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ABSTRACT

Feedback Mechanism Validation and Path Query Messages in Label

Distribution Protocol

Ahmed Gario

In constraint based routing a topology database is maintained on all participating
nodes to be used in calculating a path through the network. This database
contains a list of the links in the network and the set of constraints the links can
meet. Since these constraints change rapidly, the topology database will not be
consistent with respect to the real network. A feedback mechanism was
proposed by Ashwood-Smith, et al, to help correct the errors in the database. it
behaves like a depth first search, and is meant to be useable only when the
database sees the availability of resource more than there really are. In this
mechanism, the source node can learn from the successes or failures of its path
selections by receiving feedback from the path it is attempting. The received
information is used in the subsequent path calculations.

We validated the feedback algorithm to see how it behaves in all database
situations, and found out that the feedback algorithm was helpful in all cases not
only when it was optimistic. We also propose adding query messages to make
the feedback algorithm behave more like breadth first search. The path query
messages algorithm reduces the retry attempts in setting up a path, and also

utilizes the network by gathering much more information about the resources.
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CHAPTER 1

Introduction

Multiprotocol Label switching (MPLS) network is meant to provide traffic
engineering and better Quality of Services (QoS) due to its property that the
source node may know the complete path the flow will traverse. To allocate the
appropriate path that satisfies some constraints in an MPLS network, the ingress
node should not only know the possible paths to reach any destination, but also
know concrete information about the availability of the resources along these
paths. Because the network is a distributed and dynamic system, the availability
of those resources is subject to rapid changes. So it is necessary to have a
mechanism to advertise information about links to all nodes in the network (11,
[2]. The flooding mechanism proposed in [1] is one of these advertising
mechanisms. In this mechanism the information is exchanged among the nodes
in the network in a time interval. Every node periodically sends its state to the
other nodes in the network. The nodes in the network will have the same view of
the network at the flooding time. Within that interval every node in the network,

regarding the actual resources in the network, is often either:

e Optimistic, when it sees more available resources than there really are. It

becomes optimistic when the amount of resources in the network the



arriving requests reserve is much more than the amount of resources the

departing ones release, or

» Pessimistic, when it sees less available resources than there really are. It
becomes pessimistic when the amount of resources in the network the
arriving requests reserve is less than the amount of resources the

departing ones release.

Dealing with changing constraints is a major problem for a constraint based
routing system. In a constraint based routing algorithm, however, a path from one
node to another is calculated based on one or more of these constraints. Since
the availability of the resources is changing, and the knowledge about these
constraints often out-of-date regarding the reality, there must be a better way
than the flooding to inform a node as soon as possible. Obviously, bandwidth is
one of the essential constraints, and it is rapidly changing, but the flooding
algorithm is not an efficient resource advertising algorithm that keeps the node
up-to-date. That is due to the low flooding frequency compared to the resource
change frequency. In smaller networks, one can resort to higher frequency

flooding, but in a large network this obviously is not scalable [3].

The IETF draft “Improving Topology Data Base Accuracy with Label Switched
Path Feedback in Constraint Based Label Distribution Protocol” [3] proposes

adding to the node a topology database to build a map of the network, and

o



algorithms to deal with optimistic databases without resorting to shorter flooding
intervals. The draft says its algorithm deals only with optimistic databases. This is
theoretically correct and logical. It also describes the setting up of a path

algorithm behavior as a depth-first search algorithm.

We are going to see how the label distribution protocol (LDP) with feedback
algorithm deals with pessimistic, optimistic and up-to-date databases. We are
also going to examine the effect on the path availability, and what the time taken
to set a path up is if we make the LDP with feedback algorithm behave very
much like breadth-first search instead of depth-first search. By breadth-first
search we mean that query messages traverse through the next shortest paths
the node would take in case of failure, if any, at the same time as the label
request message. These query messages are to return feedback from the paths
they traverse. This feedback is useful in case of either success or failure of the
label request message. In addition to finding the path earlier, it helps to improve

the topology database.



CHAPTER 2

MuiltiProtocol Label Switching (MPLS)

MPLS stands for "Multiprotocol” Label Switching. It was invented in 1997 by the
internet Engineering Task Force (IETF), named Multiprotocol because it is
capable of working with any network layer protocol. MPLS is also known as a 2.5
layer protocol because it has the capabilities of both layer two and layer three. It
has the flexibility of IP, layer three, routing; and the efficiency of link level, layer
two, switching. MPLS networks carry traffic on virtual connections called “label
switched paths”. A label switched path is the path which packets having the
same label follow. The label is a short length number that does not include any
network layer address. It carries information that uniquely identifies the
Forwarding Equivalent Class (FEC) encapsulated within the MPLS packet. A
label is inserted in the packet’s header by the ingress label switching router
(LSR) as it arrives at the MPLS network region, prior to forwarding it through the
network, and it is removed by the egress label switching router (LSR) when the
packet departs from the MPLS domain [4]. Two label switching routers (LSR)
may have more than one label between them. In other words, labels are

associated with the flows rather than a router itself.

