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ABSTRACT

Improving User Modeling via the Integration
of Learner Characteristics and Learner Behaviors

Kimiz L. Dalkir, Ph.D.
Concordia University, 1997

Three major disciplines: educational psychology, cognitive science and artificial
intelligence, were critically surveyed to identify useful variables for leamer modeling in order
to identify the subset of variables that proved to be useful in modeling individual leamners as
they interacted with a computer-based leaming environment. The research study first critically
assessed the contextual validity and usefuiness of apriori measures to provide initial or
default values for a stereotypical leamer model. These measures included a pretest, a
questionnaire and two leaming style inventories, the Kolb LS| and the Entwistle ASI. In
addition, the utility of Artificial Neural Networks (ANNs) was assessed to establish whether
they provide supplementary or complementary information for the objective of creating an
adaptive learner model. Differences in interaction pattems with the leaming environment
were analyzed using ANNs and statistical analyses, to identify on-line leamer behavioral
variables that were valid and useful in updating the stereotype leamer model.

The instructional validity of the leaming environment was established as students were
found to have spent time interacting with the system, they attended to the material presented
and they were found to have learned the content. Significant learning was found, as assessed
by pretest-posttest differences. Of the Educational Psychology variables, only the Entwistle
ASl proved to be useful as an apriori measure in this context. Students with high scares on
both the reproducing and meaning orientation dimensions performed better on the posttest.
In addition, expected leamner profiles, as extrapolated from the ASI, actually occurred as

students interacted with the system.



Finally, Artificial Intelligence approaches, in the form of Artificial Neural Networks
(ANNSs) were superimposed on the a priori categorization established by the leaming style
categories.

Conventional statistical cluster analysis and ANN pattern recognition on learner trace
data produced as students interacted with the leaming materials both produced very similar
classifications of students. It thus appears to be possible to obtain, effectively, the same data
from an ongoing dynamic assessment of leamers as it is from a priori measures, rendering the
latter redundant in this context. Thus the use of ANNs can prove useful as a dynamic data
gathering and analysis system in real time to make instructional adjustments and
recommendations. The potential advantage of dynamic models over a priori measures is that
they continue to evolve as learner needs change, continually updating the learner model and
thus enabling the leamner model to keep pace with an instructional system endowed with
adaptive capabilities. Future research could build on the exploratory data generated by this
study, examining both the variables which may inform the creation of an adaptive interface, as

well as using the ANN-based methodology created here.
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CHAPTER 1. RATIONALE
Introduction

One-to-one tutoring has often been held up as the ultimate adaptive teaching and learning
system (Bloom, 1984). With the advent of computer technology, researchers attempted to replicate
this learing environment by increasing the intelligence of computerized systems (for example,
Bork, 1981; Carr, 1977; Genesereth, 1978; Goodyear, 1991; Hartley and Sleeman, 1973; O'Shea
and Seif, 1983; and Wenger, 1987). One essential component of intelligence (machine and human
based) is adaptivity: the ability to respond differently to the same stimulus implying the ability to
learn. In the context of machine-based adaptivity, the system would need to adapt to the particular
goals, preferences and abilities of the users. Researchers discuss this capability in terms of user
modeling (Kobsa and Wahister, 1988). In educational applications, the term learmer modeling is
often used.

While real-time, dynamic adaptivity was never a problem in successful one-to-one tutoring,
roadblocks were quickly encountered in trying to design computer systems that could behave in the
same flexible manner (Hannafin, 1992; Hativa and Lesgold, 1991; Laurillard, 1988; Lesgold, 1994;
and Park and Tennyson, 1983). Even when working with domains such as computer programming,
researchers were unable to implement truly adaptive learning environments let alone trying to tackle
more flexible and sophisticated leaming objectives such as critical judgment or creativity-based
problem solving.

It became increasingly clear that the success of individualized tutoring scenarios is due not
only to the tutor's extensive knowledge of the subject matter and of pedagogical techniques but
also to the ability to continually adapt the tutor's model of the individual learner to maximize learning
success (Bennett, 1979). For example, the appropriate use of analogy depends sufficient
knowledge of the student to pick the best analogy, on knowledge of more than one subject matter
and the pedagogical rationale behind the use of analogies. More recent research on tutoring
suggests that computerized tutors don't do much of this (e.g., Frasson and Gauthier, 1990).

Furthermore, if one pursues the use of constructivist learning environments, the goal is not



convergence and conformity but rather divergence, creativity and autonomy (Brown et al., 1990;
Bruner, 1966; Collins et al., 1989; Driscaoll, 1994; Hill and Johnson, 1995; and von Glaserfield,
1988). In such cases, instead of always seeking to accommodate student learning styles and
preferences, a learning system should also challenge students and help them to acquire new
learning strategies.

In a computer-based system, adaptation is shared, such that the system adapts to the leamer
but learners adapt to the system (just as they would with a human tutor). One of the key challenges
faced by designers of computer-based leaming environments is to find a way in which to implement
valid and useful modeis of the learner, one that can be continuously updated during the course of
learning, in much the same way successful teachers and tutors do in leaming interactions.

Disciplines Addressing Learner Modeling

Attempts to determine and exploit learner models have been addressed by three different
disciplines: educational psychalogy, cognitive science and artificial intelligence. The educational
psychology approach emphasizes individual propensities in information processing and looks at
primarily stable or fixed predispositions in the form of leaming styles (Allport, 1961; Ausburn and
Ausburn, 1978; Davis and Schwimmer, 1981; Fischer and Fischer, 1979; Guilford, 1980; Keefe,
1979; Letteri, 1977, and Messick, 1984, 1994). Once such styles are measured, individual
differences can then be accommodated by the leaming environment. Although it will be an
oversimplification, it may be useful to differentiate between the three disciplines in terms of the major
focus of each. For educational psychology, this focus is on the inherent characteristics of both
learners and teachers - the focus of these studies is on people.

In contrast, the information processing model of learning in cognitive science is one of
contextual information processing variables as well as cognitive and meta-cognitive processes which
are used by leamers to adjust and modify their approach according to their motivation, background
knowledge and prior experience (Anderson, 1984; Anderson et al, 1990; Ausubel et al, 1978;
Bertel, 1994; Gagne et al, 1988; Orey and Nelson, 1992; and Simon, 1995). Cognitive science is a

discipline which is concemed with the individual but at a more basic processing level. The metaphor



of information processing to represent learning, used in the past thirty years, has been one that was
heavily influenced by technology-driven environments. The focus of these studies is on the
metaphor.

At the other end of the spectrum, the artificial intelligence approach has concentrated on
developing expilicit, primarily rule-based models of a domain of knowledge, with the model of the
learner as a subset of this domain model. Any discrepancies between the learner state ("overlays")
and the domain model are “corrected” through pedagogical interventions (e.g., Brown and Burton,
1978; Burns et al, 1991; Carr and Goldstein, 1977; Gentner, 1979; Goodyear, 1991; Hartley and
Sleeman, 1973; Holt, 1990; Holt and Wood, 1990; Park and Tennyson, 1983; and Wenger, 1987).
The artificial intelligence discipline has thus focused on the machine as a mechanical model of
human leaming. Figure 1 summarizes the different research goals that have been addressed by
those three disciplines, showing a greater focus on the machine in Artificial Intelligence, a greater
focus on the individual in Educational Psychology and a focus on the computer as a metaphor for

learning in Cognitive Science.

Figure 1. The Three Disciplines Contributing to Leamer Modeling

MACHINE METAPHOR INDIVIDUAL
Artificial Cognitive Educational
Intelligence Science Psychology

Learner Modsling Applications

Each of these three disciplines has in turn given rise to a number of different applications in
the area of adaptive leamning environments. Applications in educational psychology were rarely
influenced by technological factors as most applications were not delivered technologically.
Leaming style inventories, for example, represent concrete applications or tools of educational
psychology research. These were often administered, analyzed and acted upon without the use of
any technologies. Teachers used the results of the inventories to "manually® adjust their teaching

styles in order to better accommodate the needs of different categories of students. Learning



environments were adaptive in as much as teachers adapted their pedagogical approaches. The
role of the computer was for the most part non-existent.

Applications derived from cognitive psychology research contributed to advances in
instructional design (e.g., Gagne's prerequisite hierarchy, Gagne et a/, 1988) and most computer-
based training applications. Applications covered a wide range of subject matters in education and
training. Although these applications were driven by user needs, they were heavily influenced by
the computer metaphor. Adaptivity in these learing environments was much more automated, and
dependent on the possible adaptive responses that the technological delivery system could
provide. The role of the computer was to provide a metaphor for learning and, in some cases, to
deliver the learning.

Artificial intelligence applications were almost always influenced by computer systems.
These applications tended to concentrate on modeling human Iearning but only in order to then
endow the computer with similar learming capabilities, either to provide working models of human
cognition or to improve the efficiency and effectiveness of the application systems. Adaptive
applications that resulted from this research include intelligent tutoring systems (ITS) and
microworlds or intelligent learning environments (ILE). Most applications addressed highly
constrained, formalized or easy to formalize domains with an emphasis on skill acquisition or
procedural fraining. The role of the computer was eventually expanded to include pedagogical
tasks.

Learning Theories in Learmer Modeling

One can similarly compare and contrast the three disciplines with respect to the learning
theories that the applications are based upon. Learning theories in the field of educational
psychology are based on individual characteristics and consider such individual traits as learning
styles, preferences, past experiences and current competencies. Early theories (Bruner, 1961,
1966; Piaget,1954) were based on the developmental stage of the leamer, especially in terms of

when they were ready and capable of learning.



Directing learming meant guiding process. Developmental readiness to leam can be
contrasted with cognitive readiness which is often defined in terms of prerequisite knowledge
successfully assimilated to date. This developmental approach was distinct from that of reception
learning which drew upon information processing theories of leaming (Ausubel et al, 1978; Gagne,
1988) in which instructional design was heavily influenced by hierarchies of prerequisite knowledge.
In the developmental approach, there was extensive testing of the student in order to determine
both their initial and subsequent stages of knowiedge acquisition as they interacted with the learning
materials. Emphasis was placed on organizing content.

On the other hand, researchers in cognitive science relied a great deal on the metaphor of
the computer to model learning. Early theories were behaviorist in nature (Skinner, 1968) which led
to a pre-programmed instructional design that consisted of small leaming steps and immediate
feedback and correction upon completion of each step. Unilike educational psychologists, cognitive
psychologists studied the learmning systems and how students interacted with them in order to
investigate and ultimately assist human leaming. These learning environments became increasingly
based on information-processing leaming thearies (Atkinson and Schiffern, 1968). In this respect,
the line between educational psychology and cognitive psychology becomes less distinct. There is
a great deal of overlap as well as significant evolution in both fields which sesms to blur the
boundaries. In addition, the same researchers contributed to both fields and some researchers
switched from one to the other. The same dichotomy does, however, exist in both disciplines,
between developmental and information processing theories of learning. Developmental theories
led to theories of discovery-based leaming (Bruner, 1961, 1966) such as those that are possible
when interacting with a simulation environment. Information-processing approaches led to
computer-based training environments that were usually competency-based or mastery leaming
instructional designs.

In artificial intelligence, to the extent that leaming theories were considered at all, they were
addressed with the purpose of programming appropriate learning algorithms and not for the purpose

of assisting users to leam via the medium of the computer. There are a number of different camps in



Al research as applied to teaching and learning environments. The very first application of Al to
education was simply an extension of expert systems (Clancey, 1984). These researchers were
primarily engineers and computer scientists. Most instructional designs were implicitly drawn from
information-processing leaming theories and based on the designed interaction with the computer
system. These included a study of expert-novice differences and an implicit mastery-based
instructional design through immediate correction of any leamer deviations from the expert path
(e.g.,.Carr, 1977; Carr and Goldstein, 1977; Kearsley, 1987; London and Clancey, 1982; Rickert,
1987; Van Lehn, 1987). Emphasis was placed on the best possible executable model of the
domain such that the computer system could approximate as closely as possible the knowledge and
reasoning of human experts. In this way, leamers could "apprentice” themselves to a computerized
"master performer” and essentially learn through observation of expert behavior and via corrective
feedback whenever they diverged from expert behavior.

Applications later evolved into rule-based ITS applications, which typically left littie room for
learner control as the general model was that of the learner as a clean slate and the computer as the
repository of knowledge to be transferred to the learers. This approach can be characterized as a
primarily domain-based approach to learner modeling.

A slightly different objective was addressed by researchers such as John Anderson who
studied the interactions betwsen leamers and ITS-type learning environments in order to derive
theories of human learning empirically (e.g., Anderson's ACT* theory, Anderson, 1984; Anderson
aetal, 1990, 1995; Corbett et al, 1990). This group of Al researchers was made up of psychologists
and cognitive scientists. Their focus was on how to better model and ultimately improve the process
of human learning.

Another group undertook the study of human leaming theories not to improve human
learning via computers but in order to improve upon machine leaming capabilities (e.g., Allman,
1989; Levine, 1991; Michalski et al, 1986; Mingall, 1995; Pearl, 1988). These Al researchers were
mostly mathematicians and neurobiologists who studied aspects of human leaming such as concept

association and memory storage and retrieval in order to replicate these processes in a computerized



environment. The best known applications of these pattern recognition technologies have not
been in education and training but in such fields as robotics, machine vision, voice technologies and
image recognition.

A separate camp of Al researchers distinguished themselves in advocating computerized
learning environments that they claimed relied on learning theories from the developmental learning
research, where students are given maximum choice and flexibility in how they went about learning.
In this approach, the discovery learing environment, or microworld, is designed in such a way as to
not only impart facts to the learner but also to aid them in acquiring the appropriate learning
processes. Students are thus encouraged to actively explore their environment rather than to
conform to an explicit model based on expert knowledge (e.g., Papert, 1980; Pask et al, 1972; Pask,
1976, 1988; Schank, 1990). This approach can thus be characterized as more of a learner-based
approach to learner modeling.

The microworld learning theories are more constructivist in nature and can be said to belong
to the family of interactional theories of learning. Interactional theories of learing (Bruner, 1961,
1966; and Vygotsky, 1962) take an even larger unit as the focus of study, that of learners and
learning systems that are interacting with one another. The focus is thus not on the individual as in
educational psychology, not on the metaphor as in cognitive science, nor on the leaming system, as
in Al, but rather on the interactions between learners, and betwsen learners and the learning
system. This relegates the computer to the role of tool of mediation rather than that ot a repository of
knowledge or that of an automated teacher.

There has been renewed interest in the application of social constructivism to the
instructional design of learning systems (Driscoll, 1994). This is due to a greater interest in not just
increasing the individualization of instruction but also increasing the intelligence or adaptivity of
environments in which groups of learners or trainees interact not only with the computerized system
but also with one another. Such scenarios include distance education systems and, more recently,

the World Wide Web. This has meant increasing the scope of learner modeling to include not only



individual differences but also characterizations of groups of learners, team dynamics and the
interrelationships and interdependencies of the various roles adopted by the participants.

In summary, approaches to learner modeling in these three different disciplines appear to
differ in at least three major dimensions: (1) domain-based vs. leamer-based leamer modeling, (2)
machine vs. person-based leamer modeling, and (3) connectionist vs. constructivist-based
approaches to learner modeling. Table 1 shows the characteristics of the major types of learning
environments with respect to these three dimensions. Domain-based approaches are exemplified
by expert tutoring systems that grew out of early Al systems. In contrast, leamer-based models are
best exemplified by discovery environments or microworlds, where the onus is on the learmner to

explore the learning environment in any way they wish, rather than to mimic an expert's performance.

Table 1. Learning System Features with respect to the Three Dimensions.

First dimension Second dimension Third dimension

Learning Machine- Person- Domain- Learner- Connectionist | Constructivi
System based Based Based Based

Machine

learning

ITS, expert
tutors

Anderson
and others

microworids,
ILEs

leamning style

instruments

The connectionist approaches to learner modeling emphasize finding the best possible
madel of the knowledge to be acquired, of pedagogical expertise and of the state of knowledge
acquired by the learner in the form of a knowledge representation that can be encoded in the

computer. In contrast, constructivist approaches place the emphasis on a larger unit, that of a group



of learners whose leaming is mediated by a computer. The constructivist model thus addresses
both the products and processes of interacting and leaming in a social context.

Machine-based approaches to learner modeling are found in the application of Al to
education and training that try to endow computers with the ability to learn. Their goal is not to use
computers to assist human learning but to study human leamning in order to improve on how well
machines can learn. In contrast, people-based approaches to learner modeling, as exemplified by
researchers in educational psychology and cognitive science, seek to study human-computer
interactions in order to better understand and better assist human learning.

The majority of learner modeling to date has been domain-based, machine-driven and
connectionist in approach. Learner modeling using learner-based, people-driven and constructivist
approaches has not been as popular in the design of computer-based learning environments.

A New Methodology for User Modeling

Adaptivity in computer-based learning environments becomes more feasible only if
comprehensive, valid and useful learner models can be developed. Educators insist that any
instructional system (human or machine-based) must have some form of understanding of the
student if learning is to effectively take place. Itis argued in this study that in order to realize this type
of learner model, contributions from each of the three disciplines must be recognized and integrated
in a meaningful fashion.

Previous research to develop increasingly sophisticated ways of modeling the learner has
typically drawn only from one isolated discipline and as a result, have encountered numerous
obstacles. As Selif (1990) has pointed out, with respect to contributions from educational
psychology, we have not been successful in identifying learning styles using intelligent tutoring
systems nor have we been able to associate them with different ITS instructional treatments. In the
past, designers of computerized instructional systems have come up against many limitations in
trying to model the learer, based on a cognitive science approach (Lesgold, 1994).

Some Al researchers have declared learner modeling to be an intractable problem and tried

to circumvent the impasse by focusing their efforts on the design of rich simulation-based



environments which have no need for a learner model (Orey and Nelson, 1992). Yet educational
technology research has shown the crucial role played by a model of the learner in computer-based
teaching and learning environments (e.g., Goodyear, 1991), as explained in more detail in the
literature review chapter.

The following section describes the subset of variables that were selected from each of
these disciplines.

Learmner Model Variables from Educational Psychology

Learning style refers to the characteristics of the person rather than the environment. A
leaming style is a learmer's preferred mode of processing (Keefe, 1979). The leaming style
perspective assumes that a priori assessment and categorization through the use of learing style
instruments will serve to predict learner behavior in any given leaming context as learning style is
treated as a stable trait rather than a variable state. The learning style perspective is one which
emphasizes individual differences and the key role these differences play in cognitive processes
and outcomes. Characteristics possessed by individuals are usually assessed by some quantitative
or qualitative means in order to assign the individual to one of a finite number of "types."

Two leaming style instruments were included in this study: the Kolb Learning Style
Inventory (LSI) and the Entwistle Approaches to Studying instrument (ASI). The Kolb LSI
ostensibly measures leaming style constructs that are more closely linked to underlying personality
structures. Others view learning styles as more contextual or task-dependent features than fixed
personality traits of individuals. The Entwistie ASI is an example of a learning style typology that is
more directly linked to leaming tasks and achievement.

Learner Model Variables from Cognitive Science

Cognitive psychology has studied the question of individual differences in how learners
perceive and process information. Leamers differ profoundly in what they do in learning, their
success in any particular learning situation and in the stability of their behaviour patterns. A large
part of the problem is understanding what differences learners bring psychologically to the learning

situation that confronts them. This requires an assessment of the "initial state" of the learner, that is,
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postulating critical properties of the learmner which interact with learning. This type of research led to
aptitude-treatment-interaction (ATI) research (Cronbach and Snow, 1977).

The major finding from over two decades of AT research is that orderly AT| pattems can be
obtained and explained and that they involve prior knowledge, ability and personality variables in
some cases (Snow, 1989). Both learner and task characteristics were found to affect the outcome
of leamning processes. Four major variables which contribute to learner achievement have been
extensively documented in the cognitive science literature: prior knowledge of the content area,
task perception and motivation variables, time spent on the task (or time spent leaming) and meta-
cognitive processes brought to bear on the learing session such as the level of learner control.
These four variables are repeatedly found to be the most important moderators of AT effects and
they have therefore been selected for inclusion in this study.

Leamer Model Variables from Artificial intelligence

Learner modeling is a fairly late development in Al research. Early systems, such as expert
systems, contained only a model of the domain. The interface with the user was usually acanned
one (provided along with the expert system development tool). No accommodation was made for
individual differences other than the optional explanations available on request for those users
requiring an explanation of the recommendations made by the system. The overall emphasis was
on a knowledge engineering approach to extract and rationalize expert knowledge and know-how
on a given subject. This expertise was then made available in an executable or interactive mode to
less knowledgeable users seeking assistance on a particular decision task. In order to make use of
the same knowledge base for teaching, it was initially felt that all that was required was to include
sufficiently explanatory texts accompanying each one of the possible decision paths.

When expert systems with extended or deep explanations were tested with novice users, it
was found that another type of knowledge base was required: one that formalized the pedagogical
expertise required to teach users. The same knowledge engineering approach was conducted,
this time not with subject matter experts but experts in teaching that particular subject matter (e.g.,

Kearsley, 1987). However, it was soon realized that even with the addition of a pedagogical
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knowledge base, the system was still not sufficiently knowledgeable to teach. Thus a third
component, called the leamer model, was added. This was initially litle more than a record keeping
system that kept track of which lessons the student visited and how well they did on various tests.
Eventually, the leamer model was implemented, which kept track not only of student achievement
in the form of test results, but also of student performance, in terms of how they solved a given
problem. This approach was compared and contrasted with the way the expert model solved the
same problem and any deviations were identified, corrected and explained. Thus, in addition to
assessing the products of leaming, the process of learning (in terms of problem solving) was also
analyzed. This also added a new source of data about the learner : actual learner behavior as
detected in real-time or during the leaming process. The underlying approach was a knowledge-
based bottom up approach that began with a model of the domain and added on missing elements
(see Figure 2).

A different, parallel Al approach was to eliminate the need for learner models through the
use of unguided, unstructured open-ended discovery leaming environments. This approach was
championed early on by Pask (1976) within the framework of Conversation Theory and Papert
(1980) in the design of the LOGO learning environment and continues to have its proponents
(e.g., Schank, 1990).

The development of Performance Support Systems (Gery, 1991) represents an extension
of the ILE model, where an intelligent environment is designed to support both task performance
and on the job leaming of users. The PSS approach attempted to add more structured forms of job
aids and learning aids to provide not only assistance but also proactive guidance throughout the

interaction.
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Figure 2. Evolution of Intelligent Tutoring Systems (ITS)

Expert system Intelligent Computer Intelligent Tutoring
Assisted Instruction Systems (ITS)
(ICAI)
(60's-70's) (70's-80's) (80's-90's)

Each approach has its advantages and shortcomings. The ITS approach has a high degree of
success in ensuring learning objectives are mastered but these systems tend to have difficulty
handling the diversity and dynamic nature of learers. ILEs are quite successful at accommodating
changing individual differences as learners are not restricted in their learning paths. However, they
place the decisional responsibility on the student - the intelligence of these environments largely

resides in the students and not the system.
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Figure 3. Evolution of Intelligent Learning Environments (ILEs)

USERS
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discovery learning Environment (ILE)
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Leamer Modeling Approach

An alternative response to the problem of learner modeling is to design and develop
adaptive learner models and to do so in an integrative or holistic fashion. In this way, the advantages
offered by both ITS and ILE approaches can be kept and at the same time the shortcomings of each
can be compensated for to some extent. This approach to learner modeling would increase the
"intelligence” of the system by increasing its repertoire of potential responses to the enormous
variety of student actions.

Figure 4 summarizes the four major components to be considered in such an approach to
the design of intelligent learning environments: a domain model, a teaching model, a learner model
and an interaction model. Of the four, the first three are found in the conventional ITS approaches
and the latter model is found in conventional ILE approaches. One of the major advantages offered
by this approach to learner modeling is that no ‘blinders’ are placed on designers, i.e., they are not

restricted to a single perspective based on a single discipline. Instead, one can integrate a number
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of variables and approaches from diverse but relevant disciplines into a single coherent system
design. This is the approach that was applied to the problem of learer modeling in this study.

One of the ways to undertake such an approach would be to conduct learner modeling
throughout the interaction in order to dynamically update the model. The system could adapt to the
user based on the dynamic model, which would always be up to date. This would still allow learners
full freedom of choice in navigating through the system since learner data would not be used to
"correct" learners by minimized deviations from an ideal or expert model. Rather, leamer data would
be added to what is aiready known, inferred or guessed at about the learner. The addition of a
dynamic dimension to the learner model could thus serve to complement, rather than replace,

existing approaches to learner modeling .

Figure 4. Integrated Approach to the Design of Intelligent Learning Environments
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A recent development in Al research may prove useful in carrying out more sophisticated
analysis of learner behavior. Pattern recognition techniques, of which neural networks are the best
known, were originally developed in order to have computers mimic some human pattern recognition
tasks such as vision and voice recognition. These techniques enable computers to "learn”
("machine learning”) by generalizing patterns from a large set of examples. Instead of programming
the computer, the computer is "trained” to behave in a certain way by recognizing patterns in data
sets. Machine leaming techniques have been used in a limited fashion in learner modeling
applications.

Machine leaming techniques appear to represent the most promising new development in
the field of learner modeling (Self, 1990), as explained further in the literature review chapter. These
techniques appear to hold promise not only for updating or initializing existing student models, but
as ameans of deriving them in real-time, as students interact with the leaming materials and data are
generated on how and what they are learning. In other words, data can be obtained on both the
products and processes of learning, including the navigational processes involved in interacting with
the software environment that serves as the delivery vehicle for the leaming materials.

A higher level learner mode! might also make use of keystrokes as the initial data source.
Keystroke level models are often used in human-computer interaction or ergonomic studies to study
and evaluate the usability of interfaces. Machine learning techniques have also been applied to the
formative evaluation of user interfaces based on keystroke-levet user models (Carey and Edwards,
1991; Carey, 1995; Stacey etal, 1991). In addition, machine leaming techniques have also been
used to observe on-iine leamer behaviors in order to deduce what type of learner they are and to
diagnose student errors in an ITS (Woolf and Murray, 1992). Since there can be more than one
explanation for a given student error, competing interpretations are tested out and the most likely
explanation is selected by the machine learning system. Woolf and Murray thus made use of
machine learning mechanisms to inform and update a learner model.

