INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

Database Performance Analysis and Tuning:

A Comparative Study of TPC-H Benchmark on Oracle and
DB2

Jing Zhou

A Major Report
in
Department
of
Computer Science

Presented in Partial Fulfillment of the Requirements For the
Degree of Master of Computer Science

Concordia University
Montreal, Quebec, Canada

March 2003

©Jing Zhou, 2003

i+l

National Library Bibliothéque nationale
of Canada du Canada
Acquisitions and Acquisitions et .
Bibliographic Services services bibliographiques
m ON Kim gﬁ::oz K1A ON4
Canada Canada
Your fle Votre nldrence
Our e Notre nikdvence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. Ia forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-77729-4

ABSTRACT

Database Performance Analysis and Tuning:

A Comparative Study of TPC-H Benchmark on Oracle and DB2

Jing Zhou

This project concentrates on the TPC-H benchmark on Oracle9i Enterprise Edition (EE)
and DB2 Universal Database Version 7.2 Enterprise Edition (EE) on Windows2000
operating system. The TPC-H benchmark is a decision-support benchmark, consisting of
a set of queries and refresh functions in order to simulate a real environment. There are
several size factors supported by TPC to represent the database size. In this project, we
use 1GB and 10GB database size. Furthermore, the test results are used to compare the
performance of Oracle and DB2 on the Windows2000 operating system. Performance
tuning is still a major issue in the database applications. There are two levels of tuning:
system level and application level. We just focus on the application level tuning and

study different factors and their effects on the DBMS’ performance.

iii

ACKNOWLEDGEMENTS

[have prepared this report under the supervision of Dr. Grahne and Dr. Shiri. [am truly
indebted to both of them for their constant encouragement and valuable guidance without
which [would not have been able to complete my research successfully. [am also very
grateful to the system analysts of CS Department Concordia University for providing me

with the perfect environment for my report.

Last but not the least, I think all my friends and family who supported me in this

endeavor of mine.

v

TABLE OF CONTENTS

Part I TPC-H Benchmark 1
L. OVEIVIEW Of TPC-H.....oomiiiiee ettt e 1
1.1 Operation Model and Database Propertiescoeevemeeeevereeeeeeeeereeneneneeenenenen 1
L2 MEITICS ettt et e s st st e s et s e menenenen 3
1.3 Queries and Refresh FUNCHONSocuvvieieieieieeeeeeee e eeeeeeeee e eeeee e 5
1.3.1 General Description of the QUETES.........coveveveueeeeeerecrererceeeeeeee e 5
1.3.2 QGEN and DBGEN......cccoiininiteeteieeeeee et ae s sae 11

L4 EXECUtiON RUIES ...ttt 12
L4, 1 RUN SEQUENCE......coeeieeiieeteeceeeetete et e es e 12
1.4.2 Power Test and Throughput TESt......ccceeeruemeueuemeeecrrienieeeseeeneeeesee e eaenenaens i2

1.4.3 Measurement Interval and Timing Intervalccooeeeuemeveeeeeerereeeens 13

1.5 THE DITIVETS ...ttt e se e seeeeeeesenen 14

2. IMPIEMENTATION ...ttt et e e e e e e e e ae e s aeeneenns 14
2 L TeSUNG PIAN c..eiiiii ettt e ee e e e e e e e snaen 14
2.1.1 Available Database ENGINEScc.ccvveurururureemimeeieeeneeieee oo nene 14
2.1.2 Database SCaliNg.....coc.coeeueeeeeeeeeeeeeceete e 1S

2. 1.3 TESUNZ PUIPOSE....coueueieieeeeeeeeteeeeeetteteee e ee e et eeeseeneeees e e 15

2.2 TeStNG PrEParationccceeueememeieeeieniieeeeeeeeeee oo eeeeeeeeeseeseeeeseeeeensnes IS5
2.2.1 Database Definition and Creation..................o.eueueeveeeeeeeeceeeeeeeeeeeeeeeeseesenene 16
2.2.2 Population Data GENEration................vveeceueemeeeeeeeeeeeeeeseeeereseeesseeesesesesssesens 16
2.2.3 Query Generation and Validationc.ooceereoeeeeeeeeeeeeeeee e 16

2.3 TOSUNG ettt ettt et eeee s e e et eee e nee e s enanas 19
23 L L0@A TESE ...ttt ettt e e ee e aeens 19
2.3.2 PerfOrmance TEStccveuveueeireeeeeeieteeaeeeeeeee e see e e e e e e e e e enns 20
2.3.3 Test Results and COMPAriSON.vuvueumreeeeeeeeeeeeeeeeeeee e ee oo eeeeenees 20
Part II Performance Tuning 31

3 EXECULION PIAN it eeveee s sesenmsaeesesassannsnnssesesssnenseees 31

3.1 Statistical INfOrmationccoocioieeeee e 32
3.1.1 Oracle Statistics INfOrmMationccccceeereeeeeeeieeeeeeteeeeeeete e 32

3.1.2 DB2 SUALISHCS. c..ueueneeeeieeeeeeeececec et e eeaeetesesseseenesaes s seseeseeesseseesessssesnaes 36

3.1.3 CONCIUSIONS.....ciiiieetetetee ettt e e et et s s e s s s eenee 38

3.2 Cost-based and Rule-based Approaches..........cccoveveeeveeionenreeerceceeeeeeeenee. 38

3.3 Theoretical Execution Plan amd Real Execution Plancccccocceveevveuennene... 39
3.3.1 Regular Statementscccoeeeeerrcrimeerienereneceseete et ese et e s asesesa s 40

3.3.2 Non-correlated SUDQUETYcoveiriniieiee e 44

3.3.3 Correlated SUDQUETYc.ouiieeeee e 46

3.4 Hashing and SOrting JOINc.co.coeircneeneireee et 49

3.5 CONCIUSIONS......o.ecminerecttee ettt et e ettt emeaeseenen 60

B INAEXES ettt ettt sttt et et e e sas e aan 61
4.1 Index and NON-INAEXcocoeiriiiiieii ettt enene 61

4.2 IMmProper INAEX.........cocouimiiiieiieie ettt et 65

4.3 Indexes on Small Table........cc.coireiirineeeeeeeetee e e 68

4.4 Other Factors Affecting the Usage of IndeXes......ccoceveeveremeeeerenereeecreeeeeecanens 68

4.5 Date DiStTDULION.........coociiiiecieeeeeetetn ettt 71

5. Rewriting SQL SEatemMentsccooeeirueecerreeeecie ettt ees 76

6. TUNING TOOIS ...ttt ettt 80
6.1 Optimizer Hint in Oracle 9c.oeoiereieeeceee e 80

6.2 TOOIS IN DB2......onii ettt se e aeeeeee 80
6.2.1 INAEX AQVISOL......emiuiitecieceeeeetre ettt e 80

6.2.2 Performance MOMItOTccoeevecrieieieteetrtneeeetcie st eeee 81
Conclusions 83
Related Work 85
The Sense of the Project 85

vi

References: 86

Appendix A. Queries Sequence 88
Appendix B. Symbols Used in This Paper 89
Appendix C. Examples of Queries and Refresh Functions in TPC-H..............c..c.c.... 9

Appendix D. The Summary of Properties of TPC-H Queries. 113

vii

LIST OF FIGURES

Figure 1.1 TPC-H Database SChemaccocovuiiiniiiiii e 2
Figure 2.1 Power Test Comparison of DB2 and Oracle in 1GB database........................ 29
Figure 2.2 Power Test Comparison of DB2 and Oracle in 10GB Database..................... 30

Figure 3.1 Results From Oracle System Table user_tables Before Collecting Statistics . 33
Figure 3.2 Execution Result and Plan of Statement without Statistics (Oracle) 33
Figure 3.3 Selection Result From System Table user_tables after Collecting Statistics
(OTACIEY ettt e e e et e s e e e et e e ee e e e s e e s e e e e 34
Figure 3.4 Execution Result and Plan of Statement After Statistics (Oracle) 35

Figure 3.5 Throughput Comparisons of Power Test with Statistics and Power Test

WILROUL SEALISTCS ...ceveceicneacrtrenieeeter et e e et ettt sene e neeesesee e asenen 36
Figure 3.6 Execution Result and Plan of Statement without Statistics (DB2).................. 37
Figure 3.7 Execution Result and Plan of Statement with Statistics (DB2)....cc.couvuveuene.... 38
Figure 3.8 QUETY3 Of TPC-H ..ottt e aen 41
Figure 3.9 Theoretical Query Plan of QUETY 3 c.coouomiemieeeceeeeeceeeeeeeeee e 41
Figure 3.10 Execution Plan of QUery3 in Oracle.........ocoueueieieimeeeeeeeeeeee e 42
Figure 3.11 Execution Plan of Query3 in DB2 (Upper Part)...........c.ocoeveveeeeceeeeeeenen. 43
Figure 3.12 Execution Plan of Query3 in DB2 (LOWer Part)c.oooeveveeeeeeeeeererennn. 43
Figure 3.13 Query Plan of above SQL (IN thEOTY) c..ouoeiviieeerer oo eeeeeeeeeeeeeeeeenen 44
Figure 3.14 Execution Plan of Non-correlated Query (In Oracle)..........cooeveeeeeeeeeenenne.. 45
Figure 3.15 Execution Plan of Non-correlated Query (In DB2)......coooovovvoeeeeceeeeeeeenn. 46
Figure 3.16 SQL statement of QUETYL7c..oeeieieuieeenieeieeeeece e ee e nenas 47
Figure 3.17 Query Plan of Queryl7 (In theory)oeueeeeeeeeeeeeeeeeeeeeeeeeeeee e, 47
Figure 3.18 Execution Plan of Queryl7 (In Oracle).........ooooveeeeeeeeeeeeeeeeeeeeeeeeeeeerenn 48
Figure 3.19 Execution Plan of Queryl7 (In DB2)c.oiiiiiieeeeeeeeeeeeeeeeeeeeeeeee e 49
Figure 3.20 SQL Statement of Query21 (In Oracle)...........oueceeeeeeeeeeeeeeeeeeeeeeeeeennan 50
Figure 3.21 Execution Plan for Query21 (1GB) in Oraclecccooeueveeeeeeeeeeeeeeeereran.. 52
Figure 3.22 Execution Plan for Query21 (10G) on Oracle 9i........cccooueveeeeeeeeeeeeeennn.. 53
Figure 3.23 SQL Statement of Query21 with hints (10GB) on Oracleccoeeeeeen...... 55

viii

Figure 3.24 Execution Plan for Query2! with hints (10GB) on Oracle 56

Figure 3.25 Execution Plan for Query21 with hints (LGB) on Oraclecocuueue... 58
Figure 3.26 Execution Plan (Lower Part) for Query21 (10GB) on DB2.......................... 59
Figure 3.27 Execution Plan (Lower Part) for Query21 (IGB) on DB2............................ 60
Figure 4.1 Execution Plan of Query22 without Index (1GB) in Oracle............................ 62
Figure 4.2 Execution Plan of Query22 with Index (IGB) in Oracle................................. 63
Figure 4.3 Execution Result for Query22 without index (IGB) in DB2.......................... 64
Figure 4.4 Execution Result for Query22 with index (IGB) in DB2..........ccoooevevemennenee 64
Figure 4.5 Execution Plan for Query19 without indices (1GB) in Oracle........................ 65
Figure 4.6 Execution Plan for Queryl9 with indices (1GB) in Oracle..............ccoeuur...... 67
Figure 4.7 Execution Plan for Query22 (1GB) on Oraclec.oovveeveveeeeeeeeeeeeeeennn 69
Figure 4.8 Execution Plan Of Above Statement (IGB) on Oraclec.coeeveevevveerennnnn.. 70
Figure 4.9 Execution Plan of Above Statement (1GB) in Oracle.......oooveeeeeeeoeoeeeenn. 71

Figure 4.10 Execution Plan of SQL Statement | for Data Distribution Test (Oracle)..... 72

Figure 4.11 Execution Plan of Statement 3 for the Data Distribution Test in Oracle 73

Figure 4.12 Execution Plan of Statement 1 for the Data Distribution Test (DB2)........... 74
Figure 4.13 Execution Plan of Statement 2 for the Data Distribution Test (DB2)........... 75
Figure 5.1 Rewritten SQL Statement of Queryl7 in Oracle.........ocoveeevveeeeeeeeeeeerernnn. 76
Figure 5.2 Execution Result of Rewritten Queryl7 in DB2.........cccccevvmevveeeeeeeenen. 77
Figure 5.3 Access Plan of Rewritten Query 7 in DB2.........coovoveuiiimieiceeeeeeeeeee e, 78
Figure 5.4 Execution result of original SQL statement of Query17 (DB2).........ccoeeun...... 78
Figure 5.5 Access plan of original SQL Statement of Queryl7 (DB2).....cocceeeemeeen.... 79

LIST OF TABLES

Table 1.1 The Minimum Required Stream COURNTcoeueecemeremeeieeereeereerereeeeeee e 13
Table 2.1 Tests in Our EXPEriment.......ccovoveeeveueieereeee ettt eve s 15
Table 2.2 Seeds fOr SIEAMS.c.ccceiceeiirieeeeeteeeeteee ettt et eee e nee 17
Table 2.3 Execution Time of Load TeSt (1GB)c.oovveeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeneenanes 19
Table 2.4 Execution Time of Load TeSt (L0GB)eooieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeennns 20
Table 2.5 Execution Times of the Oracle Performance Tests (IGB) ...cveveeevemvevennnn... 21
Table 2.6 Comparison of Runs in Oracie (IGB) ...eoeueeeeeeeereeeeeeeeeeeeeeee e 22
Table 2.7 Execution Time of Oracle Performance Test (I0GB)cveeeeeeveeveeeereeerennn.. 24
Table 2.8 Comparison of Runs in Oracle (10GB)couiemeeeeeeeeeeeeeeeeeeeeeeeee e 24
Table 2.9 Execution Time of DB2 Performance Test (IGB) ...ooueeeeeeeeeeeeeeeeeeeernnn. 25
Table 2.10 Comparison of Runs in DB2 (IGB)c.ovoveeeeeeceeeeeeeeeeeeee e eee e 26
Table 2.11 Execution Time of DB2 Performance Test (10GB)cooveeeeeeeeeeeeeeeeeeeennnn. 27
Table 2.12 Comparison of Runs in DB2 (10GB)c.c.ooeoiuieiecemieeeieeceee e 27

Part I TPC-H Benchmark

1. Overview of TPC-H

The TPC Benchmark™ H is a standard benchmark, provided by TPC, a non-profit
organization that was founded to define transaction processing and database benchmarks
and to disseminate objective, verifiable TPC performance data to the industry. This
benchmark illustrates decision support systems that examine large volumes of data,
execute queries with a high degree of complexity, and give answers to critical business
questions [1]. We can find TPC-H information on the website at the following url:

www.tpc.org/tpch/default.asp.

The TPC-H consists of 2 refresh functions for concurrent data modifications and a set
of 22 queries. The queries include a rich set of operators, and are far more complex than

most Online Transaction Processing (OLTP), but can answer real-world questions.

Furthermore, there are some implementation guidelines to make it better for user and
some measurement guidelines to represent the performance of the system more

accurately [1].

1.1 Operation Model and Database Properties

The database is available 24 hours a day, 7 days a week for ad-hoc queries from
multiple users and data modifications for all tables [1]. The queries and refresh functions

can be executed at any time in order to simulate the worldwide business model.

In addition, the database should meet the Atomicity, Consistency, Isolation, and
Durability properties [1]. TPC-H database must be implemented by a commercial
available database management system and the queries are executed via an interface

using dynamic SQL.

The size of database under test is scalable. The suggested size is IGB, 10GB, 30GB,
100GB, 300GB, 1000GB, 3000GB, and 10000GB. The minimum size is 1GB.

