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ABSTRACT
Higher Partial Moment Uncertainty in Portfolio Allocation and Asset Pricing

David Newton

This study considers the influence of relaxing the widely held assumption that investors
operate according to monotonically declining marginal utility as proposed by Beroulli in
1738. The analysis is conducted by examining the assumption change has on the
performance of optimal portfolio theory, the accuracy of the capital asset pricing model
(CAPM), and the magnitude of the equity risk premium puzzle. The data used includes
the Ibbotson monthly frequency series used by Mehra and Prescott (1984) as well as the
CRSP real return series for the SPS00 companies that survived on the index through the
1990’s. Although the study is preliminary, it suggests that investors do indeed behave in a
manner unlike Bemoulli’s solution. The suggested value function of Kahneman and
Tversky (1979) appears to minimize the magnitude of the premium puzzle, produces a
portfolio process that offers significantly positive ex ante return for risk bome and also
allows for the theoretical existence of a two-beta CAPM that better predicts asset returns.
Conclusions indicate that there are both empirical and theoretical failings with the
Bernoulli solution and that further refinement and study of investor utility functions may
result in derived models that are superior both in estimating positive investor behavior

and in prescribing normative investor behavior.
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HIGHER PARTIAL MOMENT UNCERTAINTY IN PORTFOLIO
ALLOCATION AND ASSET PRICING

1. INTRODUCTION

The Bemoulli solution to the St.Petersburg paradox has, for the last century and a
half, laid the foundations for economic theory in the area of investor decision-making
under risk. Despite the wide acceptance of the implied expected utility theory, there have
been valid objections to the use of monotonically declining marginal utility models in
describing individual investor behavior. This thesis attempts to show that replacing
expected utility theory with prospect theory delivers asset pricing models and portfolio
allocation processes that better reflect positive reality. To do this, the mean higher partial
moment, or positive semi-variance, is considered in the derivation and application of the
capital asset pricing model as well as for the optimal return-to-risk portfolio allocation.
This study also considers the influence that this change of assumption has on the equity
risk premium puzzle, and it explores the mathematical behavior of the value function in
contrast to expected utility theory.

To ascertain whether a value function is a better proxy of positive reality, this thesis
examines whether or not statistically significant excess retuns can be eamed by active
investors who follow rules of portfolio allocation that diverge from those prescribed by
the traditional normative mean-variance approach. To explore this possibility an
alternative framework for building the portfolio optimization process is employed. The
alternative framework is derived from a Prospect Theory class of value functions.

Therefore, it is assumed for the purpose of the model that uncertainty, as measured by the



positive semi-deviation above the expectation, is desirable. With regard to negative
semi-deviations below the expectation, the model ascribes an aversion to this portfolio
characteristic. This is similar to semi-variance optimization and the more widely used
minimum variance approaches. The thesis also shows that by splitting risk into two kinds
of uncertainty that investors may engage in limited risk taking behavior while
simultaneously being risk averse. A two-dimensional expansion of both uncertainties in
the small will also provide a theoretical derivation of a two Beta CAPM, which is
empirically explored by other researchers. Finally, the alternative perspective on
uncertainty is used to provide a preliminary study of the risk premium puzzie by
exploring the soundness of this anomaly’s presence.

This thesis finds that the use of prospect theory in place of expected utility theory
does have some statistical advantages in improving return prediction. Specifically, the
two-beta CAPM that is derived from a value function assumption has statistically
superior adjusted coefficients of determination. The ex ante optimization process yields
Sharpe ratios that are statistically greater than zero, which implies a reward for bearing
risk of the conventional measure. Finally, the preliminary study of the equity risk
premium puzzle seems to indicate that the magnitude of the puzzle is greatly diminished
by the introduction of the value function into an asset-pricing framework.

The thesis is organized as follows. The next section provides a historical discussion
of portfolio optimization, which deals with the historical models and assumptions that
comprise the current paradigm of portfolio allocation. The third section reviews the
relevant literature by addressing applications of the conventional framework, and

provides the intuitive and empirical reasoning for a relaxation of some of the early



assumptions. The fourth section develops the inductive models used herein to build an
alternative set of portfolio allocation rules. The fifth section describes the methodology
and data. The sixth and seventh sections present and discuss empirical analyses as to
whether the alternative rule set has merit. Corollary analyses also are conducted in
section eight to examine the support for this framework and also to better specify the
parameters for the modeling process. The final section, section nine, reviews the major
findings of this thesis and their implications for the implementation of portfolio

optimization theory and practice.

2. EVOLUTION OF THE UNDERLYING THEORY

2.1 The Evolution

In 1738, Nicolas Bernoulli asks his cousin, Daniel Bernoulli, for assistance to find a
solution to an intractable problem called the St.Petersburg paradox (Appendix A). Daniel
Bernoulli (hereafter Bernoulli) provides a solution that resembles Cramer’s 1728
(Sommer 1965) solution to the same problem. The seminal insight is that wealth is not
valued by the average individual in a linear sense but rather as a function that depends on
the utility that wealth provides.

Bernoulli’s fundamental assertion is that marginal utility is a monotonically declining
function of wealth bounded on the lower side. This solution does not solve all of the St.
Petersburg Paradoxes as Menger (1936) later notes. Nevertheless, this solution to the
paradox lays the foundation for another famous work, the Theory of Games and

Economic Behaviour. In this book, Von Neumann and Morgenstern create a set of



axioms, logic systems and game theories to provide the skeleton for the quantification of
finance. This work is so compelling and well received that virtually all of the
contemporary economists accept virtually every tenet and implied result within its covers.

Despite the major contributions of these previous works and subsequent refinements,
one cannot ignore some of the evident failings of the assumptions made by these authors.
Though the assumption of a monotonically declining marginal utility function solves
certain problems it gives rise to a host of new concemns. One of these is that uncertainty,
whether of unexpected losses or gains, is always undesirable. The implication is that an
individual with a utility function as described by either Bernoulli or Von Neumann and
Morgenstern will never enter into an actuarially negative gamble. That is, the monotonic
concave function does not allow for investment in gambles that have a non-positive
expected value. This is not only counterintuitive but also if one believes simulated
gambles such as those conducted by Gordon, Paradis and Rorke (1972), a dissonance
exists between economic theory and applied finance.

The assumption that a monotonic concave utility function is realistic allows for the
development of a modern portfolio theory. Stone (1973) shows that all risk measures,
such as VaR, standard/semi-standard deviation, or mean absolute deviation or MAD are
all of the same generalized loss function. Probably due to mathematically simplicity,
standard deviation is used most frequently and is the starting point of Markowitz’s
seminal piece (1952). Markowitz demonstrates that the combined standard deviation of a
portfolio is less than a direct weighted linear combination of the components if any set S

of assets has return distributions not wholly correlated with one another.! He

' Markowitz’s formulation is restated mathematically in section 4.2.



demonstrates that this eliminates idiosyncratic risks, and allows for the selection of the
optimal return/risk portfolio.

Using a Markowitz efficient frontier, Sharpe (1964) formulates a capital asset pricing
model by demonstrating that all investors agree on the optimally efficient portfolio of
risky assets,” and that all other portfolios on the efficient set are obtained by over- or
underweighting this unique portfolio as per the Tobin (1958) separation theorem. This
removes the risk preferences of individual investors from the determination of the
efficient frontier, and re-introduces them when the investor moves away from holding
this “market” portfolio by either lending or borrowing to intersect on their maximum
utility curve. Unfortunately, the LSM CAPM? is plagued by weak estimation power that
may itself result from poorly stated risk aversion and utility assumptions.

What Markowitz and Sharpe may not capture adequately is the positive reality that
individuals seemingly express a taste for risk, even actuarially negative risk. Other
researchers attempt to account for the observed conditional risk proclivity by developing
a theory of gambling effect. Fishburn (1980) develops the axioms for one such theory.
The essential argument of this approach is a function, ¢(p), of the probability distribution
of gamble that maintains Uncertainty and Certainty Equivalence. Under this theory,
individuals have two distinct types of ordering processes, one that governs risk-laden
decisions and another that copes with riskless decisions. One of the value function terms
dependent upon the probability nature of risk accounts for the differential between risky
and riskless opportunities. The value of each type of decision is derived by a different

value function but may be equated for ordinal purposes with the use of an additional

* By efficient we mean highest return per unit of risk absorbed
} Lintner (1965), Sharpe (1964), and Mossin (1966) each develop the equilibrium capital asset pricing
model.



term. Diecidue et al. (2002) restate Fishbumm’s theory more succinctly and express this
formulation as:
W(x)=W(P)-C(x,P) )

W is the preference function of some risk theory such as utility, x is the value of a sure
outcome, P is a risky lottery, and C(x,P) is the certainty preference or the additional term
used to compare risky and risk-free situations. Although this model has two notable
benefits it has a major flaw that limits its use in this study. The two advantages of this
model are that it allows for insurance and gambling and the possibility of a saturation
point. That is, gambling may be desirable up to a limit under this framework. The
Diecidue et al. model is not used here, however, because it is either unintelligible in terms
of calculus or no different than the simple formulation of Bernoulli as will be briefly
shown below. Thus, the model used herein concentrates on an optimal combined asset
that does allow for gambling, unlike the Markowitz framework, but does not have an
explicit limit to the quantity of gambling beyond wealth constraints.

To see the failing of the Diecidue et al. framework one need only consider the limit of
C(x,P). If the limit as P approaches unity converges to a finite non-zero value then a
constant proclivity or aversion of risk exists in all its forms. However, this becomes
untenable if we push P infinitesimally close to unity. While the constant remains, the risk
for all purposes conceivable to the human threshold of perception is non-existent. Thus,
in this case an individual should have a very definite preference between $1 with
certainty and $1 with near absolute certainty.

Alternatively, C(x,P) may collapse to zero or may diverge. In the case where it

collapses to zero as P approaches unity, one is left with the approach of a utility of



expectation and expectation of utility. Bernoulli’s quarter millennium old solution
reappears. If however C(x,P) instead explodes as P approaches unity, two unintuitive
results are possible. If the certainty preference is negative, then the individual will
progressively prefer that gamble over certainty as the probability on the gamble
increases. This individual will seek gambling over certainty, but will prefer gambles
involving near certain outcomes. This may explain a predilection for gaming behavior
but it cannot explain a rational market as no one wishes to hold the riskless securities
under any environment. Alternatively, if the certainty increases then we have an
individual who is less affected by larger risks. While this is similar to Thaler’s (1980)
observation that individuals exhibit decreasing marginal sensitivity to downside risk, it
ultimately comes to the implausible conclusion that an individual will pay any certain
amount to play a highly uncertain game rather than a slightly uncertain game.

Whatever C(x,P) converges or diverges to either makes little intuitive sense or offers
no additional coping mechanism for risk proclivity over the original approach of
Bernoulli. For this reason, the gambling effect framework is not discussed further in this

thesis.

2.1 The Case for Change: Monotonic Utility

As early as Menger (1936), it was apparent that Bemnoulli’s solution to the
St.Petersburg paradox, and by corollary the implied concave utility function, was suspect.
Menger noted that the Bermnoulli solution does not apply since some combination of
payoffs could be found such that their expectations were infinite, and hence expected

utility also would be infinite. That is, if one adjusts the rules of the St. Petersburg game,



one can find other situations that result in an infinite price expectation from playing the
game. Menger suggested that the utility function has to be bounded on the upper side to
deal with this problem. The difficulty with Menger’s solution is that it is as non-intuitive
as the problem that gave rise to the paradox in the first place. The institution of an upper
bound on the utility function implies that there is some value for which an incremental
dollar change bears no increase in utility. Though one might not have much use for the
next marginal trillion dollars once one already owns a hundred trillion, it is difficult to
conceive of an individual that does not prefer an endowment of $101 trillion versus $100
trillion. Though Menger’s criticism of the solution of Cramer is valid, his own solution is
not a substantial improvement.

Despite the problems associated with Bernoulli’s solution it did allow Von Neumann
and Morgenstern (1943) to produce basic game theory and, more salient to this thesis, lay
out a set of axioms to quantify economic utility. Von Neumann and Morgenstern show
that numerical assignment of value is not necessarily contrary to observed reality and
offer the essential rules of transitivity and addition necessary for risky proposition
ranking. The authors demonstrate that a broad family of ordinal utility functions can be
used in riskless situation ranking without excluding the use of cardinal ranking for risk
situations. The authors do not develop empirical support for this claim but Friedman and
Savage (1948) offer such evidence from surveys. Though the Friedman and Savage
model of utility is appealing, as it allows for a coexistent proclivity for lotteries and
seeking of insurance, it fails the test of rational behavior. This is illustrated by examining

the solution proposed by Friedman and Savage as depicted in Figure 1.



Markowitz (1952) shows that the inflected utility functions proposed by Friedman
and Savage suffer from the malaise of implying improbable investor behavior. In the
case above, if C is the midpoint wealth endowment between points A and B, then two
investors would be indifferent to playing a game in which they may rise to B or fall to A.
This disagrees with usual expectations as one does not see average wealth individuals
indifferent to taking on large symmetric gambles. Individuals near B, the *“almost
wealthy”, would be eager to play games with high probability of a small gain and bearing
the low probability of a massive loss. Such an individual would aggressively seek the
opportunity to underwrite insurance even with the expectation of a loss. Therefore,
Markowitz shows that a greater than order one utility curve limited to a single axis will
result in improbable investor behavior at some points along the endowment.

Allais (1953) reduces the problems Markowitz describes by suggesting probability
estimates are not objectively derived in decision-making. Allais demonstrates that
Bemoulli’s formulation may be normatively rational but does in no way reflect the
intuitive behavior of the average individual. He proposes that humans view risk
subjectively, based upon their degree of optimism or pessimism. An individual
optimistic by nature would be inclined to overestimate the probability of a gain and
therefore overvalue the opportunity to play an actuarially fair gamble. Counterpoise, the
pessimist would undervalue such an opportunity by over weighting the probability of a
loss. This allows for the benefits of the Friedman and Savage utility formulation,
permitting both simultaneous risk aversion and risk loving, without the problem of

improbable behavior.



Prospect theory, formulated by Kahneman and Tversky (1979), is a further
development in the use of subjective probabilities that were proposed by Allais. The
basic tenets of Prospect theory are that individuals view gains and losses not simply as
mirror equivalents of each other (e.g., a gain is not a negative loss) but as entirely
different sorts of experiences. The Prospect theory value function also differs from
expected utility theory in that there is a context dependent reference point. Markowitz
(1952) suggested this reference point in his criticism of the Friedman and Savage
inflected utility function. Kahneman and Tversky conduct numerous surveys and find a
general pattern that individuals suffer greater “aggravation™ from a loss than foregoing an
equal value opportunity. The implied utility curve from the data provides an empirical
function that appears bent about a zero reference value, as is illustrated in Figure 2.

Thaler (1985) conducts additional surveys and finds much the same results, both
within the general student population and amongst MBA students which have some
economic education. Grether and Plott (1979) conduct tightly controlled studies with
political science and economic students in an attempt to discredit earlier works by
psychologists (Slovic and Lichtenstein 1971) that are at odds with preference theory. The
authors suppose that poorly controlled test environments may cause the violation of the
rules of stochastic transitivity, known as the preference reversal anomaly. Instead these
authors find that they can not reject the theory that individuals assess risk according to a
contextual reference point as would be consistent with a value function. Thaler (1991)
also provides extensive literature on the subject but as it will not add substantial value to
the development of this thesis, the reader is directed to Thaler’s Quasi-Rational

Economics (1991) for a more detailed discussion of this topic.
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Both Allais’ insight and Prospect theory itself rely upon the assumption that objective
probabilities are replaced by subjective decision weights. This allows for events of
extremely unlikely nature to be more heavily weighted in the decision process of the
individual when considering risk. The proposed decision weight function offered by
Kahneman and Tversky is of a form as is illustrated in Figure 3.

Although there are similarities between the work of Allais and Prospect theory, one
notable difference is that the latter theory allows for the reference point to be shifted
depending on the individuals’ expectations. This permits additional ‘irrational’ behaviors
to be explained. Examples include some special cases of the Endowment effect. The
effect itself states than an individual will tend to ascribe a higher value to an
object/prospect already in possession versus the value ascribed to the opportunity to gain
that object/prospect. The tendency is to create seemingly irrational behavior as is
illustrated in Appendix B. Although Allais’ formulation could cope with the endowment
effect, it could not contend with such issues as lost opportunities being treated as losses.
A brief example to illustrate this point is an employee who suffers a substantial loss in
utility when an upcoming bonus is to be taxed at a rate higher than originally anticipated.
The endowment of the bonus was not yet in hand and so a tax increase should be
interpreted as a foregone gain under Allais’ model. However, Prospect theory allows that
the reference point may have already ‘priced’ the bonus into the income and any
reduction in that bonus will now be interpreted as a loss to an otherwise guaranteed
endowment. In the aggregate this may contribute to the fact that salaries tend to be sticky
on the upside as a loss of an expected raise can lead to significant reduction in employee

morale.
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2.2 Derived Theories of Monotonic Utility

While economists argue about the basis of decision making under risk, a large body
of financial theory has been developed that implicitly assumes the debate is resolved.
Two of the most widely used theories that rest upon the concept of monotonically
declining marginal utility are the Mean Variance asset allocation procedure and the
Capital Asset Pricing Model or CAPM. In both instances, there have been issues not
only of application and intermittent empirical support for the theories but also concerns
about the implied results if the theory were to hold. This section addresses some of the
matters conceming the CAPM so as to lay the foundation for further analysis of the
CAPM later in the thesis.

Studies by Fama and French (1992), for example, find that the CAPM has little
capacity in estimating returns. This is especially true when other factors are controlled
for such as firm size and book to market value ratios. Ross and Roll (1994) argue that the
inefficacy is caused by the selection of an inefficient market portfolio resulting in other
variables having explanatory power. This argument has validity but still assumes that the
efficient portfolio can be found using a minimum variance approach. Other researchers
have offered alternative reasons why the CAPM may not be effective in predicting
returns (Kothari, Shanken, Sloan, 1995). Given that so many studies rest upon the
implied risk premium from the CAPM, it is important to improve upon this model.
Yamaguchi (1994) offers some advice on how to estimate the equity risk premium using
downside probabilities in recognition of the aforementioned need but does not offer any

theoretical validation for his suggested approach.
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Other empirical work, such as that by Bhardwaj and Brooks (1993), find that a Dual
Beta CAPM can provide substantially improved return estimates. Pettengill, Sundaram
and Mathur (1995) also find that a one parameter Beta, conditioned on up and down
markets, can enhance estimation accuracy. Some studies such as Howton and Peterson
(1998) re-examine old anomalies like the January and size effects with a dual-beta model
and find that the CAPM under this formulation re-absorbs much of the explanatory power
of the variables used in the Fama and French studies (1992, 1996). Nevertheless, there
remains some dispute as to whether a conditional single factor or two factor Beta model
is more appropriate (Pettengill et al. 2002). The argument against the two-beta model is
not particularly strong as it cites the adequacy of the single factor model in estimation as
support for its adoption. Given the ease of developing a dual beta model once the
monotonically declining marginal utility assumption is discarded, as shown in section
5.3, we tend to support the Bhardwaj and Brooks approach over that of Pettengill et al. In
summary, there is a need for producing more reliable return estimates, and the dual beta
model has empirically been shown to produce those estimates. In turn, the model can be
developed theoretically once Bernoulli’s arguable economic assumptions are replaced.

In review, the CAPM is an important development in financial theory with numerous
studies relying on the concepts it puts forward. However, the empirical evidence seems
to suggest that there may be some weakness with the theory in its present state. What
should be considered though before dismissing the theory or holding the collection of
accurate data at fault is that the broad ideas of CAPM could be valid but are undermined

by risk metric assumptions. This thesis now considers the efforts of some researchers to
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handle the larger problems of risk specification before retuming to a deeper analysis of
the CAPM.

The issues with the CAPM also reflect upon the Risk Premium puzzle. Mehra and
Prescott (1985) find that the magnitude of relative risk aversion required to generate the
observed risk premium over the past decades would need to be a value in the order of ten
to thirty. The implication is that the average U.S. investor has to be so averse to a gamble
of losing half their wealth they would be willing to forfeit as much as forty-nine percent
of that wealth to avoid the game. *

Recognizing this non-intuitive implication, various researchers attempt to reduce the
magnitude of the equity premium. Constantinides (1990) uses a habit formation process
to reduce the size of the equity premium puzzle. By relaxing Mehra and Prescotts’
(1985) assumption of time separable utility, Constantinides finds that a subsistence
consumption rate of about eighty percent of the most recent consumption can explain the
equity premium observed by Mehra and Prescott. Brown, Goetzmann and Ross (1995)
show how survival as well as mean reversion may increase the empirically observed
premium. They find that for any series with a strictly positive survival probability, the
unconditional premium will be smaller than the conditional premium. The interpretation
is that a survivorship bias will in fact produce an upward bias in the reported equity
premium, and therefore create the puzzle. Basak and Cuoco (1998) propose a pure
exchange model with investing agents being restricted by barriers such as transaction or
information costs. They find that with such restrictions on participants, an RRA of 1.3

can explain the historically observed equity premium.

* This is based on aggregate data.
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Thaler and Siegel (1997) review additional efforts by the research community to
reduce or eliminate the premium puzzie. They call attention to the Siegel study (1992)
that extends the period of the analysis of Mehra and Prescott to determine if the premium
puzzle is of the same magnitude in earlier history. Not only does the study find that the
puzzle did exist prior to 1925 but that if one compares the volatility of fixed income and
equities, the former exhibits mean aversion while the latter exhibits mean reversion. The
result is that risk by the conventional metric measure is actually higher on longer
horizons for fixed income than it is for equity, which only exacerbates the puzzle.

The summary of Thaler and Siegel also covers the work of Reitz (1988), who
suggests that survivorship bias may be at the root of the puzzle. The argument is that
historically observed risk measures are not illustrative of the expected risk ex ante for
each period. Reitz suggests that the closing of indices, exchanges and rampant
bankruptcies would account for risk of equity investing not evident in a simple standard
deviation. Hirose and Tso (1995) point out the difficulty with the argument of Reitz.
Hirose and Tso examine the performance of fixed income and equity investors during
periods of financial turmoil. Concentrating on Japan and Germany post World War Two,
the authors find that bondholders suffered a worse fate than equity holders. They
conclude that the most extreme financial holocausts actually have more impact on
bondholders by totally wiping them out due to hyperinflation or wealth confiscation.

Although numerous authors find means by which to reduce the size of the premium,
there is still no general consensus on which solution is most plausible. This author
interprets such a theoretical vacuum to indicate the need to re-examine the assumptions

that imply the existence of the puzzle. The foundation of the equity premium puzzle, the
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single term absolute risk aversion measure developed by Pratt (1964), is itself reliant on
Bemoulli’s utility curve. In relaxing Bernoulli’s assumption of monotonic risk aversion,
already shown to be flawed both theoretically by Menger (1936) and empirically by
Kahneman and Tversky (1979), the need for habit formation, agent restrictions or
conditional survival may not be necessary to explain the puzzle for the puzzle may have
disappeared. This thesis provides a development of an alternative uncertainty measure in
the small, which mirrors the efforts of Pratt and offers an opportunity to analyze the

premium in a way implied by Yamaguchi.

