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Abstract

Identification and Fostering of Mathematically Gifted Children at the
Elementary School.

Viktor Freiman

In the modern dynamic mathematics classroom environment teachers often meet with a
variety of abilities. Finding a balance between helping students with difficulties in
mathematics and keeping gifted children on the right track of development is not an easy
task. Our study aims to develop an operational model for the identification and fostering
of mathematically gifted students at the elementary school. It reflects seven years of
experience in the teaching of challenging mathematics curriculum to Kindergarten
through Grade 6 children having various levels of abilities.

In our analysis of lessons we are going to discuss two questions:

1. How to interpret children's mathematical work in terms of mathematical giftedness ?
2. What kind of didactical situations are favourable in order to foster mathematical
abilities ?

In order to develop efficient teaching strategy for the gifted students, we
developed a theoretical framework based on the "challenging situations" approach. On
the basis of classroom observations and examples of students' solutions of challenging
mathematical tasks, we discovered several characteristics of mathematical giftedness,
such as mathematical precocity, thinking in concepts and relationships, high motivation

and perseverance, systematic and reflective mind.
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INTRODUCTION

The biographers of famous mathematicians often refer to the evidence of a particular
nature of their talent which can be detected already at a very young age. One can ask
where this deep insight in mathematics comes from. How can teachers discover their talent
and nurture it? And, as a result of this discovery, what kind of a classroom environment
would be advantageous for these children? What can be done in order to help these
children to realise their potential?

Our teaching and research practice shows the importance of a closer look at this
educational issue. In our study, we will focus on gifted children in mathematics, their
identification and fostering. Active and curious in their learning, persistent and innovative
in their efforts, flexible and fast in grasping complex and abstract mathematical concepts,
they do represent a unique human intellectual resource for our society, which we have no
right to waste or to loose.

Two major questions have been studied by a number of educators and
psychologists:

Q Who are gifted students and how to recognise (identify) them?

Q What can be done in order to foster and to nurture mathematically gifted students?
Our study aims to design and reflect on various classroom situations which help the teacher
to discriminate mathematical giftedness in young children and to create an appropriate

challenging environment.



In Chapter I, we will overview and analyse research on mathematical giftedness.
There are various models of identification of mathematically gifted children. In our
analysis we focus on those of them which help to understand mathematicatly specific
characteristics of abilities of gifted children and their particular way to think
mathematically.

In Chapter 11, we look closely at the theoretical thinking as characteristics of
mathematical giftedness. We will also discuss various problems and questions related to
the very nature of mathematical thinking and search for methods of fostering it in gifted
children.

In Chapter III, we are going to describe paradoxes of teaching and learning of
didactical, epistemological and methodological nature and discuss different approaches to
overcome these paradoxes.

In Chapter IV, we will describe a theoretical framework of our study and to
construct our definition of a challenging situation and an operational model of analysis of
children's mathematical behaviour corresponding to this definition and analyse classroom
situations which are favourable for the nurturing and fostering of mathematical abilities in
gifted children.

Our teaching experiment is based on 7 years of teaching challenging mathematics
to Kindergarten - Grade 6 children. On the basis of classroom observations and examples
of student's solutions of challenging mathematical tasks, we discover several
characteristics of mathematical giftedness such as spontaneous use of mathematics,
mathematical precocity, thinking in concepts and relationships, high motivation and

perseverance, systematic and reflective mind. Having many of these characteristics, gifted
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children demonstrate different styles of work organisation and communication within a
challenging situation.

We conclude with various recommendations for the use of challenging courses,
teachers preparation, relationships between giftedness and high achievement as well as

open questions for further research.



CHAPTER I. LITERATURE SURVEY ON THE PROBLEM OF
IDENTIFICATION AND FOSTERING OF MATHEMATICAL
GIFTEDNESS

The problem of iden;iﬁcation and nurturing young people with special inclination towards
mathematics is probably as old as mathematics. From ancient schools led by philosophers
and famous mathematicians to today's school system with its qualified mathematics
teachers, didacticians and psychologists, the mathematical giftedness has always been an
attractive field of study and practice. In this chapter, we are going to analyse different
approaches to identification and fostering of mathematical giftedness.

Whatever the point of view on mathematical giftedness, practical or theoretical,
psychological or didactical, historical or epistemological, there are two questions that must
be asked: how to recognise mathematical talent and how to nurture it.

We start this chapter by looking at the different ways of defining mathematical
giftedness. We continue by discussing different existing models of a mathematically gifted
student as well as different methods of identification of giftedness. Finally, we will

analyse the problem of the fostering of mathematical giftedness within and beyond the

existing school system and curriculum.

I.1 DEFINING MATHEMATICAL GIFTEDNESS
The terminology used in the context of identification of children with special abilities
operates with many words, such as "promising", "advanced", "talented", "high ability",
"extraordinary”, "above average", "gifted", etc., whose sense may differ from one author

to another.



There are several approaches to study mathematicai giftedness. One of them is
related to theories of general giftedness in which mathematics is seen as one particular
giftedness along with particular talents in music, arts, science, etc. Researchers working
on problems of gifted education see mathematical abilities as part of the so-called
"specific abilities" which are distinguished from "general abilities", or "general
intelligence”.

There exist various models representing a large spectrum of abilities. Among
them, one finds Guilford's model of 120 + elementary abilities (Guilford,1967), Vernon's
hierarchy of abilities - general, verbal-educational, practical-mechanical, minor and
specific (Vernon, 1971).

Sternberg (1979) used an information-processing model to identify five ways of
thinking or processing information which includes metacomponents for higher-order
planning, problem solving and decision taking, as well as performance, acquisition,

retention and transfer components.

Gardner (1983) proposed six abilities as a base for a so-called 'multiple
intelligence' model: linguistic, logical-mathematical, spatial, musical, bodily-kinaesthetic
and personal abilities.

Some researchers focused on the specificity of mathematical abilities.

More than a century ago, in order to understand the nature of mathematical
abilities, Calkins (1894) was trying to evaluate the extent of the main mental operations
used by children in doing mathematics. She mentioned the power of thought,

identification, comparison and reasoning as essential characteristics of the student of



mathematics. Among abilities that are more likely 10 be developed in mathematically
inclined individuals comparatively to those who do not like mathematics, Calkins
mentioned the ability to notice similarity or dissimilarity between objects or relations as
well as the ability to classify and to reason.

Rosenbloom's (1960) observations about his experience of teaching gifted children
mathematics also gives some initial clues about the difference between mathematically
able students and the average ones: "The bright youngster has a capacity to make
abstractions and generalisations, and so can go deeper as well as faster. He can discover
for himself what others have to be told".

As our study of mathematical giftedness is focused on "mathematical thinking"
and "mathematical ability", we have been led to paying special attention to the work of
Krutetskii (1976). According to Krutetskii, mathematical giftedness is a unique
combination of mathematical abilities that opens up the possibility of successful
performance in mathematical activity and/or the possibility of a creative mastery of the
subject. Krutetskii (1962) understands ability to learn about mathematics as individual
psychological qualities of the human being that help him or her acquire mathematical
knowledge and mathematical skills faster, easier and deeper.

With time, several researchers developed various models of mathematical
giftedness related to the ability to learn mathematics.

According to Krutetskii (1962) abilities to do mathematics are composed of:

General abilities (hard working, persistence, productivity, active memory, concentration,

motivation)



General mathematical abilities (flexibility, dynamic thinking)
Mathematics specific abilities

Many researchers relate mathematical ability to intelligence.
Young, Tyre (1992) give some practical characteristics of intelligence:

¢ The ability to deal with new situations

¢ The ability to see relationships, including complex and abstract ones

e The ability to learn and to apply what has been learnt to new situations

¢ The capacity to inhibit instinctive behaviour

e The ability to handle complex stimuli

e The ability to respond quickly to information

¢ A group of mental processes involving perception, association, memory, reasoning,
imagination

Many of these characteristics can be detected already at an early age. Krutetskii (1976,

p-302) observed highly precocious children who demonstrated a clear interest in

mathematics, worked with mathematics with pleasure and without compulsion, mastered

different mathematical skills and habits faster and attained of a comparatively (by age)

high level of mathematical development.

Several models are based on different lists of characteristics of mathematically able
students (see Hlavaty (1959), Krutetskii (1976), Livne & Milgram (2000), Lupkowski &
Assouline (1997), Miller (1990), Tempest (1974), Tuttle & Becker (1980)).

We can summarise them in the following combined list.

Mathematically gifted are children who:

Love mathematics:

¢ Are ready to spend time doing mathematical activities



e Are able to see beauty in mathematical symbols and relationships: numbers,
formulas, shapes, graphs, etc.
e Enjoy doing mathematics

Like to learn more about math. which could be seen as:

e motivation

e curiosity

e persistence

e discovery-orientation
e initiative

e wide range of interests

Think mathematically in various school situations that allow them to:

e collect and organise information

o formalise situations

e analyse facts, patterns and relationships
e generalise

e reason abstractly

e count and calculate

e interpret data

e explain and prove logically

Demonstrate behaviour that increases chances to succeed in mathematical activity:

e are hard workers

e have long attention span

e have good memory

e are flexible

e plan, control and verify they actions (work efficiency)
e are fast in their thinking

e think deeply

e think critically

e are able to focus/concentrate



e are able to complete their work

e are able to communicate their results orally and in writing
e pay attention to details

e see a whole structure

e apply intuitive thinking efficiently

e are able to compete

Discover the world by means of:

e "mathematical eyes"

e "mathematical creativity”

e "mathematical logic"

Some researchers consider giftedness as an intersection of different factors.
Mingus & Grassl (1999) focus their study on students who display a combination of
willingness to work hard, natural mathematical ability and / or creativity.
The authors consider natural mathematical ability, which might be represented by
several characteristics discovered by Krutetskii (see above) as well as non-mathematical
ones such as willingness to work hard (that means being focused, committed, energetic,
persistent, confident, and able to withstand stress and distraction) or high creativity (i.e.
capacity of divergent thinking and of combining the experience and skills from seemingly
disparate domains to synthesise new products or ideas). The authors labelled students
possessing a high degree of mathematical ability, creativity, and willingness as "truly
gifted".

Ridge and Renzulli (1981, Fig.1) define giftedness as an interaction among three

basic clusters of human traits: above average general abilities, high levels of task

commitment, and high levels of creativity. Upon their definition, gifted and talented



children are those possessing or capable of developing this composite set of traits and

applying them to any potentially valuable area of human performance.

Fig. 1 Renzulli's model of giftedness

Greenes (1981) analyses various strategies used by children working on mathematical
problems. He points out seven attributes that characterise the gifted student in
mathematics:

¢ Spontaneous formulation of problems
¢ Flexibility in handling data

¢ Data organisation ability

e Mental agility or fluency of ideas

¢ Originality of interpretation

e Ability to transfer ideas

® Ability to generalise

1.2 IDENTIFYING MATHEMATICALLY GIFTED CHILDREN
Having dressed a profile of the mathematically able student in the previous section, we

can now move to the next point of our discussion: What tools could help to identify
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mathematical giftedness in voung children? Analysis of various studies in mathematics
education shows a large spectrum of theories and practices.

Baroody & G‘insburg (1990) remark that even among children just beginning
school, there is a wide range of individual differences. Kindergarteners and first-graders
are far from uniform in their informal mathematical knowledge and readiness to master

formal mathematics. With each grade, individual differences increase.

Although there seems to be no agreement on terminology nor on procedures of
identitication of the gifted, all researchers agree that school marks do not reflect
mathematical abilities. School success in mathematics does not imply the presence of
mathematical ability. Conversely, also, children who do not succeed in school

mathematics are not necessarily mathematically unable.

We now look at the different ways of identification mathematical giftedness

through intelligence tests, achievement tests and ability tests.

L.2.1 Tools for the identification of mathematical giftedness

There exist many different tools of identifications of mathematical giftedness. But
there is no agreement between researchers regarding their efficiency. Moreover, there is
still a large disparity among them. The aim of our analysis is to take the most objective
look at them and focus not on how they help to identify, but mostly what exactly they

tend to identify and what is the purpose of their use.
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L.2.1.1 Intelligence testing

Historically, the first scientific methods of identifying gifted children were related
to the measurement of intelligence by mean of various tests and their results. Applied
since the beginning of the 20w century, the intelligence test produce a three-digit [Q
coefficient which is sometimes considered as an indicator of the level of mathematical
giftedness.

This way of identification of mathematically gifted students has been criticized by

many researchers working in psychology and/or in mathematics education.

Fox (1981) argues that measures of giobal intelligence do not provide sufficient
information about the pattern of specific abilities and levels of achievement for program
placement. By mentioning that the intelligence test fails to measure many important
cognitive abilities, such as divergent thinking skills, he opts for batteries of aptitude and
achievement tests for diagnostic purposes.

Stanley & Benbow (1986) found it illogical and inefficient to group students for
instruction in mathematics mainly on the basis of overall mental age or IQ, recognising

however a value of IQ as perhaps the best single index of general learning rate.

L.2.1.2 Reasoning test (SAT)

An alternative to the [Q tests was a test of reasoning abilities, which, it was hoped,
would predict further success in mathematics far better than items measuring learned
concepts, learned algorithms, and computational speed and accuracy. As an addition to
this major requirement, the authors of the test proposed the principle of the appropriate

difficulty level. They also wanted a professionally prepared, carefully standardised,
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reliable test for which several well-guarded forms existed and well-known, meaningful
interpretations of scores were available.

This approach to the search of mathematical talents was used in Stanley's "Study
of Mathematically Precocious Youth” (SMPY), which started in 1969 and was oriented to
helping mathematically talented children use their abilities more effectively in the various

academic areas.

The choice was a Standard Achievement Test (SAT) which is normally used (in
the US) by The College Board for the evaluation of achievement of 12-th Grade college-
bound students.

The researchers were trying this multiple-choice test with 12-13 year old students
in order to discover early mathematical talents. They estimated that SAT-M test would be
excellent for identifying the level of mathematical reasoning ability and SAT-V could
provide additional assessment of overall mental age as well as a level of verbal reasoning
ability.

Pendarvis, Howly & Howly (1990) argue, nevertheless, that the mathematics
portion of SAT for the identification of mathematical brilliance (another interesting term,
V.F.), is of limited use. The lack of a comprehensive individually-administered test of
mathematical ability makes it impossible to identify mathematical talent on the basis of
mathematical ability. As an alternative, authors propose to base identification on
mathematical achievement. Ideally, achievement tests for this purpose would sample the
skills that most reflect the characteristics of mathematical ability: (1) apprehension, (2)

logic, (3) generalisation, (4) curtailment, (5) flexibility, (6) elegance, (7) reversibility of
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thought, and (8) retained insights. These would not be influenced strongly by (1) speed,

(2) computation, (3) rote memory, or (4) spatial skills and concepts.

L.2.1.3 Use of special tests
Paek, Holland and Suppes (1999) found that the above mentioned ways to assess gifted
children are not satisfactory, because:

o standardised achievement tests rely on a cluster of high scores for gifted students (and

thus leaves gifted underachievers or slow thinkers unidentified and unnurtured)
¢ intelligence tests assess only basic arithmetic skills
e tests designed for older students measure students' exposure to mathematics, not their

ability

Therefore, they concluded, there was a need to design a test specifically aimed for

the gifted population. Such test, called The Stanford EPGY Mathematics Aptitude Test
(SEMAT) for 9 to 13 year old students, has been developed within the Educational
Program for Gifted Youth (EPGY). 32 items of this test have been classified in three
categories: arithmetic (series, probability, word problems), geometry (geometric shapes
and spatial rotation problems) and logic (deductive logic problems written as word
problems). Following example, however, raises questions about the relevance of a

multiple-choice form in such tests.

What is the total number of triangles in the figure below?

The choices are

a6_b7_c)l2_d 13 _
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But, it seems that none of the given answers is the right one:

We have 3 big triangles with the common vertex in the middle, 6 triangles
("halves" of a big one ), 6 little triangles with the common vertex in the middle, plus the
biggest one. So, it looks like we have 16 triangles in all !?

This example, along with the next two, taken from different multiple-choice tests
(see p. 16), allows us to suggest that the same problems could provide more information
about children’s mathematical abilities if they were given in an open-ended form.

Some researchers express the quite popular modern view that we have far more
gifted children than the classical 3 % discovered using IQ's, or SAT's tests.

For example, Sternberg (1997) mentioned that the ability tests we currently use,
whether to measure intelligence or achievement or to determine college admissions, value
only memory and analytical abilities because they emphasise the same abilities that are
emphasised in the classroom. Sternberg's concern is that through grades and test scores,
we may be rewarding only a fraction of the students who should be rewarded. Following
this theory, Sternberg adds creative and practical abilities as important and somewhat
crucial components of the talent identification. He claims that his Triarchic Abilities Test
helps us discover and recognise these abilities in mathematics. The examples given in his
article raise, however, more questions than confirmations.

Let us look at the following one:

15



There is a new mathematicai operation called "graph". It is defined as follows:
x graph y=x+y, if x<y but

x graph y=x-y, if otherwise.
How much is 4 graph 7?
A-3 B3 C.11 D-I1

The ability of this problem to identify mathematically creative minds is rather
questionable. A mathematically weak student will definitely get confused by the strange
name of the operation and its symbolism and his/her maximum (creative?) effort would
probably consist in circling any answer. An average student (one used to follow given
instructions), would simply follow the instruction 4 < 7; therefore, 4 graph 7 = 4+7, the
answer is 11. A talented student will probably grasp the essence of this problem, that is

operation + or - depending on the routine "if - else" condition. For him/her, this represents

a simple (and more analytical than creative) technique.

In a certain way, some typical SAT-M problems like
"If 16*16*16=8*8*P, then P=____
A4 B8 C32 D48 E.64 (10SATs, 1990:22)

would give more ‘creative' opportunity for showing creativity than the above cited
example. Some mathematically talented students might actually enjoy the discovery that
16=2*8, and use it to solve the problem.

But this problem allows for a simple (although time consuming) way to calculate
the answer simply by doing all operations arithmetically, which a good "average" student
can do quite fast. We could raise another question regarding the use of a multiple-choice
tests. What if one student simply estimates that on the left side we have something like
20*20*15=6000, on the right side we have about 100, so the answer is around 60. Isn't

this student smart (or/and creative) ?
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Yet, another test for mathematical giftedness has been created as an addition to the
standard ones - Hamburger Test fur Mathematische Begabung (German word ‘Begabung’
means 'ability"). It contains following complex mathematical activities:

(1) organising material

(2) recognising patterns or rules

(3) changing representation of the problem and recognising patterns and rules in
this new area

(4) comprehending very complex structures and working with structures

(5) reversing processes

(6) finding (constructing) related problems

The idea of the test is based on the assumption that if one scores high in almost all of these
activities, there is a "high probability of successive creative work later on in the

mathematical field or related areas." (Wagner & Zimmermann, 1986)

L.2.1.3 Competitions
Besides the regular or experimental methods of searching for mathematical talents, there is
a powerful set of out-of-regular-classroom activities such as mathematical clubs,
mathematical camps, or mathematical competitions (Olympiads).
Over the years, the major objectives of the Olympiads have stayed the same: to stimulate
student's interest in solving non-typical mathematical problems and to assist in finding
those students who have a superior interest and ability in mathematics (Skvortsov, 1978).
A guiding principle in problem selection is that solving the problem should not require
knowledge beyond the general school curriculum.

Skvortsov stresses that besides mathematical ability, a number of purely

competitive qualities are demanded by the Olympiad; for example, the power of high
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concentration during a limited time period - a requirement not necessarily reflecting the
conditions of real creative scientific work.