The TPC-H database consists of eight tables. The relationships between columns of

these tables are illustrated as follows:

part

PK |P_PARTKEY s’upp“’er_
P_NAME aries PK S SUPPEKY
P_MFGR parisuep
P_BRAND PK |PS PARTKEY S_NAME
P_TYPE PK |PS SUPPKEY S_ADDRESS
P_SIZE > ¢ S_NATIONKEY
P_CONTAINER PS_AVAILQTY S_PHONE
P_RENTALPRICE PS_SUPPLYCOST S_ACCTBAL
P_COMMENT PS_COMMENT S_COMMENT

v

lineitem

PK L ORDERKEY
PK |L_LINENUMBER

L_PARTKEY
L_SUPPKEY
L_QUANTITY
L_EXTENDEDPRICE
L_DISCOUNT

L_RETURNFLAG
L_LINESTATUS

L_SHIPDATE
L_COMMITDATE region
L_RECEIPTDATE

L_SHIPINSTRUCT PK.FK1 |R _REGIONKEY

L_SHIPMODE

L_COMMENT A_NAME

R_COMMENT
N_NATIONKEY

orders
PK |O ORDERKEY customer
PK |C CUSTKEY
O_CUSTKEY
O_ORDERSTATUS C_NAME nation
O_TOTALPRICE — C_ADDRESS
O_ORDERDATE C_NATIONKEY PK |N_NATIONKEY
O_ORDERPRIORITY C_PHONE —————
O_CLERK C_ACCTBAL N_NAME
O_SHIPPRIORITY C_MKTSEGMENT N_REGIONKEY
O_COMMENT C_COMMENT N_COMMENT

Figure 1.1 TPC-H Database Schema

(8]

1.2 Metrics

The TPC-H defines three primary metrics, which are used to measure the DBMS
under test:

¢ The TPC-H Composite Query-per-Hour performance metric QphH@Size

¢ The price-performance metric is the TPC-H Price/Performance ($/QphH)

The performance metric reported by TPC-H is called TPC-H Composite Query-per-
Hour Performance Metric (QphH@Size), which reflects multiple aspects of the capacities
of the system to process the queries [1]. These aspects include (1) the selected database
size against which the queries are executed; (2) the query processing power when queries
are submitted by a single stream; (3) the query throughput when multiple concurrent
users submit queries. The TPC-H Price/Performance is represented by the $/QphH@Size.

Namely, the formulas of two metrics are listed respectively as follows:

QphH@Size = :L/ (Power@Size * Throughput@Size)
Price-per-QphH@Size = ($ / QphH@size)

Where: “$", in the above formulas, represents the cost of the test bed, which

consists of software and hardware components used in TPC-H test.

Furthermore, the formulae for calculating power metric and throughput metric are as

follows.

=2

1=22

TPC-H Power@Size = (3600 * SF)/ ** |/([T QI(i,0) * I1 RI(,0))
i=1 j=1
Where:
QI(i.0) is the timing interval, in seconds, of query Q; within the single query

stream of the power test

RI(j,0) is the timing interval, in seconds, of refresh function RF;j within the single
query stream of the power test
Size is the database size chosen for the measurement and SF the corresponding

scale factor

TPC-H Throughput@Size = (S * 22 * 3600) * SF/ T,

Where:

S is the number of query streams used in throughput test, and

Ts is the measurement interval defined as follows:

e It starts either when the first character of the executable query text of the first
query of the first query stream is submitted to the SUT by the driver, or when
the first character requesting the execution of the first refresh function is

submitted to the SUT by the driver, whichever happens first.

e It ends either when the last character of output data from the last query of the
last query stream is received by the driver from the SUT, or when the last
transaction of the last refresh function has been completely and successfully
committed at the SUT and a success message has been received by the driver

from the SUT, whichever happens last.

The TPC-H performance test consists of two runs: Runl and Run2. The reported
performance metric must be for the run with the lower TPC-H Composite Query-Per-
Hour Performance Metric because the TPC-H metrics reported for a given system must
represent a conservative evaluation of the system’s level of performance. Each of these
includes a power test and a throughput test. The former measures the raw query execution
power of the system when connected with a single active user, whereas the later measures

the ability of the system to process most of queries in the least amount of time.

1.3 Queries and Refresh Functions

There are twenty-two different queries and two refresh functions, which are chosen in
the TPC-H testing. The query templates are provided in Appendix C and the properties of
those queries are listed in Appendix D. These queries have a high degree of complexity
and differ from each other. Furthermore, each query contains one or more substitution
parameters that describe how to generate the values needed to complete the query syntax.

In what follows, we provide a description of each of these queries and refresh functions.

1.3.1 General Description of the Queries

¢ Query Overview:

Each query is defined by the following components: 1) the business question, which
illustrates the business context in which the query can be used; 2) the functional query
definition, which defines, using SQL-92 language, the function to be performed by
the query; 3) the substitution parameters, which describe how to generate the values
needed to complete the query syntax; 4) the query validation, which describe how to

validate the query against the qualification database.

In this section, we provide a brief description of the 22 queries defined by TPC-H
benchmark, which we used in our experiments. Furthermore, Appendix C provides

examples for the 22 queries and insert functions, used in Oracle tests.

Queryl:

Provides a summary pricing report for all lineitems shipped as of a given date. The date is
within 60- 120 days of the greatest ship date contained in the database. The query lists
total for extended price, discounted extended price, and discounted extended price plus
tax, average quantity, average extended price, and average discount. These aggregates are
grouped by return flag and line status, and listed in ascending order of return flag and line

status. A count of the number of lineitems in each group is also included.

Query?2:

Finds, in a given region, for each part of a certain type and size, the supplier who can
supply it at minimum cost. If several suppliers in that region offer the desired part type
and size at the same (minimum) cost, the query lists the parts from suppliers with the 100
highest account balances. For each supplier, the query lists the supplier's account balance,
name and nation; the part's number and manufacturer; the supplier's address, phone

number and comment information.

Query3:

Retrieves the shipping priority and potential revenue of the orders having the largest
revenue among those that had not been shipped as of a given date. Orders are listed in
decreasing order of revenue. If more than 10 unshipped orders exist, only the 10 orders

with largest revenue are listed.

Query4:
Counts the number of orders ordered in a given quarter of a given year in which the
customer received at least one lineitem later than its committed date. The query lists the

count of such orders for each order priority sorted in ascending priority order.

Querys:

Lists for each nation in a region the revenue volume that resulted from lineitem
transactions in which the customer ordering parts and the supplier filling them were both
within that nation. The query is run in order to determine whether to institute local
distribution centers in a given region or not. The query considers only parts ordered in a
given year. The query displays the nations and revenue volume in descending order by

revenue.

Query6:
Lists all the lineitems shipped in a given year with discounts between DISCOUNT-0.01
and DISCOUNT + 0.01. The query lists the amount by which the total revenue would

have increased if these discounts had been eliminated for lineitems with 1_quantity less

than quantity.

Query7:
Finds, for two given nations, the gross discounted revenues derived from lineitems in

which parts were shipped from a supplier in either nation to a customer in the other

nation during 1995 and 1996.

Query8:
The market share for a given nation within a given region is defined as the fraction of the
revenue from the products of a specified type in that region to that supplied by suppliers

from the given nation.

Query9:

For each nation and each year, the profit for all parts ordered in that year contains a
specified sub string in their names and were filled by a supplier in that nation. The query
lists the nations in ascending alphabetical order and, for each nation, the year and profit

in descending order by year (most recent first).

Query10:

Finds top 20 customers, in terms of their effect on lost revenue for a given quarter, who
have returned parts. The query considers only parts that were ordered in the specified
quarter. The query lists the customer's name, address, nation, and so on. The customers

are listed in descending order of lost revenue.

Queryl1:
Finds. from scanning the available stock of suppliers in a given nation, all the parts that
represent a significant percentage of the total value of all available parts. The query

displays the part number and the value of those parts in descending order of value.

Queryl2:

Counts. by ship mode, for lineitems actually received by customers in a given year, the
number of lineitems belonging to orders for which the receipt date exceeds the committed
date for two different specified ship modes. Only lineitems that were actually shipped
before the commit date are considered. The late lineitems are partitioned into two groups,
those with priority URGENT or HIGH. and those with a priority other than URGENT or
HIGH.

Queryl3:

Determines the distribution of customers by the number of orders they have made,
including customers who have no record of orders, part or present. It counts and reports
how many customers have orders, how many have 1,2,3 etc. A check is made to ensure
that the orders counted do not fall into one of several special categories of orders. Special

categories are identified in the order comment column by looking for a particular partner.

Queryl4:
Determines what percentage of the revenue in a given year and month was derived from
promotional parts. The query considers only parts actually shipped in that month and the

percentage is given.

Queryl5:
Finds the supplier who contributed the meost to the overall revenue for parts shipped
during a given quarter of a given year. In case of a tie, the query lists all suppliers whose

contribution was equal to the maximum, presented in supplier number order.

Queryl6:

Counts the number of suppliers who can supply parts that satisfy a particular customer's
requirements. The customer is interested in parts of eight different sizes as long as they
are not of a given type, not of a given brand, and not from a supplier who has had
complaints registered at the Better Business Bureau. Results must be presented in

descending count and ascending brand, type, and size.

Queryl7:

Considers parts of a given brand and with a given container type and determines the
average lineitem quantity of such parts ordered for all orders (past and pending) in the 7-
year database. What would be the average yearly gross (undiscounted) loss in revenue if
orders for these parts with a quantity of less than 20% of this average were no longer

taken?

Queryl8:
Finds a list of the top 100 customers who have ever placed large quantity orders.

Query19:
Finds the gross discounted revenue for all orders for these different types of parts that

were shipped by air or delivered in person. Parts are selected based on the combination of

specific brands, a list of containers, and a range of sizes.

Query20:

Identifies suppliers who have an excess of a given part available; excess is defined to be
more than 50% of the parts like the given part that the supplier shipped in a given year for
a given nation. Only parts whose names share a certain naming convention are

considered.

Query21:
Identifies suppliers, for a given nation, whose product was part of a multi-supplier order
(with current status of ‘F’) where they were the only suppliers who failed to meet the

committed delivery date.

Query22:
Counts how many customers within a specific range of country codes have not placed

orders for 7 years but who have greater than average "positive” account balance. It also

reflects the magnitude of that balance.

e Refresh Function Overview

The refresh functions are used to track the state of the OLTP database. Each refresh
function consists of the components: 1) the business rational, which illustrates the
business context in which the refresh function can be used; 2) the refresh function
definition, which defines the pseudo-code the function to be performed by the refresh
function; 3) the refresh data set, which defines the set of rows to be inserted or deleted by

execution of the refresh function into or from the ORDERS and LINEITEM tables.

Refresh Function 1:
This refresh function inserts new sales information into the ORDERS and LINEITEMS
tables, using the following scaling factor (SF) and data generation method used to
populate the database.

LOOP (SF * 1500) TIMES

INSERT a new row into the ORDER table

LOOP RANDOME (1,7) TIMES

INSERT a new row into the LINEITEM table
END LOOP
END LOOP

Refresh Function 2:
This refresh function removes old sales information from the ORDERS and LINEITEMS
tables to emulate the removal of stale or obsolete information. The following scaling
factor (SF) and data generation method is used to populate the database.

LOOP (SF * 1500) TIMES

DELETE FROM ORDER WHERE O_ORDERKEY = [value]

DELETE FROM LINETIME WHERE L_ORDERKEY = [value]

END LOOP

10

1.3.2 QGEN and DBGEN

TPC-H has given a set of prototypes of queries and refresh functions (see Appendix
C) for details. According to the concrete syntax of the database system under test, those
queries should be modified in order to meet the syntax requirement of the specific
database. However, the modification will be limited to syntax matching only. Any other

modifications that improve the system performance are not allowed.

DBGEN is a database population program (in ANSI 'C' for portability) used with the
TPC-H. But the test sponsors must make some modifications to make it runable in the
specific operating system environment. DBGEN will generate separate ASCII files,
which contain pipe-delimited load data for one of the tables defined in the TPC-H, and

data sets to be used in the refresh functions.

In addition, TPC-H provides another C program named QGEN, which also can be
downloaded from the website of TPC. This program is used to generate executable
queries. Like DBGEN, QGEN is controlled by a combination of command line options
and environment variables. The option named -r seeds the random number generator with

seed value <n>. The selection of n is done according to the following rules:

1) Aninitial seed (seed0) is first selected as the time stamp of the end of the database
load time expressed in the format mmddhhmmss where mm is the month, dd the
day, hh the hour, mm the minutes and ss the seconds. This seed is used to seed the
power test of Runl.

ii) Further seeds (for the throughput test are chosen as seed0 + 1, seed0 + 2, ...,
seed0 + n where n is the number of the throughput streams selected by the vendor.

iii) Sponsor decides whether Run2 should use the same seeds as the Runl, but the

method of selecting seeds should be the same.

11

1.4 Execution Rules

The performance test follows the load test, which includes the statistics gathering
activity. Any system activity that takes place between finishing of the test load and the
beginning of the performance is limited and is not to improve the systemn'’s performance.
For TPC-H requirements, each run includes one power test and one throughput test. Both

of them should be done under the same test conditions.

1.4.1 Run Sequence

Run | follows the data load and Run2 follows Runl. If Run 1 is a failed run, the
benchmark must be restarted with a new load test. If Run2 is a failed run, it may be

restarted without a reload.

1.4.2 Power Test and Throughput Test

A power test measures the raw query execution power of the system when connected
with a single user. It consists of three execution streams in order: refresh functionl
stream, power test queries stream, and refresh function2 stream. The timing intervals for
each query and for both refresh functions are collected and reported for the performance

calculation.

A throughput test measures the ability of the system to process the most queries in the
least amount of time. The throughput test must be driven by queries submitted by the
driver through two or more sessions. The value of S, the minimum number of query
streams for throughput test. is given in Table 1.1. In addition, another refresh stream
should be parallel to those S query streams. In Table 1.1, SF is database scale factor,

which represents the size of database. For example, 1 means the 1 GB size and so on.

w
7
3
3

SF (Scaling Factor)
1

10

30

100

300

1000

3000

10000

O|oo|~dinN s |Ww|to

Table 1.1 The Minimum Required Stream Count

The throughput test must follow, one and only one, power test. No activity that
improves the system performance is allowed between the power test and the throughput
test. The sequence of queries used in a power test and throughput test are shown in

Appendix A.
1.4.3 Measurement Interval and Timing Interval

The measurement interval, Ts, for the throughput test is measured in seconds as in

section 1.2.

Each of the TCP-H queries and the refresh functions must be executed in an atomic
fashion and timed in seconds. The timing interval, QI(i, s), for the execution of query Q;

within the stream s must be measured between:

¢ The time when the first character of the executable query text is submitted to the
SUT by the driver
AND

o The time when the first character of the next executable query text is submitted to
the SUT by the driver, except for the last query of the set for which it is the time
when the last character of the query’s output data is received by the driver from
the SUT.

13

1.5 The Drivers

A driver is a logical entity, representing the workload to the SUT, that can be
implemented by one or more programs, processes, or systems and perform the function

defined as above.

2. Implementation

2.1 Testing Plan

2.1.1 Available Database Engines

In this project, we used the following commercial databases:

® DB2 Universal Database Enterprise Edition 7.2

® Oracle9i Enterprise Edition

Our objective is to run TPC-H Benchmark on these DBMS in Windows2000

environment and compare their performance metrics.

For these experiments, we used an IBM Desktop 6849-32U, with a CPU of P4-1.7, 256
RAM and a 80GB hard disk of about $4000.00. In order to measure the cost of the
software used in the test, we checked the price of the DBMS by checking the current
market and asking the vendors. The price of Oracle 9i EE is about $63,348, whereas the
price of DB2 UDB EE v7.2 is about $43,686. This information will be used in the

performance metrics calculation in section 1.2.

14

2.1.2 Database Scaling

Scale factors, 1 and 10 are chosen from the set of fixed scale factors defined in
section 1.1, resulting in two database sizes of 1GB and 10GB respectively. The minimum

required size for a test database is 1GB.

Thus we will get four testing combinations on the DBMS and database size:

Size(GB)
1 10
DBMS
DB2 Testl Test2
Oracle Test3 Test4
Table 2.1 Tests in Our Experiment
2.1.3 Testing Purpose

We will compare the results of testl and test3, and the results of test2 with those of
test4. In the end, we want to determine which DBMS is suitable for a given data size and
OS. Using that information, we can choose which DBMS on which OS would be more

suitable for a particular business size.

2.2 Testing Preparation

In this phase, the schema of the database should be created according to the
requirement of TPC-H. This database should then be populated by generated data. Also,

query sequences should be prepared for the experiment.

15

2.2.1 Database Definition and Creation

The logical database of TPC-H has eight tables. What we should do is to create the
corresponding database schema both for Oracle and DB2 respectively because of their

different syntaxes.
2.2.2 Population Data Generation

The driver, DBGEN provided by TPC, is used to generate population data. However,
the original standard C program did not work in Window2000 OS, some modifications

WEre necessary.