3. MODIFIED THEORIES AND INTUITION
3.1 Mean Lower Partial Moment and Higher Moment CAPM

Various authors attempt to modify either existing theories of the CAPM or portfolio
theory or offer alternative means of approaching the problem of risk under uncertainty in
hopes of mitigating the observed empirical anomalies. In one effort to stream-line the
theory of risk, Stone (1973) formulates a three parameter risk measure showing variance,
semi-variance, mean absolute variance and VaR all to be special cases of a larger ‘loss

function’. The definition he provides is given as:

4 k
LW, k,A) = [W -W,| dFOW), k=20 )

W is future wealth, a stochastic variable, F(W) is the cumulative probability
distribution for W, and W is the reference level of wealth from which deviations are
measured. k is the degree of impact small or large deviations from the reference level
have upon the risk metric value. The interested reader is referred to the Stone article for

the Lemmas equating the three-parameter loss function to the aforementioned risk
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metrics. Nevertheless, the equation in its analogous form to the metric suggested here is

given by:
4 n

L(W,.k, g, 4,@) = [[W ~W,|'dFW)-a[lW -W,|"dF(W), k.g 20 3)
-xm 4

The difference of this formulation from that given in Stone is that for almost all
purposes A is equal to the reference wealth level, acting to discern losses from gains, and
that the second term of the equation allows for the positive pricing of ‘upside
uncertainty’. In (3), a is a ratio that describes the degree to which upside and downside
uncertainties are proportionally valued. An a greater than one indicates a relatively
higher individual investor sensitivity to upside uncertainty than downside. The powers k
and g determine the curvature of the expanded loss function with regard to downside and
upside uncertainty, respectively. For k or g greater than one the individual investor treats
the particular uncertainty in a convex fashion. If k, g and a are all equal to one, then the
investor is effectively risk neutral.

Like the three parameter function, it can be shown that this function is equal to any of
the risk metrics listed earlier. Furthermore, it has greater flexibility as it allows for the
inclusion of a new risk metric that accounts for the higher partial moment as being
desirable. This agrees with Prospect Theory, and so can sidestep the matter of a
monotonically concave utility function.

In terms of portfolio theory development, Markowitz (1952) suggests optimizing
according to semi-variance rather than variance but does not do so because of the then
prevailing mathematical and computational difficulties of doing so. Hogan and Warren

(1974) recognize this shortcoming and move towards developing a semi-variance CAPM.
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The rationalization is that it allows investors to ‘exhibit conservatism toward losses’
while remaining ‘aggressive toward returns’. The optimal portfolio is found by the

operation:

SStd 1yoiio ) @

min
( E(R,. i, ) — Benchmark

E(R)) is the expected return of the portfolio, t is the period, and Benchmark is a minimum
expected return for the portfolio. So to remain consistent with the Sharpe ratio used in
the minimum variance approach, the Benchmark is taken herein as the risk free rate. The

semi-standard deviation (SStd) is given by:

SSid 0 = \/ZN: min(O, R, — E(R))) (5)
=0

Although this derivation is similar to the model provided in this thesis, two
differences do exist. First, since this model relies on a single co-semi-variance, it has but
one risk measure,’ whereas the model developed later in the thesis incorporates a second
uncertainty term. Secondly, this formulation assumes that the reference point or
benchmark is the expected return from historical observations. The model described later
is more general in that it may be set to this expectation. To match the behavior of
Kahneman and Tversky’s value function (1979), the reference point is set to zero to
segregate losses from gains.

Numerous other studies also examine the suitability and reliability of Semi-Variance

as the measure of risk. Mao (1970) compares the use of semi-variance to variance in

5 The terms downside risk, downside semi-variance and LPM or lower partial moment are used
synonymously from this point on.
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capital budgeting decisions. The emphasis of this study is on normative project selection
rules. However, Mao also queries the executives of three forestry companies as to their
investment preferences to lend support for the use of semi-variance. He finds a near
identical image of the Prospect Theory value function in all three cases. If one puts
confidence in this study, then it seems that individuals consider risk, whether in the form
of portfolio or project decisions, with the use of a value function similar to that described
by Kahneman and Tversky.

Porter (1974) also gives theoretical justification to the use of semi-variance over
variance for the purpose of asset pricing. Although Porter does not conduct an empirical
study,® he shows that semi-variance decision criterion may be much more general in form
and still yield stochastically dominant decisions. Specifically, he shows that for all
distributions excluding those with identical mean and lower partial moments, the LPM
method of decision-making yields the stochastically dominant result. Moreover, the
theory suggests a natural preference for skewness, as is later supported by Harlow and
Rao (1989). Efficient Variance measures by contrast can produce confused and
conflicting results that are at odds with the more theoretically pleasing rules of stochastic
dominance.

The semi-variance CAPM has not yet demonstrated itself as being definitely superior
in Asset Pricing compared to the traditional CAPM. Jahankhani (1976) tests the efficacy
of the two mode!s with the use of portfolios formed from the CRSP files. The testing

procedure is similar to that of Fama and MacBeth (1973) and uses portfolios to eliminate

% It should be noted that Ruszczynski and Vanderbei (2002) also demonstrate the same relation between
semi-variance and stochastic dominance, and also offer a self-dual simplex method of determining an
efficient frontier of non-stochastically dominated portfolios at a much improved computation time over
conventional approaches.
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biased errors proclaimed to be present in individual securities. Jahankhani finds that for
both models there is a linear relation between the estimated betas and return, and that beta
is the only contributor to return. However, both models fai! to find that the slope is equal
to the expected risk premium or that the intercept passes through the risk free rate. Given
the mystery of the Premium puzzle this is not a surprising discovery but does underscore
the inability of EV or ES CAPM to robustly predict asset prices.

Nantell and Price (1979) and Natell, Price and Price (1982) find that the ES CAPM
does have some power. The former authors develop a simple test of the work of Hogan
and Warren and find that under the assumption of bivariate normal retums, equilibrium
rates of return are unaffected by the selection of semi-variance or variance as the risk
measure. In the latter study, the authors examine the consideration of non-normal returns
and find that the ES CAPM is statistically distinguishable from the EV CAPM, and
superior in predicting returns, so long as the market and security distributions are not
strongly negatively skewed. However, there is a problem with this discovery. The
degree of risk absorbed or beta is not always significant in determining returns for either
model that weakens the argument that ES CAPM is efficient. Despite this, the ES CAPM
does imply a lower risk free rate and higher risk premium than the traditional EV CAPM.
The implication is that the ES CAPM would better fit the Premium Puzzle observations
than the traditional CAPM and may be worthy of consideration when studying that
anomaly.

Later studies by Harlow and Rao (1989) investigate more generally the Mean Lower
Partial Moment CAPM (MLPM) and find that the traditionally derived CAPM is rejected

as a well-specified model of asset returns. Interestingly, this study finds that the target
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rate of return that allows the LPM to best fit the data is not the risk free rate as would be
analogous to EV CAPM but rather the implicit expected return derived from historical
observations. This concurs with expectations if one develops a modified CAPM from the
starting position of Prospect Theory. Individuals utilize a self-determined reference point
for distinguishing gains and losses. While Rao and Harlow only consider losses with the
use of the LPM, it is plausible that investors use the recent average historical return of
risky securities as a benchmark for distinguishing a gain from a loss.

Rather than trying to find a family of interrelated risk functions or modifying the
CAPM to better reflect positive reality, other researchers advocate the use of higher
moments in risk analysis. Alderfer and Bierman (1970) suggest using the third moment
and skewness (derived from the third moment) in addition to variance. They point out
that Pruitt and Coombs (1967) find individual investor preference for skewness when
variance is held constant. The authors conduct surveys of three groups; namely, doctoral
students and professors, a group of cost-accounting students and the third group of
corporate executives. In all three groups they find a willingness to suffer a lower
expected mean and higher variance in exchange for a higher skewness. This response
was somewhat muted in the group of executives, where they found that a small section of
executives (14%) were willing to take gambles with a high chance of a small gain and a
low chance of a large loss. Although the group was not representative of the norm, their
behavior is in agreement with the proposed Friedman and Savage utility function (1948)
that Markowitz criticized. This thesis is in agreement with Markowitz on this matter but
does recognize that perhaps a small percentage of the population has a value function not

well characterized by the norm. Regardless, Alderfer and Bierman report empirical
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evidence that variance and mean are not sufficient alone to make an accurate model of
investor risk decisions.

Further study by Golec and Tamarkin (1998) seem to confer support to the conclusion
of Alderfer and Bierman. Golec and Tamarkin examine the nature of risk taking at horse
tracks where previous researchers have concluded that bettors are risk loving since their
observed behavior includes a willingness to absorb greater variance with less expected
returns. The authors note however that this does not necessarily imply that the bettors are
in fact risk loving if one considers the risk taking choice with a higher moment model.
The most obvious difficulty with assuming risk loving is that a risk lover would not bet
on more than one horse. Yet, various forms of diversification such as “boxing™ or
“wheeling” are prevalent. The authors suggest that such bettors may in fact be risk
averse in terms of variance but favor positive skewness.

In addition to Golec and Tamarkin (1998), Kane (1982) finds individual investor
preference for the third moment of asset returns. There is still difficulty in utilizing these
findings effectively in application. Lee, Moy and Lee (1996) test a three moment CAPM

model proposed by Kraus and Litzenberger (1976). The model is expressed as:

E(R)-R, = [( df;”’ }, ]ﬂ.— +[( "f,f,‘”’ Jm, ]7.- ©)

E(R;) is the expected retumn on asset i, R¢ is the risk free rate, w denotes wealth and o,,

m,, Om my, are the second and third moments about end of period wealth and the second
and third moments about mean market return, respectively. B; and y; are the systematic

and co-skewness risk pricing factors.
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Testing a period from 1946 to 1985 from the CRSP files, Lee, Moy and Lee (1996)
do find that the model statistically and significantly prices co-skewness and covariance
risk. However, they also reveal that it does not describe expected returns well. This does
not support the supposition of Klaus and Litzenberger that the risk of a security is simply
the weighted average of co-skewness and covariance. Lee et al. conclude “the three-
moment CAPM does not describe the pricing behavior of risky assets”.

While the evidence suggests that skewness does play some role in pricing of assets,
the theoretical formulation fails to properly describe the relation of skewness in that
pricing process. We argue that skewness as a measure is in most instances positively
correlated with the positive risk metric of the Prospect Theory curve. Perhaps the survey
results confirming a preference for skewness under certain circumstances are in fact
confirming a decision process similar to Prospect Theory. The fact that weighted co-
skewness does not well describe the risk of a security may be because skewness is simply
a proxy for another underlying measure of risk not yet fully articulated.

In the next section of this thesis, we provide an intuitive argument for change before

giving a formulation of a modified method for risk measurement.

3.2 Consideration of Multifactor Model of Uncertainty

One might question why such metrics should be used rather than applying higher
moments. When using a finite term Taylor approximation, higher moment models often
result in ambiguous decisions under uncertainty. This is best illustrated by an old fable of

the mathematician who believed an average by itself was an adequate description of a
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process and drowned in a stream with an average depth of two inches (Elton and Gruber,
1987, p.16). This story could be taken one step further, as illustrated in table 1.

If one takes our non-swimming mathematician who stands 6’1" tall, and asks which
pool of uncertainty he would prefer to be thrown into even models including up to the
third moment would state pool two because it has less average depth, less variance and
identical skew. This example illustrates the failure of a higher moment model to provide
a sensible decision. The example is also valuable in providing a concrete analog as to
why individual investors should eventually become insensitive to marginal increases in
downside uncertainty. The additional depth of the pool yields no negative impact to the
swimmer. However, unlike ‘going for broke’, there is no externality on a third-party. The
individual swimmer is simply attempting to select the highest probability of survival, and
not attempting to maximize an expected outcome.

However, the purpose of this study is not to detail the failings of higher moment
models. Instead, this initial purview was conducted only to demonstrate why higher
moment models are not considered further in this thesis. The main objective of this work
is to examine whether the assumption that individuals behave according to Prospect
theory, in place of expected utility theory, improves the efficacy of derived asset pricing
models in describing positive reality. It is then prudent that the two functions of
individual preferences under uncertainty be contrasted.

As both expected utility theory and the value function of prospect theory have infinite
sized families of parameter choices, this study just analyzes some of the most commonly
used values and then generalizes to the broader set of functions. In particular, the square

root power function is used when analyzing utility theory, while the parameters for the
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value function are the square root for losses and 0.4 for gains. These values are selected
to fall between zero and one so as to create the convexity and concavity of losses and
gains as per Thaler’s (1980) value function. The power modifying the gains term is taken
to be less than that for the losses term so that the individual, though possessing a love of
upside uncertainty,” has a behavior that is slightly more dominated by the fear of losses.
For purposes of contrasting these two functions, these parameter selections suggest that
individuals are either risk averse (expected utility theory) or tend to the side of caution
(prospect theory), though one could just as easily model risk loving or higher uncertainty
proclivity.

For simplicity, the comparison assumes a binomial gamble with a high and a low
state. The probability of the high and low states varies to illustrate the predilection for
upside uncertainty when individuals behave according to the value function. The context
dependent reference point of the value function is the probability weighted expectation.
Any outcome that exceeds the expectation is assessed as a gain while any point below the
expectation is assessed as a loss. In contrast, expected utility theory has a preset
endowment, and perceives gambles as adjustments to the endowment.

The first example to contrast the difference in behavior between the two theories
creates a scenario of a home worth $100,000 that faces the potential of flood damages
that would reduce its value by $10,000. There are only two outcomes so that the
probability of an outcome categorized as a loss is mutually exclusive to a gain, and
combined they are exhaustive of all outcomes. The comparison is captured by the
insurance premium that the hypothetical individual investor would be willing to pay so to

avoid the gamble. If premium values are greater than zero this indicates a purchase of

? Upside uncertainty will also be referred to as MHPM (the mean higher partial moment).
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insurance, whereas a negative value indicates that the individual would pay to take on a
game of chance. This is obviously at odds with the classic tenets of rationality that state
that an individual prefers a risk free gain over a risky one. Where the selected value
function diverges is that it implies that individuals have some love of gambling itself.
Under certain conditions, penchant for games of chance will be of sufficient magnitude to
prompt investment in actuarially negative assets.

Such a form of individual decision-making under risk should not be dismissed
outright since the function’s implied behavior may be more consistent with reality.
Games such as state lotteries, casino slot machines and even board games or games of
sport all indicate that pleasure is derived by being put into specific uncertain situations.
Under expected utility theory, one needs to argue that lottery tickets are somehow a
consumption good to be enjoyed. This is consistent with the formulation of the certainty
preference proposed by Diecidue et al. (2002) but, as was shown earlier, this model
design suffers from numerous theoretical shortcomings. Thus, if individuals behave
according to expected utility theory, why have bank machines not replaced lottery ticket
dispensers. In the former case one can get a slip of paper with numbers on it, and by
depositing a few dollars can enjoy a risk free gain equivalent to their savings account
rate. In contrast, the lottery ticket is a slip of paper with numbers on it that assures no
such gain, and moreover is extremely actuarially negative. The same argument can be
raised of board games dependent on the roll of dice. It must be noted that such games do
offer a chance to socialize so there may be utility in human interaction. If such were the
case then why would such games exist on a computer? Playing such games on a

computer offers no chance to socialize. If, alternatively, the utility of the game comes
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from winning the individual could presumably just cheat so to win constantly. Of course,
the anecdotal retort to this later action is ‘there is no sport in it’. Whether or not it is
advisable, or rational in the classical sense, individuals do exhibit risk proclivity.

Figure 4 depicts the risk premium for the two specified functions as a probability of a
gain. As can be seen from the curve of the function for the expected utility theory, an
individual is willing to pay the highest premium when the probability of the high state is
equal to the probability of a low state. The variance of the payofT is highest at this point.
Under the formulation of the value function, the individual is initially unwilling to pay
any insurance premium when the probability of a loss is near certain. As the likelihood
of a loss decreases, the individual is initially willing to pay a larger premium to avoid the
gamble and to accept a certain sized loss equivalent to the premium. However, at some
point, the premium declines and eventually the individual is indifferent to insuring
against the loss or not. At that point, they are not willing to pay a premium for insurance
and are effectively risk neutral. Near a high chance of a gain, the individual now exhibits
active upside uncertainty proclivity and actually enjoys the gamble although it is
actuarially negative. In other words, such individuals are willing to pay to maintain the
gamble and need to be compensated to take insurance.

It may be of interest to examine how an individual that behaves according to the
value function may price a gamble that only has a positive or negative payoff. The
St.Petersburg paradox is well suited to answer this question. Figure 5 depicts the prices
that each of two types of investors would be willing to pay for the game. As was shown
by Bernoulli, the expected utility function with the parameter of a square root reaches an

asymptotic value of $1 when the flips of the coin approach infinity. Similarly, the value
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function also achieves an asymptote but at a higher price of $3.76. Both prices are of
course dependent upon the parameters selected. An increase in the expected utility power
term increases the finite price to a limit where if the power is equal or greater to one the
price paid for the game explodes (the individual is risk neutral or risk loving). Similarly,
if the power of the gains term in the value function increases to one or beyond, then the
price paid also explodes. If the power on the loss term in the value function increases,
the prices decline. If the power on the loss term in the value function decreases, the price
increases to a limit determined by the power on the gains term. In either model, the
St.Petersburg paradox can be resolved to a desired finite price simply by selecting the
appropriate parameter set.

In exploring the two types of functions, the nature of insurance behavior and the price
offered to play a purely positive outcome game have been considered. Since this thesis is
interested in whether or not prospect theory can derive asset pricing models and
allocation processes that better reflect positive reality, we have greater interest in how the
use of the value function might affect the risky investment choices of individuals. Two
assets are considered for this analysis. One is free of risk and pays an assured amount.
The other asset pays the same amount as the risk free asset in the high state and pays
nothing in the low state. If investors behave according to expected utility theory, then
they should not be willing to invest any proportion of their portfolio into the risky asset
except for points of assured gain. Doing otherwise would only serve to reduce expected
return, and will always increase the overall risk of the portfolio. At the point that the
risky asset is assured the high state, the risky asset is effectively identical to the risk free

asset. At that point, the investor acting under utility theory is identically indifferent
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between assets one and two. In contrast, the individual behaving according to the value
function prescribed above will invest some proportion of the portfolio at risk as the
probability of the gain increases. While this reduces expected returns, it increases the
value perceived by the investor. Figure 6 illustrates the optimal proportion put at risk as
the probability of a high state varies. The amount at risk initially increases, is then
subject to the constraint of no short sales, and then declines as the chance of the high state
nears certainty. The decline in the amount put at risk no longer offers as much upside

risk. Instead, the amount at risk approaches the characteristics of a risk free asset.

4. MODEL DEVELOPMENT
4.1 Continuous MacLaurin Approximation

Pratt’s (1964) expansion of the risk premium in the small makes uses of an N-term
Taylor Polynomial expansion. Using the identity that the expectation of the utility should
equate, after some modifier, to the utility of the expectation, Pratt identifies the modifier
known as the Risk Premium. This approach however implicitly assumes that the utility
function is continuous about the point of initial wealth to a range of wealth plus, and
minus, the Risk Premium n. This is expressed as:

EUw)) =U(E(w)-7) )

For all concave functions &t will be greater than zero. However, this approach is very
sensitive to the assumption that utility functions are monotonically increasing in wealth.
If this assumption is violated, the &t can vary enormously simply by subtle adjustments in
the distribution of w. For example, if one considers the suggested Value function by

Thaler (1980), it is readily apparent that if the function is not symmetrical about axes x
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and y sequentially, that the Premia will vary considerably by tiny shifts in the nature of
the gamble, as depicted in Figure 7.

Moreover, if the actual utility curve is discontinuous about any point on the range {w-
n, w+n], then the Taylor Series expansion is not mathematically valid. There may very
well exist a discontinuity precisely at x, the initial wealth. This approach suggests that
individuals consider changes of utility when ranking outcomes rather than alternative
states of utility.®

Even in the event that there are no discontinuities in the range, the accuracy of a
Taylor approximation suffers when the number of terms used is small. Pratt (1964)
assumes that three terms are sufficient to describe individual risk preferences. However,
this runs contrary to recent findings by Golec and Tamarkin (1998) that higher moments
such as distribution skewness do indeed matter to individual investors’ preference
choices. Even if a greater number of moments are taken for the approximation,
difficulties may remain if the function is highly irregular about w.

The alternative framework conforms to Thaler’s observations (1985) that gains and
losses are viewed independently. Furthermore, the framework considers relative rather
than absolute positioning. Instead of w being initial wealth, initial wealth change is
defined at the point zero, consistent with the value function. Alternatively, the initial
point might be expectations of a minimum return, such as a risk free rate, with returns
above which are considered gains, while those below are considered losses. Therefore,
the value function V(w) can be described as a composite of two lesser functions, the gain

function, G(x) and the loss function, L(y). In these functions, x is defined as w>cutoff,

% Same contention as in Allais (1953).
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normally zero although a risk free rate might be used, and y will be defined as w<cutoff.
The cutoff is the reference point from which the individual ranks outcomes. The terms
ao and a, are linear multipliers. If the power terms of G(x) and L(y) are equal to one,
then the individual is effectively risk neutral. The alpha terms in such a case would be
the rate of value acquired (lost) per marginal unit of gain (loss). If ap = a,, then the
individual would behave in this case identically to the risk neutral investor under
expected utility theory. This value function is given as:
V(x,y)=a,G(x)+a,L(y) ®)

The point at which the individual is now indifferent between the gamble and the
certainty equivalent is no longer a function of =, but rather relies on two distinct ‘premia’.
Formally, the equations to be solved are now given by:

EV(x,¥) =V(E(x,y)) %)

Using a Taylor approximation about zero in two dimensions, x (gains) and y (losses),

the approximate polynomial P, is given by:’

n m l ) . X oy
P(x,y)= ZZmDD 'V (a,b)(x-a)’ (y - b) (10)

In (10), a and b are the initial points of y and x. However, as this is a value function, the
initial values of gains and losses are by definition zero, or a=b=0.
Dy denotes the derivative of V(x,y) with respect to the first vanable, gains, while

D,™ denotes the m™ -j™® derivative V(x,y) with respect to losses, the second variable.

% Note that the alpha terms are dropped from the derivation to avoid unnecessary clutter. As linear
multipliers, they have no impact on the derivatives and so can be added as necessary once the derivation is
complete. However, it is assumed that losses are unpleasant and so the multiplier in front of L(y) would in
effect be -1. So long as the order of L(.) and G(.) are between 0 and 1, and the loss multiplier is -1, the
MacLaurin expansion produces a curve that is convex for losses and concave for gains as per the value
function.
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However, as the variables x (gains) and y (losses) are wholly independent, the only time
at which a term is non-zero is when j=0 for y not equal to zero, or when m-j=0 for x not
equal to zero. As a result, the polynomial is simply the composite of two MacLaurin

series of x and y. This allows for the simplification of the equality to the series of

equations:
E(G(x))+ E(L(¥)) = G(E(x)-y)+ L(E(y) - &) )
E(G(x)) = G(E(x)-7) (12)
E(L(y)) = L(E(y)-¢) (13)

Now, introduce a random variable Z, which represents the gamble an individual may
opt to take. The heuristic for the decision process is to take the gamble if:
E(G(x))+ E(L(y)) > G(E(x)) + L(E(y)) (14)
Any stochastic variable may be decomposed into two other independent stochastic
variables. Thus, Z is split into p and A, where p represents the negative outcomes (i.c.,
those less than zero or the selected cutoff), and A represents the positive outcomes or
gains. That s,
Z=p+1 (15)
Since the expected values of x and y are zero in the absence of a gamble, the
expectation of the change is identical to the expectation of the gains or losses on the
gamble, respectively. Equations 16 & 17 are now equal to:
E(G(A)) = G(E(X)-y) : (16)
E(L(P)) = L(E(P)-¢) an

Taking the separate MacLaurin approximations of equation (16) the L.H.S. is:
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\ A i’
E(G(1)) = E{G(0) + 1G'(0) +

G"(0)+ d= E{G(O)+}.G'(O)+—G"(O)} (18)

E(l )

= E{G(0)} + E(D)G(0)+ =22 G"(0) (19)

As E{G(0)}=0, then the L.H.S. reduces to:

E(1)G'(0) + 1 E(1*)G"(0) (20)
Expanding the R.H.S. produces:

G(E(1)-7) =G(0)+G'(O(E(X) -7) +...= G(0) + G'(O)E(L) - G'(0)y (21)

However, since G(0)=0, the R.H.S. reduces to:

G'(0)E(1) - G'(O)y 22)
Equating the L.H.S. to the R.H.S. gives:

E(A)G'(0) + L E(1*)G"(0) = G'(0)E(X) - G'(O)y (23)
Canceling terms and isolating y yields:

=1 N (O)
y=-31E )G,(O) (24)

Performing the expansion and isolation for € gives:

~2.L"(0)
— 1Y)
e=-1E(p%) 0 (25)

Rather than use the formalized terminology of Risk Aversion, the terminology
Uncertainty Aversion is used to describe G”(0)/G’(0) and L"(0)/L’(0) as the gains are
more readily described as uncertainty rather than as risk.