Every router in a connectionless network layer protocol analyzes every traveling

packet’s header and makes an independent forwarding decision for that packet



to the next router based on the analysis of the packet header and the information
in the node’s forwarding table. Choosing a packet’s next hop is a composition of
two functions. The first function is grouping the set of possible packets to a set of
“Forwarding Equivalence Classes (FECs)". The second maps each FEC to a
next hop. Packet headers contain much more information than needed to map
them to the appropriate FECs and then to send them to the next hop,

consequently, taking much more time than needed.

Unlike that in conventional IP, in an MPLS network, the assignment of a
particular packet to a particular FEC is done just once, as the packet enters the
network at the ingress router. The FEC to which the packet is assigned is
encoded in the label. At succeeding hops, there is no further analysis of the
packet's network layer header. Rather, the label is used as an index into a
forwarding table, which specifies the next hop, and a new label. The old label is
replaced with the new label, and the packet is forwarded to its next hop. This
forwarding mechanism has a number of advantages over conventional network

layer forwarding, which are the following: -

» MPLS forwarding can be done by switches which can look up and replace
a label, but are not capable of analyzing the network layer header, or can

not analyze it at a high rate of speed.



The ingress router may use any information, including but not limited to
the network layer header, to determine the assignment of the packet to an
FEC when it enters the network. For example, packets arriving on different
ports may be assigned to different FECs. Conventional forwarding, on the

other hand, considers only the information in the packet header.

Since a packet that enters the network at a particular router can be
labeled differently from an identical packet entering the network at a
different router, the ingress node, as a matter of policy or to support a
Service Level Agreement (SLA) between adjacent networks in the
Internet, can easily be considered when making the forwarding decision.
This cannot be done with conventional forwarding, since the only
considered forwarding information is gleaned from the packet network

header.

It is sometimes desirable to determine and explicitly choose the route the
packet should follow, rather than being chosen by the normal dynamic
routing algorithm, hop by hop forwarding, as the packet traverses the
network. In an MPLS network, a label can be used to determine the path;
no extra overhead information is needed to determine the explicit path. In
conventional forwarding, “"source routing" requires the packet to carry

extra overhead information as an encoding of its route along with it.



Other than best effort forwarding, the packets that traverse the network may have
to be treated differently. Doing so, some routers analyze a packet's network layer
header to determine the packet's precedence and class of service, which are
used to apply a different discard threshold or scheduling discipline to different
packets. In an MLPS network, a label can also be used to determine the
treatment the packet should have, since the label can represent the combination
of an FEC and a precedence or class of services. An MPLS network allows (but
does not require) the precedence or class of service to be fully or partially

inferred from the label.

2.1 Label Distribution Protocol (LDP)

There must be a mechanism to make LSRs in an MPLS network distribute and
agree on the meaning of the labels. The MPLS architecture document [4] defines
this mechanism as a set of procedures and calls it the Label Distribution Protocol
(LDP). The MPLS architecture allows label distribution protocols to also perform
any other negotiation between two label distribution peers that is meaningful for
that label binding. Two LSRs are called “label distribution peers" with respect to
the binding information they exchange [5]. The negotiations between two label
distribution peers concern the situations and capabilities of the LSRs that have
an effect on the label binding and forwarding decision. They are performed in
terms of messages such as, discovery messages, session control messages,

advertisement messages, and label binding messages.



MPLS architecture [4] does not consider only one label distribution protocol;
however, a number of different label distribution protocols such as label
distribution protocol (LDP), constraint-based routing label distribution protocol
(CR-LDP), and resource reservation protocol (RSVP), are being standardized,
and each has its own properties. Other than distributing a label, every protocol
has its own behavior and other concerns that differentiate it from other
distribution protocols. For example, the way RSVP behaves is different from what
LDP does, and the functionalities LDP performs and the considerations it takes

are different from those CR-LDP considers.

CR-LDP is the protocol that is concerned with constraint-based routing. It is used
to set up a constraint-based path. Constraint routing label switching path CR-LSP
is a path through an MPLS network that satisfies some constraints to support the
Traffic Engineering (TE) requirements, and Quality of Services (QoS) in an MPLS
network. The difference between LSP and CR-LSP is that while other paths are
set up only based on information in routing tables or from a management system,
the constraint-based route is calculated at the edge of the network (ingress node)
based on criteria, including but not limited to routing table information. The
purpose of this functionality is to give the LSP desired characteristics in order to
better support the traffic sent over it. The reason for setting up CR-LSPs might be
the need of assigning certain bandwidth or other service class characteristics to

the LSP, or to ensure the separation of alternative paths through the network [6].



Explicit Routing is a subset of the more general constraint-based routing where
the constraint is the explicit route. Other constraints are defined to provide a
network operator with control over the path taken by an LSP. An explicit route is
a list of nodes or groups of nodes represented in and followed by the iabel
request message. When establishing the CR-LSP, the label request message
may traverse all or a subset of the nodes in a group. Certain operations to be
performed along the path can also be encoded in the constraint-based route. CR-
LDP allows for explicit routes, using both strict and loose hops, providing
maximum flexibility in building a specific path through a network. It also has the
ability to allocate bandwidth based on an LSP’s priority. Capabilities of CR-LDP

include the following:

CR-LDP is an extension on an already existing LDP protocol.