In order to generate 1GB data for all tables of TPC-H database, the following

command line is invoked in Windows2000 OS:

Dbgen.exe —s 1

Similarly, for getting LOGB data in Windows2000 OS, we use command line:

Dbgen.exe —s 10

Where:
s denotes the scaling factor.

2.2.3 Query Generation and Validation
¢ Query Sequence
The 22 queries needed in our experiment can be generated by QGEN,

provided by the TPC-H. We had to modify this program so that it could run in the

operating system Windows2000.

16

As discussed In Section 1.3, we know that a seed is used to generate the
random number for the parameters substituted in the template queries. Here, we
choose the seed0 as the end time of the loading | GB data into DBMS Oracle9i

first time.

The required minimum number of query streams for throughput is 2 for 1GB
size and 3 for 10 GB. For 1GB data, stream1 and stream?2 are used for runl and
run2, whereas for 10 GB data, stream1, stream?2, and stream3 are used for runl
and run2. In our project, runl and run2 use different seeds. All seeds used to

generate query sequences are listed in Table 2.2.

The first database was created on August 7, 2002. In addition, and the end of
loading data time is 14:03:30PM, so the seed for streamO of runl is 807140330.

Others seeds are defined according to the above rules.

Seed Run | Runl Run2
Stream
StreamO(power) 807140330 807210122
Stream(throughput) 807140331 807210123
Stream2(throughput) 807140332 807210124
Stream3(throughput) 807140333 807210125

Table 2.2 Seeds for Streams

Refresh Functions Generation

A refresh function is a sequence of just Insertion functions (RF1) or Deletion

function (RF2).

The driver, DBGEN, can be used to generate raw data for RF1 and RF2 using

some specific parameters. Furthermore, the parameter —S n should be given to

17

specify the scale factor of a database, for which those refresh functions data, is

used. For example, for the 1GB database, we use the following command line:

Dbgen.exe -S 1 -U6

Similarly, for the 0GB database, we use the command line:

Dbgen.exe -S 10 -U8

In both cases above, the parameter —Un is used to create a specified number
(n) of data sets in flat files for the refresh function 1 and the refresh function2.
The flat generated by the above command lines are just the raw data records,
whose fields are separated by the pipe-delimiter ‘. In order to get the refresh
functions in SQL, we developed two new drivers in C, to generate the sequence of

RF1 and RF2 automatically.

The functional query definition uses the following minor modification in each

DBMS, respectively:
e Oracle
I. For date fields, we use the Oracle date function. For example, to_date(date

1998-03-21"), which converts the given string format date into '21-Mar-

98’, which is internal representation in Oracle.

9

The standard Oracle date syntax is used for the date arithmetic. For

example, to_date(date *1996-02-21" + interval ‘5’ days)

3. Queries 2, 3, 10, 13, and 21 should be modified in order to fetch the given
number of the query result. The rownum < n is used in the WHERE
clause of those queries.

Where: n is an integer, representing the number of rows that are returned

from the query.

18

e DB2

1. The standard IBM date syntax is used for the date arithmetic. For exampie,
date (‘1996-02-21)+5 days means the date '26-Jan-96’ in DB2.

2. Queries 2, 3, 10, 13, and 21 should be modified in order to fetch the given
number of tuples in the query results. The fetch last n rows is used in the
Where clause of those queries.

Where: n is an integer, representing the number of rows that are returned from

the query.

2.3 Testing

2.3.1 Load Test

After the database was created, the load test starts. By using “load” function or
command, we can load the population data into a DBMS. Statistics collection activity
follows the loading activity. The collected times are listed in the Table 2.3 and Table 2.4,

for IGB and 10 GB database respectively.

Database scale factor =1

Time (minutes) Oracle DB2
Loading time 3:57 3:32
Statistics collection time | 33:20 6:20
Total 37:17 9:53

Table 2.3 Execution Time of Load Test (1GB)

Database scale factor =10

19

Time (minutes) Oracle DB2
Loading time 38:28 50:45
Statistics collection time | 416:16 95:34
Total 454:44 146:19

Table 2.4 Execution Time of Load Test (10GB)

From the above Table 2.3 and Table 2.4, we can see that the statistics collection time
for DB2 is just about 20% of the statistics collection time for Oracle. However, it means

that Oracle will collect more information about the database.

2.3.2 Performance Test

The power test is executed first. Stream O contains a pair of refresh function and 22
quertes in a specific sequence. The execution time of these functions and queries are

recorded for the purpose of calculating TPC-H power metric.

Following the power test, we conducted the throughput test. A set of query streams is
executed concurrently. This is to simulate simultaneous access of the database by several
users. For 1GB size database, the number of streams in throughput test is 2, whereas for
10GB size database, this number of streams in throughput test is 3. To ensure that the
streams run currently, several command windows are opened, one for each stream. An

update stream is run in throughput test. The execution time of each query is recorded.

2.3.3 Test Results and Comparison

In tables of this section, T; represents the execution time of the refresh functions.

2.3.3.1 Oracle Performance Metric

The following diagram shows the execution time of each query for 1GB database.

TPC-H Timing Intervals (in seconds):

Query Q1 Q2 Q3 Q4 Q35 Q6 Q7 Q8

Stream 0

Run 1 69.1 9.1 14.0 47.0 102.1 34.0 95.0 59.1
Run 2 61.0 10.1 11.0 470 89.1 311 90.1 44.1
Stream 1

Run [569.1 101.0 185.1 848.0 892.0 766.1 971.0 748.0
Run 2 437.1 80.0 156.0 462.1 766.0 612.1 1055.1 589.1
Stream 2

Run 1 2940 96.1 185.0 358.0 928.0 756.1 967.1 791.1
Run 2 619.0 93.1 241.1 795.1 922.0 532.1 938.0 651.1
Query Q9 QI10 Q11 Q1 pl3 Q14 Q15 QL6
IStream 0

Run [276.1 52.1 9.1 44.0 201.0 37.0 76.1 15.1
Run 2 296.0 49.0 9.1 41.0 200.1 40.0 66.1 16.08
Streamn 1

Run 1 1418.1 961.1 190.0 1184.0 854.1 505.1 1151.0 68.0
Run 2 1518.0 838.1 135.0 1121.1 831.1 659.1 976.0 80.0
Stream 2

Run 1 1369.0 893.1 196.0 860.0 766.1 662.1 13210 79.1
Run 2 15130 829.1 202.0 791.0 810.1 660.0 933. 77.
Query Q17 Q18 Q19 Q20 Q21 Q22 RF1 RF2
Stream O

Run | 69.0 60.1 44.1 43.0 173.1 15.0 23.] 10.1
Run 2 66.0 48.0 43.1 37.1 147.0 14.0 21.1 9.0
Stream |

Run 1 834.1 658.0 584.1 665.0 1895.1 231.0 28.0 15.1
Run 2 1154.1 643.0 686.1 952.0 1163.0 209.0 25.1 13.0
IStream 2

Run 1 944.1 654.0 670.0 554.0 1844.1 89.1 25.1 12.1
Run 2 1171.1 610.1 700.0 789.0 1185.1 213. 241 12.0

Table 2.5 Execution Times of the Oracle Performance Tests (1GB)

21

The first row, in the above Table 2.5, shows the sequence of queries. The second row
shows the stream number of power test and the following two rows belong to this stream.
The third row shows the time taken for Run | on the first 8 queries. For example,
execution time of Query! took 69.1 seconds in power test of Run 1, while Query?2 took
9.1 seconds. The fourth row shows the time taken for Run2 on the first 8 queries. The
fifth row shows the first stream number of throughput test and the following two rows
belong to this stream. The eighth row shows the second stream number of the throughput
test and the following two rows belong to the second stream. Similarly, the meaning of

the rest of rows is obvious. In the rest of this part, the tables have similar meanings.

Based on the time values collected in the above table, we can calculate the metrics,
defined in section 1.2. Table 2.6 summarizes this important information. For instance, the
queries per hour of power test of Runl are 83.1, while the queries per hour of throughput
test of Runl are 9.7. As a result, the queries per hour of Runl are 28.4. In addition, the

execution time of the refresh functions in throughput test of Runl is 17856.1 seconds.

Run ID QppH@IGB | QthH@IGB QphH@IGB | Ts
Run I 83.1 9.7 28.4 17856.1
Run 2 87.4 10.4 30.2 16770.0

Table 2.6 Comparison of Runs in Oracle (1GB)

Since the QphH@ 1GB in Run 1 is lower than that in Run 2, the result of Run 1 is
adopted. Finally, we divided the cost of test bed (63,348 + 4000) by adopted
QphH@1GB (28.4), and we can get the Price/Performance Metric.

QphH@I1GB = 28.4
TPC-H Price/Performance Metric 2371

9
[§S)

The following diagram shows the execution time of each query on 10GB database.

TPC-H Timing Intervals (in seconds):

Query Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Stream O

Run 1 729.0 182.0 951.1 1188.1 1103.0 454.0 1113.0 565.0
ﬁRun 2 759.1 2570 889.1 1188.0 1083.1 4520 1051.0 604.0
Stream [

Run | 10588.1] 2351.5} 15083.ll 15083.00 19939.1] 10014.00 17783.1] 16984.1
Run 2 11910.06 2402.00 16293.1) 15777.00 14447.1 10549.1f 15157.0 14189.1
Stream 2

Run 1 11353.0 2870.1] 16238.0 21236.0 8086.00 16748.1] 16698.1 24237.0
Run 2 9599.1 2423.1] 17338.1] 18357.00 14252 12286.00 19134.1] 143820
Stream 3

Run [10284.0 2381.1) 13434.1} 16225. 17790.1f 12116.0 0.0 8545.0
Run 2 12313.1) 271LY 5577.1) 15870.0 14350.00 10593.}y 14717.0 12662.1
Query Q9 QL0 Ql1 Q12 Ql3 Q14 QL5 Ql6
Stream O

Run | 3236.0 1059.1 92.1 851.1 27131 498.1 1001.0 402.1
Run 2 2923.1 1112.0 90.0 844.1 2465.1 502.1 999.0 552.1
Stream 1

Run [26433.11 14888.00 3823.1] 22532.1) 14857.1] 118150 25124.0 2940.0
Run 2 26397.00 18253.00 2869. 23138.1] 13783.00 13412.0 248810 3286.1
Stream 2

Run | 24237.00 16335.1) 24721 21762.00 41452.1 13101.1] 21246.0 2686.00
Run 2 16397.0 182530 2869.00 23138.1 13783.0 13412.00 24881.0 3286.1
Stream 3

Run | 26405.00 17046.00 4203.0 19646.00 15114.1 10882.00 25805.0 3053.0
Run 2 28793.1) 15513. 3573.1) 21343. 16332.0 12506.1 244920 3024.1
Query 17 Q18 Q19 Q20 Q21 Q22 RF1 RF2

Stream 0

Run 1 965.0 565.0 579.0 910.0 2101.1 264.1 203.0 98.1

Run 2 958.0 550.1 575.1 989.1 2096.1 257.0 200.1 98.0
Stream |
llgl I 21463.1) 12701.5; 11816.00 16576.1 8162.1 3962.0 249.0 204.1
Run 2 204940 12096.00 14513.1 16483.1 38866.1 4021.1 315.1 200.1
Stream 2
Run | 23175.0 11902.1} 13340.1 12816.0 8401.1 3921.0 323.0 212.0
Run 2 24541.1) 11543.00 10428.0 16007. 38335.0 5052.1 308.1 2110
Stream 3
Run 1 354140 12306.00 11272.00 13183.1 40712.1 4048.0 321.0 225.1
Run 2 20347.1] 2459400 13761.0 17645.1] 39338.0 4028.0 333.0 203.1
Table 2.7 Execution Time of Oracle Performance Test (10GB)

Run ID QppH@10GB | QthH@10GB QphH@10GB | Ts

Run 1 56.3 6.9 19.7 364576.8

Run 2 553 7.1 19.8 355577.0

Table 2.8 Comparison of Runs in Oracle (10GB)

Since the value QphH@ 0GB in Run 1 is lower than Run 2, the result of Runl is
adopted:

QphH@10GB = 19.7
TPC-H Price/Performance Metric 3419

Observations: Although, the size of the database whose scaling factor is 10, is 10
times that of the database whose scaling factor is 1, the queries per hour of the 10GB

database is just 69.4% to that of the 1GB database.

2.3.3.2 DB2 Performance Metric

The following diagram shows the execution time of each query for 1GB database.

TPC-H Timing Intervals (in seconds):

Query Ql Q2 Q3 Q4 5 Q6 Q7 Q8
Stream 0

un | 65.9 11.0 128.2 81.0 106.5 310 299.1 147.5
Run 2 66.9 1.2 127.6 79.4 116.4 25.5 255.3 143.6
Stream [
Run | 11927.9 102.7] 6133.7 819.5 242.4 1323.7 710.7 324.3
Run 2 159.2 34.0 352.1 177.8 55245 216.8 529.5 9413.0
Stream 2
Run | 98.8 49.4 133.1 503.5 267.7 925.7 506.4ﬁ 1084.24
Run 2 65.2 83.8 278.6 189.2 117.3 143.3 7614.7 252.8

uery Q9 Q10 Qll Q12 QL3 Ql4 Q15 QL6
Stream 0
Run [1638.3] 105.2 118.2 45.4 129.6 37.1 28.3 2.2
Run 2 1619.7 94.3 123.4 570 153.8 41.0 28.3 12.0
Stream 1
Run | 1802.2 588.8 260.5 225.8 293.1 152.4 322.6 72.8
Run 2 1703.4 650.6 297.3 468.2 235.4 109.5 98.3 389
Stream 2
Run 1 2146.7 136.6 2853 9111.2 243.2 1763.0 58.2 38.9
Run 2 2044.1 1679.3 3720 6669.9 244, 107. 178.1 72.6
Query Q17 Q18 Q19 Q20 Q21 Q22 RFI RF2
Stream 0
Run | 6396.7 60.8 47.31 10241.8 581.4 109.9 5t. 3 125.0
Run 2 57140 64.2) 54.6 8465.6 580.7 118.9 49.5 126.2
Stream 1
Run 1 6484.4 124.1 90.1 8356.2 473.4 264.9 236.1 362.3
Run 2 63119 135.7 1739, 13765.7 782.0 299.41 216.6 286.1
Stream 2
Run | 12002.0 143.5 [15.7 7514.6 1099 4 360.6 265.3 321.9
Run 2 6918.7 403.6 118.5 9308.5 1020.2 455.3 2425 299.5

Table 2.9 Execution Time of DB2 Performance Test (1GB)

25

Run ID QppH@IGB QHhH@IGB QphH@1GB Ts
Run | 28.7 3.8 104 620858
Run 2 293 41 11.0 567144

Table 2.10 Comparison of Runs in DB2 (1GB)

Since the QphH@ LGB in run | is lower than that in run 2, so the result of run I is

adopted:

QphH@1GB =
TPC-H Price/Performance Metric ($)

104

4585

The following diagram shows the execution time of each query for 10GB database.