While some are sceptical about mathematical competitions as a tool in the
selection of the best students because of their elitist flavour; Kahane (1999) affirms that
large popular competitions, like the Australian Mathematics Competition or the French
Mathematics competition Kangourou (see p.139), can reveal hidden aptitudes and talents,
and they stimulate large numbers of children and young peopie. When a mathematical
activity looks like a game and when children like the game, the parents cannot consider

mathematics as an inhuman tyranny anymore.

However, competition as a tool of identification of giftedness has its limits related
to time constraints (we might lose some gifted children who are slow but deep thinkers)
and stress (some children would get anxious facing the necessity to win), factors which

seem to be somewhat outside of the characteristics of mathematical giftedness.

L2.1.5 Alternative approaches

The few examples given above show that the selection of problems for the
identification of gifted children as well as the interpretation of the results is not an easy
task. Many researchers indicate that a process of identification of gifted children requires
many different steps and techniques including classroom observation, surveys, interviews
and a variety of tests.

We would agree with Kulm (1990) that assessment should be aimed at revealing
the extent, complexity, and functional characteristics of mathematical thinking rather than

focusing simply on final, well formed ability or performance.
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Young & Tyre (1992) mentioned that "instead of assessing children's intelligence
as measured by intelligence tests, we would be better employed finding out what they can
do and how well and quickly they can learn to do more".

Following Johnson's (1983) remark that many achievement tests (primarily
computational) allow assumptions to be made about giftedness from the number of items
answered correctly (quantitative data), one should give more attention to how student
actually reasons in mathematics (qualitative data).

Johnson also mentioned that, in his opinion, the characteristics that separates a

gifted from non-gifted child in mathematics is the quality of the child's thinking.

L.2.1.6 Investigative, open-ended problem solving alternative

One of the often-used categories, that accompanies multiple choice testing is
"time". Kulm (1990) remarks that since so much of school mathematics in the past has
been focused on practising skills, the completion of a large number of exercises in a
limited time period has been accepted not only as a measure of mastery, but as an
indication of giftedness and potential for doing advanced work. On the other hand, higher
order thinking in mathematics is by its very nature complex and multifaceted, requiring
reflection, planning, and consideration of alternative strategies. Only the broadest limits

on time for completion make sense on a test purposing to assess this type of thinking.

We would agree with Burjan's (1991) recommendations to use:
¢ Open-ended investigations and open-response problems rather than multiple-choice
short questions

¢ Problems allowing several different approaches
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¢ Non-standard tasks rather than standard ones
o Tasks focusing on high-order-abilities rather than lower-level-skills
¢ Complex tasks requiring the use of several "pieces of mathematical knowledge" from
different topics) rather than specific ones (based on one particular fact or technique)
¢ Knowledge-independent tasks rather than knowledge-based ones.
Unfortunately, as mentioned by Greenes (1981), the bulk of our mathematics program
is devoted to the development of computational skills and we tend to assess students'
ability or capability based on successful performance of these computational algorithms

(so called "good exercise doers™) and have little opportunity to observe students’ high

order reasoning skills.

Sometimes, even a very banal math problem might deliver a clear message about
distinguishing the gifted student from the good student. Greenes analyses a very simple
word problem (given to S Grade children):

Mrs. Johnson travelled 360 km in 6 hours. How many kilometres did she travel each
hour?

One bright student surprised the teacher by having difficulty to solve this easy
problem. Finally, the teacher realised that the student had discovered that nothing was said
about the same number of kilometres travelled each hour. This example demonstrates the
child's ability to detect ambiguities in the problem, which may be a sign of mathematical

giftedness.

Another aspect of choosing appropriate problems for the identification
mathematically bright children has been analysed by Greenes (1997) who underlines the

importance of presenting situations in which students can demonstrate their talents: "One
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vehicle for both challenging students and encouraging them to reveal their talents is the

use of rich problems and projects”. Greenes mentions that such problems accomplish the

following:

Integrate the disciplines (application of concepts, skills, and strategies from the
various sub-discipline of mathematics or from other content areas (including non-
academic ones)

Are open to interpretation or solution (open-beginning and open-ended problems)
Require the formation of generalisations (recognition of common structures as basic
to analogue reasoning)

Demand the use of multiple reasoning methods (inductive, deductive, spatial,
proportional, probabilistic, and analogue)

Stimulate the formulation of extension questions

Offer opportunities for firsthand inquiry (explore real-word problems, perform
experiments and conduct investigations and surveys)

Have social impact (well-being or safety of members of the community)

Necessitate interaction with others

L12.1.7 Challenging tasks

Many authors analyse a teacher’s role in the process of identification of

mathematically able children. Kennard (1998) affirms that the nature of the teacher's role

is critical in terms of facilitating pupils exploration of challenging material. Hence, the

identification of very able pupils becomes inextricably linked with both the provision of

challenging material and forms of teacher-pupil interaction capable of revealing key

mathematical abilities. The author votes for interactive and continuous model for

providing identification through challenge which integrates the following strands:

* The interpretative framework employed by classroom teachers to identify

mathematically able pupils
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e The selection of appropriately challenging mathematical material

e The forms of interaction between teachers and pupils which provide opportunities
for mathematical characteristics to be recognised and promoted

¢ The continuous provision of opportunities for mathematically able children to
respond to challenging material

The above characteristics are very different from what we had been discussing in the
previous sections. They refer to a research approach, not to the practice of identification.
Author stresses the need to search different ways of interacting with pupils "which
maximise the opportunities for simultaneously recognising and promoting mathematical

abilities."

In Kennard's case study based on this model the identification was conducted by
the so-called teacher-researcher in the classroom environment where the pupils are being
taught as well as observed. The questioning approach was used in order to reveal aspects
of pupils' mathematical approaches and understanding.

In his paper, Kennard (1998) analyzes an example of a situation in which a
teacher-researcher worked with a group of four year 9 students (13-14 years old) to whom
he gave so-called "extension activity” (as extension of the topic "angles in polygons"). The
students were asked to devise a test on whether or not a shape tessellates. The work was
organised in groups. The teacher was constantly questioning students’ reasoning which
was revealed in different stages of the investigation:

Stage 1. The teacher asks students what they mean by tessellation and invite them to
explore what they mean by 'fit together'. Students conduct an experiment stating whether
or not the shapes 'fit together'. The result of this stage revealed that students grasped the

essence using a practical way to test their conjecture.
22



Stage 2. The teacher directs students work toward more theoretical work asking for the
search of a way to test the tessellation of shapes that are not available for manipulations.
Students were engaged in conjecturing and checking initial hypotheses (if two angles form
180 degrees, shapes would fit together). The result was a refutation of the conjecture by
using a counter-example (quadrants of a circle) and a demonstration of flexibility of
thought to try a new approach.
Stage 3. The teacher encourages students to continue their explorations with regular
polygons (without any concrete manipulations). Students look for links between 360
degrees and an interior angle of the polygon thus putting together a chain of reasoning
which allows them to formulate a generalisation.
Stage 4. The teacher asks students to test their theory: how could you check it is true?
Students propose an idea for predicting for a shape they didn't try. Their way of testing is
evaluated by the researcher as based on conviction rooted in reasoning, not in practice.
Stage 5. The teacher asks students to think at home about how to express their finding by
means of a formula. One student comes up with a formula 360/ [180(n-2)/n] which
students succeed to simplify to 2n/(n-2). The author evaluates this work as an ability to
use algebraic skills (of transformation of algebraic expressions) and thus moving away
from the geometric context of the problem to an algebraic one, more generalised and
simplified.

As a conclusion from the case study, the author suggests the use of Krutetskii's
categories of analysis of students abilities, teacher-students interactions as stimulus of

investigations along with the use of the appropriate challenging material.
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I.3 KRUTETSKII'S METHODS OF STUDY MATHEMATICAL ABILITIES THROUGH THINKING

One of the most respected, by mathematics educators, research studies of the
differences in mathe;natical thinking has been conducted in Russia in 50-60ss, within a
fundamental 15-year long Krutetskii's work on mathematical abilities. An English
translation of Krutetskii's findings published in 1976 helped it to remain a valuable model
for the identification of mathematically gifted children in Western countries.

In the next few paragraphs, we will analyze Krutetskii's method of testing
mathematical abilities as well as his most important result regarding a particular way of
mathematical thinking in mathematically gifted children.

In his critique of [Q-testing for the selection of pupils, Krutetskii (1976) states that
[Q-tests measure only the ability to perform the task required by the test situation, and
nothing more. In his study Krutetskii offers a different way to study mathematical abilities
within appropriate mathematical activity, which, taken in school instruction, consists of
solving various kind of problems in the broad sense of the word, including proof,

calculation, transformation, and construction.

I.3.1 Choice of mathematical problems

Krutetskii (1976: 89) analyzes seven principles of choosing mathematical
problems suitable for the discovery of a mathematically able student:

Principle 1. Correspondence with the contents of a pupil's mathematical activity
Our experimental problems, especially chosen or composed, represent about
equally the different provinces of school mathematics - arithmetic, algebra, and
geometry - comprehending rather fully the essence of a pupil's mathematical
activity and shaping it in certain sense. (Krutetskii, 1976: 89)
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He claims that an analysis of solutions to these "chiefly mathematical” problems
would unable him to understand how the distinctiveness of the capable pupils' mental
activity differs from that of the less capable pupils and to reveal individual features of
pupils' mental activity in problem-solving.

In the last paragraph, the word "capable”, used in the English translation, is one of
possible interpretations of the Russian word "sposobni”. Another version of it is the word
"able" used in the chapter that contains an analysis of exceptional cases of the high
mathematical ability. Krutetskii uses also the word "mathematicheskaya odarennost” that
in English translation would be equivalent to "mathematical giftedness" or "mathematical
talent".

Among various problems used in the study, one can find some arithmetical ones.
Advocating his use of this kind of problems, Krutetskii argues that

they interest us not so much in themselves but as a means of revealing traits of

thinking, characteristics of the reasoning process. Solving arithmetical problems

clearly reveals the process of reflection or reasoning and provides an opportunity

to penetrate to the 'laboratory of thought'. (Krutetskii, 1976:90)

Principle 2. Various degrees of difficulty

A set of problems should contain items at various levels of difficulty (low,
average, and high), including nonstandard problems requiring elements of mathematical
creativity. Problems should thus vary from very simple questions, accessible even to the
pupil of ordinary abilities, up to the most complex, not accessible even to every able pupil.
Krutetskii bases his choice on either objective criteria (like appraisal of the complexity of

relations given in the problem), or subjective ones (like comparing problems solved by

75 % of children with problems solved by 25 % of children).
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Principle 3. Potential for revealing the structure of abilities in the pupil

The solution of the problems should reveal those features of mental activity that
are specific of mathematical activity.
Principle 4. Process-oriented tasks

The problems should aim to establish not only and not so much the ulimate result
of the examinees' performance on a task but primarily the process used in that
performance.

Principle 5. Reducing the influence of the past experience (the aggregate of knowledge,
habits, and skills) as much as possible.

Krutetskii achieved this reduction through the so-called equalization: choosing
problems that do not require any particular knowledge, skills or habits; are new to the
pupils and are based on unfamiliar material; are given on recently learnt material (here the
experimenter himself organized the instruction in a whole series of cases).

Principle 6. Use of instructive methods for diagnostic purposes

This principle was aimed at helping the researcher to determine "how rapidly a
pupil progressed in solving problems of a certain type, how well he achieved skill in
solving these problems, what were his maximum possibilities in this regard" (Krutetskii,
1976: 95). Referring to Vygotskii who expressed the important notion that the condition of
development is not determined only by maturation but also by learning potential (the so-
called Zone of Proximal Development, which is a measure of not only what the child has
already learnt but also what he is capable of learning), Krutetskii continues with two
indices needed to evaluate children' abilities:

How independently they solve the problems given to them, and how they solve the
same problems with the aid of adults. The discrepancy between these two indices
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would be the index of the child's so-called Zone of Proximal Development - an
important component in the total evaluation of his mental potential. (Krutetskii,
1976:96)

a

Principle 7. Use of quantitative descriptions when necessary

In evaluating the 'progress rate' Krutetskii proposed to look at the following quantitative
data: the number of exercises necessary for mastering something new, the number of
problems solved independently, solved with the experimenter's help, or unsolved, the
number of exercises needed for mastering the solution of a very complex problem on a
test, and so on. In evaluating the curtailment of the reasoning process he looked at the
number of links that were skipped. In evaluating the flexibility of the mental process he
counted the number of different methods used to solve one problem.

Following these principles, Krutetskii constructed a system of experimental
problems that included 26 series, containing 79 tests (including 22 arithmetical, 17
algebraic, 25 geometric, and 15 others).

1.3.2 Choice of students

According to his assumption that "all able students possess certain mental traits
that are lacking in all incapable ones, [and that] these qualities must play an important role
in the structure of mathematical abilities", Krutetskii postulates that these individual
differences can be studied only by investigating individual differences in a suitable
activity. He states thus that "the most natural way to study abilities is by comparing those
who perform a certain activity successfully or creatively (who are called capable) with
those who do not (who consequently are regarded as incapable or less able) (Krutetskii,

1976:175).
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Therefore, for the purpose of his study, Krutetskii has chosen several groups of
students that were tentatively placed in the categories of mathematically capable, average,
and relatively incapa'ble pupils. "Examinees were chosen with the help of their teachers
according to their success or lack of success in mathematics (these categories were
interpreted in a broad framework as success in the independent and creative mastery of
mathematics) for the purpose of studying how this was determined” (Krutetskii,
1976:176).

Krutetskii counts among the ‘capable’ those pupils who quickly and easily
mastered mathematical material and acquired skills in performing mathematical
operations, who thought independently and somewhat creatively while studying new
material, and who came up with original solutions of nonstandard probiems.

In a group of pupils with an "average ability", he places those ones for whom
successful work in mathematics required a considerable - in comparison with the
"capable” pupils - expenditure of time and effort. Their teachers have noted their great
difficulties in transferring to solving problems of a new type. But having mastered the
methods of solving them, they subsequently cope with similar assignments rather well.

In his comments on placing pupils in the "incapable" group, Krutetskii underlines
a relative character of such labeling. According to him, an absolute inability to study
mathematics doesn't exist. So, every normal, mentally healthy pupil is capable of
mastering the school mathematics course more or less successfully with proper
instruction. With teachers' advice, Krutetskii singled out pupils who tried, who worked
assiduously, but who still achieved no special distinction in mathematics although they

might have done well in their other subjects. He thus put in this group those children who
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had trouble understanding teacher’s explanation (extra lessons were often needed) and
those who could not work out problems that went beyond the limits of the standard they
had mastered. Their mathematical habits were formed with difficulty, required a large

number of exercises, and were shaky; they disintegrated easily in the absence of practice.

1.3.3 Discrimination between mathematically capable and other students
In his profound analysis of the experimental data, Krutetskii makes clear a

discrimination between mathematically able and other students. He groups them around
various characteristics and features of mathematical thinking; among them we retain for
our study:

e Information gathering

¢ Information processing

¢ Information retention

¢ Mathematical cast of mind
¢ Inspiration and insight

o Indefatigability

According to the goals of our study, we leave aside differences related to age and
gender.

1.3.3.1 Information gathering features of mathematical ability

The way a mathematically able student perceives a mathematical problem and
grasps its structure is an important clue for the teacher: capable students systematize the
mathematical quantities given in the problem through a clear differentiation or isolation

of three qualitatively different elements in its structure:
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e Complexes and indices essential for the given type of problem: those relations

in a problem which have basic mathematical meaning

¢ Quantities not essential for the given type of problem but essential for the

given concrete variant

e Superfluous, inessential quantities, unnecessary for solving the specific

problem

In other words, capable pupils perceive the mathematical material of a problem
analytically (they isolate different elements in its structure, assess them differently,
systematize them, determine their "hierarchy") and synthetically (they combine them into
complexes, they seek out mathematical relationships and functional dependencies). The
able student perceives each such complex as a composite whole:

First, he perceives individual elements in this complex, each element as a part of

the whole, and second, he perceives these elements as interrelated and forming an

integral structure, as well as the role of each element in this structure. Thus, the
able pupil creates a clear, integrally dismembered image of the problem.

Apparently, this also underlies the ability, which distinguishes capable pupils, to

'grasp’ a problem as a whole without losing sight of all its data. (Krutetskii,

1976:228)

Compared to these pupils, children with average, ordinary abilities in mathematics,
when confronted with a new type of problem, usually see only its separate mathematical
elements. "Going outside" the limits of the perception of one element often means "losing"
it. The average pupil thus must face the special task of connecting the mathematical
elements of the problem, and in the process of analysis and synthesis he finds this

connection. As for the incapable pupils, such connections and relations between the

elements of a problem, even with outside help, are established with great difficulty.
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The analysis of differences in children' perception of a mathematical problem gives
another clue for the understanding of the mechanism of curtailing in mathematically able
children: in their initial orientation to a problem (if the problem was not very
complicated), they curtailed the process so much that it was frequently almost "knit
together” with the first instant of perception, since any noticeable elements of reasoning
were absent. This special kind of analytic-synthetic vision in the mathematically able
contrasts very much with the analytic-synthetic process of perceiving a problem's structure
in ordinary children. Krutetskii sees a difference in the speed of mental orientation as a
factor of discrimination between the gifted and the average pupils:

A single-act, single-feature analytic-synthetic 'vision' of mathematical material, an

immediate judgment of the relations given in the material, seeing the 'skeleton’ of

the problem at once, purging all concrete values and as if visible through the

specific data (Krutetskii, 1976:231).

Generalizing his data about information gathering by children of different
mathematical abilities, Krutetskii summarize that "under identical conditions for the
perception of mathematical material, pupils with different mathematical abilities obtained
(or more precisely, actively procured) different information.” (Krutetskii, 1976:233). In
able pupils, the volume of the information procured is always greater than it is in average
or, even more, in incapable pupils. In this sense, Krutetskii speaks about an ability to
"actively extract from the given terms of a problem the information maximally useful for
its solution” (ibid.: 233). Giving a psychological interpretation of this phenomenon,
Krutetskii mentions a factor of a "formalized perception of mathematical material”. The
word "formalization" is used here as a rapid "grasping”, in a specific problem or in a

mathematical expression, of the formal structure, as if all of the content (numerical facts,
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specific material ) had fallen out, leaving pure relations between indices that determine
whether the problem or mathematical expression belongs to a definite type.

Yet, another observation made by Krutetskii (p.235) is worth mentioning;: in
capable students, the process of analysis - synthesis has an "instrumental” character; they
isolate problem'’ features for the purpose of determining appropriate operations for solving
the problem. Ordinary students would also be able to distinguish differences between the
problems or their features but would rarely turn their discoveries into an active search for
solutions.
1.3.3.2 Information processing features
Krutetskii groups various characteristics of information processing during problem-
solving be mathematically capable pupils in several categories of abilities:

o Ability to generalize mathematical objects, relations and operations
His results can be summarized as follows:

1. They recognize every specific problem at once as a representative of a class of
problems of a single type and solve it in a general form.

2. They very easily find the essential and the general in the particular, the hidden
generality in what are, apparently, different mathematical expressions and problems.

3. They generalize methods of solution and the principles of an approach to problem-
solving and therefore are better prepared to use effective strategies in solving non-
standard mathematical problems.

One of Krutetskii's examples presented by Johnson (1983) illustrates the investigation of

the ability to generalise and the ability for "curtailment". Following group of problems

was constructed on the base of one algebraic property identity (a+b)? = a*+2ab+b? given in

various expressions placed in the order of the gradually increasing level of difficulty. The
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student starts with problem # 1. And he/she is then confronted straight away with the last
one. If he/she is not able to solve # 8 the item # 2 is given, then another trial with # 8 and
SO on. ‘

1. (at+by?