It remains in a hard state.

It has both explicit setup and explicit teardown.

It needs no refreshing; once established, it stays up until torn down.



2.1.1 Label assignment

Label assignment occurs based on a common grouping or forwarding
equivalence class (FEC); packets are classified together based on common
attributes, such as source addresses (policy based routing), source and
destination address pairs, destination address, and even Type of Service (ToS)
or Differentiated Service Code Point (DSCP) bits. All packets grouped into the

same FEC receive similar treatment along the LSP.

The decision to bind a particular label to forwarded equivalent classes (FEC) is
made by Label distribution router (LSR), which is downstream with respect to that
binding. The LSR up stream serds a label request message to its downstream
LSR peer asking for a label for that FEC. The downstream LSR informs the
upstream LSR of that binding. Some FECs correspond to address prefixes,
which are distributed via a dynamic routing algorithm. The setup of the LSPs for
these FECs can be done in one of two ways: Independent LSP Control or
Ordered LSP Control. In an independent LSP control, an LSR distributes the
binding to its LSR peers if it recognizes that FEC. However, in Ordered LSP
Control, an LSR only binds a label to a particular FEC if it is the egress LSR for
that FEC, or if it has already received a label binding for that FEC from its next

hop for that FEC [4].

The ordered LSP control technique is useful in constraint based routing, where it

should be known that the whole path has sufficient resources prior to starting to

10



forward data packets. On the other hand, in the independent LSP control, the
ingress router LSR starts sending data packets as soon as it receives the binding
from the nearest LSR peer. This is to avoid wasting time waiting for the ordered

binding from the egress node.

2.2 Path calculation

Due to the variations in the requested destination, changes in the available
resources, and the type of desired services, there are many available paths to
reach each node in the network, which can not be manually configured and
stored in each node, but have to be calculated based on what resources the
network has and what attributes they should satisfy. Therefore, a node calculates
a path to a desired destination on some metrics to satisfy some constraints. The
constraints are those, which appear in the Type of Services (TOS) field in the IP
header, or those classes of services in a DiffServ code point. TOS is a part of the
IP header that tries to provide prioritization; it interprets assigned services to the

packet such as low latency, high throughput, high reliability, and low cost.

Calculating a normal path, an IP best effort path, is slightly different from
calculating a path to satisfy some constraints. In calculating a path all the working
links and nodes participate in the path calculation regardless of their metrics. On

the other hand, in constraint-based routing, a node excludes the links and nodes

11



that do not meet the constraints from the path calculation. For example, if a node
requests a certain amount of bandwidth for this flow, it will exclude the links that
do not have that amount. So, the node either finds a path that satisfies these

constraints or finds no path at all.

The existing path calculation algorithms such as Open Shortest Path First
Protocol (OSPF) can also calculate a separate set of routes for each IP Type of
Service (TOS) [7]. This means for any destination there can be more than one
entry in the routing table, one for each [P TOS. The OSPF protocol maintains
multiple equal-cost routes to all destinations. Each route has its separate next
hop and advertising router. It is not required that a router running an OSPF keep
track of all possible equal-cost routes to a destination. The number of kept routes
is an implementation choice and does not affect any of the algorithms presented

in the OSPF specification [1].

It is almost impossible to find muiti equal-cost paths if the path to the destination
is to be calculated upon constraints other than hop count, so that there will be
better available paths to a specific destination. That means the node could have
multi “almost equal” paths or let us name it “multi best paths” to the destination
for every IP type of service (TOS). These multiple-equal paths are to be used for

a load balance by distributing the load over them.



Distributing a micro fiow even over different exactly equal cost and loaded paths
does not work. This is due to the fact that every path may have changing
circumstances. These circumstances may result in longer queuing, consequently
reordering the flow by the destination node. Equal-cost muitiple paths are very
useful when they are used to distribute the traffic over the network. A node can
calculate multiple paths to determine which one is good for which flow. There are
always trade-offs: a node may choose to use a higher delay path to ensure a
bandwidth or reliability, or it could make a decision to equalize the load over the

network if the flow desired services are not tightly constrained.

2.3 Query Messages

A label distribution protocol LDPs has the ability to inquire about the already
established LSPs by sending query messages through them [8]. This message is
sent from the source node to gather information needed by the inquiring node
about LSPs. The query message can be used for LDP LSPs as well as for
Constraint-Based Label Switched Paths (CR-LSPs). It can be used to gather

information about:

- LSRs, which form the LSP.

- Labels along the LSP.

13



- Information on which LSRs are merging points along the path.

- Unused bandwidth (as described in “Improving Topology Data Base
Accuracy with Label Switched Path Feedback in Constraint Based Label

Distribution Protocol "[3]).

- Anything that is needed in the future and can be computed and encoded in

aTLV [8].

A Query-Reply message carries the queried information that is generated by the
egress LSR of that LSP, or an intermediate LSR in case of partial reply, and sent
back upstream as a response of the query message. Every intermediate node
that receives the reply attaches the queried information to the Query-Reply
message and sends it upstream. Eventually, this information arrives and is used

by the ingress node.