The author expects that the increase in value per unit of expected gains declines less
quickly than the decreases in value per unit of expected losses. Stated differently, the

next marginal unit of gain adds more value than the symmetric next marginal unit of
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losses subtracts from value. In the terminology of Pratt (1964) one might say that the
absolute upside-uncertainty proclivity of an individual is anticipated to be less than the

absolute downside-uncertainty aversion. Formally this may be written as:

G'(0)< L'(0) (26)
o) |ro) -
5ol [z ol

When it is empirically fitted to observed data, the likely function V(x,y) is selected to
be of the form V(x,y)=ao(G(x)+a;L(y). To fit Thalers’ (1980) observations, the curve is
of the log form such that:

V(x,y) = a,log(x) +a, log(|y) (28)

where ap<a,.

4.2 Discrete Model Formulation
Application of this framework to portfolio theory requires that the model is designed
to process discrete data. To do such, we begin with the expected dispersion of a sum of

stochastic variables. For the sum of stochastic variables,
S=x +Xx,+...+x, (29)

and the expectation of the sum is given by:

E(s) = E(x,)+ E(x,) +...+ E(x,) (30)
or identically as:
E(s)=a, +a, +...+a, a1

where a; is the expectation of x;. The expectation dispersion or variance of the sum may

be expressed as the expectation of
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[x,+x, +...+x, —(a, +a, +...+a,)]’ (32)

which, in turn, simplifies to:
Z(.t,. -a,)’ +22(x,. -aXx; -a,) (33)
i=1 i

This instantly recognized equation, lacking only weights, is used for variance
minimization in the Markowitz portfolio theory.

However, this may also be expressed as the product of the matrices. The variance
of the portfolio, assuming equal weights for the moment, can be expressed as 44”7 for AT

the transpose matrix of A, where A is given as:

h—a X;—a, .. X,—a,
Xy —a
A= (34)

n
Where a; is the mean of the n™ column returns. This value may be changed later in the
bivariate risk model to either zero, or some other selected cutoff, such as a risk free rate.
A+B is equivalent to adding the corresponding entries of matrix A to matrix B
provided A and B are of equal dimensions and (B+C)A=AB+AC. Matrix A may be

decomposed into two ‘halves’, a positive and a negative half, such that:

A, +A_ =4
max(x,, —a,,0) max(x,, —a,,0) .. max(x, —a,,0)
n - ,0
where A4, = max(xy —a,,0) and (35)

max(x,, —a,,0)
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min(x, —a,,0) min(x, —a,,0) .. min(x, —a,,0)
min(x,, —a,,0
where 4_ = (xy ~a,.0) (36)

min(x,, —a,,0)

Knowing that, by the Left and Right distributive laws, the following hold:
A(B+C)=AB+AC
(B+C)A=BA+CA
for matrices A, B, C and D, the product of matrix A and its transpose may be expressed
as:
AA" = (A, + AXAT + A=A AT + A AT + A AT + A4 AT &%)
Under a univariate risk framework, the minimum variance portfolio is identified by
adjusting the proportional weights invested, w,,w,,...w, of the n term weight vector so as
to minimize the value (AW)"AW. However, this implicitly assumes that all forms of risk
are disliked to an equal degree as they are additive along the same axis (standard
deviation).
Instead, the bivariate risk approach formulates the problem as:
{(A, + A WY (A, + AW =(AW) (A, + AW +(AW) (A, + AW (38)
=(AWY AW +(AW) AW +(AWY AW +(AW) AW 39)
However, rather than simply minimizing this sum, the new approach advocates that
ao[A+W)TA+W]+a|[(A-W)TA-W] be minimized subject to the values of ap and a;. The
value of each of the first and last terms of equation 39 are in fact the weighted square
deviations from a selected cutoff (currently mean, but can be some other value), which

are the expected square of the lower and higher stochastic variables, e.g. E(¢’) and E(4°).
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These are the identical risk metrics as given by the polynomial expansion approach in

equations 24 and 25.

s. DATA SETS

The data used in the empirical analysis are drawn from three sources, the CRSP files,
Reuters Kobra and the Board of Governors Federal Reserve Website.'® The data cover
the period from January 1, 1990 to December 31, 2001 on a monthly frequency for a total
of 144 months. The CRSP total returns sequence is used for each individual security, and
the SPS00 total return sequence from CRSP is used as the market proxy. The three-
month U.S. treasury-bill data are taken from the Federal Reserve site, and are used as the
risk free rate. The identification of the constituent firms of the SP100 and SP500 Indices
utilitizes Reuters Kobra. Securities without complete information for the studied period
are dropped, resulting in 85 of the SP100 and 377 of the SP500 firms being used in

subsequent analysis.

6. OPTIMIZATION

The minimum variance portfolio allocation strategy is compared to the ES, maximum
return, static equal-weighted and alternative portfolio strategies. For purposes of
analysis, the minimum variance and ES strategies are in fact identifying the optimal
Sharpe ratio portfolios for the respective risk measures (standard deviation and lower
semi-standard deviation). The Equal-weighted (EQ) approach is used as a benchmark for
the other strategies, as they should statistically exceed the risk adjusted returns of the EQ

model given that they would require dynamic allocation. Such a strategy would result in

9 URL address is www.federalreserve.gov.
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both transaction costs and management expenses. The EQ model assigns a weight of
approximately 1.176% to each of the 85 securities used in the analysis. These 85
securities are members of the SP100 index as of February 1, 2003 with complete data
from January 1, 1990 to December 31, 2001 in the CRSP files. The SP100 is analyzed
rather than the SP500 given the enormity of the computations for the latter. Given the
square geometric increase in complexity of the optimization by adding one variable to the
covariance/variance matrix, the use of the 377 qualifying securities of the SP500 would
take about twenty times the computations to converge for the period analyzed. The
current analysis with 85 firms requires just short of thirty computer hours on a 1.6 Ghz
P4 processors to compute. For the broader index, such a comparison would require
nearly a month to converge all sets with current desktop technology. The processing time
for such an allocation could be substantially reduced to the order of a 12" , if a single
strategy was compared. Thus, it is feasible for reasonably large real applications.

Mathematically each of the dynamic strategies may be expressed, in any period t, as:

( )
85
Zw,.(R, -R,)
Minimum Variance Ma.\{ T (40)
Zw o, +22w.ijov(r,.,rj)
i=l j=1

izjf )

85
> w(R -R))

ES, Minimum lower semi-variance Max s 41)

Zw pl +Zwa Cov_ (r,,r )

=l j=1
izj

Where p;. is the negative semi-deviation of security i and Cov.(r;,r;) is the negative
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co-semivariance of securities i/ and j.

85
> w,(R)
i=1

85 83 )

2 JAa) 2 12r)
z:wip‘— _ﬂz:wilh
=l i=l

Alternative strategy, M.

(42)

Where A;. is the positive semi-deviation, p;. is the negative semi-deviation, a and y are
power multipliers for the degree of investor sensitivity to the lower and upper risk, and B
is the linear weight preference of up risk to down risk. Higher and lower partial risk
moment covariances are unconstrained in the expression as they reduce both enjoyed risk
and disliked risk. When B is reduced to zero, this method produces results that are very
similar to ES theory. A notable difference is that a zero point rather than the period ¢ risk
free rate is used as a benchmark. As explained earlier, this better reflects the demarcation
of gains and losses about a zero endowment change implicit in the Prospect theory.

Given the use of extreme negative and positive outlying values in the alternative
strategy, a geometric information decay rate is introduced in the data so as to put greater
emphasis on later period data for the optimization estimation. Failure to do so would
expose the alternative strategy to a much higher sensitivity to extreme values than the
other strategies, and would likely produce results not illustrative of the method. The
geometric weighting process used was w, = (0.96987)7, where T is the age of the
observation in months. This reduces the oldest or 60 month back observation to 15% of
the most recent observation.

In assessing the altemnative strategy, ten different sets of possible parameter
combinations are considered due to the time required to compute each strategy. An

interesting issue for future research is whether or not better parameter estimates could
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improve the results reported herein. The parameter combinations that are analyzed are
reported in table 2.

Each of the strategies are considered from both an ex ante and ex post perspective.
Ex ante results are generated by using ex post, optimized weight vectors that are available
in month ¢ to generate returns that are realized in period t+/.

Of the 144 months of data available for this purpose, 60 months of data are used to
generate the covariance/variance matrices. This allows for 84 periods of returns for each
strategy. The program executes the analysis in a scrolling loop, so that the co-variances
update by incorporating either time ¢ data or time ¢-/ data to generate the optimal weight
vectors for ex post and ex ante results, respectively. The optimal weight vectors all share

identical constraints. This ensures complete investing and prevents short-sales, that is:

(43) & (44)

For computational tractability, it is necessary to split the optimization effort over
multiple (5) computers. Each machine independently computes so that the weight
vectors are not carried from one machine to the next. As a result, there are five fewer
period observations for each strategy in the ex ante analysis than in the ex post analysis.
This does not adversely affect the power of the difference of means tests.

Once the results are generated they are analyzed using a Tukey-Kramer difference of
means within SAS. The ex post Model has 1176 observations and 14 levels, while the ex
ante Model has 1106 observations with the same number of levels. More specifically,

eight Tukey-Kramer difference of means tests are conducted; namely, two for each model
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on an ex post basis, two for each model on an ex ante basis, and one in each set for risk

(as measured by standard deviation), return, compound return,'’

and Sharpe ratio as
measured by the excess return over standard deviation.

Although the risk metric used herein is rather arbitrary as risk is effectively different
for each optimization process, the alternative strategies are known to outperform the MV
process as they are optimized to achieve this very result. The question then remains
whether they can statistically improve returns over MV theory while not substantially
increasing risk. If this is achievable, then the model would imply a multi-period
dominance of the alternative strategies over MV. An alternative approach is to use
second-order stochastic dominance to rank as suggested by Porter (1974). However, as
noted by Ruszczynski and Vanderbei (2002), the computational power required to
approach this problem using conventional methods for one hundred assets is not
tractable. The use of a Simplex procedure to greatly reduce the computational effort and
time was examined herein but this process is well beyond the scope of this initial study.
The difference of means of the Sharpe ratios, as the measure of performance, by strategy
are summarized in tables 4 and 8.

The optimization analysis does not support the unquestioned dominance of the
minimum variance portfolio theory over other investment functions. As expected, the
minimum variance portfolio allocation process does increase return and reduce risk over

a naively equally diversified portfolio on an ex post basis, as shown in tables 5 and 6.

However, these gains are not significant at the 95% level of confidence for the period

"' Compound returns are assessed by taking the non-overlapping three-month geometric average of the
monthly arithmetic averages. This reduces the number of data points available for the compound return
difference of means test but does not so adversely affect power as to inhibit the drawing of conclusions as
evident in the summary table 3.
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studied. When both risk and return are considered on an ex post basis using a Sharpe
ratio, the minimum variance allocation is generally superior to the other strategies but not
at a 95% level of confidence. When assessed from an ex ante perspective, the slight
advantage of minimum variance is reversed, and the alternative strategies and ES theory
demonstrate dominance in returns. Although the difference in means is not significant
between the strategies, the alternative strategies do possess strictly positive Sharpe ratios
at a 95% confidence level whereas the MV process does not.

For all the ex post analyses, the R*-values range from 66.4% to 87.0%, and all the
models are significant at well below the 0.1% level of confidence. With regard to the ex
ante analyses, only the difference of means in risks exhibit comparable power. The
analysis of compound retumn is significant at the 10% level of confidence as the strategy
alternatives account for about 5.4% of the variation in geometric returns. The ex ante
Sharpe ratios are not statistically different from one another based on model selection,
and the difference of means are not significant with a p-value of 0.23. It is not apparent
that the minimum variance theory can maintain a statistically superior return-to-risk ratio
over any other competing theory excluding the maximum return strategy. This last
strategy consistently has a statistically lower Sharpe ratio than MV on an ex ante basis
(see Table 8).

One explanation for the statistically lower Sharpe ratio of the maximum return
strategy may be that the market exhibits mean reversion. Summers (1986) demonstrates
that prevalent econometric techniques for measuring EMH introduce a bias that makes
rejection highly unlikely. Poterba and Summers (1988) find that stock returns exhibit

positive serial correlation over the short term and negative autocorrelation over the long
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term. Similarly, Fama and French (1988) also find long-term negative autocorrelation in
stock returns. An analysis of EMH is beyond the scope of this study but intuitively one
might expect to find that the maximum return strategy tends to find the point in a return
sequence just before positive autocorrelation becomes negative. In turn, the maximum
return strategy, which selects period ¢’s highest return, would be exposed to a mean-
reverting loss in period t+/. The result is that the maximum return strategy ex ante
would tend to have very poor Sharpe ratios, as observed in this analysis. It is noted that
without the advantage of prescient information, the MV theory can not be said to be the
optimal choice for investors as the altemmative strategies tend to reward risk better.
Nevertheless, one may conclude that MV is superior to maximum return ex ante.

Despite the MV theory having less risk'? than all the other strategies ex ante, one
might infer that this strategy is in fact inferior to the alternatives examined herein. Only
the MV and the maximum return strategies have retum and compound returns that are not
statistically greater than zero on an ex ante basis. As well, these two strategies have the
lowest Sharpe ratios, which questions if an investor is being adequately compensated for
the risk that is borne. In contrast, the ES and altemnative processes provide returns that
are significantly non-zero at the 95% confidence level for both arithmetic and geometric
returns. The Sharpe ratios also are positively correlated with the increase in the taste for
HMPM (B and y) risk. That is, as the investor function is optimized so as to place
emphasis on maximizing higher mean partial moment returns, the ex ante Sharpe ratio
tends to increase. These strategies do expose the investor to greater fluctuations of

returns but those returns are significantly positive. They are positive even to the point

'2 When risk is measured by the standard deviation.
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where the increase in return more than compensates for the increase in risk, so as to
improve the Sharpe ratio.

Examining the correlations between strategies for risk, returns and Sharpe ratios, we
observe that MV generally has highly correlated returns with the other strategies but
exhibits entirely uncorrelated changes in risk as measured by the standard deviation. This
persists both in the ex ante and ex post frameworks. Select alternative strategy parameter
sets and the maximum return strategy also are highly uncorrelated with MV in terms of
compound returns and single period returns. Thus, these strategies appear to differ from
one another quite substantially in how they achieve returns. This is consistent with the
model design where MV explicitly attempts to identify a “safe-course™ of growth
whereas the alternative models attempt a path that is more volatile and more likely to
experience intermittent periods of high growth.

These differences call into question what investors truly perceive as being risk.
Under Bernoulli’s assumption, risk is simply a mathematical tendency to vary from a
given mean. However, in reality investors may not be so concerned with such variance
depending on which side of the mean they are on.  Although skewness incorporating
asset-pricing models, such as those tested by Simkowitz and Beedles (1978), can account
for some of the individual investor preference for this moment, the model is arranged so
that mathematical terms are in fact at odds with each other. While the higher variance
partial moment grows, the monotonic nature of the utility curve implies growing investor
dissatisfaction while the simultaneous increase in skewness suggests an increase in
investor satisfaction. The alternative optimization process allows investors to exhibit

distinct preferences for partial mean variances. The evidence reported herein seems to



confirm that such models, of which the ES may be viewed as a subset, do not tend to
underperform the MV approach on an ex ante basis. On an ex post basis, the MV model
has an evident advantage but in real applications security prices are not deterministic.

The summary conclusion is that the alternative models at least offer a significantly
positive return for bearing risk in a simulation of real life investment possibilities.
Therefore, these models need to be more closely examined, hopefully identifying and
using the parameter set that best models aggregate investor behavior. Further study with
appropriately calibrated parameters may illustrate yet higher Sharpe ratios, and possibly
increase the significance of the ex ante advantage of non-monotonic utility derived

investment functions over the MV approach.

7. THE TWO-BETA CAPM
Extending from equation 26 one can develop a theoretical foundation for the two
parameter CAPM as formulated by Howton and Peterson (1998). The expression given

previously was:

=(AWY AW +(AWY AW +(AWY AW +(AW) AW 45)
g:'si;iwmzc;:rilm :;sl;l:\:‘z gmiu‘n Q:iliyerngalm mv':nl:‘ negative

Each of the four terms in this equation are measures of different forms of covariance.
One obtains a four factor co-varying model by splitting the n period by 2 series matrix A,
where the first column series is the excess return sequence of any given security in
question and the second column series is the sequence of the market excess returns over
the appropriate risk free rate. The first term would represent the security’s excess returns
to vary positively with the positive market premium. The fourth term would represent

the security’s excess returns covariance with a negative market premium. The two
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intermediary terms would represent the security’s tendency to react negatively during a
positive market and to react positively during a negative market, respectively. However,
these intermediary terms are aggregated since they can not be viewed ex ante without
estimating both the future direction of the market but also the relation of the security to
the market movement in that given period. In a form analogous to the LSM CAPM, the
model appears initially as:

R, =Ry +Poeomu(max(R, — R, 00)+B_.....(max(R,, - R,,0))...

ot B (MU(Ry — R O+ By (min(R,, ~ R, .0) +e, (o)

Merging by A. and A, this equation simplifies to:

v

Bewts A, Bt A

R, =R, +(Bocctomts + BsccrmXMax®,, — R, ,0))‘+(£wm + B e e XMINR,, - R, ,0))‘+e,., 47)

Ril = Rn + ﬁ#mklio +p—mh/l- +eil (48)

To test the validity of this model, both the single parameter and dual-parameter one
year CAPM are estimated for each of the 377 securities of the SP500 that had complete
CRSP data for the 132 months over the period from January 1991 to December 2001.
This generates 49,764 separate regressions for each of the two models from which
statistical analyses are conducted. The regressions are conducted in SAS with a macro
loop, and involve the excess security retums against the excess market returns with a
constrained intercept of zero.

Two comparisons are made relative to the single parameter CAPM to assess the
suitability of the dual beta model. The first is simply an examination of the descriptive
statistics of the R?, adjusted R? and F-test values of the two models.

The predictive performance of each model now is assessed using two methods. The

first method examines the CAR or cumulative abnormal residuals of the two models over
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the 132-month period. To accommodate periods in which the Adjusted R? is negative,

the CAR is given by:

CAR—?::‘ [I""jk': :l }4 (49)

Validity Coeﬂ'cmu

The CAR methodology is used to identify what a practitioner may experience as
model error in real application. Since no practitioner would knowingly make the error of
applying a model with a negative adjusted R?, estimates generated from such a model are
dropped by calibrating the validity coefficient to zero in such instances.

The second method used to assess predictive power is a Model Weighted CAR as

given by:

N
MWCAR =) max (A"’R ke b ,OJAR, (50)
pur AvgR-

C uomdcn« Coefficiemt

The purpose of the confidence coefficient in this method is to more heavily weight those
abnormal residuals where more accuracy was expected than those where less accuracy
was anticipated. This reflects the application of a model where the practitioner would not
put great confidence in a return estimate generated by a statistically weak model.
Therefore, it should better illustrate which of the two CAPM processes best meet
expected accuracy.

In both models, the abnormal returns are given by:
S
Z Actual, - Estimate,

AR, == 51
: 5 D

47



In this equation, S is the number of firms (377) in the sample. The parameters
selected for the ‘Betas’ are those that are generated in the previous period. That is, the
beta estimates are generated ex ante such that the parameter estimates available to predict
period ¢ returns are those identified in period ¢-/. This realistically captures the
information that a practitioner would have available at the time of a decision. The market
premium however is the time ¢ realized premium. It also is of interest to test the validity
of applying the various forms of the CAPM when perfect information about market
return realizations is assumed.

Both a 12- and 60-month model is tested. Unlike the 12-month model, the 60-month
model is more precise statistically, but it allows for a less rapid change in the parameter
estimates. The results are summarized in tables 12 and 13. Contrary to the conclusions
of Nantell, Price and Price (1982) or Howton and Petterson (1998), no material advantage
or disadvantage is identified for the use of the two-parameter CAPM. This is the case for
either the best mathematical fit or predictive accuracy for both the 12- and 60-month
CAPM.

Out of a possible 49,764 regressions for each 12-month model, 35,880 and 35,421
regressions for the one-parameter and two-parameter CAPM, respectively, have an
adjusted R’-value greater than zero. The average adjusted R’ of 18.56% for the two-
parameter CAPM is nearly identical to that (18.06%) for the one-parameter model. The
one-parameter CAPM displays a 66.3% accuracy rate for predicting directional shifts in
security returns given the known market premium for that period. The accuracy rate for

the two-parameter model was slightly inferior at 64.25%.
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Not surprisingly, the 60-month versions of the two models have a much greater
number of non-negative adjusted R’-values out of a possible 31,668 regressions for each
model. The specific numbers are 30,573 and 30,573 for the single- and two-parameter
models, respectively. As is the case for the 12-month versions, the adjusted R>-value is
higher for the two-parameter model for the 60-month versions of the two models, and the
one-parameter model is slightly better at predicting security direction (65.947% versus
65.611% for the two-parameter model).

The cumulative abnormal returns or CARs for both window versions of the two
models are reported in tables 14 and 15. Although the one-parameter CAPM has
cumulative abnormal residuals or CARs that are fourteen and ten times larger than the
CAR of the two-beta CAPM for the 12 and 60-month windows, respectively, none of
these CAR are significantly different from zero. Thus, no estimation bias is evident for
any model or window version. For the model-weighted CAR the one-beta CAPM has
residuals that are 1.64 and 1.54 times as large as the two-beta CAPM for 12 and 60-
month windows, respectively.

Non-positive adjusted R?-values are then eliminated. Based on a Tukey-Kramer test
of the difference of means, the two-parameter CAPM is slightly better than the one-
parameter CAPM in adjusted R? for both window lengths. In all four cases, the null
hypothesis that the means of the two measures are equal is rejected at greater than
99.99% confidence on a combined sample of 99,528 parameter estimates for the 12
month and 81,432 parameter estimates for the 60 month windows. Although the
difference in means is small, the high level of confidence stems from the large size and

consistency of the sample.
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In summary, the case for the use of the two-beta CAPM in place of the one-beta
model is neither rejected nor accepted considering the data and methodology used in its
evaluation. Both models consistently produce only modest statistical support, though
neither appears to have any upward or downward bias in ex ante returm prediction.
Therefore, the support for the use of the mean higher partial moment development of the
CAPM is inconclusive. Where data is sufficiently abundant and degrees of freedom are
of little concern, there seems to be a tiny advantage in using the two-beta CAPM. Where
data availability is of greater concern, the greater degrees of freedom and the more

parsimonious single factor CAPM is likely to be preferred.