Studies at the Armstrong Lab (Sorensen, 1993) and by Beale and Finlay (1989, 1992; Finlay

and Beale, 1991) used neural networks to determine novice-expert categories. Novice users
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tended to have a high number of help requests, conceptual errors and definition requests when
usage was logged over a three-month period. In this way, the machine leaming system was able to
distinguish between novices and experts with statistically significant differences based on an
analysis of the trace or cognitive audit trail left by students as they interacted with the system.
However, finding expert-novice differences is fairly easy to ascertain using more conventional
methods. A pretest on the course materials together with a questionnaire on experience using
computers serve to establish the degree of familiarity learners have, both with the content and the
delivery system, respectively. Machine leaming techniques are not necessary to make such an initial
determination. They become more useful if finer grained analyses are required; for example, to
estabiish the degree of mastery at the level of a concept, topic or lesson module. The use of real-
time assessments and updates of the leamer mode! would be much less cumbersome than
interrupting the learning process to administer more tests. In addition, the machine learming
approach would be better suited to detecting changes in learner states over time, and detecting
them as the change occurs. The latter is of particular importance to the design of adaptive systems.

Self (1987) was one of the first to point out the potential of applying machine learning to
student modeling. He feit that the availability of large databases of information that a student could
browse through at will (today’s hypertext environments) would provide a wealth of information about
the on-line learing behavior of a student. This coupled with new technologies to monitor a
student's exploration of learning will enable us to design learning environments that can intelligently
intervene to enhance the leaming experience. A trace facility that can automatically track student
actions and feed this as input data to a neural network should be able to provide the type of
additional information that is required to render the learner model dynamic. Such up-to-date
contextual information can then be added to existing information on the learner and be used to make
instructional decisions about that particular learner. This study makes use of such a trace facility in a
machine leaming approach to learer modeling.

In summary, a novel methodalogy for dynamic learner modeling in adaptive learning

environments was developed and tested in a specific context of a computerized course on neural
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networks. A subset of learner variables was incorporated into this learner modeling facility in order to
assess their contextual usefulness. The Kolb LS and the Entwistle AS| were selected from
educational psychalogy. Prior knowledge, motivation, leamer control and time on task variables
were selected from cognitive science. The machine learming approach was selected from artificial
intelligence. This study evaluated the usefulness of both the new approach to learner modeling and
the particular subset of leamer variables included in the learner model for this specific learing
environment.

Description of Study

This research represents preliminary work in addressing new ways to attack the adaptive
learner modeling problem. Part of the difficuity in learner modeling research lies in the complex
nature of learners and of learning processes. Another source of complexity has been the
fragmented nature and relative ineffectiveness of different disciplines to inform one another. The
problem is analogous to that of the three blind men and the elephant: restricted types of information
about a learmer have been used to derive entire learner models.

This study does not represent a comprehensive analysis of all leamer characteristics and
learner behavior. Instead, representative variables from each discipline were selected and
integrated in a new framework which brings together different types of information derived from
different sources using different methods. These variables included the more stable learning
predispositions from educational psychology research, the contextual learning processes employed
by the learner from cognitive science research and the ongoing collection and analysis of learner
behavior using machine leamning techniques derived from Al research.

This dissertation made use of a novel methodology to look at the problem of learmner
modeling: i.e., | took the perspective of a system design based on theory rather than a bottom-up
approach based on the addition of more technological components to the model. One of the
objectives of this study was to select a useful subset of learner mode! variables from the three
disciplines of educational psychalogy, cognitive psychology and artificial intelligence to form a

coherent methadology for learner modeling. Previous work in leamer modeling has been primarily
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from a bottom-up perspective where a leamer model was added to an existing system rather than
forming an integral part of the initial system design. The bottom-up approach has often been
branded a "bandaid" approach that fixes some superficial problems or limitations of the initial system
only (McTear, 1993). One of the major shortcomings of such bottom-up learner models is that they
are often driven by the underlying technology. Thus, if the initial system is a knowledge-based
system (e.g. rule-based expert system), then a learner model will be added on as an additional
knowledge base. The objectives of learner modeling in the bottom-up approaches described were
primarily to improve the functioning of an existing system. More often than not, the initial systems
were not designed as learning tools (e.g., Clancey, 1986).

In contrast, the major objective of leamer modeling advocated in this approach is to maximize
adaptivity by increasing the variety of the system so that it can match the variety of learners using the
system. In such an approach one can begin with a theorstical foundation that encompasses the
three disciplines of cognitive science, educational psychology and artificial intelligence. Leamer
modeling can then be undertaken through a systematic selection and integration of key knowledge
contributed by each discipline to the model. Once the comprehensive system design has been
finalized, then the system can be developed and implemented. The learner modeling framework
must therefore be designed using the system approach. A bottom-up or data-driven, empirical
method was then used to instantiate the learner model with the data collected.

This study began with a theoretical analysis of the three disciplines and the development of a
tool to accommodate this new systems approach to leamer modsling. In this way, the contribution of
each discipline to each of the major components of a computerized instructional system: the learner
model, domain model, pedagogical model, and communication model (Wenger, 1987) can be
evaluated (in terms of what each has contributed to date). More importantly, selected variables that
have already been identified as being important can be put into this integrated framework. The
relative usefulness of each source of information about a leamer will vary. Thus their evaluation will
necessarily always be relative or contextual. However, the objective of this study is not to compare

one with the other. Rather, the objective is to undertake a holistic approach to learner modeling, one
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in which a number of key sources of information about a learner are integrated. The development of
such a general framework for learner modeling will make possible synergy between the variety of
literature addressing this problem.

This study was an initial attempt to examine simultaneously the relative contribution of a
number of individual traits and contextual leamer states. Leamer variables must prove to be
measurable and meaningful in order to be included in learner models for a computer-based learning
environment. The computerized tool designed and developed for this purpose collected
information on each of the categories discussed above. The relative contributions of each type of
learner variable were assessed independently and in combination with others to identify those
variables which can account for appreciable amounts of the variance in learner achievement.

The computerized learning environment consisted of a microcomputer-based leaming
module on neural networks. The course material was implemented in hypertext with an easy-to-use
interface. There were five lessons spanning introductory concepts, the structure of neural
networks, how they function, how to design one and their applications. Students interacted with the
learning materials in a very flexible manner. They could spend as much time as they liked. They were
also free to choose to be guided by the system or select lessons on their own. They could choose a
number of options within each lesson such as help, examples, elaborate information, condense
information or self-test. This environment thus allowed students to interact in diverse ways based on
their learning propensities, goals and interests.

The ability of a priori measures to reliably account for a significant portion of the variance in
learning outcomes appears to be in doubt. In this study the relative contributions of stable trait
measures and ongoing learner state assessments were evaluated. The Kolb and Entwistle leaming
style instruments were selected from the Educational Psychology literature. The Kolb instrument is
one of the most widely used tools of this type. The Kolb LSI represents an assessment of leamer
traits. The Entwistle instrument, on the other hand, is less commonly used. The Entwistle ASI
represents the assessment of more context-dependent learner variables. Both instruments are

purported to predict leamer success and generic leamner behaviors in leaming environments. This
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was assessed using posttest achievement scores of leamers in order to determine what, if any,
additional posttest variance could be accounted for by these variables, beyond what was already
accounted for by the cognitive science literature variables. Similarly, on-line variables, such as the
frequency with which they selected various options and how long they spent in each selected
option, were assessed with respect to the amount of posttest variance accounted for after
contributions by the educational psychology and cognitive science variables.

Thus the theoretical descriptions of the different types of learners as assessed by both the
Kolb and Entwistle instruments were used to establish general expected leamner profiles. These
profiles were then compared to actual learner behaviors exhibited by participants in order to evaluate
the predictive value of such profiles. This represented a contextualization of the generic profiles
through the mapping of general learner characteristics onto specific learning behaviors that could be
manifested in the particular learning environment that was used.

One advantage offered by the learning environment used in this study over more traditional
testing scenarios is that it allowed actual learer behaviors to be observed. Self-report instruments
such as the Kolb LSI and the Entwistle ASI address past or predicted learner behaviors, with
questions such as "Do you prefer to study ...." or , "When you study, do you prefer..." The leamer
trace variables represent tangible learner behaviors that took place during the process of learning.

The prior knowledge, task perception, time on task, leamer control and posttest variables
represent variables derived from the cognitive science literature. They represent well-researched,
reliable and valid measures of domain-dependent learner variables. Prior knowledge was assessed
through a pretest as well as questions on a questionnaire relating to familiarity with the field of neural
networks. The related variable of prior experience was assessed through questionnaire items.
Motivation was assessed by a questionnaire item. The time on task variable was assessed through
an automated elapsed time feature of the learning environment. This variable is known to be a
powerful predictor of leaming performance and it is likely to be an indirect measure of other variables
such as motivation and task perception. For example, students would be expected to interact longer

with materials they find interesting or on tasks they perceive to be more important or more
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demanding. Learner control was assessed through the analysis of leamer guidance mode selection.
Pretest-posttest differences were evaluated as a measure of the learning that occurred with the
system.

Finally, variables derived from the artificial intelligence literature were studied by analyzing
learner trace data: the selections made, the amount of time spent in each selection, and the
sequence in which the options were selected. These data were analyzed in two ways: conventional
statistical procedures (cluster analysis) and neural network groupings were used to group together
learners who exhibited common patterns of leamer behavior. These learner data were analyzed
independent of the previous types of data in order to ascertain whether or not any additional
posttest variance could be accounted for. Any variables found to show a meaningful relationship
with achievement data were then assessed to determine their potential contribution to data used to
derive learner models. Groupings generated by cluster analysis and the neural network were then
compared to determine whether group membership was similar and if not, to identify the source of
the differences. This helped to evaluate the neural network methodology in terms of its usefulness
as a real-time learner modeling tool. Figure 5 summarizes the types of data that were collected.

This study contributes an additional way of assessing differences in learning behavior as
postulated by Kolb and Entwistle - in particular, whether expected or self-reported behaviors occur
as learners interact with computer-based instructional systems and whether there are any links to
other learner characteristics and/or learning outcomes. This information is collected through an
automated trace facility that monitors student interactions with the computerized learning
environment. The leaming environment can be used with any type of self-report instrument in this

fashion in order to quickly assess the predictive value of the instrument with a particular course.
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Figure 5. Summary of Data Collected

before i
. : during | : after .
learning learning learning
pretest, interaction postiest,
questionnairs, trace data cluster groups,
Kolb LSI profile, ANN groups, profile
Entwistle ASI profile hypotheses testing

The technology of neural networks provided a novel means of analyzing these qualitatively
different data, which can be termed 'interaction trace data.' These trace data on learners can then be
analyzed to assess their usefulness in prescribing for learning. It may be that some variables will
show no contribution, others may contribute to a model of how people learn, and others still may
prove useful in adapting instruction to individual learners. The learning environment designed for
this study was evaluated with respect to its potential usefulness in assessing the local validity of
variables derived from three domains (i.e., for the particular learning context), both as predictors of
learning success and as useful components of leamer models. This type of contextual learner
modeling data is expected to complement existing domain-based and learner-based models.

In summary, this study looked at an integrated approach to learner modeling by selecting and
assessing the contextual usefulness of variables from Educational Psychology, Cognitive Science
and Artificial intelligence. In addition, the usefulness of ANNs to add a dynamic component to
learner modeling was explored. The approach to learner modeling thus consisted of a learner-

based, constructivist approach.
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CHAPTER 2. LITERATURE REVIEW
Overview

The literature review will first address the background history of adaptive learning systems an
how the field of user and learmer modeling evolved. Next, key studies from each of the three
disciplines that this study drew upon will be summarized: educational psychology, cognitive science
and artificial inteiligence. The strengths and limitations of each field will be discussed. In the final
section, related studies will be described in order to set a context for the proposed systems approact
to learner modeling.

Adaptive Computer-Based Learning Environments

Adaptive education, according to Glaser (1984) is one which matches the developmental levi
of an individual with respect to a skill with alternative environments. Landa (1976) has defined adapti
instruction as a diagnostic and prescriptive process to adjust the learning environment to each learne
McTear (1993, p.159) defines an adaptive system as "a system which automatically acquires
knowledge about its users, updates this knowledge over time, and uses the knowledge to adapt to tt
user's requirements.”

There is little consensus as to what constitutes individualized instruction. Perhaps the only
principle that consistently has guided attempts to individualize instruction or accommodate individual
differences has been to let students work at their own pace (Carrier and Jonassen, 1988). Developer
of models tend to advocate the collection of information about general characteristics such as general
ability, attitudes, or prior knowledge. The widespread use of microcomputers in teaching has opened
up new possibilities for the individualization of instruction. These environments are flexible, often
multimedia and they can monitor student progress as they progress through the course.

The quest for adaptation arose because it is not possible to anticipate the needs of each
potential user given an indeterminate number of situations. [n the context of computerized
instructional systems, there is a need to identify which learner characteristics instructional adaptation
should be based on , i.e., those which account for the most variability on a criterion task and which can

be practically assessed on-line. This knowledge needs to go beyond the leaer's preferences and
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beyond what the learner currently knows in the domain. A truly adaptive learning environment is one
where all its components could adapt dynamically to the student by taking into account personal
factors, cognitive styles, strategies and prior knowledge (van der Veer, 1990) as well as the leamner’s
mental model of the adaptive system (Gentner and Stevens, 1983).

In order to be adaptive, a system must have the fundamental ability to "learn” the relevant
characteristics of different users in order to provide a personalized learning environment, as well as to
be able to evolve as the needs of a given user change over time. We need to know not only what to
adapt but we also need a method for adapting (Benyon, 1993). In order for a system to continuously
adapt to a user's needs, some form of dynamic assessment is first required (Lajoie and Lesgold, 1992)
Realizing adaptation automatically requires mechanisms to observe the user while they are working
and to record these observations, as well as mechanisms to exploit these records to build a user mode
(Self, 1990). In this way, the system should be abie to detect not only a learner’s initial state but also
conduct a sampling of states throughout the learning process. This process of user modeling is
further described below, beginning with a general overview of the field, followed by a more detailed
survey of learning modeling in Educational Psychology, Cognitive Science and Artificial Intelligence.

User and Learner Modeling

There are three major types of models in computerized learning environments: conceptual
models represent the model of a system presented to the user by someone else, usually the designer
of the system. A mental model is part of the thought process of the user when interacting with a
system. People develop mental models internally as opposed to having models presented to them
(Norman and Draper, 1986). Conceptual and mental models are models of the system, in contrast to
the user model, which describes the user of the system. Daniels (1986) defines the user model as the
model held by the system of a user. User modeling may in fact require both types of models based on
the notion that any time two individuals interact, they each have a model or knowledge of the other.
The assumptions each makes about the other are key elements when attempting to create a system

that mimics a human intermediary in the process of interacting with a user. The ability of the system to
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behave in an interactive way allows the computer to "get to know" the user. This section will focus on
the user model built by the system.

A sharp distinction between student model and learner model is necessary. A student model
is a series of snapshots of the students' cognitive states. The leamer model describes how students
learn (Bierman, 1991). The natural temporal order, where diagnosis precedes treatment, is not the
only reason that explains why research has focused on student models. The fact that there are few
good theories of individual learning that can be implemented as models of the learner is another one.
A student model could never be assessed with enough detail due to the limited bandwidth in the
communication between the student and the system (Goldstein, 1979).

A distinction needs to be made between student model and student history as well: a student
history is a record of interaction between the student and the system (e.g., the number of times that a
task or problem has been presented to the learner, the number of times the learner has asked for
help). There is still no universal agreement as to what should be stored within a student history (Dubs
and Jones, 1991). Duchastel (1992, p.200) points out that the process of student modeling invoives
capturing the flow of interaction during a session, and interpreting that flow for adaptive purposes: "A
trace of where the student has been is easily captured by a computerized learning environment.
However, it is the interpretation of this trace that is difficult for a system to perform.”

Kearsley (1987) discussed the need for sophisticated systems for individualizing instruction,
with an increased degree of adaptation to the learner which may include: an initial assessment of a
variety of students' aptitudes, personality factors, learning styles and interests. All these may serve to
construct a learner model that interacts with the instructional decisions. The effectiveness of any
adaptive instructional system depends on its ability to individualize instruction: capitalize on cognitive
strengths, remediate cognitive deficiencies. Thus the system must 'know' a lot about the learner
(Shute, 1993).

One of the challenges in building adaptive or user-responsive systems is to accurately modl
the student's state of understanding. Such a model must be constructed if the system is to be able to

give the student sensible feedback (Bertel, 1994). This classic view of the student model is that it
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represents student understanding of the material to be taught. The purpose of a student model is to
make hypotheses about student misconceptions and suboptimal performance strategies so that the
tutoring module can point them out, indicate why they are wrong and suggest corrections (Brusilovsky
1994b). These will be referred to as domain-based learner models.

Some definitions of domain-based student models are: a data structure that reflects the
assumed state of knowledge of the student conceming the target domain (Winkels, 1990); procedura
knowledge, conceptual knowledge, individual traits and history (Self, 1987); all aspects of the
student’s behaviour and knowledge (Wenger, 1987); ideal student model (Anderson, 1984); artificial
student simulating the development of student knowledge (Self, 1987).

Learner-based models focus on characteristics of individual learners rather than their
knowledge state (i.e., how much of the target knowledge has been successfully acquired to date).
Clowes et al (1985) call the user model a collection of observed and inferred abilities, beliefs, goals,
attitudes and emotions. The user model serves as a means of distinguishing the user's needs and
beliefs from those of the intermediary or system. In human-human interaction, the model can be
derived from stereotypes, implicit knowledge, extralinguistic cues, nonverbal communication, the
user's situation or a problem description. Characteristics of a user model can vary according to the
system, the user and the task being performed. Daniels (1986) compiles a list of characteristics to be
included in the user model: user status, goals, knowledge of the field, experience with the field, user
background (employment, residence, etc.)

Rich (1983) identifies three dimensions helpful to organize the numerous descriptions of user
models: static vs. dynamic, explicit vs. implicit and long-term vs. short-term. A static model is an
unchanging model that is embedded in the system. A dynamic model is different for individual users
and changes throughout the session. An explicit model is a stated model - that is, it is obtained
through direct questioning of the user. An implicit model is inferred from the actions or responses of
the user. Short term user models are concemed with what the user is doing at the time of the session,
the goals the user has and what is being input by the user. A long term user model has information on

expertise in a knowledge domain, which can be stored and updated in future sessions. This type of
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model would be applied to users who interact with the system consistently, where over time a model
would be tailored to the individual user. This study attempted to design such a leamer modeling
environment, where a priori data from Educational Psychology and Cognitive Science measures can
be used to initially populate a learner model (default values) and an ANN can be used to collect and
incorporate additional information about leamners as they interact with the learning materials.

User modeling is becoming increasingly important in a number of commercial environments
such as: customized documentation, teaching systems, information-filtering and other tailored
interfaces. For example, the field of Intelligent Help Systems (IHS) (Breuker, 1990) focuses on
adaptive manuals that will support a user working with an application system. Student models also
appear in the domain of adaptive user interfaces (Hayes-Roth, 1995). This is a relatively new field that
studies interfaces that can adapt to suit the characteristics of users. User models can be designed in
such a way that they are inspectable by users and depending on who the users are, this could prove tc
be quite beneficial to the learning process. This suggests an enormous potential for the model of the
learner to serve as a leaming tool in itself.

User models clearly have many potential applications in interactive systems but they may not
be suitable for all tasks and all domains. Most of the environments in which user models have been
applied have been structured ones such as computer-assisted instruction or medical advising
systems. Potential applications of user modeling exist in hypertext systems (adapt the output text to
the knowledge level of the user), databases (provide navigation aids which take into account users'’
interests, plans and goals), information filtering systems (which take information needs and interests of
users into account), natural language systems (to tailor interpretation to user idiosyncrasies,
knowledge, level of expertise and goals), tutorial systems (to adjust to the knowledge and abilities of
the student), on-line help systems (to adjust advice to user goals and level of expertise and to adjust
explanations so that they are tailored to the user's knowledge and they address the user's
misconceptions) as well as user interfaces (to adapt the layout, interaction options and interaction

modes to the user's tasks, abilities, and preferences) and adaptive testing.
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The current state of the research on user modeling is that there has been a tremendous
amount of research done in the last four years, the field is becoming scientifically established, researci
is spreading from universities to industrial labs, and there are many possible applications. Empirical
evaluations have only recently started and there are, as yet, no commercial products equipped with
user models. In addition, the three fields of inquiry, educational psychology, cognitive science and
artificial intelligence have not resulted in much cross fertilization. The contributions of each of these
fields to the learner modeling problem are discussed below.

Learmner Modeling in Educational Psychology

Educational psychology is not a field of study characterized by a body of theory that is internall;
consistent and accepted by all psychologists. Rather, it is an area of knowledge characterized by the
presence of several schools of thought. In some instances these may supplement one another, but a
other times they are in open disagreement. As a resulit, there are no final answers to questions
concerning learing and no theory can be found to be absolutely superior to all others. This is mirrorex
in the diverse approaches to leamer modeling in Educational Psychology.

Educational Psychology approaches to learner modeling have emphasized relating user
characteristics to very general stable learner attributes or traits. This is the major focus of learning style
research: "...by individualizing education in terms of cognitive and learning styles, we can optimize
instructional methods tailored to learer characteristics, thereby enriching teacher behaviour and
beliefs, as well as enhancing student leaming and thinking strategies” (Messick, 1984, p.69). While it
is generally accepted that individual differences do exist and that it is necessary to be aware of them,
little has been done to date to integrate the educational psychology approach in learner modeling. We
need more sophisticated ways of modeling the leamer in order to include all relevant learner
information.

Leamning style refers to the characteristics of the person rather than the environment. A
leaming style is a leamer's preferred mode of processing. Individuals differ in the way they process
information. Learning styles deals specifically with the organization and control of strategies for

leaming and knowledge acquisition. Some authors define learning styles as fixed patterns for viewing
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the world. Styles are characterized as "self-consistent regularities in the manner or form of human
activity” by Messick (1987, p. 37). Aliport (1961) defines a style as a mirroring of personal traits. They
are inferred from consistent individua! differences in the ways of organizing and processing informatic
(Messick, 1984). Leamers transform or process leaming stimuli or information in ways influenced by
their learning styles and then use these transformed stimuli to generate solutions to learning problem
(Ausburn and Ausbum, 1978).

The learning style perspective assumes that a priori assessment and categorization through
the use of learning style instruments will serve to predict learner behaviour in any given learning
context as learning style is treated as a stable trait rather than a variable state. The learning style
perspective is one which emphasizes individual differences and the key role these differences play in
cognitive processes and outcomes. Characteristics possessed by individuals are usually assessed b
some quantitative or qualitative means in order to assign the individual to one of a finite humber of
"types."

Guild and Garger (1985) list five basic ways to assess styles: self report, the most common
method, is often indirect and may represent wishful thinking (e.g., Kolb, Entwistle); tests of a particula
skill or task, are more objective but limited (e.g., Witkin's field independence); interview, can be seen
as writing your own profile, and may be influenced by perspectives of the participants (e.g., learner
autobiographies); observation, is carried out through checklists, anecdotal records and use of a
computer trace; and analysis, is performed on the products of learning such as errors, or achievement
tests. The Kolb Learning Style Inventory (LSI) is an example of learning style constructs that are more
closely linked to underlying personality structures. Others view leaming styles as more contextual or
task-dependent features than fixed personality traits of individuals. The Entwistle Approaches to
Studying Inventories (ASI) is an example of a leaming style typology that is more directly linked to
leaming tasks and achievement.

Entwistle's AS|
Entwistle (1981, 1987, 1988; Entwistle et al, 1975, 1979, 1983) worked at measuring

approaches to and styles of studying. He explored cognitive skills, cognitive styles and personality
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characteristics underlying different approaches to studying. Entwistle labels three learning styles
based on how students approached the task of reading a scientific article: meaning oriented,
reproducing oriented and achievement oriented. Meaning orientation entails a search for personal
understanding, reproduction orientation is memorizing and achievement orientation is doing whatev
will work to obtain high grades. Students with a meaning orientation are intrinsically motivated by
personal academic interests, students with reproducing orientations are motivated by a fear of failure
and those with an achieving orientation are extrinsically motivated by hope for success.

Entwistle used large sample sizes and a wide range of disciplines in order to evaluate his
instrument and to establish norms for the dimensions measured. The Entwistle instrument has
moderate reliability (Newstead, 1992) in assessing how a leamer is most likely to tackie a learning task
The ASI can be used to calculate scores on nine dimensions and to characterize users as favoring the

meaning, reproducing or achieving orientations. Newstead finds:
the Approaches to Leamning Inventory was found to be a potentially

useful measure: the predicted factors emerged, the scales were
moderately reliable, and those students adopting a deep approach to
learning were more likely to be successful in their exams..... the scale has
been found to be fairly reliable, with reliability typically well in excess of
0.5.....there has, however, been considerable debate about the number
and meaning of factors that can be extracted...there is almost universal
agreement that the meaning and reproducing orientations are robust and
genuine factors... (p. 92)

Boyd and Mitchell (1991) were among the first to advocate the use of the Entwistle ASI in the
design and implementation of Intelligent Tutoring Systems. Allinson (1991) investigated the
relationship of user behaviour in a typical computer assisted learmning environment to individual learnir
style, as assessed by Entwistle's Approaches to Study Inventory. She used Entwistle's ASI on 310
first year university students. Care was taken to ensure that the two groups were well balanced in
terms of male/female and arts/sciences splits. To deliver instruction, a computerized hypertext
environment, the Hitchhiker's Guide, was used. This environment had two navigational aids: a tour

facility and an index which could be used by students. Students completed an interactive course on
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Physiological Feedback Mechanisms in Humans which represented a realistic and demanding task. A
students were asked to complete a questionnaire asking them to report on how they learned as well a
a posttest to measure leaming of the concepts presented.

The system automatically generated a log-file of each subject’s navigation throughout the thir
minute interaction with the leaming material. From these log-files, a significant difference was found ir
the total number of screens viewed by the two groups (those who scored higher on the reproducing
orientation and those who scored higher on the meaning orientation). Subjects in the high
reproducing group looked at significantly fewer screens. If we measure coverage in terms of available
information screens as a percentage of the total information screens seen, a significant difference is
found: students who scored high on the reproducing orientation dimension exhibited greater
coverage of the materials. They also showed significantly greater use of the tour facility whereas
students who scored high on the meaning orientation showed significantly greater index usage. A
longitudinal analysis of the log-files showed that the initial number of interactions (i.e., within the first
7.5 minutes) are the same for both groups. For each of the subsequent time slots however, the high
meaning subjects showed a consistently increased rate of activity over the high reproducing group.
There were no differences in the learning outcome between the two groups, which seems to support
the view that differences in the responses to the inventory are not concerned with simply a general
level of ability nor that the evaluation measures had some interaction.