2. (1 +12a%?%?

3. (-5x + 0.6xy?)?

4. (3x-6y)?

5.(m+x+b)?

6. (4x +y* - a)?

7.512

8. (C+D+E)(E+C+D)

According to Krutetskii, the level of ability depends on how fast (it means after
how many iterations ) the student will pass from the first to the last problem in applying
the formula of the square of the sum of two numbers.

In some cases researchers observed that the structure of reasoning in
mathematically able students was so curtailed that it started to look as a direct connection
between the problem and the result. Actually, it could be even interpreted as the absence
of any reasoning or thinking. (Krutetskii, 1976:270)

Krutetskii stressed that the presence of curtailed mathematical thinking in the able
pupils he studied, does not contradict the assumption that mathematical thought is
sequential and logical. He argues that "in a curtailed deduction or argument the necessary
links are not missing altogether; they are shortened, are not articulated and are not
realized, but they are 'invisibly' present” (ibid.: 271)

e Flexibility of mental processes
The study showed that mathematically able pupils are distinguished by great flexibility, by
mobility of their mental processes in solving mathematical problems.

1. They switch freely and easily from one mental operation to qualitatively different one.
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2. They demonstrate the diversity of aspects in the approach to problem solving, the
freedom from binding influence of stereotyped methods of solution.
3. They easily reconstruct established thought patterns and system of operations
(Ibid.: 282)
e Striving for clarity, simplicity, and economy ("elegance") in a solution
The following Krutetskii's remarks illustrate his interpretation of this characteristic of
mathematically able students:
1. A striving for simplest, most rational solution begins to appear at a very early age
2. All the capable pupils, in finding the solution to a problem, continue to search for the
best variant, even though not required to do so.
® Reversibility of mental processes in mathematical reasoning
The most interesting conclusion from Krutetskii's study at this point, is that
capable pupils appear to solve reverse problems without any special instruction,
identifying them quickly as the opposites to the ones just solved. Another important
observation is that reversed problems were solved more rapidly and easily if they were
given immediately after solving direct ones. This suggests that, in able students, the
process of establishing or forming direct associations goes hand in hand with forming the
reverse ones. This process would be extremely difficult for less capable pupils.
(Ibid.: 288)

o Differences in the use of trial-and-error method between mathematically capable and
average students

In a polemic with Western psychologists, Krutetskii insists on the validity of his results
regarding a particular mechanism of regulation of the process of trial and error in solving
mathematical problems. His results show that unlike inept pupils who do their trials by
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blind, unmotivated manipulations, chaotic and unsystematic attempts at guessing, capable
students are marked by an organized system of searching, subordinated to a definite
program or plan. Their trials are purposeful, systematized attempts, directed toward
verifying the assumptions they had made. In making a trial, capable pupils usually know
why it was being made, what was expected, and what was to come next. (ibid.: 292)

We found a very interesting idea expressed by Lee (1982) in her analysis of student's
mathematical behavior on solving challenging mathematical tasks (like the famous
problem of the 'parking lot' - How many cars and motorcycles are on a parking lot if we
count 100 wheels). She found that some of student's sudden 'illuminations' that appear as
the result of the leap-frog thinking (trial and error) might be in fact examples of a so-
called 'parallel' processing when students are pursuing two, or more, lines of thought

simultaneously.

1.3.3.3 Information Retention

During his study, Krutetskii made very intriguing observations regarding the
memory of mathematically able students. Giving them a problem of a definite type and
repeating the same type two or three months later (same type, not the same problem), he
observed the same repeating phenomenon: capable pupils believed that they were doing
exactly the same problem as before, they would even indicate approximately in what
experimental lesson it had been done. The explanation given by Krutetskii is as follows:
"the pupil was retaining the problem type and generalized scheme for solving it; therefore
he perceived another problem of the same type and with the same solution pattern as

familiar to him" (ibid.: 296). While remembering the type and the general character of the
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operations of a problem they have solved, they did not remember the problem's specific
data or numbers.

Thus, Krutetskii sees in this generalized recollection of typical schemas of
reasoning and of operations the very essence of a mathematical memory. As for memory
for specific data, for numerical parameters, he considers it "neutral” with respect to

mathematical ability.

1.3.3.4 Mathematical cast of mind

According to Krutetskii, this trait representing a unique organization of the mind
begins to show up in elementary forms by the age of 7 or 8 and later acquires a very broad
character. It is expressed in the children's striving to make the phenomena of the
environment mathematical, to notice spatial and quantitative relationships, bonds, and
functional dependencies.

They see the world "through mathematical eyes”. Their "journey” through the real
world is marked thus by many mathematical questions they ask while walking, reading,
watching movies, during lessons and at home. They would be willing to

e Estimate the volume of a huge building
e Calculate the speed of the bus they travel in
¢ Compute the area of a stadium,
and so on.
This particular inclination to interpret reality mathematically Krutetskii defines as

a particular synthetic expression of mathematical giftedness (ibid.: 305).
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1.3.3.5 Sudden solution (inspiration, insight)

Without a des,p look at the nature of insights, Krutetskii shows that "many
incidents of sudden and seemingly inexplicable ‘inspiration’ in the solution of problems by
capable pupils can be explained by the unconscious influence of past experience;
underlying these incidents is also an ability to generalize in the realm of mathematical
objects, relations, and operations and an ability to think in curtailed structures” (ibid.:

309).

1.3.3.6 Indefatigability
Krutetskii noticed much evidence of the reduced fatigue of capable pupils as they
process mathematical information. His capable students could spend 3 to 4 hours working
on complicated mathematics problems requiring great mental effort, and not get tired.
What is more intriguing, this trait can be observed only during the mathematical activity
and not during other activities which can also be interesting for these children. As a
psychological explanation of this phenomenon, Krutetskii speaks of a kind of "partiality
of properties of a person's nervous process in conformity with the nature of one or
another of his activities” (ibid.: 311).
When we look globally at Krutetskii's result, we understand better how powerful
tool it represents for teachers. In his study, Krutetskii
e constructs a complete system of tasks that can be used in studying students'
mathematical ability
e describes in depth children’s genuine thinking and reasoning
e points at features discriminating mathematical behaviour of gifted vs ordinary students
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e demonstrates the efficiency of methods of identification of giftedness through-teaching

and learning, not just through testing (qualitative vs quantitative methods).

<

1.4 DIFFERENT LEVELS AND TYPES OF GIFTEDNESS

Many studies of mathematical giftedness indicate that beside the differences
between more and less mathematically able students, there are differences between

mathematically talented children as well.

I.4.1 Binet
A very interesting typology of intellectual and moral types was created by Binet (1922)
regarding reading abilities:

e Descriptor type
e Observer type
e Emotional type
e Erudite type

It seems that one could discover these types in mathematically gifted children as well.

I.4.2 Hlavaty

J.Hlavaty (1959) mentions 4 groups of academically talented students:

Group A consists of students with high general intelligence, outstanding
accomplishment in all courses throughout their school careers, and deep interest in and

satisfaction derived from the study of mathematics.

Group B includes students with high measurable ability, but whose performance in

mathematics has not been commensurate with their ability.
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Group C is formed by students with innate ability but deprived of opportunity to
develop it to the extent that can be measured by intelligence tests.

In the last Group D the author puts children with high general intelligence but low
school results in many school subjects, except mathematics where they excel due to their

motivation and special talents.

L.4.3 Krutestskii

Krutetskii's study of mathematical abilities (1976) permitted him to isolate three
types of mathematically able students: analytic (mathematically abstract) cast of mind,
geometric (mathematically pictorial) cast of mind and harmonic (combines both, analytical

and geometrical types) cast of mind.

1.4.4 Burjan

Burjan (1991) characterises two main "archetypes" among wide variation in the
forms and manifestations of giftedness:

The problem-solver type:
¢ Extremely skilful (successful) in solving both standard and non-standard
(challenging, Olympiad-type) problems
e [s able to perform optimally in timed tests and competitions
e His/her main interest is in searching for solutions to problems that have been posed
by somebody else
The investigative type:
e Is interested (and successful) in detailed investigation of open-ended problems
e May be slow and not able to perform well in a definite time and under time pressure,
prefers long-term investigation of a problem
® His/her main interest is in asking (and answering) own questions, including own

concepts, own methods or algorithms
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1.5 EDUCATION OF THE GIFTED : PEDAGOGICAL APPROACHES FOR GIFTED,

ABLE AND PROMISING

a

1.5.1 Different options for gifted students

An identification of mathematically gifted children is only the first step in a long

term work with them which is usually followed by various methods of fostering and

nurturing.

At the elementary school level, there exist several program options for gifted

mathematics students according to the culture and policy adapted in a country. Among

them, Sovchik (1989) mentions:

Acceleration, which results in an early admission into kindergarten, advanced
placement or credit (skipping grades)

Enrichment, which allows to go beyond the standard grade-level work without
skipping grades

Special schools for the gifted

Private schools which often offer a gifted program of their own

Special classes in which mathematically gifted students within one school can be
brought together in order to study a more advanced program in mathematics
"Pull-out" programs in which gifted students are pulled out of the regular classroom
to study special topics in mathematics 2-3 times a week

Regular classroom in which teacher forms meaningful, instructionally valid grouping

schema (ability grouping)

L.5.2 Curriculum for mathematically gifted children

Regardless of the pro and contra of each form of work with mathematically able

students, we would agree with Kiefer who concludes that "no matter what grouping
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practice we choose, grouping methods alone cannot solve all teaching-learning problems.

What remains most important is the nature and quality of instructional program.” (Kiefer,

a

1995).

Such instructional program, according to Sheffield (1999), helps students develop
their mathematical abilities to the fullest. It may thus allow them to move faster than
others in the class to avoid deadly repetition of material that they have already mastered.

We also agree with the author that

Such a program may also introduce them to topics that others might not study but,
most important, it introduces students to the joys and frustrations of thinking
deeply about a wide range of original, open-ended, or complex problems that
encourage them to respond creatively in ways that are original, fluent, flexible and
elegant. (Sheffield, 1999:46)

In the Enrichment-Triad Model developed by Renzulli one can find the following
three types of activities which are important for nurturing mathematical talents (Ridge &
Renzulli, 1981: 218):

¢ General exploratory activities to stimulate interest in specific subject areas:
experiences that would demonstrate various procedures in the professional or
scientific world (through children's museums and science centres) in which students
would get an opportunity to choose, explore, and experiment without the threat of
having to prepare a report or provide any sort of formal recapitulation.

¢ Group training activities to develop processes related to the areas of interest developed
through general activities. The aim of these activities is to enable students to deal more
effectively with content through the power of mind. Typical for these thinking and
feeling processes are critical thinking, problem solving, reflective thinking, inquiry
training, divergent thinking, sensitivity training, awareness development, and creative
or productive thinking. Problem solving applies to

1. The application of mathematics to the solution of problems in other fields

2. The solution of puzzles or logically oriented problems

41



3. The solution of problems requiring specific mathematical content and processes.

e Individual and small-group investigation of real problems. As giftedness becomes
manifest as a resalt of student's willingness to engage with more complex, self-
initiated investigative activities, the essence of this type of activities is that students
become problem finders as well as problem solvers and that they investigate a real

problem using methods of inquiry appropriate to the nature of the problem (p.231).

L.5.3 School policy and needs of gifted children: the existence of a gap

As we saw in the previous section, finding appropriate ways of fostering
mathematically gifted students is an issue in mathematics education. A number of
researches are devoted to the creation of resources for gifted students (list of some
available resources is given in the references (pp. 138-139).

Here is an important question: what else can be done for these students beyond the
special programs and particular projects? What are the didactical issues of the
development of appropriate teaching methods that take into consideration the needs of
gifted students in a regular classroom? Does the existing mathematics curriculum (even
in its reform efforts) meet the needs of gifted children?

During the past 10 years, school systems of many countries have been looking for
changes in their curriculum that would help each student to meet challenges of the modern
complex world. The school reform undertaken in Quebec aims to follow these tendencies.
As mentioned in the new Program (Programme de formation de I'école québécoise, 2001),
the school has to allow each child to receive the best possible education and to reach the

highest possible level of self-realisation.
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According to this, the learning shall be differentiated in order to meet the
educational needs on the basis of respect of individual differences. Thus, a particular
attention will be brought to each student helping him/her to fully use his/her personal
resources and taking into consideration his/her knowledge and interests.

However, these good intentions can be misunderstood and misinterpreted in the
classroom practice. They may lead to oversimplifying mathematical learning in order to
make it fun, taking out all abstract, theoretical, difficult, "unnecessary" material of the
"good old times" and replacing it by the colourful new "supermarket curriculum" oriented
to the so-called consumer needs. As it is phrased by Berry (1996), "If you can't use it in
the supermarket, let's not teach it" .

This tendency is at odds with the needs of gifted students.

The intensive use of so-called new methods of teaching: project based learning,
group work, social oriented teaching based on the student's real life experience, was
supposed to help students to understand mathematics better.

However, it remains an open question, to what extent these innovations provide a
harmonious passage to more abstract levels of mental development and are sufficiently
helpful to form a student's theoretical thinking. The approach might create a gap between
school and higher levels of education, such as college and university. Some students
would be having difficulties in following advanced mathematics and science courses. The
most able students would lose their interest in mathematics and diminish their high
intellectual potential.

At the same time, the new curriculum gives schools and teachers a real opportunity

to develop classroom situations that meet the needs and interests of all students. That is

43



why it is important to create effective didactical tools that would help teachers to develop
each student's full potential.

According to Tempest (1974 :9), "it is sometimes urged that there is no need to
make any special provision for gifted pupils in class. They will do well, anyway, it is said,
and the teacher should concentrate her attention on those at the other end of the scale who
find difficulty with their work". However he stresses that a gifted child

can easily and quickly do what is required of him and, in so doing gain the

approval of teacher and parents, why should he do more? If he finds the task given

him easy to accomplish, he may well become bored and his parents may have
difficulty in sending him to school. Alternatively, having completed his work
easily and quickly, he may look around for more challenging problems and become

a ringleader of all sorts of mischievous exploits. (Ibid.)

Another aspect of this issue is related to the cognitive structures that have to be
taken into account by educators. Often, the organisation of the classroom activities gives
too much freedom to children in order to help them to develop their own knowledge.

We would agree with Gelman's (1991:319) observation that learners who have not
developed structures to guide their search for and correct interpretation of nurturing
inputs, can no longer be counted on to find their own food for thought. Left to their own
devices, students have every reason to have misconceptions. We have to be preparéd to
probe their understandings and make special efforts to draw children's attention to relevant
characteristics of data. Finally, she underlines that "pupils are more likely to encounter
structured data, to practice at using what they are learning, and to come to understand how
to interpret the terms and symbols of the domain if given a fair chance to become fluent

both in the structure and the language of the domain" (Ibid.).

Finally, the curriculum that meets the interests of gifted students (and not only the



gifted), shall encourage teachers to create situations of a real learning.
Thus, the Piagetian notion of cognitive conflict is useful for us in so farasit is a
conflict really experfenced by the learner, who "feels it", "lives it internally” as his/her

own problem. Only then can this conflict lead to changes in knowledge (Schleifer, 1989).

From these considerations, we assume that all the children would benefit from
more challenging curriculum that would give them better chances to confront rich
mathematical content. We think that the content of learning itself is not as important for
the students as the way how it is taught and what is the learning environment in which it
is taught.

To make learning and teaching intellectually enriching and developing, some
authors suggest the use the method of content and genetic logic and its powerful tool,
reflection (Shchedrovitskii, 1969, Rosin, 1967).

By bringing reflective ideas to the classroom, we bring in a methodology, a
structure and a dynamic. Through the development of classroom situations that are
challenging and contain a rupture with child's previous knowledge and beliefs, we would
disturb the child's state of comfort (fun), make him search for problems, and look anew at
old stereotypes. The rebuilding of problem solving process according to new means and
rules of play would increase child's motivation to learn, develop his/her critical thinking

ability, capacity to ask questions, to investigate.
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CHAPTER II. MATHEMATICAL THINKING AND GIFTEDNESS:
PROBLEMS AND QUESTIONS

I1.1. INTRODUCTION

The literature survey shows a variety of models and methods of identification and
fostering mathematical giftedness. In our study, we focus on those which can be applied to
the everyday teaching practice. We base our study on the assumption that mathematical
giftedness appears already in the early school age. Therefore, we as primary school
teachers cannot wait till mathematically gifted children are detected in the middle grades
and transferred into special programs.

We have to take care of these children as early as we can and create favourable
conditions for their development on the everyday basis. Questions of teaching and
learning organization become thus crucial for identification and fostering mathematically
gifted children.

In this chapter, we analyse examples that demonstrate a shortage of efficient
methods of working with mathematically gifted children. In order to develop such
methods, we shall look deeper at the phenomenon of giftedness with regard to its purely
mathematical part: mathematical thinking.

We thus relate the notion of mathematical ability to a particular way of thinking
theoretically that appears early in gifted children and determines their mathematical
behaviour in various learning situations. The following didactical question arises then:
how to create an appropriate environment to make theoretical thinking work.

Following are examples that show, how certain classroom situations might

stimulate children's mathematical thinking.
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[1.2 EXAMPLE FROM THE HISTORY: GAUSS

The story of .Gauss solving a routine problem of calculating the sum of the first
hundred natural numbers is one of the well known examples of this kind. While all other
children were desperately trying to add terms one by one, Gauss impressed the teacher by
finding a quick and easy way to do it regrouping the terms in a special way (see, for
example, Dunham, 1990, pp. 236-237).

But one can ask: what were the characteristics of the classroom situation, which
allowed the gifted student to demonstrate his talent in mathematics?

The same story says that the teacher had chosen the task for its accessibility to all
students (the task is routine) and the probably very long time that it would take the
students to solve; he hoped to thus keep them all quiet and busy for a good while. What he
didn't expect that one of the students would turn the routine task into a challenging one of
finding a quick way of solving an otherwise tedious and long computational exercise. The
situation was not planned to reveal a mathematical talent, yet it did so ‘spontaneously’. The
situation became a challenging one by chance.

In many cases, mathematical giftedness would not be identified. We could say that
using routine drill tasks involving numerous standard algorithms are not, in general,
offering a good opportunity to identify and nurture mathematical talents.

Sheffield (1999) calls such routine tasks ‘one dimensional'. As an example, she
cites a class of three-four graders reviewing addition of two-digit numbers with
regrouping . Children are asked to complete a page of exercises such as: 57+45, 48+68,
59+37. As it usually happens with brighter and faster students, they finish all exercises

before their classmates. So the teacher would 'challenge' them with 3- or 4-digit additions.
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additions. Although the calculations become longer and time consuming, the tasks
themselves are not more complex or more mathematically interesting.
As a better didactical solution for these children, Sheffield suggests the use of
meaningful tasks as finding three consecutive integers with a sum of 162:
Students would continue to get the practice of adding two-digit numbers with
regrouping, but they also would have the opportunity to make interesting
discoveries. Students who are challenged to find the answer in as many ways as
possible, to pose related questions, to investigate interesting patterns, to make and
evaluate hypotheses about their observations, and to communicate their findings to
their peers, teachers, and others will get plenty of practice adding two digit
numbers, but they will also have the chance to do some real mathematics.
(Sheffield, 1999: 47)

She claims that following an open-ended heuristic model, we would contribute into a

student's creative development of mathematical abilities (Ibid.:46, Fig.2)

Relate

Create Investigate

Evaluate Communicate

Fig. 2 Open-ended heuristic model
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I1.3 ELEMENTARY SCHOOL CHILDREN'S STRATEGIES ON CHALLENGING TASKS IN THE
MATHEMATICS CLASSROOM
By giving children a challenging task we would expect them to make efforts in
understanding a problem, to search for an efficient strategy of solving it, to find

appropriate solutions and to make necessary generalizations.