14



CHAPTER 3

Label Distribution Protocol (LDP) with feedback

The IETF draft “Improving Topology Data Base Accuracy with Label Switched
Path Feedback in Constraint Based Label Distribution Protocol” [3] proposes that
a node can build a topology map of the network from the advertised information
about the links, which is mentioned in [1] and [2]. Information about links that
may be useful for reasons of quality of service (QoS) includes parameters such
as available bandwidth and delay. The information in this topology database is
often out-of-date with respect to the real network. Available bandwidth is the
most significant of these attributes and it can float considerably with respect to
reality, due to the low frequency of link state updates that can be sustained in a

very large topology.

Because this information is required to be as up-to-date as possible for accurate
traffic engineered paths, the IETF draft [3] also proposes adding to the signaling
protocol the ability to attach actual link bandwidth availability information at every
link that the signaling message traverses. This means that every time a feedback
message flows backwards toward the source to tell it of the success, failure, or
termination of a request, this message contains detailed information about the
availability of the bandwidth for the path that the message has followed. This
information, which is very up-to-date, is received by the source node, attached to

the source node's topology database, and will be considered on further source

L5



route computations. The result is that the source node's topology database will
keep up-to-date regarding that part of the network through which it is establishing
paths. Also, every node along the path copies the information from the feedback
message to its database. It will be up-to-date about the down stream slice of that
path. This makes the intermediate node benefit from other nodes’ feedback

messages.

This mechanism is nothing more than that the source node receives feedback
every time it attempts to establish, or release, or withdraw a path. It represents
an alternative way to either waiting for floods or introducing guessing into the
path calculation algorithm. These fed-back data that the node has learned should
not be re-flooded to the other nodes in the network; the data override flooded
information to be used by the node for its own route calculation until a

superseding flood or new feedback value arrives [3].

If the topology database is optimistic, the first selected path will likely contain
links that do not in reality have sufficient unreserved bandwidth [3]. Therefore,
the path is only established up to the link that does not have sufficient bandwidth.
The signaling message will be blocked in that link and a feedback message
containing the actual bandwidth is sent back toward the source node collapsing
the partially created path. The source computation path will be calculated again.
This procedure will continue until the destination is reached or no path is

available. Each time, only one path is computed and used to send messages.
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The source node will receive feedback from those links that the signaling
message has just traversed. The same procedure may be repeated as many
times as is necessary. Each time the node learns from its mistakes, until a path
to the destination that satisfies the request is found, or the node knows that no
paths remain in its topology database to the destination. It actually behaves a lot
like a depth-first search. This property is not present with flooding mechanisms
alone since the source node must randomly guess, or continually make the same

mistakes, or abort until the next flood arrives [3].

If the topology database is pessimistic, the IETF draft [3] proposes using other
algorithms to bring the topology database back to the optimistic state, so the
feedback algorithm can operate. A selective forgetting algorithm, for example, is
one of these proposed algorithms. It requires no more than changing the value of
reserved bandwidth in the node’s topology database to zero over a short time
interval, so the node will be optimistic, but not up-to-date regarding the real
network. Although such algorithm enables the feedback algorithm to find a path,
this path might not have sufficient resources. This is due the fact that the path is

calculated upon an optimistic database but not actual data.
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CHAPTER 4
LDP with Feedback Algorithm validation and path query

messages

4.1 LDP with Feedback Algorithm validation

The IETF draft “Improving Topology Data Base Accuracy with Label Switched
Path Feedback in Constraint Based Label Distribution Protocol” [3] proposes that
its algorithm deals only with the topology database when it is optimistic. This is
theoretically correct because the node excludes from the path calculation the
links that do not meet the required attributes. In this case, a node will find no path
that satisfies the request. However, the network is a dynamic system, dynamic as
a whole, and a node is participating in other nodes’ requests, which makes it well
informed from the feedback that the node receives from other established or

released LDPs that pass by it.

Although we cannot take an individual node to study a network, we assume the

situations where the node might be pessimistic:
e The node is out-of-date because not too many LDPs have been

established after the network has been saturated, or, more precisely,

some links are saturated. In this case, either the network or the links are

18



still saturated, and the node will find no path even if it is up-to-date, or the

node will receive feedback in release of LDPs, which is proposed in [3].

¢ The node is out-of-date because not too many LDPs have been
established and the network is not loaded; the node is still optimistic even

though it is out-of-date, and it will find a path if there is one.

e The node was down; it will receive flooding about the real status of the

network as soon as it comes up again [1], [2].

Based on these viewpoints we strongly believe that a node will never be
pessimistic regarding the whole network, or we can say that a node can be
pessimistic regarding a very few number of links. We can confidently say that the
feedback algorithm proposed in [3] deals with all topology database states,
optimistic and pessimistic, and this is what are we going to see in the simulation

chapters.

