar readings that did not have matching
components in the global map. Those sonar readings were used to initialize, create,

and update a line segment that represented this object. During this process, the
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number of the line segments in the robot’s environment increased as a result of
updating the robot’s map by adding this line segment. In Figure 6.15, two objects
were added to the robot’s environment and our map updating algorithm was able
to identify these two objects and form line segments that represented these objects.
The number of the line segments in the robot’s map increased by two as a result of

updating the robot’s environment.

Refresh  Panels

Figure 6.13: Experimental verification of the proposed localization algorithm.
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Figure 6.15: Experimental verification of the proposed localization algorithm.
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Chapter 7

Conclusions and Future Work

In this chapter we conclude this thesis and introduce our future work plans.

7.1 Conclusions

This thesis introduced three fuzzy logic based algorithms for mobile robots equipped
with a ring of sonar sensors. The first algorithm solves the global localization prob-
lem of mobile robots, the second algorithm solves the location updating problem,
and the third solves the map updating problem. The three algorithms are dynamic
algorithms, i.e., they run while the robot is moving.

Our localization algorithms depend on sonar readings to estimate the robot’s
location and update its map. Sonar sensors are chosen because they are inexpensive
and provide range information in real-time. However, they suffer from drawbacks
that limit their performance, especially when used for localization and map updat-
ing. There are two main drawbacks that affect any sonar based localization or map
updating algorithm: the beam width of the sonar sensor and false reflections. The
beam width introduces uncertainty in the position and orientation (radial and an-
gular uncertainty, respectively) of the detected objects, and therefore affects quality

of the location information provided by the localization algorithms. False reflections
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provide inaccurate information about the robot’s surroundings, and these inaccura-
cies affect the functionality of the localization algorithms.

These drawbacks can be overcome by studying the behavior of sonar sensors
when they detect objects in the robot’s environment. This is achieved by providing
an appropriate experimental setup and carrying out various experiments that enable
us to understand the behavior of sonar sensors. The experiments here studied the
behavior of the sonar readings reacting to walls and corners since these two objects
are available in the environments of any mobile robot. Based on the experimental
results, we constructed fuzzy logic based models (possibility distributions) that rep-
resent the angular and radial uncertainty in sonar readings obtained by one sensor.
Moreover, the false reflections problem was avoided by combining range information
from adjacent sensors. Adjacent sonar sensors with small differences in the range
readings are considered to be reflected from the same object. Combining information
from adjacent sensors introduces reduced models of uncertainty in sonar readings
when they are reflected from walls and corners. The reduced models are derived
based on the knowledge of the angle between any two adjacent sensors in the sonar
ring and the number of the adjacent sensors detecting the same object. In addition,
we show how we can select the appropriate uncertainty models based on the range
information and the number of adjacent sensors detecting the same object. These
models are then used to identify objects in the robot’s environment by estimating
their position and orientation with respect to the robot. The coordinates of these
objects are used in the proposed localization algorithms to estimate the robot’s lo-
cation. The method used to construct the uncertainty models can be generalized
for any robot with a ring configuration.

We have proposed a fuzzy logic based solution for the global localization prob-
lem of mobile robots, that is, the estimation of the robot’s location when it is com-
pletely lost in a known human-made indoor environment. The proposed approach

uses sonar readings collected from a ring of sonar sensors mounted around the robot.
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Consecutive sonar readings with close readings are considered to be reflected from
the same object in the global map. These readings are associated with the appropri-
ate uncertainty models which are given in the form of possibility distributions (fuzzy
sets). This results in constructing a fuzzy local composite map which represents the
current proximity of the robot. This map consists of a set of components, each of
which represents the shortest distance between the robot and a detected object, and
the orientation of the detected object with respect to the robot. These components
are represented by possibility distributions (fuzzy sets).