In following examples we present three very different approaches to the same
problem of finding a number of handshakes that we obtain when n people shake hands of
each other.

Marc-Etienne (10) organized an experience with his classmates, considering
systematically the cases n=2, n=3 , etc. Then he made necessary generalizations. Here is a
transcript of his report (see Appendix Al, p. 141):

Picture 1: two circles connected with an arrow representing two people - one
handshake. He wrote beside the picture '=1".

Picture 2: three circles forming a triangle connected with three arrows representing
three people - three handshakes. He wrote beside the picture '=3'

Picture 3: four circles forming a square connected with six arrows representing
four people - six handshakes. He wrote aside: '3+2+1=6' commenting:

'l a un ils se retirent’

Picture 4: Five circle forming a 'domino-5-dots' disposition connected with only
six arrows (some arrows are missing). However, he wrote '4+3+2+1=10' continuing the
same pattern.

Picture 5: Six circles disposed in two rows (by three), no arrows. He wrote

'S+4+3+2+1=15'
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Picture 6: Seven circles disposed in two rows (three+four), no arrows. He wrote

'6+5+4+3+2+1=21"
Picture 7:*Eight circles disposed in two rows (by four), no arrows. He wrote

"7+6+5+4+3+2+1=28'

He wrote than sentence that he called ‘Formule': *On calcule toujours de la maniére
que le prochain chiffre soit -1 '2+1' et que chaque chiffre qui précede soit +1'

Charlotte (10) made diagrams showing her systematic search for all possible

. ABC.OE
combinations. £
A a(, E;E,

AR AR
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Christopher (10) wrote just one single sentence : 1+2+3+4+5+7+8=36
He provided a comment that if we have a group of people, each person has to shake hands

to all people who came before, so with 2 people we would have 1 handshake, with 3

people - 2 more handshakes (1+2), and so on.
So, with a simple question what would be the number of handshakes with 100

people, the class arrived to the same problem that Gauss had to deal with but posed in
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different, challenging way. Thus, a generalization might be provoked here in a more
natural way.
And, from the point of view of practicing teacher, we can ask:

How to organize children's mathematical activities so that they were motivated to
act this way?

So far, the problems of identification and nurturing mathematical giftedness has
been analyzed separately but the examples given above show the pertinence of the search
for combined didactical methods of identification and nurturing through the everyday
teaching and learning.

The crucial element that allows to link both processes is a particular way of
mathematical thinking that we provoke in children in order to reveal their above average
mathematical ability and at the same time ensure its constant development.

Thus we link mathematical giftedness to a particular way of thinking
mathematically. But first, we have to look closer at the notions of "thinking" and

"mathematical thinking".

I1.4 ANALYSIS OF THE NATURE OF MATHEMATICAL THINKING
Many authors point at the ability to recognise patterns and to see relationships
as a key element in mathematical thinking.
Fisher argues (1990) that since mathematics is a highly structured network of
ideas, to think mathematically is to form connections in this network: the task of a
teacher then is to help children to see the structure inherent in mathematics, not just rules

and facts learned in isolation. He states that in encouraging children to think
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mathematically we need to engage all aspects of a child's intelligence. There are different

ways of processing mathematics according to the following scheme (Fig.3):

a

Symbolic
Physical Visual
Mathematical
thinking
Inter-personal Verbal

Fig.3 Different ways of mathematical thinking

We see that, according to this model, mathematical problems can be modelled or

represented in a variety of ways:

Verbally: through inner speech and talking things through, using linguistic
intelligence, putting planning procedures and process into words, making sense and
meaning for oneself

Inter-personally: learning through collaboration observing others, working together to
achieve a shared goal, exchanging and comparing ideas, asking questions, discussing
problems

Physically: using physical objects in performing mathematical tasks, working with
practical apparatus, equipment and mathematical tools, modelling a problem or
process, having hands-on experience, using bodily-kinaesthetic skills, practical
applications into the physical world

Visually: putting processes into pictorial form, making drawings or diagrams
visualising patterns and shapes in the mind's eye, thinking in spatial terms, graphical
communication, geometric designs, manipulating mental images

Symbolically: using written words and abstract symbols to interpret, record and work
on mathematical problems, using different recording systems, logically exact

languages, translating into mathematical codes
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According to Baroody (1987), genuine learning involves changing in thinking

patterns. More specifically,

Making a connection can change the way knowledge is organised, thus changing
how a child thinks about something. Put differently, insights can provide fresh and
more powerful perspectives. Take the child who does not know the basic
subtraction combinations and must use finger counting to calculate differences.
Given the series to problems 2- 1= ,4-2=_,6-3=,8 -4=_,10-5=_,the
child laboriously calculates each answer. Suddenly the child has an insight: The
subtraction combinations are a mirror image of the well-known addition doubles
(I+1=2,242=4,3+3=6,4+4=8, and 5 + 5 = 10). There is a relationship
between subtraction combinations and the familiar addition facts! Afterward, she
views subtraction in a different light. Given a problem like 5 - 3 = _, the girl now
thinks to herself; "Three plus what makes five? Oh, yeah, two." Her new
perspective now enables her to solve subtraction combinations efficiently without
laborious calculation. Mathematical development, then, entails qualitative changes
in thinking as well as quantitative changes in the amount of information stored.
Essential to the development of understanding are changes in thinking patterns.

(Baroody, 1987: 11)

According to Schrag (1988), mental activity is purposefil thinking only if it is

experienced as directed to a problem or task one has set oneself. This, admittedly

normative, conception is meant to include cases in which we may suddenly see a solution

without any awareness of "wrestling" with a problem. But even in such cases, an idea

does not appear as a so/ution unless it is experienced in relation to some difficulty one

has been worrying about. Thus thinking is evoked in situations where one is not quite

sure how to go on. Schrag calls such situations problems.

In order to solve a problem, a person has to use various strategies. Here is a list

compiled by Ernst (1998 ):

re-reading the problem
simplifying the problem
understanding the problem (by group discussion)

trying to solve a simpler problem
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¢ holding one variable constant (at a small value) and exploring values of another
variable

e drawing a diagran

e representing the problem by symbolisation

e generating examples

e obtaining data

e making a table of results

e putting the results in a table in a suggestive order

e making conjectures

e thinking up different approaches

e trying them out

e justifying answers.

Referring to works of Polya (1957) and Schoenfeld (1979), Emst points at two
types of activities: cognitive and metacognitive. Cognitive activities include using and
applying facts, skills, concepts and all forms of mathematical knowledge. They also
include applying general and topic specific mathematical strategies, and carrying out
problem-solving plans. Meta-cognitive activities, involve planning, monitoring progress,
making effort calculations (e.g. 'Is this approach too hard or too slow?'), decision making,
checking work, choosing strategies, and son on. Metacognition (literally: "above
cognition") is about the management of thinking.

Sierpinska (2002) characterizes mathematical thinking as "a good balance between
theoretical and practical thinking". The following table shows the differences between

these two ways of thinking with respect to their aims, objects, main concerns and results

(Tab.1).
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Tab. | Comparative analysis of theoretical and practical thinking

Aspect of thinking Theoretical thinking Practical thinking
Aim e [s thinking for the sake |e Thinking for the sake of
of thinking getting things done or
making things happen
Object e Systems of concepts e Thinking about

particular ‘objects’
(things, matters, events,
people, phenomena)

Main concerns

Meanings of concepts

Significance of actions

Nature of connections

Conceptual connections:
establishing and
studying relations
between concepts as they
are characterized within
a system of other
concepts

Factual connections:

contingency in time and

space, analogy between

observed circumstances

across time, focus on

particular examples and
~ personal experience

Sources of validity

Epistemological validity:
Concermns about
conceptual coherence
and internal consistency
of systems of symbolic
representations

Makes no claims to
stating 'the truth’ about
experience - cares more
about producing
conditional or

Factual validity: the
proof of a plan of action
is in the results of the
action and in the
agreement of the
assumptions of the plan
with experience

hypothetical statements
(propositions)

Methodology e Operates on two levels: [e Operates always on a
reasons about concepts single level of its
and reasons about this relation with its aims and
reasoning objects

e [s concerned with the e Uses only some ad hoc

symbolic notation and symbols, different in
forms of graphical solving each particular
representation, and with problem.
the rules and principles
of reasoning and
validation that it uses.

Results e Changes in the objects of | e Theories and specialized

this thinking

notations
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In their study of relationships between theoretical thinking and high achievement in linear
algebra, Sierpinska, I:Inadozie & Oktag (2002) assume that theoretical thinking "is not a
continuation but a reversal of the practical thought." (p.11). They thus view practical
thinking as an "epistemological obstacle" that cannot and should not be avoided.

However, they claim that teaching abstract mathematical concepts that puts too much
emphasis on the "concrete” experience based on so-called "geometric" or "numerical”
approaches might leave students with representations irrelevant from the point of view of
the concepts and lead them to contradictions. (Ibid.: p.19).

Defining theoretical thinking as reflective, systemic (definitional, proof-based and
hypothetical) and analytic (linguistic sensitive and meta-linguistic sensitive), the authors
argue for the necessity of theoretical thinking in understanding linear algebra as following:

o The undergraduate learner of linear algebra must be even more theoretically
inclined than the inventors of the theory

e Meanings of concepts must be sought in their relations with other concepts

o The learner must engage in proving activity and therefore use systemic approaches
to meanings and validity

e The learner has to accept that his or her ontological questions will remain
unanswered

e The learner must engage in hypothetical thinking

o The learner must become mathematically "multilingual” (Ibid.:33-35)
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If we project these ideas on the elementary school level, we could see that today's
tendencies (discussed in previous sections) do not favor the education of a "theoretical
thinker" although our practice shows that mathematically gifted students, even at an early
age hold certain epistemological views about mathematics that are close to the theoretical
thinking.

When we think about the interpretation of these aspects of thinking in terms of
giftedness, then we may suppose that a mathematically gifted child who is a high achiever
would probably demonstrate a balanced ability to think mathematically (theoretically and
practically). A mathematically able child who is not a high achiever would be rather more
"theoretically inclined". The question is whether a mathematically able child can be only
“practical"? Another question is to what point we can identify a child as a theoretical
thinker?

Another question arises: what kind of classroom situations would enhance the

fostering the development of mathematical thinking in young children ?

I1.5 HOW TO FOSTER THE DEVELOPMENT OF MATHEMATICAL THINKING?

In order to foster the development of mathematical thinking, Baroody (1993)
stresses a use of a problem-solving approach which focuses on the processes of
mathematical inquiry: problem solving, reasoning, and communicating, It is a teacher-
guided approach in which a student plays an active role.

Ernst (1998) makes a comparative analysis of different teaching approaches related
to the mathematical thinking. It shows the didactical transition of mathematical process
which "progresses from the application of facts, skills and concepts, to a limited repertoire

of problem-solving strategies including generalisation and the induction of pattern, to the
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full range of problem-solving strategies, and finally adding problem-posing processes as

well"(p.132) happens when the classroom teaching becomes more open and challenging

(Tab.2):

Tab. 2 Ernst's comparative analysis of different teaching approaches

Teaching approach | Role of the teacher | Role of the learner | Process involved
Direct instruction To state an item of | To apply the given | The application of
knowledge knowledge to facts, skills and
explicitly. To exercises concepts
provide exercises for
application
Guided discovery To present arule or | To infer the rule or | Generalisation.
other form of knowledge implicit | Induction from
mathematical in the given pattern
knowledge implicitly | examples
in a sequence of
examples
Problem-solving To present a problem | To attempt to solve | Problem-solving
to the student, the problem using strategies
leaving the solution |own method(s)
method open
Investigatory To present an initial | To choose questions |Problem-posing and
mathematics area of investigation, | for investigation problem-solving
or to vet a student's | within the topic strategies
own choice given. To explore the
topic freely

Fishbein (1990) defines a teacher's task as to "create an environment that would require a
mathematical attitude, mathematical concepts, and mathematical solutions". He argues that
facing a challenging task children might not be able to find solutions spontaneously. He
might get engaged in a constructional process combining various conditions. He has then
to produce a method to work on the problem systematically. Fishbein sees this aspect of
finding a method, an algorithm used consciously as fundamental for the development of

mathematical reasoning.
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According to Fishbein (1990, p.8), the question is whether the teacher should wait
until children find the method by themselves without any help. In his opinion

Formal reasoning doesn't develop spontaneously as a main way of thinking. This
conclusion doesn't imply that the teacher should simply offer the solution. What
the teacher should do is to direct the student's efforts to a solution by asking
adequate questions. The student builds the answers as a reaction to a certain
environment. This environment should be programmed as a problematic one in
order to inspire student's solution endeavors. (Fishbein, 1990: 8)

These theoretical guidelines interfere with Driscoll's (1999) remarks that through

¢ consistent modeling of algebraic thinking

e giving well timed pointers to students that help them shift or expand their thinking, or
that help them to pay attention to what is important.

¢ making it a habit to ask a variety of questions aimed at helping students organize their
thinking and respond to algebraic prompts.

teachers would promote those habits of mind that are specific to the algebraic thinking and

should be developed in children as following:

- Reversibility as a capacity not only to use a process to get to the goal, but also to

understand the process well enough to work backward from the answer to the starting

point.

- Building rules as a capacity to recognize patterns and organize data.

- Abstracting from calculations as a capacity to think about computations independently

of particular numbers that are used. (Driscoll, 1999:3)

Drawing from the above mentioned theoretical considerations, we will move now
towards more practice-oriented questions: what are mathematical activities that would
help to foster the emergence of a theoretical thinking in mathematically gifted elementary

school students allowing them to progress in the mixed-ability classroom?

59



Many studies point at mathematically rich tasks as an engine of such fostering.
Peressini & Knuth (2000) mention that mathematically rich are tasks that fit following

criteria;

e encourage a range of solution approaches,

o address significant mathematical concepts,

e require students to justify their explanations,
e are open ended

We saw examples of these tasks in previous sections (‘tessellations’, p. 22 ,'parking lot', p.
35, 'handshakes', p. 49).

The use of such tasks requires a rethinking of the role of both the teacher and the
student. Burton (1984) stresses that the teacher's role shifts from that of providing
information, to question-asker and resource-provider. The teacher would challenge pupils
to justify or falsify arguments and to reflect on what has been done. The tone of the
teacher's interventions is also important. It has to emphasise enquiry rather than
instruction.

As for the student, the author underlines that along with sustaining interest,
motivation and success in problem-solving, the following aspects are also to be
mentioned:

e Choosing and using representations that would enhance the ability to model a problem

e Resolving instead of solving which helps to develop an attitude to build a network of
new questions, new resolutions, and further questions out of an initial problem
following a spiral development instead of a linear one (problem - solution)

e Communicating using different tools of communication
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At the same time, new questions arise:

¢ how to design appropriate classroom situations in which challenging tasks could be

posed in a natural meaningful way ?

¢ how to make challenging situations not an isolated episode of teaching but a

permanent component of teaching and learning ?
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CHAPTER II1. THEORIES UNDERLYING THE DEVELOPMENT
OF A CHALLENGING SITUATIONS APPROACH TO
IDENTIFYING AND NURTURING MATHEMATICALLY GIFTED
CHILDREN

ITL.1 INTRODUCTION
Based on studies of mathematical giftedness on the one hand and on theories of
mathematical thinking on the other hand, we are going to construct a theoretical
framework for our study of identification and nurturing mathematically gifted children at
a young age.

We claim that within today's system of identification and nurturing, many
mathematically gifted children are left unrecognised (either not being detected by test or
not having possibilities to be admitted to special program) and unnurtured (bored with too
simple or too mechanical tasks). Actually, every teacher might discover mathematical
talents in her classroom if equipped with an appropriate approach to teaching. Our study
presents a model of such an approach as well as examples of its applications in practice.

In the second chapter, we have linked mathematical thinking and mathematical
giftedness by the notion of theoretical thinking as a particular way of thinking in
mathematically gifted children. Presently, we will look at didactical tools that could help
teachers create a meaningful learning environment in which theoretical thinking would be
given a chance to work.

Although some authors point to the fact that solving mathematically demanding
problems requires rich knowledge about numbers and number relationships, normally not
available to elementary school students (see, for example, Lorenz, 1994), others (e.g.

Krutetskii,1976) affirm that already at the age of 7 or 8, gifted children "mathematize"



their environment, giving particular attention to the mathematical aspects of the
phenomena they perceive. They realise spatial and quantitative relationships and
functional dependencies, in a variety of situations, that is, they see the world through
mathematical eyes.

These children are eager to learn mathematics, they enjoy it, and teachers should
use every opportunity to nurture their young fresh minds. Thus, a special environment has
to be created in order to maintain their genuine interest. We shall call this environment
challenging, as it is composed of a variety of situations that provoke mathematical
questioning, investigations, use of different strategies, reasoning about problems and
reasoning about reasoning. These situations also require special abilities to organise and
re-organise mathematical knowledge for solving new problems by developing and using
different strategies. Altogether, these situations help reveal mathematical giftedness while
at the same time they foster further progress in children.

Our framework draws on the work of Krutetskii (1976), who postulated that a

mathematically able child can, at a young age,

formalize a problem situation by linking logically related data,

generalize particular cases by combining separate data into more general structures,

curtail mathematical operations keeping in mind all intermediate steps,

demonstrate a flexible way of thinking switching easily from one idea to another, and
rationalize their thinking, by critically evaluating different ways to solve a problem.
Krutetskii claimed that these components of mathematical activity are integrated into

a specific mental structure called the “mathematical cast of mind”.
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Moreover, we assume that mathematically gifted children are inclined to theoretical
thinking in their approach to reality and mathematical problem solving, that is, they are
likely
¢ to engage in thinking for the sake of thinking and not only for the sake of getting

things done (reflective thinking)

e to be concerned with the structure of relations between concepts, and not only with
concrete objects or actions on them; to be critical with respect to the validity of their
own and other’s claims; and to view mathematical statements as conditional and
hypothetical (systemic thinking)

¢ to be aware of the arbitrary and conventional character of representations of concepts
(analytic thinking)

We are aware that very young learners may not exhibit all these features of theoretical
thinking. However, in specially constructed learning and teaching situation, children's
behaviour hints at the potential for the development of these features in further advanced
mathematical learning.

We now go on to make explicit those pedagogical conditions, under which

mathematically gifted children demonstrate their superior mathematical abilities.

I11.2 PARADOXES OF TEACHING
In his theory of didactical situations, Brousseau (1997, p. 41) describes the so-called
paradox of devolution of situations. He states that in the situation where the teacher "is
induced to tell the student how to solve the given problem or what answer to give, the

student, having had neither to make a choice nor to try out any methods nor to modify her



own knowledge or beliefs, will not give the expected evidence of the desired acquisition."
But at the same time, the teacher has a social obligation to "teach everything that is
necessary about the knowledge. The student - especially when she has failed - asks her for
it." This situation is obviously paradoxical: "the more the teacher gives in to her demands
and reveals whatever the student wants, and the more she tells her precisely what she must
do, the more she risks losing her chance of obtaining the learning which she is in fact
aiming for."(ibid.)

Brousseau thus claims that everything the teacher undertakes in order to make the
student produce the behaviours that she expects tends to deprive this student of the
necessary conditions for the understanding and the learning of the target notion.