Kolb LSI

Kolb (1971, 1976, 1977; Kolb, Rubin and Mcintyre, 1979) describes four learning modes:
thinking or abstract conceptualization (AC), feeling or concrete experience (CE), watching or reflective
observation (RO) , and doing or active experimentation (AE). Two dimensions ranging from concrete
to abstract and from reflective to active cross to generate four learning styles: thinker-doers are
convergers, feeler-watchers are divergers, thinker-watchers are assimilators and feeler-doers are
accommodators. Kolb viewed each state as a transitory one, with a transition through all four modes

the most effective way to learn in most situations.

32



The four Kolb stages are: concrete experience, one actually experiences something such as :
field trip where leamers are involved in the experience making it possible to feel the situation and to
become aware of the problems involved; reflective observation, one observes something that one
wishes to be able to do and reflects on what has been observed; abstract conceptualization,
experience through paper cases, models or computer-based instruction simulation; and active
experimentation, which is trial and error experimentation conducted as formal experiments with
planned procedures under controlled conditions

The Kolb learning modes and styles can be identified through use of the Kolb Learning Style
Inventory, a nine-item self-report questionnaire or the revised 12-item Learning Style Inventory (Kolb,
1985). The latter version has improvements in reliability over the earlier version (Sims et a/, 1986 and
Veres etal, 1991). The Kolb inventory is brief and straightforward, with individuals responding to
twelve leamning situation questions. The instrument requires people to resolve tensions between
abstract-concrete and active-reflective forms of learning by rank-ordering preferences for each of
these forms. This instrument was developed primarily as a tool for career guidance.

The Kolb LSI has been extensively criticized as having questionable psychometric quality
(Comwell and Dunlap, 1994; Freedman and Stumpf, 1978; Newby, 1994; Sewall, 1986; Sims et a,
1986; Stumpf and Freedman, 1981). Internal consistency reliability has been estimated to be from
0.29 to 0.81 for the individual scales, with an overall average of 0.58. However, the two learning mode
dimensions represented by the combination scales of AC-CE and AE-RO have consistently exhibited
higher reliability ranging from 0.66 to 0.86 with an overall average of 0.78. The AC-CE scale represents
the abstract vs. concrete leaming mode dimension while the AE-RO scale represents the active vs.
reflective mode dimension. The use of the LS! is appropriate in this study as the principal variables of
interest are the differences in these learning modes.

Atkinson (1988) states that the revised LSI not only did not improve the test-retest reliability
but may have weakened it further. On the other hand, Marshall and Merritt (1985) found the alternate
form had moderate reliability and construct validity. The brunt of the attacks on the LSI centers on the

instrument, not the experiential theory (Curry, 1987). Comwell and Manfredo (1994) state that it may
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be time to revisit the Kolb LSI. As the general critique is against the use of the LS| instrument and the
method of scoring resuits the authors suggest that the Kolb leamning theory may be valid and the LSI
may be useful to discriminate different types of leamners if the data collected are analyzed in a different
fashion. They advocate looking at the LSI but deriving different constructs than the original four type:
of learners.

There has been extensive use of Kolb LSI in computerized leaming environments. Esichaiku
(Esischaikul et al., 1994) investigated whether or not individuals who exhibit certain learning styles, as
assessed by the Kolb LSI, are more successful in using a hypermedia problem solving system. The
learning environment consisted of the HyperSolver system, a hypermedia system that provides users
with a number of project management tools such as PERT charts or histograms that they can use to
solve a given prablem. Each tool is defined, advice is given as to when to use the tool and how to use
the tool and examples of its application are provided. Students were first classified using the Kolb
inventory and then assessed with respect to the time it took to soive problems and to the quality of
their solutions. No significant differences in time were found. Convergers and assimilators performed
significantly higher quality work than their counterpart accommodators and divergers. This research
supports previous findings by Stanton and Stammers (1990) who concluded that hypermedia creates
an environment that allows for different levels of prior knowledge, encourages exploration and permits
individuals to adapt material to their leaming styles as well as findings by Bostrom, Olfman and Sein
(1990) where individual differences were found to affect how people learn to use new software.

Bostrom et al (1990) report the findings of a series of studies that examined the influence of a
novice's learning style, as measured by the Kolb LSI, in learning typical tools such as spreadsheets
and electronic mail. A consistent pattern of findings emerges that indicates that leaming modes is an
important indicator of learning performance, both by itself and in interaction with training materials.
They developed and used a research framework to study the computer learning process that
integrated research from cognitive psychology (mental models, Gentner and Stevens, 1983), and
educational psychology (ATI paradigm, Cronbach and Snow, 1977), and information systems and

computer science. Bostrom's team chose Kolb on the basis that the theory is widely used in research
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and in practical applications such as the formation of project teams. It is assumed that even if learning
style varies with situations, it will remain constant within a particular context.

It was expected that abstract leamers would do better than concrete learners when studying :
new software package because concrete learners must rely on prior referent experiences, which the
do not have in this novel situation. it was also thought that active learners would do better in hands-o
training because the emphasis was on leaming by doing. They conducted four studies, with a total of
373 subjects. They found that abstract trainees consistently performed better than concrete trainees
but not significantly so. Abstracts also took less time than concretes to complete the tasks, but not
significantly so. Abstracts scored higher in the comprehension test and the difference was significant
in one out of the four studies. This study was the third study, and represented the most tightly
controlled setting (laboratory setting). No help was given to trainees in this group and subjects were
randomly assigned to one of the two treatments (analogical vs. concrete models). While some of the
non-significant findings are likely due to low sample size and lack of experimental control, in other
cases it can be concluded that learning style as measured by the Kolb LSI did not explain the training
outcomes measured in these studies.

Clariana and Smith (1988) found that students who were high concrete experience and active
experimentation performed better in computer assisted leaming environments when leamning math.
McNeal (1986) used the Kolb LS! with 173 students and found that convergers did the best for all
instructional treatments, which consisted of matching teaching style to learning style, deliberately mis:
matching teaching style to leamning style, and no use made of leaming style at all.

Logan (1990) studied on-line search behaviours and outcome variables among individual
searchers to determine relationships between cognitive styles as measured by the Koib LSI and five
measures of on-line behaviour: the number of iterations (cycles), the number of directives issued
(commands), the number of actual terms the system was asked to search for (descriptors), the total
amount of time spent on-line (connect time) and the number of records printed out (references).
Results indicated a consistent relationship between placement in quadrants of the LSI and high and

low mean group scores. Assimilators showed higher mean scores on all five searching measures;
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accomodators showed lower mean scores on four of the five. Accomodators and assimilators thus
demonstrated opposing modes of on-line behaviour.
Summary

Bonham (1988) presents a comprehensive critique of leaming style instruments. A problem
that exists with learning styles is that one pair of bipolar traits for each theory probably is not complex
enough to capture the essence of individual differences among human beings. Oversimplification is
also evident in the failure to control for moderator variables such as sex or cuitural background. The
general view of learning styles is one of thinly developed theory and weak instruments, supported by
fragmented research, often in settings not typical of adult education. One area of research needing
continued attention is that of exploring links between style information use and either learner
satisfaction or learning outcorne.

Education researchers are searching for a theory that explains how students' learning styles
vary. There are a number of competing models but no one model has been exclusively accepted by
the research community. The single learning continuum model argues that each individual can be
placed somewhere on a bipolar scale. The definite learning style model proposes that each person
has one of a finite number of learning styles (e.g., serialist vs. holist). The situational learning style
model proposes that each person is able to select from a number of possible leaming styles,
depending on the leaming task at hand (e.g., surface vs. deep processing). Finally, the
multidimensional learning style model specifies that each person has a different combination of styles.
The current state of this theoretical development is that there is no clear-cut agreement on a universal
learing style theory or measurement.

As aresult, those dimensions demonstrated as having the highest discrimination amongst
different types of learners were selected from each of the learning style inventories for inclusion in this
study. The two Entwistle dimensions of meaning orientation and reproducing orientation were
selected. In addition, students were assigned to one of four quadrants based on their scores on thes
two dimensions. From the Kolb LS), it is not expected that the four leamer types will prove to be

significant. For this study, the two dimensions, AE-RO and AC-CE were selected for analysis. This
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partly replicates the Newstead (1992, p. 311) study, which looked at both the Entwistle AS! and the
Kolb LSt in order to identify which, if any, had "some potential in assessing the learning styles of
students.”

Educational psychology focuses more on states that are more general influences on
performance such as traits based on processing preferences whereas cognitive science research
mostly investigates specific and contextual mental operations. The cognitive science approaches to
learner modeling are discussed in the next section.

Learner Modeling in Cognitive Science
ATI Research

Cognitive psychology has studied the question of individual differences in how learners
perceive and process information. Learners differ profoundly in what they do in learning, their succes:
in any particular learning situation and in the stability of their behaviour patterns. Not all strategies are
appropriate for all content. A large part of the problem is understanding what differences learners
bring psychologically to the learning situation that confronts them. This requires an assessment of the
"initial state” of the learner i.e., postulating critical properties of the learner which interact with learning.
This type of research led to aptitude-treatment-interaction (ATI) research (Cronbach and Snow, 1977)
that attempts to predict outcomes from combinations of aptitude and treatment variables, in particular,
the behaviour of the individua! in-situ. The major finding from over two decades of ATI research is tha
orderly ATl patterns can be obtained and explained and that they involve prior knowledge, ability and ir
some cases personality variables (Snow, 1989). This led to work on a generalized matrix framework
that combined cognitive, conative and affective individual characteristics in order to conduct detailed
multivariate analyses of instructional treatment variations. Both learner and task characteristics were
found to affect the outcome of learning processes. Aptitude-treatment-interactions were found to
exist but there are many complex combinations possible. Conventional research design and statistica
significance testing are limited in providing interpretations of findings. Generic ATI hypotheses that

can be used as a basis for instructional practice have yetto emerge. What is needed is a theory of the
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initial properties of the leamer which interact with leaming - the complex of personal characteristics th:
accounts for an individual's end state after a particular educational treatment.

Four major variables which contribute to learner achievement have been extensively
documented in the cognitive science literature: prior knowledge of the content area, task perception
and motivation variables, time spent on the task (or time spent learning) and meta-cognitive processe
brought to bear on the learning session such as the level of leamer control. Specialized prior
knowledge and prior experience relevant to the instructional treatment are often found to be the mos
important moderators of AT| effects (Carrier and Jonassen, 1988; Glaser, 1984).

From ATI research, the variables of prior knowledge, prior experience, and time on task were
selected for inclusion in the systems approach to learner modeling that was used in this study.

Leamer Control

Another important variable in the search to improve learning and thus the instructional system
has been the degree to which leamers had some flexibility or control over the learning environment.
This can be related to the degree of structure or guidance provided by the learning environment.
There is a range of possible instructional treatments, starting with rote leaming, didactic, drill and
practice, deduction, analogy, induction and discovery. Rote leamning has no learner control whereas
discovery leaming has the most leamner control (Shute, 1993).

High structure treatments are typically environments with direct instruction, whereas low
structure environments are learner-controlled, discovery oriented environments. Discovery
environments require planning and decision making functions to be carried out primarily, if not
exclusively, by the learner. This approach is present in cognitive apprenticeship (Collins et al, 1989),
situated cognition (Brown et al, 1990; CTGV, 1992) and social constructivist models of instruction (Vo
Glaserfeld, 1988). The discovery learning approach is based on social cognitive and developmental
psychology which emphasize the learers' development of metacognitive and self-regulatory skills
superimposed on the process of rote learning and problem-solving.

Some interaction has been found in treatments involving differences in the structure of the

instruction. In a highly structured treatment (with typically high external control and instruction
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chunked in small units) low ability leamers perform better relative to low structure environments wher:
learners are expected to act much more independently. In low structure environments, high ability
students do better and low ability learners do poorly (Snow, 1989). This evidence has been
interpreted in terms of meta-cognitive strategies or self-regulatory skills associated with high ability
learners. However, many other leamer and task conditions can moderate these ATI effects.

Hannafin (1984) found students who perceive themselves as internally governed (i.e.,they
assume personal responsibility for their performance and behaviour) perform best under internally
controlled CAl. Students who perceive themselves as externally governed (i.e., they respond to
imposed instructional demands) respond best to externally controlled CAl. Hannum (1990) found ths
students with high prior knowledge make good choices about some but not all aspects of learning:
pace, the amount of practice and whether to see an overview. High prior knowledge students made
good choices on instructional strategy. In general, students made poor choices about topic
sequencing, whether to practice and the difficulty level of practice. Experience with task sequencing
(Brusilovsky, 1992) showed that novices tend to agree with system choices while experienced
students prefer to make their own choice from a list of system options. Learners with good meta-
cognitive skills also prefer and do better in relatively unstructured environments (Freitag and Sullivan,
1995).

Fogarty and Goldwater (1994) explorad the use of an expert system as a means of increasing
student control in accounting education but were unable to show any gains beyond that which could
be attributed to increased effort. Fogarty and Goldwater studied the effects of varying levels of learne
control. An increase in student control would seem to be a worthwhile objective; however, student
control may not always be desirable. They used an expert system to enhance student control by
providing the student not only with a highly available and robust study facilitator but also with the
means to determine the examination process. Students were able to select particular sections of the
course as well as the type of question in exams. The expert system allowed students to retake exams

as often as they chose.
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Itis useful to distinguish local control from global or metalevel control. Collaborative ILEs for
example, offer the learmner a large measure of global control. A plausible scenario would be a design
where the system is initially largely in control and as leamers acquire expertise, they are encouraged t
take more initiative and more control. In the leaming environment used for this study, local leamer
control was offered as a choice in the selection of lesson topic sequence. This variable was then
included in the subset of learner parameters for learner modeling.

Personality and Motivation Variables

Personality and motivation aptitudes also enter a wide variety of AT! pattems. Motivation plays
a key role in cognitive theory as the expectant cognition of future outcomes provides the largest singl
source of motivations for human action. Many behavioral psychologists consider all mativation to arise
either directly from one's organic drives or basic emotions or from a tendency to respond that has bee
established by prior conditioning of the drives and emotions. The key element of motivation is the
paying of attention to one thing rather than to another. According to this viewpoint, leamers do not
have to want to learn in order to learn - they only have to be persuaded to study, which is in contrast to
the view held by many behavioural psychologists.

Present day cognitive interactionists tend to avoid terms such as drive, effect and
reinforcement. For them, some key concepts in motivation are goal, expectancy, intention and
purpose. A person's psychological field includes purposes and goals, interpretation of relevant
physical objects and events, and memories and anticipation. Accordingly, motivation cannot be
described as merely an impulse to act triggered by a stimulus. Rather, it emerges from a dynamic
psychological situation, characterized by a person's desire to do something.

The strongest result in ATI research appears to involve the state of anxiety and aspects of the
trait of achievement motivation. Anxious or conforming students will do better with high structure sinc
they are primarily motivated by extrinsic factors such as fulfilling course requirements or succeeding or
atest. Non-anxious or independent students do better in a low structure environment as they are
motivated by intrinsic factors such as personal interest in the content and goals for their personal futur

(Snow, 1989). This is in turn linked to the time on task variable - those students with high intrinsic
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motivation tend to spend more time interacting with the learning content. The motivation and task
perception variable was included in the subset of learer variables to be addressed by the systems
model of the learner in this study.
Summary

With the powerful opportunities for individualization present in computerized learning
environments, there has been an increased concemn to model the student in order to have a deep
basis for individualization of instruction. It is important to emphasize that concemn with individualization
is by no means restricted to computer-based education. Over the past decade, there has been an
intensive effort by leading cognitive scientists to identify strong effects of aptitude-treatment
interaction. What is meant by this is the attempt to show that, by appropriate adaptation of instruction
to the aptitude of a particular student, measurable gains of leaming can be obtained. One of the
striking features of CAl work has been the absence of references to the extensive literature on
aptitude-treatment interaction (Suppes, 1979). The conclusions based upon extensive data analysis,
summarized by Cronbach and Snow (1977) show how difficult it is in any area to produce such effects.
Itis fair to conclude that at the present time, we do not know how to do it, and from a theoretical
standpoint, it is not clear how we should proceed. Suppes goes on to say that intelligent CAl, or
computerized learning environments that make use of artificial intelligence technologies, may provide
a way out of this dilemma. This field is further discussed in the next ssction.

Learner Modeling in Artificial Intelligence

Al-based instructional systems were designed to achieve individualized instruction for a
combination of situations and leaming needs (Kaplan and Rock, 1995). A key feature of intelligent
systems is the ability to diagnose learners (via the learner model) and tailor remediation based on the
diagnosis (via the tutor). The intelligent system must accurately assess learners' knowledge and skills
and or aptitudes, using principles to decide what to do next, then adapt instruction accordingly (locally
or globally) (Shute, 1993).

After decades of work, development of effective learner models of the sort just described

remains a very difficult challenge (Lesgold, 1994). There is a continuum rather than a sharp border

41



between preprogrammed CAl and the autonomous capabilities of artificial intelligence-based CAI
programs, or intelligent tutoring systems (ITS) (Bork, 1986). At one end of the continuum are CAI
systems that range from very basic electronic page turning to systems that can generate exercises
(Uhr, 1969), adapt the level of difficulty based on some measure of student performance (Park and
Tennyson, 1983) or provide adaptive testing (Desmarais et al., 1988) by selecting questions based ol
previous student performance.

At the other end of the continuum, Al-based systems may offer generative ability. These
systems need not anticipate all possible learner actions and responses to each action by a priori
programming. Rather, they are able to trigger appropriate rules based on learner actions. ITS
programs adapt their actions based on explicit models of the student, of the domain, of pedagogical
strategies and of the communication process (Clancey, 1986). Because CAl programs typically have
only implicit models, interaction is predictable and non-motivating. They have little ability to adapt and
tend to be based on the "one size fits all” approach that caters to the mythical average student. As a
result, CAl systems have never realized the potential initially envisaged.

Any significant headway in machine-guided learning will require the development and effectiv
implementation of new models of thinking. Leading this evolution is the movement from early
programmed teaching systems which were based on behaviorist views of learning (Skinner, 1968), to
ITS which is a more cogpnitively oriented form (Hartley and Sleeman, 1973; Carr and Goldstein, 1977;
Goodyear, 1991). Bierman (1991) states that the amount of intelligence that goes into traditional
systems probably has been underestimated. The whole history of artificial learning environments can
be seen as an interplay between available technology and popular learning and teaching theory.
When the computer first arrived on the scene, behaviorism with its stimulus-response paradigm was
still the leading psychological theory. Early educational software was characterized as simple drill and
practice. In the 60's and 70's, this situation changed gradually. Behavior was no longer seen as a
series of stimulus-response pairs but as a consequence of complex cognitive processes. Several
psychologists formulated global cognitive mechanisms (Ausubel et al,, 1978; Bruner, 1961, 1966; )

which are processes between the stimulus and the response, using knowledge as a basic intermediary
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concept. Based on these, principles of instructional design were formulated (Gagne et al., 1988;
Merrill, 1983; Scandura, 1983) that were applied in the design of courseware. Most of the CAl today is
still designed with these instructional principles.

The development of detailed cognitive theories was accelerated and stimulated by
developments in the field of artificial intelligence (and vice versa). Introspection, which was totally
discounted by the behaviorists, returned in the form of think aloud protocols. The analysis of these
protocols became a method to collect data on human knowledge representation and cognitive
reasoning. Part of the Al community claimed that humans were nothing more than complex computers
and that most intellectual tasks could be done by computers in the near future. Intelligent systems, like
expert systems, required that a great deal of effort be put into the analysis of human experts,
knowledge representations and problem soliving behaviour. It soon became possible to think that
machines could teach as well as humans. Knowledge appeared to be something that could be
represented separately therefore education appeared to be the transter of this from the expert to the
novice. The early cognitive and behaviorist CAl programs were criticized because they based their
interventions on the last response only. In ITS a dynamic model of the student was maintained and
system behaviour generated using conditions from this cognitive model.

Parallel to the Al triggered development of TS, a separate reaction to the early cognitive CAl
became apparent. Bruner (1961) had already pointed to the possible cognitive relevance of the act of
discovery. Papert (1980) tock up this lead and explicitly proposed that students would profit most frorr
discovering the basic principles of the domain for themselves. The implicit pedagogical assumption
was that, given the right discovery environment (e.g., LOGO), students would find their way on their
own initiative and without any support. A cognitive diagnosis would therefore be unnecessary and no
student model would have to be maintained by the system.

By the end of the eighties, the cognitivist paradigm was challenged by connectivist
approaches. Connectionists focused on massive parallel distributed computations and simulations of
neural networks. This paradigm succeeded in building systems that could learn to discriminate

between patterns. The representation of knowledge in a connectionist system is accomplished by a
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set of weights while in an Al model of cognition by a set of logical statements. Leaming is reflected in
changes of the weights and the sole learning mechanism is leaming from examples of pattems.

Recently, for a number of reasons, many Al-based cognitive scientists have turned away from
their roots, most notably, the ‘father' of educational expert systems, W. Clancey (1984). They currentl
support the approach advocated by the situated cognition school of thought. Situated cognition doe
not adhere to the basic Al premise that knowledge can be seen as something that is context
independent and that can be poured into a student.  These Al approaches to learmer modeling are
further detailed below. [t is useful to make a distinction between the two major approaches to leamer
modeling in Al-based educational software: domain-based and learner-based. Domain-based models
represent the learner as a subset of correct or expert knowledge for a particular subject matter
commonly based on bug catalogs or overiay models (i.e., the learner model is what proportion of
expert knowledge the learner possesses). Learner-based models, on the other hand, commonly
represent the learner as a set of attributes or traits possessed by the individual (e.g., personality traits,
preferred mode of information processing) usually by genetic graphs or default stereatypes.

Domain-based Learner Models in Artificial Intelligence

Domain-based modeling approaches in learner modeling consisted primarily of two types of
models: the buggy modet and the overlay model. Domain-based models evolved from expert system
approaches to intelligent tutoring systems. Intelligent Learning Environments (ILEs) and Performance
Support Systems (PSS) represent alternative approaches to leaming modeling. Each is discussed in
further detail below.

The majority of ITS can be characterized as having a straightforward, authoritarian or behavioris
tutoring style guided by simple teaching rules, and a learner model based on domain knowledge
(Wenger, 1987). A number of authors have developed systems based on this approach for a wide
variety of domains (see, for example, Hartley and Sleeman, 1975). Most ITS user modsling efforts
have concentrated on modeling leamer misconceptions in discrepancy or bug terms. Bug catalogs are
common incorrect or buggy versions of plans used to solve problems. They typically consist of an

exhaustive list of all the likely ways one can make mistakes on a given task, which are often empirically
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derived. Given a specific problem and a fairly complete knowledge base of plans, instructional systen
based on bug catalogs will flexibly diagnose student behaviour and misconceptions. This approach
fails, however, whenever the system encounters unusual or infrequently observed bugs, novel plan:
and ambiguous solutions.

The classic bug or mal-rule approach (Brown and Burton, 1978) tried to distinguish
performance slips from genuine misconceptions in an arithmetic task (subtraction) but most errors we
described at a large grain size. Misconceptions can, however, be described for any of a number of
different bases, even for seemingly simple arithmetic skills (Ridgeway, 1988). Payne and Squibb
(1987) also found the malrule approach inadequate for a large collection of children's algebra errors.
This lack of robustness in reasoning about unknown plans could prove fatal in ITS. They are also very
labor-intensive to develop and to maintain, requiring extensive cognitive task analyses of both expert
and novices (Ohlsson, 1992). The buggy model assumes that the student's knowledge is
fundamentally different from the expert's knowledge and contains numerous wrong concepts. The
implication is that in order to detect student errors, we need to define a library of all the bugs a student
can make when solving problems (Bertel, 1994).

In contrast, overlay models (Carr and Goldstein, 1977) are models that map learner knowledge
onto expert knowledge. Learner knowledge is viewed as an incomplete version of experts'
knowledge. This stems from a behaviorist view of expert-novice differences which postulates that
experts possess a quantitatively larger amount of knowledge. This is in contrast to the cognitive
approach where expert and novice knowledge are viewed as being qualitatively different. Some of th
limitations of this approach are that there may be more than one correct way of deriving a correct
solution and all possible deviations need to be pre-programmed as in the bug catalog approach. The
overlay model assumes that the student's knowledge can be defined as a subset of the expert's
knowledge. The implication is that the implementation of the expert's knowledge is sufficient to detec
the majority of the student's misconceptions (Bertel, 1994). A record is kept about the skills the
student has mastered and this record is used to decide whether or not the student has sufficiently

mastered the domain. Implicit evidence is derived from a comparison of the student's and the expert's
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behaviour, structural evidencs is retrieved from a network of dependencies among the skills and
explicit evidence is derived from interactions with the student, by asking questions or using test cases
There are two important limitations of the overlay model: it will fail if the student's correct solution differ.
greatly from that of the expert's and it can only identify missing concepts, not misconceptions. The
student is assumed to differ quantitatively from the expert. The best approach to student modeling
may be to combine a number of different modeling approaches (Bertel, 1994).

We know already the effectiveness of one-to-one tutoring (Bloom, 1984) and the importance
of having a model of the target competence that can perform the actual task with students or track their
performance. Bloom (1984) found that the average student under tutoring was about two standard
deviations above the average of the control group. The average student under mastery learning was
one standard deviation above the average of the control class. [TS environments attempt to
individualize instruction by automating the personal tutor. In ITS environments, the domain or subject
matter model represents not only the knowledge to be communicated or acquired but also the
standard against which student performance is evaluated. In this respect, the domain model serves as
a criterion-referenced measure of student learning (Hambleton, 1984).

The process of learner analysis in Artificial Intelligence is aimed at collecting and inferring
information about the student or their actions which does not always result in a student model. Such
information about the leamer can be used in three ways: to infer internal states assumed to produce
behavior (assuming behavior is deterministic in nature) in order to reconstruct learer reasoning chains
and account for observed behaviour; to interpret or make sense of observations and inferences in
order to explain behaviour; and to classify or make relevant distinctions in order to characterize learner
behaviour.

Researchers soon began trying to use knowledge bases not only as decision support systems
but also as teaching aids. Early Al learner models were found to be too shallow (very littie knowledge of
the learmer beyond detection of preprogrammed errors) and too static to take into account any student
state changes (due to learning and contextual changes) (Hartley and Sleeman, 1973). Eventually, the

learner modeling problem began being described as an intractable one as it seemed too difficult to
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obtain enough meaningful data on the leamer and to update this data continually (Orey and Nelson,
1992).

One of the reasons for the disappointment may have been the bottom-up approach to user
modeling. The first component to be built in a traditional expert system application was the domain
knowledge base. This was the most labor-intensive part of the development work as knowledge
engineers typically had to conduct extensive interviews with domain experts in order to extract the
knowledge. Once this knowledge was conceptually organized into some type of knowledge
representation (e.g., a semantic network or set of production rules), then it was a fairly straightforward
task to input this representation into software called expert system shells. More often than not, the
interface to the application developed was simply the interface provided along with the shell.