In our proposed global localization algorithm, a matching algorithm is devel-
oped to match the fuzzy local composite map and the robot’s global map to obtain
all of the possible robot’s locations in the global map. For the matching process to
be successful, at least two non-parallel components of the fuzzy local composite map
must be associated with objects in the robot’s global map. Generally, the result of
the matching process is either one candidate location or a number of candidate lo-
cations of the robot in the global map. Since z, y and 8 components of an identified
location are represented by possibility distributions, these locations are referred to
as fuzzy locations. To reduce the number of candidate locations, the robot is moved
to a new location and a new local fuzzy composite map is constructed. Then, a new
set of candidate fuzzy locations is obtained. By considering the robot’s movement,
a set of hypothesized locations is identified from the old set of candidate locations.
The hypothesized locations are matched with the new candidate locations and the
candidates with a low degree of match are eliminated. The matching process is
performed ﬁsing the fuzzy pattern matching technique. If the robot actually was at
the old location and, after traveling, it actually reached the new location, then the
degree of match between the possibility distributions representing the components
of these locations is expected to be high. Therefore, the degree of match can be
used to test this hypothesis. The location pairs with low degrees of possibility are

rejected and remaining locations are selected as the set of candidate locations. This
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process continues until a unique location is identified, provided that the environment
has a sufficient number of unique features.

The proposed algorithm is implemented on a Nomad 200 mobile robot. The
effectiveness of the algorithm is demonstrated by many examples. In each example,
the robot’s location is initialized from a completely lost situation. In situations
where there is more than one candidate location, the algorithm is able to reduce
these locations into one unique location based on the processing of the gathered
range information provided by the robot’s sonar sensors in real-time. The proposed
algorithm is capable of dealing with the uncertainties and false reflections associated
with these sensors. This is reflected on the precision of the location information -
provided by this algorithm. Our proposed localization algorithm makes use of all
available information provided by the robot’s sensors while the robot is navigating
its environment. This has a major effect on the process of the reduction of steps
necessary to obtain one unique location. The experiments show how the recognition
of corners in the robot’s environment reduces the steps needed to obtain one unique

location. The fuzzy local composite map provides location information about the
detected objects in the robot’s environment. This map is constructed based on sonar
readings, i.e., the construction of this map is done in real-time given that there is no
need to store large amounts of sensory data to build such a map. This is superior to
the process of constructing local maps in terms of line segments which requires more
time and the storing of extensive sensory readings while the robot is navigating its
environment. Since our proposed algorithm provides the location of the robot in the
form of fuzzy sets, it can be implemented with fuzzy logic based path planning, wall
following and obstacle avoidance algorithms. The proposed algorithm is a generic
algorithm for a class of mobile robots with a ring of sonar sensors.

We have proposed a fuzzy logic based location updating algorithm. This al-
gorithm relies on the principle of sensor fusion to estimate the current location of

the robot. The current location of the robot is found by combining the location of
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the robot obtained by the odometers over short traveled distances and the location
of the robot obtained based on the sonar readings. To estimate the robot’s loca-
tion based on sonar readings, the components of the fuzZy local composite map are
transformed into global coordinates. As a result of this transformation, we identify .
two sets of the fuzzy local composite map components. The first set consists of the
components that have matching components in the global map. The second set con-
sists of non-matching components. Fuzzy triangulation technique is applied to each
component of the first set to estimate either the x or the y coordinates of the robot’s
location. As a result of this triangulation technique, more than one component may
describe the z or the y coordinate. Then, the principle of combining information
from different sources is applied to obtain one x and one y coordinate. The result
of this combination is the robot’s location based on sonar readings. The robot’s lo-
cation is also estimated based on the odometer readings by taking into account the
previous robot’s location and the traveled distance. Then, a fuzzy logic based fusion
technique is applied to the location obtained based on the sonar readings and the
measurement from the odometers. The result of the fusion operation is the current
location of the robot. This location is obtained in the form of possibility distribu-
tions (fuzzy sets). A defuzzification technique is applied on these distributions to
obtain crisp values that can be used to update the robot’s odometers.