8. RISK PREMIUM PUZZLE

An initial analysis of the equity premium puzzle using the new framework is now
conducted. The data is taken from Ibbotson and spans the period of February 1927 to
December 2002. The particular series used are the same as in the Mehra and Prescott
seminal piece; namely, a monthly deflated real return series of the S&P500 as well as the
monthly deflated real retumns series of the US one month treasury bill. The objective of
the analysis is to find parameter estimates of the alternative utility function that best
describe observed returns for this period.

The intuition is that monotonic utility is blind to the difference between higher and
lower partial variance. If investors have a greater disdain for lower partial variance than
upper partial variance, as is suggested, then whichever category of asset has the greater
downside variance will need to also have the larger expected retum in equilibrium. If

equities exhibit greater downside fluctuations than treasuries, and if investors are more
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sensitive to downside fluctuations, then investors will naturally demand a relatively
higher rate of return to be compensated for this unpleasant nature of the variance of
equities.

The method of least squares is used to identify the parameters. The fitted model is of
the form:

F =min (Y, - (@VLPM * + a,vHPM )] (52)
In equation (52), VLPM and VHPM are the historical lower partial moment variance and
higher partial moment variance, and Y; is the expected return of the security.!> The
terms a,, a> and B,, B2 are the linear and power sensitivities to each kind of risk metric,
respectively. As VLPM and VHPM are measured from a reference point of zero to
distinguish losses from gains, they are identically equal to E(p®) and E(A?), as expressed
in equations (16) and (17).

To solve for the solution analytically, one derives equation (52) according to the
variables a;, az, B and B, sets the First Order Conditions of each expression to zero, and

then solves for each variable. The derivatives are of the form:

g—: =) -2 (v, -@vLPM ? +avHPM > ))- VLPMP =0 (53)
66:2 =D —2e (Y,- —~(aVLPM " +a,VHPM > ))o VHPM[: =0 (54)
g—; =Y —2e(V, - (@VLPMP +aVHPM))ea, e VHPM? log(VHPM,)=0 (55)
g;_z =Y —2e(, ~(@VLPM/ +a,VHPM*))oa, o VLPM”: olog(VLPM.) =0 (56)

'3 It is assumed that the best approximation of the future partial variance of a given security is the
historically observed partial variances.
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Although the analytical solutions potentially allow for tests of the estimated
parameter confidence, the isolation of the terms has proven to be of a mathematical
complexity that exceeds the scope of this work. As this section is only a preliminary fit
of the data to a potential set of parameters, a numerical optimization following a gradient
approach is used instead.

To produce the sequence of expected returns two methods are considered. The first is
an average geometric return of the given asset for the prior T periods where T is from ¢-n-
I to t-1. N is either 12 or 60, representing either the one year or five year average
geometric return. The second method uses an arithmetic average with a decay rate where
the weight of each observation is 1.01'™ N is either 13 or 61, and j is the period that has
elapsed since the observation. In the case of the expectation being formed based on one
year of historical data, the most recent observed return has a weight that is 1.137 times
the oldest observation. In the case of the five-year expectation, the most recent
observation is 1.816 times the weight of the oldest observation. In either case, the partial
variance expectations are for the matching time frame. To illustrate, the one-year partial
variances are used to generate estimates of the one year expectation for both the
geometric and decayed arithmetic averages.

In numerically identifying the parameter estimates, the reader should be made aware
that numerous local minima were identified. To best reflect the alternative optimization
model and conventional monotonic utility, the initial vector for optimization was set so
that all parameters are equal to unity. This start point differs from conventional measures
of variance as the covariance terms are not present, but represents an upper limit that

portfolio variance could attain provided all assets were wholly uncorrelated. An area for
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future research would include better specification of the parameters, hopefully through an
analytic method or a numerical method with imposed theoretical boundary values for the
parameters.

The current analysis results are summarized in table 20. The polynomial of best fit
describes between 2.7% and 10.6% of the variation of the expected returns depending
upon which model period (one year or five year) and which model type (geometric or
arithmetic decay) is selected. Uniformly, each model ascribes a lower linear multiplier
and lower power multiplier to the VHPM than to the VLPM.

Although the expectation is that the a; term should in fact be negative (implying a
preference for VHPM), the small positive value is not inexplicable. A possible reason is
that investors do indeed dislike upper moment risk as is implied by Bemoulli’s
assumption but that upper moment risk is much less disliked than lower moment contrary
to the conjecture of Bernoulli."*

The value of B for all the models is greater than unity, as expected. Values above
one, given that all variance measures are in units such that their value is less than one,
imply a steady desensitization to a specific form of risk. This occurs although the investor
would always retain some preference to procure or rid oneself of one additional unit of
risk, as determined by the sign of the alpha coefficient for each risk measure. B, similarly
implies a steady rate of desensitization since its value is universally between zero and
one. This suggests a concave, rather than a convex shape. The shape of the fitted
polynomial precisely matches the general characteristics of the Value function, a concave

response to gains and a convex response to losses.

'* As noted before, the monotonic utility proposed by Bemmoulli implies a symmetric dislike of risk
regardless of which type of partial moment is being examined.
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Using the best-fit parameter estimates (where R” is 10.6%), one can identify how an
investor should respond to the gamble of 50% chance of 50% wealth gain versus a 50%
chance of a 50% wealth loss. Recall, this same gamble with the parameter estimates of
Mehra and Prescott (1984) suggest that an investor would divulge themselves of 49.9%
of their wealth to avoid such a game. However, with the fitted polynomial, an investor
would be willing to part with far less of their initial endowment to avoid such a game, in
this case 5.945%. Such a value is evidently more plausible although it appears to be
somewhat low. To examine the validity of such protests, a much more refined study of

the polynomial, hopefully with an analytic solution, should be undertaken in future work.

9. CONCLUSIONS

The objective of this thesis is to question the validity of Bernoulli’s 1738 solution to
the St.Petersburg Paradox. The conceptualization of investors as risk averse, risk loving
or risk neutral, as determined by the concavity (convexity/linearity) of an internal
monotonic utility function, is parsimonious but is inconsistent with the findings of
positive finance. A breadth of financial innovation eminates from this quintessential
foundation, including the Pratt (1964) measurement of the risk aversion in the small,
Markowitz’s (1952) seminal insight into optimal portfolio allocation, and the Sharpe,
Lintner and Moss CAPM. It is not the contention of this thesis to rebuke these
developments but to offer a potential modification that might allow for a closer joining of
prescriptive and descriptive finance, particularly in the area of asset allocation and

pricing.
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This thesis is not the first to note the weakness with Bernoulli’s assumption. Allais
(1953), Savage (1948) and Markowitz (1952) all noted the underlying problem. Attempts
such as Stone’s (1973) generalized loss function have directly attempted to streamline the
theory to rectify the problem. Other theoretical models have been developed, including
those by Constantinides (1990) and Basak and Cuoco (1998) to help explain anomalies,
such as the size of the equity premium. In an effort to increase explanatory power,
Pettengill, Sundaram and Mathur (1995) and Howton and Peterson (1998) also perform
empirical adjustments to CAP models, which are descended from the monotonic utility
function. Despite these efforts to reinforce the use of monotonic utility, other researchers
such as Mao (1970) and Kahneman and Tversky (1979) persistently observe a value
function behavior in empirical studies and not monotonic utility.

The work herein examined the theoretical development of a two-factor value function
in both a continuous framework through a MacLaurin series expansion as well as through
a discrete matrix expression. The analysis of the optimization reveals that the alternative
allocation strategy has a slight advantage over the minimum variance approach on an ex
ante basis. Moreover, the risk borne by investors utilizing the alternative strategy or ES
(semi-variance) is rewarded with increased returns at the 95% confidence level. The
analysis undertaken herein can not make any such claim for MV (minimum variance)
theory. The discrete expression of the two-factor value function model naturally leads to
a two-beta CAPM, as proposed empirically by Howton and Peterson (1998), among
others. An examination of the efficacy of the two-beta model versus the single parameter
model reveals a tiny, though strongly significant, advantage of the former over the latter.

Finally, a preliminary study of creating a polynomial of best fit to the Ibbotson data used
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by Mehra and Prescott (1984) reveals parameter estimates that greatly reduce the
magnitude of the equity premium puzzle.

In all the aforementioned cases, the strength of the analyses need further
improvement. Furthermore, the theoretical models would benefit from refinement.
Nevertheless, each analysis independently confirms that there may be an advantage to
modeling individual investor preferences according to a Kahneman and Tversky value
function in place of a Bernoulli monotonic utility function. While such a preliminary
study can not possibly warrant an all out adoption of the value function for modeling
individual investor behavior, it is reasonable on the basis of the research reported herein

to further explore in future research just such a possibility.
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APPENDICES
Appendix A: St.Petersburg — Original and Dual-risk formulations
Peter tosses a coin and continues to do so until it should land “heads " when it
comes to the ground. He agrees to give Paul one ducat if he gets “heads" on the very
Jirst throw, two ducats if he gets it on the second, four if on the third, eight if on the

Jourth, and so on, so that with each additional throw the number of ducats he must pay is
doubled. Suppose we seek to determine the value of Paul's expectation. (Sommer 1965
p-31)

The mathematical value of the series is:
S © l
E(x)= ZP"(—\'; )x; =Zz—nZ" =l+1+1l...=
0 (1]

S represents the number of states, and the number is without limit in this particular
scenario. pr(x;) is the probability of state i and x; is the payoff in that state. The

mathematical expectation is obviously infinite, yet no sane individual would pay

everything they have, and more, to obtain a chance to play this game

Bemoulli offers the concept of the utility of wealth, such that a person will value a
dollar based upon what it can do for their standard of living rather than valuing the dollar

for itself. He also goes further to suggest that the utility function is monotonic and

convex. Formally that is:

dU(x) >0

& d? U(x)
dx

dx-

One such function that meets this requirement is U(x) = x" for O<r<1. Bernoulli

suggests r = 0.5 (square root) as an example, giving the solution to the paradox as

V2

2-1

S o ) ©
EUGN) =3 priz V()= 22U (") = zzi Z YL
0 0 0

2

NI—
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This geometric series converges to a finite point and implies that anyone with the
function as described above would never pay more than $11.66 to play this game.'*

Under the two dimensional framework, the solution is very similar although there
may exist two pure answers that can be linearly combined to create a set of possible
solutions. Unlike Bernoulli there is not one utility function but rather a gain function and
a loss function. These functions will also be monotonic but will have the following

characteristics:

dL(x_) 50 d'L(;t_) 50
dx dx-
&
dG(x,) d*G(x,)
0 —
I > e <0

The combined function has the form:

N M
V(x,,x.)= pr(x_)L(x_)+a). pr(x,,)G(x,,)
i=0 =0

N M M
=2 prix X« )? +ad prix, Xx,;)" = 0+a22—',,—2””
i=0 j=0 7=0

M
=Qa 2P= a
Z;. 1-27*F

Under this approach, Paul will either pay Peter (an assured loss and less desirable

than the loss of an assured gain):

Yo
o _ a _ a
L) W-z-”““’(n-z*”)

s, J7 ﬁ)‘_ :
U("—Ji-lﬁ(./ﬁ RN S
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or would be willing to trade an assured gain of:

Ve Ve
G(x,) = a ,x,=( e +a) =( ! )

1-27°

In the case of a=1, P=0.5 and Q=0.8, an individual is indifferent between the gamble
and receiving an assured gift of $11.66, or trading this endowed chance to gamble for this
amount. However, if an individual is not yet in possession of the gamble, they may be
willing to pay no more than $4.64.

This formulation can account for the endowment effect noted in the economic
literature. While it is not explored in this thesis, one might posit that the differential
between P and Q could account for expectations of information asymmetry. If an
individual perceives that the endowment of a positive expectation game offers some
control, then they will put a premium on the sale of that game. The sense of control may
also help to discount the amount that is paid to avoid a negative game, given that the
player falsely assumes that the outcome is more favorable than suggested by the odds.
When not endowed with control the potential player will assume the seller (buyer) of the
gamble has superior information, and therefore will apply a discount (premium) to hedge

oneself from buying a lemon (selling a gem).
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Appendix B: Sample of ‘Irrational’ behavior

Source Kahneman and Tversky (1979): Empirically identified examples of irrational and

improbable behavior through survey decisions.

Problem 1: Choose between

A: 2,500 with probability 0.33
2,400 with probability 0.66
0 with probability 0.01

N=72 [18% A]

Problem 2: Choose between

C: 2,500 with probability 0.33
0 with probability 0.67

=72 (83% CJ*

2,400 with certainty.

[82% BJ*

2,400 with probability 0.34
0 with probability 0.66

[17% D]

The data show that 92 per cent of the subjects chose B in Problem |, and 83 per cent of
the subjects chose C in Problem 2. Each of these preferences is significant at the .01
level, as denoted by the asterisk. Moreover, the analysis of individual patterns of choice
indicates that a majority of respondents (61 per cent) made the modal choice in both
problems. This pattern of preferences violates expected utility theory in the manner
originally described by Allais. (Source Kahneman and Tversky 1979)
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Figure 1.

Utility

Wealth

Source Friedman & Savage (1948): Hypothetical degree three utility curve exhibiting
both concave and convex regions of risk preference. Allows for both gambling and
insurance behavior but is shown by Markowitz (1952) to describe irrational and
improbable investor behavior.
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Figure 2.

Value

Gam

Losses

Source Thaler (1980): Plot of a potential value function. This value function differs from
monotonic utility in the use of a reference point and non-symmetrical responses to either

a foregone gain or a realized loss.
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Figure 3.

10

Decision Weight: G(p)

0.0 0.5 10
Objective Probability: p

Source Allais (1953): Depiction of subjective interpretation of probability. Small
probabilities are subjectively over-weighted in the decision while large probabilities are
subjectively under-weighted.



Figure 4.

Insurance Premium by Chance of Gain

—\/alue Premium
— Utility Premium

Insurance premium paid on $100,000 home facing potential flood damages of $10,000
according to uncertainty function. Utility premium is decided according to function U(x)
= (x)”, and determines the $100,000 home as the initial endowment. The value premium
is determined by V(x) = -(x-)°'5+(x+)°"‘, and uses the expectation (variable according to
probability of gain) as the reference point. For example at a probability of 10%, the
expected value of the home is $91,000 (or 0.9*$90K +0.1*$100K). Outcomes exceeding
this value are treated as gains, while outcomes inferior to this value are assessed as a loss.
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Figure 5.

StPetersburg Game Price

— Cumulative Equivalent
Utility

— Cumulative Equivalent
Value

Dollar value of the St.Petersburg game by decision under uncertainty function.
Cumulative equivalent utility depicts dollar price paid by individual under expected
utility theory assuming U(x) = (x)* . Cumulative equivalent value depicts dollar price
paid by individual under prospect theory assuming V(x) = -(x.)**+(x.)™*.



Figure 6.

Proportion of Portfolio at Risk

0.05
0.11
0.17
0.23
0.29
0.35
0.41
0.47
0.53
0.59
0.65
0.71
0.77
0.83
0.89
0.95

o
e
S
a

>

Probability of gain on risky asset

Optimal pro(Portion of portfolio put at risk according to the value function

V(x) = -(x.)*3+(x.)**. Two-asset case, one risk free yielding $10,000 in both high and
low states. The risky asset yields either $0 or $10,000. The high state is the probability of
gain on the risky asset. Any investment in the risky asset will reduce expected return
while incurring an increase in risk. Therefore, expected utility theory will find 0 optimal
at all but 100% likelihood of risky return. In this case, expected utility theory will be
indifferent. Short sales are prohibited, but proportion in risky asset would have a finite
crest at exceedingly high values.
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Figure 7.

Value

®2

Losses

COPEp——

-

x1 x1=x2
(yli>1y2|

Source Thaler (1985): Depiction of Prospect Theory value function with equal magnitude
of marginal shifts in initial endowment but non-symmetric reduction/elevation in value
(utility). Applying this particular function, a foregone gain does not distress an investor
as much as a realized loss of equal size.
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TABLES
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Table 1.

Comparison of choice of two pool depths by a non-swimmer. Classic Minimum variance,
or even third moment decision processes will advocate pool 2, although pool 1 results in
the higher chance of survival.

State (pr)  Pool 1 Depth  Pool 2 Depth

1(1/3) 30° 10.1°
2(1/3) 2 10
3 (1/3) 2’ 10°
Mean
11.33333° 10.03333°
Variance 261.3333 0.003333
Skew -1.73205 -1.73205

Table 2.

Selected parameters for alternative optimization processes. a is the power raising MLPM
variance, and B is the negative coefficient multiplying MHPM, which is in tum raised by
Y.

Strategy a B Y
1 1.00 0.00 0.00
2 1.00 1.00 0.25
3 1.00 0.25 0.25
4 1.00 0.10 0.25
5 1.00 1.00 0.50
6 1.00 0.25 0.50
7 1.00 0.10 0.50
8 1.00 1.00 1.00
9 1.00 0.25 1.00
10 1.00 0.10 1.00
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Table 3.

Tukey-Kramer difference of means test on levels (strategies) compared according to ex
ante and ex post Return, Risk, Compound Return (3 month) and Sharpe ratio.

Item and Method F-test (p-value) R Model #Obs
DF

Return ex post 244.11 (<0.0001) 0.731974
Risk (Std.Dev) ex post 177.15 (<0.0001) 0.664636 1176
Sharpe ex post 263.20 (<0.0001) 0.746490
Compound Return ex post 194.86 (<0.0001) 0.870154 378
Return ex ante 1.37 (0.1685) 0.016016 13
Risk (Std.Dev) ex ante 183.32 (<0.0001) 0.685768 1106
Sharpe Ratio ex ante 1.26 (0.2312) 0.014779

Compound Return ex ante 1.57 (0.0927) 0.054988 364




Table. 4

Tukey-Kramer difference of means of Sharpe ratios compared by strategies under ex post

assumption.

Ex Post Sharpe
i

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

a:l §:0.25 y:0.5
a:] B:0.25 y.0.5
a:1 B:0.25 y:0.5
a:1 B:0.25 y:0.5
a:l B:0.25 y:0.5
a:l B:0.25 y:0.5
a:l1 B:0.25 v:0.5
a:l B:0.25 y:0.5
a:l B:0.25 y:0.5
a:l B:0.25 y:0.5
a:l B:0.25 y:0.5
a:l B:0.25 v:.0.5
a:l B:0.1 y:0.5

a:l B:0.1 y:05

a:l B:0.1y:05

a:l B:0.1y:0.5

a:l B:0.1y:05

a:l B:0.1y:05

a:l B:0.1¥:0.5

a:l B:0.1 y:05

a:l B:0.1y:0.5

a:l pB:0.1y:0.5

a:l B:0.25 y:0.5
a:l B:0.1y:05
a:l B:1y:1

a:l 3:0.25 y:1
a:l :0.1 ¥
My

ES

MaxRet

a:! $:0 y:0
a:l B:1y:0.25
a:l B:0.25 y:0.25
a: | B:0.1 v:0.25
a:l B:1 y:05
a:! B:0.1y:0.5
a:l B:1y:1

a:1 p:0.25 vl
a:l p:0.1 y:t
MV

ES

MaxRet

a:l B:0 y0
a:l p:I y:0.25
a:l B:0.25 y:0.25
a:1$:0.17v0.25
a:l B:1 y0.5
a:l B:1 y:1

a:l B:0.25y:1
a:l1 g:0.1 y:1
My

ES

MaxRet

a:l1 B:0 v0
a:l B:1y:0.25
a:l p:0.25y:0.25
a: | B:0.1 v:0.25

Means

1.529144
1.285341
0.041201
-0.02849
-0.04231
-0.38426
-0.00011
-27.8354
-0.05149
1.414855
1.420539
1.52252
1.59696
-0.2438
-1.48794
-1.55763
-1.57145
-1.9134
-1.52926
-29.3645
-1.58064
-0.11429
-0.10861
-0.00662
0.067816
-1.24414
-1.31383
-1.32765
-1.6696
-1.28545
-29.1207
-1.33683
0.129514
0.135198
0.237179

90% Confidence Limits

LSMean(i) -LSMean(j)
-0.55451 3.612802
-0.79832 3.368999
-2.04246 2.124858
-2.11214 2.055171
-2.12596 2.041353
-2.46791 1.699403
-2.08377 2.083547
-29.919 -25.7517
-2.13515 2.032165
-0.6688 3.498513
-0.66312 3.504197
-0.56114 3.606178
-0.4867 3.680618
-2.32746 1.839855
-3.5716 0.595715
-3.64129 0.526027
-3.65511 0.512209
-3.99706 0.170259
-3.61291 0.554403
-31.4482 -27.2809
-3.66429 0.503021
-2.19795 1.969369
-2.19226 1.975053
-2.09028 2.077034
-2.01584 2.151474
-3.3278 0.839518
-3.39749 0.76983
-3.4113 0.756012
-3.75325 0.414062
-3.36911 0.798206
-31.2044 -27.0371
-3.42049 0.746824
-1.95414 2213172
-1.948486 2.218856
-1.84648 2.320837

95% Confidence Limits
LSMearyi) -LSMean(j)

-0.71173 3.77002
-0.95554 3.526217
-2.19968 2.282077
-2.26936 2.21239
-2.28318 2.198571
-2.62513 1.856621
-2.24099 2.240765
-30.0763  -25.594512
-2.29237 2.189383
-0.82602 3.655731
-0.82034 3.661415
-0.71836 3.763396
-0.64392 3.837836
-2.48468 1.997073
-3.72882 0.752933
-3.79851 0.683246
-3.81233 0.669428
-4.15428 0.327478
-3.77013 0.711622
-31.6054  -27.123656
-3.82151 0.66024
-2.35517 2.126587
-2.34948 2.132272

-2.2475 2.234252
-2.17306 2.308693
-3.48502 0.996736

-3.5547 0.927049
-3.56852 0.913231
-3.91047 0.57128
-3.52633 0.955424
-31.3616  -26.879853
-3.57771 0.904042
-2.11138 2.37039
-2.10568 2.376074

-2.0037 2.478055

Sig. Diff
Q@ 95%

Yes

Yes

Yes
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Table 4. Continued.

a:l B:0.1y05
a:l B:1 y:i
a:l B:1y:l
a:l B:1 y:l
a:l B:1 y:)
a:l B:1y:1
a:l §:1y:1
a:l B:1 y:1
a:l B:1 y:1
a:l B:1y:1
a:l B:1y:l
a:] B:0.25 y:1
a:l B:0.25 y:1
a:l B:0.25y:1
a:l $:0.25 y:1
a:l B:0.25 y:1
a:l $:0.25 y:1
a:l $:0.25 y:1
a:l $:0.25y:1
a:l $:0.25 y:1
a:l B:0.1 y:
a:l B:0.1 y:1
a:] B:0.) y:1
a:l p:0.1 y:1
a:l B:0.1 y:i
a:l B:0.1 y:!
a:l B:0.1 y:!
a:l :0.1 y:1

a:l p:1 0.5
a:l B:0.25y:1
a:l 0.1 y:t
My

ES

MaxRet

a:l B:0 y:0

a:l B:1 y:0.25
a:) B:0.25 y:0.25
a:lp:0.1v0.25
a:l B:1 y:0.5
a:l :0.1 121
My

ES

MaxRet

a:l B0 y:0

a:l B:1 y:0.25
a:l B:0.25 v:0.25
a: | B:0.1 y:0.25
a:l B:1 y:05
My

ES

MaxRet

a:l $:0 y:0

a:) B:1y:0.25
a:l B:0.25 y:0.25
a: | p:0.1 y:0.25
a:l B:1 y:0.5
ES

MaxRet

a:l B0 y:0

a:l B:1y:0.25
a:l B:0.25 y:0.25
a: 1 0.1 y:0.25
a:l B:l 05
MaxRet

a:l B0 y:0

a:l B:1 v:0.25
a:l B:0.25 y:0.25
a: | 0.1 y:0.25
a:l B:1 y:05
a:l B:0 y:0

0.311619
-0.06969
-0.08351
-0.42546
-0.04131
-27.8766
-0.09269
1.373654
1.379338
1.481319
1.555759
-0.01382
-0.35577

0.028376
-27.8069
-0.02301
1.443341
1.449026
1.551006
1.625447
-0.34195

0.042194
-27.7931
-0.00919

1.45716

1.462844
1.564825
1.639265

0.384144
-27.4511

0.332762

1.79911

1.804794
1.906775
1.981215
-27.8353
-0.05138
1.414966

1.42065

1.522631

1.597071
27.7839

-1.77204
-2.15335
-2.16716
-2.50911
-2.12497
-29.9602
-2.17635
-0.71
-0.70432
-0.60234
-0.5279
-2.09748
-2.43943
-2.05528
-29.8906
-2.10666
-0.64032
-0.63463
-0.63265
-0.45821
-2.42561
-2.04146
-29.8767
-2.09285
-0.6265
-0.62081
-0.51883
-0.44439
-1.69951
-29.5348
-1.7509
-0.28455
-0.27886
-0.17688
-0.10244
-29.9189
-2.13504
-0.66869
-0.66301
-0.56103
-0.48659
25.70024

2.395277

2.01397
2.000152
1.658202
2.042346
-25.7929
1.990964
3.457312
3.462996
3.564977
3.639417

2.06984
1.727889
2.112033
-25.7232
2.060651
3.526999
3.532683
3.634664
3.709105
1.741708
2.125852
-25.7094

2.07447
3.540817
3.546502
3.648482
3.722923
2.467802
-25.3675

2.41642
3.882768
3.888452
3.990433
4.064873
-25.7516
2.032276
3.498624
3.504308
3.606289
3.680729
29.86755

-1.92926
-2.31056
-2.32438
-2.66633
-2.28219
-30.1175
-2.33357
-0.86722
-0.86154
-0.75956
-0.68512

-2.2547
-2.59665

-2.2125
-30.0478
-2.26388
-0.79754
-0.79185
-0.68987
-0.61543
-2.58283
-2.19868

-30.034
-2.25006
-0.78372
-0.77803
-0.67605
-0.60161
-1.85673

-29.692
-1.90811
-0.44177
-0.43608

-0.3341
-0.25966
-30.0762
-2.29226
-0.82591
-0.82023
-0.71825
-0.64381
25.54302

2.552496
2.171189
2.157371
1.815421
2.199565
-25.635713
2.148183
3.61453
3.620215
3.722195
3.796636
2.227058
1.885108
2.269252
-25.566025
2.21787
3.684218
3.689902
3.791883
3.866323
1.898926
2.28307
-25.552207
2.231688
3.698036
3.70372
3.805701
3.880141
2.62502
-25.210257
2.573638
4.039986
4.04567
4.147651
4.222091
-25.594401
2.189494
3.655842
3.661526
3.763507
3.837947
30.024771

Yes

Yes

Yes

Yes

Yes

Yes
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Table 4. Continued.