The next stage consisted of adding another, separate knowledge base that contained rules «
how to best teach the content found in the domain knowledge base. Following this, it was then
necessary to add yet another knowledge base, one that contained knowledge about the student
users of the system. Throughout these additions to the original domain knowledge base, the interfa
remained the same one that was provided along with the expert system development tool. Recent
extensions include adaptive testing which adapts the next question to be asked in a test (pretest, or
posttest) based on answers given to previous clusters of questions. Questions are clustered around
concept prerequisite hierarchies in order to quickly pinpoint missing or incomplete student
knowledge.

Intelligent Learning Environments and Performance Support Systems

Unlike ITS which are still relatively behaviorist and in some respects simply more sophisticated
CAl, ILEs are outgrowths of the discovery environment approach as they attempt to accommodate
individual learners by allowing them the choice of how to go through the learming environment and
providing help but usually upon learner request. The recent development of Performance Support
Systems (Gery, 1991) represents an extension of this model, where an intelligent environment is
designed to support both task performance and on the job learning of users and often contain a

simulation mode for the target task (e.g., air traffic control).
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The fundamental unit that was built upon in developing more and more sophisticated ILEs
consisted of a microworld, a discovery environment with an underlying simulation or game (or a
combination of the two) that allowed users to interact with a high-fidelity model of some real-world
system or process. The next generation of ILE had more advanced guidance features in order to
ensure that learners met the objectives of the microworld (e.g., to discover and test hypotheses of
physical laws such as gravity). These advanced help features addressed primarily navigational issues.
Components such as coaches, tour guides, intelligent agents were added to the microworld to ensure
students did not get lost and that they maximized their learning opportunities by covering enough of
the topic nodes.

The best-known example of navigation in such environments today can be found in
hypermedia applications (aithough not all hypermedia environments are ILEs). Hypertext provides an
emergent illustration of innovations in computer use that depart from the traditional use of computers.
The essence of hypertext is the dynamic linking of concepts, allowing the reader to follow preferences
instantaneously and to be in control. The development of a topic is no longer linearly defined by editor
or author and is limited only by the initiative of the reader. To some extent, hypertext allows the studen
to model himself and make selections based on that model (Carr, 1988). Hypermedia environments
may introduce yet more complexity as hypermedia provides a new situation where students spend a lo
of time studying on their own and following their own sometimes quite idiosyncratic processes (i.e.,
navigational routes through the learning materials). Traditional ITS student modeling approaches no
longer apply as it becomes difficult, if not impossible, to coordinate several sources of student model
information (Brusilovsky, 1994a).

Hypertext can be valuable not only as an delivery tool but also as a means for representing and
organizing information according to different learning styles. In such an environment, tutorial material
can be customized and tailored to the individual needs of students and instructors, landmarks being
supplied by the rule-based tutor components. The major shortcomings of the ILE (including

hypermedia) are that some structure is aimost always required, students can get "lost" as they
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investigate the environment and, it is quite difficult to ensure whether or not learning objectives are

met. The next section describes research in the area of leamer-based student models.

Learner-based Learner Models in Artificial Intelligence
Few leamer-based models exist in the Al literature. Vassileva (1990, p. 210) finds it "strange

that no attempt has been made to incorporate student characteristics such as learning rate, level of
concentration and preferred style of material presentation in ICAl student modelis."

The two major approaches to date have been genetic graphs and stereotypes. Goldstein
(1979) used genetic graphs for learner-oriented modeling. A genetic graph is a semantic network tha
attempts to capture the evolutionary nature of knowledge. Individual procedural rules are represente
as nodes and links are used to represent their evolutionary relationships (such as generalization or
analogy). The leamer's individual leaming history can be modeled as an overlay on the genetic graph.
The degree of confidence in tagging a skill as acquired by a given learner can then be inferred from th
number and types of links made to other nodes. The degree of difficuity of a given concept may be
measured through a similar topological analysis based on the density of links connecting the node to
the rest of the graph to assess how well it has or hasn't been integrated. While promising, this
approach is still fairly domain-dependent.

A second approach has been the use of stersotypes which capture default information about
groups of people. This simple but powerful idea was introduced by Rich (1979, 1983, 1989) who
used people's descriptions of themselves to deduce the characteristics of books they would probably
enjoy. The GRUNDY system is the only modeling system which reflects individual characteristics of
the user not directly connected with a particular domain. GRUNDY uses the vocabulary of the user to
infer a model from a set of existing stereotypes such as "sporting businessman" or "intellectual
feminist”. It does this by, for example, inferring the degree of concentration from typing errors, misuse
of commands or from preference for examples and demos (inductive) or preference for problem

solving (deductive).
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A stereotype represents a collection of attributes that often co-occur in people. They enable
the system to make a large number of plausible inferences based on a substantially smaller number o
observations. These inferences, must, however, be treated as defaulits, which can be overridden by
specific observations. Stereotypes permit us to make predictions which need not be completely
accurate because the role of the predictions is not to take the place of specific knowledge about the
individual but to provide a basis for action until such specific knowledge becomes available. Sollohu
(1989) suggests that the best use of stereotypes may be as initiations of student models with default
values (or best guesses). As more knowledge is gained about the student (such as answers given ta
tests or use of help functions) the student model can gradually evolve to become based more on the
student's actual behaviour.

In other words, if one is given the task of constructing a model of another person, one has twe
choices: construct the model one piece at a time as information is gleaned from experience with the
person, thereby viewing individual facts about the person as independent events; or observe that,
empirically, facts about people are not statistically independent events but rather that they can be
clustered into groups that frequently co-occur. A new way to build a user model is by adding to it a
whole cluster of facts at a time, as soon as some evidence that is known to be a predictor of the cluste
is observed. This is the approach used in stereotypes.

Stereotypes are important to people because they permit us to make predictions about othet
people on the basis of an amount of evidence that is sufficiently small that it can be acquired before
action is required. For these predictions to be useful, they do not need to be completely accurate.
The role of these predictions is not to take the place of spacific knowledge about the individual;
instead, their role is to provide a basis for action until such specific knowledge becomes available. As
that happens, the model of the individual must be updated, and stereotype-based predictions that
contlict with specific observations must be abandoned in favor of the specific facts.

Stereotypes are long term models of individual users. Adaptation is an important part of an
effective stereotype-based system because of the difficulty of defining accurate stereotypes a priori.

Adaptation consists of modifying the certainty measures on the basis of each experience with a user.
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Other approaches to adaptation are also possible. For example, stereotypes can be viewed as
concepts to be then identified with statistical concept-learning methods or with a neural network
trained to recognize instances of stereotypes (Rich, 89).

Kaunanithi and Alspector (96) discuss the use of clique-based user models in movie
recommendation tasks. Cliques are quite similar to the notion of stereotypes (Rich, 83), communities
(Orwant, 95) and social filtering as used by Maes (94). Information filtering is based on profiles that
describe either individual or group preferences. Such profiles represent long-term interests of the
user. On the other hand, information retrieval from a database requires well defined user queries
which reflect very short term or instantaneous needs. Depending on the degree of interaction, we can
characterize the information filtering task as passive or batch while information retrieval may be
characterized as active or on-line. The clique-based approach is built on the hypothesis that the
average rating of a clique of users is the best indicator of an individual's future rating. A set of users
form a clique if their movie ratings are similar. Each user for whom we wish to predict ratings has a
unique clique composed of other users whose ratings are similar. The members of the clique who
have rated a movie that the target user has not seen predict the rating of the target user for that movie.
The Pearson correlation coefficient (which is a normalized dot product of the vectors of the ratings of
the two users) was used as a similarity measure. The features of a movie are extracted and used in the
recommendations (e.g., expert critic ratings, movie category, director).

Maguire et al (1995) used a combination of user-based and domain-based stereotypes. The
first level consisted of an occupation stereotype. The second level represented an individual's level of
expertise, given their occupation. This latter level is 'hard-coded' by a knowledge engineer who makes
judgments such as " a clerk has high expertise in word processing; a manager has moderate expertise
in word processing."

Beaumont (1995) used an adaptive hypermedia system to build a model of the goals,
preferences and knowledge of individual users and use it throughout the interaction for adaptation to
the needs of that user. The Anatom-Tutor contained a rule-based user modeling component and

used stereotypes for making assumptions based on the general information and used deduction
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mechanisms for inferring new declarative information from that which is already in the model. The user
model contains general information on the user's prior knowledge in anatomy, and specific knowledge
of the material covered in the Anatom-Tutor lessons. The tutor first decides on the general link
structure by looking at the model to find out the user's goals. At the text ievel, the user's level of
experience, the lessons and lectures he has already worked on are taken into account for choosing a
default expository style. Then the content and actual local expository style is chosen by comparing th
user's fine-grained knowledge with the material covered in that part of the lesson. Adaptive
hypermedia systems such as the Anatom-Tutor can help bridge the gap between tutors that provide
guided or adaptive machine-driven education (CAl, ITS) and the class of environments that provide
free’ student-driven leaming (ILE, hypermedia) by allowing student initiative coupled with an ability to
adapt to the student and guide them implicitly but significantly by changing the content and
hypermedia links.

While stereotypes appear to be the most promising leamer-based student modeling approach
they are operating at a fairly large level of granularity. Adaptivity can only be made to generic types of
people or to one of only a few cliques. Other researchers have addressed the problem of how to
model a single given user performing a well-defined cognitive task at a much deeper or more
sophisticated level. These efforts have led to empirically-derived models of leamning as described
further in the section below.

Empirical Models of Learning

Clancey (1986) was one of the first Al researchers to look to cognitive psychology when
modeling the learner. He proposed the idea of qualitative models which characterize spatial, temporal
and causal relations. This shift described mental processes rather than quantifying performance with
response to stimulus variables. Individuals are described in detail and not in stated generalities.
Psychological interpretation is given to qualitative data rather than statistical treatment to numerical
measurements.

One of the most imprassive achievements of cognitive scientists has been the production of

elaborate computer simulations of intelligent behaviour that, at least at face value, incorporate many
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aspects of cognition. Some examples are; programs that simulate expert and novice behaviour in
particular domains such as physics and systems to simulate language learning (Gentner, 1979;
Gentner and Stevens,1983).

Anderson (1984) stated that the major contribution of cognitive psychology would be to
provide a well-specified model of the target behavior to be tutored - a goal to which the instruction is
directed. In the areas of mathematics and science, this amounts to developing a problem-solving
model of the ideal student, which specifies the problem-solving goals, the representation of the
relevant knowledge, and the operators that control the transition among goals. Such student models
can be used to represent both the current state and the state desired for the student at the end of
instruction.

Computerized tutors can then guide students through the problems, trying to make their steps
correspond to those of the ideal student model. If they don't, immediate explanation is generated
which tells the student what the correct step is and why it is correct. This mode of tutorial interaction is
referred to as model tracing. Anderson and his colleagues later applied the model tracing paradigm to
build one of the few commercially successful intelligent tutoring systems: the LISP Tutor (Anderson
etal, 1990). This is a program that provides assistance to students as they work on LISP coding
exercises. The program presents problem descriptions and as the students type answers, the tutor
monitors and stands ready to provide assistance at each step. The tutor has been in use in an
introductory Lisp course at Carnegie-Mellon University since the fall of 1984. The lesson material
consists of approximately 240 exercises covering the first 12 chapters of an introductory Lisp text. The
Lisp tutor represents a relatively large and stable intelligent tutoring system.

The Lisp tutor was developed to serve as a real-life application of the ACT* model of skil
acquisition (Anderson, 1984). One goal was to teach Lisp more effectively but a second goal was to
collect detailed data with the tutor on the course of skill acquisition in a natural setting. The tutor
proved successful on both counts. Evaluation studies have shown that working with the tutor is more
effective than doing the same exercises on your own (Anderson et al, 1990). In one study, students

using the tutor completed the exercises in a little over half the time required by the students working
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on their own and scored equally well on a posttest. In the other study, students completed the
exercises 30% faster and scored 43% higher on a posttest. It should be noted, however, that the
tutor is not as effective as a human tutor. If the student repeatedly makes errors that the tutor cannot
recognize or repeatedly makes the same type of error, the tutor will tell the student what code would
work in that step, explain why and fill in the code for the student.

More recently, Anderson and his colleagues reflected back on the 10-year history of tutor
development based on ACT* theory (Anderson et al, 1995). Much of the ACT* theory was conceme:
with the acquisition of cognitive skills and was tested in the domains of proof generation in geometry
and initial programming skills in LISP. The theory holds that a cognitive skill consists in large part of
units of goal-related knowledge. Cagnitive skill acquisition involves the formulation of thousands of
rules relating task goals and task states to actions and consequences. The theory employs a
production-rule formalism to represent this goal-oriented knowledge.

The authors reflect that they have come a long way from their original goal of putting the ACT*
to atough test. The empirical data harvested has played a major role in leading to a new ACT-R theory
They have totally abandoned the original concept of tutoring as human emulation. "We now conceive
of a tutor as a learning environment in which helpful information can be provided and useful problems
can be selected. We are able to take actions that facilitate learning because we possess a cognitive
medel of where the student is in that task (p. 202)." Ten ysars later, it appears that the cognitive
modeling approach still seems viable and important in new applications of cognitive tutors.

Summary

Current user models are too simplistic and too static to reason effectively about human
learning. Before a student begins to work with a tutor, for example, control issues need to be
addressed concerning the acquisition of and reasoning about pedagogy, domain topics, and machine
responses. A negotiation process whereby student commitment and motivation are addressed
precedes any instructional or learning interaction. Once a student begins to interact with the system,

different issues need to be addressed about the dynamic analysis of student behaviour, automatic
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diagnosis and remediation, identification of appropriate pedagogical strategies and generation of
effective responses.

On the other hand, Collins (1996) maintains that there may not be a need for such deep,
sophisticated student models. He argues that effective teaching depends on more than the diagnos
of student errors. One needs to know not so much why students got into trouble in the first place but
rather how to best get them out. To this end, he feels there should be far less emphasis placed on
augmenting the intelligence of an instructional system. Instead, the focus should be on the
interactivity students can have within the system (both with the system and with other participants).
The best way to model the student is to pick up enough clues on where he has been, where he wants
to go and then prescribe the best supportive structure to help them reach their goals. Thus the
collection of pertinent on-line learner data during real-time (i.e. as they are interacting with the
computerized learning environment) may yield more useful data for pedagogical prescriptions than th
more traditional approaches to learner modeling.

From the traditional approaches to learner modeling in the fields of educational psychology,
cognitive science and artificial intelligence, the subset of learner variables used in this study have bee
established. The method of learner modeling, however, is based on a novel approach that has begur
to appear in some of the literature addressing alternate approaches to learner modeling in the field of
artificial intelligence. These are described further below.

Aiternate Approaches to Learner Modeling in Artificial Intelligence

Several new approaches to learner modeling have been developed in recent years. Four nev
methods based on advances in computational reasoning appear to be quite promising: constraint-
based models, fuzzy diagnostic models, Bayesian probability models and pattern-recognition based
models.

Constraint-based models represent leamer knowledge as constraints upon expert or correct
knowledge. This is an extension to the overlay model with more sophisticated reasoning about

domain concepts. This approach can also recognize creative or novel solutions and allow freer
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exploration of the subject matter by learners. Disadvantages include viewing the leamer as a 'buggy’
expert and applicability to procedural domains only (Ohlsson, 1992).

Fuzzy diagnostic models use statistical procedures to represent different levels of knowledge
by a probabilistic distribution. This allows for a much finer-grained tutorial intervention (Hawkes et al,
1990; Katz et al, 1992; Self, 1990). Bayesian probability models represent learner characteristics by
using conditional probabilities involving either linear or multiple regressions. Data is collected and then
the probability that a leamer knows a particular set of problem-solving rules is calculated.
Disadvantages of both these statistical approaches include the high computational requirement and
the labor-intensive definition of probabilities (Katz et al., 1992).

An exploratory effort is underway at the University of New Mexico (Kaplan and Rock, 1995) in
the diagnosis of student subskill errors. The system's goal is to find whether a genetic algorithm could
automatically produce a good guess as to which subset of subtraction subskills a student lacks. Van
Lehn and his colleagues (1994) are using a new approach to student modeling called OLAE (On-line
Assessment of Expertise) which uses Bayesian networks. These newer approaches are using new
techniques but treating the same type of leamner data. As aresulit, they are all domain-based learner
models. A different perspective can be found in the human-computer interaction literature, as
described in the next section.

In his most influential paper, Self (1992, p. 281) advocated the need for a new discipline he
called Computational Mathetics (CM) defined as "the study of learning, and how it may be promoted,
using the techniques, concepts and methodologies of computer science and artificial intelligence."
Pattern-recoghnition techniques have been used in a limited fashion in learner modeling applications.
Most have consisted of enhancing learner models developed using more traditional methods such as
ITS. Some researchers have used pattern recognition capabilities in the form of induction from a
series of examples (rather than deductions from a priori coded rules) in order to update student models
and to overcome the "brittleness"” of rule-based systems (rejection of a rule when any deviation is

detected in inputs). Machine leaming techniques refer to systems that are able to generalize from a
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set of examples. They appear to represent the most promising new development in the field of learn
modeling and are described below.
Machine Learning- based Learner Models

Holt (1990) conjectured on the possibility of using neural network models in ITS by applying
them to the pattern recognition task of classifying students to provide some temporary resolution to
the intractabie student modeling problem but felt that this was mere speculation at this stage. Machii
leamning techniques, notably neural networks, have since been used to observe on-fine learner
behaviors in order to deduce types of learners (Woolf and Murray, 1992). Neural networks are artifici
intelligence software that can learn based on the use of historical data with weighted criteria. They
represent a more effective means of doing basic pattern recognition or predictive types of
methodologies that are alternatives or extensions to statistical modeling.

Naural networks provide significant advantages in problem processing problems that require
real-time encoding and interpretation of relationships among high-dimensional variables. A neural
network’s ability to change its connections in response to experience makes it an ideal tool for
modeling cognitive processes in the brain and also gives insights on how the brain might store
information as memories (Allman, 1989).

An artificial neural network (ANN) is an information processing paradigm that was inspired by
the way biological nervous systems such as the brain appear to process information. (Michalski, et al
1983) The key element of this paradigm is the novel structure of the information processing system. |
is composed of a large number of highly interconnected processing elements (neurons) working in
union to soive specific problems. ANNs learn by example. An ANN is configured for a specific
application, such as pattern recognition or data classification, through a leaming process. Leaming in
biological systems involves adjustments to the synaptic connections that exist between neurons. Thi
is true of ANNs too.

Their benefits include:

* generalization: neural networks can produce good results from exposure to known data

even while working with incomplete or inaccurate input;
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« ability to learn: neural nets are trained rather than programmed so their performance improv

with experience;

* parallelism: they can leverage performance and fault tolerance;

* speed: using neural technology is quicker than scanning data when trying to locate trends;

* performance: neural nets can improve performance over time;

« data importance: they can evaluate many factors and ignore those not providing value,

« timeliness (perhaps the most important benefit): they enable analysis of conditions and

diagnosis in real time.

On the negative side, neural networks require extensive data pre-processing. Since they us
number, not text, the ranges of variables must be carefully scaled. There is a steep (human) learning
curve. Although they are good at pattern recognition, they are poor at computational tasks. There ar
cases where neuronal models are difficult to interpret.

ANNs have been applied to an increasing number of problems of considerable complexity.
Their most important use is in solving problems that are too complex for conventional technologies:
problems that do not have an aigorithmic solution or for which an algorithmic solution is too complex 1
be found. ANNs are thus well suited to problems that people are good at solving but computers are
not, such as pattern recognition and forecasting trends in data.

Machine learning techniques were initially formulated to enable computer-based systems to
acquire correct concepts and procedures automatically, as a way to overcome the knowledge
acquisition bottle-neck in expert system development (Gilmore and Self, 1988; Mengel and Lively,
1991; Michalski et al. 1986; Posey and Hawkes, 1988). Systems were developed that could learn fro
examples. Van Lehn (87) was one of the first to use this approach to model human leaming. His
SIERRA system represented an alternative data-driven way of modeling users instead of a priori
programming of modeis of correct and incorrect behaviours. The underlying assumption was that

student learning could be represented as a set of procedural rules. However most attempts were still

58



fairly domain-based. They used student data to update the domain-specific knowledge base in order
to produce a student model that better accounts for student behavior (Wilkins et al, 1986).

More recently, machine learming models have been combined with knowledge-based
techniques in a promising new direction for learner modeling (Nichols et al, 1995). Researchers have
used a neural network to diagnose student errors in an ITS. Since there can be more than one
explanation for a given student error, competing interpretations are tested out and the most likely
explanation is selected by the machine leaming system. Woolf and Murray (1992) made use of
machine learning mechanisms to inform and update a leamer model. They enhanced the capability of
the model to acquire new information and new representations through cases. Nichols (1995) also
proposed the use of neural networks to perform cognitive assessment. In this approach, the neural
network is treated as a black box that can be trained to classify response pattems as to underlying
cognitive skills. Holt et al (1990) proposed neural network-based ITS that use pattern recognition to
identify students and to classify them based on their responses. Ur and VanLehn (1995) developed
an ANN-simulated student to train human tutors.

A student model must reflect changing knowledge and spontaneous reorganization of that
knowledge and continually reassess student knowledge. Traditional inferencing mechanisms alone
cannot easily do this type of dynamic learner modeling therefore some type of student behavioral trace
is needed.

On-line Leamer Analysis Using ANNs

A study at the Armstrong Lab (Sorensen, 1993) used artificial neural networks to determine
novice-expert categories. Beale and Finlay (1989) used a neural network to model a leammer for an ITS.
This is example-based rather than knowledge-based and has greater generalizability as well as the
ability to handle noisy data. The input vectors are different classes of interactions (e.g., types of errors,
commands, selected menu options) and the output is the best fit pattern (novice or expert). Novice
users tended to have a high number of help requests, conceptual errors and definition requests when
usage was logged over a three-month period. In this way, Beale and Finlay's system was able to

distinguish between novices and experts with statistically significant ditferences based on an analysis
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of the trace or cognitive audit trail left by students as they interacted with the system. Woolf and
Murray's (1992) minimalist approach to student modeling can also be seen as a mapping from

observed student behaviour to hypotheses about the student's mental state. This is a difficult process
that requires complex technology to be able to observe and make inferences about on-line learmer
behaviour. A trace facility that can automatically track student actions and feed this as input data to a
neural network should be able to render the learmer model dynamic. Such up-to-date contextual
information can then be added to existing information on the learner and be used to make instructional
decisions about that particular learner.

Other authors have begun to mention the possibility of using neural networks in sophisticated
learner modeling applications (Holt et al, 1984) There have been some recent studies done on the
use of Al-based pattern recognition to analyze learning activity in hypertext environments (Sun et a,
1995) in order to then adapt instructional interventions. These systems integrate a large amount of
quantitative data (navigational sequence and elapsed time) into a dynamically updated student model.

Another group of researchers (Stacey et al, 1991) have been collaborating with the IBM
Canada Usability Lab to conduct neural network analyses of human-computer interaction. Their goal
was to test the usability of software systems by gathering objective data on time spent and options
used within the software to detect any usage problems. The results obtained were quite useful;
however, they had a very small data sample of only six users.

At the Praxis Technical Group (Millbank, 1996), neural networks have been used to monitor
trainees' performance in simulated industrial systems. The data collected provides information on a
given trainee's knowledge and ability. Based on this information, trainee suitability for the job is
determined. Praxis makes use of this system to market a better way to screen job candidates than
traditional resumes and interviews which tend to focus on educational background and more subject
information about the applicant.

Harp et al (1995) described a novel application of neural networks to model the behavior of
students in the context of an intelligent tutoring system. Self-organizing feature maps were used to

capture the possible states of student knowledge from an existing test database. The trained network
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implements a universal student model that can be applied to rapidly assess the knowledge of any
student and chart a path from lower to higher states of expertise. A Kohonen feature map was used in
order to deal with incomplete inputs. Unlike multilayer perceptron neural networks, Kohonen feature
maps are not virtually uninterpretable black boxes. A map unit represents a knowledge state and the
weights associated with the unit indicate whether or not a student in that state is capable of correctly
answering the problems.

Mukhodpadhyay et al (96) describe an adaptive information filtering system that makes use of
learning agents for user profiling. The user profiling learning module consists of a leaming agent that
interacts directly with the user. This subsystem sorts incoming documents according to its belief of the
preferences of a particular user. To accomplish this task, the leaming agent maintains and updates a
simplified model of the user. The user is modeled by means of an estimated relevance vector, which is
used during the learning phase to sort the incoming information. On the basis of limited user
feedback, the user's concept of relevance, the learning agent updates its estimates so as to improve
its performance even while interacting with a less than certain user. The agent is assumed to have no 4
priori  knowledge of the user preferences. This model has been applied to filtering internet messages
and has shown very satisfactory results. The system is able to learn and adapt its filtering action to
achieve the goal of delivering relevant information to the user with a high level of performance.

At the University of York, Finlay and Beale (1991) have explored the use of neural networks in
the area of dynamic user modeling. User modeling is required in order to provide systems which can
customize their response according to their knowledge of the user. Traditionally such modeling is
performed using knowledge-based techniques, which aithough powerful, have associated problems
of knowledge elicitation and domain dependence. Based on the observation that user modeling can
be viewed as a classification problem in which users are placed in one of a number of predetermined
categories depending on their behaviour, a neural network can be applied to the problem. An
associative memory was trained on examples of user behaviour (trace data) and then used to classify
users according to their interaction with the system. This approach can be applied to the static analysis

of trace information (e.g., interface evaluation).
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Beale and Finlay used a neural network to model a leamer for an intelligent tutoring system.
They interpreted user actions in order to provide appropriate responses. User patterns were extracte
from traces of users' interactions and a neural network was used to classify them. This allowed for
greater generalizability as well as the ability to handle noisy data. They used an ADAM network
architecture (Advanced Distributed Associative Memory). The input vectors represented different
classes of interactions and the output vector represented the best fit pattern. Features within an
interaction, such as a command, type of input (example, review etc.) or type of error were used to
classify the entire pattern. Statistical analysis showed the two groups classified by the network to be
significantly different. These two groups could then be identified as novice or expert users. of the
target system. Novices tended to have a higher number of help requests, of conceptual errors and
definition requests. Usage was logged over three months for four experts and four novice users. Tw
different tasks were used: learning how to use a UNIX system and learning how to use an e-mail
system. A given pattern represented over 100 interactions per user. The ADAM network was trained
using these as examples. 176 traces were abstracted and presented to the network for classification.
Four runs were performed for each pattern, using a different randomly chosen example set. A
cardinality of eight was used to classify the traces. The network correctly recognized 56% to 87% of
users and tasks.