The proposed location updating algorithm is able to update the current loca-
tion of the robot continuously as long as there are sonar readings reflected from the
robot’s environment. Moreover, the algorithm does not depend on large amount of
sonar data to be used in the location updating process. The proposed algorithm
depends on the detection of natural landmarks such as walls and corners which are
available in any indoor environment. In other words, structuring the robot’s en-
vironment with artificial landmarks is not necessary for this algorithm to function.
This algorithm is robust to noisy sonar readings and it provides location information

with a small amount of error. This is due to the fact that this algorithm depends on
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modeling the radial and angular uncertainty of sonar readings in the form of possi-
bility distributions. The proposed location updating algorithm is tested on a Nomad
200 robot in a real environment. Experimental results are compared with the results
obtained by relying only on the odometers to estimate the robot’s location. These
experiments demonstrate that the proposed algorithm has a small amount of error
in estimating the robot’s location.

We propose a map updating algorithm that enables the robot to update its
global map while navigating. This algorithm is used to update the robot’s map by
adding new line segments. This is achieved by relying on the set of non-matching
components to identify new objects in the robot’s environment. The process of
updating the robot’s environment consists of three parts. The first part is respon-
sible for initializing new line segments, the second part is responsible for creating
new line segments from initialized segments, and the third part is responsible for
updating the created line segments. Updating the robot’s map requires that the
current robot’s location is reliable. Therefore, the location updating algorithm is
implemented concurrently with the map updating algorithm. The proposed algo-
rithm does not wait to obtain large amounts of sonar data to establish line segments.
Additionally, the algorithm is able to handle the uncertainty associated with sonar
readings. The proposed algorithm is implemented on a Nomad 200 mobile robot

and the effectiveness of the algorithm is demonstrated experimentally.

7.2 Future Work

We can summarize our plans for future work as follows:

e In this thesis we introduced a fuzzy logic based dynamic global localization
algorithm for mobile robots working in structured environments. Our algo-
rithm can be used in many applications where the robot has to work in such

environments. It is important also to introduce a global localization algorithm
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where the robot has to work in cluttered environments. For this reason, we
are planning to introduce a fuzzy logic based map building algorithm based
on the well known fuzzy c-mean clustering. Thé cluster centers, obtained from
the fuzzy c-mean algorithm, represent objects in the global map. Then, fuzzy
logic based global localization can be designed where a local fuzzy map, ob-
tained as cluster centers, can be matched with the global map to identify the

robot’s location in the global map.

We are planning to implement our fuzzy logic based location updating algo-
rithm concurrently with a fuzzy logic based goal approaching algorithm. The
goal approaching algorithm needs reliable robot locations to enable the robot
to reach its goal. The location ﬁpdating algorithm is capable of providing a

reliable robot’s location continuously.

We are planning to implement our fuzzy logic based location updating algo-
rithm concurrently with a path following algorithm. The path that is followed
by the robots may have different shapes such as a circle, square, etc. Usually
a feedback controller is designed to allow the robot to follow its path. How-
ever, many researchers rely on odometers as a feedback device to estimate the
robot’s current location while the robot is following its path. This is applicable
on the robot’s simulator but not on the real robot. Therefore, our location
updating algorithm can be used to provide feedback about the robot’s current

location on its path.
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Incidence angle (v) | Actual distance (cm) | Sonar reading (cm) | Error (cm)
0 49.58 48.26 -1.32
1 49.59 48.26 -1.33
2. 49.61 48.26 -1.35
3 49.66 48.26 -1.40
4 49.71 48.26 -1.46
) 49.79 48.26 -1.53
6 49.89 48.26 -1.63
7 50.00 48.26 -1.74
8 50.13 48.26 -1.87
9 50.18 50.8 0.42
10 50.44 50.8 0.36
11 50.63 48.26 -2.37
12 50.83 48.26 -2.57
13 51.05 48.26 -2.79
14 51.29 50.8 -0.49
15 51.55 50.8 -0.75
16 51.83 50.8 -1.03
17 52.13 50.8 -1.33
18 52.46 50.8 -1.66
19 52.80 50.8 -2.00
20 93.17 50.8 -2.37
21 53.56 50.8 -2.76
22 53.97 50.8 -3.17
23 54.40 50.8 -3.61
24 54.87 50.8 -4.10
25 55.36 50.8 -4.56