4.2 Path Query Messages

The IETF draft [3] describes its algorithm as behaving very much like depth-first
search, discovering only one path each time. Since the source node repeats the
procedure of path calculation, and iakel request message more than once in

order to make the label request message reach the destination, it is better to
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have that procedure synchronized. We propose modifying that algorithm to
behave like breadth-first search instead of depth-first search, where the source
node explores more than one path at the same time. This will reduce the time
taken to set up a path and correct the node’s topology database by receiving
much more feedback. This proposal is nothing more than that the source node
sends query messages through the best paths, which the source node would
discover in the next path calculations in case this label request message failed to

reach the destination, and receives feedback.

These path query messages could be sent to inquire about any other attributes.
(Refer to Appendix A for more information). However, bandwidth is the attribute
we are interested in here, due to its importance, and its rapid change. The
ingress node sends the signaling message through one path and sends query
messages through the other paths. It will receive query reply messages that carry
the actual values of the unreserved bandwidth in each link that it has traversed. If
the signaling was blocked at any point, the source node would have a better
chance to find a path that has sufficient bandwidth the next time it computes the

path. This kind of feedback will:

1. Reduce the number of path computation iterations, reduce the
overhead of path computation especially if the path computation is
done by what is called a server node, where one node calculates the

paths for all the nodes in the network.



2. Give the node the ability to find the proper path earlier, due to the
synchronization between the label request message and query
messages. The ingress node does more than one step at the same
time. It does not receive feedback from only one path, but it receives

feedback from different paths at once.

3. Make the computation of the path more efficient especially if the paths
are independent. By efficient we mean that it gathers more feedback
than that if the paths share some links. The ingress will have feedback
about more links that will be inciuded or excluded from the next path

computation.

4. Reduce the chances that the node will be pessimistic regarding some
links, and the node will have a better chance to find a cheaper path if

there are any.

5. Make the source node have a bigger and more up-to-date vision of the
state of the network than that of feedback from one path at a time. It
would be very useful for a load balance as well. A load balance here is
not meant to be distributing the same flow over different paths, due to
the fact that it is almost impossible to find equal-cost paths unless the

cost was meant to be the hop count. It is the distribution of different
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flows upon different paths. The source node would be able to consider
the load balance when choosing a path through which to send a

signaling message.

The number of query messages is an implementation matter. The query and

query reply message formats and procedures are described in appendix A.
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CHAPTER 5

Simulation

The aim of this simulation is to study the effect of different LDP algorithms on
allocating a path through the network: how they affect the blocking probability,
and how long it takes to set up a path in each one. The first LDP algorithm is the
original LDP algorithm, where, in case of failure, the node does not retry sending
the message again, but rather waits for flooding. The second one is LDP with
feedback algorithm where the node sequentially tries sending other requests until
it reaches the destination or knows there is no path to take. However, the third is
LDP with query messages algorithm, where the node tries to discover more than

one path at the same time.

5.1 Generating Networks

Georgia Tech Internetwork Topology Models (GT-ITM) [9] is used to generate the
networks. Two types of networks have been generated: flat random networks
and 2-level hierarchical networks. From both types, a large number of networks
have been generated by changing the probability of the connectivity, changing
the number of nodes in each network, and changing the number of nodes in the

core for the hierarchical type. See Table 5.1.1 and Table 5.1.2 for more details.



For each topology, between 5 and 10 random seeds were used, each random

seed contains number of requests that are more than the capacity of the network.

Network Type Number of nodes Nodes in the core network
Hierarchical 248 8
Hierarchical 96 8
Hierarchical 96 6
Hierarchical 91 8
Hierarchical 91 6
Hierarchical 90 8
Hierarchical 90 6
Hierarchical 72 8
Hierarchical 72 6

Table 5.1.1 Hierarchical networks used in this simulation

Network Type Number of nodes Connectivity probability
Random 248 0.033%
Random 96 0.033%
Random 96 0.035%
Random 90 0.033%
Random 80 0.043%
Random 72 0.045%
Random 72 0.033%
Random 50 0.043%

Table 5.1.2 Random networks used in this simulation
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5.2 Simulator structure

The simulator is built using Visual C++ language. A network node in the simulator
is represented as a class. Each node is an independent object and has its own
independent properties such as node ID, node routing table, to which node the
node is directly connected, and the properties of the links (cost, delay, maximum
bandwidth, the available bandwidth). After the node calculates the path, the
sequence of nodes that represent the path is inserted in the label request
message, and message is sent to the next node in the path. It actually behaves

the same as if it were a real network.

5.3 Simulation flow

The simulator tends to demonstrate the three phases any network goes through,
where the topology databases in the nodes are pessimistic, optimistic, and up-to-
date. After building up the network, which was created by the network generator
GT-ITM, the simulator starts the first phase, which is feeding the network with
random requests. A request is a tuple of three items: source node ID, destination
node ID and the amount of desired bandwidth. Although the seeds are meant to
be random, we created the source and destination nodes in a way that makes
them cross the core network of the hierarchicy. This phase continues till one of

two conditions holds:

o
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-  Either the time reaches the maximum point, which can be changed as
needed, or

- The blocking probability reaches or exceeds 95%. The blocking
probability is the ratio between the failed requests and the total
number of requests from the last time the blocking probability was

calculated.

In the simulation, the second condition is always the trigger.