Trace data refers to the physical evidence that is left behind as an unintended artifact of
human-computer interaction. The advantage is that it is unobtrusive and therefore does not interfere
with ongoing behaviour and flow of execution. It is not likely to be affected by participants' awareness
of the research. On the other hand, trace data is not very versatile and it may not be available for
concepts to be studied. It is often quite loosely associated with the concepts it is alleged to represent
itis time consuming to gather and process trace data, especially if there is a large amount of data that
may be discarded. This technique has not been extensively used in the behavioral and social
sciences.

Trace data yields a keystroke-level model. Individual keystrokes, mouse clicks and other moto

activities are analyzed in human-computer interaction dialogues. This is an empirical way to build a
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cognitive model of the task at hand and to assess the time required for experts and novices to perforn
the task.
Summary

Sandberg (94) discusses two major theoretical stands concermning the nature of cognition. At
one end of the spectrum we find Anderson, Ohlisson, Elshout and VanLehn and others who conside
the individual agent as the unit of analysis, irrespective of the environment. At the other end we find
those that argue that it is impossible to perceive the individual in isolation, the individual is an
inseparable part of the larger environment: for example, Collins, Schank and Pontecorvo. The
individualists are mainly interested in fundamental questions concerning the nature of cognition as it i
manifest in individuals. The contextualists share an interest in cognition in a much broader sense: ho
is (individual) cognition embedded in a larger context?

With regards to student modeling, a trace facility may just record exam results but it could also
produce a detailed learner model in real-time during the learning process. The learner model
represents aspects of the learner relevant for the learning process e.g., learners' misconceptions. Th
cognitive state of a leamer may also be modeled as well as the transitions between states. Most
researchers, he states, no longer believe in real-time student modeling, aithough for differing reasons
The individualists explicitly state that it is not a very profitable endeavor. Anderson claims that detailed
knowledge of students’ errors and misconceptions forms no basis for better instructional decisions.
The contextualists simply consider real-time student modeling to be too difficult.

Sandberg maintains that it is not necessary for learner modeling to take place during the
running of an educational program. VanLehn emphasizes the need for good computer models of
learning. Others favor the construction of artificial companion leamers. Such machine-learning
programs can be elaborated to make simulated students who can then be trained and used to try out
different types of instruction. Anderson expressed an interest in having a simulation program of a
particular learning process which could interact with one of his tutoring programs to see whether it
would leam from the tutor. Student modeling is thus no longer seen as a support function for learners

but as a method facilitating the design of better learning materials and environments.
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Trace analysis is very important within the contextualist perspective. To be able to teach at
critical events means observing closely what is happening. Modeling the leamer in a context in order
to study what is happening will require new methodologies. Assessment of leamers is a new area of
interest for contextualists.

Although the field of education and technology seems more divided than ever, theoretically
and practically, it is Sandberg's opinion that we should avoid the emergence of two strands of researc
that do not talk to each other. We should aim for a clarification of the implications of the stated
differences (Sandberg, 94). The following section outlines how the systems approach to learmer
modeling undertaken in this study represents an attempt to unify learner modeling research from thre
disparate fields of study: educational psychology, cognitive science and artificial intelligence.

Learner Modeling Approach

A truly adaptive leaming environment would be one where all its components could adapt
dynamically to the student by taking into account personal factors, cognitive styles, strategies and
prior knowledge (van der Veer, 1990) as well as the leamer’s mental model of the adaptive system
(Gentner and Stevens, 1983). The relative usefulness of each source of information about a learner
will vary. Thus their evaluation will necessarily always be relative or contextual. However, the objective
of this study is not to compare one with the other. Rather, the objective is to undertake a holistic
approach to lsarner modeling, one in which all possible sources of information about a learner are
integrated. The development of such a general framework for iearner modeling will make possible
synergy between the variety of literature addressing this problem.

This research represents preliminary work to be done in addressing the question of adaptive
user modeling. No intelligent communication can take place without some understanding of the
recipient of the information (Clemson, 1984). The adaptability of any system is largely determined by
the coverage and accuracy of the information contained in the user model. Ideally, this model should
include all aspects of the user's behaviour and knowledge. This is not an easy task for humans let

alone machines which have a much more constrained communication channel. Craik's (1943)
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fundamental contribution to cybemetics was to point out that a machine could best interact with its

surroundings if it could use an internalized abstraction of relevant aspects of its environment.

Leamner Modeling in Erqonomics

The importance of behavioral analysis and empirical evaluation in the design of computer
systems has been recognized widely in the field of human-computer interaction or ergonomics
(Baecker et al., 1995). Ergonomic analysis explores usage patterns and uncovers where interface
design was successful and where it was flawed. Trace code is inserted into the prototype interface in
order to unobtrusively and anonymously collect data about users' actions. This field aims to assess
trace data as the system is being used in order to provide users with responsive intelligent defaulits tha
adjust themselves as user populations and needs change.

This type of user model is referred to as a keystroke-level model. Mouse movements and
other motor activities are monitored in a human-computer dialogue. This represents an empirical way
of building a cognitive model of the task at hand or for assessing the time required for experts and
novices to perform given tasks. For example, Egan (1988) reviewed a variety of ways in which
individuals differ in their use of computers. He found that people clearly differed in their rate of
learning, speed of retrieval and reasoning strategy used.

From the ergonomic perspective, user behaviour is seen as a function of the task requirement,
the procedural knowledge , the content and the dynamic control elements of a computer system.
Common patterns of mental activity are assumed to give rise to similar patterns of user behaviour.
Much of interface design is built around the premise of the ‘typical user.' The problem is that there is
no such thing - both tasks and users vary with respect to knowledge, and they both change over time.
People want systems that conform to their preferences at the individual, group and organizational
levels. One response to this has been in the design and development of intelligent interfaces. These
are more active because they take the initiative to adapt the interface or its interaction model to fit the

perceived needs of each user. Early systems represented anticipated user behaviours on the basis of
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statistical averages. Later systems constructed dynamic or adaptive models of the individual users ar
task domains (Benyon and Murray, 1993).

Statistics-based interfaces dynamically reconfigure menu hierarchies (e.g., place paste after
cut). They define probability distributions based on access frequency and recency of selection. Eac
act of selection alters the distribution therefore the interface is dynamic and evolves with time
(Greenberg et al, 1994).

Adaptive interfaces incorporate user modeling instead of statistics and are to be found in
intelligent tutoring systems and coaching systems. The goal(s) of the interaction are known (concept
to be leamed) by the means to reach them are not. We can therefore expect to model students, to
customize the curriculum and to make suggestions. Intelligent tutoring systems are a variation of actiy
help systems: they detect and flag user inefficiencies, compare these to buggy or erroneous models
interrupt and advise without being annoying.

The problem is trying to do too much with too little: system inferences made by monitoring
user interactions are typically information-poor and often contain errors. The system and the user are
both trying to model each other at the same time which means both are in a state of flux and neither cz
reach a stable state (a phenomenon known as hunting). Users may feel a lack of control when the
system takes over. Incorrect assumptions or modeling may have serious consequences. The field of
learner modeling has evolved, on the one hand, from strictly domain-based models which view the
learner as a faulty and incomplete subset of the domain expert and strictly learner-based models whic
endow the learner with fixed domain-independent leamning styles to, on the other hand, a more
dynamic and more holistic learner modeling framework, one which views the learner in terms of learnet
characteristics and leamer behaviours. Among the trends predicted for the next few years is greater
customization of learning based on user profiling of user needs and how well students progress
through leaming materials (Wohl, 1996).

Self (1987) was one of the first to point out the potential of applying machine learning to
student modeling. He felt that the availability of large databases of information that a student could

browse through at will (today's hypertext environments) would provide a wealth of information about
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the on-line learning behaviour of a student. This coupled with new technologies to monitor a student's
exploration of learning will enable us to design learning environments that can intelligently intervene to
enhance learning.

Livergood (1991) points out the value of incorporating learning theory, learning outcomes and
effectiveness of different kinds of materials in leading to the development of skills in the learner. He
attributes this to the fact that most ITS were developed by persons with little interest in instructional
efficiency. He recommends that user models take into account the specific learning style of the learner
from his input and his past record of achievement within the systems.

Shute (1996) states that individual differences in leaming are due to a diverse number of
cognitive aptitudes such as reasoning, creativity, personality style, motivation, working memory, and
learning styles. In order to individualize instruction by modeling the leamer. We need to know not only
about emerging learner skills and knowledge but also the incoming aptitudes possessed by learmers.

In early experiments, Shute (1989) found that individuals differed in their propensity to ask for
help, hints and advice. She used ITS applications as controlled instructional environments in order to
learn more about learning criteria measures including behavioral measures. Learning efficiency is
thought to be mediated by memory, processing speed, prior knowledge and skill. The main research
question she addressed was how do learner characteristics relate to leaming behavior, efficiency and
outcome. She kept statistics on the frequency of use of the help function. This type of system
provides an excellent AT research testbed as different instructional treatments can be used with the
same leamners.

More recently, Shute (1996) described two different types of approaches to student
modeling: a microadaptive approach and a macroadaptive approach. The microadaptive approach is
the standard approach that represents emerging knowledge and skills. The computer responds to
updated observations with a modified curriculum that is minutely adjusted, dependent on individual
response histories during tutoring sessions. This is the more prevalent form that focuses primarily on
domain-specific knowledge. The macroadaptive approach is an alternative approach that involves

assessing students prior to their use of the tutor, and focuses mainly on general, long-term aptitudes
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such as working memory capacity, inductive reasoning skill and impulsivity etc. Combining these two
approaches enables the system to adapt to both momentary and persistent performance information -
to domain-specific knowledge and general aptitudes.

The proposed systems approach to user modeling therefore adopts a macroadaptive
approach to test the predictive value of a subset of key variables from educational psychology,
cognitive science and artificial intelligence learner modeling perspectives. There is a continuum to the
degree of intelligence that can be integrated into performance evaluation aids. At the low end, manual
data trapping and analysis can be done through preprogrammed routines. This can be augmented by
regression analysis tools and adaptive testing capabilities to apply more sophisticated statistical
modeling and question selection techniques in the measurement of student performance. At the
most intelligent end, there can be automated pattern recognition, with embedded pattern recognition
capabilities to continually note tendencies in student performance. The latter can form the basis for
extremely responsive instructional strategies (Allen and Szabo, 1990).

Most models of leaming in the field of computer learning are considered to be psychologically
invalid (Biermanet al., 1991). itis astonishing that hardly any relevant empirical research exists that tries
to evaluate the extra value of a dynamic student model. Most experiments do not compare the
dynamic model with a static model, but rather with no model at all. Furthermore, they do not control for
task. There is ample evidence that computer assisted education is more effective than some
classroom teaching. However, when comparing computer-assisted teaching with individual human
coaching, it appears that the human is more effective than the computer. (Bloom, 1984) In the first
place, a human coach is not limited by a restricted bandwidth. Secondly, the coach may display more
affective states such as enthusiasm and they are armed with a much wider repertoire of possible
remedies for possible leaming problems(Laurillard, 1988). There appears to be a general feeling of
impasse in the field of ITS. Some claim that radically different architectures are needed (Self, 1990).
Others try to reconcile the field with more open-ended learning environments (Elsom-Cook, 1990 and
others). Bierman (1993) suspects that one of the underlying reasons for this feeling is the implicit

recognition that research on complete and truthful cognitive student models, one of the key
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components in traditional ITS architectures, has shown hardly any progress and that serious doubt
exists whether this progress can be expected in the short term or at all.

Research indicates that human tutors do not invest much in building a model of their student,
unless it is for students with evident leaming problems. This is likely due to the fact that they already
have a set of micro stereotypes available for quick matches. These micro stereotypes were likely
accumulated through experience and relate to known learning challenges present in particular learning
tasks. In fact, deep student modeling and error/misconception diagnosis may be required only for this
and other special subgroups of leamners (Bierman, 1993). The answer seems to be to forget about
detailed cognitive student models, at least for the time being, and to focus on a global classification of
the student in a number of subgroups. This is not only similar to the behaviour of human tutors but it
also appears to be the most successful way to model users of non-educational systems. These models
do not pretend cognitive validity but they appear to be useful for the task at hand. Bierman refers to
these as less intelligent tutoring systems (LITS) which use rough classification, and proper localized
diagnosis and adaptive feedback .

One of the ultimate aims of intelligent computerized learming environments is to constantly
adapt to the students needs and to keep them at the edge of their learning frontier - that is, beyond
what they already know but not too far beyond that the knowledge becomes unintelligible. (Duchastsl,
1992). This is quite akin to Vygotsky's zone of proximal development. In conceptual terms, the
material must be new but nevertheless fit within a familiar cognitive structure and thus remain
meaningful. One of the best uses of an interpreted student trace, or student model, may be to
provoke the student continually into this zone of optimal learning. Some studies have begun in this
area, for example, Gegg-Harrison (1992) who has developed an ITS for Prolog tutoring that measures
the student's knowledge zone in order to provide instruction that is truly adapted to the capability level

of the student.
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CHAPTER 3. RESEARCH DESIGN
Scope of Study

This work represented a preliminary look at and analysis of characteristics of learners
that appear to be useful parameters when included in a leamer model. it is hoped that the
subset of leamer variables which emerged from this analysis will guide the development of
adaptive learning systems which are better able to match learner characteristics with fiexible
pedagogical modeling techniques. Although the present analysis necessarily confined itself
to a select few manifestations of variables assumed to have an impact on leamning, the long
term goal of this line of research would be to create systems which can accommodate different
course content, different learner populations, and different instructional designs. Finally, a
new methodology was developed, tested and implemented whereby neural networks were
used to assess and identify categories of prototype learner behavior and juxtapose these
results with the categorization process of several leaming style inventories and actual leamer
performance.

Two distinct studies were conducted: the first study (Study [) represented a pilot study
whose purpose was to evaluate formatively the materials used (software, questionnaires,
tests, instructional design and course content). This extensive pilot study served to establish
a sound foundation for the collection of data to be used in the second study. The second
study (Study Il) generated the data used in the analysis of resuits.

Study |
Tarqget Population

The accessible population of candidates included students and professionals (such as
computer scientists, project managers and software engineers) interested in learning about
the field of neural networks The neural network course content was designed such that, in a
slightly modified form, it could be used by the general public wishing to learn more about the
field, or for people considering a career in knowledge engineering (e.g., as a career

counseling tool, an aptitude-testing tool, or to determine whether neural networks would be an
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appropriate technology to use for a given problem). Thus, no prior knowledge of the field was
assumed.
Sample
The first study consisted of two groups: one made up of UQAM students registered
for Expert Systems and Decision Support Systems courses in the Bachelor's program in MIS,
and a second group was made up of volunteers from a research centre, CWARC, which has
since been renamed CIT! (Centre for Information Technology Innovation). The total sample

size for Study | was 91 students (refer to Table 2 below).

Table 2. Study | Sample Groups

Session Sample size Date of experimentation
UQAM students 69 October 1992
CITi group 22 September 1993
Total 91
Materials

Learing environment software (HIT)

A computer-based neural networks training course was developed for use in this
study. The training material was designed and developed using HyperCard. Programmers
were hired to develop the necessary software environment. Formative evaluation of course
materials was carried out with the collaboration of subject matter experts as well as through field
tests with trial user groups. The learning lab was run on a Macintosh microcomputer platform.

The computerized format is particularly appropriate as this is a commonly used format in
most self-paced learning contexts. In addition, a computerized delivery system provided an
automatic trace of student interactions with the learning materials. The latter is needed for use

as data to be analyzed (see Procedures section for details). The HIT hypertext tutorial system
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and the user modeling components were run concurrently (i.e., user model acquisition was
largely performed while the user is reading the current text object in order not to interfere with
student interaction with the learning materials).

The software environment underwent a number of changes based on the results of
beta testing with the participants of the pilot study (Study I). The first version (HIT 1.0) was
operational in October 1991. This was a rule-based approach to trace analysis and was
developed using the software shell Nexpert. Much greater flexibility was required so a neural
network was incorporated into the rule-based system. MacBrain was initially used as the
development tool but was found to be too limited. There was no access to the source code, it
was not possible to make an unlimited number of run-time copies without incurring significant
costs and the network algorithms provided with the tool were not entirely appropriate to the
analysis required. Unsupervised leaming is required and the tool provided only backward
propagation algorithms. As a result, it was decided to program the entire environment in a
neural network developed from scratch.

Version 2.0 was operational and 85% debugged in April 1992. The software was
redesigned using object oriented methodologies. However, a problem was encountered with
local minima occurring. The network would group students when sufficient data were gathered
to optimize locally; this is a common problem encountered in optimization techniques and the
major shortcoming is that a global min/max may never be detected when this occurs. This also
prevented the network from storing all the data that were generated during the course of
students interacting with the software environment.

In August 1992, an induction table was added to the neural network. This simulated
rule-based reasoning and allowed the resolution of the local minimum problem. The systems
operated at 39% robustness as system errors were quite rare. Hypertext was added to the
general text function (words in parentheses were hot buttons that could be clicked on in order
to obtain a definition). A hypertext glossary was also made available on-line (words within the

definition could be clicked on to lead to other cross references). The HIT learning environment
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was segmented into six distinct modules: a job aid or browser (allows users to go through
course materials at a high level, without any testing of knowledge acquired), a computer-based
tutorial on neural networks, a course authoring module (to modify the existing neural network
course or to input new courses), a neural network editor (to allow users to design and develop
their own neural networks), the trace analyzer (to collect and analyze temporal and keystroke
data generated during interactions) and a statistical analysis module (to conduct factor analysis,
principal component analysis, discriminant analysis and canonical correlation on data
generated). Version 4.0 was used for the data collection in Study Il. This version was
operational in January 1993 and included color version, PC version, Macintosh PowerBook,
Quadra and PowerPC versions.

Student Trace Facility

An extensive record keeping function was implemented in order to monitor how the
student interacts with the training materials. A sample of such data items included: temporal
data (time to complete training, to complete a particular lesson, a test), sequence data (initial
topic chosen, sequence of menu option selected for a given topic: example, test then review)
and evaluation of progress (self-evaluation, comprehension tests, number of lessons
remediated).

It is expected that each on-line monitoring of student learning will yield a large number
of data items for each leammer. The Beale and Finlay (1989) study found over 700 items for
each student. A neural network, together with other statistical analysis tools (Statistica for the
Macintosh, SPSS for the PC), was implemented. The data items (or some subset of them)
served as inputs to the neural network which then identified distinct usage patterns of
students. This provided an alternative means of assessing student cognitive styles, or of
verifying style assessments based on self-report learning style instruments. The neural
network can thereby help to check whether the self-reported categories represented actual

clusters of hehaviours.
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The neural network placed individuals into categories based on common tactics used
in interacting with the software (trace variables). The Kohonen neural network architecture was
used (see Appendix E). In order to address the ordering bias problem with this architecture,
input order was varied until groups obtained were stable at a level over 90%. A self-monitoring
function that does the group stabilization procedure automatically was programmed into the
network itself.

Pedagogical Model

The training courseware allowed the learner the choice of selecting their own path
through the learning materials (maximum learner control) or of allowing the computer to guide
them (system-guided learning). This in turn enabled the investigation of learner control as a
potential critical factor in learning pattern differences. For example, the initial screen displayed
approximately five possible objectives or lessons the leamer could choose from, or they could
elect to let the computer "suggest" a topic for them. Within a given lesson, the student could
chooss to do a number of things: see an example, try an exercise, look up a term in the
hypertext glossary, ask for help, ask for additional information, ask to review previously studied
materials or change topics.

The instructional design was modified, based on comments from professors, other
subject matter experts and 'novices' involved in the beta testing of the environment. Quiz
questions were added at the end of each of the five sections. This replaced the auto-
evaluation in the previous version (where participants were asked to rate their own
understanding of the material on a scale of one to five). There were a maximum of three quiz
questions for each section and it was optional (students could answer as many as three or
none at all). Mora illustrative examples were added to each of the five sections, in the form of
sample designs, applications, diagrams and facts and figures. An "elab_info" button was
added for those students seeking supplementary information on topics of interest as well as

references to additional readings.
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Students were also given the choice to be guided in their choice of lessons or to
choose from a lesson menu. The guidance option was available throughout the interaction
(e.g., some students chose to be guided and remained in guided mode throughout, others
were guided for a few lessons, then chose their own lessons).

A 'defer posttest’' option was added, to allow students the choice of deferring the
posttest and going back to any or all of the five lessons before taking the posttest. More
sophisticated help features were added based on questions that were asked of technical
assistants during Study | testing. In addition, if time permitted, students were also given the
chance to apply what they had learned. Students could choose to develop a neural network
using a neural network editor that is provided with the learning iab.

Subject Matter

The course content consisted of both the theoretical basis for artificial intelligence
systems as well as a more practical orientation. The |AKE Handbook of Theory and Practice
(IAKE, 90), as well as the IAKE Knowledge Engineering Certification Exam provided some of
this material. IAKE (International Association of Knowledge Engineers) is an organization that
offers professional certification in knowledge engineering. In addition, a number of widely
used reference books in the field were used to complete the theoretical content. The
practice-oriented content was based on a task analysis of professional knowledge engineers
that was done as part of this study as well as an analysis of leaming difficulties experienced by
novices. UQAM professors validated and contributed to the course materials to be used.
Tests

The rather low scores of the pilot group on both the pretest and posttest indicated that
learners did not have the prerequisite knowledge it was assumed they had. The course
content was thus modified, particularly the first lesson (Introduction), to introduce better
concepts and definitions. A short pretest of 10 multiple-choice items and five short answer
items was developed and used to assess students’ prior knowledge of the subject matter.

This contained some items found on the IAKE certification exam. A posttest of similar structure
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was developed and used to assess whether or not learning objectives had been met upon
completion of the training. items for the pretest and posttest were selected from a pool of 20
multiple choice and 10 short answer questions using a stratified random sampling approach in
order to ensure equitable distribution of questions across lesson modules.

item analyses were conducted in order to improve upon these tests. The first version
of the pretest was 12 multiple choice questions that proved to be too general (about the field
of artificial intelligence in general). The initial version of the posttest consisted of six short
answer questions which proved to be too difficult for the majority of students. As a result,
questions which were not directly relevant to the course content, correlated questions and
questions that were too difficult were eliminated. The second version included a good range
of item difficulty. All items were matched to specific lesson objectives in each of the five lesson
modules and no floor or ceiling effects were detected.

Differences in pretest and posttest scores were used as a measure of learning. Test
scoring was: five points for each muitiple choice question and five points for each short answer
question. An answer grid was developed for the short answer questions in order to minimize
subjectivity in scoring student answers. In addition, two different individuals were used to
score the short answer questions. Major discrepancies in scores were discussed amongst the
raters in order to determine if differences were due to a bias or ditferent interpretation of the
answer grid. An inter-rater correlation of 0.94 was obtained for the pretest, and 0.91 for the
posttest.

Tests of homogeneity (Chi-Square and Kolmogorov-Smimoff) proved reasonable for
the distribution of both pretest and posttest scores (for both the muitiple choice, short answer
and combined answer sets). Content validity (face validity) is expected to exist for these tests
as questions are derived directly from course content and both professors and subject matter
experts have corroborated on the items. Finally, the multiple choice questions were used to

test for recognition and the short answer items for recall.

76



Questionnaire

A biographical questionnaire was developed and administered in order to obtain data
on students' educational background (e.g., undergraduate major), work experience (e.g.,
number of expert systems developed), and demographic variables (such as age, sex, first
official language). Answers were then grouped together to form coded categories (refer to
Appendix C).

Learning Style Inventories

Two learning style instruments were used to categorize students' leamning styles: the
Kolb Leaming Style Inventory (1976, 12-item version) and the Entwistle Approaches to
Studying Instrument (1981). The Kolb instrument was chosen as one that is representative of
the educational psychology approach in that it purports to measure stable individual
predispositions to learning. The Entwistle instrument was chosen as one that is representative
of the cognitive science perspective in that it purports to measure contextual approaches
students adopt to leaming. Computerized versions were developed and administered so as to
reduce the amount of time required to complete them. Esichailkul, 1994, found that a
computerized version of the Kolb LSI required four minutes to complete.

These two instruments yielded a variety of categories and other data for all students. A
number of expected on-line learning behaviours were derived from the literature on both the
Kolb LSI and the Entwistle ASI. Essentially, this involved an inferential mapping process,
extrapolating from the characteristics identified by Kolb and Entwistle as being typical of the
different leamner types, as identified by the instruments, and the types of learning choices and
other patterns of learning behaviours that would then be expected of each of these learner
types, within this particular learning context. These expected feature usage learner profiles,
together with specific research hypotheses to be tested, are summarized below.

Kolb expected learner profiles. Individuals scoring high on the RO dimension are
expected to make greater and more frequent use of the following options: note-taking, self

testing and condense information options. The notes option allows them to reflect upon their
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experience while the self-test option allows them to observe their leaming progress. The
condense information option inciudes the outline and summary choices which help provide a
higher level structure to the learning process. These students are also expected to spend
more time in general, and in each of the options they select, which should be reflected in a
greater time on task variable value.

Individuals high on the CE dimension are expected to make greater and more frequent
use of the examples and self-test options. The examples option allows them to actively test
their own knowledge throughout the learning process. They would be expected to spend
less time on each of the options they select and in general.

Individuals scoring high on the AE dimension are expected to make greater and more
frequent use of the elaborate information and hypertext options. The elaborate information
option represents examples and definitions, which allow students to be very active during the
leaming process. The hypertext option similarly allows students to play a more active role in
the learning environment. The learning environment features did not accomodate actual
experimentation learning behaviours, other than in the form of an optional ANN editor.

Individuals scoring high on the AC dimension are expected to make greater and more
frequent use of the condense information and general text options. These options contain
mostly theoretical course content. Students scoring high on the AC-CE dimension are
expected to make greater and more frequent use of the examples option, while those
individuals with a high AE-RO score should make lesser and less frequent use of the examples
option. Finally, based on some of the results found in the literature (refer to literature review
chapter, page 34), convergers are expected to perform best in computer-based learning
environments. These students would therefore be expected to have the highest posttest
scores. They would aiso be expected to prefer system control of the lesson sequence.

Entwistle expected learner profiles. As the four Entwistle quadrants were created for
the purposes of this study, no information exists in the literature to enable specific

expectations about learner behavior to be derived. However, as these groupings are based
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on only two of the eight Entwistle dimensions (reproducing and comprehension orientations),
expected profiles were generated and analyzed for the dimensions.