Table A.1: Sonar readings from a wall approximately 50 cm away from the sensor
for 0 < vy < 25.
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Incidence angle (y) | Actual distance (cm) | Sonar reading (cm) | Error (cm)
-1 49.58 48.26 -1.33
-2 49.61 48.26 -1.35
-3 49.65 48.26 -1.37
-4 49.71 48.26 -1.45
-9 49.79 48.26 -1.53
-6 49.89 48.26 -1.62
-7 50.00 48.26 -1.74
-8 50.12 48.26 -1.86
-9 50.28 48.26 -2.01
-10 50.44 48.26 -2.18
-11 50.62 90.8 0.17
-12 50.82 48.26 -2.57
-13 51.05 48.26 -2.79
-14 51.29 50.8 -0.49
-15 51.55 00.8 -0.75
-16 51.83 50.8 -1.03
-17 52.13 00.8 -1.33
-18 52.45 50.8 -1.65
-19 92.80 50.8 -2.00
-20 53.16 50.8 -2.37
-21 53.56 50.8 -2.76
-22 53.96 50.8 -3.17
-23 54.40 50.8 -3.61
-24 54.86 50.8 -4.06
-25 55.35 50.8 -4.55

Table A.2: Sonar readings from a wall approximately 50 cm away from the sensor
for 0 > v > —25.
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Incidence angle (y) | Actual distance (cm) | Sonar reading (cm) | Error (cm)
0.00 95.68 93.98 -1.70
1.00 93.95 93.98 0.03
2.00 92.30 96.52 4.21
3.00 90.74 96.52 5.78
4.00 89.25 96.52 7.27
5.00 87.84 96.52 8.68
6.00 86.50 96.52 10.02
7.00 85.22 96.52 11.30
8.00 84.00 96.52 12.52
9.00 82.84 96.52 13.68
10.00 81.74 96.52 14.78
11.00 80.69 96.52 15.83
12.00 79.69 99.06 19.37
13.00 ‘ 78.74 96.52 17.78
14.00 77.83 96.52 18.68
15.00 76.98 96.52 19.54
16.00 76.16 96.52 20.36
17.00 75.38 96.52 21.14
18.00 74.65 96.52 21.88
19.00 73.94 96.52 22.58
20.00 73.28 99.06 25.78
21.00 72.65 99.06 26.41
22.00 72.05 99.06 27.00
23.00 71.48 99.06 27.57
24.00 70.96 99.06 28.11
25.00 70.45 99.06 28.61

Table A.3: Sonar readings from a corner approximately 100 cm away from the sensor
for 0 <~y < 25.
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Incidence angle () | Actual distance (cm) | Sonar reading (cm) | Error (cm)
-1.00 93.95 93.98 0.03
-2.00 92.30 93.98 1.68
-3.00 90.74 93.98 3.24
-4.00 89.25 93.98 4.73
-5.00 87.84 93.98 6.13
-6.00 86.49 93.98 7.48
-7.00 85.22 - 96.92 11.30
-8.00 84.00 96.52 12.52
-9.00 82.84 96.52 13.67
-10.00 81.74 96.52 14.77
-11.00 80.69 96.52 15.82
-12.00 79.69 - 96.52 16.82
-13.00 78.74 96.52 17.77
-14.00 77.83 96.52 18.68
-15.00 76.97 96.52 19.54
-16.00 76.16 96.52 20.36
-17.00 75.38 96.52 21.13
-18.00 74.64 96.52 21.87
-19.00 73.94 96.52 22.57
-20.00 73.28 99.06 25.78
-21.00 72.65 99.06 26.41
-22.00 72.05 99.06 27.00
-23.00 71.49 99.06 27.57
-24.00 70.96 99.06 28.11
-25.00 70.45 99.06 28.61
-25.00 70.45 99.06 28.61

Table A.4: Sonar readings from a corner approximately 100 cm away from the sensor
for 0 > v > —25.
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