MaxRet
MaxRet
MaxRet
MaxRet

a:l B:0 y:0

a:l B:0 y:0

a:l $:0 y:0

a:l B:0 y:0

a:l B:1 y:0.25
a:l B:1v.0.25
a:l B:1y:0.25
a:l B:0.25 y:0.25
a:1l B:0.25 v:0.25
a: | B:0.1 y:0.25

a:l B:1 y:0.25
a:l B:0.25 v:0.25
a: 1 p:0.1y:0.25
a:l B:1 y:05
a:l B:1y:0.25
a:l B:0.25 v:0.25
a: 1 B:0.1 y:0.25
a:l B:1 y05
a:l B:0.25 y:0.25
a: | B:0.1y:0.25
a:l B:1 y0S
a: 1 B:0.1y:0.25
a:l B:1 y:0.5
a:l B:1 y05

29.25024
29.25593
29.35791
29.43235
1.466348
1.472032
1.574013
1.648453
0.005684
0.107665
0.182105
0.101981
0.176421

0.07444

27.16659
27.17227
27.27425
27.34869
-0.61731
-0.61163
-0.50965
-0.43521
-2.07797
-1.97599
-1.90155
-1.98168
-1.90724
-2.00922

31.3339
31.33959
31.44157
31.51601
3.550006

3.55569
3.657671
3.732111
2.089342
2.191323
2.265763
2.185638
2.260079
2.158098

27.00937
27.01505
27.11703
27.19147
-0.77453
-0.76884
-0.66686
-0.59242
-2.23519
-2.13321
-2.05877
-2.1389
-2.06446
-2.16644

31.491119
31.496804
31.598784
31.673225
3.707224
3.712908
3.814889
3.889329
2.246561
2.348541
2.422982
2.342857
2.417297
2.315317

Yes
Yes
Yes
Yes

74



Table S.

Tukey-Kramer Difference of means of arithmetic average return compared by strategies
under ex post assumption.

Ex Post Returm
i

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

a:l B:0.25 y:0.5
a:l B:0.25 v:.0.5
a:l p:0.25 y:0.5
a:l B:0.25 v:.0.5
a:} B:0.25 y:0.5
a:l p:0.25 y:0.5
a:l p:0.25 y:0.5
a:l p:0.25 y:.0.5
a:l B:0.25 y:0.5
a:l f:0.25 y:0.5
a:l B:0.25 y:0.5
a:l B:0.25 y:.0.5
a:l B:0.1y:05

a:l B:0.1 y:0.5

a:1 $:0.1y:05

a:l B:0.1y:0.5

a:l B:0.1 y:0.5

a:l $:0.1 y:0.5

a:l $:0.1y:0.5

a:l B:0.1y05

a:l B:0.1y05

a:l B:0.1 0.5

a:l B:0.1y:0.5

a:l B:0.25 y:0.5
a:l $:0.1y:0.5
a:l B:1y:1

a:l B:0.25y:1
a:l §:0.1 y:i
Mv

ES

MaxRet

a:l $:0 y:0
a:l B:1y:0.25
a:l p:0.25 y:0.25
a: | B:0.1 v:0.25
a:l B:1 y05
a:l B:0.1 y:0.5
a:l B:1y:)

a:] B:0.25 y:1
a:l $:0.1 y:i
MV

ES

MaxRet

a:l B:0 y:0
a:l B:1 y:0.25
a:] $:0.25v:0.25
a: | B:0.1 v:0.25
a:l B:} y0.5
a:l B:1 y:il
a:1$:0.25y:1
a:l §:0.1 y:1
MV

ES

MaxRet

a:l B:0 y0
a:i B:1v:0.25
a:l B:0.25 y:0.25
a: | B:0.1 y:0.25
a:l B:1 y:0.5

Means

0.058102
0.047934
0.001559
-0.00133
-0.0019
-0.00414
-5.1E-06
-0.26314
-0.00229
0.081092
0.071906
0.069682
0.065257
-0.01017
-0.05654
-0.05943
-0.06
-0.06225
-0.05811
-0.32124
-0.06039
0.02299
0.013804
0.01158
0.007154
-0.04638
-0.04926
-0.04984
-0.05208
-0.04794
-0.31108
-0.05022
0.033158
0.023972
0.021748
0.017322

90% Confidence Limits
LSMean(i) -LSMean(j)

0.033956 0.082249
0.023788 0.072081
-0.02259 0.025706
-0.02547 0.02282
-0.02605 0.022246
-0.02829 0.020003
-0.02415 0.024141
-0.28729 -0.23899
-0.02643 0.021861
0.056946 0.105239

0.04776 0.096053
0.045536 0.093828

0.04111 0.089403
-0.03431 0.013979
-0.08069 -0.0324
-0.08358 -0.03528
-0.08415 -0.035886
-0.08639 -0.0381
-0.08225 -0.03396
-0.34539 -0.2971
-0.08453 -0.03624
-0.00116 0.047136
-0.01034 0.03795
-0.01257 0.035726
-0.01699 0.031301
-0.07052 -0.02223
-0.07341 -0.02511
-0.07398 -0.02569
-0.07622 -0.02793
-0.07209 -0.02379
-0.33522 -0.28693
-0.07437 -0.02607
0.009011 0.057304
-0.00018 0.048118

-0.0024 0.045894
-0.00682 0.041468

95% Confidence Limits

LSMean(i) -LSMean(j)
0.032134 0.084071
0.021966 0.073903
-0.02441 0.027528
-0.0273 0.024642
-0.02787 0.024068
-0.03011 0.021825
-0.02597 0.025963
-0.28911 -0.237173
-0.02825 0.023683
0.055124 0.107061
0.045938 0.097875
0.043714 0.09565
0.039288 0.091225
-0.03614 0.015801
-0.08251 -0.030575
-0.0854 -0.03346
-0.08597 -0.034034
-0.08821 -0.036277
-0.08408 -0.032139
-0.34721 -0.295275
-0.08636 -0.034419
-0.00298 0.048958
-0.01216 0.039772
-0.01439 0.037548
-0.01881 0.033123
-0.07234 -0.020407
-0.07523 -0.023292
-0.0758 -0.023868
-0.07805 -0.026109
-0.07391 -0.021971
-0.33704 -0.285107
-0.07619 -0.024251
0.007189 0.059126
-0.002 0.04994
-0.00422 0.047716
-0.00865 0.04329

Sig. Diff
@ 95%

Yes
Yes

Yes

Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
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Table 5. Continued.

a:l B:1 y:1
acl B:1 y:4
a:l B:1 y:t
al B:ly:}
a:l B:1y:1
al B:1yl
a:l B:1y:1
a:l B:1y:1
a:l B:1 y:1
a:l B:1y:1
a:l B:0.25 y:1
a:l B:0.25 y:1
a:l B:0.25 y:1
a:l B:0.25 y:1
a:l B:0.25 y:1
a:l B:0.25 y:1
a:l B:0.25 y:1
a:l B:0.25 y:
a:] $:0.25 y:1
a:l $:0.1 |
a:l §:0.1 y:I
a:l $:0.1 y:I
a:l B:0.1 y:1
a:l §:0.1 y:1
a:1 $:0.1 y:1
a:l B:0.1 y:1
a:l B:0.1 y:1

a:l B:0.25 y:1
a:l B:0.1 y:1
MV

ES

MaxRet

a:l B:0 y:0

a:l B:1 y:0.25
a:l B:0.25 y:0.25
a: | $:0.1 y:0.25
a:l B:1 y:0.5
a:l B:0.1 y:1
My

ES

MaxRet

a:l B:0 y:0

a:l B:1v:0.25
a:l B:0.25 y:0.25
a: | :0.1 y:0.25
a:l B:1 y:0.5
MV

ES

MaxRet

a:l $:0 y:0

a:1 B:1 v.0.25
a:l B:0.25 y:0.25
a: | B:0.1 v:0.25
a:l B:1 y:0.5
ES

MaxRet

a:l B:0 y:0

a:l B:1 y:0.25
a:l B:0.25 y:0.25
a: 1 B:0.§ y:0.25
a:l B:1 y:0.5
MaxRet

a:l B:0 y:0

a:l B:1 v:0.25
a:l B:0.25 y:0.25
a: 1 B:0.1 y:0.25
a:l B:1 y.0.5
a:l B0 y:0

-0.00289
-0.00346
-0.0057
-0.00156
-0.2647
-0.00384
0.079533
0.070347
0.068123
0.063697
-0.00057
-0.00282
0.001321
-0.26182
-0.00096
0.082419
0.073232
0.071008
0.066583
-0.00224
0.001895
-0.26124
-0.00039
0.082992
0.073806
0.071582
0.087157
0.004138
-0.259
0.001858
0.085235
0.076049
0.073825
0.0694
-0.26314
-0.00228
0.081097
0.071911
0.069687
0.065262
0.260856

-0.02703
-0.02761
-0.02985
-0.02571
-0.28885
-0.02799
0.055387
0.046201
0.043976
0.039551
-0.02472
-0.02696
-0.02283
-0.28596
-0.02511
0.058272
0.049086
0.046862
0.042436
-0.02639
-0.02225
-0.28539
-0.02453
0.058846
0.04966
0.047436
0.04301
-0.02001
-0.28314
-0.02229
0.061089
0.051903
0.049679
0.045253
-0.28728
-0.02643
0.056951
0.047765
0.045541
0.041115
0.236709

0.021261
0.020687
0.018444
0.022582
-0.24055
0.020302
0.103679
0.094493
0.092269
0.087844
0.023573
0.021329
0.025468
-0.23767
0.023188
0.106565
0.097379
0.095155
0.090729
0.021903
0.026041
-0.23709
0.023761
0.107139
0.097953
0.095729
0.091303
0.028284
-0.23485
0.026004
0.109382
0.100198
0.097972
0.093546
-0.23899
0.021866
0.105244
0.096058
0.093834
0.089408
0.285002

-0.02885
-0.02943
-0.03167
-0.02753
-0.29067
-0.02981
0.053565
0.044379
0.042155
0.037729
-0.02654
-0.02879
-0.02465
-0.28778
-0.02693
0.05645
0.047264
0.04504
0.040615
-0.02821
-0.02407
-0.28721
-0.02635
0.057024
0.047838
0.045614
0.041188
-0.02183
-0.28497
-0.02411
0.059267
0.050081
0.047857
0.043431
-0.2891
-0.02825
0.055129
0.045943
0.043719
0.039293
0.234887

0.023083
0.022509
0.020266
0.024404
-0.238732
0.022124
0.105501
0.096315
0.094091
0.089666
0.025394
0.023151
0.027289
-0.235846
0.025009
0.108387
0.099201
0.096977
0.092551
0.023725
0.027863
-0.235272
0.025583
0.108961
0.099775
0.09755
0.093125
0.030106
-0.233029
0.027826
0.111204
0.102018
0.099794
0.095368
-0.237167
0.023688
0.107066
0.09788
0.095655
0.09123
0.286824

Yes

Yes
Yes
Yes
Yes

Yes

Yes
Yes
Yes
Yes

Yes

Yes
Yes
Yes
Yes

Yes

Yes
Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes
Yes
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Table 5. Continued

MaxRet
MaxRet
MaxRet
MaxRet

a:l §:0 y0

a:l B:0 10

a:l p:0 y:0

a:l B:0 y0

a:l B:1 y:0.25
a:l B:1 y:0.25
a:l B:1 y:0.25
a:]l B:0.25y:0.25
a:l B:0.25 y.0.25
a: | B:0.1 y:0.25

a:l B:1 y:0.25
a:l B:0.25y:0.25
a: | B:0.1 y:0.25
a:l B:1 y0.5
a:l B:1 y:0.25
a:l B:0.25y:0.25
a: 1 g:0.1 y:0.25
a:l B:1 y0.5
a:l B:0.25y:0.25
a: | B:0.1 y:0.25
a:i B:1 y:0.5
a: | B:0.1 y:0.25
a:l B:1 y:0.5
a:l B:1 y0.5

0.344233
0.335047
0.332823
0.328397
0.083377
0.074191
0.071967
0.067542
-0.00919
-0.01141
-0.01584
-0.00222
-0.00665
-0.00443

0.320087
0.310901
0.308676
0.304251
0.058231
0.050045
0.047821
0.043395
-0.03333
-0.03556
-0.03998
-0.02637

-0.0308
-0.02857

0.368379
0.359193
0.356969
0.352544
0.107524
0.098338
0.096114
0.091688

0.01496
0.012736
0.008311
0.021922
0.017497
0.019721

0.318265
0.309079
0.306855
0.302429
0.057409
0.048223
0.045999
0.041573
-0.03515
-0.03738

-0.0418
-0.02819
-0.03262
-0.03039

0.370201
0.361015
0.358791
0.354366
0.109346

0.10016
0.097935

0.09351
0.016782
0.014558
0.010133
0.023744
0.019319
0.021543

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
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Table 6.

Tukey-Kramer difference of means of geometric average retumed compared by strategies
under ex post assumption.

Ex Post Compound

EQ
EQ
EQ
EQ
EQ
EQ
EQ
EQ
EQ
EQ
EQ
EQ
EQ
a:l B:0.25 y:0.5
a:l B:0.25 y:0.5
a:l B:0.25 y.0.5
a:l B:0.25 y:0.5
a:l B:0.25 v.0.5
a:l §:0.25 y:0.5
a:l §:0.25 y:0.5
a:l §:0.25 v.0.5
a:l $:0.25 y:0.5
a:l B:0.25 v:0.5
a:l B:0.25 y:0.5
a:] B:0.25 y:0.5
a:l B:0.1y.0.5
a:l B:0.1 y.05
a:l B:0.1 y05
a:l B:0.1y.0.5
a:1 B:0.1 y:0.5
a:l B:0.1y:05
a:1 B:0.1 v:0.5
a:l B:0.1y0.5
a:l B:0.1y:05
a:l B:0.1 y:0.5
a:l B:0.1 y:0.5

a:l B:0.25 v:0.5
a:l B:0.1y05
a:l B:1 vy

a:} B:0.25 y:1
a:l B:0.1 vl
My

ES

MaxRet

a:l B:0 y:0
a:l B:1y.0.25
a:l §:0.25 1:0.25
a:1p:0.1 025
a:l B:1 y:0.5
a:l B:0.1 y:0.5
a:l B:1y:1

a:] 3:0.25 y:1
a:l B:0.1 y:1
My

ES

MaxRet

a:l B:0 y:0
a:l B:1 y:0.25
a:l §:0.25 y:0.25
a: | B:0.1 v.0.25
a:l B:1 y:0.5
a:l B:1 y:1

a:l B:0.25 y:1
a:l $:0.1 y:!
My

ES

MaxRet

a:l §:0 y:0
a:l B:1 v:0.25
a:] B:0.25 y.0.25
a: | 0.1 y0.25
a:l B:1 y:0.5

Means

0.057512
0.047348
0.001392
-0.00144
-0.002
-0.00484
-4.7€-06
-0.26044
-0.00238
0.081499
0.071773
0.069257
0.064712
-0.01016
-0.05612
-0.05895
-0.05952
-0.06235
-0.05752
-0.31795
-0.05989
0.023987
0.014262
0.011745
0.0072
-0.04596
-0.04879
-0 04935
-0.05219
-0.04735
-0.30779
-0.04973
0.034151
0.024425
0.021909
0.017364

90% Confidence Limits
LSMean(i) -LSMean(j)

0.030621 0.084402
0.020457 0.074239

-0.0255 0.028283
-0.02833 0.025454
-0.02889 0.024888
-0.03173 0.02205

-0.0269 0.026886
-0.28733 -0.23355
-0.02927 0.02451
0.054608 0.10839
0.044883 0.098664
0.042366 0.096148
0.037821 0.091602
-0.03705 0.016727
-0.08301 -0.02923
-0.08584 -0.03206
-0.08641 -0.03262
-0.08924 -0.03546
-0.08441 -0.03063
-0.34484 -0.29106
-0.08678 -0.033

-0.0029 0.050878
-0.01263 0.041153
-0.01515 0.038636
-0.01969 0.034091
-0.07285 -0.01907
-0.07568 -0.02189
-0.07624 -0.02246
-0.07908 -0.0253
-0.07424 -0.02046
-0.33468 -0.2809
-0.07662 -0.02284

0.00726 0.061042
-0.00247 0.051316
-0.00498 0.0488
-0.00953 0.044254

95% Confidence Limits
LSMean(i) -LSMean(j)

0.028566 0.086458
0.018402 0.076294
-0.02755 0.030338
-0.03038 0.027509
-0.03095 0.026943
-0.03379 0.024106
-0.02895 0.028941
-0.28939 -0.231496
-0.03133 0.026565
0.052553 0.110445
0.042827 0.100719
0.040311 0.098203
0.035768 0.093658
-0.03911 0.018782
-0.08507 -0.027174
-0.08789 -0.030002
-0.08846 -0.030569
-0.0913 -0.033406
-0.08646 -0.02857
-0.3469 -0.289007
-0.08884 -0.030947
-0.00496 0.052933
-0.01468 0.043208
-0.0172 0.040691
-0.02175 0.036146
-0.0749 -0.01701
-0.07773 -0.019839
-0.0783 -0.020405
-0.08113 -0.023243
-0.0763 -0.018407
-0.33674 -0.278844
-0.07868 -0.020783
0.005205 0.63097
-0.00452 0.053371
-0.00704 0.050855
-0.01158 0.04631

Sig. Diff
@ 95%

Yes
Yes

Yes

Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
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Table 6. Continued.

a:l :1y:1
a:l B:1y:1
a:l B:1y:l
a:l B:1 y:1
a:l B:1 y:1
a:l B:1 y:1
a:l g1yl
a:l B:1 vl
a:l g:1 vl
a:l B:1y:1
a:] §:0.25 y:1
a:l f:0.25y:1
a:1 B:0.25 y:1
a:) B:0.25 y:1
a:l B:0.25 y:1
a:l B:0.25 y:1
a:] §:0.25 y:1
a:l 3:0.25 y:)
a:l B:0.25 y:1
a:l §:0.1 y:i
a:l B:0.1 I
a:l B:0.1 y:1
a:l g:0.1 y:I
a:l §:0.1 y:1
a:l $:0.1 y:1
a:l §:0.1 y:1
a:i B:0.1 y:1

a:l :0.25 y:1
a:l B:0.) y:1
MV

ES

MaxRet

a:l B:0 y:0

a:l B:1 y:0.25
a:l §:0.25 y:0.25
a: 1 B:0.1 y:0.25
a:l B:1 y:0.5
a:1 B:0.1 y:i
My

ES

MaxRet

a:l B:0 v:0

a:l B:1 y:0.25
a:l p:0.25 y:0.25
a: | B:0.1 y:0.25
a:l B:1 v0.5
MV

ES

MaxRet

a:l B:0 y:0

a:l B:1 y:0.25
a:l B:0.25 y:0.25
a: | B:0.1 y:0.25
a:l B:l y:0.5
ES

MaxRet

a:l B:0 y:0

a:l B:1 y:0.25
a:l B:0.25 y:0.25
a: | $:0.1v:0.25
a:l B:} y:0.5
MaxRet

a:l B:0 y:0

a:l B:1y:0.25
a:l B:0.25 v:0.25
a: | §:0.1 y:0.25
a:l B:1 y:05
a:l $:0 y:0

a:l B:1 y:0.25

-0.00283
-0.0034
-0.00623
-0.0014
-0.26183
-0.00377
0.080107
0.070381
0.067865
0.06332
-0.00057
-0.0034
0.001432
-0.25901
-0.00094
0.082936
0.07321
0.070694
0.066148
-0.00284
0.001998
-0.25844
-0.00038
0.083502
0.073777
0.07126
0.066715
0.004836
-0.2556
0.002459
0.08634
0.076614
0.074097
0.069552
-0.26044
-0.00238
0.081504
0.071778
0.069262
0.084716
0.258061
0.341941

-0.02972
-0.03029
-0.03312
-0.02829
-0.28873
-0.03066
0.053216
0.043491
0.040974
0.036429
-0.02746
-0.0303
-0.02546
-0.2859
-0.02784
0.056045
0.046319
0.043803
0.039257
-0.02973
-0.02489
-0.28533
-0.02727
0.056612
0.046888
0.044369
0.039824
-0.02206
-0.28249
-0.02443
0.059449
0.049723
0.047207
0.042661
-0.28733
-0.02927
0.054613
0.044887
0.042371
0.037826
0.23117
0.31505

0.024062
0.023495
0.020658
0.025494
-0.23494
0.023118
0.106998
0.097272
0.094756
0.09021
0.026324
0.023487
0.028323
-0.23211
0.025946
0.109826
0.100101
0.097584
0.093039
0.024053
0.028889
-0.23155
0.026513
0.110393
0.100667
0.098151
0.093608
0.031726
-0.22871
0.02935
0.11323
0.103505
0.100988
0.096443
-0.23355
0.024514
0.108395
0.098669
0.096152
0.091607
0.284951
0.368832

-0.03178
-0.03234
-0.03518
-0.03034
-0.29078
-0.03272
0.051161
0.041435
0.038919
0.034374
-0.02951
-0.03235
-0.02751
-0.28795
-0.02989
0.05399
0.044264
0.041748
0.037202
-0.03178
-0.02695
-0.28739
-0.02932
0.054556
0.044831
0.042314
0.037769
-0.02411
-0.28455
-0.02649
0.057394
0.047668
0.045151
0.040606
-0.28938
-0.03132
0.052558
0.042832
0.040316
0.03577
0.229115
0.312995

0.026117
0.025551
0.022713
0.027549
-0.232888
0.025173
0.109053
0.099327
0.096811
0.092266
0.028379
0.025542
0.030378
-0.230059
0.028002
0.111882
0.102156
0.09964
0.095094
0.026109
0.030944
-0.229493
0.028568
0.112448
0.102723
0.100206
0.095661
0.033782
-0.226655
0.031405
0.115286
0.10556
0.103043
0.098498
-0.231491
0.02657
0.11045
0.100724
0.098208
0.093662
0.287007
0.370887

Yes

Yes
Yes
Yes
Yes

Yes

Yes
Yes
Yes
Yes

Yes

Yes
Yes
Yes
Yes

Yes

Yes
Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes
Yes
Yes
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Table 6. Continued.