Students with high reproducing orientation scores are expected to make greater and
more frequent use of the self-test and defer-posttest options. This reflects their emphasis on
being able to learn in order to do well on test materials. They are also expected to make greater
and more frequent use of the dictionary and definition options, as these students tend to
concentrate on being able to reproduce (i.e., memorize) information. They would be expected
to spend less time in learning, overall and in each of the options selected, as this particular
approach to studying tends to represent surface leaming. Students with this profile would also
be expected to show a breadth-first search strategy as they would attempt to maximize
coverage of all topics rapidly, in order to be better able to reproduce most of the content on the
posttest. These students would be expected to prefer system control of the lesson
sequence.

Students with a comprehension orientation to studying would be expected to make
greater and more frequent use of the elaborate information and note-taking options. Learners
who score high on this dimension should spend more time interacting with the materials and a
depth-first search strategy in lesson selection. These students would be expected to prefer to
control the lesson sequence themselves. As this study focused on these two particular
Entwistle dimensions, no expected profiles were generated for the remaining six orientations
to studying.

Procedures

Two UQAM professors teaching decision support system courses were contacted to
select classes for the UQAM study. Participants for the CITI study were selected from all those
who replied to an e-mail invitation that was sent out to all employees. All participation was on a
voluntary basis. Those who requested their results received a package explaining what their
learning style profiles showed. University students benefited from exposure to course

content that would be included in their final course exam. Students who did not wish to
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participate in the experiment itself were still given the opportunity to interact with the learning
materials; their trace data were discarded at the end of the session.

The experimental sessions were held in a computer lab equipped with Macintosh
computers under the direction of myself, the professor and lab assistants. The lab was
reserved for the blocks of 4-hour periods in order to minimize any external distractions to the
students. Class sizes ranged from about 20 to about 40 students. Classes had to be divided
into two in those cases where the number of students exceeded the number of computers
available in the lab (maximum of 27 at any given time).

All students were given the same five-module unit on knowledge engineering: Neural
Networks. This course material was studied in open-ended (i.e., no time limit) sessions, with
teaching assistants present to help in either technical or course-related problems. Students
each had their individual microcomputer and participated in the experimentation at the
computer lab room for the UQAM students or in a self-contained demo room for the CITI group.

All students were administered the learning style inventories and questionnaires one
week before the experimentation session in order to maximize the time spent interacting with
the course materials. Each participant was then asked to sign up for a particular time slot.

At the beginning of the experimental session, each group was given an orientation by
the professor (what was required of them, assurance of anonymity of results, introduction of
myself and assistants) as well as a brief introduction to the system (this was read from prepared
notes so as to ensure uniform information to alt participants). A diagram was provided on the
board at the front of the computer lab in order to serve as an aide-memoire for system features
(see Appendix A). Subjects were told they would be allowed as much time as they required
since time spent learning will be one of the variables to be investigated by this study. Any
questions posed by participants were answered.

Participants were then asked to complete the pretest. These were collected as each
student finished and were later scored and analyzed. Students were then asked to begin the

training session. Teaching assistants were on hand to help the students should they have any
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questions concerning system use. These questions were noted down and later analyzed. In
addition, observers in the lab took notes on any behaviours which could affect the trace data
(such as computer malfunctions, talking between students, having to leave before completing
the session). These notes were later compiled, cross-referenced to the trace data and
analyzed.

At the end of the training sessions, which students completed at their own pacs, a
posttest was administered to assess the results of the training. Some students were randomly
selected for exit interviews. These interviews followed a set of structured questions and were
tape recorded. Questions were asked concerning their experience of learning in this fashion,
whether they felt they could study as they normally would, whether they found the experience
useful and any other general comments they had. These interviews were later transcribed and
analyzed (Appendix D). A summary of the results of Study | may be found in Appendix B.

Study |I

The second study (Study II) consisted of six sessions with UQAM students to gather
the actual data used for this study. Subjects were taken from a number of sessions of a UQAM
course on Management Information Systems over the course of a three-year period (see Table
2). Participants received the results of their leaming style assessments within approximately
two weeks (if they requested these) as well as five extra course credits for participation in the
study. This may provide a bias toward an achievement orientation to studying; however, the
achievement orientation dimension of the Entwistie ASI, while collected as data, was not
addressed in the primary research questions of this study. In addition, the content covered by
the software was included on their final exam. All students followed the same course with the
same professor.

The data collection was conducted at roughly the same phase in the course (after the
mid-term examination had been given) in order to give the professor enough time to establish
a rapport with the students and cover appropriate preparatory information. Procedures and

materials developed and validated in the first study were used for all six experimentation
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sessions (see Table 3 below). Nine participants were seliminated from the study. Of these, four
did not complete the pretests and/or posttest and the remaining five did not show required
interaction patterns with the software (they spent less than 10 minutes on the course and/or
did not complete all five lesson modules).

Data collected was analyzed in its entirety. In addition, the first lesson visited by each
student was omitted and the data re-analyzed, in order to test and possibly omit any learner
behaviours related to a 'novelty effect' (i.e., explorations of all options present in the interface

due to curiosity and leaming curve associated with becoming familiar with the sofware).

Table 3. Study Il Sample Groups

Session Sample size Date of experimentation
1 26 March 1993

2 18 August 1993

3 19 November 1993

4 20 March 1994

5 45 June 1994

6 43 September 1994

Total 171

There was evidence of such a novelty effect in the pilot study. Students exhibited higher initial
interactivity levels and eventually showed more "stable” patterns. Each student had a different
length of time associated with such an effect. As a result, it was decided to omit the first lesson
visited by each student in its entirety and to run these data in addition to the entire lesson set
data. The novelty effect is likely associated with the novelty of the learning environment
(interface) rather than the course content. Students appeared to be familiarizing themselves

with all the available options before focusing more on the content of the lessons.
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CHAPTER 4. RESULTS
Introduction

This section will first present the results of the pilot study, Study I. This study was used
for formative evaluation purposes. Next, the study sessions used to collect the experimental
data, Study I, will be discussed. This analysis first addresses descriptive statistics and
demographic data obtained on the sample data used. Next, the variables extracted from each
of the three disciplines contributing to user modeling will be presented.

The cognitive science variables will be presented to assess their contribution to
explaining variance in the two primary measures (posttest score and time on task).

The learing style variables from educational psychology were assessed with respect
to posttest and time on task variance. In addition, the expected learner behaviours (as
extracted from the learning style constructs) were compared to actual learner behaviours in
order to assess the local predictive value of these constructs. The groupings based on
learning styles were also compared to on-line leaming behaviours without any a priori
hypotheses in order to ascertain whether individuals in different groups exhibited differences
in learning behaviour. All these resuits are presented in Section 4.3.

In the final section, the groupings generated by both conventional cluster analysis and
neural network classification will be prasented with respect to their contribution to posttest and
time on task variance, and to discuss differences in their learning behaviours. The neural
network classifications will be discussed in order to assess the usefulness of neural networks
to learmer modeling.

Table 58, on page 148, presents a summary of the results obtained, along with their
instructional implications, which are more fully addressed in the discussion section.

Study |
The first study was conducted from October 1992 to September 1993 and had a total

sample size of 91 students. This sample consisted of a group of 69 university students and 22
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researchers. These data were used in order to conduct formative evaluations of the materials
to be used in Study Il (refer to methods section for more detail).

Two sessions were conducted with two classes of university students. As the number
of computers available in the computer laboratory was limited to 24, each class was divided into
two separate testing sessions. Students were asked to sign up for a time. Of all the students
registered in the two classes, only one student did not show up. No student elected to opt out
of the study - that is to say, no one completed the experimentation and asked that their data
set not be used. The average session length was 37 minutes. In this group, all students
completed the materials and therefore all the data generated were used in the formative
evaluation. Randomly selected students were interviewed after the sessions in order to
assess how well the environment was able to accommodate their approaches to leaming and
studying (refer to Appendix D).

The group of 22 researchers were asked to sign up for a session and each completed
the materials within a two-week span of time in September 1993. All those who volunteered
presented themselves for the experimentation and completed all the materials. The average
session length was 68 minutes (refer to Table 4). The longer interaction time of this group was
likely due to the fact that researchers were specifically asked to formatively evaluate the system
whereas the university group was not asked to do so. This group provided more extensive
comments on the actual materials used, how the study was conducted and how they felt both
could be improved. All participants were interviewed after the experimentation session in
order to further explore their reactions to the learning environment.

Teaching assistants were on hand to answer any questions raised by the students not
related to the subject matter. These questions were noted and associated with the desk
number of the student (and hence with their data sets). The majority of questions raised
appeared to be related to how to use the interface (in one extreme case, a student had to be

instructed on how to use a mouse). This led to the formulation of a diagram explaining how to
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navigate through the system which was placed at the front of the class on a white board and
explained during the initial orientation talk for all Study Il test sessions (refer to Appendix A).

There was a great deal of anxiety expressed over failure to answer questions on the
pretest which led to the realization that students were completely unfamiliar with the concepts.
An explanation was later incorporated into the orientation talk where students were reassured
that they were not expected to be able to answer all of the pretest questions but that after

exposure to the learning materials, they should be able to answer questions on the posttest.

Table 4. Average Time on Task for Study | Participants

Group Mean SD Min Max N

students 36.7 24.5 0 102.192 68

researchers 67.6 13.4 19.4 366.3 22
Study |l

As described in the Methods section, both data and observation of procedures
gathered from Study | were used as a pilot study and formative evaluation to prepare Study Il
Data obtained in Study Il were then used in the testing of research hypotheses. The principal
changes included: modifications in the software interface, in the instructional design, the
course content and the pretest and posttests used for the actual study. The software used to
deliver course materials and to gather data on learner behaviors was iteratively improved
through pilot study testing. The neural network algorithms used were tested and refined in
order to eliminate any bias due to data input order. The software interface was simplified and
improved in order to minimize problems learning to navigate through the course materials as
opposed to interacting with and leaming the course content. The pedagogical design was
modified through the addition of quiz or self-test questions at the end of each lesson module,
an option to obtain supplementary information on any given topic, an option to defer taking the
posttest and review the content, and the inclusion of more illustrative examples for each of the

lesson topics. Finally, the pretest and posttest instruments were modified based on results of
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item analyses in order to provide a more accurate assessment of knowledge of the course
content prior to and following interaction with the course materials. Appendix B contains the
detailed results of Study | that were used to make these modifications.

The second study subjects consisted only of university students. Students were
given five marks for participating in the exercise and were told that the content would appear
on their final exams. Six separate sessions were conducted from March 1993 to September
1994. A total of 171 data sets were obtained. Of registered students, four did not show up for
the sessions. Of those who came, six participants did not fill out the questionnaire, pretest
and leamning style instruments and two participants did not interact with the system long
enough to produce a valid trace. Five students from each test session were randomly selected
for an exit interview. Five students went through the session a second time, stating that there
were topics they wished to revisit. Students spent an average of 35.44 minutes interacting
with the computerized course modules (see Table 5). Students spent an average of 11.59

minutes in the first of the five lesson modules.

Table 5. Average Time on Task for Study i Participants

Group Mean SD Min Max N
all lessons 35.4 17.3 0 81.3 171
lesson one 11.6 7.8 0 38.9 171

There were fewer questions asked in this study (no questions in three of the six
sessions). Of those questions that were raised, two were due to a system failure (the machine
spontaneously crashed or booted them out of the program) and they had to be restarted on
another machine. Others were comments on the content or procedural questions (such as
why after three wrong answers they couldn't continue trying to answer the same question).

Scoring Procedures
Questionnaire Data
A questionnaire consisting of multiple choice and open-ended answers was

completed by each of the participants prior to experimentation. These questions elicited
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biographical and background information on subjects. Data gathered included age, sex,
educational background, degree program enrolled in, career plan, previous experience with
the course content matter, reason for participating in the study and whether or not they wished
to receive the results of the learning style assessments.

For those questions that were open-ended, category codes were derived in order to
associate a numerical value to each category for subsequent statistical analyses. Answers
were grouped according to their frequency with less frequent or unique answers being
assigned to an "Other” category. These data were then used to generate descriptive statistics
on the sample used (Appendix C presents the category codes used for the questionnaire).

Learnin e Data

The Kolb Leamning Style inventory produces three types of data: groupings
(converger, diverger, accomodator or assimilator), scores on the two dimensions (AE-RO and
AC-CE) as well as scores on the individual constructs (CE, AE, RO, and AC). The scores on
the constructs and dimensions were retained in their original form since they are numerical
data. Kolb groups were obtained using the procedure outlined in the accompanying guide to
using the LSI. The groupings were converted into category codes for statistical analysis
purposes.

The Entwistle Approaches to Studying Instrument produces scores on eight
dimensions (achieving, reproducing, meaning, comprehension, operation, versatility,
pathology of learning and prediction of success). These scores were obtained using the
procedure outlined by Entwistle in his guide to using the ASI. These data were retained as is.
In addition, groupings similar to those generated by Kolb were created by using scores on two
of the dimensions: reproducing and meaning (refer to Figure 6). Students were placed on the
high or the low half of the dimension using an arbitrary threshold value of 12 (e.g., students in
quadrant [l had a meaning orientation dimension score that exceeded 12 and a reproducing

orientation dimension score that was less than 12. These groups were created in order to be
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able to treat the Entwistle data to cluster analysis and thus directly compare them to the groups

produced by the Kolb LSI instrument.

Figure 6. Entwistle Quadrants

Ameam'ng
Quadrant II Quadrant I
>
reproducing
Quadrant IV Quadrant III
Trace Data

Trace data were automatically collected and analyzed by tracking student behaviors
while they were interacting with the learning environment. Keystroke data and temporal data
were collected. Every choice made by the student in terms of which option they clicked on as
well as how long they spent on each option was recorded. Students had a pause button
available at all times which they made use of when they took a break or asked a question. This
prevented the temporal trace data from misrepresenting the time on task variable.

The original twelve trace variables were grouped together into a new short list of eight
variables according to a conceptual definition of the type of learning activity they represented
and based on usage data obtained in the pilot study. This grouping was done before any data
was collected for Study Il. These new trace variable groups (refer to Table 6 below) were then

used in the statistical analyses.
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Table 6. New Trace Variable Groups

Name Variables combined Comment

pref Guided vs. unguided mode
elab_info dictionary, definitions + examples Elaborate information
cond_info outline + summary Condense information
self-test question + skip posttest

 gen_text Lesson text content
hyp_text Hypertext navigation
notes Using notepad for notes
help Requesting system help

The guidance preference (pref) variable refers to the preference shown by a student
for guided vs. unguided interaction with the leamning materials and was retained in the short list.
The elaborate information category (elab_info) groups together those activities that lead to the
elaboration of information for a given topic in a given lesson. This category includes the
original trace variables of dictionary, definitions and examples. The condense information
category (cond_info) groups together those variables which condense the information and
includes the outline and summary options. The self-test group includes both the question and
defer posttest options as they reflect activities geared towards improving achievement resuits
in the learning environment. Other variables that were retained unchanged in the short list
were: general text (gen_text), hypertext (hyp_text), notetaking (notes) and help options.

Demographics

The sample population represented a muiti-ethnic mix of students, who were

predominately francophone or native French speakers. Biographical information obtained

from the questionnaire showed that the majority (69%) were male. The average student age
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was 26.92 with a standard deviation of 7.89. The youngest student was 18, the oldest 53

years old (see Table 7).

Educational background questions showed that most students had completed a

Cegep degree (45%) and were currently enrolled in an MIS major program in the department of

Administrative Sciences (75%). Their degree specialization was in four areas: computer

science, MIS, human resources, and economics. The vast majority had some knowledge of

artificial intelligence (93%) but very little, if any, familiarity with neural networks (13%).

Most student career plans included one of the following four options: programmer -

analyst, continuing their education, becoming a manager, or starting their own business. Most

students (92%) were interested in receiving the resuilts of their learning style inventories.

Table 7. Demographic Variable Statistics

Variable
Sex 69% male 29% female | 2% no answer
Degrees 45% CEGEP | 32% CEGEP | 13% CEGEP+ 2% other
+certificates | cert.+ Bach.
Major 13% MIS 15% Science | 22% comp. sci. 26%% admin | 24% other
Program 7% Comp. 75% MIS 1% human 4% economics
Science resources
Careerplans | 26% 14% continue | 23% manager 9% startown | 9% Other
programmer | studies business
Al knowledge | 42% a lot 51% some 5% little or none
ANN 1% alot 12% some 83% little or none
knowledge
requested 92% yes 8% no
results
Participation | 29% personal | 34% required | 12% personal 1% other
motivation interest interest & req'd
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Descriptive Statistics
Validity of the Learning Environment
The first research question addressed was: are the leaming materials and learning
environment used to collect the experimental data instructionally valid? Two variables, derived
from the cognitive science literature, were measured: time on task (total amount of time spent
interacting with the learning materials) and leaming (measured as the difference in scores
between the pretest and the posttest) were used to establish the validity of the learning
environment. In particular, they were used to test whether or not significant learning had taken
place, whether or not the different session groups were equivalent with respect to prior
knowledge of content and whether there was a positive correlation between pretest score and
time on task score with subsequent posttest scores.

A pretest and a posttest were given to all participants (see Appendix F). Each
consisted of 10 muitiple choice questions (Q1-Q10) and five short answer questions (Q11-
Q15). items were selected using stratified random sampling from a pool of available items.
There were two items per lesson for each of the five lessons. Each muitiple choice test item
was worth two points, and each short answer was worth a maximum of five points, making the
entire test scored out of a maximum possible score of 75. Raw data were used for all analyses.

Both pretests and posttests were scored by two different individuals. The short
answer questions were scored according to an answer key that identified the number of points
to be assigned to each element of a correct answer. Any significant differences in scoring
were discussed in order to ensure that the disparity was not due to mistakes in using the
answer key. An inter-rater correlation was calculated and found to be 0.94 for the pretest and
0.91 for the posttest.

Tests of homogeneity (Chi Square and Kolmogorov-Smimoff tests) confirmed that the
pretest and posttest scores had normal distributions. Content validity is established due to the
fact that the items were created by subject matter experts and all questions are related to

specific learning content.
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An item analysis was carried out to calculate item discrimination, item difficulty and item
reliability for both the pretest and posttests. Item difficuity was calculated as the total number of
incorrect responses to a given multiple choice question divided by the number of students.
Item difficuity for short answer questions was calculated as the one minus the average score on

agiven item. Tables 8 and 9 show the pretest and posttest item difficulty analyses below.

Table 8. Pretest ltem Difficulty

Gp_]Q1 ]Q2 Q3 |Q4 |Q5 Q6 |Q7 |@8 [Q9 |Q10{Q11 |Q12]|Qi3[Q14
1 0.2 |06 |0.7 |09 |04 |06 |05 |06 jO0.5 [0.5 |0.8 {06 |0.9 [0.9
2 03 |06 [0.6 |0.7 jo.1 [0.6 j0.6 {0.5 |0.2 [0.6 0.9 |09 0.9 |0.8
3 0.5 |06 |05 |08 /0.4 ]0.5 |0.6 |0.7 [0.5 0.6 |09 |0.9 |0.9 [0.9
4 0.2 |08 |0.7 108 |05 |04 |03 0.6 {0.6 0.6 |09 (0.9 |0.9 [0.9
5 0.3 |0.6 |06 [0.7 |0.4 ]0.7 |0.4 0.7 |0.5 |0.3 |1 0.9 |1 0.9
6 0.1 ]0.7 0.7 j0.8 10.6 {0.6 {05 |0.6 |0.5 |0.6 |1 1 1 0.9
10T 103 |06 |0.6 {08 |0.4 [0.6 |05 |0.6 |0.5 |0.5 0.9 [0.9 |0.9 0.9
Table 9. Posttest item Difficulty

Gp Q1 |Q2 @3 |Q4 |a5 [ae [Q7 [Q8 |Q9 |Qi10[Qt1 [Q12 Q13 Q14
1 0.3 (0.6 0.1 |05 |0.4 10.3 0.5 0.7 {0.5 |0.1 |0.7 {0.5 [0.7 |0.9
2 0.2 {04 |0 0.3 0.3 |0.2 {05 |04 |]0.4 |O 0.7 {0.6 |0.7 |0.8
3 0.2 |06 |02 |05 |05 |o.1 |04 [0.6 |0.6 |0.1 |0.8 [0.5 |0.7 |0.9
4 0.4 (0.5 0.2 |03 |0.4 |0.2 0.6 ]0.4 0.3 |0.1 |0.9 0.5 |1 0.9
5 0.3 j0.3 0.2 |0.4 0.4 0.2 |0.5 |0.4 ]0.3 |O 0.8 ]0.7 |09 0.9
6 0.3 |0.4 0.2 |0.6 |0.5 {0.1 0.3 |0.5 |0.4 Jo.1 |0.9 |0.7 [0.9 |0.9 |
TOT 0.3 |0.4 f0.2 |05 J0o.4 [0.2 |0.4 0.5 |0.4 |0.1 0.8 [0.6 |0.8 |0.9 1

Item discrimination was calculated only for the muitiple choice items. G 1- 6 represent

the six sessions and TOT represents all participants. The top and the bottom 10% scarers
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were identified and the proportion of correct-answering low scorers was subtracted from the

proportion of correct-answering high scorers. A discrimination index of 1.0 represents the

best discrimination (see Tables 10 and 11 below).

Table 10. Pretest Item Discrimination

Gp Q1 Q2 Q3 Q4 Qs Qe Q7 Qs Q9 Q10
1 0.6 0.1 0.5 0.2 0.6 0.4 0.9 0.3 0.6 0.3
2 0.3 0.6 0.3 0.3 0.3 0.1 0.7 0.8 0.6 0.6
3 0.4 0.2 0.5 0 1 0.5 0.5 0.8 0.5 0.2
4 0.2 0.5 0.8 0.3 0.8 0.2 0.5 0.6 0.7 0.5
5 0.7 0.2 0.8 0.6 0.7 0.5 0.6 0.5 0.6 0.8
6 0 0.4 0.6 0.5 0.8 0.6 0.2 0.6 0.5 0.7
TOT 0.7 0.6 0.9 0.6 0.8 0.8 0.7 0.7 0.8 0.7
Results showed that there was an acceptable level of discrimination for all items and an
acceptable range of difficulty for both the pretest and posttest questions.

Table 11. Posttest Item Discrimination

Gp Q1 Q2 Q3 Q4 Qs Q6 Q7 Qs Q9 Q10
1 0.5 0.5 0.3 0.4 0.5 0.5 0.4 0.5 1 0

2 0.3 0.5 0 0.3 0.5 0.4 0 0.6 1 o

3 0.4 0.7 0.6 0.2 0.9 0 0.3 0 0.1 0

4 0.6 0.8 02 0.6 0.2 -0.2 1 0.6 1 0

5 0.9 0.6 0.5 0.3 0.5 0.4 0.6 0.9 0.6 0

6 0.2 0.7 0.5 0 0.3 0.3 0.7 0.6 0.7 0
TO0T 0.6 0.7 0.4 0.5 0.8 0.4 0.8 0.6 0.9 0.2

there were no significant differences across the different test sessions and that the data
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obtained could thus be grouped together for analysis. Group equivalence of the different

experimental sessions was tested with respect to pretest scores using a one-way ANOVA. The

results are shown in Tables 12 and 13 below.

At a significance level of p> 0.05, there were no significant differences between

different session groups for pretest multiple choice questions (Pre_MC) and for overall scores

(Pre_Tot). The first group had a higher score on the short answer questions (Pre_SA). There

were no significant differences for posttest muitiple choice scores (Post_MC) and for overall

posttest scores (Post_Tot). However, groups 1 and 2 scored higher on the short answer

questions (Post_SA).

Table 12. ANOVA for Tast Session Equivalencies

Dep. variable | MS Effect MS Error F(df1,2) 5, 158 | p-level
Pre_MC 104.82 132.25 0.79 0.56
Pre_SA 36.58 8.51 4.29 0

Pre_Tot 176.45 163.15 1.08 0.37
Post_MC 150.34 90.58 1.66 0.15
Post_SA 102.73 23.92 4.29 0

Post-Tot 217.71 152.87 1.42 0.22
Table 13. Average Test Scores for the Six Sessions

Grp Pre_ MC |Pre_SA Pre_Tot |Post MC |Post_SA |Post _Tot
1 23.64 4.02 27.66 30.91 9.23 40.14
2 26.94 2.97 29.92 36.11 9.92 46.03
3 20.28 2,22 22.5 29.72 7.94 37.67
4 21.32 2.08 23.39 31.32 5.53 36.63
5 23.8 1.25 25.05 35.22 5.25 40.41
6 22.32 0.9 23.22 33.78 5.76 38.24
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The average scores on the pretest and posttest when all six groups are combined are

shown in Table 14. Thus the data could be combined for the overali test scores from all six

experimental groups. These combined pretest and posttest scores are used in subsequent

analyses. The average time spent on leamning was 35.4 minutes with a standard deviation of

17.34. The least amount of time was 0 (although these did not produce a usable trace) and the

maximum length of time was 292.7 minutes (4.9 hours). Average gain (calculated as the

pretest-posttest difference divided by the posttest score) was found to be 0.4 (40%).

Table 14. Average Pretest and Posttest Scores Combined Across Sessions

Variable mean standard dev. | minimum maximum
pretest MC 23 (46%) 11.5 (23%) |0 (0%) 50 (100%)
pretest SA 2 (8%) 3 (12%) |0 (0%) 16 (64%)
pretest TOT 24.75 (33%) 12.75 (17%) 0 (0%) 60.75 (81%)
posttest MC 335 (67%) 9.5 (19%) 10 (20%) 50 _ (100%)
Posttest SA 6.75 _ (27%) 5.25 (21%) 0 (0%) 21 (84%)
Posttest TOT 39.75 (53%) 12 (16%) 15 (20%) 66 (88%)
Average Gain 04 (40%) 0.25 (25%) -1.0_ (-100%) 1.0 (100%)

This interaction time was thus long enough to allow for significant leaming to occur. A
pretest-posttest Pearson correlation of 0.45 was obtained for the muitipie choice items (MC),
0.46 for the short answer items (SA) and 0.56 for the overall tests. A test of significance of
learning found that significant learning occurred with MC (multiple choice) items, with SA (short
answer) items, and for the combined test items. The post-session interview data showed that
most students felt they were able to leam and study the way they normally would have and all
those interviewed found the exercise useful (see Appendix D for transcripts of these

interviews).
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Analyses
Cognitive Science Variables

Three major variables from the cognitive science domain were first examined to assess
what proportion of the posttest variance they could account for. The three variables
investigated were prior knowledge, time on task and motivation. It was expected that a
significant amount of posttest variance will be explained by these variables as they have been
extensively documented to correlate with learning achievement in computerized leaming
environments. It was important to establish the validity of the tools used in the experimentation
by assessing these three variables. In addition, it was necessary to assess them in order to
then analyze how much of the remaining variance could be explained by leamning style and
learner trace variables.