TPC-H Timing Intervals (in seconds):

Query Ql Q2 Q3 Q4 Q5 Q6 Q7 Q8

Stream O

Run 1 849.3 355. 21135 1345.4 1705.3 579.5] 2779.1 1866.2
Run 2 850.5 358.1 21293 1348.4 1671.2 713.5 2837.3 1991.5
Stream 1

Run | 3581.% 2020.1 6248.4 2208.5] 21465.3 2341.3 170792 8389.1
Run 2 6082.2 1848.5 5683.41 8997.1] 21504.5 3180.5 10371.1] 11024.1
Stream 2

Run 1 1880.4 1385.6 12029.4 737042 5557.2 71740 252442 15264.4)
Run 2 7005.5 1398.21 4091.§ 40992.5 7891.2 7397.4 6963.4W 15164.5
Stream3

Run | 2329.2 1874.5| 3982.24 26777.1] 10873.2 2680.0 172972 13068.1
Run 2 32315 1651.6¢ 52383 27401.2 10325.3 2521.21 10703.3 13513.0
Query Q9 QL0 Q11 Q12 Q13 Ql4 Q15 16
Stream 0

Run | 14544.3 1618.5 1057.4 916.1 946.5 723.3 872.0 233.57

Run 2 19795.1 1642.5 1077.1 925.5 1214.0 735.3 874.4 239.
Stream |
Run | 434304 24796.6 2605.2 2584.3 3037.1 4663.4 7287.5 2096.1
Run 2 28425.31 27474.5 2602.3 2559.6 8011.0 7685.4 5442.1 1741.5
Stream 2
Run | 23948.4 7815.0 3743.1 5537.5 2658.3 4590.2 4348.1 1470.1
Run 2 246155 7367.0 1981.4 24251.5 3330.2 4714 .4 4489.3 1486.3
Streamn 3
Run | 22853.8 9373.6 1962. 27910.1 8465.0 5063.2 435 l.ﬂ 1536.2

un 2 27247.5 12310.6 2103.3 18869.1 8445.2 4503.2 3598.1 1196.3
Query Q17 QI8 Q19 Q20 Q21 Q22 PIFI RF2
Stream 0
Run 1 b 1334.5 855.2 * 6151.1 1392.4 760.5 96.0
Run 2 b 1258.5] 824.1 * 7396.2 1399.5 691.2 98.6
Stream |
Run 1 M 63582 11529.0 ¥ 16951.6 24404 191852.1 98.19
Run 2 H 6900.1 41553 ¥ 17453.1 3162.3 189284.2 68.5
Stream 2
Run | H 32442 3196.2 % 314923 6895.5 549.1 97.1
Run 2 % 4889.6 3059.5 Y 10477.1 8124.1 502.5 74.
Stream 3
Run | o 1371.21 11668.3 * 9217.1 7051.1 382.1 100.5
Run 2 b 1367. 4969.2 Y 140153 4020.0 537.4 69.2

* 1
Table 2.11 Execution Time of DB2 Performance Test (10GB)

Run ID QppH@10GB QthH@ 10GB QphH@10GB Ts

Run | 20.0 22 6.6 1074236.1

Run?2 19.3 22 6.5 10648744

Table 2.12 Comparison of Runs in DB2 (10GB)

Since the value of QphH@ 1GB in Run 2 is lower than that in Run 1, we adopted Run

QphH@10GB = 6.5
TPC-H Price/Performance Metric 7336

The value of QphH@ IGB on Oracle is 28.4 queries per hour, whereas the value of
QphH@1GB on DB2 is 10.4 queries per hour. As a result, the performance of Oracle9i is
better than that of DB2 Universal Database on Windows2000 OS and IBM 6849-32U.
Figure 2.1 illustrates the power test difference between Oracle and DB2 with 1GB size

factor and we can see that most of queries need more execution time on DB2.

! "Represents the execution time that is more than 96 hours. Here it represents 96 hours.

This value also is used to calculate the QphH@ 10G for DB2.

2.3.3.3 Comparison

9120.0 1
8640.0 £
8160.0 £2
7680.0
7200.0
6720.0
6240.0
5760.0
5280.0
4800.0
4320.0
3840.0
3360.0
2880.0
2400.0 |
1920.0
1440.0
960.0
480.0

Exectuion Time (seconds)

Figure 2.1 Power Test Comparison of DB2 and Oracle in 1GB database

In Figure 2.1, we can see Oracle need far less time for most queries in the TPC-H.
Especially for query 20, the DB2 needs 8465.6 seconds, whereas Oracle just needs 37.1

seconds.

The value of QphH@ 10GB on Oracle is 19.7 queries-per-hour, whereas the value of
QphH@ 10GB on DB2 is 6.5 queries-per-hour. As a result, the performance of Oracle is
better than that of DB2 on Windows2000 OS and IBM 6849-32U too. Figure 2.2
illustrates the power test difference between Oracle and DB2 with 10GB size factor and

we can see that most of queries need more execution time on DB2.

g

Execution Time (seconds)
o

:

Figure 2.2 Power Test Comparison of DB2 and Oracle in 10GB Database

Note: In DB2 10GB test, the executions of Query17 and Query20 last more than 96
hours respectively without output result even when the temporary table space, which is
used to store the intermediate result of query, is adjusted to 18GB. When we monitored
the DB2’s status, using Performance Monitor Tool, the system “appeared’ normal.

Furthermore, we tried to contact IBM Company to solve this problem, but no response.
Considering the statistics collection time in the load test, we can see that Oracle needs

far more time than that needed by DB2. It seems that the Oracle gathers more information

during the statistics collection phase; however, it pays when answering queries.

30

Part I1I Performance Tuning

Performance tuning is a vital part of the management and the administration of

successful database systems.

Database tuning is both an easy and a difficult task. It is easy, because common sense
can be applied without use of theorems, and difficult, because it requires a deep

understanding of the principles and knowledge of the application domain [5].

An optimizer may use indices to access table more efficiently. [ndexing impacts how
an optimizer chooses an access path to the table. In addition, the different kinds of indices
have different effects on the access plan. In Chapter 3, we will study how an optimizer
chooses an access plan, based on factors such as available statistics, database size and
operator methods. In Chapter 4, we will study how an optimizer uses indices, censidering
the cost of query. In Chapter 5, query rewriting will be reviewed. In Chapter 6, some
tools provided by specific DBMS will be reviewed. Those tools are helpful in doing

database system performance tuning.

3. Execution Plan

Understanding how the optimizer works is the basis for solving performance
problems. After SQL statements are submitted to the DBMS, the query processor must
follow three steps: parsing, creating a logical query plan, and converting the logical query

plan into a physical query plan [4].

In this section, we first discuss the importance of statistics in a DBMS. Then we study
the theoretical basis of the physical query plan and its implementation in a commercial
DBMS. Furthermore, some details, such as join methods, in the real commercial query

plan will be analyzed.

31

3.1 Statistical Information

Statistics include various information about the database, such as the number of rows
in each table, the average length of rows in each table, data distribution of a specific field,
selectivity, and other useful information. Using these statistics, the optimizer can
determine an “optimal” execution plan. Without such information, the database manager

could make a decision that may adversely affect the performance of an SQL statement.

3.1.1 Oracle Statistics Information

In Oracle9i DBMS, there are almost 100 tables in the DBMS dictionary to store
information about the user’s database. An optimizer will use this information to create a
lowest-cost plan if the statistics information exists; otherwise, the DBMS will use the
default method with little or no optimization. Oracle generates statistics using estimation

based on random data sampling and exact computation.

The following test illustrates the important role of statistics. A simple SQL statement

is used for the testing:

select count(*) from lineitem

e Before collecting statistics

The statistics related information is checked and the result is also listed out in

Figure 3.1.

Here, we see that there is no detailed information, such as the number of rows, in
each table. Similarly, other system tables can be checked. We can now observe, how

the Oracle DBMS chooses the execution plan without statistics.

SQL> select table_name, num_rows from user_tables;

CUSTOMER
LINEITEM
NATION
ORDERS
PART
PARTSUPP
REGION

Figure 3.1 Results From Oracle System Table user_tables Before Collecting Statistics

SQL> select count(*) from LINEITEM;
COUNT (*)
6001215

Elapsed: 00:00:32.03

Execution Plan

0 SELECT STATEMENT Optimizer=CHOOSE
1 0 SORT (AGGREGATE)
2 1 TABLE ACCESS (FULL) OF 'LINEITEM’

Figure 3.2 Execution Result and Plan of Statement without Statistics (Oracle)

In Figure 3.2, we can see that the table lineitem was accessed by a full-table scan

method and the execution time of this statement was 32 .03 seconds.

33

® After collecting statistics

The following command was issued in Oracle9i to collect the statistics

information and the result information was listed too.

SQL> execute dbms_stats.gather_ schema_stats('tpch');

PL/SQL procedure successfully completed.

At this time, the same SQL statement was issued as before and we get the following

result.

SQL> select table_name, num_rows from user_tables;

TABLE_NAME NUM_ROWS
CUSTOMER 150000
LINEITEM 6001215
NATION 25
ORDERS 1500000
PART 200000
PARTSUPP 800000
REGION 5
SUPPLIER 10000

Figure 3.3 Selection Result From System Table user_tables after Collecting Statistics
(Oracle)

All the information about each table can be found in the statistics table, including the
number of rows in each table, the index information, the length of rows, the number of

blocks for each table, and other information.

The following command was issued as before

34

SQL> select count(*) from LINEITEM;
COUNT (*)

6001215

Elapsed: 00:00:05.03

Execution Plan

0 SELECT STATEMENT Optimizer=CHOOSE (Cost=4908 Card=1)
0 SORT (AGGREGATE)
2 1 INDEX (FAST FULL SCAN) OF 'PK_LINEITEM' (UNIQUE) (Cost=4

908 Card=6001215)

Figure 3.4 Execution Result and Plan of Statement After Statistics (Oracle)

In Figure 3.4, we can see that Oracle DBMS chooses an index on primary key to
count the number of rows in the table lineitem. Because the pages in index on primary
key are fewer than the pages in the table lineitem data, fewer numbers of blocks are
accessed and that causes a lower [/O cost. The execution time is short too, just 5.03

seconds.

Two TPC-H power tests were taken in Oracle. One has statistics and the other has

no statistics. The following diagram shows the difference in the results.

35

3000.00 EE I e e RIS S T S L Tr e Ty ey R Wi e A AT D e |
. = R KR e

tv’ 5 "‘. - :
B without stats E &8
23| O with stats 3

o 5,

s

2000.00

1500.00

1000.00

Execution Time Seconds

Figure 3.5 Throughput Comparisons of Power Test with Statistics and Power Test
Without Statistics

As the result, the total execution time of the power test with statistics is 1257.13
seconds, whereas the execution time is 3380.71 seconds without statistics. The first one is
1.7 times faster than the latter one. In Figure 3.5, we can see that it takes less time for

most queries to run when statistics information exists.

3.1.2 DB2 Statistics

In this subsection, we will analyze the importance of statistics in DB2. The same

procedure performed for Oracle was done on the DB2 database.

e Before collecting statistics

36

select count(*) from LINEITEM

1
6001215
Number of rows retrieved is: 1
Number of rows sent to output is: 1
Elapsed Time is: 62.309 seconds

| RETURNC(1) 452.508.78)

CGRPBY(Z) ‘as52,508 .73)

(TBSCAN(S) as1 .966.94]

[TPCH.LINEITEM]

Figure 3.6 Execution Result and Plan of Statement without Statistics (DB2)

In Figure 3.6, the full-table access method is used by DB2 when no statistics

information is collected.

e After collecting statistics

select count(*) from LINEITEM

6001215

Number of rows retrieved is: 1

37

Number of rows sent to output is: 1

Elapsed Time is: 5.098 seconds

- l RETURN(1) 61,423 86 l

GRPBY(2) 61,423.86

IXSCAN(3) 60,791.98

QL.031215180929770

31" ITPCH‘LINEITEM [

Figure 3.7 Execution Result and Plan of Statement with Statistics (DB2)

One of the available indices on primary keys is utilized by DB2, when statistics
information is collected. Furthermore, the cost 61,423.86 shown in Figure 3.7, is lower
than the cost 452,507.78 shown in Figure 3.6, because fewer pages are accessed when

using index information.

3.1.3 Conclusions

Statistical information is very important for the DBMS to estimate the cost of each
candidate execution plan when this information is available. Otherwise, the default

method (full-table scan) will be used.

3.2 Cost-based and Rule-based Approaches

Normally, there are two techniques for an optimizer to formulate execution plans: a
cost-based approach and a rule-based approach. The goal of the cost-based approach is

the best throughput, or a minimal resource use, necessary to process all rows accessed by

38

the statement, whereas the goal of the rule-based approach is the best response time, or a

minimal resource use, necessary to process the first row accessed by the SQL statement.

For Oracle 9i, when statistics are available. the optimizer will choose a cost-based
approach even if the statistics are partial on the tables. The cost-based approach generally
chooses an execution plan that is as good as, or better than the plans chosen by the rule-
based approach, especially for queries with multiple joins or multiple indices [8].
Choosing which approach to follow can be done by setting a system parameter in the
initial file or by adding hints in the query statement. Cost-based approach improves the
query processing productivity by eliminating the need for manually tuning the SQL

statements because one does not need to specify the order of joins in the WHERE clause

[8].

In Oracle. the optimization approach can be set on the session level and the

application level [2].

For DB2, the cost is derived from a combination of CPU cost (by the number of

instructions) and I/O (by the numbers of seeks and page transfers) [10].

The rule-based approach is an alternative to the cost-based approach for the optimizer
and is available for backward compatibility. This approach will cause the optimizer to
choose the execution plan without considering statistics [8]. Queries in TPC-H
benchmark are very complex and statistics information is required to be collected, so the

cost-based approach is more appropriate for the experimenting.

3.3 Theoretical Execution Plan and Real Execution Plan

In theory. we can define an optimized physical execution plan based on the well-
known public rules for a given SQL statement. Of course, there are some rules that are

adopted by an individual DBSM provider.

39

Several SQL statements are examined in the following. We are interested in finding
out the differences between the execution plans determined by Oracle and DB2, and
comparing them with optimized execution plans that we found out by using well-known

rules [4].

In the following section, we will illustrate some queries in TPC-H. There is no index
except on the primary key of each table. We classify these queries as regular and nested.
The latter may be further classified as Non-correlated subquery and correlated subquery.

3.3.1 Regular Statements

First, let us review Query3, a simple SQL statement in the TPC-H. This query is

shown in Figure 3.8.

1 SQL> select

2 1_orderkey,

3 sum(1l_extendedprice * (1 - 1_discount)) as revenue,
4 o_orderdate,

5 o_shippriority

6 from

7 customer,

8 orders,

9 lineitem
10 where

11 c_mktsegment = 'MACHINERY'

12 and c_custkey = o_custkey
13 and l_orderkey = o_orderkey

14 and o_orderdate < to_date (date '1995-03-26"')
15 and 1l_shipdate > to_date {date '1995-03-26"')
16 and rownum < 11

17 group by

18 1_orderkey,
19 o_orderdate,
20 o_shippriority

40

21 order by
22 revenue desc,

23 o_orderdate;

Figure 3.8 Query3 of TPC-H

e Execution Tree Plan Created Manually

According to the theorems in [4], we have the following rules to create the tree

plan.

1) Smaller tables will be joined first, because the intermediate result would be
small.

2) Pushing the duplicate elimination operator & as down as possible in the tree

As a result, we can get the following query plan.

I

Y group.sum.order

>«

o_orderkey x 1_orderkey

> <

c_custkey = o_custkey

customer orders lineitem

Figure 3.9 Theoretical Query Plan of Query 3

41

e (Observation in QOracle

The corresponding execution plan in Oracle is listed in Figure 3.10

Execution Plan

0 SELECT STATEMENT Optimizer=CHOOSE (Cost=98331 Card=10 Bytes=
26747064)

1 0 SORT (ORDER BY) (Cost=98331 Card=10 Bytes=26747064)

2 1 SORT (GROUP BY) (Cost=98331 Card=10 Bytes=26747064)

3 2 COUNT (STOPKEY)

4 3 HASH JOIN (Cost=69846 Card=495316 Bytes=26747064)

5 4 HASH JOIN (Cost=10291 Card=221026 Bytes=7514884)

6 5 TABLE ACCESS (FULL) OF 'CUSTOMER' (Cost=1073 Car

d=30000 Bytes=420000)

7 5 TABLE ACCESS (FULL) OF 'ORDERS' (Cost=7504 Cards=
736703 Bytes=14734060)

8 4 TABLE ACCESS (FULL) OF 'LINEITEM' (Cost=33893 Card
=3202275 Bytes=64045500)

Figure 3.10 Execution Plan of Query3 in Oracle

We can see that the table customer and the table orders are accessed by a full scan
method, and a hash-join is done on them. The result is used to join with another table
lineitem.

e (Observation in DB2

The upper part

Total costlimarons): 684,916.06
(RE‘RJRNU) 684.916 osj =

@scma) 684,91 s.oa

(oRPsv(o su.na.:a) J

(ruuomm 534.57533)

Figure 3.11 Execution Plan of Query3 in DB2 (Upper Part)

The lower part

= (MSJOIN(B) 188.15‘.81) QLD3121518092977

l (Tascm(s) 14,304.1 1:[] (Fn.'rsauz) 1 73.845ETTPCH.IJNEITEM |
T

' RORL LD B DeaTee
-r ' (P S RN SR)

|

; TPCH.CUSTOMER l TBSCAN(1S5) 93.347.87 l

T TPCH.ORDERS
al]

Figure 3.12 Execution Plan of Query3 in DB2 (Lower Part)

Similarly, DB2 uses the same sequence to join table, but a merge-join is used

rather than a hash-join.