MaxRet
MaxRet
MaxRet

a:l B:0 y:0

a:l B:0 v:0

a:l B:0 v:0

a:]l $:0 y:0

a:l B:1 y.0.25
a:l B:1 y:0.25
a:1 B:1 y:0.25
a:1 §:0.25 y:0.25
a:1 B:0.25 y:0.25
a: | B:0.1 y:0.25

a:l B:0.25 y:0.25
a: | B:0.1y:025
a:l B:1 y0.5
a:l f:1 y:0.25
a:l §:0.25 y:0.25
a: 1 B:0.1y025
a:l $:1 y0.5
a:l $:0.25 y:0.25
a: ! B:0.1 y.0.25
a:l B:1 y:.0.5
a: ! B:0.1 y:0.25
a:l B:1 y:0.5
a:l B:l y:0.5

0.332215
0.329699
0.325153

0.08388
0.074154
0.071638
0.067093
-0.00973
-0.01224
-0.01679
-0.00252
-0.00706
-0.00455

0.305324
0.302808
0.298263
0.056989
0.047264
0.044747
0.040202
-0.03662
-0.03913
-0.04368
-0.02941
-0.03395
-0.03144

0.359106
0.356589
0.352044
0.110771
0.101045
0.098529
0.093983
0.017165
0.014649
0.010103
0.024374
0.019829
0.022345

0.303269
0.300753
0.296207
0.054934
0.045208
0.042692
0.038147
-0.03867
-0.04119
-0.04573
-0.03146
-0.03601
-0.03349

0.361161
0.358645
0.354099
0.112826
0.1031
0.100584
0.096039
0.01922
0.016704
0.012158
0.02643
0.021884
0.024401

Yes
Yes
Yes
Yes
Yes
Yes
Yes
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Table 7.

Tukey-Kramer difference of means of risk (metric standard deviation) compared by
strategies under ex post assumption.

Ex Post Sharpe
i

EQ
EQ
EQ
EQ
EQ
EQ
EQ
EQ
EQ
EQ
EQ
EQ
EQ
a:l B:0.25 y:.0.5
a:l B:0.25 y:0.5
a:l B:0.25 ¢:0.5
a:l B:0.25 y:0.5
a:l B:0.25 y:0.5
a:l B:0.25 y.0.5
a:l $:0.25 y:0.5
a:l B:0.25 y:0.5
a:l B:0.25 v:0.5
a:l p:0.25 v:0.5
a:l p:0.25 1:0.5
a:l B:0.25 1:0.5
a:l $:0.1y:05
a:t B:0.1 v:0.5
a:l B:0.1 v:0.5
a:l p:0.1 y:0.5
a:l B:0.1 y:0.5
a:l B:0.1v:05
a:l B:0.1:0.5
a:l B:0.1y:05
a:l B:0.1v:05
a:! B:0.1y:05
a:l B:0.1y:0.5

a:]1 :0.25 y:0.5
a:l B:0.1 y:0.5
a:l B:1y:1

a:l $:0.25 y:1
a:1 $:0.1 y:l
My

ES

MaxRet

a:l B:0 y:0
a:l B:1 7:0.25
a:l B:0.25 y:0.25
a: | B:0.1 y:0.25
a:l B:1 y:05
a:l B:0.1 y:0.5
a:l p:t vl

a:l p:0.25 y:1
a:l B:0.1 y:l
MV

ES

MaxRet

a:l B:0 y:0
a:l p:1 y:0.25
a:l p:0.25 y:0.25
a: 1 p:0.1 y:0.25
a:l B:1 y:05
a:l g:1 ¥l

a:1 B:0.25 y:}
a:l :0.1 y:1
MV

ES

MaxRet

a:l §:0 y:0
a:l B:1 y.0.25
a:] B:0.25 y:0.25
a: 1 B:0.1 y:0.25
a:1 B:1 y:05

Means

1.529144
1.285341
0.041201
-0.02849
-0.04231
-0.38426
-0.00011
-27.8354
-0.05149
1.414855
1.420539
1.52252
1.59696
-0.2438
-1.48794
-1.55763
-1.57145
-1.9134
-1.52926
-29.3645
-1.58064
-0.11429
-0.10861
-0.00662
0.067816
-1.24414
-1.31383
-1.32765
-1.6696
-1.28545
-29.1207
-1.33683
0.129514
0.135198
0.237179
0.311619

90% Confidence Limits

LSMean(i) -LSMeanj)
-0.55451 3.612802
-0.79832 3.368999
-2.04246 2.124858
-2.11214 2.0585171
-2.12596 2.041353
-2.46791 1.699403
-2.08377 2.083547
-29.919 -25.7517
-2.13515 2.032165
-0.6688 3.498513
-0.66312 3.504197
-0.56114 3.606178
-0.4867 3.680618
-2.32746 1.839855
-3.5716 0.595715
-3.64129 0.526027
-3.65511 0.512209
-3.99706 0.170259
-3.61291 0.554403
-31.4482 -27.2809
-3.66429 0.503021
-2.19795 1.969369
-2.19226 1.975053
-2.09028 2.077034
-2.01584 2.151474
-3.3278 0.839518
-3.39749 0.76983
-3.4113 0.756012
-3.75325 0.414062
-3.36911 0.798206
-31.2044 -27.0371
-3.42049 0.746824
-1.95414 2.213172
-1.94846 2.218856
-1.84648 2.320837
-1.77204 2.395277

95% Confidence Limits Sig. Diff
LSMean(i) -LSMean(j) @ 95%
-0.71173 3.77002
-0.95554 3.526217
-2.19968 2.282077
-2.26938 221239
-2.28318 2.198571
-2.62513 1.856621
-2.24099 2.240765
-30.0763  -25.594512 Yes
-2.29237 2.189383
-0.82602 3.655731
-0.82034 3.661415
-0.71836 3.763396
-0.64392 3.837836
-2.48468 1.997073
-3.72882 0.752933
-3.79851 0.683246
-3.81233 0.669428
-4.15428 0.327478
-3.77013 0.711622
-31.6054  -27.123656 Yes
-3.82151 0.66024
-2.35517 2.126587
-2.34948 2.132272
-2.2475 2.234252
-2.17308 2.308693
-3.48502 0.996736
-3.5547 0.927049
-3.56852 0.913231
-3.91047 0.57128
-3.52633 0.955424
-31.3616  -26.879853 Yes
-3.57771 0.904042
-2.11136 2.37039
-2.10568 2.376074
-2.0037 2.478055
-1.92926 2.552496
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Table 7. Continued.

a:l B y:1
acl B:1 ¥:1
a:l §:1 y:1
a:l B:1 11
a:l §:1 1
a:l B:1v:1
a:l B:1 y:1
a:l B:1y:1
a:l §:1 y:1
a:l B:1 y:1
a:l B:0.25 y:1
a:l B:0.25 y:1
a:l B:0.25 y:1
a:l B:0.25 y:1
a:l B:0.25 y:1
a:l B:0.25 y:1
a:l B:0.25 y:1
a:l f:0.25 ¢:1
a:l p:0.25y:1
a:l 0.1 y:1
a:l B:0.1 y:1
a:l B:0.1 y:1
a:l p:0.1 y:1
a:l B:0.1 y:1
a:l B:0.1 y:i
a:l f:0.1 y:1
a:l B:0.1 y:1

MaxRet

a:l B:0.25 y:1
a:l B:0.1 y:i
mv

ES

MaxRet

a:l B:0 y:0

a:l B:1v:0.25
a:l B:0.25 v:0.25
a: | B:0.1 y:0.25
a:l B:1 y:05
a:l B:0.1 y:1
MV

ES

MaxRet

a:l B:0 y:0

a:l B:1 y:0.25
a:l B:0.25 y:0.25
a: | B:0.1 y:0.25
a:l B:1 y0.5
My

ES

MaxRet

a:l B:0 y:0

a:l B:1y:0.25
a:l B:0.25 y:0.25
a: |1 B:0.1 y:0.25
a:]l B:I y:05
ES

MaxRet

a:l B:0 y:0

a:l B:1 y:0.25
a:l p:0.25 y:0.25
a: 1 p:0.1 v.0.25
a:l B:1 v:0.5
MaxRet

a:l B:0 y:0

a:l B:1 y:0.25
a:l §:0.25 v:0.25
a: | B:0.1 y:0.25
a:l B:1 y:0.5
a:l §:0 y:0

-0.06969
-0.08351
-0.42546
-0.04131
-27.8766
-0.09269
1.373654
1.379338
1.481319
1.555759
-0.01382
-0.35577
0.028376
-27.8069
-0.02301
1.443341
1.449026
1.551006
1.625447
-0.34195
0.042194
-27.7931
-0.00919
1.45716
1.462844
1.564825
1.639265
0.384144
-27.4511
0.332762
1.79911
1.804794
1.906775
1.981215
-27.8353
-0.05138
1.414966
1.42085
1.522631
1.587071
27.7839

-2.15335
-2.16716
-2.50911
-2.12497
-29.9602
-2.17635
-0.71
-0.70432
-0.60234
-0.5279
-2.09748
-2.43943
-2.05528
-29.8906
-2.10666
-0.64032
-0.63463
-0.53265
-0.45821
-2.42561
-2.04146
-29.8767
-2.09285
-0.6265
-0.62081
-0.51883
-0.44439
-1.69951
-29.5348
-1.7508
-0.28455
-0.27886
-0.17688
-0.10244
-29.9189
-2.13504
-0.66869
-0.68301
-0.56103
-0.48659
25.70024

2.01397
2.000152
1.658202
2.042346

-25.7929
1.990964
3.457312
3.462996
3.564977
3.639417

2.06984
1.727889
2.112033

-25.7232
2.060651
3.526999
3.532683
3.634664
3.709105
1.741708
2.125852
-25.7094

2.07447
3.540817
3.546502
3.648482
3.722923
2.467802

-25.3675

2.41642
3.882768
3.888452
3.990433
4.064873

-25.7516
2.032276
3.498624
3.504308
3.606289
3.680729
29.86755

-2.31056
-2.32438
-2.66633
-2.28219
-30.1175
-2.33357
-0.86722
-0.86154
-0.75956
-0.68512

-2.2547
-2.59665

-2.2125
-30.0478
-2.26388
-0.79754
-0.79185
-0.68987
-0.61543
-2.58283
-2.19868

-30.034
-2.25006
-0.78372
-0.77803
-0.67605
-0.60161
-1.85673

-29.692
-1.90811
-0.44177
-0.43608

-0.3341
-0.25966
-30.0762
-2.29226
-0.82591
-0.82023
-0.71825
-0.64381
25.54302

2.171189
2.1573711
1.815421
2.199565
-25.635713
2.148183
3.61453
3.620215
3.722195
3.796636
2.227058
1.885108
2.269252
-25.566025
221787
3.684218
3.689902
3.791883
3.866323
1.898926
2.28307
-25.552207
2.231688
3.698036
3.70372
3.805701
3.880141
2.62502
-25.210257
2.573638
4.039986
4.04567
4.147651
4.222091
-25.594401
2.189494
3.655842
3.661526
3.763507
3.837947
30.024771

Yes

Yes

Yes

Yes

Yes

Yes
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Table 7. Continued.

MaxRet
MaxRet
MaxRet
MaxRet

a:l $:0 y:0

a:l $:0 y0

a:l B:0 y0

a:l B:0 y:0

a:l B:1 y.0.25
a:l B:1 1:.0.25
a:l B:1 v:0.25
a:l B:0.25 y:0.25
a:l B:0.25 y:0.25
a: | B:0.1 y:0.25

a:l B:1 7:0.25
a:l B:0.25y:0.25
a: 1 p:0.1 1:0.25
a:l B:1 y:0.5
a:l B:1 1:0.25
a:} B:0.25 y:0.25
a: | $:0.1 y:0.25
a:l B:1 y:0.5
a:l §:0.25 y:0.25
a: | §:0.1 y:0.25
a:l B:1 y:0.5
a: | $:0.1y:0.25
a:l B:1 0.5
a:l B:1 y0.5

29.25024
29.25593
29.35791
29.43235
1.466348
1.472032
1.574013
1.648453
0.005684
0.107665
0.182105
0.101981
0.176421

0.07444

27.16659
27.17227
27.27425
27.34869
-0.61731
-0.61163
-0.50965
-0.43521
-2.07797
-1.97599
-1.90155
-1.98168
-1.90724
-2.00922

31.3339
31.33959
31.44157
31.51601
3.550006

3.55569
3.657671
3.732111
2.089342
2.191323
2.265763
2.185638
2.260079
2.158098

27.00937
27.01505
27.11703
27.19147
-0.77453
-0.76884
-0.66686
-0.59242
-2.23519
-2.13321
-2.05877

-2.1389
-2.06446
-2.16644

31.491119
31.496804
31.598784
31.673225
3.707224
3.712908
3.814889
3.889329
2.246561
2.348541
2.422982
2.342857
2.417297
2.315317

Yes
Yes
Yes
Yes
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Table 8.

Tukey-Kramer difference of means of Sharpe ratio compared by strategies under ex ante

assumption.

Ex Ante Sharpe
i

EQ
EQ
EQ
EQ
EQ
EQ
EQ
EQ
EQ
EQ
EQ
EQ
EQ
a:l B:0.25 y:0.5
a:1 3:0.25 y:0.5
a:l B:0.25 y.0.5
a:l B:0.25 y:0.5
a:l B:0.25 y:0.5
a:l B:0.25 y:0.5
a:l B:0.25 1:0.5
a:l B:0.25 y:0.5
a:l B:0.25 y:0.5
a:l §:0.25 y:0.5
a:l B:0.25 y:0.5
a:l §:0.25 y.0.5
a:l B:0.1y:05
a:l B:0.1y:05
a:l B:0.1y:05
a:l B:0.1y:.05
a:l B:0.1y05
a:l B:0.1 v:0.5
a:l B:0.1 y:05
a:l B:0.1y.05
a:! B:0.1 .05
a:l B:0.1y:05
a:! p:0.1y:05

a:l B:0.2§ y:0.5
a:l B:0.1y:0.5
a:l B:1y:1

a:l $:0.25 y:1
a:l B:0.1 y:|
My

ES

MaxRet

a:l B:0 y:0
a:l B:1 v:0.25
a:l $:0.25 y:0.25
a: | B:0.1 y:0.25
a:l B:1 105
a:l B:0.1y.0.5
a:l B:1 vl

a:l B:0.25 y:1
a:l :0.1 y:1
MV

ES

MaxRet

a:l B:0 v0
a:l f:1y:0.25
a:i §:0.25 y:0.25
a: 1 $:0.1 y:0.25
a:l B:1 y:0.5
a:i p:1 1

a:] B:0.25 y:1
a:1 B:0.) y:i
Mv

ES

MaxRet

a:1 B:0 y:0
a:l B:1 y:0.25
a:] p:0.25 y:0.25
a: 1 B:0.1 y:0.25
a:l B:1 v05

Means

-0.13406
-0.11102
-0.00536
0.000244
-0.21956
0.008135
7.26E-05
1.348472
0.002105
0.072246
0.045158
-0.01597
-0.15145
0.02304
0.128701
0.134304
-0.0855
0.142195
0.134133
1.482533
0.136165
0.206306
0.179218
0.118089
-0.01739
0.105661
0.111263
-0.10854
0.119155
0.111092
1.459492
0.113125
0.183266
0.156178
0.095048
-0.04043

90% Confidence Limits
LSMean(i) -LSMean(j)

-1.63029 1.362172
-1.60725 1.385213
-1.50159 1.490873
-1.49599 1.496476
-1.71579 1.276674

-1.4881 1.504368
-1.49616 1.496305
-0.14776 2.844705
-1.49413 1.498338
-1.42399 1.568479
-1.45107 1.541391

-1.5122 1.480261
-1.64769 1.344779
-1.47319 1.519273
-1.36753 1.624933
-1.36193 1.630536
-1.58173 1.410734
-1.35404 1.638428

-1.3621 1.630365

-0.0137 2.978765
-1.36007 1.632398
-1.28993 1.702539
-1.31701 1.675451
-1.37814 1.614321
-1.51363 1.478839
-1.39057 1.601893
-1.38497 1.607496
-1.60477 1.387693
-1.37708 1.615388
-1.38514 1.607325
-0.03674 2.955725
-1.38311 1.609357
-1.31297 1.679499
-1.34006 1.652411
-1.40118 1.591281
-1.53667 1.455799

95% Confidence Limits
LSMean(i) -LSMean(j)

-1.74323 1.475113
-1.72019 1.498153
-1.61453 1.603814
-1.60893 1.609417
-1.82873 1.389614
-1.60104 1.617308
-1.6091 1.609246
-0.2607 2.957646
-1.60707 1.611278
-1.53693 1.681419
-1.56402 1.654331
-1.62514 1.593202
-1.76063 1.457719
-1.58613 1.632213
-1.48047 1.737874
-1.47487 1.743477
-1.69467 1.523674
-1.46698 1.751368
-1.47504 1.743306
-0.12664 3.091706
-1.47301 1.745338
-1.40287 1.815479
-1.42996 1.788391
-1.49108 1.727262
-1.62657 1.591779
-1.50351 1.714834
-1.49791 1.720436
1.7 1.500634
-1.49002 1.728328
-1.49808 1.720265
-0.14968 3.068665
-1.49605 1.722298
-1.42591 1.792439
-1.453 1.765351
-1.51413 1.704221
-1.64961 1.568739

Sig. Diff.
@ 95%



Table 8. Continued.

azl B:1 vl
a:l B:1y:1
a:l B:1y:l
a:l B:ly:l
a:t B:1yl
al B:1y:l
a:l B:1y:1
a:l B:1y:l
al P:1y:l
al B:lyl
a:l B:0.25 vt
a:l B:0.25 y:1
a:l $:0.25 y:1
a:1 $:0.25 y:|
a:1 B:0.25y:1
a:l B:0.25 y:1
a:l B:0.25 y:1
a:l B:0.25 y:1
a:l B:0.25 y:1
a:l B:0.1 y:1
a:l B:0.1 y:l
a:t B:0.1 y:l
a:l B:0.1 y:1
a:l B:0.1 1
a:1 B:0.1 y:1
a:l B:0.1 y:1
a:l B:0.1 y:1
Mv

My

My

Mv

My
MV
My
ES
ES
ES
ES
ES
ES

MaxRet
MaxRet

a:l B:0.25 y:1
a:l B:0.1 y:1
My

ES

MaxRet

a:l B:0 y:0

a:l p:1 v:0.25
a:l B:0.25 y:0.25
a: 1 B:0.1y:0.25
a:) B:1 y:0.5
a:1 §:0.1 11|
My

ES

MaxRet

a:l B:0 y:0

a:l B:1 y:0.25
a:l B:0.25 y:0.25
a: | B:0.1v:0.25
a:l B:1 y:0.5
My

ES

MaxRet

a:l B:0 1.0

a:l B:1 v:0.25
a:l B:0.25 y:0.25
a: | 3:0.1 y:0.25
a:l B:} y:0.5
ES

MaxRet

a:l B:0 y:0

a:l B:1v:0.25
a:l $:0.25 y:0.25
a: ] §:0.1 y:0.25
a:l B:l y:05
MaxRet

a:l B:0 y:0

a:l B:1 y:0.25
a:l B:0.25 y:0.25
a: | $:0.1y:0.25
a:l B:1 y:0.5
a:l B0 y:0

a:l B:1 y:0.25

0.005603
-0.2142
0.013495
0.005432
1.353832
0.007464
0.077606
0.050517
-0.01061
-0.1461
-0.2198
0.007892
-0.00017
1.348229
0.001862
0.072003
0.044915
-0.01622
-0.1517
0.227694
0.219632
1.568032
0.221664
0.291805
0.264717
0.203588
0.068105
-0.00806
1.340337
-0.00603
0.064111
0.037023
-0.02411
-0.15959
1.3484
0.002033
0.072174
0.045086
-0.01604
-0.15153
-1.34637
-1.27623

-1.49063
-1.71043
-1.48274
-1.4908
-0.1424
-1.48877
-1.41863
-1.44572
-1.50685
-1.64233
-1.71604
-1.48834
-1.4964
-0.148
-1.49437
-1.42423
-1.45132
-1.51245
-1.64793
-1.26854
-1.2766
0.071799
-1.27457
-1.20443
-1.23152
-1.29265
-1.42813
-1.5043
-0.1559
-1.50226
-1.43212
-1.45921
-1.52034
-1.65582
-0.14783
-1.4942
-1.42406
-1.45115
-1.51228
-1.64776
-2.8426
-2.77246

1.501835
1.282033
1.509727
1.501664
2.850064
1.503697
1.573838

1.54675

1.48562
1.350138

1.27643
1.504124
1.496062
2.844461
1.498094
1.568235
1.541147
1.480018
1.344535
1.723927
1.715864
3.064264
1.717897
1.788038

1.76095

1.69982
1.564338

1.48817

2.83657
1.490202
1.560344
1.533255
1.472126
1.336643
2.844632
1.498265
1.568406
1.541318
1.480189
1.344706
0.149865
0.220006

-1.60357
-1.82337
-1.59568
-1.60374
-0.25534
-1.60171
-1.53157
-1.55866
-1.61979
-1.75527
-1.82898
-1.60128
-1.60934
-0.26094
-1.60731
-1.53717
-1.56426
-1.62539
-1.76087
-1.38148
-1.38954
-0.04114
-1.38751
-1.31737
-1.34446
-1.40559
-1.54107
-1.61724
-0.26884
-1.6152
-1.54506
-1.57215
-1.63328
-1.76876
-0.26077
-1.60714
-1.537
-1.56409
-1.62522
-1.7607
-2.95554
-2.8854

1.614776
1.394973
1.622668
1.614605
2.963005
1.616637
1.686779

1.65969
1.598561
1.463078

1.38937
1.817065
1.609002
2.957402
1.611035
1681176
1.654088
1.592958
1.457476
1.836867
1.828805
3.177205
1.830837
1.900978

1.87389
1.812761
1.677278

1.60111

2.94951
1.603143
1.673284
1.646196
1.585068
1.449584
2.957573
1.611206
1.681347
1.654259
1.593129
1.457647
0.262806
0.332947
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Table 8. Continued.