Then the next phase, where the number of arriving and departing requests is
almost the same, and which tends to illustrate up-to-date topology database,
takes place. This phase lasts one third of the time of the first phase. Then the
final phase, where the number of departing requests is more than the number of
arriving requests starts. This is used to demonstrate a pessimistic topology

database.

Before we go to the next section to analyse the graphs, we should point out the
following:
- The points that represent the output graphs are taken every 100 time
units.
- Not all the blockings are due to a lack of the topology database

knowledge. This can be seen in very low connectivity networks where



one link might make a difference in the label request message
reaching a destination, but this has nothing to do with the node being

up-to-date or not.

5.4 Simulation results

Two measurements are used in this simulation to differentiate the usefulness
among the three algorithms. The first one is the blocking probability. It is the ratio
of failed requests to the total number of requests in every 100 time units. It is
independently calculated every time interval. The second measurement is the
time taken to set up a path. It is the time the ingress has to wait until it receives a

mapping message or knows that there is no path to use.

5.4.1 Simulation graphs representing the behaviour of the
original LDP algorithm, LDP with feedback algorithm, and LDP

with query messages

Despite the variety of the networks used in this simulation and the large number
of different randomly generated traffic used for each network, the output graphs
look very much the same. The time and the load may differ, but the shapes of the
graphs are identical. The following graphs are taken from both hierarchical and

random 248 node networks.
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5.4.2. Interpretation of graphs

Figure 5.4.1.1 and Figure 5.4.1.2 show the load comparison between original
LDP and LDP with feedback algorithms in hierarchical and random networks. It is
obvious from these figures that the LDP with feedback algorithm utilises the
network more effectively. By using the label request messages with feedback
algorithm, the network could handle much more load than using those without
feedback messages. Figure 5.4.1.3, Figure 5.4.1.4, Figure 5.4.1.5, and Figure
5.4.1.6 illustrate the relation between the load and the blocking probability over

all the nodes in the network using original LDP and LDP with feedback.

Figure 5.4.1.7 and Figure 5.4.1.9 demonstrate the relation between the load and
the blocking probability in hierarchical and random network using LDP with query
messages. Figure 5.4.1.8 and Figure 5.4.1.10 show a blocking probability
comparison between LDP with feedback and LDP with query message. It is clear
from this comparison that there is some improvement when using the query
message mechanism. Finally Figure 5.4.1.11 and Figure 5.4.1.12 show the
number of label request message attempts when using LDP with feedback and
when using LDP with query message. The next sections will describe the three

database regions these graphs have shown.
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5.4.2.1. Optimistic topology database

The first phase is where the topology database is optimistic (area A in the
graphs) and the load curve starts from point 0 where the bandwidth in the
network is totally free going up until it reaches the point where the blocking
probability curve reaches 95%. From Figure 5.4.1.3, Figure 5.4.1.4, Figure

5.4.1.5, Figure 5.4.1.6, Figure 5.4.1.7 and Figure 5.4.1.9, we can see:

- The failure of finding a path through the network using the original LDP

starts at earlier time than that in LDP with feedback.

- The number of blocked requests when using original LDP is more than that

when using LDP with feedback even before the network is nearly saturated.

5.4.2.2. Up-to-date topology database

After the blocking probability reaches 95%, the simulator keeps feeding and
releasing the same number of LDP, which illustrates the up-to-date topology
database state (area B in the graphs). As Figure 5.4.1.3, Figure 5.4.1.4, Figure
5.4.1.5, Figure 5.4.1.6, Figure 5.4.1.7 and Figure 5.4.1.9 show, the blocking
probability drops. The drop in the blocking probability implies that the blocked
requests were due to the lack of paths, not due to the fact that the node could not

find them.



5.4.2.3. Pessimistic topology database

After some time, the simulator starts releasing more LDPs than requesting them,
which is the state when the nodes’ topology database is supposed to be
pessimistic (area C in the graphs). We can clearly see that the blocking
probability drops to 0, which proves our beliefs about the pessimistic database.
This, in turn, proves that the LDP with feedback algorithm works for all states of
topology database. See Figure 5.4.1.3, Figure 5.4.1.4, Figure 5.4.1.5, Figure

5.4.1.6, Figure 5.4.1.7 and Figure 5.4.1.9

5.4.2.4. LDP with feedback and with query messages blocking

probability comparison

It is obvious from certain figures that the LDP with feedback and query messages
behaves almost the same as LDP with feedback, with some improvement in the
blocking probability. See Figure 5.4.1.8, Figure 5.4.1.10, Table 5.4.2.1 and Table

5.4.2.2.
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Overall blocking

Algorithm No. Of LDPs | No. Of blocked LDPs probability
LDP with
77 3.500791%
Feedback 930561 325
LDP with Query 930561 30594 3.287694%
messages
Improvement in blocking probability 0.213017%

Table 5.4.2.1 label request message with feedback and with query messages
comparison in a random network.

Algorithm | No.OfLDPs | No.Of blocked LDPs | Overall blocking
probability
LDP with
2

Feedback 44542 7973 17.8999%
LDP with Query 44542 7910 17.7585%

messages

Improvement in blocking probability 0.1414%

Table 5.4.2.2 label request message with feedback and with query messages

comparison in a hierarchical network.