43

e Conclusion

Both Oracle and DB2 use similar execution plans except for the details of the join
method. Oracle prefers hash-join. whereas DB2 prefers merge and nested-loop join

method.

3.3.2 Non-correlated Subquery

SQL> select count(*)
from
orders
where o_custkey In

(select c_custkey from customer where c_nationkey = 24);

In theory, the logical query execution plan of above query is as follows:

Y group.sum.order

> <

c_custkey = o_custkey

O c_nationkey = 24

orders customer

Figure 3.13 Query Plan of above SQL (In theory)

e Observation in Oracle

Execution Plan

1 0 SORT (AGGREGATE)

2 1 HASH JOIN (Cost=4341 Card=90004 Bytes=1170052)
3 2 TABLE ACCESS (FULL) OF 'CUSTOMER' (Cost=521
Card=6000

Bytes=48000)

4 2 TABLE ACCESS (FULL) OF 'ORDERS' (Cost=3651
Card=150000
0 Bytes=7500000)

Figure 3.14 Execution Plan of Non-correlated Query (In Oracle)

This execution plan in Oracle9i is the same as that in theory.

e (Observation in DB2

When this query is executed on DB2, we get the following access plan.

45

Taotal costiimerons): 207,784.97

=]
(RETURN(‘!) 207.784 97)

@PBY(!) wmm)

(us.lomm zu7.7‘raes)

Q'Bsc;ww 1 4.285.38) (FILTERU) wsr.tu.w)

(TBSCAN(E) 14,281 .73) (ORISR ESIEia)

~

TPCH.CUSTOMER (-resc;wo o aa.oss.n)
a I TPCH.ORDERS

Figure 3.15 Execution Plan of Non-correlated Query (In DB2)

This execution plan in DB2 is the same as that in theory.

e Conclusions

Both Oracle and DB2 use similar execution plans except for details of the join

method. Oracle prefers hash-join, whereas DB2 prefers merge-join.

3.3.3 Correlated Subquery

Queryl7 in TPC-H is a correlated subquery, shown as follows:

SQL> select

2 sum(l_extendedprice) / 7.0 as avg_yearly
3 from

4 lineitem,

5 parc

6 where

7 p_partkey = 1_partkey

8 and p_brand = 'Brand#35’

46

9 and p_container = 'JUMBO BOX'

10 and 1l_guantity < (

11 select

12 0.2 ~ avg(l_quantitcy)
i3 from

14 lineitem

15 where

16 1_partkey = p_partkey
17);

Figure 3.16 SQL statement of Queryl7

Theoretical Execution Tree Plan

First, we get the following execution plan tree manually

Y sum(I_extendedprice)

O:_quantizy < abe

> <

l_partkey - p_partkey

> <
l_partkey = p_partkey Yl_par:keyv 0.2 ° avg({l_quantity}
g
Lineitem Part Lineitem

Figure 3.17 Query Plan of Queryl7 (In theory)

47

e Observation in Oracle

Execution Plan
0 SELECT STATEMENT Optimizer=CHOOSE (Cost=76679 Card=1 Bytes=1
3)

SORT (AGGREGATE)
VIEW (Cost=76679 Card=9022 Bytes=117286)
FILTER
SORT (GROUP BY) (Cost=76679 Card=9022 Bytes=532298)
HASH JOIN (Cost=72696 Card=180435 Bytes=10645665)
HASH JOIN (Cost=35224 Card=6007 Bytes=312364)
TABLE ACCESS (FULL) OF 'PART' (Cost=1183 Card=

Ny W
A N AW N e O

200 Bytes=6400)

8 6 TABLE ACCESS (FULL) OF 'LINEITEM' (Cost=338833
Card=6007239 Bytes=120144780)

9 5 TABLE ACCESS (FULL) OF 'LINEITEM' (Cost=33893 Ca
rd=6007232% Bytes=42050673)

Figure 3.18 Execution Plan of Queryl7 (In Oracle)

The execution plan tree in Oracle is similar to the theoretical one.

e Observation in DB2

48

1 OtRt cosSBMerons): 85,711,280 -

18]

(RETURNU) 86,711 _JBU)

(ORPBY(Z) 88.711.@

(us.somm 86,711 .230)

(‘rsscANa) 1.1 32.294.93) @m_’saaj_gs,srr.au)

Q\ILJOIN(B) as.s77,sa¢)

(‘rascma 1) 15,995, 09) i

- TPCH.PART

Figure 3.19 Execution Plan of Queryl7 (In DB2)

The execution plan tree in DB2 is similar to the theoretical one.

e Conclusion

Both Oracle and DB2 create a similar plan tree to deal with the subquery.

3.4 Hashing and Sorting Join

Hash_based algorithms are often superior to sort-based algorithms since they require
only one of their arguments to be “small”, whereas sort-based algorithms work well when

the size of their argument relations is large [4].

For example, we use the Query21 of TPC-H queries, which is shown as:

SQL> select

2 s_name,

3 count(*) as numwait
4 from

5 supplier,

6 lineitem 11,

49

9 where
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

orders,

nation

s_suppkey = 11.1_suppkey
and o_orderkey = 11.1_orderkey
and o_orderstatus = 'F’
and 11.1_receiptdate > 11.1_commitdate
and exists (
select
from
lineitem 12
where
12.1_orderkey = 1ll1.1_orderkey
and 12.1_suppkey <> 11.1_suppkey
)
and not exists (
select
from
lineitem 13
where
13.1_orderkey = 1ll1.1_orderkey
and 13.1_suppkey <> 1l1.1_suppkey

and 13.1_receiptdate > 13.1_commitdacte

)
and s_nationkey = n_nationkey
and n_name = 'PERU"

and rownum < 101

36 group by

37

s__name

38 order by

39
40

numwaitc desc,

s_name;

Figure 3.20 SQL Statement of Query21 (In Oracle)

50

e Observation on Oracle 9i
In 1GB database, the optimizer selects the hash-based algorithm rather than the sort-

based (merge sort) algorithm.

Execution Plan

0 SELECT STATEMENT Optimizer=CHOOSE (Cost=148694 Card=100 Byte
s=1320000)

1 0 SORT (ORDER BY) (Cost=148694 Card=100 Bytes=1320000)

2 1 SORT (GROUP BY) (Cost=148694 Card=100 Bytes=1320000)

3 2 COUNT (STOPKEY)

4 3 HASH JOIN (ANTI) ({Cost=146373 Card=43112 Bytes=56907
84)

5 4 HASH JOIN (SEMI) (Cost=96745 Card=43117 Bytes=4570
402)

6 5 HASH JOIN (Cost=44907 Card=43117 Bytes=4139232)

7 6 TABLE ACCESS (FULL) OF 'ORDERS' (Cost=7497 Car

d=500000 Bytes=4000000)

8 6 HASH JOIN (Cost=34163 Card=121716 Bytes=107110
08)

9 8 HASH JOIN (Cost=67 Card=400 Bytes=24800)

10 9 TABLE ACCESS (FULL) OF 'NATION' (Cost=1 Ca

rd=1 Bytes=29)

11 9 TABLE ACCESS (FULL) OF 'SUPPLIER' (Cost=65
Card=10000 Bytes=330000)

12 8 TABLE ACCESS (FULL) OF 'LINEITEM' (Cost=3385
9 Card=3042903 Bytes=79115478)

51

13

14

TABLE ACCESS (FULL) OF 'LINEITEM' (Cost=33859 Ca
rd=6001215 Bytes=60012150)

TABLE ACCESS (FULL) OF 'LINEITEM' (Cost=33859 Card
=3042903 Bytes=79115478)

Elapsed: 00:02:35.09

Figure 3.21 Execution Plan for Query21 (1GB) in Oracle

We can see that, a hash-join was used in this query’s execution plan in the IGB

database, whereas a merge-join is used at the outer join in the execution plan of the same

query for a 10GB size.

Execution Plan

W N

w M = O

SELECT STATEMENT Optimizer=CHOOSE (Cost=2708976 Card=100 Byt
es=13600000)

SORT (ORDER BY) (Cost=2708976 Card=100 Bytes=13600000)
SORT (GROUP BY) (Cost=2708976 Card=100 Bytes=13600000)
COUNT (STOPKEY)
MERGE JOIN (SEMI) (Cost=2665344 Card=430882 Bytes=58

599952)
MERGE JOIN (ANTI) (Cost=1557285 Card=430882 Bytes=
53860250)
MERGE JOIN (Cost=539931 Card=430887 Bytes=422269
26)
SORT (JOIN) (Cost=425577 Card=1216156 Bytes=10
9454040)
HASH JOIN (Cost=371129 Card=1216156 Bytes=10
9454040)

9 8 HASH JOIN (Cost=655 Card=4000 Bytes=252000

10 9 TABLE ACCESS (FULL) OF 'NATION' (Cost=l
Card=1 Bytes=29)

11 9 TABLE ACCESS (FULL) OF 'SUPPLIER' (Cost=
652 Card=190000 Bytes=3400000)

12 8 TABLE ACCESS (FULL) OF 'LINEITEM' (Cost=34
2785 Card=30403889 Bytes=820905003)

13 6 SORT (JOIN) (Cost=114355 Card=5000000 Bytes=40
000000)

14 13 TABLE ACCESS (FULL) OF 'ORDERS' (Cost=75333
Card=5000000 Bytes=40000000)

15 5 FILTER
16 15 SORT (JOIN}
17 16 TABLE ACCESS (FULL) OF 'LINEITEM' (Cost=3427

85 Card=30403889 Bytes=820905003)

18 4 FILTER
19 18 SORT (JOIN)
20 19 TABLE ACCESS (FULL) OF 'LINEITEM' (Cost=342785

Card=59986052 Bytes=659846572)

Figure 3.22 Execution Plan for Query21 (10G) on Oracle 9i

Furthermore, the order of applying antisemijoin and semijoin (line 4-3, 5-4) is
different in Figure 3.22 and Figure 3.23 because the latter order can eliminate the size of

the result, whereas the former one is good for relatively small sized relations.

In order to understand why Oracle optimizer chooses a merge-join rather than a hash-

join, at the outside level join for a 10GB size database, some hints are given to the

53

optimizer. Thus, the hash-join operator is always used. So HASH_SI is put into the
EXISTS subquery, and HASH_AJ is put into the NOT IN subquery. Thus, query21 is

modified as following:

SQL> select

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
i9
20
21
22
23
24
25
26
27
28
29
30
31
32
33

from

where

S_name,

count(*) as numwait

supplier,
lineitem 11,
orders,

nation

s_suppkey = 11.1_suppkey

and o_orderkey = 11.1l_orderkey

and o_orderstatus = 'F'

and 11.1_receiptdate > 1ll.1_commitdate

and exists (

select NG
%*

from
lineitem 12
where
12.1_orderkey = 11.1_orderkey
and 12.1_suppkey <> 11.1_suppkey
)
and not exists (
select
from
lineicem 13
where
13.1_orderkey = 11.1_orderkey
and 13.1_suppkey <> 11.1_suppkey
and 13.1_receiptdate > 13.1_commitdate
)

and s_nationkey = n_nationkey

54

34
35
36
37
38
39
40

and n_name = 'PERU’
and rownum < 101
group by
S_name
order by
numwait desc,

s_name;

Figure 3.23 SQL Statement of Query21 with hints (10GB) on Oracle

In Figure 3.24, the cost of the execution plan with hints is 3430785 blocks, which is

larger than 2708976 (in Figure 3.23), the cost of the execution plan chosen by Oracle9i

optimizer.

Execution
0
1 0
2 1
3 2
4 3
5 4
6 5
7 6
8 7

SELECT STATEMENT Optimizer=CHOOSE (Cost=3430785 Card=100 Byt
es=13600000)

SORT (ORDER BY) (Cost=3430785 Card=100 Bytes=13600000)
SORT (GROUP BY) (Cost=3430785 Card=100 Bytes=13600000)
COUNT (STOPKEY)
MERGE JOIN (ANTI) (Cost=3387153 Card=430882 Bytes=58§

599952)
SORT (JOIN) (Cost=2369800 Card=430887 Bytes=469666
83)
HASH JOIN (SEMI) (Cost=2346789 Card=430887 Bytes
=46966683)
MERGE JOIN (Ccst=539931 Card=430887 Bytes=4222
6926)
SORT (JOIN) (Cost=425577 Card=1216156 Bytes=
109454040}

55

9 8 HASH JOIN (Cost=371129 Card=1216156 Bytes=
109454040)

10 9 HASH JOIN (Cost=655 Card=4000 Bytes=2520
00)

11 10 TABLE ACCESS (FULL) OF 'NATION' (Cost=
1 Card=1 Bytes=29)

12 10 TABLE ACCESS (FULL) OF 'SUPPLIER' (Cos
t=652 Card=100000 Bytes=3400000)

13 9 TABLE ACCESS (FULL) OF 'LINEITEM' (Cost=
342785 Card=30403889 Bytes=820905003)

14 7 SORT (JOIN) (Cost=114355 Card=5000000 Bytes=
40000000}

15 14 TABLE ACCESS (FULL) OF 'ORDERS' (Cost=7533
3 Card=5000000 Bytes=40000000)

16 6 TABLE ACCESS (FULL) OF 'LINEITEM' (Cost=342785
Card=59986052 Bytes=659846572)

17 4 FILTER
i8 17 SORT (JOIN)
i8 18 TABLE ACCESS (FULL) OF 'LINEITEM' (Cost=342785

Card=30403889 Bytes=820905003)

Figure 3.24 Execution Plan for Query21 with hints (10GB) on Oracle

Similarly. we force the optimizer to choose a merge-join method for Query21 on the
1GB data, by adding a merge-join hint to the inner subquery, enclosed in the EXISTS
clause. As a result, the cost is higher than that of the execution plan the optimizer

chooses. We can check the result in the following figure:

56

Execution

W N

[
o

(4
1

12

13

14

w N P o

10

SELECT STATEMENT Optimizer=CHOOSE (Cost=183817 Card=100 Byte
s=1320000)

SORT (ORDER BY) (Cost=183817 Card=100 Bytes=1320000)
SORT (GROUP BY) (Cost=183817 Card=100 Bytes=1320000)
COUNT (STOPKEY)
HASH JOIN (ANTI) (Cost=181496 Card=43112 Bytes=56907
84)

MERGE JOIN (SEMI) (Cost=131868 Card=43117 Bytes=45
70402)

SORT (JOIN) (Cost=46244 Card=43117 Bytes=4139232

HASH JOIN (Cost=44907 Card=43117 Bytes=4139232

TABLE ACCESS (FULL) OF 'ORDERS' (Cost=7497 C
ard=500000 Bytes=4000000)

HASH JOIN (Cost=34163 Card=121716 Bytes=1071
1008}

HASH JOIN (Cost=67 Card=400 Bytes=24800)
TABLE ACCESS (FULL) OF 'NATION' (Cost=1l

Card=1 Bytes=29)

TABLE ACCESS (FULL) OF 'SUPPLIER' (Cost=
65 Card=10000 Bytes=330000)

TABLE ACCESS (FULL) OF 'LINEITEM' (Cost=33
859 Card=3042903 Bytes=79115478)

FILTER

57

15 14 SORT (JOIN)
16 15 TABLE ACCESS (FULL) OF 'LINEITEM' (Cost=3385
9 Card=6001215 Bytes=60012150)

17 4 TABLE ACCESS (FULL) OF 'LINEITEM' (Cost=33859 Card
=3042503 Bytes=79115478)

Elapsed: 00:02:48.06

Figure 3.25 Execution Plan for Query21 with hints (1GB) on Oracle

The cost (183817) of the plan using the merge-join method is higher than 139933, the
cost of the plan using the hash-join method in the 1GB size database for query 21.

Furthermore, the timing of the former is longer than that of the latter.

The DBMS optimizers will use a hash-join rather than the merge-join as the join
operator when the size of the table is relatively small because the overflow of the chain of

hash table is heavy and leads to high costs of I/O.

e (Observation on DB2 UDB 7.2

10GB (the lower part)

58

C Accews PanLesph TRh

WMMMM

Tg333zaena‘a’l ¥ L 3:1

WHO-DBZ-TPCH

Package: NULLID.SGLLFI00- Suclion number 85
Eptan date 30d Ime 1207200385524 P, Paralleks None
Data Soinec ves:

Totat Ff3eecer 0000000
@m S i

(m:,,....
Jretonin e @m?lm.o) @mu@

u.wv(mumi [ronsanica] [Trcn supPisen] (Fercna Lokaroazs) (FRriageysasans)
N\ N

e e) o]

T | N
TPCANRATION 664002 scaegneepe100) [FPoLLaETEM]
&

Led

Figure 3.26 Execution Plan (Lower Part) for Query21 (10GB) on DB2

IGB (the lower part)

59

SQLO31215180825480

|TPCH.NATION l

In.