MaxRet
MaxRet
MaxRet

a:l B:0 y0

a:l B:0 y0

a:] B:0 y:0

a:l B:0 y0

a:} B:17:0.25
a:l B:1y:0.25
a:l B:1y:025
a:l B:0.25y:0.25
a:] $:0.25 y:0.25
a: 1 B:0.1 y:0.25

a:l B:0.25 y:0.25
a: 1 f:0.1y:0.25
a:l B:1 y05
a:l 8:1 v:0.25
a:l B:0.25 y:0.25
a:l $:0.1y:0.25
a:l B:1 y:0.5
a:l B:0.25 y.0.25
a: ] B:0.1y:0.25
a:l B:} y:0.5
a: | p:0.1y:0.25
a:l B:1 y0.5
a:l B:1 y:0.5

-1.30331
-1.36444
-1.49993
0.070141
0.043053
-0.01808
-0.15356
-0.02709
-0.08822
-0.2237
-0.06113
-0.19661
-0.13548

-2.79955
-2.86068
-2.99616
-1.42609
-1.45318
-1.51431
-1.64979
-1.52332
-1.58445
-1.71993
-1.55736
-1.69285
-1.63172

0.192918
0.131789
-0.00369
1.566374
1.539286
1.478156
1.342674
1.469144
1.408015
1.272532
1.435103
1.299621

1.36075

-2.91249
-2.97362

-3.1091
-1.53903
-1.56612
-1.62725
-1.76273
-1.63626
-1.69739
-1.83287

-1.6703
-1.80579
-1.74466

0.305859
0.244729
0.109247
1.679314
1.652226
1.591097
1.455614
1.582085
1.520955
1.385473
1.548044
1.412561
1.473691
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Table 9.

Tukey-Kramer difference of means of arithmetic average return compared by strategies
under ex ante assumption.

Ex Ante Retum
i

EQ

EQ

EQ

EQ

EQ

EQ

€Q

EQ

EQ

EQ

EQ

EQ

EQ

a:l B:0.25 y:0.5
a:l B:0.25 0.5
a:l B:0.25 y:0.5
a:l B:0.25 y.0.5
a:l B:0.25 y.0.5
a:l B:0.25 y:0.5
a:l B:0.25 y:0.5
a:1 p:0.25 v.0.5
a:l B:0.25 y.0.5
a:l p:0.25 y:0.5
a:1 B:0.25 y.0.5
a:l :0.25 v:05
a:l B:0.1 y:0.5

a:l B:0.1y:05

a:1 B:0.1 y:0.5

a:l B:0.1y:0.5

a:l B:0.1y0.5

a:l B:0.1y:05

a:1 B:0.1 y:0.5

a:l B:0.1 y:0.5

a:l B:0.1y:0.5

a:l B:0.1y:0.5

a:l B:0.1y0.5

a:l B:0.25 y:0.5
a:l B:0.1y:05
a:l B}y

a:l B:0.25 y:1
a:l p:0.1 y:1
MV

ES

MaxRet

al B:0 y0
a:l B:1 y:0.25
a:l B:0.25 y:0.25
a: | B:0.17y:0.25
al B:l 0.5
a:l B:0.1y:05
a:l B:1 y:l

a:l B:0.25 y:1
a:l B:0.1 y:1
MV

ES

MaxRet

a:l B:0 y:0
a:l B:1 y:0.25
a:l B:0.25 y:0.25
a: | §:0.1y:0.25
a:l B:l y:0.5
a:l B:l y:)

a:] p:0.25v:1
a:l B:0.1 y:1
MV

ES

MaxRet

a:l B:0 y0
a:! B:1 v:0.25
a:] B:0.25 y:0.25
a: 1 $:0.1 v:0.25
a:l B:1 y:0.5

Means

-0.00668
-0.00453
-7.1E-05
0.000115
-0.0092
0.005809
§.32€-06
0.022645
0.00019
-0.01248
-0.01047
-0.00737
-0.0092
0.002156
0.006613
0.006799
-0.00251
0.012494
0.00669
0.02933
0.006875
-0.00579
-0.00378
-0.00068
-0.00251
0.004457
0.004643
-0.00467
0.010337
0.004533
0.027173
0.004718
-0.00795
-0.00594
-0.00284
-0.00467

90% Confidence Limits
LSMean(i) -LSMean(j)

-0.04034 0.026975
-0.03819 0.029131
-0.03373 0.033588
-0.03354 0.033774
-0.04286 0.024462
-0.02785 0.039468
-0.03365 0.033664
-0.01101 0.056304
-0.03347 0.033849
-0.04614 0.021183
-0.04412 0.023194
-0.04103 0.026292
-0.04286 0.024462

-0.0315 0.035815
-0.02705 0.040272
-0.02686 0.040458
-0.03617 0.031146
-0.02117 0.046153
-0.02697 0.040349
-0.00433 0.062989
-0.02678 0.040534
-0.03945 0.027867
-0.03744 0.029879
-0.03434 0.032976
-0.03617 0.031146

-0.0292 0.038116
-0.02902 0.038302
-0.03833 0.02899
-0.02332 0.043996
-0.02913 0.038192
-0.00849 0.060832
-0.02894 0.038377
-0.04161 0.025711

-0.0396 0.027722

-0.0365 0.03082
-0.03833 0.02899

95% Confidence Limits
LSMean(i) -LSMeany(j)

-0.04288 0.029515
-0.04073 0.031672
-0.03627 0.036128
-0.03609 0.036315

-0.0454 0.027003
-0.03039 0.042009
-0.03619 0.036205
-0.01355 0.058845
-0.03601 0.03639
-0.04868 0.023724
-0.04666 0.025735
-0.04357 0.028833

-0.0454 0.027003
-0.03404 0.038356
-0.02959 0.042813

-0.0294 0.042999
-0.03871 0.033687
-0.02371 0.048693
-0.02951 0.042889
-0.00687 0.065529
-0.02933 0.043074
-0.04199 0.030408
-0.03998 0.032419
-0.03688 0.035517
-0.03871 0.033687
-0.03174 0.040656
-0.03156 0.040842
-0.04087 0.031531
-0.02586 0.046537
-0.03167 0.040733
-0.00903 0.063373
-0.03148 0.040918
-0.04415 0.028252
-0.04214 0.030263
-0.03904 0.033361
-0.04087 0.031531

Sig. Diff.
@ 95%
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Table 9. Continued.

a:l B:1y:1
a:l B:1y:1
a:l B:1y:1
a:l B:1y:1
a:l B:1y:1
a:l B:1 y:1
a:l B:1y:1
a:l B:1y:1
a:l B:1y:1
a:l B:1y:)
a:l B:0.25 y:1
a:l B:0.25 y:1
a:l B:0.25 y:1
a:] B:0.25 y:1
a:l B:0.25 y:1
a:l p:0.25y:1
a:l B:0.25 y:1
a:l B:0.25 y:1
a:l B:0.25 y:1
a:l :0.1 y:1
a:l g:0.1 y:
a:l B:0.1 y:1
a:l B:0.) y:1
a:l B:0.1 y:1
a:l B:0.1 v
a:l B:0.] v:i
a:l B:0.) y:1
MV

MV

MV

MV
My
MV
My

ES
ES
ES
€S
ES
ES
MaxRet
MaxRet

a:l $:0.25y:1
a:1 $:0.1 y:1
MV

ES

MaxRet

a:l B:0 y:0

a:l B:1 y:0.25
a:l B:0.25y:0.25
a: | B:0.1 y:0.25
a:l B:1 y0.5
a:l §:0.1 y:1
MV

ES

MaxRet

a:l B:0 y:0

a:l §:1v:025
a:l p:0.25y:0.25
a: ) B:0.1y:0.25
a:l B:1 y05
Mv

ES

MaxRet

a:l $:0 y0

a:l B:1 y:0.25
a:l B:0.25v:0.25
a: 1 B:0.1 y.0.25
a:l p:1 y0.5
ES

MaxRet

a:l §:0 y0

a:l B:1 y:0.25
a:] B:0.25y:0.25
a: 1 p:0.1 y:0.25
a:l B:1 v0.5
MaxRet

a:! B:0 y0

a:] B:1 y:0.25
a:l B:0.25y:0.25
a: | B:0.1 y:0.25
a:l B:1 y:0.5
a:l1 p:0 y0

a:l B:1 y:0.25

0.000186
-0.00913
0.00588
7.65E-05
0.022717
0.000262
-0.01241
-0.01039
-0.0073
-0.00913
-0.00931
0.005694
-0.00011
0.022531
7.55E-05
-0.01259
-0.01058
-0.00748
-0.00931
0.015006
0.009202
0.031842
0.009387
-0.00328
-0.00127
0.00183
1.39E-17
-0.0058
0.016836
-0.00562
-0.01829
-0.01627
-0.01318
-0.01501
0.02264
0.000185
-0.01248
-0.01047
-0.00737
-0.0092
-0.02246
-0.03512

-0.03347
-0.04279
-0.02778
-0.03358
-0.01094

-0.0334
-0.04606
-0.04405
-0.04096
-0.04279
-0.04297
-0.02797
-0.03377
-0.01113
-0.03358
-0.04625
-0.04424
-0.04114
-0.04297
-0.01865
-0.02446
-0.00182
-0.02427
-0.03694
-0.03493
-0.03183
-0.03366
-0.03946
-0.01682
-0.03928
-0.05194
-0.04993
-0.04684
-0.04867
-0.01102
-0.03347
-0.04614
-0.04413
-0.04103
-0.04286
-0.05611
-0.06878

0.033845
0.024533
0.039539
0.033736
0.056376
0.033921
0.021254
0.023266
0.026363
0.024533
0.024347
0.039353
0.033549

0.05619
0.033735
0.021068
0.023079
0.026177
0.024347
0.048665
0.042861
0.065501
0.043046

0.03038
0.032391
0.035489
0.033659
0.027855
0.050495

0.02804
0.015374
0.017385
0.020483
0.018653
0.056299
0.033844
0.021178
0.023189
0.026287
0.024457
0.011204
-0.00146

-0.03601
-0.04533
-0.03032
-0.03612
-0.01348
-0.03594
-0.0486
-0.04659
-0.0435
-0.04533
-0.04551
-0.03051
-0.03631
-0.01367
-0.03612
-0.04879
-0.04678
-0.04368
-0.04551
-0.02119
-0.027
-0.00436
-0.02681
-0.03948
-0.03747
-0.03437
-0.0362
-0.042
-0.01936
-0.04182
-0.05449
-0.05247
-0.04938
-0.05121
-0.01356
-0.03602
-0.04868
-0.04667
-0.04357
-0.0454
-0.05868
-0.07132

0.036386
0.027074
0.04208
0.036276
0.058916
0.036461
0.023795
0.025806
0.028904
0.027074
0.026888
0.041894
0.03609
0.05873
0.036275
0.023609
0.02562
0.028718
0.026888
0.051206
0.045402
0.068042
0.045587
0.032921
0.034932
0.03803
0.0362
0.030396
0.053036
0.030581
0.017915
0.019926
0.023023
0.021194
0.05884
0.036385
0.023719
0.02573
0.028827
0.026997
0.013745
0.001078
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Table 9. Continued.

MaxRet
MaxRet
MaxRet

a:l B:0 y:0

a:l B:0 y:0

a:l B:0 y:0

a:l B:0 y:0

a:l g:11:0.25
a:l B:1v:0.25
a:l $:1v:.0.25
a:l §:0.25 y:0.25
a:l :0.25 y:0.25
a: | $:0.1 v:0.25

a:l p:0.25y:0.25
a: ! $:0.1 v:0.25
a:l B:1 y:0.5
a:l p:1 y:0.25
a:| B:0.25 y:0.25
a:l$:0.1v0.25
a:l §:1 y:0.5
a:l p:0.25y:0.25
a: 1 p:0.1v:025
a:l B:1 y:0.5
a: | B:0.1 y:0.25
a:l B:1 y0.5
a:l B:1 y:0.5

-0.03311
-0.03001
-0.03184
-0.01267
-0.01066
-0.00756
-0.00939
0.002011
0.005109
0.003279
0.003098
0.001268
-0.00183

-0.06677
-0.06367

-0.0655
-0.04633
-0.04431
-0.04122
-0.04305
-0.03165
-0.02855
-0.03038
-0.03056
-0.03239
-0.03549

0.000549
0.003647
0.001817
0.020993
0.023004
0.026102
0.024272

0.03567
0.038768
0.036938
0.036757
0.034927
0.031829

-0.06931
-0.06621
-0.06804
-0.04887
-0.04688
-0.04376
-0.04559
-0.03419
-0.03109
-0.03292

-0.0331
-0.03493
-0.03803

0.00309
0.006187
0.004357
0.023533
0.025545
0.028642
0.026812
0.038211
0.041308
0.039479
0.039297
0.037467

0.03437
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Table. 10

Tukey-Kramer difference of means of geometric average return compared by strategies
under ex ante assumption.

a:l B:0.25 y.0.5
a:l B:0.1y:05
a:l B:1 y:1

a:l B:0.25y:1
a:l :0.1 y:|
MV

ES

MaxRet

a:l B:0 y:0
a:l B:1 y:0.25
a:l $:0.25 y:0.25
a: 1 B:0.1 y:0.25
a:l B:1 y:0.5
a:l B:0.1y:0.5
a:l g:1 vl

a:] §:0.25 y:1
a:l §:0.1 y:|
My

ES

MaxRet

a:] B0 y:0
a:] B:1 v:0.25
a:] $:0.25 y:0.25
a: 1 B:0.1v:025
a:] B:1 v0.5
a:l B:1 y:1

a:l B:0.25 y:1
a:l 0.1 y:1
My

ES

MaxRet

a:1 B0 y:0
a:] B:1y:0.25
a:1 $:0.25 y:0.25
a: 1 B:0.1 y:0.25

Ex Ante Compound
i .
EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

a:l f:0.25 v.0.5
a:l B:0.25 y.0.5
a:) B:0.25 y:.0.5
a:]l p:0.25 y.0.5
a:] B:0.25 y:0.5
a:l B:0.25 y:0.5
a:1 B:0.25 y:0.5
a:l p:0.25 y:0.5
a:l p:0.25 y:0.5
a:l B:0.25 y.0.5
a:1 B:0.25 y:.0.5
a:]l B:0.25 y.0.5
a:1 B:0.1y:0.5
a:1 B:0.1y:0.5
a:l B:0.1 y:.0.5
a:]l B:0.1 05
a:1 B:0.1 y:0.5
a:l B:0.1y:05
a:1 B:0.1 y:0.5
a:]l B:0.1 y0.5
a:1 B:0.1 v:0.5
a:l B:0.1y:0.5
a:l B:0.1 y:0.5

a:! B:1 y0.5

Means

-0.0066
-0.00463
-0.00011
9.65E-05
-0.00883

0.005276
3.19€-06
0.024605
0.000164
-0.00956
-0.00853
-0.00641
-0.00883
0.001967
0.006493
0.006694
-0.00223
0.011874
0.006601
0.031203
0.006762
-0.00297
-0.00193
0.000189
-0.00223
0.004525
0.004727
-0.0042
0.009907
0.004633
0.029235
0.004794
-0.00493

-0.0039
-0.00178

-0.0042

90% Confidence Limits
LSMean(i) -LSMean(j)

-0.038 0.024808
-0.03604 0.026775
-0.03151 0.031301
-0.03131 0.031502
-0.04023 0.02258
-0.02613 0.036682
-0.0314 0.031409
-0.0068 0.056011
-0.03124 0.03157
-0.04097 0.021843
-0.03993 0.022879
-0.03781 0.024997
-0.04023 0.02258
-0.02944 0.033373
-0.02491 0.037898
-0.02471 0.0381
-0.03363 0.029178
-0.01953 0.04328
-0.02481 0.038007
-0.0002 0.062609
-0.02464 0.038168
-0.03437 0.028441
-0.03334 0.029477
-0.03122 0.031595
-0.03363 0.029178
-0.02688 0.035931
-0.02668 0.036133
-0.0356 0.027211
-0.0215 0.041312
-0.02677 0.036039
-0.00217 0.060641
-0.02681 0.0362
-0.03634 0.026473
-0.0353 0.027509
-0.03318 0.029628
-0.0356 0.027211

95% Confidence Limits
LSMean(i)  -LSMean(j)

-0.04041 0.027212
-0.03844 0.029179
-0.03392 0.033705
-0.03371 0.033906
-0.04264 0.024984
-0.02853 0.039086
-0.03381 0.033813
-0.00921 0.058415
-0.03365 0.033974
-0.04337 0.024247
-0.04234 0.025283
-0.04022 0.027401
-0.04264 0.024984
-0.03184 0.035777
-0.02732 0.040302
-0.02712 0.040504
-0.03604 0.031582
-0.02194 0.045684
-0.02721 0.040411
-0.00261 0.065013
-0.02705 0.040572
-0.03678 0.030845
-0.03574 0.031881
-0.03362 0.033999
-0.03604 0.031582
-0.02928 0.038335
-0.02908 0.038537
-0.03801 0.029615

-0.0239 0.043716
-0.02918 0.038443
-0.00457 0.063045
-0.02902 0.038604
-0.03874 0.028877
-0.03771 0.029913
-0.03559 0.032032
-0.03801 0.029615

Sig. Diff.
@ 95%



Table 10. Continued.

a:l B:§ y:1
a:l B:1y:1
a:l B:1y:1
a:l B:1y:1
a:l B:1y1
a:l B:1y:1
a:l B:1 v
a:l p:1y:1
a:l B:1y1
a:l B:1 ¥
a:l p:0.25y:1
a:l p:0.25 y:1
a:l B:0.25 y:1
a:l B:0.25 y:1
a:l B:0.25y:1
a:l B:0.25 y:1
a:l B:0.25 y:1
a:l B:0.25 y:1
a:l B:0.25 y:1
a:1 :0.1 y:!
a:1 B:0.1 y:1
a:l B:0.1 y:1
a:l $:0.1 y)
a:l $:0.1 1
a:l B:0.1 y:1
a:1 g:0.1 y:I
a:] B:0.1 y:1

a:l :0.25y:)
a:l B:0.1 y:1
MV

ES

MaxRet

a:f B:0 y:0

a:l B:1 v:0.25
a:l B:0.25 v:0.25
a: | B:0.1 y:0.25
a:l p:1 y:05
a:) g:0.1 y:1
My

ES

MaxRet

a:l $:0 v:0

a:l B:1 y:0.25
a:] B:0.25 y:0.25
a: 1 B:0.1 v:0.25
a:l B:1 y:05
Mv

ES

MaxRet

a:] B:0 y:0

a:l B:1 y:0.25
a:l B:0.25 y:0.25
a: | :0.1 v:0.25
a:l B:1 y:0.5
ES

MaxRet

a:} B:O y:0

a:l B:1 y:0.25
a:] B:0.25 v:0.25
a: | B:0.1 y:0.25
a:] B:1 y:0.5
MaxRet

a:l B:0 y:0

a:l B:1 y:0.25
a:] B:0.25 v:0.25
a: 1 §:0.1 y:0.25
a:l B:1 y:05
a:l B:0 y:0

a:l B:1 v.0.25

0.000201
-0.00872
0.005381
0.000108
0.02471
0.000269
-0.00946
-0.00842
-0.0063
-0.00872
-0.00892
0.00518
-9.3E-05
0.024509
6.77€-05
-0.00966
-0.00862
-0.00651
-0.00892
0.014102
0.008828
0.03343
0.008989
-0.00074
0.000299
0.002417
1.91E-16
-0.00527
0.019329
-0.00511
-0.01484
-0.0138
-0.01169
-0.0141
0.024602
0.000161
-0.00957
-0.00853
-0.00641
-0.00883
-0.02444
-0.03417

-0.0312
-0.04013
-0.02602

-0.0313

-0.0067
-0.03114
-0.04086
-0.03983
-0.03771
-0.04013
-0.04033
-0.02623

-0.0315

-0.0069
-0.03134
-0.04107
-0.04003
-0.03791
-0.04033

-0.0173
-0.02258

0.002025
-0.02242
-0.03214
-0.03111
-0.02899
-0.03141
-0.03668
-0.01208
-0.03652
-0.04625
-0.04521
-0.04309
-0.04551

-0.0068
-0.03125
-0.04097
-0.03994
-0.03782
-0.04023
-0.05585
-0.068557

0.031607
0.022685
0.036787
0.031514
0.056116
0.031675
0.021948
0.022984
0.025102
0.022685
0.022484
0.036586
0.031312
0.055914
0.031473
0.021747
0.022783
0.024901
0.022484
0.045507
0.040234
0.064836
0.040395
0.030668
0.031704
0.033823
0.031406
0.026133
0.050734
0.026294
0.016567
0.017603
0.019721
0.017304
0.056008
0.031567
0.02184
0.022876
0.024994
0.022577
0.006965
-0.00276

-0.03361
-0.04253
-0.02843

-0.0337

-0.0091
-0.03354
-0.04327
-0.04223
-0.04011
-0.04253
-0.04273
-0.02863

-0.0339

-0.0093
-0.03374
-0.04347
-0.04243
-0.04032
-0.04273
-0.01971
-0.02498
-0.00038
-0.02482
-0.03455
-0.03351
-0.03139
-0.03381
-0.03908
-0.01448
-0.03892
-0.04865
-0.04761
-0.04549
-0.04791
-0.00921
-0.03365
-0.04338
-0.04234
-0.04022
-0.04264
-0.05825
-0.06798

0.034011
0.025089
0.039191
0.033918
0.05852
0.034079
0.024352
0.025388
0.027506
0.025089
0.024888
0.03899
0.033716
0.058318
0.033877
0.024151
0.025187
0.027305
0.024888
0.047911
0.042638
0.06724
0.042799
0.033072
0.034108
0.036227
0.03381
0.028537
0.053138
0.028698
0.018971
0.020007
0.022125
0.019708
0.058412
0.033971
0.024244
0.02528
0.027398
0.024981
0.009369
-0.00036

Yes
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Table 10. Continued.

MaxRet
MaxRet
MaxRet

a:! B:0 y:0

a:! B:0 y:0

a:l B:0 y:0

a:l B:0 y:0

a:l B:1y:0.25
a:l B:1 y:0.25
a:l B:1 y:0.25
a:l B:0.25 v:0.25
a:l B:0.25 y:0.25
a: | B:0.1 y:0.25

a:l B:0.25y:0.25
a: 1 p:0.17v.025
a:l B:1 y05
a:l B:1y:0.25
a:l $:0.25 y:0.25
a: | B:0.1 y:0.25
a:l B:1 y:05
a:l B:0.25 y.0.25
a: |1 B:0.1 y:0.25
a:l B:t y:0.5
a: | B:0.1 v:0.25
at B:1 y:05
a:l B:1 y05

-0.03313
-0.03101
-0.03343
-0.00973
-0.00869
-0.00657
-0.00899
0.001036
0.003154
0.000737
0.002118

-0.0003
-0.00242

-0.06454
-0.06242
-0.06484
-0.04113

-0.0401
-0.03798

-0.0404
-0.03037
-0.02825
-0.03067
-0.02929

-0.0317
-0.03382

-0.00173
0.000392
-0.00203
0.021679
0.022715
0.024833
0.022416
0.032442

0.03456
0.032143
0.033524
0.031107
0.028989

-0.06694
-0.06482
-0.06724
-0.04354

-0.0425
-0.04038

-0.0428
-0.03277
-0.03066
-0.03307
-0.03169
-0.03411
-0.03623

0.000678
0.002796
0.000379
0.024083
0.025119
0.027237

0.02482
0.034846
0.036964
0.034547
0.035928
0.033511
0.031393
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Table. 11

Tukey-Kramer difference of means of risk (metric standard deviation) compared by

strategies under ex ante assumption.