Questioning further the nature of the ability to reflect on a mathematical task, we
found interesting links between Brousseau's theory and the works of the Russian
methodologist G. Shchedrovitskii which are probably less known to Western educators.

Shchedrovitskii (1968) illustrates his logical analysis of teaching and learning with
a similar paradoxical phenomenon. He remarks that when we as educators want our
children to master some kind of action, we often tend to teach it directly by giving
children tasks which are identical with this action. But classroom practice shows that the
children not only do not learn actions that go beyond the tasks, they do not even learn the
actions that we teach them within the tasks.

The following schema (Fig.4) shows that in a direct instruction the "inputs"

(- what do we teach) and the "outputs" (- what children learn), are the same identical

actions.
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Schema 1.

Actions - products

A

/ Abilities

Mastering

A

Actions - contents

Fig.4 Relations between actions and abilities in direct instruction

This schema demonstrates that since all elements are identical (A), there is no need
for the development of an "ability", that is, of possibility of constructing a similar action
in different circumstances. For example, teachers may pose the task of constructing a
square out of the given four identical cubic blocs. This activity presents no real challenge
for children. It doesn't require any construction of a process of learning as a movement
from the known to the unknown. It is, instead, a move from the known (a shape of the
square as image in child's mind) to the known (reproduction of the shape by means of
cubes), but in a different form. In this situation, all normal children succeed easily. When
the same children are asked to produce a square with no given number of cubes, they
might puzzie a teacher by making rectangles instead of squares. They might reveal a lack
of understanding of notion of square (or, an inability to control the condition of the

‘squareness'), and thus the need to learn something new would arise.
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Shchedrovitskii's logical analysis of the learning of some action is based on the
principle shared by many psychologists and educators: the subjective conditions of
activity, or "abilitie§" are just "copies” of actions mastered by the individual and then
appearing in specific new situations. So, the abilities are the same actions but in potentio.
It seems that the use of the term "compétence” in the recent Quebec's curriculum reform is
based on a similar understanding of the notion of "ability".

The third paradox is related to the idea that, in order to access a higher level of
knowledge or understanding, a person has to be able to proceed at once with an
integration and reorganisation (of previous knowledge). This idea can be found in Piaget's
theory of equilibration of cognitive structures, as well as in Bachelard's notion of
epistemological obstacle (see, e.g. Sierpinska,1994). For example, a passage from
arithmetic to algebra via whole numbers requires a perception that natural numbers are no
more collections of objects (pizzas, cakes, apples) but a structure with operations that can
be a base for further generalisations.

Sierpinska (1994) sees the need of "reorganisations" as one of the most serious
problems in education. In teaching, we do not follow the students’ "natural development"
but rather precede it, trying, of course, as far as possible, to find ourselves within our
students’ "zones of proximal development”. But we can not just tell the students to "how
reorganise” their previous understanding, we can not tell them what to change and how to
make shifts in focus or generality because we would have to do this in terms of a
knowledge they have not acquired yet. So, we must involve students in new problem
situations and expect all kind of difficuities, misunderstandings and obstacles to emerge

and it is our main task as teachers to help the students in overcoming of those, in

67



becoming aware of differences, in the hope that then the students would be able to make
the necessary reorganisation.

All three researchers, Brousseau, Shchedrovitskii and Sierpinska, construct models
of teaching which give the teacher efficient tools of minimization of negative effects of
this paradox: meaningful didactic situations (Brousseau, 1997), construction of new
means by mean of reflective actions (Shchedrovitskii, 1968) and stimulating of "good
understanding” (Sierpinska, 1994). For the purpose of our study, we shall look more

closely at these models.

IIL.3 APPROACHES TO OVERCOMING THE PARADOXES OF TEACHING
In this section we will look at three approaches to overcoming the paradoxes of teaching:
didactic approach (Brousseau, 1997); a logical approach (Shchedrovitskii, 1968); and an

epistemological approach (Sierpinska, 1994).

IT1.3.1 Constructing of teaching based on problem situations

In his theory of didactic situations, Brousseau (1997) states that

The construction of meaning, as we understand it, implies a constant
interaction between the student and problem-situations, a dialectical
interaction (because the subject anticipates and directs her actions) in
which she engages her previous knowing, submits them to revision,
modifies them, completes them or rejects them to form new conceptions.
The main object of didactique is precisely to study the conditions that the
situations or the problems put to the student must fulfil in order to foster
the appearance, the working and the rejection of these successive
conceptions. (Brousseau, 1997:82-83)

In his fundamental work, Brousseau brings a new perspective to a vision of a
problem situation based on the conception of learning which relies on the study of the

development of knowledge in terms of overcoming obstacles. This conception differs thus
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appreciably from the classical conception especially concerning the role and organisation
of problem situation.

The posing of a problem consists, according to Brousseau, "of finding situation
with which the student will undertake a sequence of exchanges concerning a question
which creates an "obstacle” for her, and from which she will derive support for her
acquisition or construction of a new piece of knowledge."(Ibid.:87)

Brousseau underlines that "the conditions under which this sequence of exchanges
is displayed are initially chosen by the teacher, but the process must quickly move under
the partial control of the subject, who will, in her turn, 'question’ the situation. Motivation
is generated by this investment and maintains itself by it. Instead of being a simple
external motor, in balancing frustration, it builds up both the subject (her word) and her
knowledge". (Ibid.)

This last remark seems to be very fruitful for the organisation of work with
mathematically gifted because, according to Brousseau (1997), under such conditions, the
resolution of a problem will be for the student a kind of "experimental path".

According to Brousseau (Ibid.), the process of overcoming an obstacle has a
dialectical character: dialectic of a priori and a posteriori, of knowledge and action, of self
and others, etc (p.88). He continues:

Organising the overcoming of an obstacle will consist of offering a situation which

is likely to evolve and to make the student evolve according to a suitable dialectic.

It will be a question not of communicating a piece information that we wish to

teach but of finding a situation in which it is the only satisfactory or optimal one-

among those with which it is competing-for obtaining a result in which the
students is investing.

That is not sufficient: the situation must immediately allow the construction of an

initial solution or of an attempt in which the student invests her current knowledge.

If the attempt fails or is inappropriate, the situation must nonetheless produce a
new situation, modified by this failure in an intelligible but intrinsic way; that is to
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say, not depending arbitrarily on the aims of the teacher. The situation must allow
the voluntary repetition of the testing of all student's resources... (Brousseau,
1997:88)

In the student functioning, Brousseau considers different types of dialectics:

e Questions of validation
e Questions of formulations

e Questions of action.

None of these dialectics is independent of the others: formulation is often
facilitated if an implicit model of action exists: the subject knows better how to formulate
a problem if she has been able to solve it, action at its turn, is facilitated by a suitable
formulation. But at the same moment, each domain can be an obstacle to progress within
the others. Some things are better done than said. Implicit models are better able to take a
larger number of facts at the same time, and are more versatile and easier to restructure.
Conditions that are too favourable to action make explanation useless.(Brousseau,

1997:89)

IL3.2 Shchedrovitskii's "reflective”" schemas for the fostering of abilities
Shchedrovitskii (1968) puts an emphasis on the methodological component of

didactical study. He develops various schemas that represent the reflective character of
teaching and learning.

In order to overcome the paradox of teaching stated in III.2, Shchedrovitskii
(1968) proposes to include the contents of the learning and products of the learning into a
new, more complex schema (Fig.5) of relationships which becomes an object of didactical

study.
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Schema 2.

Actions - products \

Construction process

Abilities

Mastering Process
Contents of learning

Fig.5 Relations between actions and abilities in the challenging approach

Let us come back to our example of the task of constructing squares with cubic blocs
(see p. 66). Here is how the problem could be posed: giving a certain number of little
cubes to the students, we ask them to construct as many squares as they can. Asking a
problem in this way, we help students to develop an ability because they have to:

g Choose an appropriate number of cubes
a Construct the right shape (without confusing squares with rectangles)
Q Search for different solutions

Instead of a simple reproduction of already acquired knowledge and skills, a child is
engaged in a process of construction of "new" (to her) actions making thus an active use

of her abilities.

I11.3.2.1 Objective and psychological planes of learning

In his analysis, Shchedrovitskii puts the learner's action in the centre of the process
of learning, considering two planes: objective, or logical, which considers abstraction
from the psychological sphere of individual learning and psychological, or logical-
psychological, in which the attention is brought upon the description of subjective mental

processes. He underlines, however, that these two levels are linked together.
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Fig.6 Objective analysis of a teaching environment

The objective analysis of a teaching environment or a didactic situation includes
(schema 3, Fig. 6) the following analyses:
> an analysis of the nature of problems and forms of their objective existence,

of their relationships to the means and processes of action

> an analysis of the structure of the processes themselves, e.g. the number and the

character of operations required to solve the problems, the nature of objects and
symbols (signs) to which these operations are applied, links between operations in the
context of processes of action

> an analysis of means used for the construction of processes (often they have the form

of symbols (signs))
> an analysis of products of action (main and secondary), their properties, relationships

to the problems themselves and the means used.
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For example, when we give a problem of finding a sum 2+3= ...to a five year-old
child, we expect her to count two objects and to continue counting adding three more
objects. If we ask this problem in a different way, like ... + ... =5, we would activate
completely different processes with different objects, different means and different
products.

[n order to understand how the individual constructs his/her action and what is the
mechanism of child's development and thus to be able to analyse problem solving at a
subjective psychological level, one would need a different schema.

Shchedrovitskii (1968) suggested that we need to include abilities in a bloc of
means of construction of the process, or even to call abilities the whole bloc of means

considering that an individual appropriates and internalises these symbolic means (schema

4, Fig.7).
Schema 4.

PRODUCT
PROBLEM

PROCESS
()
CONSTRUCTION
OF PROCESS
(1) MEANS 11 ABILI
TIES
MEANSI

Fig.7 Individual approach to the construction of the problem solving process
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For example. the problem 2+3 = ... would require the use of counting abilities only. The
problem ... + ... =5, instead, would require not only a meaningful use of old means but
also the construction of new ones. Therefore, various new abilities can be developed (for
example: decomposing, taking commutativity into account, looking at number as a
concept, search for different solutions, (systemic) search for all solutions) Therefore, one
could observe two components of construction of action:

» mechanisms of correspondence of the problem with the available means taking into
account the fact that a child already has choice of certain means to solve the problem
(we call this an "understanding" of the problem; see arrow 1 on the schema);

» mechanisms of using specific regulations (rules or models of previous activities) in

order to construct a new process (arrow 2 of the schema).

I11.3.2.2 The role of reflective action in learning
The next schema, developed by Shchedrovitskii (Schema 5, Fig.8), illustrates that, on the

one hand, using abilities, the child can build the links between the new and old processes,
and, on the other hand, abilities themselves could provide the individual with the links
between the old and the new processes and, therefore, they have to be developed .

To develop these abilities, the child has to construct various processes of actions
using appropriate means (signs, symbols, formulas, sequences, structures) and master the
methods of activity in which these means are organised.

Shchedrovitskii hypothesized that for the creation of new objective means and of
new objective methods of action along with them, it is necessary that the action itself
becomes an object of transformation, and a new secondary, reflective, action would
influence it assuring the development of appropriate mental functions.
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I11.3.2.3 Example of creating new means by young children

In this section, we will illustrate the act of creation of new means on the basis of
reflection. Grade 3 children were working on the problem of calculating the number of
weeks in one year.

They were familiar with the fact that one year has 365 days and a week has 7 days but
they could not use division to directly calculate the number of weeks. Children were
aware that, by grouping days by 7, they would reach 365 somehow but their means were
not powerful enough to solve the problem. Amelie started searching for a different way

of counting. She divided the year into 12 periods (months). In each month, she counted

Schema §. @

NEW MEANS “

MASTERING
REFLEXION

PROCESS

OBJECT PRODUCT

Fig.8 Development of abilities through reflection
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weeks (grouping by 7). She also created new symbols (weeks and days), and added all
results to get a total of 52 weeks.

She has thus developed a new mechanism which included old means (counting by
7), old objects (days, weeks, year), old process (grouping), and old products (number of
...) as well as a reflection on the problem as a whole (what does not work in my direct
approach), that pushed her towards the creation of new means(symbols and procedures).
But beside all this we can see the influence of the combination of abilities and meta-
abilities (to work on a problem and to work on the work) which is an important

characteristic of a mathematically gifted child (see Fig.9, next page).

I11.3.2.4 Teaching reflective action to young children: rupture situations

This reflective action is a complex and difficult subject of study for children. In order to
help children to develop their abilities, we might use a methodology which helps to build
up a science as specific action of selection of new tools and means from a set of all human
actions. This set of actions should include a learning action that helps the individual to
master and to use these new tools and means and a particular system of teaching with its
particular methods of representation of these means as appropriate semiotic and
subjective operative systems and construction of specific processes and models (as
problems) of action.

The question that arises from these considerations is, how to transpose a system
made of content knowledge and skills that has been empirically and randomly created
over a long period of time into an appropriate teaching and learning sequence, respecting
such principles of children's cognitive development as the ability to construct the
processes of mental action and to master the method of construction as a specific content.

Every process of a child's mental action exists in a system of certain external

conditions, or in the so called "situation". The same process of action, is, on the one hand,
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confronted with the elements of the situation itself, and, on the other, it creates the

situation as a whole, that is, it puts some structure on it.

Sometimes, the elements "fit" the action and can be easily organised in the

process, sometimes, they do not. The latter is a special kind of situation where the
conditions do not correspond to the process, the objects can not be easily included in the
process, or there is a certain incoherence between conditions and process as result of

interaction of many individuals, or there are some external factors that destabilise the

system. Shchedrovitskii calls "rupture"” this kind of situation.
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Fig. 9 Example of construction of new means by a student
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In the situation of rupture, the child must construct a new process of action in
order to stabilise the situation (he must, actually, construct a new situation). It is exactly in
this kind of situation that favours real leaming. Such situations may not occur
spontaneously; they have to be arranged by purposeful educational intervention. The
intervention is meant to:

» purposefully create a rupture in children's actions (this can be achieved by including
or eliminating certain significant new objects, signs, people, etc.)

» help learners understand the nature of the rupture (what is wrong?) and formulate new
tasks

> create situations that stimulate children to create new means and to develop new
methods of action required to overcome the rupture.

The following example illustrate a possible way to create a situation of rupture.

II1.3.2.5 Example of a situation of rupture

In our experiment with elementary school children (see Chapter IV), we created several
situations of rupture with the students' previous knowledge. In this section, we are going
to show how Shchedrovitskii's model can be helpful in analyzing such classroom
situations.

One day, Grade 3 class started to read a text on the history of mathematical
computations, which might have led to the constructions of computing devices (abaci).
Let us focus our attention on the following paragraph:

These new commercial exchanges required more and more computations. The

bookkeepers from Asia had to find means to do more complex arithmetical operations,
like 3561x14. (Lyons, Lyons, 2001:44, English translation)

We can easily imagine a classroom where the reading would simply go on. It is
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quite clear that for 8 year-old children the operation is complex. But in the challenging
classroom, this sentence is just the beginning of an exploration. The initiative could come
from one student who might just exclaim: ‘it is not difficult, I know how to do it' or, from
the teacher who might provoke children with a question like 7 don't think that it is
difficult to find an answer, each of you would be able to do it'. After such an 'optimistic’
introduction few children would refuse to try it out. In our class, everyone tried, as a
result, we had 30 reports on children's efforts featuring a variety of strategies and
approaches that we have grouped into 8 categories.

No strategy, work not completed.

One child gave up, just writing 'impossible’ in his report. Two children left too few
traces to judge about their thinking. The fact that they didn't succeed can be due to other
factors (two of them are hyperactive, one demonstrates a very unstable attitude toward
classroom routine, the other is just struggling with her impatience.). The third student left
few marks, but they pointed to being on the right track: he started to add 3561 up
consequentially but stopped at the 5™ step and erased his results. He is an extremely slow
working student. Lack of time might be an explanation. All three students showed,
however, several characteristics of giftedness working with some other problems.

Messy work, some ideas can be seen (see Appendix A2, p.142).

Another mathematically able student (+ a very high achiever) left us with a real

puzzle (one would need to conduct a separate study just to decode his ideas).
Use of pictograms to represent numbers
Three students were trying to use pictograms (that we use to present three-digit

numbers). They reinvested recently learnt methods in a new situation. The result of their

79



work shows their abilities to represent numbers and to do various grouping (two of three

students).

The solution given by one of these students (who has a very original, sometimes
far from convention?l thinking in mathematics) is rather messy and incomplete. The
second student did his calculation almost correctly but didn't take ‘thousands' into account,
in fact, he did 561x14 (instead of 3561 x 14) (see Appendix A3, p.143). The third student
in this group used a triangle to represent thousands and computed his result almost

correctly, obtaining 47820 instead of 49854 (see Fig. 10a).
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Fig. 10 a Example of use of pictograms to represent numbers

Decomposing (kind of distributive property) (Appendix A4-AS. pp. 144-146).

Two mathematically gifted students identified as such during our teaching

experiment, were using a decomposition of 3561 as 3000+500+60+1 (one did it in a
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curtailed way - mentally, the other presented a very elaborated report ). Neither came up
with decomposing 14 as 10+4 (they did it as 1+4) - an amazing fact.

Conventional way applied to the two-digit number (Appendix A6, p.147).

Seven students posed the multiplication directly in a conventional way.

One of them obtained the right answer: he is a very high achiever and a mathematically
gifted child. He considered this exercise as a technical routine. Two other gifted students
got lost in the algorithm they definitely saw but did not master (both are high achievers).
Four other students (good achievers but rather average abilities) were trying to adjust the
algorithm of multiplication by a single digit but without success.

Multiplication as repeated addition (Appendix A7, p.148).

Ten students simply added 3561 fourteen times. One of them (gifted + very high
achiever) did it successfully. Five of them (very good 'calculators’ but rather limited in
reasoning) made some computational mistakes that they would not normally do in simpler
calculations but they were too confident in their skills to think of different ways of
computing.

Addition with grouping.

Two students (with average abilities) got lost in the structure of numbers. Two
other children (gifted ones + high achievers) were trying interesting groupings of numbers
(by 2). One of them did it successfully constructing an elegant structure with a
consecutive doubling (see next page, Fig. 10b), the other came close to a correct result

(see Appendix A8, p.149).
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Fig 10 b. Example of addition with grouping
Decomposition (associative property) (Fig. 10 c).

Only one student falls in this category. His answer was correct. He used a curtailed
and ingenious reasoning (for his age of 8). He did a decomposition:
3561x14=(3561+3561)x7 and got almost mentally the right answer.

His report (Fig. 10c) contained a 'strange’ line with '14x3=42+7=49'. This was his way to
calculate 7x7. Instead of memorising his multiplication facts and getting good marks, he

is inventing repetition strategies (here: 7x7= 7x2x3+7).

82



"ﬁ/ '-

s

I
-35 ¢
) u“’Séf;_ 2jady F= 1 ¢g95v

LA AT 4

{ .
« Ilh( 3= f)x?;“’:,

Fig 10 c. Example of decomposition (associative property)
This example shows a generally good involvement of students in a reflective action in a
challenging situation. It shows also that in such open situations, children can produce very
different means. The role of the teacher is to organise a common discussion in which the
new knowledge would become institutionalised' (in Brousseau's terminology) and thus
mastered as a 'new ability' (using Shchedrovitskii's terminology).

Shchedrovitskii concludes that both contents and pedagogical guidance are
important for the child's development. The character of these two elements determines the
way of development of the whole system of learning. This theory would help teachers to
enhance the active role of students as (co-) organisers of meaningful process of learning in
accordance with their abilities.