(TBSCANQUJ mm@

NLJOIN(15) 876.35

(FETCHO o1 u@ Crascmu ® 881 .Q

[fPermaTioN] [fPoHBUPPLER| (FETCHQ:) mc.aoa.aa (F!LTERQS) wntas.tsj

FETCH(26) 486,633

IXSCAN(24) 11,881.71 ITPCH.OERS I

XSCANQT) 80,791 88

i
OLO03121510004412 TPCH.UNEITEV

TPCH.ORDERS I

Figure 3.27 Execution Plan (Lower Part) for Query2! (1GB) on DB2

The execution plan tree for a 10GB size is the same as that adopted for a 1GB size on

DB2.

e Conclusion

Oracle can choose a kind of join method based on the size of the database. The

hash-join is used when the database size is relatively small. DB2 is not as

sensitive as Oracle, to the size of a database when choosing the execution plan.

3.5 Conclusions

The shapes of plan trees created manually (human being) for Oracle, and DB?2 are

the same. It does not matter whether the statement is a regular statement, a non-

correlated subquery. or a correlated subquery. Oracle and DB2 do not follow separate

steps to do a selection operation and this operation is done when the DBMS accesses

the records in tables and a filter is used for a selection operation.

60

Which join methods (merge-join, nested-join, and hash-join) will be used by a
DBMS. is a detailed strategy decided by the DBMS vector. However, Oracle can

change the join method based on the database size.

4. Indices

In order to improve the speed of searching desired blocks on the tables, indices are
often created on a relation. An index is any data structure that takes as input a property of
records — typically the value of one or more fields — and finds the records with that

property more efficiently [4].

In this section, we will study how the indices affect the cost of query. Improper
indices will lead to a higher query cost. Bad indexing will cause a higher system

maintenance overhead and a high-cost scan and join, without benefiting from the index.

4.1 Index and Non-Index

We will compare the execution result of Query22 with indices and without indices
on the tables to which this query refers. We created an index orders4 on table orders
because it is a join attribute and created a composite index customer3 on table

customer as follows:

create index orders4 on orders(o_custkey) tablespace indx compute

statistics;

create index customer3 on customer (c_custkey,c_name,c_acctbal,c_phone)

tablespace indx compute statistics;

61

e Oracle

Without indexing, the cost of this query is 8607 block [/O and the execution time is
about 13 seconds (Figure 4.1), whereas the cost of this query, using indexing, is 917
blocks I/O and the execution time is about 4 seconds (Figure 4.2). Furthermore, the
optimizer just uses the composite index information to get the result without using an

independent index on each field of the composite index fields.

Execution Plan

0 SELECT STATEMENT Optimizer=CHOOSE (Cost=8607 Card=1 Bytes=32
)

1 0 SORT (GROUP BY) (Cost=8607 Card=1l Bytes=32)

2 1 FILTER

3 2 HASH JOIN (ANTI) (Cost=8603 Card=1 Bytes=32)

4 3 TABLE ACCESS (FULL) OF 'CUSTOMER' (Cost=1073 Card=51

0 Bytes=13770)

5 3 TABLE ACCESS (FULL) OF 'ORDERS' (Cost=7497 Card=1500
000 Bytes=7500000)

6 2 SORT (AGGREGATE)
7 6 TABLE ACCESS (FULL) OF 'CUSTOMER' (Cost=1073 Card=92

64 Bytes=203808)

timing for: g22
Elapsed: 00:00:13.04

Figure 4.1 Execution Plan of Query22 without Index (1GB) in Oracle

Execution Plan

0 SELECT STATEMENT Optimizer=CHOOSE (Cost=917 Card=1 Bytes=25)
1 0 SORT (GROUP BY) (Cost=917 Card=1 Bytes=25)
2 1 FILTER

3 2 NESTED LOOPS (ANTI) (Cost=913 Card=1 Bytes=25)
4 3 INDEX (FAST FULL SCAN) OF 'CUSTOMER3' (NON-UNIQUE) (
Cost=367 Card=510 Bytes=11220)

5 3 INDEX (RANGE SCAN) OF 'ORDERS4' (NON-UNIQUE) {(Cost=2
Card=1501500 Bytes=4504500)

6 2 SORT (AGGREGATE)

7 6 INDEX (FAST FULL SCAN) OF 'CUSTOMER3' (NON-UNIQUE) (
Cost=367 Card=9264 Bytes=176016)

timing for: @22
Elapsed: 00:00:04.01

Figure 4.2 Execution Plan of Query22 with Index (1GB) in Oracle

Furthermore, we create an index on each field in the statement rather than a

composite index customer3 using the following command.

create index customer5 on customer (c_phone);
create index customer6 on customer (c_name);

create index customer2 on custeomer (c_acctbal);

Then, we get similar results on other queries of TPC-H.

e DB2

The execution result of Query22 without indexing is shown as below:

CNTRYCODE NUMCUST TOTACCTBAL

10 882 6606081.31
14 955 7212285.84
15 896 6717441.72
16 878 6651791.79
15 963 7230776.82

63

20 916 6824676.02

22 894 6636740.03
Number of rows retrieved is: 7

Number of rows sent to output is: 7

Elapsed Time is: 109.55 seconds

Figure 4.3 Execution Result for Query22 without index (1GB) in DB2

The execution result of Query22 with indexing is shown in Figure 4.4.

CNTRYCODE NUMCUST TOTACCTBAL

10 882 6606081.31
14 955 7212285.84
15 896 6717441.72
16 878 6651791.79
19 963 7230776.82
20 916 6824676.02
22 894 6636740.03
Number of rows retrieved is: 7

Number of rows sent to output is: 7

Elapsed Time is: 9.54 seconds

Figure 4.4 Execution Result for Query22 with index (1GB) in DB2

Just 9.54 seconds are needed for the same query when the proper indices exist. So

those indices are proper and useful.

64

e Conclusions

Undoubtedly, a proper index will improve the performance of the database.
Furthermore., if composite index covers all fields in a SQL statement, then the optimizer
will use the index to get the relevant rows, instead of using the full-table scan for

accessing tables.

4.2 Improper Index

An improper index will not contribute to an improved performance in evaluating a

query: instead, it will have an adverse impact on the system performance.

For example, when there are no indices on the tables lineitem and part, the elapsed

time of Queryl9 is 42.01 seconds. The corresponding execution plan is given as follows:

Execution Plan

0 SELECT STATEMENT Optimizer=CHOOSE (Cost=40188 Card=1 Bytes=7
6)

1 0 SORT (AGGREGATE)

2 1 HASH JOIN (Cost=40188 Card=315 Bytes=23940)

3 2 TABLE ACCESS (FULL) OF 'PART' (Cost=1183 Card=200000 B

ytes=5400000)

4 2 TABLE ACCESS (FULL) OF 'LINEITEM' (Cost=33893 Card=398
439 Bytes=19523511)

timing for: gl9
Elapsed: 00:00:42.01

Figure 4.5 Execution Plan for Query19 without indices (1GB) in Oracle

65

The following indices were created on the table part and the table lineitem

respectively and Query19 runs in the same environment. The elapsed time is up by
1391.08 seconds

create index parté on part{p_container) tablespace indx

create index

create index

create index

part2 on part(p_brand,p_type,p_size) tablespace indx

lineitemll on lineitem(l_partkey) tablespace indx

lineitem9 on lineitem(l_shipinstruct) cablespace indx

When we checked the execution plan, we found that the above B+ tree indices are

converted into bitmap indices. In order to understand the benefits of Bitmap indices for

Query 19, we recreate those four indices as bitmap types using commands:

create
create

indx

create
create
indx

bitmap

bitmap

bitmap

bitmap

index

index

index

index

parté on part(p_container) tablespace indx

part2 on part(p_brand,p_type,p_size) tablespace

lineitemll on lineitem(l_partkey) tablespace indx

lineitem9 on lineitem(l_shipinstruct) tablespace

Then we let Query19 run again and the cost is 5910 /O blocks and the elapsed

time is 46.01 seconds, which is much less than 1391.08 seconds needed when the B+

tree indices are created. But execution time (42.01 seconds) without indexing is lower

than the execution time (46.01) with indexing. So the indices we have created for

Query19 are not proper.

Execution Plan

0 SELECT STATEMENT Optimizer=CHOOSE (Cost=5910 Card=1
Bytes=80
)
1 0 SORT (AGGREGATE)
2 1 CONCATENATION

66

3 2 TABLE ACCESS (BY INDEX ROWID) OF 'LINEITEM'
(Cost=1585
Card=97252 Bytes=5057104)

4 3 NESTED LOOPS (Cost=1585 Card=98 Bvtes=7840)
5 4 TABLE ACCESS (BY INDEX ROWID) OF 'PART' (Cost=365
Card=78 Bytes=2184)

6 5 BITMAP CONVERSION (TO ROWIDS)
7 6 BITMAP AND
8 7 BITMAP MERGE
9 8 BITMAP INDEX (RANGE SCAN) OF 'PART2’
10 7 BITMAP OR
11 10 BITMAP CONVERSION (FROM ROWIDS)
12 11 INDEX (RANGE SCAN) OF 'PART6' (NON-
UNIQU
E) (Cost=43)
13 10 BITMAP CONVERSION (FROM ROWIDS)
14 13 INDEX (RANGE SCAN) OF 'PART6' (NON-
UNIQU
E) (Cost=43)
REVENUE
3888904.26

Elapsed: 00:00:46.01

Figure 4.6 Execution Plan for Queryl9 with indices (1GB) in Oracle

e Conclusions

An improper index will adversely affect the performance of the query. Especially,

a bitmap index is suited for columns with a small range and tables with lot of rows.

67

4.3 Indices on Small Tables

Theoretically speaking, indices on small tables can do more harm than good.
However, in the following situations, creating an index on small tables can improve the

performance of the system.

e If each record occupies an entire page. In this situation, whole table scan costs are

high because an index scan requires few page accesses.

¢ If many updates are executed on a small table with no index, the table will be a
bottleneck if the transactions update a single record [5]. This is because without
the index, the full table scan will proceed before the specified record is located

and locked.

4.4 Other Factors Affecting the Usage of Indices

Some factors that affect the usage of indexes:

o QOut-of-Date Statistics Information

The cost-based optimizer chooses the execution plan based on the data

distribution and storage characteristics of the tables, columns, indices, and other

information [2].

[f the statistics are out of date, then the optimizer may not use the ‘old’ statistics
information. In order to utilize the statistics to improve performance, the statistics
should be generated frequently and it should accurately reflect the information of the
database. However, the frequent collection of statistics will burden the system, and
the system will give a ‘bad’ performance for a normal job. So we should balance

them appropriately.

68

Data Type

The data type also affects the usage of index in the execution plan. This is

illustrated in the following two examples.

i) Use of String Functions

If a string function is used on a string field over which an index is created,
then the index will be useless for some queries.

For example, Query22 uses substr() function on the field c_phone of table
customer and there is an index on field c_phone. However, the optimizer does

not use the indices when the optimizer chooses an execution plan.

Execution Plan

0 SELECT STATEMENT Optimizer=CHOOSE (Cost=8614 Card=1
Bytes=31
)
1 0 SORT (GROUP BY) (Cost=8614 Card=1 Bytes=31)
2 1 FILTER
3 2 HASH JOIN (ANTI) (Cost=8610 Card=1 Bytes=31)
4 3 TABLE ACCESS (FULL) OF 'CUSTOMER' (Cost=1073
Card=51
0 Bytes=13260)
5 3 TABLE ACCESS (FULL) OF 'ORDERS' (Cost=7504
Card=1501
500 Bytes=7507500)
6 2 SORT (AGGREGATE)
7 6 TABLE ACCESS (FULL) OF 'CUSTOMER' (Cost=1073
Card=92

64 Bytes=194544)

Figure 4.7 Execution Plan for Query22 (1GB) on Oracle

69

Improper Data Type for Bind Variables

A bind variable (a variable set by the programming language) may have a
different type than the attribute to which it is being compared. In this case, the

index may not be used.

For example, when we issue the following statement in a TPC-H testing

database,

Select count(*) from lineitem where l_gquantity is NULL

The execution plan listed in Figure 4.8 shows that the optimizer does not
choose the index on field I_quantity because the attribute type of 1_guantity is

integer, and this type does not match NULL.

Execution Plan

0 SELECT STATEMENT Optimizer=CHOOSE (Cost=33893 Card=1
Bytes=2
)
1 0 SORT (AGGREGATE)
2 1 TABLE ACCESS (FULL) OF 'LINEITEM' (Cost=33893
Card=1 Byt
es=2)

Figure 4.8 Execution Plan Of Above Statement (1GB) on Oracle

However, if we use the equality relation (=) instead of is in the same query:

Select count{(*) from lineitem where 1_quantity = NULL

The index on I_quantity will be used. We can check this in Figure 4.9.

70

Execution Plan

0 SELECT STATEMENT Optimizer=CHOOSE (Cost=6 Card=1
Bytes=7)

1 0 SORT (AGGREGATE)

2 1 INDEX (RANGE SCAN) OF 'ORDERS1' (NON-UNIQUE) (Cost=6
Car

d=624 Bytes=4368)

Figure 4.9 Execution Plan of Above Statement (1GB) in Oracle

4.5 Date Distribution

Basically, an index on a table will be used when a query statement returns a small
percentage of rows in the table. If just a few number of tuples meet the query condition,

then using a proper index is useful because only few blocks of a table are accessed.

e Observation in Oracle

In Oracle, when a small number of rows in a table are selected in a query, then the
DBMS will use the index rather than the full-table scan. In order to verify this, let us

consider the following SQL statement 1.

select * from lineitem where l_shipdate <= to_date(date '1992-05-26"')

union
select * from lineitem where 1_shipdate > to_date(date '1992-05-26"')

In this case. no index will be used although there is a B* Tree index on field

o_shipdate. The corresponding execution plan in Oracle is shown:

71

Execution Plan

0 SELECT STATEMENT Optimizer=CHOOSE (Cost=250700 Card=6009617
Bytes=667067487)

1 0 SORT (UNIQUE) (Cost=250700 Card=6009617 Bytes=667067487)

2 1 UNION-ALL
3 2 TABLE ACCESS (FULL) OF ‘'LINEITEM' (Cost=16493 Card=347

348 Bytes=38555628)

4 2 TABLE ACCESS (FULL) OF 'LINEITEM' (Cost=16493 Card=566
2269 Bytes=628511859)

Figure 4.10 Execution Plan of SQL Statement 1 for Data Distribution Test
(Oracle)

Although selectivity of the second statement is very low (0.6), Oracle turned out to be

smart in this and it did not use index scan to access the table.

Second. we test the SQL statement 2 as below:

select * from lineitem where l_shipdate <= to_date(date '1992-05-26")
union

select * from lineitem where l_shipdate > to_date(date '1998-08-26"')

The percentage of qualified tuples in table orders (1GB) is below 4% in the second
part of statement 2. However, Oracle did not use the index. The predicate in the second
subquery of statement 2 is modified to select * from lineitem where 1_shipdate

> date('1998-11-24"') and we get a new statement 3 shown as follows:

select * from lineitem where l_shipdate <= to_date(date'1992-05-26")

union

select * from lineitem where 1l_shipdate > to_date(date'1998-11-24"')

Oracle uses the index and the corresponding execution plan in Oracle9i is shown as

following:

Execution
0
1 0
2 1
3 2
4 2
5 4

SELECT STATEMENT Optimizer=CHOOSE (Cost=42528 Card=364002 By
tes=40404222)

SORT (UNIQUE) (Cost=42528 Card=364002 Bytes=40404222)

UNION-ALL
TABLE ACCESS (FULL) OF 'LINEITEM' (Cost=16493 Card=347

348 Bytes=38555628)

TABLE ACCESS (BY INDEX ROWID) OF 'LINEITEM' (Cost=1627
4 Card=16654 Bytes=1848594)

INDEX (RANGE SCAN) OF 'LINEITEM1' (NON-UNIQUE) (Cost
=47 Card=16654)

Figure 4.11 Execution Plan of Statement 3 for the Data Distribution Test in
Oracle

o Observation in DB2

In DB2, the same SQL statement is used except for some minor changes in

syntax:

select * from lineitem where 1l_shipdate <= date('1992-05-26")
union

select * from lineitem where 1_shipdate > date('1992-05-26"')

73

S {RETURN(1) 4735859 5 | -

jl -
)

Selectivity Text -

0.94 (1992-05-26' < Q1 L_SHIPDATE) -

Selectivity Text -

0.06 (Q3.L_SHIPDATE <= '1982-05-26" -

Figure 4.12 Execution Plan of Statement | for the Data Distribution Test (DB2)

It is clear that no index is used for SQL statement select * from lineitem
where 1_shipdate > date('1992-05-26') because the selectivity of its predicate
is 94%, whereas the index lineiteml on field |_shipdate is used for the statement
select * from lineitem where l_shipdate <= date('1992-05-26"')because
the selectivity of its predicate is 6%. Based on our experiments, we found that DB2
uses an index wherever the selectivity is below 6%. Once the selectivity is greater

than 6%. no index will be used to access the table.