Ex Ante Risk
i

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

a:l B:0.25 y.0.5
a:l 3:0.25 y:0.5
a:l B:0.25 y:0.5
a:l p:0.25 y:0.5
a:l §:0.25 y:0.5
a:l $:0.25 y:0.5
a:l $:0.25 1:0.5
a:l $:0.25 y:0.5
a:l B:0.25 y:0.5
a:l p:0.25 y:0.5
a:l B:0.25 y:0.5
a:l B:0.25 y:0.5
a:l B:0.1 0.5
a:l B:0.1y.0.5
a:l B:0.1 05
a:l B:0.1y.0.5
a:l B:0.1 0.5
a:! B:0.1y0.5
a:! B:0.1 y:0.5
a:1 B:0.1 705
a:1 B:0.1y0.5
a:l B:0.1 0.5
a:l B:0.1y0.5

a:l B:0.25 y:0.5
a:l $:0.1y.0.5
a:l p:1y:1

a:l B:0.25 y:1
a:] g:0.1 y:!
My

ES

MaxRet

a:l B:0 y:0
a:l :1 y:0.25
a:l B:0.25 y:0.25
a: | B:0.1 y:0.25
a:l B:1 y:0.5
a:l B:0.1y:05
a:l B:1y:l

a:l B:0.25 y:1
a:l g:0.1 y:1
My

ES

MaxRet

a:l B:0 v:0
a:l B:1 v:0.25
a:l $:0.25 y:0.25
a: 1 B:0.1 y:0.25
a:l Pp:1 y:0.5
a:l $:1y:1

a:1 $:0.25 y:1
a:l B:0.1 y:i
MV

ES

MaxRet

a:l B:0 y:0
a:l B:1 y:0.25
a:] B:0.25 y:0.25
a: 1 B:0.1 v:0.25
a:1 B:1 y:0.5

Means

-0.00149
6.84E-05
0.000223
0.000141
0.000123
0.0146

0
-0.07342
0.000108
-0.03057
-0.02185
-0.01413
-0.00594
0.001558
0.001713
0.00163
0.001613
0.01609
0.00149
-0.07193
0.001597
-0.02908
-0.02036
-0.01264
-0.00445
0.000154
7.228-05
5.44E-05
0.014532
-6.8E-05
-0.07348
3.92E-05
-0.03064
-0.02192
-0.0142
-0.00601

90% Confidence Limits
LSMean(i)  -LSMeanj)

-0.00851 0.005526
-0.00695 0.007085
-0.00679 0.007239
-0.00688 0.007157
-0.00689 0.007139
0.007584 0.021616
-0.00702 0.007016
-0.08043 -0.0664
-0.00691 0.007124
-0.03759 -0.02356
-0.02887 <0.01484
-0.02114 -0.00711
-0.01296 0.001073
-0.00546 0.008574
-0.0053 0.008729
-0.00539 0.008647
-0.0054 0.008629
0.009074 0.023106
-0.00553 0.008506
-0.078%4 -0.06491
-0.00542 0.008614
-0.0361 -0.02207
-0.02738 -0.01335
-0.01965 -0.00562
-0.01147 0.002563
-0.00688 0.007171
-0.00694 0.007088
-0.00696 0.007071
0.007515 0.021548
-0.00709 0.006948
-0.0805 -0.06647
-0.00698 0.007055
-0.03766 -0.02362
-0.02894 -0.0149
-0.02121 -0.00718
-0.01303 0.001005

95% Confidence Limits

LSMean(i) -LSMeany(j)
-0.00904 0.006056
-0.00748 0.007614
-0.00732 0.007769
-0.00741 0.007686
-0.00742 0.007669
0.007054 0.022146
-0.00755 0.007546
-0.08096 -0.06587
-0.00744 0.007653
-0.03812 -0.02303
-0.0294 -0.01431
-0.02167 -0.00658
-0.01349 0.001603
-0.00599 0.009104
-0.00583 0.009258
-0.00592 0.009176
-0.00593 0.009158
0.008544 0.023636
-0.00606 0.009036
-0.07947 -0.06438
-0.00595 0.009143
-0.03663 -0.02154
-0.02791 -0.01282
-0.02018 -0.00509
-0.012 0.003093
-0.00739 0.0077
-0.00747 0.007618
-0.00749 0.0076
0.006986 0.022077
-0.00761 0.007477
-0.08103 -0.06594
-0.00751 0.007585
-0.03819 -0.0231
-0.02947 -0.01437
-0.02174 -0.00665
-0.01356 0.001534

Sig. Diff.
@ 95%

Yes
Yes
Yes

Yes
Yes

Yes
Yes
Yes

Yes
Yes

Yes
Yes
Yes

Yes
Yes
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Table 11. Continued.

a:l Byl
a:l B:1y:1
a:l p:1 y:1
a:l B:1y:l
a:l B:1yl
a:l B:lyl
a:l B:1y:1
a:l p:1 7l
a:l B:1y:
a:l B:1 vyl
a:l $:0.25 y:1
a:l B:0.25 y:1
a:l B:0.25 y:1
a:l p:0.25 7}
a:l B:0.25y:1
a:l B:0.25y:1
a:l B:0.25y:1
a:l $:0.25 y:1
a:l B:0.25y:1
a:l B:0.1 y:1
a:l B:0.1 y:1
a:l B:0.1 y:i
a:l B:0.1 y:1
a:l B:0.1 y:1
a:l B:0.1 11
a:l B:0.1 y:!
a:l §:0.1 y:1

a:l $:0.25 y:1
a:l B:0.1 y:1
MV

ES

MaxRet

a:! B:0 v:0

a:l B:1v:0.25
a:l B:0.25 y:0.25
a: ! B:0.1 y:0.25
a:l B:I y:0.5
a:l B:0.1 y:1
My

ES

MaxRet

a:l B:0 y:0

a:l p:1y:025
a:l B:0.25 y:0.25
a: | B:0.1 v:0.25
a:l B:1 y:0.5
My

ES

MaxRet

a:1 B:0 y:0

a:l B:1 v:0.25
a:l B:0.25 y:0.25
a: 1 B:0.1y025
a:l B:1 y:0.5
ES

MaxRet

a:l B:0 y:0

a:l B:1 y:0.25
a:l B:0.25 y:0.25
a: | B:0.1 1:0.25
a:l B:1 y:0.5
MaxRet

a:l B:0 y:0

a:l B:1 y:0.25
a:l B:0.25 v:0.25
a: | B:0.1 v:0.25
a:l B:1 y:0.5
a:l B:0 y0

a:l B:1 v:0.25

-8.2E-05
-0.0001
0.014377
-0.00022
-0.07364
-0.00012
-0.0308
-0.02208
-0.01435
-0.00617
-1.8E-05
0.014459
-0.00014
-0.073586
-3.3E-05
-0.03071
-0.02199
-0.01427
-0.00608
0.014477
-0.00012
-0.07354
-1.5€-05
-0.0307
-0.02198
-0.01425
-0.00607
-0.0146
-0.08802
-0.01449
-0.04517
-0.03645
-0.02873
-0.02054
-0.07342
0.000108
-0.03057
-0.02185
-0.01413
-0.00594
0.073523
0.042843

-0.0071
-0.00712
0.007361
-0.00724
-0.08065
-0.00713
-0.03781
-0.02909
-0.02137
-0.01318
-0.00703
0.007443
-0.00716
-0.08057
-0.00705
-0.03773
-0.02901
-0.02128
-0.0131
0.007461
-0.00714
-0.08055
-0.00703
-0.03771
-0.02899
-0.02127
-0.01308
-0.02162
-0.09503
-0.02151
-0.05219
-0.04347
-0.03574
-0.02756
-0.08043
-0.00691
-0.03759
-0.02887
-0.02114
-0.01298
0.066507
0.035827

0.006934
0.006916
0.021393
0.006793
-0.06662
0.006901
-0.02378
-0.01506
-0.00733
0.00085
0.006998
0.021476
0.006876
-0.06654
0.006983
-0.0237
-0.01498
-0.00725
0.000933
0.021493
0.006893
-0.06652
0.007001
-0.02368
-0.01496
-0.00723
0.00095
-0.00758
-0.081
-0.00748
-0.03816
-0.02944
-0.02171
-0.01353
-0.0664
0.007124
-0.02358
-0.01484
-0.00711
0.001073
0.080539
0.049859

-0.00763
-0.00765
0.006831
-0.00777
-0.08118
-0.00766
-0.03834
-0.02962
-0.0219
-0.01371
-0.00756
0.006914
-0.00769
-0.0811
-0.00758
-0.03826
-0.02954
-0.02181
-0.01363
0.006931
-0.00767
-0.08108
-0.00756
-0.03824
-0.02952
-0.0218
-0.01361
-0.02215
-0.09556
-0.02204
-0.05272
-0.044
-0.03627
-0.02809
-0.08096
-0.00744
-0.03812
-0.0294
-0.02167
-0.01349
0.065977
0.035297

0.007464
0.007446
0.021923
0.007323
-0.06609
0.007431
-0.02325
-0.01453
-0.0068
0.00138
0.007528
0.022005
0.007405
-0.06601
0.007513
-0.02317
-0.01445
-0.00672
0.001462
0.022023
0.007423
-0.06599
0.007531
-0.02315
-0.01443
-0.0067
0.00148
-0.00705
-0.08047
-0.00895
-0.03763
-0.02891
-0.02118
-0.013
-0.06587
0.007653
-0.02303
-0.01431
-0.00658
0.001603
0.081069
0.050389

Yes

Yes

Yes
Yes
Yes

Yes

Yes

Yes
Yes
Yes

Yes

Yes

Yes
Yes
Yes

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes
Yes
Yes

Yes
Yes



Table 11. Continued.

MaxRet
MaxRet
MaxRet

a:l B:0 y:0

a:l B:0 y:0

a:l B:0 y:0

a:l B:0 y:0

a:l B:} v:0.25
a:l B:1 y:0.25
a:l B:1 y:0.25
a:l B:0.25 y:0.25
a:l B:0.25 y:0.25
a: } B:0.1 y:0.25

a:] B:0.25 y:0.25
a: } §:0.1 y:0.25
a:l B:1 y05
a:l B:1y:0.25
a:} $:0.25y:0.25
a: | §:0.] y:0.25
a:l B:1 y:05
a:l B:0.25 y:0.25
a: | B:0.1 y:0.25
a:l B:1 y:0.5
a: | §:0.1 v:0.25
a:l B:1 y05
a:l B:1 y0.5

0.051563
0.059289
0.067472
-0.03068
-0.02196
-0.01423
-0.00605
0.00872
0.016446
0.024629
0.007725
0.015909
0.008184

0.044547
0.052272
0.060456
-0.0377
-0.02898
-0.02125
-0.01307
0.001704
0.009429
0.017613
0.000709
0.008893
0.001167

0.05858
0.066305
0.074488

-0.02366

-0.01494

-0.00722

0.000966
0.015736
0.023462
0.031645
0.014742
0.022925
0.0152

0.044017
0.051743
0.059926
-0.03823
-0.02951
-0.02178
-0.0136
0.001174
0.0089
0.017083
0.000179
0.008363
0.000638

0.059109
0.066834
0.075018
-0.02313
-0.01441
-0.00669
0.001495
0.016266
0.023991
0.032175
0.015271
0.023455
0.015729

Yes
Yes
Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes
Yes
Yes
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Table 12.

Comparison of average R?, adjusted R, and direction measures of accuracy for 12-month

one-beta and two-beta CAPMs.

Model Average R Average Adj. R Direction  Number of
(12 month) r Std.Dev. _Adjusted R® __Std.Dev. __ Accuracy Regressions
One-parameter  0.253482  0.210014 0.185617 0.22910 66.299% 35,880
CAPM
Two-parameter 0.317184 0.208185 0.180621 0.249822 64.250% 35,421
CAPM
Table 13.

Comparison of average R?, adjusted R, and direction measures of accuracy for 60-month

one-beta and two-beta CAPMs.

Model Average R Average Adj. R° Direction  Number of
(60 month) o Std.Dev.  Adjusted R® __Std.Dev. _ Accuracy Regressions
One-parameter  0.209924  0.128104 0.196533 0.130275 65.947% 30,573
CAPM
Two-parameter  0.223475  0.127544  0.196699 0.1311942 65.611% 30,673
CAPM
Table 14.

Comparison of cumulative abnormal returns (CAR) and model-weighted cumulative
abnormal retums (MWCAR) for the 12-month one-parameter and two-parameter

CAPMs.
Model CAR CAR Std.Dev. MWCAR MWCAR
(12 month) Std.Dev.
One-Parameter 0.005467 0.094305 0.00418203 0.11027922
CAPM
Two-Parameter -0.00039 0.106867 -0.002544417 0.122664231
CAPM
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Table 15.

Comparison of cumulative abnormal returns (CAR) and model-weighted cumulative
abnormal returns (MWCAR) for the 60-month one-parameter and two-parameter
CAPMs.

Model CAR CAR Std.Dev. MWCAR MWCAR
(60 month) Std. Dev.
One-parameter 0.004361 0.099433 0.002596 0.10794
CAPM
Two-parameter 0.000441 0.100746 -0.00168 0.109637
CAPM
Table 16.

Difference of means of R* and adjusted R? measures between the 12-month one-
parameter and two-parameter CAPMs.

Measure Difference of 95% Confidence F-test of P-value
(12 month) Means Interval of difference difference of
(one-parameter less two- means model
parameter)
R -0.063703 -0.066301 -0.061140 2309.32 <0.0001
Adjusted R’ -0.007406 -0.010077 -0.004735 29.54 <0.0001
Table 17.

Difference of means of R? and adjusted R> measures between the 60-month one-
parameter and two-parameter CAPMs.

Measure Difference of 95% Confidence F-test of P-value
(60 month) Means Interval of difference difference of
(one-parameter less two- means model
parameter)
R* -0.107261 -0.109815 -0.104706 6774.02 <0.0001
Adjusted R? -0.012430 -0.015085 -0.009775 84.19 <0.0001
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Table 18.

Summary of Means of Return, Compound Returns, Risk (as proxied by the standard deviation) and Sharpe

ratios for each strategy, based on the assumption of ex post optimization.

Strategy (ex post) ltem Mean 95% Confidence Limit
Retumn 0.017751 0.007031 0.028471
Equally Weighted Compound Retumn 0.017051 0.005130 0.028973
Risk (Std.Dev.) 0.037963 0.035711 0.040215
Sharpe 0.39778 0.527250 1.322825
Retum 0.021894 0.011174 0.032614
Minimum Variance Compound Retum 0.021892 0.009870 0.033814
Risk (Sid.Dev.) 0.023063 0.020811 0.025315
Sharpe 0.782042 .142995 1.707080
Minimum Retum 0.017756 0.007036 0.28476
MLPM Vanance Compound Retum 0.17056 0.005134 0.028978
Risk (Std.Dev.) 0.037963 0.035711 0.040215
Sharmpe 0.397898 0.527139 1.322936
Retum 0.280892 0.270172 0.291611
Maximum Retum Compound Retum 0.277493 0.265571 0.289415
Risk (Std.Dev.) 0.108207 0.105164 0.111250
Sharmpe 28.233175 27.308137 29.158213
Altemative Strategy Parameters
Retum 0.020036 0.009316 0.030756
a:l B:0 y:0 Compound Retum 0.019432 0.007510 0.031354
Risk (Std.Dev.) 0.037865 0.035613 0.040118
Sharpe 0.449280 -0.475757 1.374318
Retum -0.063341 0.074061 -0.052622
a:l B:l 1:0.25 Compound Retum -0.064448 0.076370 0.052526
Risk (Sid.Dev.) 0.067043 0.064791 0.069295
Sharpe -1.017068 -1.942105 {0.092030
Retum -0.054155 -0.064875 0.043436
a:l $:0.25y.0.25 Compound Retum 0.054722 -0.066644 0.042800
Risk (Sid.Dev.) 0.058814 0.056562 0.061066
Sharpe -1.022752 -1.947789 0.097714
Retumn 0.051931 -0.062651 0.041211
a: ] f:.0.] y:0.25 Compound Retum 0.052206 0.064128 0.040284
Risk (Sid.Dev.) 0.051343 0.049091 0.053585
Sharpe -1.124732 -2.049770 0.199695
Retum 0.047506 -0.058225 0.036786
al B:1 y05 Compound Retum 0.047660 -0.059582 0.035739
Risk (Sid.Dev.) 0.043560 0.041307 0.045812
Sharpe -1.199173 -2.124210 0.274135
Retum 0.0406351 -0.051071 -0.029632
a:l B:025 y0.S Compound Retum -0.040460 0.052382 -0.028539
Risk (S\d.Dev.) 0.039194 0.036942 0.041446
Sharpe -1.131357 -2.056394 0.206319
Return -0.030184 £0.040903 0.019464
a:l B:0.1 y0.5 Compound Retum -0.030297 0.042219 0.018375
Risk (Std.Dev.) 0.037732 0.035480 0.039984
Sharpe -0.887554 -1.812592 0.037483
Retum 0.016192 0.005472 0.026911
a:l B:1 1l Compound Retum 0.015659 0.003737 0.27581
Risk (S.Dev.) 0.037823 0.035571 0.040075
Sharpe 0.356587 4.568451 1.281624
Retum 0.019077 0.008357 0.029797
a:l B:025 y:l Compound Retum 0.018488 0.006566 0.030410
Risk {(Sid.Dev.) 0.037823 0.035571 0.040075
Sharpe 0.426274 0.498764 1.365130
Retumn 0.019651 0.008931 0.030371
a:l f:0.1 yI Compound Retum 0.019054 0.007133 0.030976
Risk {Std.Dev.) 0.037848 0.035596 0.040100
Sharpe 0.440092 -484945 1.365130
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Table 19.

Summary of Means of Return, Compound Return, Risk (as proxied by the standard deviation) and Sharpe
ratios for each strategy, based on the assumption of ex ante optimization.

Strategy (ex ante) Item Mean 95% Confidence Limit
Retum 0.017495 0.002552 0.032437
Equally Weighted Compound Retumn 0.015883 0.001961 0.029804
Risk (Std.Dev.) 0.037957 0.034842 0.041072
Sharpe 0.399048 0.265174 1.063271
Retum 0.011685 0.003257 0.026628
Minimum Vanance Compound Retum 0.010606 £0.003315 0.024528
Risk (Std.Dev.) 0.023357 0.020242 0.026472
Sharpe 0.390913 0.273310 1.055135
Minimum Retum 0.017489 0.002547 0.032431
MLPM Vanance Compound Retum 0.015880 0.001958 0.029801
Risk (Sid.Dev.) 0.037957 0.034842 0.041072
Sharpe 0.398976 0.265247 1.063198
Retum 0.005151 0.020093 0.009791
Maximum Retum Compound Retum -0.008722 -0.022644 0.005199
Risk (Std.Dev.) 0.111372 0.108257 0.114487
Sharpe 0.949424 -1.613647 0.285202
Attemative Strategy Parameters
Retum 0.017304 0.002362 0.032246
a:l B0 y:0 Compound Return 0.015719 0.001797 0.029640
Risk (Std.Dev.) 0.037849 0.034735 0.040964
Sharpe 0.396943 0.267279 1.061166
Retum 0.029970 0.015028 0.044913
a:l B:1 y:0.25 Compound Return 0.025445 0.011524 0.039367
Risk (Std.Dev.) 0.068529 0.065414 0.071644
Sharpe 0.326802 0.337421 0.991025
Retum 0.027959 0.013017 0.042901
a:l B:0.25 y:0.25 Compound Return 0.024409 0.010488 0.038331
Risk (Std.Dev.) 0.059809 0.056694 0.062924
Sharpe 0.353890 0.310332 1.018113
Retum 0.024862 0.009919 0.039804
a: 1 B:0.1 y:0.25 Compound Return 0.022291 0.008370 0.036212
Risk (Sid.Dev.) 0.052084 0.048969 0.055198
Sharpe 0.415020 0.249203 1.079242
Retum 0.026692 0.011749 0.041634
a:l B:1 .05 Compound Return 0.024708 0.010787 0.038629
Risk {Std.Dev.) 0.043900 0.040785 0.047015
Sharpe 0.550502 0.113720 1.214725
Return 0.024179 0.009237 0.039121
a: | B:0.25 0.5 Compound Return 0.022480 0.008559 0.036402
Risk (Sid.Dev.) 0.039447 0.036332 0.042562
Sharpe 0.533108 0.131114 1.197331
Retum 0.022022 0.007080 0.036965
a:l B:0.1 05 Compound Retum 0.020513 0.006592 0.034434
Risk (Sid.Dev.) 0.037889 0.034774 0.041003
Sharpe 0.510068 0.154155 1.174291
Retum 0.017566 0.002624 0.032508
a1l B:1 y:1 Compound Return 0.015988 0.002066 0.029909
Risk (Sid.Dev.) 0.03774 0.034619 0.040849
Shampe 0.404407 0.259815 1.068630
Return 0.017380 0.002437 0.032322
a:l B:0.25 v Compound Retum 0.015786 0.001865 0.029707
Risk (Sid.Dev.) 0.037816 0.034702 0.040931
Sharpe 0.398805 0.265418 1.063027
Retum 0.026692 0.011749 0.041634
a:l 0.1 yi Compound Retumn 0.024708 0.010787 0.038629
Risk (Swd.Dev.) 0.037834 0.034719 0.040949
Sharpe 0.618607 0.45615 1.282830




Table 20.

Summary statistics of expected returns based on one year and five year geometric and
decay-arithmetic models. Realized returns are stated as monthly average geometric or
average arithmetic. Parameter estimates are derived from polynomials of best fit to the

time period February 1927 to December 2002.

Parameter/Item 1 year 1 year Decay S year 5 year Decay
Geometric Arithmetic Geometric Arithmetic
model model model model
a 0.027418098 0.087534666 0.01620508 0.016205022
B, 0.217837413 0.345433259 0.160629339 0.160629642
a, 0.284157897 0.507072994 0.284157897 0.284157965
B, 4.318426922 3.31207268 4.318426922 4.318425904
R” 0.047492571 0.106048626 0.027296325 0.027296325
Average S&P VHPM 2.00465E-05 8.17855E-06
Average S&P VLPM 3.93336E-06 1.81858E-06
Average Treasury VHPM 6.51929E-11 5.55356E-11
Average Treasury VLPM 1.1526E-09 6.82171E-10
Average S&P expected monthly 0.005894 0.007311 0.006436 0.006436
return
Average Treasury expected 0.000572 2.30423E-05 0.000524 0.000524
monthly returm
Realized S&P Average Monthly 0.00556
Geometric Returns
Realized S&P Average Monthly 0.007175
Arithmetic Returns
Realized Treasury Average 0.00054
Monthly Geometric Returns
Realized Treasury Average 0.000554

Monthly Arithmetic Returns
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