If we want to construct our teaching on the principles of creating classroom
situations in which theoretical thinking can be detected and nurtured, another aspect has to
be taken into consideration: mathematics itself with its complex system of interconnected
and interrelated concepts and structures. Thus, the meaningful learning of mathematics
can be seen not as a smooth and static accumulation of knowledge but as a complex and
dynamic process of overcoming difficulties and developing a deeper understanding of

mathematical concepts and theories. We deal with this problem in the next section.
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IIL.3.3 Epistemological foundations for the development of "good understanding" in

mathematics

Sierpinska (1994) has developed a theoretical framework for the notion of understanding
in mathematics, based on three fundamental models: Historical empirical genesis of
knowledge (intra-, inter-, tras- triad of Garcia and Piaget), Vygotsky's theory of thinking
(complexes and concepts) and Bachelard's notion of "epistemological obstacle” (a term
imported and adapted in the Theory of Didactic Situations by Brousseau). We focus here
on the idea of developing understanding through overcoming obstacles.

According to Sierpinska, one of the important aims of the didactical analysis of a
subject of teaching is to clarify, "what it is that we want our students to understand when
they study mathematics, and what exactly it is that they don't understand” (p. 41). She
thus links the problem of objects of understanding with the contents of teaching along
with the goals of this teaching. Taking into consideration the fact that a school as an
institution has not been chosen by children's free will, we can suppose that from teacher to
the student, the object of understanding can easily change its identity:

What is, for the teacher, an ‘'algebraic method of solving problems' may become,

for the student, a mechanical procedure, a school activity that is done in order to

comply with the requirements of the teacher and the school institution. It may have
nothing to do with 'methodology’ and certainly nothing with answering interesting
questions. The student's activity does not always have a cognitive character; very
often it is a strategic activity aiming at going through the school and graduating

with as little intellectual investment as possible."(Sierpinska, 1994:42)

From this remark, we can make an important conclusion: If we want to foster the
development in mathematically gifted children, we have to look for pedagogical

instruments of organisation of meaningful leaming. Our didactical efforts should be

directed to the development of a basis for understanding.
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II1.3.3.1 Mental models as obstacles to new knowledge

We often base our understanding of mathematics on certain mental models; their
"concreteness” helps us to become familiar with various abstract mathematical "objects".
However, such models have the tendency to acquire, in our minds, the status of the
"whole truth" about the conceptual domain we are exploring with their help. They become
thus obstacles to further explorations.

Sierpinska's remark that "it may even be so that the more we make a mental model
function and the better it works, the bigger the obstacle we thus create for ourselves”
(p.55) is followed by an example of "number sense", proposed to be developed in
schoolchildren, which is the knowledge of the logistics rather the arithmetic, the
knowledge of the artisan rather than the knowledge of the architect: numbers look very
much like wooden blocks of various lengths, and operations are almost physical
operations on the blocs. Problems with this model arise when we teach children to
multiply integers as a structure that extends the structure of natural numbers in such a way
that it preserves the properties of operations in it.

Our practice shows the existence of a very interesting link between giftedness and
mental models (in the above sense). Weak students tend to ignore "structural
contradictions" within mental models, artificially memorising new rules with new objects
(such as integers). Able students, on the other hand, who see the structure beyond a model
might experience dramatic frustration in their need to overcome obstacles and equilibrate
the new knowledge with their old mental models. For example, they become very used to
sharply distinguish between the 'squareness’ and the 'rectangleness’ of a shape. Later, they

struggle to accept that, by definition, the square counts as a rectangle. Our practice shows
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that these students could be able to overcome more easily this obstacle if they confronted
it in their early stages of development and did it in appropriate classroom situations.

In a way, certain abstract notions are better concluded on the base of a certain
logical pattern than through search for an intuitive meaning. (Sierpinska, 1994:55).

Children who really succeed in overcoming this obstacle, proceed purely logically:
I know it is a square; why would it be a rectangle? - Well, it is a quadrilateral and it has 4
right angles, so it must be called a rectangle.
I11.3.3.2 'Single vision' as an obstacle

Sierpinska considers the process of the overcoming of an obstacle (developmental
or epistemological) as the most important learning act that allows someone to access to
the advanced scientific knowledge. Overcoming an obstacle thus is not an acceptance of
a new system of beliefs or another (universal) schema of thinking but more a modification
of our conception of the object by means of "a different point of view", "one of the
possible attitudes", "one of possible methods to handle a problem". This would be an
important personal quality that we observe in children we identify as gifted. For example,
the problem ‘how many shoe laces are in 5 pairs of shoes' requires a flexible vision of
shoes as one single object (one 'shoe' -one 'shoe lace') or as another single object (one 'pair
of shoes - 'two shoes"). Our practice show that already at a very young age, some children
are struggling with problems that require this flexible vision. In the contrary, gifted

children demonstrate a particular facility for this kind of task.

I11.3.3.3 A systemic thinking as an obstacle
Another important piece of Sierpinska’s model of understanding is based on

Vygodsky’s theory of stages of development from thinking in syncretic heaps through
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thinking in complexes to thinking in concepts, which Vygotsky understands as meanings
of scientific terms. The main characteristics of concepts is that they form a system. These
stages can be distinguished by observing how children use logically coherent criteria
while ordering and classifying objects. In gifted children, the passage to thinking in
concepts takes place earlier. They pass very early to generalizations in the form of
pseudo-concepts and become ready to work with abstract concepts using “correct”
definitions.

I11.4 CONCLUSION
The Krutetskii's model of identification of mathematically gifted students, analysed in the
first chapter, and the problems and questions of the fostering of theoretical thinking at an
early age, raised in the second chapter, led us to the necessity of looking in depth at
didactical, methodological and epistemological aspects of learning and teaching
mathematics in order to design classroom situations appropriate to the need of gifted
children.

We analysed thus three paradoxes of leaming and teaching that can be seen as
obstacles to the elaboration of challenging mathematics curriculum related to the
necessity of provoking re-organisations in previous knowledge in order to construct a new
one. We also studied three approaches of overcoming this paradoxes through the
didactical design of challenging teaching based on the Brousseau's theory of Didactical
Situations in Mathematics, Schedrovtskii's methodological analysis of learning and
teaching by means of reflective actions and Sierpinska's epistemological analysis of
aspects of re-organisations of mathematical thinking based on good understanding.

Moving now to the description of our challenging situation approach for
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identifying and fostering of mathematical giftedness in young children, we put emphasis
on finding a balance between cbildren'; autonomy in construction of a new mathematical
knowledge and a pedagogical necessity of didactical provision for a meaningful
mathematical teaching an learning.

We thus choose a position of an active constructor of a challenging environment
that would be beneficial for all children (aiming however at a highest level of
mathematical thinking for each child) rather then an observer of difficulties that children

meet if they are left to working on their own.
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CHAPTER IV. CHALLENGING SITUATION APPROACH TO
MATHEMATICAL GIFTEDNESS

IV.1 THE NOTION OF CHALLENGING SITUATION

Krutetskii's characterization of mathematically gifted and the three approaches to
overcoming the paradoxes of teaching outlined in previous section form the theoretical
background for a study of mathematical giftedness.

First of all, following Krutetskii, we assume that one can not study giftedness
separately of the mathematical content in which it reveals itself. Thus any study of
giftedness must start with an epistemological analysis of the mathematical content of the
problems or tasks proposed to students. This analysis should be aimed at answering
questions such as, what does it mean to understand this content? What level of theoretical
thinking is necessary? What ruptures with old knowledge must take place, what obstacles
have to be overcome?

Brousseau's didactical principles and Shchedrovitskii's method of task analysis
may then help the educator to design special, "challenging situations", in which the
desired understanding could take place and new knowledge/abilities could be developed.

In order to link the different 'pieces’ of our theoretical framework into a system of
teaching and learning, we establish a developmental 'recursive chain’ of identification
and fostering of mathematical giftedness: the challenging situation requires rupture
with old knowledge and construction of (new) abilities, thus at the same time
revealing the obstacles and giving the teacher an opportunity to address them in all

students (not only the gifted ones); reflection on the situation and the shortcomings
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of thinking about it leads to new questions and indeed creates a new challenging
situation.
We postulate”that the use of teaching approaches based on challenging situations
would help to engage all students into meaningful learning through:
Q Early beginning of work on challenging mathematical tasks : 3-5 year old (fostering
precocious mind)
0 Stimulating questioning (fostering critical / reflective mind) :
Why ?
What if not ?

Is there a different way ?
Does it always hold ? etc.

Q Encouraging search for new original ideas by means of open-ended tasks (fostering
creative / investigative mind

Q Promote full and correct explanations (fostering logical / systematic mind)

Q Introduce children to the complexity and variety of mathematical concepts and
methods (fostering looking at the world with mathematical eyes)

Q Provide children with tasks that require complex data organisations and
reorganisations (fostering selective / reversible / analytical / structural mind )

Any textbook problem can be turned into a challenging learning situation or, on
the contrary, into a dull exercise.

Challenging situations cannot be used only on exceptional occasions in a teaching
approach. Some of them must, of course, be carefully prepared, but, for the approach to
work, it must become a style pervading all teaching all the time at all levels of education.
The teacher must be ready to use any opportunity that presents itself in class (e.g. a

puzzling question posed by a students, an interesting error or unusual solution) to interrupt
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the routine and engage in reflective and investigative activities on the spot, or suggest that
students think about the problem at home. Thus, in fact, what is needed are not occasional
challenging situations, but a "challenging learning environment".

In the challenging situations used in our own teaching, we favour open-ended
problems which are situated in a conceptual domain familiar enough to the child who
appropriates the situation as his’her own and engages in an interplay of trials and
conjectures, examples and counter-examples, organisations and reorganisations (as stated
by Arsac, Germain, Mante (1988, p.7)).

In each situation, we observe various elements of the child’'s mathematical
behaviour:

>  How the child enters into the situation (introductory stage, pre-organisation) and
how different ways of presenting the problem affects children's work (Brousseau,
1997);

»  How the child constructs his/her process of problem solving (choice of strategy,
use of manipulative, systematic search, autonomy, self-control, mathematical
components);

>  How the child acts in case of an error (destroys his/her previous work and starts

form scratch or tries to modify/correct certain actions);

v

How the child modifies his/her strategy when the conditions are slightly /
completely changed;
> How the child presents his/her results (orally or in writing, clearly or not,
communicating or not with other participants (children or adults), symbolism used by

the child, organisation of results (on paper)).
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Based on our observations of children’s mathematical behavior in challenging

situations, we describe gifted children's mathematical thinking as:

I.

10.

I1.

12.
13.

14.

15.

Precocious: petforming on a higher level than the one theoretically established for
child's age normal level (e.g., in Piagetian terms of intra-, inter-, trans)

Systematic and/or systemic : systematic and logical work with complex data
Selective : focus of attention on appropriate (sometimes implicit) data, links and
relations

Structural : consideration of many parameters/links/data/conditions at a time
Logical : giving full and correct explanations

"Optomathematical” : looking for mathematically essential details (sees the world
with mathematical eyes)

Critical : acceptance of a certain level of rigor and concern with validation; constant
'state of alert', looking for ambiguities and for ways of proving or disproving using
logical inferences

Reflective : reinvestment of known methods in a new situation

Reversible : making 'two-ways' links between mathematical operations and data
Analytical : operating with symbols / formulas / graphs

Creative / investigative : asking questions / investigating / making conjectures /
creating new problems

Constructive : acting mathematically in non-mathematical situations

Conceptual : fluency in operations with abstract mental objects

Intuitive : sudden “spontaneous™ insights about the problem

Abstract : looking for general categories and relationships in concrete situations
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The context of challenging situation allows children to go faster beyond the level
established by a regular curriculum without losing their interest and motivation of
learning more.

In fact, our practice demonstrates the evidence that within a challenging
environment very young children actively demonstrate their willingness to learn more
advanced and abstract topics like:

* big numbers, zero, infinity

* negative numbers

s fractions and proportional reasoning

* logical inference

s variables and functions

* shapes and their properties (definitions and proofs)
® geometric transformations

= equations with missing terms

In order to test our challenging situation model in a real classroom, we have
organized a teaching experiment during which we have developed a challenging
curriculum based on challenging situations and used it with elementary grade students in a
mixed-ability classroom. We give selected information about this experiment in the next

section.

IV.2 THE EXPERIMENT
Our experiment reflects 7 years of classroom activities and observations with Grades K-6
children while teaching challenging mathematics courses. In this section, we will analyse
a few classroom situations in which the discrimination between mathematically gifted and
ordinary students became possible. We will discuss how a challenging curriculum might
help teachers to develop a higher order of reasoning and thinking in all their students. We
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will conclude with striking particular examples of mathematical thinking in gifted
children.
IV.2.1 The context

Our teaching experiment has been conducted at Académie Marie-Claire, a private
bilingual elementary school with French and English both taught as a first language.
Despite a short history of 7 years of its existence, the academy has built a good reputation
as a school with solid and enriched academic curriculum.

Along with a strong linguistic program (with a third language, Spanish or Italian),
the school insists on offering enriched programs in all subjects including mathematics to
all its students independently of their abilities and academic performance.

The school thus promotes education as a fundamental value by instilling the will to
learn while developing the following intellectual aptitudes:

— being able to analyse and synthesize

— critical thinking

— art of learning

The mathematics curriculum is composed of a solid basic course whose level is
almost a year ahead in comparison to the program of the Quebec's Ministry of Education
(Programme de formation de I'école québécoise, 2001) and an enrichment (deeper
exploration of difficult concepts and topics: logic, fractions, geometry, numbers as well
as a strong emphasis on problem solving strategies). The active and intensive use of
"Challenging mathematics" text-books (Lyons, Lyons) along with carefully chosen
additional materials helps us create a learning environment in which the students
participate in decisions about their learning in order to grow and progress at their own

pace. Each child competes with himself (herself) and is encouraged to surpass himself

(herself).
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Since the school doesn't do any selection of students for the enriched mathematics
courses, all children of Académie Marie-Claire participated in the experiment. With
some of them, this author started to work at their age of 3-5, as a computer teacher.

Following table shows a number of participated students within the years of our study and

school Grades.
Tab. 3 Students involved in our experiment
Year of experiment Grades involved Number of students
1995-96 Grade 1 12
1996-97 Grade 1 17
Grade 2 11
1997-98 Grade 1 17
Grade 2 15
Grade 3 11
1998-99 Grade 1 23
Grade 2 19
Grade 3 15
Grade 4 9
1999-2000 Grade 1 32
Grade 2 - |23
Grade 3 19
Grade 4 15
Grade 5 9
2000-2001 Kindergarten 33
Grade 1 31
Grade 2 34
Grade 4 21
Grade 5 15
Grade 6 7
2001-2002 Kindergarten 35
Grade 1 (last term-Mai, June) |39
Grade 3 29
Grade 4 25
Grade 5 21
2002-2003 (fall) Kindergarten 34
Grade 3 33
Grade 4 32
Grade 6 23
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This table shows that there were certain groups that we could observe during a
long period of time (for example Grade 6 children in 2002-2003 were our students since
Grade 1, some of them since the age of 3-5). During this period, some children had to
leave the school, some of them joined the class later (in the same Grade 6, there were 2
students who started in our school in Grade 6).

In terms of abilities, we can characterise our classroom as a mixed ability
classroom with a significant variation in the level of achievement.

The enriched course aims to foster children's logical reasoning and problem
solving skills in all children. It is based on challenging situations presented in the
'Challenging Mathematics' textbook collection (Défi mathématique (Lyons, Lyons)) along
with other different computer and printed resources (LOGO, Cabri, Game of Life,
Internet, and so on) as well as situations created by the author.

The course is difficult for many students. It includes several topics earlier than in
the regular curriculum; some topics are presented in more depth than in the regular
curriculum; various topics which are not included in the regular curriculum. Such
curriculum thus requires a mobilising of all the inner resources of the child: her
motivation, hard mental work, curiosity, perseverance, thinking ability. Since all our
students are exposed to this enriched curriculum, the differences between them become
more evident.

In our examples, we will focus first on a global analysis of situation describing all
children's mathematical behaviour and then on particular episodes with some children

who demonstrate characteristics of giftedness described in our theoretical model.



We will also make explicit the role of the challenging situation itself showing that
without the context of challenging situation, such opportunity for students and teachers

would be lost.

IV.2.2 Design of a challenging curriculum: example of an enriched course for the
Kindergarten

There are two basic approaches to design a mathematics curriculum for 5-6 year old
children; one can be labelled as traditional and the other as innovative. The former is
based on counting, ordering, classifying, introduces basic numbers, operations (addition
and subtraction), relations (more, less, bigger, smaller, greater) and shapes. The latter puts
more emphasis on learning while allowing children to play using manipulatives,
colouring, arts and crafts, games with numbers and shapes. During the past decade, many
creative teachers have been trying to use the best ideas from each of the two approaches
also adding reasoning activities to the mathematics curriculum.

Many studies has been conducted on the child's mathematical development within
different psychological theories (see, for example, Piagetian studies (Rosskopf, 1975),
Gelman's study of child's understanding of number (Gelman & Gallistel, 1978), Resnick's
developmental theory of number understanding (Resnick, 1983)).

In our school, we use a traditional approach based on Quebec's Passeport
Mathématique Grade 1 textbook along with a new French collection Spirale (Maths CP2)
which represents the second, modern approach. However, even this combination doesn't
provide our children with the material necessary for their mathematical development.

There is still a gap between their level of ability and the requirements of the challenging
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curriculum that we use starting from Grade 1 (collection "Défi mathématique" ) and
which is based on discovery, reasoning and understanding.

In order to fill the gap, we developed an enriched course offered to all kindergarten
students (we have 30-35 children every year). The course is given on a weekly basis (1
hour a week). We base our teaching on the challenging situations approach, developing
activities that stimulate mathematical questioning and investigations along with reflective
thinking.

Each class starts with such questions as What did we do last time? What problem
did we have to solve? What was our way to deal with the problem? What strategies did we
use?, etc. This questioning aims to provoke reflection on the problems that children
solved as well as on methods that they used. Without this reflection, rupture situation (in
Shchedrovitskii's sense, see section [I1.3.2.5) would never arise, because a rupture is a
break with previous knowledge, which needs to be brought to mind.

At the same time, we would ask questions that would indicate children's
understanding of underlying mathematical concepts or methods that we aim to introduce
(using appropriate vocabulary and/or symbolism).

During this initial discussion we usually try to bring in a new aspect which provides
children with an opportunity to ask new questions, to look at the problem in a different
way. Sometimes, we might ask them, simply, what do they think we should do today?

Thus we can pass to the new situation/new problem/new aspect of the old problem.
We may do it by means of provoking questions, of interesting stories or introductory
games. Following Shchedrovitskii and Brousseau, we try to avoid the teaching paradox by

not providing children with direct description of the tasks or methods of solutions. We try
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also to keep their attention and motivate them.

After this introductory stage, children begin investigating a problem using different
manipulatives: cubes, geometrical blocs, counters, etc. They work alone or in groups.
During the phase of investigation, the role of the teacher becomes more modest: we give
children certain autonomy to get familiar with the problem, to choose a necessary
material, organise their work environment, choose an appropriate strategy.

However, some work has to be done by the teacher to guide children through their
actions. We have to make sure that the child understands the problem, the conditions that
are given (rules of the game), the goal of the activity. As the child moves ahead, we shall
verify his control of the situation: what she is doing now and what is the purpose of the
action (activating reflective action). We have to keep in mind that the exploration is used
not only as a way to make the child do some actions but also and foremost as an
introduction to mathematical concepts or methods.