Now, the following statement is checked on the DB2,

select * from lineitem where 1l_shipdate <= date('1992-05-26")

74

union

select * from lineitem where 1l_shipdate > date('1998-08-26"')

('rascma) 1.218,1 zs.sz)

GEI’CH(S) 4182185) (FETCH(Q) 427,05‘46
(RIDSCN(E)16_547.17) (Riosenao) 24853.07)

KSORTTET4
RSORTIy 1642

G(scm(s) 932.59) (nscmo 2 1.350,39)

@ LINEITEM1

— e .

[TPCH.UNETEM] [TPcH.UNEMEM]
0.04 (11998-08-26" <« Q1 L_SHIPDATE) -
0.06 (Q3.L_SHIPDATE <= 1992-05-28) =

Figure 4.13 Execution Plan of Statement 2 for the Data Distribution Test (DB2)

e Conclusions
Whether the optimizer uses indexing or not depends on the data distribution in the

predicate. If the statement results in a small portion of data, a proper index on the field in

the predicate will be used; otherwise, no indexing will be used.

75

5. Rewriting SQL Statements

It is known that nested subquery has poor performance. So, converting nested selects
to joins is a goal for all RDBMS vendors [9]. No matter, DB2 or Oracle claims to
perform automatic transformation when required. When checking the execution plan of
correlated queries, we can find that join methods were used. From the above analysis of
the execution plan of DB2 and Oracle, we also can see that both convert correlated
subqueries into join operations. Furthermore, UNION can substitute operator OR in the
WHERE clause for some queries. However, not all rewriting will improve the
performance of the query for nested query. We can rewrite Queryl7 into the following

format, using the join operator to substitute the nested subquery.

Rewriting Queryl7

SQL> select
sum(l1l.1l_extendedprice) / 7.0 as avg_yearly
from
lineitem 11,
part,
(select 1l_parckey, 0.2*avg(l_quantity) abc
from lineitem
group by 1l_partkey) 12
where
p_partkey = 1l1.1_partkey
and 11.1_partkey = 12.1_partkey
and p_brand = 'Brand#35'
and p_container = 'JUMBO BOX'
and 11.1_quantity < 12.abc

Figure 5.1 Rewritten SQL Statement of Queryl7 in Oracle

76

e Oracle

When the above query is executed on the database similar to running the original
Query17, the execution time is 66.02 seconds, while the execution time of original
Query17 is 67.08 seconds. So almost no performance improvement was achieved
from rewritten query. The performance improvement depends on the selectivity of the
query. If the selectivity of this query is high, then the rewriting pays off, because the
intermediate table is small, otherwise the original query is not any worse than the

rewritten one.

e DB2

The result of evaluating the rewritten Query17 is listed below. The execution time

in this case is just 2973 .39 seconds, far less than the original one, 6957.57 seconds.

AVG_YEARLY

342461.8
Number of rows retrieved is: 1
Number of rows sent to output is: 1
Elapsed Time is: 2973.39 seconds

Figure 5.2 Execution Result of Rewritten Query17 in DB2

77

I RETURN(1) 1,617,306 79

(orreven .61 7.308.75)

(‘rasc;wm 11 3:.294.asj

AT D A IR 2

EBORTIBRT 0250 04

MSJOINCE) 483,896.38

(TBSCAN(B) ue.su.sn) (oroavm 487.028;‘!0 (Frueran xs.ma

I 7 {
TPCH.UNETEM | (msc:wn 0) 467,805.1 a @CANO 415995.1 s)

DR

ey

(Tescanan ac.sac.saj @scmo 1 s.eas.ns)

Figure 5.3 Access Plan of Rewritten Query17 in DB2

The execution time of the original Query17 is shown below:

AVG_YEARLY

- sazeeie

Number of rows retrieved is: 1
Number of rows sent to output is: 1
Elapsed Time is: 6997.57 seconds

Figure 5.4 Execution result of original SQL statement of Queryl7 (DB2)

78

(RETURN(‘I) 86.71 1.290)

(orrBY(2) 88,711.280)

GSJOING) 86,71 1.zaoj

(rescanc) 1.132.284.08) (FrERGYSS.STT.864)

(NL.JOIN(B) 85,577,864)

(‘rsscma 191 s.sss.os) TPCH.LINETEM

Figure 5.5 Access plan of original SQL Statement of Queryl7 (DB2)

In DB2, the costs of the two queries are different because they use different
access plans. For rewritten statement Queryl7, the selection operators on the table
Part were executed before joining with the table lineitem, on which a Group function
was done first before join. So the intermediate relation is small. Whereas for original
statement Queryl7 no filter was done before join operation between the tables part

and lineitem, thus, the intermediate relation is bigger than that of the rewritten

Queryl7.

As a result, execution time of rewritten Query17 is 2973.39 seconds and it is

shorter than that of the original Queryl7, whose execution time is 6997.57 seconds.

Conclusions

Rewriting nested-subquery into join operator usually can achieve a better

performance, at least, which is not worse than the performance of original query.

79

6. Tuning Tools

Modern DBMS normally provide tools to let the DBA or implementers evaluate the
performance. Oracle provides Monitor and Hint mechanisms, whereas DB2 provides a

Monitor and an Index Advisor.

In this section, we will review some relevant tools in Oracle and DB2.

6.1 Optimizer Hint in Oracle 9i

Optimizer hint provided by Oracle gives the application designer the ability to specify
the execution plan (partly) because the designer may know what the optimizer does not
know [2]. Furthermore. optimizer recognizes the hint only when a cost-based approach is

adopted.

Some join operators (merge-join, hash-join) have been checked in section 2.2 by
giving a hint. Here, the hints on index and join order are considered, and the effect of

hints will be explored. Actually. we can hint on an index, a join order, and an access path.

6.2 Tools in DB2

6.2.1 Index Advisor

The Index Advisor is a management tool that reduces the need for a user to design

and define suitable indices for his data.
The Index Advisor is good for:

» Finding the best indices for a given query.

80

» Finding the best indices for a set of queries (a workload), subject to resource limits

which are optionally applied.

e Testing an index on a workload without having to create the index.

The explain tables, which are used to store the execution plan information, must be
created before execution plan can be invoked. Two concepts associated with this facility
are work load and virtual indices. The former concept is a set of SQL statements that
should be processed over a given period of time. The index advisor uses this workload
information in conjunction with the database information to recommend indices. On the
other hand, virtual indices refer to indices that do not exist in the current database
schema. These indices are recommended or are being proposed to create [10].

Since we did not have access to index advisor in our lab, we could not carry out our

TPC-H benchmark experiments to verify the utility of the index advisor.

6.2.2 Performance Monitor

The performance monitor can be used to check an existing problem or to observe the
performance of the system. It gives a snapshot of the database activity and performance
data at a point in time. This information can help identify and analyze potential problems,
or identify exception conditions that are based on thresholds. Use of performance tool is
recommended if the performance of the database manager and its database applications at
a particular point are needed to be known. It is used also to get a visual overview of what
elements are in a state of alarm. This helps to identify which parameters may need tuning.
Thus, the DBA or application developer can then look closely at the parameters that have

been set for that element and change them to improve performance.

The Performance Monitor provides information about the state of DB2 Universal
Database and the data that it controls. DBA or application developer can define
thresholds or zones that trigger warnings or alarms when the values that are being

collected by the Performance Monitor are not within acceptable ranges.

81

Many objects can be monitored, such as instances, databases, tables, table spaces, and
connections by selecting the object in the Object Tree pane or in the Contents pane and
clicking the right mouse button. Different colors are used to represent the different status

of the monitored objects.
We can use the information from the Performance Monitor to:
* Detect performance problems
e Tune databases for optimum performance
e Analyze performance trends
* Analyze the performance of database applications

e Prevent problems from occurring

Conclusions

In our TPC-H benchmark experimentation, Oracle demonstrated better performance
over DB2 on our IBM desktop computer with Windows2000 operating system,
irrespective of whether it has a 1GB or a 10GB database size. Our experiment
demonstrated that Oracle is more suitable for small size database than DB2, in the
Windows2000 environment, and thus, for small to medium enterprises Oracle would be
the system of choice. On the other hand. Oracle needs much more time than DB2 to
collect statistical information about the database contents that is used to calculate the cost

of query execution plans during query optimization process.
On the application level performance tuning, we can get the following conclusions:

e The statistical information is very important for the DBMS to select an execution
plan, which determines the performance of the system. Complete statistics can
improve the performance of a DBMS because the SQL compiler has accurate
information about the data and hence chooses the best execution plan. Both
Oracle and DB2 utilize the statistical information to decide on the query execution

plan with the least cost.

How a DBMS chooses an execution plan depends on many factors: its approach
(cost-based or rule-based), available statistics, efficiency of the join algorithms,

data distribution, etc.

e Index is another factor that has a great impact on the system performance. A
proper index can improve system performance, whereas an improper index will
hinder performance. Furthermore, the index on a small table should be avoided in
normal situations. Inconsistent data type of bind variable and the use of functions
on a field, on which there is an index in SQL statement, may render the index
useless. Oracle provides many different kinds of indices that are suitable for

different queries while DB2 supports only B+ tree indices.

83

* Rewriting nested subquery is another way to improve the system performance.

Furthermore, most DBMS provide useful tools for performance analysis and tuning.
The DBA and application developers can utilize such tools to get better performance

results.

84

Related Work

One of our graduate students in our database research group is working on the same test
on the Linux system. Our results agree closely in that Oracle has better performance for
1GB and 10GB size databases no matter in Windows2000 OS or Linux OS environments.
We also observed that both Oracle and DB2 have better performance in the Linux OS

than in Windows2000 OS.

IBM and Oracle companies also published some testing results, based on 1000G-database
size. However, they used extraordinary servers with multiple CPUs and the memory of
the server is up to 1G. Furthermore, they used different values for parameters in the TPC-

H queries from what we used in testing.

The Sense of the Project

With the help of this project, we can get several benefits. First, we can learn how to
manipulate the commercial DBMS: DB2 Universal Database 7.2 and Oracle 9i and tools
provided by them. For example, we can monitor the system performance using the
Performance Monitor in DB2, whereas we can use Index Hint tool in Oracle to cite the

database engine in Oracle.

Second, the project can help us realize which DBMS has better performance over which
operating systems and help us realize which factors, such as values of the DBMS
parameters and queries’ property (hit ratio), affect the execution performance of the
query. At last, the decision about choosing appropriate DBMS on certain operating

systems can be made.

Third, we can observe how a specific DBMS realizes the execution plan (tree) and

compares the database theories with the real application in commercial DBMS.
Finally, we can leam how to do application level performance tuning.

85

References:

(1] TPC Organization, TPC BenchMark™H (decision support) Standard Specification
Reversion 1.5.0, July 2002.

[2] Oracle Company, Oracle9i Performance Tuning and Guide Reference — Release 2

(9.2), March 2002.

[3] Oracle Company, Oracle9i Database Administrator’s Guide — Release 2 (9.2), March

2002.

[4] H. Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom, Database Svstem

Implementation, Prentice Hall, 2000.

[5] D. Shasha and P. Bonnet, Database Tuning — Principles, Experiments, and

Troubleshooting Techniques, Morgan Kaufmann, June 2002.

[6] Oracle Company, Oracle9i SQL Reference, March 2002.

[7] Qi Ch, Jarek G, Fred K, Cliff L, Linqgi L, Xiaoyan Q, and Bernhard S, Implementation
of two semantic query optimization Techniques in DB2 Universal Database, Proc.25"

VLDB Conference. 1999: 687-698

[8] Trevor M., Tuning Oracle Application,

http://www.wrsystems.com/whitepapers/Tuning.pdf, Accessed Nov. 5, 2002.

[9] Kosciuszko E. Optimizing SQL: Rewriting SQL Subqueries Into Joins,
http://www.oracleprofessionalnewsletter.com /OP/OPmag.nsf/ 0/906E797FF8
6F4E3F852568F00066F6A6, Accessed Nov. 10, 2002.

86

[10] Waterloo University, DB2 User Information,
http://www.student.math.uwaterloo.ca/~cs448/db2_doc/html/ db2help/index.htm#cncpve,
Accessed Oct. 15, 2002.

87

Appendix A. Queries Sequence

The sequence of the 22 queries is definded in the TPC-H document, seeing [1].

Here, we just listed out the sequences used in our TPC-H experiment as below :

Power Test:
StreamO: 14, 2, 9, 20,6, 17, 18, 8, 21, 13, 3, 22, 16, 4, 11, 15, 1, 10, 19, 5, 7, 12.

Throughput Test:
Streaml: 21, 3, 18,5, 11, 7, 6, 20, 17, 12, 16, 15, 13, 10, 2, 8, 14, 19,9, 22, 1, 4.
Stream2: 6, 17, 14, 16, 19, 10,9, 2,15, 8,5, 22,12,7, 13, 18, 1, 4, 20, 3, 11, 21.
Stream3: 8,5,4,6, 17,7, 1, 18,22, 14,9, 10, 15, 11, 20, 2, 21, 19, 13, 16, 12, 3.