5.4.3 Simulation results for time taken to setup a path by using

LDP with feedback vs. LDP with feedback and query messages

Assuming LDP with feedback and LDP with feedback and query messages find
the same path, table 5.4.3.1 shows the total time taken to set up a path in both
scenarios and the amount of improvement there is. The variation in improvement
is due to the number of tries the algorithms makes to set up a path or to know

that there is no path to take. Figure 5.4.1.11 and Figure 5.4.1.12 show the

number of label request messages tries that LDP with feedback and LDP with
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queries make in order to find the path or to know that there is no path that
satisfies the request. Zero attempt means that the node has found no path in its

topology database and a label request message has not been sent.

The number of iterations is taken every 1000 ticks. It is obvious from Figure
5.4.1.12, and Figure 5.4.1.12 that the number of label request message iterations

in LDP with feedback is more than that in LDP with query messages.

1-The time taken to set 2- The time taken to set up Improvement in
up path with feedback | path with feedback and query | the path setting

messages up time

3572 1649 53.8%

3176 1888 40.5%

2975 1628 45.2%

3359 2331 30.6%

1618 1287 20.4%

1511 697 53.8%

29913 15001 49.8%

672 600 10.7%

Table 5.4.3.1 label request message setting up time

5.4.3.1 Simulation interpretations and observations

From table 5.4.3.1 we can see that the simulation shows different improvements

in time for label request message setup and we can observe the following:
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The variation in the improvement in time depends on the state of the
network and where the blocking occurred: the further the blocking is from
the ingress node, which should be the case most of the time, the better the
improvement. It is expected that the node has less up-to-date information

about the further nodes than the nearer ones.

The outcome shortest path in the single path calculation equals the second
shortest path in multi path calculation, unless the excluded link(s) up on the

previous feedback make(s) the difference.

Most of the time the multi paths happen to share some link(s), in other

words, it is rare to have completely independent cheapest paths.

The label request message with feedback and query messages show the
improvement in both cases: setting up the path or knowing that there is no

path to take.

The models of the network have no effect on comparing the two scenarios

for path allocation, because the ingress node deals wiiii a sequence of

nodes, which tend to handle the label request message.
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If the ingress node is able to make it to the egress the first time, label

request messages take the same time for all the procedures.

The label request message without feedback is exciuded from the result in
Table 5.4.3.1 because it is either it waits for the next flooding, or the time
taken is the same as what other procedures take (in the case where no

blocking occurs).
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Chapter 6

Conclusion

Label distribution protocol with feedback messages helps to reduce the error in
the topology database in the source node to 0 and to make the topology
database as up-to-date as possible. Consequently, the source node will handle
the upcoming requests more efficiently, and find paths for them if they exist.
Label distribution protocol with feedback deals with any kind of deviation in the
topology database, optimistic, up-to-date, and pessimistic. Adding label
distribution protocol query messages improves the network’s ability to handle
some requests even more than LDP with feedback. It also decreases the number

of retry attempts the node takes to find the proper path.

We have seen through the simulation how useful the feedback algorithm and the
query messages are in utilizing the network, and serving the upcoming requests.
We have also seen the improvement in setting up time and network utilization the
query messages algorithm has over the feedback algorithm. Although feedback
and query messages algorithms introduce an overhead in terms of extra

messages traversing the network, using them is reasonable.
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6.1 Future Work

Feeding back the ingress node with some other constraints, which affect the path
computation, than the unreserved bandwidth may have interesting results. We
also expect that feedback in both directions would better improve the topology
database. Yet testing this algorithm on a real world network simulation with
actual traffic, where messages between nodes might be synchronised or

dropped, will introduce too many new issues.
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Appendix A

A.1 Path Query message

The path query message is similar to that defined in [8] in the way it behaves,

but it is different in its encoding:

- It is not used to enquire about an already established path, so that it

can'’t include a query label TLV as a parameter.
- It doesn't contain FEC TLV and LSPID as optional parameters because it

enquires about resources in the path regardless the kind of FEC that the

path carries.
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A.1.1 Path Query Message encoding

0 1 2 3
01234567890123456789012345678901
]+()|+ +;a;1TQLTJeTryT((;x(;4‘09T)T +| ) TMTe;s;gTeYLeTn;t; o +|+
I+++++++M+e+ss+ag+e+lo+++++++++++++++++l+
ITTf+TT++OUTe:Ly:LrV+TTT++T+TT+++Tf++T

Figure A.1.1 path query message format

Message ID

32-bit value used to identify this message.

Query TLV.

What to query. Refer to [8] Section 7 Query TLV for encoding.

Hop Count TLV
specifies the number of hops that can still be traversed before the
message is dropped. Its initial value is set to 255 (or the configured value,

if any). Every LSR that receives the Path Query Message has to subtract
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1 from the Hop Count value. The Path Query message must be dropped if
the hop count value becomes zero. An LSR that drops it should send a
Notification signaling Loop Detection in reply to the ingress of the

message. See [5] for Hop Count TLV encoding.