Therefore, the teacher needs to be prepared to introduce the necessary mathematical
vocabulary along with its mathematical meaning as well as mathematical methods of
reasoning about the concepts and about the reasoning. In our experiment, we try to choose
those mathematical aspects that are considered as difficult and are not normally in;:luded
in the Kindergarten curriculum.

For example, when we want to introduce an activity with patterns, we would
organise a game. We would start to make a line 'boy, girl, boy, girl,..' children find it easy
and are happy to discover a pattern. Then we would start a new 'pattern’ : 'boy, girl, boy,
girl, boy, boy'. Many children would protest, saying that the pattern is wrong. But
perhaps, some of them would try to look for different pattern, like "glasses, no glasses,

glasses, no glasses, ...".



As the game goes on, children get used to looking for familiar patterns. This is the
time to challenge them more. For example, we may ask them, how many children would
be in the line with the pattern 'boy, girl, boy, girl,...". Since there were only 8 boys in the
classroom, one child could make a hypothesis that it gives 8+8 children in the line. After
such a line had been completed, teacher’s silence could be broken by a child's voice - 'we
can add one more child to the line — a girl in the beginning'.

The course is built of various challenging situations that we create in order to give
children an opportunity to take a different look at mathematical activities that they usually
do, to question their knowledge about mathematics trying to discover hidden links
between different objects, to discover structures and relationships between data, learn to
reason mathematically based on logical inference and at the same leave some space to
children's mathematical creativity. We use different didactical variables in order to create
obstacles making children re-organise their knowledge and create new means in order to
overcome the obstacle.

We often ask our children to report on their investigations inviting them to
communicate their discoveries by developing appropriate tools: diagrams, schemas,
symbols, signs.

We will now analyse an example of a challenging situation and show how
different aspects of our theoretical model help to identify and nurture mathematically

gifted children.

IV.2.2 Analysisofa challenging situation given to Kindergarten (5 years old)

children in an enriched mathematics course
The problem given to the students (as it is formulated in the book 'Challenging

mathematics' (Lyons, 2001)) was
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Find all ways of dividing five counters into two groups.

Mathematical content of the problem

As shown in many studies in mathematics education and psychology, children have
difficulties learning numbers because of their limited conceptual understanding. The
source of these limitations might be traced back to the very beginning of mathematics
instruction which introduces number as a result of a counting.

Not only the number itself, but also basic operations on numbers are also introduced
by means of counting with elements of different sets. More abstract and theoretical
aspects of numbers related to their structural characteristics and operational properties are
often put aside.

Therefore, many children see addition as a 'counting on' with the necessity of
getting a final result - the sum. Therefore, they do not understand that the expression
2+3=1+4 makes sense. They think that 2+3 can be only equal to 5. Thus, the operational
structure of number might be inaccessible to young learners.

That is why, it is important to bring structural aspects of number in mathematics
teaching to very young children. By asking them to find different ways of decomposing 5
into a sum of two numbers we aim to introduce different properties of numbers (like
'fiveness') and operations (like the commutative law and the neutral element) and thus
creating 'multifaceted' picture of mathematical action.

The situation was as follows: The teacher takes 5 counters in his hands and asks children

what one could do with them (all the counters are identical: they have the same shape
(circle), colour (blue) and size (around 3 cm in diameter). The students make their

guesses. The teacher does not make any comments starting to play with counters, putting
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some of them in one hand and others in the second. The students give comments on the
significance of these actions. Finally, they get familiar with the situation of partitioning
counters into two groups and the problem of finding all the ways to do it. There were no
words about number 0 as an option or about inverse combinations such as 2+3 and 3+2,
or what one can call two different partitions.

The students worked on the problem in the following setting: children were sitting around

6 tables (5-6 children around one table). They had to communicate their solutions by
drawing them in the Défi-1 workbook. The experimenter and two teachers moved from
one table to another checking on children’s work and giving them some hints (like
'regarde, si tu as déja cette solution, tu dois essayer d'en trouver d'autres’)
Here is how we analysed the situation:
Trying to make guesses about the task during the introduction stage, children knew that
since it is a math class, the activity must be mathematical. So, they proposed counting
counters, ordering them, using them to draw circles (Sic!). We could observe here an
emergence of spontaneous brain-storming thinking process: they tried to predict the
possible nature of a mathematical activity yet unknown to them. They could use their
previous experience in order to build links between different activities. Thus, they got an
opportunity to ask questions, to make hypotheses, to learn about the rules of the 'game’
(instructions to follow, conditions to respect). Finally, they approach the formulation of
problem. In this very beginning of activity, we could already identify children who
manifested their interest, understanding and creativity more explicitly than others.
During the teacher's demonstration with hands, we introduce a new 'variable

didactique' trying to direct children's search towards a pre-planned activity. Some
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children look very confused as they saw that no counting, no drawing happened. They had
to modify their 'guesses’ adjusting it to the new situation. At one moment, one child
pronounces: "you are always changing the number of counters in each hand", thus a word
'partition’ has been pronounced by the teacher. Now we could talk about different ways to
divide counters. At the same time, we do not tell children how to do it or how to validate
a solution - thus we let the child organise the process of solution, construct necessary
tools, try different strategies. This openness and autonomy left to children is very
important for the fostering of mathematical giftedness in young children and for any
learning to occur, for that matter, according to Brousseau and Shchedrovitskii.

Our observation shows that children organise their work differently. Some children
pose all the counters on the table in a line, or form different configurations: (squares,
circles, towers). We interpret this spontaneous organisation of material as an important
indicator of mathematical ability (thinking in terms of structures). This is also a sign of a
high level of thinking discipline. We can also suggest that in the child's head the partition
is being made at this moment.

Other children start inmediately to move the counters from one hand to the other
(imitating the teacher's demonstration). We can give two kinds of explanation of this
phenomenon: they are trying to understand the problem or they have the need to simply
touch the counters.

However, we could already evaluate children's readiness to solve the problem: some
of them seemed to know how to proceed, others showed signs of confusion.

Looking for solutions, some children formed two groups of counters on the table,

others kept the counters in their hands. In their work organisation, we see a very different
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approach: very systematic and orderly in some children and chaotic and messy in others.

While several children understood the need of verifying the solutions (respecting
conditions of five counters and different partitions) and were able to do it, some children
could not do it even with help of the teachers.

If we look at children's drawing in the exercise book (some examples of these
drawing are given in the Appendix A9, pp.150-152), we find that of the 31 children
participating in the activity, 6 have obtained all 6 solutions: 0-5, 5-0, 1-4, 4-1, 2-3, 3-2.
Other children made different kinds of mistakes:
¢ Losing one or two solutions (0-5 or 0-5, 2-3)
¢ Not considering 0
¢ Not considering commutative partitions like 2+3 and 3+2 as different ones
¢ Not finding all partitions (0-5, 1-4, 2-3)

o Presenting same partitions several times

¢ Losing 'fiveness' in partition

Eleven drawings suggest some systematic search, 20 - non-systematic

It is interesting to note that we did not ask children to use an ordered disposition of
counters on their drawings. However, we could observe some particular dispositions of
circles (domino’, 'rows’, ‘circle’, 'triangle'); it happens often within challenging situations
that some children give themselves new tasks, new interpretations of task moving thus

beyond pre-planed activity.
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There were 4 children who used numbers in their drawings (2 of them solved the
problem successfully). We do not know, however, why they used numbers (aesthetic or
mathematical reason).

One more observation - while some children could keep all the process under
control, others lost the control passing from the manipulation to the communication (on
the paper). They considered it as a different task: focusing on particular aspects of
drawing instead of on mathematical 'parameters’ of the task. They could even draw a
completely different partition from the one found with counters.

Our attention was drawn to the few students who proceeded systematically in their
search of all the different ways (e.g. 5 and 0, 4 and 1, 3 and 2), considered zero as a
significant element in their partition (neutral element property), made a distinction
between a+b and b+a cases (commutative property), kept the total number of counters
constant (addition as operation). These students not only succeeded in this partition
problem but also were able to solve a similar next problem (3 counters) without any
reference to the counters.

Unlike other children who started to solve the problem of partitioning the set of 3
counters in the same way as they approached the previous one: placing counters in their
hands, trial and error partitions, etc., our "candidates™ for gifted children just took the
pencil and drew all the partitions in two seconds. It was as if they took the whole
structure of the first situation and transferred it into the new one.

Let us see now how these children’s behavior can be interpreted in terms of our
operational model of mathematical abilities.

When these children were shown a group of objects (in this case: counters), they
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almost instantly (even before the problem was presented) started to describe it
mathematically using their usual routine knowledge. They said, “We see counters, they
are all the same: they’ are round (circles), they are blue, they are big (small), we can count
them, there are five of them”. This behavior would be an instance of what we have called
“seeing the world with mathematical eyes”.

They were then shown a textbook page featuring 6 boxes in two columns with a
pair of hands drawn on each of them. The number 5 was written in each box and beneath
the number there was a two-way arrow (<»>) meant to suggest that the number five had to
be split into two parts, one for each hand. To the question of the teacher, “What does this
have to do with our five counters?” the children responded, “We have to put counters in
these hands”. These children were able to establish a relationship between the counters
and the hands. For us, this behavior represents the “constructive mind feature of our
operational model.

The next question of the teacher was: “Why do we repeat this operation several
times?” The answers of the children were along the lines, “because there are several ways
of putting counters in two hands” (“creative mind”).

In this introductory stage, we could already see that these children have grasped
the essential structure of the problem: abstracting from the context of putting counters into
two hands, they saw it as a problem of partition (“selective mind”).

We noticed that these children were using manipulations with the counters in a
very special, orderly and systematic way. Even before starting to do any manipulations
with the counters, they would put them first on their desks in some (appropriate) order, for

example, in a row, and then they would just take a quick look at their constructions. It
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seemed that they already played with the essential elements of the problem (“intuitive
mind”). Later, they used manipulations to verify their mental solutions (“critical mind”).
While doing it, they would take care simultaneously of all essential conditions: keep 5
counters constant, do a partition, find all the different ways (“structured mind”). They
organized and coordinated their actions (“systematic mind”).

Moreover, they could always explain what they were doing and why: “I’ll put 2
counters in the right hand because we have 5 counters in all and I put 3 of them in my left
hand” (“logical mind”).

When these children passed from the first example to another and reinvested their
experience in a new situation, they were transferring the method of dealing with a
partition problem, not the experience of playing with counters (“reflective mind”).

They demonstrated their early ability to transfer a whole structure (“precocious
mind”), representing the problem in a symbolic analytical form (“analytical mind”). They
worked fluently with data, easily incorporating the commutative and zero properties in
their solution (“reversible and conceptual mind”) and making generalizations: “We can
do like this with any number” (“abstract mind™).

The example shows that the identification of giftedness occurs when children work
on a real mathematical problem. Teacher's task therefore is to organize and to guide this
work, to interpret the results of children's work adjusting the teaching process along the
way.

The example also demonstrates that our model provides us with the links of the
idea of ‘challenging situation’ to our notion of mathematical ability. The able child is not

only able to deal with challenging situations, but also looks for them and sometimes turns
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dull exercises into challenging mathematical problems. Thus, he or she is better equipped
for the study of mathematics.

In our example, an uninspired teacher could simply solve one example for the
students on the board, make them copy the solution in their exercise books and give them
a similar one to solve in class and four more to solve as homework. This way, the chance
would be lost not only to identify mathematically able children but also to bring other
children to a higher level in mathematics.

IV.3 CHALLENGING SITUATIONS APPROACH AND DEVELOPMENT OF MATHEMATICAL
REASONING
As it was shown in our theoretical part, mathematical reasoning is an important part of
fostering theoretical thinking in all children and especially in those who are identified as
mathematically gifted.
Piaget established five stages in the development of intelligence in young children
(Piaget, 1950):

e Sensori-Motor Intellegence (Birth-2 years)
e Pre-Conceptual Thought (2-4 years)

e Intuitive Thought (4-7 years)

e Concrete Operations (7-11 years)

e Formal Operations (11-12 years)
A number of studies with mathematically gifted students show that these children easily
‘break’ this "natural” sequence of development. For example, in Shields' analysis of
logical thinking in gifted children, we can find examples that demonstrate that the
performance of the gifted junior-school child in logical thinking is equal to the

performance of the average pupil who is 3-5 years older (Shields, 1968).
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Since logical thinking is a foundation of mathematical reasoning, we can expect
that presenting our students with challenging situations that stimulate the growth of
logical thinking, we help them reason at a higher theoretical level.

That is why logic is an important part of our challenging elementary curriculum.
On the one hand, our children learn to solve different logical puzzles, use logical
operations (negation, implication, class inclusion, etc.), play different strategy games (like
chess). On the other hand, they are constantly invited to think logically in various
mathematical situations (like working with definitions, looking for logical explanations,
proofs, using examples, non-examples and counter examples). We challenge them
constantly with 'little questions' provoking logically grounded mental actions.

Following are examples of situations that feature different aspects of logical

thinking in our students.

IV.3.1 Example of the use of logical inference by mathematically gifted children:
fluency, control, rigour

Our curriculum provides an early exposure of children to different task that require the
use of logical inference.

In Grades 1-3, our children learn to solve logical puzzles on the 3x3 board. They
have to place different objects (cards, shapes, letters) following various instructions, like
'There is no red card on the top”, "Each row has to contain shapes of different colour”,
“Letter A is in the right column". In order to solve these problems, children have to use

logical reasoning, like "The letter B is under A, therefore, it is not on the top".
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Sometimes, they have to make conclusions combining several conditions.

In Grade 2, we add another type of problems, in which children are asked to
construct a cross-table following several instructions. For example, the next problem is
taken from a Grade 3 Challenging Mathematics Book (Lyons, Lyons, 1989, p.10):

"Find the favourite subject and the favourite drink of each student. Mathematics student
likes juice. Carole likes arts. Serge likes coffee. Who likes science? Does Victor like
milk?"

Starting from Grade 2, we include chess game in our curriculum. In Grade 4,
children learn to use logical inferences based on inclusion classes (all the cars are red, [
have a car, therefore my car is red).

Facing logical problems, many children would use trial and error method (in
enigmas) or ‘childish' intuitions (in logical inferences). However, there is an evidence that
some students demonstrate, in fact, a maturity unusual for their age in their reasoning.
They form a logical sequence of conclusions based on the given rules, keep control of
given instructions, use schemas and linking words (because, therefore, etc.).

For example, in Caroll-Ann's work (7 years old) we see a complete analysis of
data (Fig.11, next page), ability to make logical inference ("La soupe n'est pas dans la
grande casserole et les carottes non-plus.” =» "Il y a juste le bouilli qu'on peut mettre dans
la grande casserole").

Here is a text of the problem (Défi mathématique-2):

Le souper mijote dans trois casseroles.
e Lasoupe n'est pas dans la grande casserole, et les carottes non plus.
e Le bouilli n'est pas dans la petite casserole et la soupe non plus.

Trouve ce qu'il y a dans chaque casserole.
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Fig. 11 Example of logical thinking in Grade 2 children

The following situation is very difficult for an 8 year old child:

When it's sunny, Tim always puts on his white hat. When he puts his hat he never puts on
his blue shoes. Yesterday, he was wearing his blue shoes during a whole day. What was
the weather that day?

Therefore, Sarah's solution is outstanding in many ways : she uses two important key

words : proof and inverse, constructs schemas, gives a short explanation. (Fig.12)
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Fig. 12 Example of children's schemas of logical inference
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With the time, problems become more and more difficult, like, for example, the following

one from The Challenging mathematics-4 book:

Text of the problem: Défi mathématique-4, (Lyons, Lyons, 1989) -in French, p-214# 18)

"Rebecca la sorciére est furieuse.

(Rebecca) - Quelqu'un a volé mon balai. Je suis certaine que c'est I'un de mes lutins quia
fait le coup. Lutins, venez ici!

Aussitot accourent Flip, Flap et Flop, les trois lutins espiégles. Rebecca les interroge.
(Flip) - C'est Flop qui a volé ton balai.

(Flap) - Ce n'est pas moi, belle Rebecca, qui ai pris ton balai.

(Flop) - C'est moi le voleur.

Mais Rebecca connait bien ses lutins. Il y en a toujours au moins un qui dit la vérité et au
moins un qui ment lorsqu'ils a'adressent a elle en m"mem temps. Pourtant, elle sait
maintenant qui a volé son balai. Qui est-ce et comment a-t-elle pu le découvrir?"

Gifted children handle these problems with more rigour and complexity in reasoning.
Mark-Alexandre's (9 year old) work shows an appropriate use of "connectors” (parce que,
alors), look for contradiction as a logical foundation of 'proof’ (see also Appendix A 10,
p.153)
"Si Flip a menti d'abord Flop a menti aussi, alors ¢a fera
(Flip) Ce n'est pas Flop qui a volé ton balai (contraire de ce qu'il a dit)
(Flap) Ce n'est pas moi, belle Rebecca, qui ai pris ton balai (ce qu'il a dit)
(Flop) Ce n'est pas moi le voleur (le contraire de ce qu'il a dit) "
They make coherent conclusions ("si ce n'est pas Flap ni Flop alors c'est F. lip")
IV.3.2. Example of use of logic in problem solving
It comes as no surprise that, facing challenging tasks, gifted children use their abilities to
the full in making logical inferences and thus demonstrate their potential of proving. In
their 'proofs' they use schemas, symbols (letters), relationships between data and
generalisations.
For example, Alice (10 years old, Fig.13) shows abilities of

@ Construction of proof ("Si la somme des ages de Peter et d'Elisabeth = 20, alors

l'dge d'Elisabeth = 5 et celui de Melissa = 7, car la somme de son dge et celui

d'Alex est égale a celle de Peter et d'Elisabeth et d'dge d'Alex est 13 ans. ")
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a Use of a generalising remark as a justification of relationships between data ("ce

nombre (20) peut toujours changer, mais la différence d'dge entre celui d'Elisabeth

et celui de Mélissa sera toujours 2 et Mélissa sera toujours plus dgée”)
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Fig.13 Example of logical explanation given by a mathematically gifted student
IV.3.3. Example of construction of a 'proof' by mathematically gifted students.
In the following situation, the answer found within a few seconds (actually a wrong one)
has initiated a whole chain of reasoning accompanied by schemas and logical inferences
in a mathematically gifted child.
The Grade 6 class was working on standard tasks with fractions (addition,
multiplication , and so on). Some students finished this routine work early. John was

among them. The teacher decided to add a bonus question based on a non-standard task :

What is a minimum number of steps needed to determine which of 12 equal-sizes identical

pieces of money is false (that means its weight is different). One can use only a balance
without weights.

John, who is often struggling with explanation of his (curtailed) reasoning and thus
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sometimes lowing his achievement ('lack’ of communication skills), suddenly came up
with a very detailed schema. While an attentive look at it reveals a misinterpretation of the
task (John is an attentive reader, he does what is written, thus his interpretation of words
'minimum steps' was ‘'minimum possible with a good outcome' is correct, but we meant,
of course, a minimum which would guarantee a good outcome), John's solution presents
an interesting example of mathematical reasoning.

Actually, he could limit himself with much simpler explanation, like following one:

We can not do it in one step, because even if by chance, our first weighting of two pieces
will be successful (one piece weights more than the other), another check is important to
see which one is false.

But John took his time to create a very detailed schema with all logical steps of his

reasoning (Fig.14).
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Fig. 14 Example of a schema of proof invented by a gifted student
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We see that John's schema combines linguistic and symbolic ways of explaining .
He constructs his proof in two steps that he calls "Essaie #1" and "Essaie # 2".
He provides us with a detailed instruction what to do: "prendre”, "mettre”.