88

Appendix B. Symbols Used in This Paper

1.« Join

2. v Aggregation Function
.= Projection

4. o Selection

5. 9 Distinct

89

Appendix C. Examples of Queries and Refresh Functions in
TPC-H

using 807140330 as a seed to the RNG

Queryl:
select
I_returnflag,
1_linestatus,
sum(l_quantity) as sum_qty,
sum(l_extendedprice) as sum_base_price,
sum(l_extendedprice * (1 - I_discount)) as sum_disc_price,
sum(l_extendedprice * (1 - I_discount) * (1 + [_tax)) as sum_charge,
avg(l_quantity) as avg_qty,
avg(l_extendedprice) as avg_price,
avg(l_discount) as avg_disc,
count(*) as count_order
from
lineitem
where
I_shipdate <= to_date(date '1998-12-01" - interval '104' day (3))
group by
I_returnflag,
1_linestatus
order by
I_returnflag,

1_linestatus;

Query 2:
select

s_acctbal,

90

s_name,
n_name,
p_partkey,
p_mfagr,
s_address,
s_phone,
s_comment
from
part,
supplier,
partsupp,
nation,
region
where
p_partkey = ps_partkey
and s_suppkey = ps_suppkey
and p_size =6
and p_type like "% TIN'
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = 'MIDDLE EAST'
and ps_supplycost = (
select
min(ps_supplycost)
from
partsupp.
supplier,
nation,
region
where

p_partkey = ps_partkey

91

and s_suppkey = ps_suppkey
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = 'MIDDLE EAST'

)

and rownum < 101

order by

s_acctbal desc,

n_name,

s_name,

p_partkey:

Query 3:
select
I_orderkey,
sum(l_extendedprice * (1 - I_discount)) as revenue,
o_orderdate,
o_shippriority
from
customer,
orders,
lineitem
where
c_mktsegment = 'MACHINERY"'
and c_custkey = o_custkey
and |_orderkey = o_orderkey
and o_orderdate < to_date (date '1995-03-26")
and I_shipdate > to_date (date '1995-03-26")
and rownum < 11
group by
I_orderkey,

o_orderdate,

o_shippriority
order by

revenue desc,

o_orderdate;

Query 4:
select
o_orderpriority,
count(*) as order_count
from
orders
where
o_orderdate >= to_date (date '1997-01-01"
and o_orderdate < to_date (date '1997-01-01' + interval '3' month)
and exists (
select
*
from
lineitem
where
I_orderkey = o_orderkey
and I_commitdate < I_receiptdate
)
group by
o_orderpriority
order by

o_orderpriority;

Query 5:

select

93

n_name,
sum(l_extendedprice * (1 - I_discount)) as revenue
from
customer,
orders,
lineitem,
supplier,
nation,
region
where
c_custkey = o_custkey
and I_orderkey = o_orderkey
and I_suppkey = s_suppkey
and c_nationkey = s_nationkey
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = 'MIDDLE EAST'
and o_orderdate >= to_date (date '1993-01-01")
and o_orderdate < to_date (date '1993-01-01" + interval 'l' year)
group by
n_name
order by

revenue desc;

Query 6:
select
sum(l_extendedprice * I_discount) as revenue
from
lineitem
where

I_shipdate >= to_date (date '1993-01-01")

94

and I_shipdate < to_date (date '1993-01-01' + interval 'l year)
and I_discount between 0.06 - 0.01 and 0.06 + 0.01

and I_quantity < 24;

Query 7:
select
supp_nation,
cust_nation,
I_year,
sum(volume) as revenue
from
(
select
nl.n_name as supp_nation,
n2.n_name as cust_nation,
extract(year from I_shipdate) as I_year,
|_extendedprice * (1 - |_discount) as volume
from
supplier,
lineitem,
orders,
customer,
nation nl,
nation n2
where
s_suppkey = |_suppkey
and o_orderkey = [_orderkey
and c_custkey = o_custkey
and s_nationkey = nl.n_nationkey
and c_nationkey = n2.n_nationkey

and (

95

(nl.n_name = 'KENYA'and n2.n_name = 'EGYPT")
or
(nl.n_name = ‘EGYPT and n2.n_name = 'KENYA')
)
and I_shipdate between to_date (date '1995-01-01") and to_date (date
'1996-12-31")
) shipping
group by
supp_nation,
cust_nation,
l_year
order by
supp_nation,
cust_nation,

I_year:

Query 8:
select
o_year,
sum(case
when nation = 'EGYPT then volume
else 0
end) / sum(volume) as mkt_share
from
(
select
extract(year from o_orderdate) as o_year,
I_extendedprice * (1 - |_discount) as volume,
n2.n_name as nation
from

part,

96

supplier,
lineitem,
orders,
customer,
nation nl,
nation n2,
region
where
p_pastkey = |_partkey
and s_suppkey = |_suppkey
and |_orderkey = o_orderkey
and o_custkey = c_custkey
and c_nationkey = nl.n_nationkey
and nl.n_regionkey = r_regionkey
and r_name = 'MIDDLE EAST'
and s_nationkey = n2.n_nationkey
and o_orderdate between to_date (date '1995-01-01") and to_date (date
'1996-12-31")
and p_type = MEEDIUM BRUSHED NICKEL'
) all_nations
group by
o_year
order by

o_year;

Query 9:
select
nation,
o_year,
sum(amount) as sum_profit

from

97

select
n_name as nation,
extract(year from o_orderdate) as o_year,
|_extendedprice * (1 - 1_discount) - ps_supplycost * [_quantity as amount
from
part,
supplier.
lineitem,
partsupp,
orders,
nation
where
s_suppkey = |_suppkey
and ps_suppkey = |_suppkey
and ps_partkey = |_partkey
and p_partkey = I_partkey
and o_orderkey = I_orderkey
and s_nationkey = n_nationkey
and p_name like '%light%'
) profit
group by
nation,
o_year
order by
nation,

o_year desc:

Query 10:
select

c_custkey,

98

c_name,
sum(l_extendedprice * (1 - I_discount)) as revenue,
c_acctbal,
n_name,
c_address,
c_phone,
c_comment
from
customer,
orders.
lineitem.
nation
where
c_custkey = o_custkey
and I_orderkey = o_orderkey
and o_orderdate >= to_date(date '1993-11-01")
and o_orderdate < to_date(date '1993-11-01" + interval '3' month)
and I_returnflag = 'R’
and c_nationkey = n_nationkey
and rownum < 21
group by
c_custkey,
c_name,
c_acctbal,
c_phone,
n_name,
¢_address,
c_comment
order by

revenue desc:

99

Query 11:
select
ps_partkey,
sum(ps_supplycost * ps_availqty) as value
from
partsupp,
supplier,
nation
where
ps_suppkey = s_suppkey
and s_nationkey = n_nationkey
and n_name = 'UNITED KINGDOM’
group by
ps_partkey having
sum(ps_supplycost * ps_availgty) > (
select
sum(ps_supplycost * ps_availqty) * 0.0001000000
from
partsupp,
supplier,
nation
where
ps_suppkey = s_suppkey
and s_nationkey = n_nationkey
and n_name = 'UNITED KINGDOM'

order by

value desc;

Query 12:

100

select
I_shipmode.
sum(case
when o_orderpriority = '1-URGENT"
or o_orderpriority = 2-HIGH'
then 1
else 0
end) as high_line_count,
sum(case
when o_orderpriority <> 'I-URGENT"
and o_orderpriority <> "2-HIGH'
then 1
else 0
end) as low_line_count
from
orders,
lineitem
where
o_orderkey = |_orderkey
and |_shipmode in (MAIL', 'FOB')
and |_commitdate < I_receiptdate
and I_shipdate < |I_commitdate
and |_receiptdate >= to_date (date '1997-01-01")
and |_receiptdate < to_date (date '1997-01-01' + interval 'l' year)
group by
|_shipmode
order by

|_shipmode;

Query 13:

select

101

c_count,
count(*) as custdist
from
(
select
c_custkey,
count(o_orderkey) as c_count
from
customer, orders -- left outer join orders on
where
c_custkey(+) = o_custkey
and o_comment not like '%unusual%deposits%'
group by
c_custkey
) -- c_orders (c_custkey, c_count)
group by
c_count
order by
custdist desc,

c_count desc;

Query 14:
select
100.00 * sum(case
when p_type like PROMO%'
then I_extendedprice * (1 - I_discount)
else 0
end) / sum(l_extendedprice * (1 - |_discount)) as promo_revenue
from
lineitem,

part

102

where
I_partkey = p_partkey
and |_shipdate >= to_date (date '1996-11-01")
and I_shipdate < to_date (date '1996-11-01' + interval 'l' month);

Query 15:
create view revenueQ (supplier_no, total_revenue) as
select
I_suppkey,
sum(l_extendedprice * (1 - I_discount))
from
lineitem
where
|_shipdate >= to_date (date '1997-03-01")
and [_shipdate < to_date (date '1997-03-01' + interval '3' month)
group by
1_suppkey:;

-- 'c:\auxitools\out\appendix\stream\15.0'
select
s_suppkey,
s_name,
s_address,
s_phone,
total_revenue
from
supplier,
revenueQ
where
s_suppkey = supplier_no

and total_revenue = (

select
max(total_revenue)
from
revenueQ
)
order by
s_suppkey:

drop view revenueQ;

Query 16:
select
p_brand,
_type,
p_size,
count(distinct ps_suppkev) as supplier_cnt
from
partsupp,
part
where
p_partkey = ps_partkey
and p_brand <> '‘Brand#23'
and p_type not like 'PROMO BURNISHED%'
and p_size in (33, 9, 35, 38, 20, 13, 22, 14)
and ps_suppkey not in (
select
s_suppkey
from
supplier
where

s_comment like '%Customer%Complaints%'

104

)
group by
p_brand,
P-type,
p_size
order by
supplier_cnt desc,
p_brand,
p-type,

p_size;

Query 17:
select
sum(l_extendedprice) / 7.0 as avg_yearly
from
lineitem,
part
where
p_partkey = I_partkey
and p_brand = 'Brand#35'
and p_container = JUMBO BOX'
and |_quantity < (
select
0.2 * avg(l_quantity)
from
lineitem
where

I_partkey = p_partkey

Query 18:

105

select
c_name,
c_custkey,
o_orderkey,
o_orderdate,
o_totalprice,
sum(l_quantity)
from
customer,
orders,
lineitem
where
o_orderkey in (
select
|_orderkey
from
lineitem
group by
I_orderkey having
sum(l_quantity) > 315
)
and c_custkey = o_custkey
and o_orderkey = I_orderkey
and rownum < 101
group by
c_name,
c_custkey,
o_orderkey,
o_orderdate,
o_totalprice

order by

106

o_totalprice desc,

o_orderdate;

Query 19:

select

sum(l_extendedprice* (1 - I_discount)) as revenue

from
lineitem,
part
where

(
p_partkey = |_partkey
and p_brand = 'Brand#41’
and p_container in (‘'SM CASE', 'SM BOX', 'SM PACK, 'SM PKG')
and I_quantity >= 5 and |_quantity <=5 + 10
and p_size between | and 5
and I_shipmode in ('AIR', 'AIR REG")
and I_shipinstruct = 'DELIVER IN PERSON'

)

or

(
p_partkey = |_partkey
and p_brand = '‘Brand#45'
and p_container in (MED BAG', 'MED BOX', 'MED PKG', 'MED PACK")
and |_quantity >= 13 and I_quantity <= 13 + 10
and p_size between | and 10
and I_shipmode in ('AIR’, 'AIR REG")
and I_shipinstruct = 'DELIVER IN PERSON'

)

107

or

p_partkey = |_partkey

and p_brand = '‘Brand#22’

and p_container in (LG CASE', 'LG BOX', 'LG PACK', LG PKG")
and I_quantity >= 20 and I_quantity <= 20 + 10

and p_size between | and 15

and I_shipmode in (AIR', 'AIR REG")

and I_shipinstruct = DELIVER IN PERSON’

Query 20:
select
s_name,
s_address
from
supplier,
nation
where
s_suppkey in (
select
ps_suppkey
from
partsupp
where
ps_partkey in (
select
p_partkey
from
part

where

108

p_name like ‘cornflower%
)
and ps_availqty > (
select
0.5 * sum(l_quantity)
from
lineitem
where
|_partkey = ps_partkey
and |_suppkey = ps_suppkey
and |_shipdate >=to_date (date '1996-01-01")
and |_shipdate < to_date (date '1996-01-01' + interval 'l' year)

)

and s_nationkey = n_nationkey
and n_name = 'VIETNAM'
order by

S_name;

Query 21:
select
s_name,
count(*) as numwait
from
supplier,
lineitem 11,
orders,
nation
where
s_suppkey = l1.1_suppkey

and o_orderkey = 11.1_orderkey

109

and o_orderstatus = 'F'
and 11.I_receiptdate > |1.[_commitdate
and exists (
select
*
from
lineitem [2
where
[2.1_orderkey = 11.I_orderkey
and 12.1_suppkey <> I1.I_suppkey

)
and not exists (
select
*
from
lineitem 13
where

[3.1_orderkey = 11.1_orderkey
and 13.1_suppkey <> I1.I_suppkey
and 13.1_receiptdate > 13.]_commitdate
)
and s_nationkey = n_nationkey
and n_name = 'PERU"
and rownum < 101
group by
s_name
order by
numwait desc,

s_name;

Query 22:

110

select
cntrycode,
count(*) as numcust,
sum(c_acctbal) as totacctbal
from
(
select
substr(c_phone, 1, 2) as cntrycode,
c_acctbal
from
customer
where
substr(c_phone, I, 2) in
('15','19','16’, 20, '14', 22", '10")
and c_acctbal > (
select
avg(c_acctbal)
from
customer
where
c_acctbal > 0.00
and substr(c_phone, 1, 2) in
('15','19','16', 20, '14', 22", '10")
)
and not exists (
select
*
from
orders
where

o_custkey = c_custkey

111

)
) custsale
group by
cntrycode
order by

cntrycode;

Refresh Functionl:

insert into orders values (9, 38197 ,'O", 134840.06 ,to_date('1996-09-10",'yyyy-mm-dd’),
'I-URGENT, 'Clerk#000000145', 0 , 'carefully regular requests solve furiously.

instructio’);

insert into lineitem values (5996 , 86497, 6498, 4, 32, 47471.68, 0.10, 0.00,'N','O",'1997-
10-21''1997-10-05", '1997-11-14', NONE', TRUCK', ‘final ideas wake foxe');

insert into lineitem values (5996 , 146898, 1927, 5, 43, 83630.27, 0.07,
0.01.'N'/0','1997-11-02','1997-09-27", '1997-12-02', TAKE BACK RETURN', 'FOB,

'slyly even multipliers haggle. care’):

Refresh Function2:

DELETE FROM lineitem WHERE |_orderkey = I;
DELETE FROM orders WHERE o_orderkey = 1;
DELETE FROM lineitem WHERE I_orderkey = 2:

DELETE FROM lineitem WHERE I_orderkey = 5987,
DELETE FROM orders WHERE o_orderkey = 5987
DELETE FROM lineitem WHERE |_orderkey = 5988;
DELETE FROM orders WHERE o_orderkey = 5988;

SMO1 Qg 1S} 8y} uinay (sbuiyorew
10ex9 ¢ ‘ebues g) NV £
(episur) Ny £

ANV 0L

(epIsu)HO 2 ‘(epIsunany £
(ebues y) NV ¢

(ebue.

2 ‘Bulyorew 1oexa /) ANV 6
apisu) (Buiyoyew joexe

| ‘ebuel |)gNV g 8pisino Ny
(sBujyorew joexe | ‘efues g)¢
swole gNv 9

ap|su| swoje gNv (sbuiyojew

SMOJ (| 181l 8y} uinjay
SMOJ Q0| 1S4)) 8Y) LInjey
10BX9 G) G 8pISINO SWole gNV

(ebBues | ‘sBuiyojew oexe g) 6

(Bulyoyew 10exe |) |

owsp SuoI)pUod

el

wns | A

wns N A

wns ¢ N A

wns | A A

wns | N N

A

unoo | A A

A

(episuuiw | N A
Junod A

L'BAe € ‘wns ¢

uoijeba166y pejejanio] 1epi0

AV N
A9 A
Al A
Al A
NI N
A9 N
Al A
A€ N
NS A
Al N
(seiqey jo

Jequinu ayj)

dnois) eanog ejeg peiseN

0iD

60
80
L0
90
SO

149)

€0
cO

(19)

"SALNQ H-Jd L Jo santadoa jo Lrewrmng ay |, °(q xipuaddy

SMOJ 001 141} 8y} Winjey (6uyoyew yoexe | ‘ebuel
2'ep|sul)aNy € ‘(Buiyojew joexe |
‘ebues | ‘episul)gNV 2 ‘(ebues ¢
‘'sBujyojew joexe G'apisiN0)aNyY 6
(sbuyoews

10exe g ‘ebuel g ‘[eAs) payl)any
v ‘(1eAs| pIUANY | ‘(eBues

2 'episul)any g ‘(sbuiyojew
10eX0 g ‘obuel | ‘episino)gNyY €
yoee (ebuei ¢ ‘sbuiyoyew

10BX8 £)ANV £'(8pISINO)HO €
SMOJ 00| 1SJ1} 8Y) uinjey (ebuel
2 'sBujyojew 1oexe z)any v

(episul)aNy | ‘(Bues | ‘'sBuyorew

loexe ¢ ‘epISino)aNyY ¢

(Buyorew joexe | ‘ebuel y)gNV S

MB|A (Uopiuljep melA episu) ‘abuel)gNY

2 '(Buiyorew joexe)aNy
(Buyorew joexe | ‘ebuel 2)aNV €

pajeald e s| 82in0Ss 8uQ

vil

unoo |

(episun)wns |

wns |

(episuy

| ‘epIsino |)wns g
(apisul)bae

| ‘(apisinojuwns |
unoo |
(uopuyep

MBIA Bpisul)wns |
wns g

(episup)uiof Jeino ye (exy | ‘Buyoiew joexe L)ANY g (ul | ‘o () unod 2

(Bulyorew yoexe | ‘ebues G)aNY 9
(sBulyojew 1oexe g)gNY €

wns g
(episuy
| ‘episino g)wns ¢

> >

> > > Z

AV

N¢

N¢

At

N¢

Ac
N¢

N¢
Al
Ac
At

(sjene|
€A

Z >

> Z > 2

(¥4 0]

020

610

810

10

910
S0

r10
€10
¢lo
LHO

(Bujyorews 1oexe | ‘g ()Jnsans A A Al (siensl 22D
leA8|)aNy | ‘(ebues ‘g jere)aNy £'(episuhiunos £)A
¢ '(ebuesg'episujgNy € 1 '(epIsino)Bae
L ‘(episino)wns |