Optional Parameters

This variable length field contains 0 or more parameters, each encoded as

a TLV. See [8] for more details.

A.1.2 Path Query message Procedure

1. The source node sends a label request message through one path and
sends x query messages through the other paths that seem to satisfy the
constraints of the requesting flow. The ingress node initiates the Path
Query messages. It populates the Query TLV Parameters according to
what kind of information it wants to gather. The path query message could
carry the list of hops from the ingress to the egress. This way, each node
along the path can have a complete route from source to destination. This
is useful for network management. If the Path Query message does not
contain the ER TLV, it should be propagated by LSRs based on the

knowledge that the LSRs have about the path.
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. Upon receiving a Path Query Message, LSR passes it to the downstream

peer.

. If the path query message arrives at LSR that has another LSP to the
destination, this LSR initiates path partial query reply message containing
its knowledge about the whole remaining partial path's inquired

information and sends it back to the ingress node.

. If for any reason the LSR couldn't forward the path query message to the

down stream LSR, it sends partial path reply to the ingress node.

. Upon receiving the Path Query Message, the egress node has to reply
with a Path Query Reply Message. The Path Query Reply Message
contains the Query TLV, which was received in the Path Query Message.
The Query TLV tells the LSRs along the path which information is being
queried and allows intermediate LSRs to attach their own queried

information on the Path Query reply message.

. When it receives a feedback in failure from the label request message, the

ingress node times the path query reply messages out before taking the

proper decision based on the feedback it already received.
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A.2 Reply Messages

These messages are propagated upstream. There are two types of reply

messages:

- Path Query-Reply message.

- Partial Path Query-Reply message.

The Reply messages carry the queried information upstream. A Path Query-
Reply Message is sent in response to a Path Query Message. The ingress
initiates the Path Query Message to gather the information from all the nodes
along the queried paths. However, the egress node sometimes can’t be reached.
In these cases it would be better if the ingress LSR gathered information up to
the point of failure. The Partial Query-Reply Message provides this mechanism. It
is recommended to use the Partial Query-Reply Messages when a Query

message fails.

Both reply messages are described in the following sections.
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A.2.1 Path Query-Reply Message encoding

The egress LSR generates this message and propagates it upstream. Each

intermediate LSR along the path propagates it upstream.

The encoding for the Path Query-Reply message is:

0 1 2 3
01234567890123456789012345678901

T A e e 5

|0] Path Query-Reply | Message Length |
A T S e e e e aams at aatt St I o S e S S S S
| Message ID |
e A o o o e e e i s st 2t S e e
l Query TLV |
i S o e e S e e Bt antl S e o e O S
| Messageld TLV |

e e e S o R I s m ety e e P

Figure A.2.1 path query reply message format

Message ID

32-bit value used to identify this message.

Query TLV

What is to be queried? See [8] Section 7 - Query TLV - for encoding.
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Messageld TLV
The value of this parameter is the message id of the corresponding Path

Query message.

A.2.2 Path Query-Reply Message Procedures

A Path Query-Reply message is initiated by an egress node, which receives a
path Query message. Upon receiving the Path Query message, the egress node
has to reply with a Path Query-Reply message. The egress node has to encode
into the Path Query-Reply message a Messageld TLV. The mapping between a
Path Query and a Path Query-Reply Message is done based on the message id.
Besides the Messageld TLV, the egress has to encode the information that was

queried (bandwidth, etc).

After the encoding is done, the Path Query-Reply message is sent back, on the
reversed path, towards the ingress. Every LSR across the path has to encode its

information according to what query fiags are set.

A.2.3 Partial Path Query-Reply Message encoding

The Partial Path Query-Reply message is initiated by any LSR along the queried

path. The message is generated only if the following rules apply:
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- If the LSR couldn’t forward the Path Query message to the down stream

peer, or

- If the LSR has LSP that traverses the same queried path to the

destination.
The encoding for the Partial Path Query-Reply message is identical to the Path

Query-Reply, except the message type. Figure A.2.3 shows the message format.

1 2 3
1234567890123456789012345678901

|O] Partial Path Query-Reply | Message Length |

e e I S e T e s o o S BT

| Message ID |

+

s el IO N S WU IOPU IR SPRCN EPU ENNGN SYN SUNON SUNYS EUNUE NUSSY SUEOE SUNUN SIS SUNSE SRNUE SUNE SUNNE IVENE SUNGE SUN SUN SURGE S N
rTTTTTTTTTTTTTTTTTTTTTTTTTTTT

Figure A.2.3 Partial Path-Query Reply message format



A.2.4 Partial Path Query-Reply Message Procedure

The procedure is similar to a Path Query-Reply procedure. The only difference is
that the node that initiates the reply is not the egress node. Upon receiving a
Path Query Message, and not being able to forward it downstream or it is well
informed about that path, and if the LSR supports partial replies, it has to create
a Partial Path Query-Reply and encode the queried data and send it upstream
like any Query-Reply messages, after it attaches its knowledge about the
remaining path inquired information if it has LSP traversing the same path. The
ingress receives the messages and attaches the information to its topology

database to be considered in the future use.