He uses sometimes words, sometimes arrows to make conclusions, "alors".
Arrows are also used do indicate an action.

The question remains: why did he decide to give such a detailed communication of
his reasoning?

One of the possible explanations is that the test in its main part was boring for him.
He thus saw the bonus problem as a 'reward' or 'dessert’ for this regular 'meal’. He enjoyed
fully the opportunity to do 'real mathematics'. Thus the challenging character of the
situation might have affected his mathematical behaviour.

The results of our study thus confirm the importance of the fostering of reasoning
abilities in young children. As it is mentioned by Flores (2002), many students show self-
reliance and clear understanding of the facts they have learned.

Teachers can build on this understanding and methods to help students develop

more efficient and systematic ways to provide evidence and to include

mathematical reasoning in their arguments and proofs, at an appropriate level ...

As children progress through more complex mathematics such as operations with

fractions and negative numbers, their ability to explain why the facts that they

learn are true seems to fall behind. As teachers, we need to help students make the
transition from the empirical methods that work well with small numbers to
methods based on relationships between numbers and between operations. To gain
insight into children’s thinking, we must ask them to explain or to justify what

they are learning (Flores, 2002: 274)

As our examples show, the challenging situations approach allows creation a large

variety of classroom situations featuring different didactical, methodological and

epistemological aspects of mathematics. In the next section, we will summarise our
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findings giving more examples of challenging situations and analysing teacher's and

student's role in them.

IV.4 GUIDELINES FOR THE DESIGN OF CHALLENGING SITUATIONS
We consider three kinds of challenging situations:
¢ open-ended problems and investigations
¢ routine work turned into a challenge by the teacher
¢ routine work turned into a challenge by a student

Let us consider these options in details:

IV.4.1 Open-ended problems and investigations
As we look at the video protocol of interviews with 4-6 year old children conducted by
Bednarz and Poirier (1987) within their study of number acquisition by young children,
we see how the evidence of differences in organisation of mathematical work by very
young children becomes explicit with the open character of given tasks.

The video presents children's work on different tasks related to the concept of
number: counting, formation of collections, order, conservation, comparison. Each task
that in a regular classroom might be seen as ordinary, was given by authors in a very
original challenging, dynamic, and open-ended way.

The child was constantly invited to think about the process of her work (how did
you do it?), to develop an efficient strategy, to re-organise, if necessary, her process, to
co-ordinate her actions. Thus, the routine tasks became open-ended and a child was given
an opportunity to become an organiser of her mathematical work.

In our experiment, we also tried to make problems more open than they were
usually presented to the students.
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For example, we can take a problem from one mathematical competition :

—_ 1 2 3%
4 5 6
7 8 9 —>

In this table, we enter by | and exit by 9.

One can only move horizontally or vertically, and it is impossible to step twice on one
box. For example, moving through boxes 1-2-5-8-9, one gets a sum of 25. But not all the
trajectories lead us to the number 25.

Give all others 9 numbers.

This problem was given to participants of the regional final of the Championnat
International des Jeux Mathématiques et Logiques in 2000 for Grade 4-5 children (10-11

year old) http://www.cijm.org/cijm.html.

We found that this problem would become more challenging for children if posed
in a different way (open-ended) :
Someone is going to visit a museum, which has 9 exhibition halls, arranged in a square
3x3. The number of paintings in each hall is written in the box. What are all the possible
nur'nbe?rs of paintings that could be seen by this visitor who does not like to be in one hall
e’ Not only do we hide the number of different ways, which makes this problem
open, we give it to our Grade 1 students (6-7 year old). Every student has a task at his/her
level (They will all be able to find at least a couple of solutions). And we will be able to
check for characteristics of mathematically gifted students.

Among open-ended problems, we distinguish a class of situations where the
openness is being pushed to its extreme limit of mathematical investigation.

In section 3.2, we mentioned a way to transform a problem of constructing squares

by means of cubes into a more challenging one. We can also use it to engage children in a
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real investigation making them to discover square numbers. For example, we can ask
them, how many bricks would be needed to construct a square-shaped wall. We did this

activity with grade 3 children (8 year old) and we could observe many characteristics of

giftedness appearing.

1V.4.2 Routine work turned into a challenge by the teacher

The recent Quebec's school curriculum puts emphasis on the learning of basic
number facts (like multiplication tables). This routine task can become challenging by
many different ways. For example, one day we wrote on the board the 9-table operations:
Ix9=
2x9=
3x9=, andsoon

Grade 3 children said immediately that it is a very easy table, because there is a
well known regularity (writing down first digits of the product in order from 0 to 9 and
the second ones down from 9 to 0, we obtzin all the multiples of 9 : 09, 18, 27, and so on).
Among the answers one could find that 6 x 9 = 54.

So, the teacher comes to the board and writes 6 x 9 = 56 telling the story that when
he was young, he had to memorise all answers, not just 'tricks', and he is sure that 6 x 9 =
56. The students are confused, but many of them started to think how to prove that their
result (54 was the correct one).

Many of them went to the board to share their ideas as well as other ways to obtain
a 9-table. As a result of the lesson, the 9-table has appeared a couple of times on the
board, children said it many times aloud, so they could memorise it and at the same time

do it in a meaningful way questioning and proving their methods and ways of reasoning.
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IV.4.3 Routine work turned into a challenge by a student

When Grade 4 children are asked to represent 1/8 of a rectangle, they find it an easy and
routine task. That's why we were surprised by Christopher's way to divide a rectangle in
64 boxes (8 rows x 8 columns) and to colour 8 boxes randomly. He found that the task

was not challenging enough and he wanted to make it more complicated.

IV.4.4 Transformation of challenge within one situation

All three ways of creating of challenging situations are not isolated from one another.
They can also be transformed one into another.

For example, a kindergarten class (5-6 year old) is working on an open-ended
problem:
Amelie needs to build new houses for her farm animals. When one looks at the house from
the sky, she sees that all of them have a roof in shape of a ‘digit’. She has to build now a
new house for her cows. What 'digit’ you suggest to use for the roof of this new house.

Children used blocs in form of different solids. The activity aimed to make them to
explore different solids, to make different constructions with them. There are, basically,
two ways of making constructions: three-dimensional or two-dimensional establishing
thus different spatial relationships. For example, we may teach children to verify which
shapes fit together recovering certain surface. The activity that we gave to our students
didn't aim to teach any particular way of making constructions: many textbooks contain a
lot of exercises asking children to reproduce one construction or another. Our situation
was designed in order to help children get a certain 'spatial feeling' trying different way to

layout blocs. The main challenge in it was to organise a mathematically meaningful

investigation within an 'ill-defined' problem.
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Some of them chose to imitate shapes of digits in the way we write them, others
looked for different ways to create more 'economic' constructions taking care of geometric
properties (like seeing if the blocs fit one to another) . Finally, there was a group of
children who moved from the initially given situation of building a new 'house’ and
started to construct many digits 'writing' numbers (up to the "1000") (Appendix Al1,
p.154).

Soon, we could see that originally challenging and creative, the task became
routine for many children. So, we decided to put some restrictions (new 'variables') that
were sought as means to engage children in the investigation of a different problem in
which we would be willing to construct house that has a "5"- shape and do this with a
minimum of blocs. Thus, with the intervention of the teacher, a routine problem became a
challenging one once again.

This method of a 'sudden’ change of didactic variable (Brousseau, 1997) is
important in our study of relationship between child's organisation of the problem-solving
and mathematical giftedness because it provokes a reflection (what is new?) and re-
organisation of the whole process of thinking and acting (what do I need to modify?) and
thus gives students a chance to show their full potential.

In our experimental work with young children, we obtained a constant
confirmation of the fruitfulness of such an approach, especially if one wants to identify
and nurture gifted children. The picture (Appendix A12, p.155), shows David (5 years
old) working on the 'minimum!' task (see above); he looked happy with his solution (4
blocks) but still in what looked like a 'state of alert'. At this moment, we began to discuss

children's solutions. One group of children has presented a three-blocs solution. Suddenly,
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David started to change something in his configuration. As we see, the number of blocs is
still the same (4) but the blocs are smaller. But what is the most intriguing, is the rapid
reactions of this child to the changing conditions (someone has found a better solution).
This constant state of ‘alert’ is an important characteristics of giftedness which could be
better activated in challenging situation that in the ordinary one.

This state of ‘alert' leads them to constantly verify all the conditions going back
and forth through the situation. Here is one more observation. Grade 4 students worked on
their test. Answering a question of 'Is it true that if the sum a+c=8 then a and ¢ are two
different numbers?', Christopher hesitated a lot, saying however, that the numbers have to
be different. As his work on the test went on, he had to solve a system of two equations
with two variables: ab=16, a+b=8. He found easily a=4, b=4 as a solution then went back
to his previous task and corrected his answer.

We could also observe another interesting phenomenon: challenging situation
created by the teacher may initiate its further explorations by gifted students.

For example, doing the same activity with Grade 1 children (6-7 year old), we
could state that it was seen as a routine problem by many of them and some of students
lost completely their interest in it. Yet, we could still observe one girl looking for many
different ways of building "5" using 4 blocs.

Not only she kept herself working on this problem, she came out with a new one :
she started to look for possibilities to built a digit "4" with a minimum of blocks. Here, the

problem was turned into a challenging one by the student.
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IV.S THE ROLE OF THE TEACHER

In a challenging environment the role of the teacher becomes crucial in all the stages:
e choice of a problem
e way of presenting it to the students
e organisation of student's work
e interpretation of results
e follow-up

One of the very important conditions of success of the challenging situations
approach is the teacher's attitude. How should we, as teachers, control the student's work?
Related to the learning paradox (described in the previous chapter), it is far from being
obvious how to find a solution to this problem. On the one hand, every word and every
gesture said by teacher can affect the whole challenge of situation in either a positive or a
negative sense. On the other hand, the teacher has to have a full didactical control of the
situation (otherwise a mathematical learning activity might become a sort of 'arts and
crafts in mathematical wrapping).

Our experiment didn't provide us with clear recipes but rather with examples that can
be open to further questioning and investigations. These examples allowed us to formulate
teacher's approaches favourable for the challenging situation:

0 Give a child an opportunity to think: being a flexible teacher

Q@ Support of children's willingness to learn more about math

a Challenge students in informal situations: sense of humour

0 Support children their desire to go beyond pre-planed situations

0 Giving hints without telling solutions
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o Management of particular cases of mathematical giftedness

a Use of 'little tricks' as follows :

While distributing manipulative material (blocs, cubes, etc.), we would give children
time to touch it, to play with it, to get a feeling of it; sometimes it gives us important
clues of children's organisations (how they put material, arrange it, order, classify,
build different forms, etc.)

When children finish their manipulation, we ask them to write a report. Sometimes it
makes sense to give them time to break up their constructions. This opens the door to
a variety of presentations (will the child reproduce his construction, add new details,
draw a completely different pictures)

When children are asked to communicate their results, it is important to motivate them
to give detailed explanations. We often ask them to be 'mini-teachers’ - to explain to
somebody who doesn't understand the problem

Children often ask us to teach them complicated things. Sometimes, a pedagogical
effect can be bigger if the teacher make them wait. Then, starting to teach it, children

might become more motivated: finally, we got it!

IV.6 THE ROLE OF THE STUDENT

The role of the students in a challenging situation differs significantly from those in the

regular learning activity. They have to adapt to a new, open environment. They have no

precise algorithm of actions, no clear instruction what to do. Therefore, they have an

opportunity to:

Q demonstrate different approaches to the problem

a act differently in different situations
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QO overcome obstacles, construct various means, discover new relationships

Q work on mathematical problems based on structures and systems using
properties and definitions, conjectures and proofs

Q use of logical inference with fluency, control, rigour

Q combine logic and creativity in problem solving

Q invent new symbols and signs, use schemas and abstract drawings

Q use reflective thinking

Q ask mathematical questions, create new problems, investigate, use mathematics

in non-mathematical situations, look around with 'mathematical eyes’

IV.7 CONCLUSION

Based on Krutetskii's characterization of mathematically gifted children,
Brousseau's theory of didactical situations and Shchedrovitskii's model of reflective
thinking, we established a developmental 'recursive chain' of identification and fostering
of mathematical giftedness.

In the enriched mathematics offered to all students, we use a "challenging
situations" approach which helps develop a higher level of theoretical thinking in young
children by means of open-ended tasks, mathematical investigations, and solving
challenging tasks that require mathematical reasoning based on logical inference.

The experiment conducted at Académie Marie-Claire, a private elementary school
with enriched K-6 curriculum in all subjects offered to all students, demonstrated that this
approach helps teachers create a learning environment favourable for the intellectual

development of not only gifted students, but also other children. The atmosphere created
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in the mathematics classroom allowed them to ask interesting mathematical questions, to
search for new original ideas, to give full and logical explanations, to organise and re-
organise data, to develop different strategies in problem solving and share them with their
peers.

The results of our experiment show the importance of epistemological,
methodological and didactical analysis of mathematical content in order to find the best
way for creating meaningful learning and teaching situations that provoke theoretical
mathematical thinking in young children and foster its reflective, systemic and analytic

components.
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CHAPTER V. CONCLUSIONS AND RECOMMENDATIONS

There exists a number of educational studies of mathematical giftedness. Various models
of giftedness based on different characteristics of mathematically gifted students have
been developed and implemented. Different programs of support provide gifted students
with advanced curriculum and guidance of highly qualified professionals. Several
mathematical contests, Olympiads, and competitions help in searching for mathematically

gifted children and taking care of their development.

Yet, the problems of identification and nurturing of mathematical giftedness are
far from being solved. Many children become bored, at a very early age, with the
simplified curriculum, lose their interest in mathematics and waste their intellectual
potential. Despite the ingenious testing system, some children never get admitted to
special programs for gifted students. The regular school system is not equipped to help
these children.

Our study aims to contribute to filling this gap and providing elementary school
(Grades K-6) teachers with methods of identification and fostering mathematically gifted
children in the mixed ability classroom.

We have called our approach, the "challenging situations approach". The
approach is theoretically grounded in Krutetskii's notion of mathematical ability,
Shchedrovitskii's developmental model of reflective action, Bachelard's notion of
epistemological obstacle, Sierpinska's distinction between theoretical and practical
thinking in mathematics, and Brousseau's theory of didactic situations.

Following Krutetskii, we have defined mathematical ability as a 'mathematical cast
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of mind', which represents a unique combination of psychological traits that enable young
children to think in structures, to formalise, to generalise, to grasp relations between
different concepts, structures, data and models and thus solve different mathematical
problems more successfully than children of average or low ability.

At a very early age, these children demonstrate high thinking potential in
reasoning about mathematical concepts and systems of concepts along with the capacity
to reason about their reasoning. From the outset, they are better prepared than other
children for theoretical thinking, which is the foundation of pure mathematical thinking.

The critical point of our study was an understanding that a discovery and nurturing
of theoretical thinking is not possible if children are working with routine arithmetical
tasks, merely applying algorithms that had been provided by the teacher, telling her
students what to do and how to do it.

The paradoxes of such classroom situations have been described by Brousseau in
his Theory of Didactical Situations. Following Brousseau's theory, we bring a notion of
challenging situation into our model of mathematical giftedness postulating that a gifted
child will show her talent in mathematics only in specific situations when a real question
has been asked and a real problem has been posed.

"Challenging situations" use open-ended problems and mathematical investigations. A
challenging situation initiates the student's action of structuring a problem, and of
searching for links between data and with her previous experience. Since a real challenge
is possible only when the situation is new for the leamner, the challenging situation must
contain a rupture with what the student has previously learned, provoking the student to

reflect on the insufficiency of the past knowledge and construct new means, new
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mechanisms of action adapted to the new conditions, activating her full intellectual
potential. A challenging situation could also provide the student with an opportunity to
face an obstacle of a pure mathematical nature, the so called epistemological obstacle. In
order to overcome it, the student will have to re-organise her mathematical knowledge,
create new links, new structures following laws of logical inference. We claim that
situations satisfying these conditions allow the teacher to identify and nurture
mathematical giftedness among her students.

A challenging situation often presents the child with a problem, which goes above
or beyond the average level of difficulty. The child is encouraged to surpass what is
normally expected of children of her age, thus demonstrating her precocity, which is a
sign of mathematical giftedness.

A challenging situation cannot be created as an isolated learning task. It full
developmental potential can be realised only within a system of teaching based on a
challenging curriculum as a whole. This would allow to create a learning environment in
which every child would be able to demonstrate her highest level of ability.

This is why, using a challenging situation model we are not only able to get gifted
children involved in genuine mathematical activity but also help all children to increase
their intellectual potential.

A challenging situation helps to create a friendly environment in which a child
compete with herself sharing her discoveries with other children and learning from others.
Thus it gives mathematically gifted children who are not high achievers to participate
actively in class and to succeed.

Finally, a challenging situation has another opening for gifted children: they can

always go further, go beyond situations, ask new questions, initiate their own
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investigations, be more creative in their mathematical work. This spontaneous
mathematical reaction feeds back into the learning environment in a positive way and
further enhances its potential for all children. We consider this feature of the approach as
crucial from the point of view of mathematics education for all children.
Our study prompts different teaching approaches in mathematics. The teacher is no
more re-translator of knowledge or instructor of methods of problem solving. In a
challenging situation her role becomes more moderator of discussions, listeners of
student's ideas, student's guide through the discovery.
In helping students go through various obstacles, we shall encourage them to:
» Organise his/her mathematical work
» Reason mathematically
» Control several conditions (verification, adjustment, modification, reorganisation,
awareness of contradictions, validation)
» Choose/develop efficient strategies/tools of problem solving
> Reflect on methods of mathematical work
» Communicate his/her results in a "mathematical” way (oral/written form, use of
symbols, giving valid explanations)
Thus, we will be able to identify gifted children who:
= ask spontaneously questions beyond given mathematical task
® look for patterns and relationships
®  build links and mathematical structures
= search for a key (essential) of the problem
= produce original and deep ideas

= keep a problem situation under control
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® pay attention to the details
* develop efficient strategies
* switch easily from one strategy to another, from one structure to another
* think critically
* persist in achieving goals

At the same time, we will nurture their curiosity, willingness to learn more about
mathematics, provide them with an opportunity to go further in their mathematical
learning, to create new structures, to pose new problems and thus foster the development
of their mathematical abilities.

This approach is very demanding to the teaching. The teacher has to think
constantly about challenging the students, look for different ways to stimulate children's
work, demonstrate a high flexibility, ability to react spontaneously on changing
conditions of the classroom situation, be ready to provoke students and to get provoked by
students asking question which the teacher can not answer immediately.

The understanding of how highly talented children think mathematically would
lead to elaboration of efficient didactical approaches for all students. We shall agree with
following general remark made by Young & Tyre (1992): "If we examine more closely
what it is that makes prodigies, geniuses, gifted people, high achievers, champions and

medallists, we may be better able to increase their number dramatically".
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Fig. Al Marc-Etienne’s (10 ) report on the problem of handshakes.
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Fig. A4b Amelie's (8) method of decomposing 3561 x 14 (continued)
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Fig. A7 Vincent's (8) method of repeated addition
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Dessine toutes les fagons différentes de répartir
S piéces de monnaie dans tes deux mains. Felicia, 5
Trace des petits cercles.

12 OEC. 2001

Fig. A9 Félicia's (5) report on the partition problem
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Fig. A9c Vincent's (5) report on the partition problem
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Fig. A12 Picture of David (5) puzzled with a minimization problem
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