Prior knowledge was assessed through use of a pretest. Ten multiple choice items
and five short answer items were used to assess prior knowledge of the subject matter (neural
networks). Raw scores were obtained (out of a maximum score of 75) as well as percentage
scores for the muitiple choice section alone, the short answer section alone, and for the two
combined.

Motivation was measured through responses to one questionnaire item. Four
categories were used to describe student responses: intrinsic motivation (dus to personal
interest, personal career plans), extrinsic motivation (required course, extra marks provided for
participation), both intrinsic and extrinsic motivation (students mentioned both types of
motivation in their responses) and a category of 'other* for miscellaneous responses and no
response.

Time on task was measured as the total time students spent interacting with the
leaming materials minus any time taken for pauses. It was expected that the longer students
spent interacting with course content, the better they would score on the posttest.
Achievement on the posttest was expected to be higher for those students with higher time

on task scores, both as an absolute score and in terms of a greater difference between pretest
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and posttest scores (referred to as "gain”). The time on task variable was assessed both with
and without the first lesson visited by all students.

Muitiple regression was used to assess the relative contribution of the cognitive
science variables pretest, time on task and motivation for participation in the study. The overall
multiple regression was significant at p < 0.05 with an r=0.48 and r2=0.23. Only the pretest
and time on task variables were found to be significant. The pretest had a B coefficient of 0.43
and the time on task a B coefficient of 0.18 . When only the pretest and time on task variables
were included, the overall regression was significant at p < 0.05 with and r=0.48 and r2=0.23.
The pretest variable had a B coefficient of 0.44 and the time on task variable had a B coefficient
of 0.19.

When the first lesson is omitted, the overall muitiple regression with the three variables
was significant at p < 0.05 with an r=0.47 and r2=0.22. Only the pretest and time on task
variables were found to be significant. The pretest had a B coefficient of 0.43 and the time on
task had a B coefficient of 0.14. When the regression was run with the pretest and time on
task variables, the overall regression was significant at p < 0.05 with r=0.47 and r2=0.22. The
pretest variable had a 8 coefficient of 0.45. The time on task variable had a B coefficient of
0.14.

It was thus found that the leamning environment was instructionally valid and could be
used to generate leamer data during learner interactions with the computerized course
materials. The longer students spent interacting with the course materials and the higher they
scored on a pretest of prior knowledge, the higher their achievement score on a posttest.

Educational Psychology Variables

Two leaming style instruments were administered in order to evaluate their predictive
value within this particular learning context: the Kolb Leaming Style Inventory (LSI) and the
Entwistle Approaches to Studying instrument (ASi). They were first analyzed using an ANOVA
to assess whether there were any significant differences in the pretest, posttest, gain and time

on task results across the different groups established by the instruments. Next, a comparison
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of the expected learner behaviours, as extrapolated from the two learning style theories, to
actual learner behaviours detected in the analyses of student traces was carried out. The last
type of analysis was to assess the similarities between the learning style groupings and
groupings on trace data using both conventional statistical procedures and a neural network.
ANOVAs were then carried out to determine whether the four Kolb groups showed any
differences in on-line leamer behaviours without reference to theoretical constructs.

Koalb Learning Style Inventory

The data obtained from student LSI forms showed a 0.59 correlation with the norms
published by Kolb, for the 12-item version. This correlation was obtained through a Pearson
correlation between the scores obtained by students on the learning style dimensions (AE,
RO, CE, AC) and axes (AE-RO and AC-CE) and those scores obtained by Kolb in his
published study (Kolb,1976). In the sample used, it was found that 45% of the students were
classified as accomodators, 29% assimilators, 12% convergers and 14% divergers.

The first research question addressed was to assess the relative contribution of the
Kolb learning style instrument to posttest, gain and time on task variance. This analysis was
done using muitiple regression analysis on the four Kolb LS! dimensions (AE, RO, CE, AC),
the two Kolb axes (AE-RO and AC-CE) and the four Kolb groupings (converger, diverger,
accomodator, assimilator). These measures wers, of course, highly redundant. They were
assessed independently of one another in order to evaluate the possibility that the Kolb LS|
was not able to accurately assess the Kolb constructs postulated. In this way, all possible Kolb
scores were evaluated with respect to their predictive value in this context.

None of the Kolb data had overall significance at a p-level of 0.05 when introduced
into a multiple regression together with the pretest and time on task variables. When the two
significant cognitive science variables of pretest, gain and time on task were omitted from the
multiple regression, the overall regression was found to be significant. However, the Kolb

variables were again found not to be significant.
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An ANOVA of the four Kolb groups showed there was no significant difference

between pretest and posttest scores across the different groups. In addition, no significant

differences were found for the time on task variable (time) and for time on task when the first

lesson visited was omitted (time-1) for the different Kolb categories. using a one-way ANOVA.

Table 15 shows the mean data for the pretest and posttest. Table 16 shows the data for the

time on task, both when all lessons are included in the analysis ("time") and when the first

lesson visited is omitted from the analysis (“time -1").

Table 15. Mean Pretest, Posttest and Gain Scores for Kolb groups

Group Pretest | SD Posttest| SD Gain SD N
accomodator | 24.6 12.3 38.8 14.8 0.4 0.4 77
assimilator 22.9 12.8 37.6 12.9 0.4 0.7 50
converger 29.1 16.6 36.2 15.1 0.3 0.4 21
diverger 23.0 13.1 36.7 24.6 0.4 0.3 23
Table 16._Mean Time on Task Scores for Kolb groups

Group Time SD Time -1 SD
accomodator 35.81 18.84 24.26 15.10
assimilator 34.16 16.77 22.93 14.00
converger 30.40 15.78 19.06 12.09
diverger 41.57 13.27 25.89 12.51

Thus the Kolb data do not appear to contribute any further explanation of posttest variance,

beyond what can already be explained by the pretest and time on task variables.

The next analysis to be done was to order to compare the expected and actual profiles

of students as characterized by the Kolb LSI. Expected profiles were established for each of

the four groups and compared to actual on-line behaviors exhibited by students. A correlation
analysis was used to assess the degree of it for each of the four groups (converger, diverger,

accomodator and assimilator), the two dimensions (AC-CE and AE-RO) and the four axes (AC,
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CE, AE, RO), both for all lessons visited and also when data from the first lesson visited was
omitted.

Kolb groups. As discussed in the literature review, it was expected that converger
students would show the best posttest achievement results as previous studies have shown
convergers to perform best in computer-based learning environments. This hypothesis was
not confirmed as there were no significant differences between posttest scores at p=0.05
both with and without the first lesson visited data as shown in the previous section.

Kolb axes. When the two Kolb axes are analyzed, it was expected that students
scoring high on one should show behaviours that are diametrically opposed to students
scoring high on the other dimension. Individuals with a high score on the AC-CE dimension
should make greater and/or more frequent use of the examples option when interacting with
the learning environment. Those individuals with a high score on the AE-RO dimension
should show a negative correlation with example use. These differences were not found.

Thus expected correlations between student scores on the two Kolb axes and their
subsequent learning behaviour in this environment were not found. The Kolb axes appear to
have little predictive value relative to the research questions.

Kolb dimensions. Specific hypotheses conceming scores on the individual Kolb
dimensions were then analyzed. The following behavior patterns wers expected:

1. RO: individuals scoring high on the reflective-observation dimension are expected
to make greater and more frequent use of the notes and self-test options as well as the
condense information option. The notes option allows them to reflect upon their learning
experience while the self-test option allows them to observe their learning progress. The
condense information option includes the outline and summary which help provide higher
level structure to the leaming session. These students are expected to spend longer on al
options they select.

No significant correlations were found for the time on task, condenss information and

notes variables, both when the first lesson visited was included and when it was omitted. A
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significant but low positive correlation was obtained for the frequency of self-test variable
(r=0.156) when all lassons were included.

2. CE: individuals scoring high on the concrete- experimentation dimension were
expected to make greater and more frequent use of the examples option and the quiz option.
The examples option allows these leamers to be concrete when leaming concepts. The quiz
option allows them to actively test their own knowledge throughout the learning sessions.
They were expected to spend less time on all the options. No significant correlations were
obtained for the examples and quiz options. No significant correlation was obtained for time
on task.

3. AE: individuals scoring high on the active-experimentation dimension were
expected to spend more time and make more frequent use of the elaborate-information and
hypertext options. The elaborate-information options represent examples, definitions and so
on which would allow the learner to be very active during the leaming session. The hypertext
option similarly allows more hands-on experimentation as they illustrate applications of the
theoretical concepts. No significant results were obtained for these two options, both when
the first lesson visited was included and when it was omitted.

4. AC: students scoring high on the abstract-conceptualization dimension were
expected to make greater and more frequent use of condense information and gen_text
options. These options contain the theoretical course content. No significant correlations
were obtained for this dimension, both when the first lesson visited was included and when it
was omitted.

Thus the four Kolb dimensions have very little, if any, predictive value relative to the
research questions.

It was also hypothesized that perhaps the Kolb constructs had some validity but the
instrument used did not adequately measure them. To this end, the behavioral variables were
used to categorize students into four groups. This was done using conventional statistics

(cluster analysis) and a new method, neural network-based pattern recognition (refer to the
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Appendix E for more detailed explanation). The third research question addressed was to
assess the similarity between groupings generated by the Kolb instrument and groupings
generated independently, through both a cluster analysis of trace data and neural network
classification on the same leamner trace data. The neural network classification method was
implemented in two different ways: in one, the number of groups was limited to four to allow
direct comparison with the Kolb groups ("constrained neural network”}. In the second, the
number of groups was not specified and the neural network classification yielded a total of six
groups ("unconstrained neural network").

No significant correlation was obtained between the four groups generated by the
Kolb LSI and groupings generated using cluster analysis on trace data. This was the case both
when all lessons were included in the analysis and when the first lesson visited was omitted.
When a neural network was used to place all students into four different groups, using the
same trace data, no significant correlation was obtained with the four Kolb groups. This was
the case both when the first lesson visited was included and when it was omitted from the
analysis. ANOVAs were then carried out in order to assess whether the Kolb groups showed
any difference in means on the trace variables. This included means for duration and for
frequency trace data, both for all lessons and without the first lesson visited.

When all lessons are included and the duration trace data are analyzed, no significant
differences are found for any of the means at a p-level of 0.05. Similarly, no significant
differences are found when the frequency trace data is analyzed.

When the first lesson visited is omitted, no significant differences are found, both for
and duration trace data and for frequency trace data. When frequency trace data are
analyzed, no significant differences are found for any of the trace variable means.

There do not appear to be any differences in leamer behaviour across the different
Kolb groups as manifested in the frequency and duration of use of the various options in the
learning environment used for this study. Thus the expected learner behaviours as

extrapolated from the Kolb LS! data do not appear to correlate significantly with the actual
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learner behaviours manifested in this leaming environment. The Koib LS| does not contribute
to the posttest variance, nor to the time on task variance. The 12-item version of the
instrument thus appears to be a very weak candidate to establish default values for a
stereotype learner model for this kind of learning environment.

Entwistle Approaches to Study inventory

In addition to the standard data generated for the eight Entwistle dimensions by the
ASl, four quadrants were created to yield four groups. These groups were created using
scores on the reproducing and meaning dimensions: Quadrant 1 (less than 12 on both),
Quadrant 2 (less than 12 on reproducing but greater than 12 on meaning), Quadrant 3 (greater
than 12 on reproducing and less than 12 on meaning) and Quadrant 4 (greater than 12 on
both dimensions). In the sample, 9% were in Quadrant 1, 10% in Quadrant 2, 38% in Quadrant
3 and 44% in Quadrant 4. Quadrants were created in an arbitrary fashion in order to be able to
compare Entwistle groupings with Kolb and trace data groupings using cluster analysis.

The first research question addressed was whether the Entwistle groupings helped
explain any of the posttest variance. This was done both for the Entwistle dimensions as
assessed by the ASI and for the four quadrants that were created using the meaning
orientation and reproducing orientation dimensions.

Entwistle dimensions. The Entwistle dimension score data are summarized in Table 17
below. A correlation of 0.96 is obtained with the norms publishied by Entwistle. These data
represent the more conventional way of using Entwistle ASI data.

A multiple regression analysis was carried out to determine what proportion of the
posttest and gain variance could be explained by the eight Entwistle dimensions, all together,
in various combinations, or alone. When all eight Entwistle dimensions were included in the
regression equation, and posttest was used as the dependent variable, the overall regression
was significant at p < 0.05 when the achieving, reproducing and meaning orientation

dimensions were included (r= 0.23, r2=0.05). Of these dimensions, only the reproducing
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dimension was significant with a B coefficient of 0.22 . A muttiple regression with only the

meaning and reproducing dimensions was significant with an r=0.24 and r2=0.06.

Table 17. Entwistle Approaches to Study Data

Variable Mean $D Minimum Maximum
achieving 12.2 3.0 o 22
reproducing 14.6 3.2 0 36
meaning 12.9 2.9 0 21
comprehension | 14.6 2.9 0 36
operation 15.9 3.01 (] 23
versatility 25.3 4.9 0 39
path. of learning | 32.8 5.4 0 55
pred. of success | 52.7 7.5 32 71

When only the reproducing dimension was included, the regression was significant at
P < 0.05 with B = 0.24. The pathologies of learning dimension alone yields a significant
regression with an r=0.22 and r2=0.05 and a B coefficient of 0.22.

When the gain variable was used as the dependent variable, the overall muitiple
regression was significant at a p-level of 0.05 (r=0.19, r2=0.03). Again, only the reproducing
and pathologies of learning dimensions were found to be significant. The reproducing
orientation variable had a 8 of -0.11 and the pathologies of leaming dimension variable had a
of 0.18.

Thus the Entwistle reproducing dimension appears to be the most useful of the
Entwistle dimensions in predicting learer success in this environment. This is in keeping with
previous research findings that have the reproducing dimension to have the highest validity of
all the Entwistle dimensions.

Entwistle quadrants. Next, the Entwistle quadrants were analyzed in the same manner

to assess their contribution to posttest, gain and time on task variance. Muitiple regression
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analyses were conducted using the four quadrants that were created based on reproducing
and meaning scores in order to determine what proportion of the posttest variance was
accounted for by these leaming style variables. When all lessons are included, a muitiple
regression with pretest, time on task and the Entwistle quadrant variables was significant
overall at a pevel of 0.05 with r=0.52 and r2=0.27. All three variables were significant (pretest
8 =0.41, time on task B = 0.20, and Entwistle quadrant 8 = 0.19). When the first lesson visited
was omitted, the overall regression was again found to be significant with r=0.5 and r2=0.25.
The overall regression was significant, with r = 0.51, r2 = 0.27 and the r2 change for the
Entwistle quadrant variable when entered last into the equation was 0.034. All three variables
were again found to be significant: the pretest variable (3=0.41), the time on task variable
(8=0.15) and the Entwistle quadrant variable (8=0.18).

Similarly, when leaming gain was used as the dependent variable, the overall muitiple
regressions was found to be significant at a p-level of 0.0.5 (r = 0.23, r2 = 0.05). The Entwistle
quadrant variable had a B of 0.15.

Significant differences were found for pretest, posttest amd gain scores for the four
Entwistle quadrants. Table 18 shows the means for pretest, posttest and gain scores for the
quadrants. An ANOVA on the pretest scores showed a significant main effect (df effect =3, MS
effect = 431.77, df error = 166, MS error = 166.41 and F=2.59) at a p-level of 0.05. A Tukey
HSD post-hoc comparison found the quadrant Il differed significantly from quadrant IV with
respect to pretest scores. Students in quadrant Il had the lowest pretest scores while those in
quadrant IV had the highest.

An ANOVA on posttest scores showed a significant main effect (df effect = 3, MS
effect = 711.96, df error = 166, MS error =188.12 and F=3.78) at a p-level of 0.05. A Tukey
post-hoc comparison showed that Quadrant Il again differed significantly from Quadrant IV with

respect to posttest scores.
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An ANOVA on learning gain scores showed a significant main effect (df effect = 3. MS
effect = 36.06, df error = 166, MS error = 20.01 and F = 2.08. A Tukey post hoc test showed

that the second quadrant differed from the others in that these students had a higher gain.

Table 18. Mean Pretest and Posttest Scores for the Entwistle Quadrants

Quadrant | Pretest | SD Post $D Gain SD N
| 22.60 16.38 31.70 15.69 0.5 0.3 15
1 16.13 11.55 30.13 8.750 0.6 0.5 16
[ 24.66 13.34 38.58 15.61 0.3 0.3 64
v 26.63 12.00 40.47 12.35 0.5 0.4 75

Students in Quadrant it had the lowest scores while students in Quadrant IV had the highest
scores. No significant differences were found for the time on task, both when all lessons were
included and when the first lesson visited was omitted.

The Entwistle quadrants thus appear to account for some of the posttest and gain
variance found and the use of such four groups to represent the ASI data also appears to be
useful in this context.

The second research question addressed was to compare the expected learner
behaviours, as extrapolated from their Entwistle AS| responses, to their actual learming
behaviour patterns, as detected by their learner trace data. ANOVAs were done to ascertain
whether there were any significant differences in their frequency and duration of use of the
various learning environment options.

As was done with the Kolb LS|, the expected and actual profiles of students as
characterized by the Entwistle AS| were derived. Expected profiles of the four Entwistle
quadrants were compared to actual on-line behaviours exhibited by students. A correlation
study was done in order to assess the fit between expected and actual behaviors. The
Entwistle constructs were then investigated in order to determine whether or not there were

any differences in learning behaviour that were correlated with different ASI scores. The
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following correlations were expected between the Entwistle profiles and actual learning
behaviours exhibited by students:

1) High reproducing orientation score: Individuals scoring high on this dimension
were expected to make greater and more frequent use of self-test. This reflects their
emphasis on being able to leam in order to do well on test materials. They were also expected
to make greater use of the condense information option as they tend to concentrate on being
able to reproduce (i.e., memorize) material. In addition, it is expected that students possessing
high reproducing scores will spend less time overall in learning (lower time on task) and should
show a breadth-first lesson order strategy. This is because this particular approach to studying
represents an attempt to maximize coverage of all topics and do so rapidly, in order to be able
to reproduce the material on subsequent tests.

When all lessons are included in the analysis, a correlation was found between the
reproducing dimension and time spent in self-testing (r = 0.235). No significant correlation was
found for the condense information, time on task and lesson order strategy variables. In
addition, there was an unexpected significant correlation between the reproducing arientation
score and frequency that the help option was used (r = -0.23).

When the first lesson visited was omitted from the analysis, a correlation was found
between the reproducing orientation score and time spent in self_testing (r = 0.228) and time
spent in the help option (r = -0.235). No significant correlation was found for the condense
information, the time on task and breadth-first lesson order variables.

2) Comprehension orientation: The score for the comprehension dimension was
expected to be correlated with greater and more frequent use of elaborate information options
and notes options. Leamers who scored high on this dimension were expected to spend
more time interacting with the materials (greater time on task) and a depth-first search strategy
through the lesson topics.

No significant correlation was obtained with the time on task measure, both when all

lessons were included and when the first lesson visited was omitted from the analysis. When
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all lessons were included in the analysis, a significant correlation was obtained for time spent in
note-taking (r = 0.29). There was no significant correlation with the elaborate information
option. When the first lesson visited is omitted, significant correlations were obtained for the
time spent in the elaborate_information option (r = 0.181) and the time spent in note-taking (r =
0.309).

3) No significant correlations were expected for the other Entwistle dimensions.
There were no hypotheses generated with respect these dimensions as there were
insufficient data found in the literature review.

Thus a number of expected leamer behaviour patterns based on Entwistle ASI scores
were found to be exhibited by the leamers. These correlations were both more numerous and
stronger than those found with the Kolb LSI. The Entwistle ASI thus appears to be a more
usetul instrument in this particular leaming context. Students that may be distinguished on the
basis of their ASI responses appear to show correspondingly different learning behaviours that
are consistent with the predicted behaviours. In particular, scores on the reproducing and
meaning orientation dimensions appear to be the most useful items of information about
leamners. These dimensions explain some additional variance on the posttest and they
correlate with actual learner behaviours in this particular context.

Next, the four Entwistle groupings were compared to groupings obtained using both
conventional cluster analysis techniques and neural network-based classification. This was
done to address the third research question which was whether the learner trace data,
independent of any ASI theoretical constructs, showed any variation across the four Entwistle
quadrants. This analysis was done by assessing the correlation between the Entwistle
quadrants and the groupings formed using the trace variables. ANOVAs were then carried out
to identify any differences in the means for these trace variables.

It was expected that there would be a correlation between Entwistle quadrants, based
on reproducing and comprehension orientation scores, and trace variables. When all lessons

are included in the analysis, significant weak correlations were obtained between the Entwistle
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groups and the groups based on lesson order strategy (r=-0.16), cluster analysis based on
both frequency and duration trace data (r=-0.17) and groups based on guidance preference
based on duration data (r=-0.18). No significant relationship was found between Entwistle
quadrants and neural network groupings. When the first lesson visited was omitted from the
analysis, a significant correlation was found with the cluster analysis grouping based on
duration data only (r = -0.217). No significant relation was found with the ANN groups.

The Entwistle quadrants thus showed some correlation with cluster analysis groups
based on duration trace data, after the first lesson visited was eliminated from the analysis.

ANOVAs were done both for duration and for frequency trace data, for all lessons and
for the case where the first lesson visited was omitted from the analysis.

When all lessons are included and duration trace data are analysed, a significant
difference at p < 0.05 was found for the help option and for the self-test option. Table 19
below presents the mean time spent in the various options. A main effect was found for the
help option (df effect = 3, MS effect = 815.33, df error =166, MS error = 180.66 and F=4.52) at
ap-level of 0.05. A Tukey post-hoc comparison showed that students in quadrant Il differed
from students in the other quadrants in that they spent much more time in the help option.
Similarly, a main effect was found for the selif-test option (df effect = 3, MS effect = 0.20, df
error = 166, MS error = 0.67 and F =2.98) at a p-leve! of 0.05. A post-hoc comparison of the
means showed that students in quadrant Il spent more time in the seif-test option than

students in any of the other three quadrants.

Table 19. Means for Duration Trace Variables When All Lessons are Included

Quad. Elab_inf | Cond_inf | Gen_txt | Help Self_test | Notes Hyp_txt
| 5.7 4.2 9.6 0.2 2.6 1.0 4.6

1 6.7 4.6 11.9 0.5 4.3 0.6 3.8

] 4.36 4.72 10.69 0.09 2.51 0.56 4.63

v 4.82 4.05 11.61 0.11 2.76 1.05 3.79
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When all lessons were included and frequency trace data were analysed, a main effect
was found for the mean number of times the help button was used (df effect = 3, MS effect =
426.02, df error = 166, MS error = 80.19 and F = 5.31) at a p-level of 0.05.. A Tukey post-hoc
analysis showed that students in Quadrant Il had the most frequent use of help, averaging ten
times during the session, while Quadrant Il students had the lowest frequency, averaging
once during the session. Students in the other two quadrants had an intermediate level of
help usage (see Table 20). Thus the correlation between Entwistle quadrants and cluster
analysis groups based on duration frace data appears to be primarily related to use of the help
option (number of times used and length of time spent in the help option), when all the

lessons are used in the analysis.

Table 20. Means for Frequency Trace data When All Lessons are Included (df effect = 3 and
df error = 166, N=171)

Quad. Elab_inf | Cond _inf | Gen_ txt Help Self test | Notes Hyp_txt
| 8.45 5.1 4.8 1.7 9.8 1.8 6.9
1 11.0 8.3 5.8 9.9 21.0 1.3 6.4
[ 8.4 6.9 6.8 1.1 12.8 1.8 7.1
[\ 8.8 6.1 5.6 3.2 12.7 1.5 5.5

When the first lesson is omitted from the analysis and duration trace data are analysed,
a significant main effect is found for the same two options: help and self-test. An ANOVA on
the duration of use of the help button was significant (df effect = 3, MS effect = .78, df error =
166, MS error = 0.26 and F=3.08) at a p-level of 0.05. However, a Tukey post-hoc analysis did
not show any significant differences between the four Entwistle group means on the use of
this option.

A significant main effect was found in an ANOVA on the time spent in the help option
(df effect = 3, MS effect = 877.78, df error = 166, MS error = 169.22 and F=5.19) at a p-level of

0.05. A Tukey post-hoc test found that students in Quadrant Il used the help options for
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longer periods of time than students in any of the other three quadrants (refer to Table 21

below).

Table 21. Means for Duration Trace data When the First Lesson Visited is Omitted

Quad. Elab_inf | Cond_inf | Gen_txt | Help Self_test | Notes Hyp_txt
| 2.7 2.9 8.23 0 2.3 0.9 2.4
1 5.7 3.5 10.68 0.5 4.1 0.5 2.5
[ 2.7 3.7 8.74 0.1 2.4 0.5 3.3
\' 2.8 3.1 10.00 0.1 2.5 0.9 2.7

A significant main effect was also found for the time spent in the self-test option (df effect = 3,
MS effect = 0.2, df error = 166, MS error = 0.62 and F=3.26) at a p-level of 0.05. A Tukey post-
hoc analysis showed that students in Quadrant Il spent more time in self-test activities.

When the first lesson visited is omitted and the frequency trace data are analysed,
students in the different Entwistle quadrants were found to differ in the frequency with which
they made use of the help button. An ANOVA on the frequency of use of the help button
showed a significant main effect (df effect = 3, MS effect = 395.8, df effect = 166, MS effect =
89.12 and F=4.44) at a p-level of 0.05. A Tukey post-hoc test showed that students in
quadrant Il used this option an average of 11 times, while those in quadrants | and 1il used help
an average of 2 times and those in quadrant IV an average of 4 times. Table 22 below

summarizes the mean data for these options.

Table 22. Means for Frequency Trace Data When the First Lesson Visited is Omitted

Quad. Elab_inf | Cond_inf | Gen_txt | Help Self_test | Notes Hyp_txt
I 4.9 2.9 5.8 2.1 6.0 0.8 3.2
i 8.5 6.7 5.6 10. 17.9 0.9 3.8
] 6.6 4.7 6.6 2.0 9.4 1.3 4.4
\'J 6.6 4.4 5.4 3.8 9.6 1.1 3.8
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Thus Quadrant ll students showed different learming behaviours in this learing
environment as exhibited by values for a trace variable. These students also scored the
lowest on the pretest which indicates that this group may be comprised of students with the
least prior knowledge of the subject matter, and thus may represent more novice-like leaming
behaviour. The questions on both the prestest and posttest wre analyzed to verify whether
the questions were oriented to high reproducing orientation learners. The pretest consisted
of 60% recall questions, 40% mearning questions, whereas the posttest had 40% recall items
and 60% meaning items. Questions were labeled reproducing-type if students were required
to provide answers that were almost verbatim from the content (e.g., definitions). Questions
were considered to be of a meaning-type if students were required to carry out some
inferencing (e.g., judgments, comparisons).

Artificial Intelligence Variables

Groupings based on learner trace data were analyzed in order to identify leaming
behaviour differences exhibited by the students. The relative contribution of trace variables to
posttest variance and time on task variance was then analysed.

Trace variables yielded scores on the time spent in each option (duration) as well as the
number of times each option was visited (frequency). This was automatically recorded for each
student. The amount of time spent in Pause mode was subtracted from the total time. A
second set of data was generated by omitting the first lesson visited by each student. This was
done in order to assess whether there was a novelty effect or learing curve at the beginning
of the interaction. The system recommended strategy consisted of following the defauit
lesson order sequence, beginning with lesson module one through to lesson module five.

Classifications were created for learner data on guidance preference. Two types of
data were used: selection frequency of a clear guidance preference and the amount of time
spent as a percentage of total time in a particular guidance mode. Three groups were thereby
formed: one that contained those students with a clear preference for system guidance (in

excess of 75% of selections or time spent in this mode), those with a clear preference for

112



student guidance (in excess of 75% of the selections or duration spent in learner control) and
a third category of students who did not show a clear preference pattern. These three groups
were formed for both frequency and duration guidance data.

Classifications were also created for learner data on lesson search strategy or
sequence. Four groups were created in the following manner: the first group contained those
students who exhibited a depth-first lesson selection strategy, as manifested by selection of
the same two or fewer lessons for the first five lesson choices. Students in the second
category chose to look at four or more different lessons within their first five lesson choices,
thus exhibiting a breadth-first search strategy. Those students who chose three lessons
within their first five lesson choices were placed in a third category as they did not show a clear
strategy preference. Finally, those students who remained in system-guided mode
throughout their interaction time, and hence necessarily followed the system recommended
lesson strategy, were placed in a fourth group.

Classifications were also created based on learner activities during the learming
session. These included the frequency with which options were chosen and the length of
time students spent in them. Two parallel methods were used to create groups based on
learner trace data: the first was statistical clustering using two statistical software packages
(SPSS for PC and Statistica for the Macintosh). The second method used a Kohonen neural
network to group students. Both methods used the same inputs to generate three groupings:
one based on time data, one based on frequency data and one based on both time and
frequency data. This was then repeated for the trace data after the first lesson visited was
omitted.

In all, eight different types of groups were created and analysed: groups based on
guidance preference frequency data (GF) guidance preference duration data (GD), lesson
selection strategy (LS), cluster analysis on frequency data on leamer options (CAF), on
duration data on learner options (CAD), on the combination of both frequency and duration

data on learner options (CAFD), and two neural network classifications, an unconstrained
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classification which yielded six categories (NN6) and a constrained classification which
classified students into one of a maximum of four categories (NN4).

The similarities between the different types of groups are analysed first. Next, each
grouping is analysed with respect to the amount of posttest and time on task variance that they
can account for as well as differences in learner behavioural patterns across the groups. The
final section summarizes the parameters identified for use as default values in a learner model,
based on the results of this study.

Comparison of the classifications

A correlation matrix (shown in Table 23 below) was derived to investigate the similarities
between the different types of groups that can be generated using learner trace data. When
all lessons were included, there was a high correlation between the cluster analysis groups
based on frequency data and those based on duration data. The groups based on both
frequency and duration data were, of course, highly redundant with groups based on
frequency data alone or those based on duration data alone. They were assessed separately
in order to identify the most useful measure. It appears that both frequency and duration data
together yield the most useful groupings.

Similarly, the groups based on guidance preference using duration and frequency
data were also redundant and therefore highly correlated with one another. The groups based
on guidance preference, both frequency and duration, showed some correlation with the
cluster analysis groups based on duration, and based on both duration and frequency data.
This is due to the fact that guidance preference choices were among the inputs to the cluster
analysis groups.

Similarly, groups based on lesson selection strategy showed some correlation with the
groups based on frequency leamer data since a lesson choice was a choice like any other and
was thus used as input to the cluster analysis.

Finally, there was some correlation between the groupings produced by the

constrained neural network classification and the groupings produced by a cluster analysis on
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the same data. This suggests that the neural network classified the data in a similar but not

identical way.

Table 23. Correlation Matrix of Groups Derived from Learner Trace Data When All Lessons are
Included (significant correlations at a p-level of 0.05 shown only)

Group CAF CAD CAFD GD GF LS NN6 NN4
CAF 0.34 -0.56 -0.20

CAD -0.34 -0.66 -0.21 -0.15

CAFD -0.51 -0.66 0.24 0.21 0.21
GD -0.21 0.24 0.65

GF -0.15 0.21 0.65

LS -0.20

NN6 0.21

NN4

The correlation analysis was repeated for the case where the first lesson visited was
omitted. The results are shown in Table 24 below. Most of the data is similar to the case where
all lessons were included in the analysis. However, the correlation between the constrained
and unconstrained neural network groups is much higher (0.78) which indicates that the neural
network classification is likely to be more useful if samples of leamer data are obtained after a
certain amount of time has elapsed. This allows the system to exclude any behavior patterns
that may be due to novelty effects of the learning environment. Altematively, it may require a
certain amount of time before useful leamner differences are manifested in learning
environments, as most leamers may act in a similar way when using a learning tool for the first

time. The next section looks at each of the groups in more detalil.
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Table 24. Correlation Matrix of Groups Derived From Learner Trace Data When the First

Lesson Visited is Omitted (significant correlations at a p-level of 0.05 shown only)

Group | CAF CAD CAFD GD GF LS NN6 NN4
CAF 0.29 0.72

CAD 0.29 0.48 0.22 0.16 -0.16 -0.16
CAFD 0.72 0.48

GD 0.22 0.53 -0.24 -0.17
GF 0.16 0.563 0.19 -0.24 -0.2
LS

NN6 -0.15 -0.25 -0.23 0.78
NN4 -0.16 -0.17 -0.2 0.78

Guidance Preference Groups

Trace data provided information on whether students showed a clear preference for a
guided navigation mode (where the system suggests a lesson order) or an unguided one
(where they may visit lessons in an order of their choosing). The proportion of time spent in
each mode was used to create three groups: 1) those with a clear preference for guided
(greater than 75% of time spent in guided mode), 2) those with a preference for unguided
(greater than 75% of time spent in unguided mode) and, 3) all others (mixed mode). Similarly,
three groups were created based on the frequency with which students selected guided vs.
unguided modes. A clear preference for guided mode was associated with greater than 75%
of choices to select guided, a clear preference for unguided was associated with those
students who selected unguided greater than 75% of the time they made a choice, and the
third category represented a mixed mode. This was repeated for data where the first lesson

visited was omitted.
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The majority of students (over 75%) were in the guided group (1). The groupings
generated based on frequency data are presented first, followed by the analyses then
repeated for groupings based on duration data.

When all lessons are included in the analysis, students in the three groups were found
to differ with respect to the time they spent in the following options: selection of guidance
mode (df effect = 2, MS effect = 0.83, df error = 167, MS error = 0.16, F = 5.22), elaborate
information (df effect = 2, MS effect = 0.12, df error = 167, MS error = 0.3, F = 3.86) condense
information (df effect = 2, MS effect = 0.59, df error = 167, MS error = 0.2, F = 2.95), self-test
(df effect = 2, MS effect = 0.19, df error = 167, MS error = 0.68, F = 2.77) and notes (df effect =
2, MS effect = 0.15, df error = 167, MS emror = 0.52, F = 2.79). They also differed with respect
to the frequency with which they looked at the general text within each lesson (df effect = 2,
MS effect = 129.73, df error = 167, MS error = 35.99, F = 3.6). Table 25 below summarizes
these means.

The greatest differences are found between groups 1 (guided) and 3 (no clear
preference). Students in group 3 spent significantly longer periods of time in changing their
guidance mode, in elaborate information, condense information, self-test and notes. They
consulted general text more frequently, an average of nine times, as opposed to the first
group which averaged 5.5 times. The second group, which preferred an unguided mode of

interaction was distinct in that they made the most use of the notes option.

Table 25. Trace Variable Means for the Guidance Preference Groups based on Frequency
data when All Lessons are Included

Group Prefs. Elab. info | Cond.info | Self-test | Notes Gen.text |N

1 1.5 4.6 4.1 2.6 0.7 5.6 129
2 1.7 9.2 3.9 2.9 2.6 4.7 4

3 2.3 5.5 6.3 3.9 0.6 9.1 27

When the first lesson visited was omitted from the analysis, the groups were found to

differ only in the frequency of use of the help option (df effect = 2, MS effect = 258.11, df error
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=167, MS error = 92.43m, F = 2.79). The guided group (1) had the lowest mean (2.89 times),
the unguided group had a mean of 7.25 times and group 3 (no clear preference) had a
significantly higher mean frequency of use of the help option (8.96 times).

These guidance preference groups based on frequency data were next analysed with
respect to differences on pretest, posttes, gain and time on task scores. When all lessons
were included, and the groups were analyzed with respect to pretest, posttest and time on
task scores, a significant main effect was found (df effect = 2, MS effect = 0.154, df error = 168,
MS error = 0.47 and F = 4.19) at a p-level of 0.05. However, a Tukey post-hoc analysis failed to
identify any significant differences in the means for the time on task variable.

When the first lesson visited was omitted, a significant main effect was found for the
time on task variable (df effect = 2, MS effect = 0.16, df error = 166, MS error = 0.23 and
F=7.21) at a p-level of 0.05. Howsver, a Tukey post-hoc test did not show any significant
differences in the mean time on task for these three groups.

Similarly, no significant effects were observed when gain was used as the dependent
variable, both when all lessons were included and when the first lesson visited was omitted.

Next, the groups devised from guidance preference based on duration data were
analysed in a similar manner. When all lessons are included in the analysis, students in the
three groups are found to differ with respect to the amount of time they spent in choosing a
guidance mode (df effect = 2, MS effect = 0.6, df error = 167, MS error = 0.16, F = 3.65), in
elaborate information (df effect = 2, MS effect = 0.10, df error = 167, MS error = 0.3, F = 3.33)
and in self-test (df effect = 2, MS effect = 0.29, df error = 167, MS error = 0.66, F = 4.37). They
also differed with respect to the frequency with which they selected a guidance preference (df
effect = 2, MS effect = 362.42, df error = 167, MS effect = 67.39, F = 5.38). Tabie 26 below
summarizes these means.

Students in the guided group (1) spent less time in choosing guidance preference
mode, in elaborate information and in self-test. They also made less frequent use of the

guidance mode selection option. This group differed significantly from group 3 (no clear
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preference) as students in group 3 spent longer in these options and made more frequent use
of the guidance mode selection option. Groups 1 and 2 (unguided) differed only in that

students in the unguided group spent longer in the elaborate information option.

Table 26. Trace Variable Means for Guidance Preference Groups based on Frequency Data
When All Lessons are Included

Group pref time pref freq elab_info self-test time | N
time

1 1.6 10.4 4.7 2.6 134

2 1.7 10.4 8.6 3.0 4

3 2.2 17.0 5.5 4.3 24

When the first lesson is omitted from the analysis, no significant differences were found for the
trace variable means for students in different groups.

An analysis of these groups with respect to pretest, posttest and time on task scores
showed a significant difference in means only for the time on task variable, both when all
lessons are included and when the first lesson visited is omitted from the analysis. When all
lessons are included, a significant main effect was found for the time on task variable (df effect
=2, MS effect = 0.152, df error = 167, MS error = 0.369 and F = 4.12) at a p-level of 0.05.
However a Tukey post-hac analysis showed no significant difference in these means. When
the first lesson visited is omitted, a significant main effect is again found for the time on task
variable (df effect = 2, MS effect = 0.2, df error = 167, MS error = 0.23 and F = 8.78) at a p-level
of 0.05. However, a Tukey post-hoc analysis showed no significant difference in these
duration means.

The groups based on guidance preference do not appear to explain any additional
variance in the posttest and time on task variables. This is probably due to the fact that the
majority of students chose to follow the system guided mode throughout their interaction with
the learning environment. Students did differ in their learning interactions. The greatest

difference is found between students who chose to be guided by the system and those who
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did not show a clear preference for either a guided or unguided mode. Students in the guided
group spent less time in elaborate information, condense information, notes and self-test.
Students in group 3 with no clear guidance preference spent longer on ail these options.
Students in the unguided mode made greater use of notes and elaborate information.
Students in these groups were not found to differ significantly in any of the demographic
variables (e.g., age or sex ).

Lesson Sequence Strategy Groups

A lesson sequence grouping was created by looking at the order in which lessons
were visited. This was roughly analogous to a breadth-first vs. a depth-first strategy. Those
students who selected less than 2 lessons for the first five lesson choices were placed in the
depth-first category (group 1). Those who selected four or more different lessons to look at
within the first five lesson choices were placed in the breadth-first category (group 2). The
remainder were placed in a mixed search strategy category (group 3). A fourth group was used
for those students who remained in system-guided mode throughout their learning session
and thus had no choice but to follow the system-recommended sequence. The analysis was
repeated for data obtained when the first lesson visited was omitted.

These groups were first analyzed with respect to any significant differences in trace
variable means. When all lessons are included in the analysis, a signficant difference is found
for the time spent in notes (df effect = 3, MS effect = 0.18, df error = 166, MS error = 0.51, F =
3.48). Group 4, which consists of eight individuals who chose to remain in guided mode
throughout their learning were found to spend longer in notes than students in groups 1 and 3

(see Table 27). No significant differences are found for any of the trace variables.
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Table 27. Trace Variable Means for Lesson Strategy Groups When All Lessons are Included ‘

Group time spent in notes
1 (depth-first) 0.5
2 (breadth-first) 1.1
3 (mixed strategy) 0.4
4 (100% guided throughout learning) 2.8

These groups were then analyzed with respect to pretest, posttest, gain and time on
task scores. No significant main effects were found for the pretest and time on task variables.
A significant main effect was found for the posttest scores of these groups (df effect = 3, MS
effect = 974.75, df error = 166, MS error = 181.79 and F=5.36) at a p-level of 0.05 when all
lessons are included in the analysis. No significant differences were found for gain. The
means are shown in Table 28 below. A Tukey post-hoc analysis showed that students in

group 1 had posttest scores that were significantly lower than students in the group 4.

Table 28. Pretest, Posttest, Gain and Time on Task Means for Lesson Sequence Strategy
Groups When All Lessons are Included

Group | Pretest | SD Post SD Gain SD Time SD N
1 23.6 12.7 35.0 13.9 0.3 0.3 34.1 18.0 70
2 25.2 12.8 42,0 13.8 0.4 0.3 37.4 17.1 66
3 24.8 14.9 39.3 13.1 0.4 0.4 34.0 16.4 24
4 29.9 13.0 43.1 7.6 0.3 0.3 43.3 3.9 8

When the first lesson visited was omitted from the analysis, a significant main effect is
again found for posttest scores (df effect = 3, MS effect = 595.24, df error = 167, MS error =
193.36 and F=3.08) at a p-level of 0.05. Table 29 shows the means for these groups. A
Tukey post-hoc analysis showed that there was a significant difference in between the first and

last group. Students in the first group had lower scores than those in the fourth group.
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It thus appears that the choice of lesson topic strategy had an effect on posttest
achievement. Students who adopted a depth-first approach had lower posttest scores than
students who adopted the system-guided approach. Students in different groups did not
show any significant differences with respect to demographic variables such as age, sex and
background. A distinct group of students was found, consisting of eight individuals who
chose to remain in guided mode throughout their learning session and who made more

extensive use of the notes option.

Table 29. Pretest, Posttest, Gain and Time on Task Means for Lesson Sequence Strategy
Groups When the First Lesson Visited is Omitted

Group | Pretest | SD Post SD Gain SD Time-1 | SD N
1 15.5 15.0 30.7 26.9 0.4 0.4 4.9 8.5 3
2 23.2 13.5 37.8 15.2 0.4 0.3 24.0 15.4 77
3 25.7 13.1 37.6 12.9 0.4 0.3 23.1 13.7 62
4 26.2 12.1 39.3 12.9 0.3 0.3 24.5 10.8 29
Learner Trace Variables

Trace variables were analysed to determine which, if any, could contribute to
explaining posttest variance independent of any groupings of these variables. A multiple
regression of all trace variables showed overall significance with an r=0.3 and r2=0.09. Three
variables were significant: the general text duration variable was significant with a B coefficient
of 0.25, the help frequency variable with a B coefficient of -0.2, and the condense information
duration variable with a B coefficient of -0.23. A forward stepwise regression of trace variables
was found to be significant overall when all lessons were included with an r=0.29 and r2=0.08.
Six variables entered into the equation at a significance level of p=0.05 in the following order:
general text duration, help frequency, condense information duration, condense information

frequency, general text frequency and hypertext duration (refer to Table 30 below).
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Table 30. Forward Stepwise Multiple Regression of All Trace Variables when All Lessons are
Included (N = 171)

Variable Beta p-level r2 change
Gen text time 0.26 0.002 0.05
help frequency -0.20 0.009 0.02
cond time -0.23 0.046 0.02
cond frequency 0.19 0.048 0.01
| gen text frequency -0.11 0.049 0.01
hypertext time -0.13 0.050 0.01

When the first lesson visited is omitted, a multiple regression with all trace variables was
found to have overall significance with an r=0.31 and r2=0.06. The only variables that were
found to be significant were: general-text-duration with a 8 coefficient of 0.27, and help-
frequency with a B coefficient of -0.22. A forward stepwise regression of all trace variables was
found to be significant when the first lesson visited was omitted with r = 0.32, r2 = 0.10. Three
variables were entered into the equation: general text duration (r2 change = 0.05), help
frequency (r2 change = 0.02) and elaborate information duration (r2 change = 0.02). Only the
first, general text duration, was significant with a B coefficient of 0.27. Tolerance levels were
found to be well within acceptable range for tests of mutticollinearity.

Similarly, when gain was used as the dependent variable, the overall muitiple
regression was found to be significant at a p-level of 0.05 (r = 0-.2, = 0.03). Only two trace
variables were entered into the forward stepwise regression: time spent in hypertext and time
spent in the elaborate information options.

When the first lesson was omitted from the analysis, the overall multiple regression was
significant at a p-level of 0.05 (r=0.3, r2 = 0.04). Three variables were entered into the forward
stepwise regression equation: frequency of hyptertext use, time spend in elaborate

information and time spent in condense information.
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Therefore trace variables appear to contribute to a small percentage of the posttest
variance. The highest amount of variance is explained when the first lesson is omitted and with
the variables general text duration, help use frequency and time spent in elaboration of
information. Groups based on frequency trace data did not show any significant main effects
with any of the demographic variables. The next section looks at the analysis of groups formed
by using a conventional statistical procedure, cluster analysis, on trace variables.

Cluster analysis groups of trace variables. Clusters obtained using trace variables were
examined using duration data (time spent in each option), frequency data (number of times
each option selected) and a combination of the two. Cluster analysis was used to group
students based on their leaming behavior. These groups were analyzed with respect to
significant differences in the mean use of the various leaming options. They were then
analyzed with respect to differences in pretest, posttest and time on task means. As in the
previous analyses, results are presented both for the case when all lessons are included and
for the case when the first lesson visited is omitted.

When all lessons are included and groups are created based on frequency data,
students were found to differ significantly with respect to all eight options: guidance
preference selection (df effect = 3, MS effect = 0.1, df error = 166, MS error = 0.15, F = 6.81),
elaborate information (df effect = 3, MS effact = 339.11, df error = 166, MS error = 5.12, F =
1.23), condense information (df effect = 3, MS effect = 258.12, df error = 166, MS error =
22.17, F = 11.64), general text (df effect = 3, MS effect = 264.42, df error = 166, MS error =
32.19, F = 8.21), help (df effect = 3, MS effect = 2752.14, df error = 166, MS error = 24.14, F =
114.03), self-test (df effect = 3, MS effect = 1093.12, df error = 166, MS error = 184.37, F=5.
93), notes (df effect = 3, MS effect = 45.76, df error = 166, MS error = 6.79, F = 6.74) and
hypertext (df effect = 3, MS effect = 1155.95, df error = 166, MS error = 61.9, F = 18.67).
Table 31 summarizes the means for these variables.

Students in group 1 used the self-test, notes and hypertext options quite frequently.

Students in group 2 showed much greater use of the help option and made no use at all of the

124



notes and hypertext options. Students in group 3 are distinguished by the most frequent use

of the guidance mode selection, condense information, general text and hypertext options.

Group 4 students had generally less frequent use of these options.

Table 31. Trace Variable Means for Cluster Analysis Groups based on Frequency Data When
All Lessons are Included

Group pref elab_inf |cond_inf|gen_txt | help self-test | notes hyp-text
1 13.4 11.0 8.5 6.1 1.0 19.0 2.6 6.8

2 13.4 7.6 7.2 0.7 30.0 5.9 0 0

3 16.1 14.6 11.1 12.3 0.3 17.8 3.1 21.8

4 8.6 6.6 4.3 5.8 0.6 9.8 0.8 4.3

When the first lesson visited is omitted, differences were once again found for all eight
trace variables across the four cluster analysis groups: guidance preference selection (df
effect = 3, MS effect = 635.77, df error = 165, MS effect = 63.96, F = 9.94), elaborate
information (df effect = 3, MS effect = 174.96, df error = 165, MS error = 60.44, F = 2.89),
condense information (df effect = 3, MS effect = 185.18, df error = 165, MS error = 21.34, F=
8.68), general text (df effect = 3, MS effect = 493.64, df error = 165, MS error = 34.91, F =
14.34), help (df effect = 3, MS effect = 972.01, df error = 165, MS error = 81.41, F = 11.94),
seif-test (df effect = 3, MS effect = 1511.29, df error = 165, MS error = 182.68, F = 8.27), notes
(df effect = 3, MS effect = 12.87, df error = 165, MS error = 4.71, F = 2.73) and hypertext (df
effect = 3, MS effect = 540. 87, df error = 165, MS error = 44.97, F = 12.03) (seeTable 32).

Students in group 1 were characterized by low use of help, moderate use of self-test
and hypertext together with the most frequent use of notes. Students in group 2 showed the
least frequent use of the general text option and the most frequent use of help. Students in
group 3 spent less time changing their guidance mode, made the least use of condense
information, self-test, notes and hypertext options and the most frequent use of general text.
Students in group 4 made the most frequent use of guidance mode selection, elaborate

information, condense information, self-test and hypertext and the least frequent use of help.
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Table 32. Trace Variable Means for Cluster Analysis Groups based on Frequency Data When
the First Lesson Visited is Omitted

Group pref elab_inf | cond_inf | gen_text| help self-test | notes hyp-text
1 8.6 7.3 5.3 6.0 0.9 11.3 1.6 5.0

2 8.2 5.2 4.1 1.8 10.6 8.5 0.8 1.5

3 6.2 5.2 2.0 9.9 2.4 3.0 0.4 1.1

4 18.2 10.8 8.4 8.7 0.9 21.8 1.3 11.2

ANOVAs were then done for the groups based on frequency trace data for the pretest,

posttest, gain and time on task results (Table 33). A signficant main effect was found for the
time on task variable (df effect = 3, MS effect = 0.284, df error = 166, MS error = 0.331 and
F=8.6) at a p-level of 0.05.

Table 33. Means for Pretest, Posttest, Gain and Time on Task Variables for Cluster Analysis
Groups based on frequency When All Lessons are Included

Group | pretest | SD post SD Gain SD time SD N

1 22.7 12.9 36.8 13.8 0.4 0.5 41.5 15.8 59
2 28.4 10.2 39.1 13.0 0.3 0.4 35.9 12.7 14
3 19.4 10.3 39.1 13.2 0.3 0.3 45.8 18.0 15
4 26.6 13.4 40.3 13.5 0.4 0.4 29.9 16.3 81

A Tukey post-hoc analysis showed that students in group 4 differed from students in all the
other groups in having spent much less time on interacting with the leaming materials.

When the first lesson visited was omitted from the analysis, no significant difference
was obtained for test score and gain means across the cluster analysis groupings based on
frequency trace data. The difference in time on task means remained, however (df effect = 3,
MS effect = 1518.6, df error = 165, MS error = 161.34 and F = 9.41) at a p-level of 0.05. Table
34 below summarizes these resuits. A Tukey post-hoc analysis showed that students in

group 4 spent more time than students in groups 2 and 3. Students in groups 1 and 2 were
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also found to have significantly different time on task means. Students in group 2 spent the

least amount of time on the leaming task.

Table 34. Means for Pretest, Posttest, Gain and Time on Task Variables for Cluster Analysis
Groups based on Frequency Data When the First lesson Visited is Omitted

Group | pretest | SD post SD Gain SD time-1 | SD N

1 24,9 13,8 40.2 13.4 0.4 0.5 26.6 13.1 71
2 25.2 13.5 35.6 15.1 0.4 0.5 18.1 13.5 45
3 25.8 10.5 40.8 10.7 0.3 0.4 20.5 11.6 34
4 21.3 12.6 33.3 13.9 0.3 0.4 32.2 15.9 19

Thus cluster analysis groups based on frequency data showed that considerable
differences existed across the four groups with respect to eight trace variables. Each group
appears to have different interaction patterns with the learning materials. These pattemns were
found to be different when the first lesson was included and when it was omitted from the
analysis. In addition, a difference was found for the mean time on task scores using this
grouping method.

Cluster analysis groups were also generated using duration trace data. Four groups
were obtained and differences with respect to trace variable means, pretest, posttest, gain and
time on task means were analyzed as in the same manner (both with and without the first
lesson visited).

When all lessons were inciuded, the four groups were found to differ with respect to
their means on the following trace variables: guidance mode preference (df effect = 3, MS
effect = 0.19, df error = 166, MS error = 0.13, F = 14.22), condense information (df effect = 3,
MS effect = 0.27, df error = 166, MS error = 0.15, F = 17.9), general text (df effect = 3, MS
effect = 0.74, df error = 166, MS error = 0.81, F = 9.1), self-test (df effect = 3, MS effact = 0.83,
df error = 166, MS error = 0.52, F = 16.14) and hypertext (df effect = 3, MS effect = 0.19, df

error = 166, MS error = 0.47, F = 4.14). Table 35 shows the means for these variables.
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Group 1 spent the most time in self-test and the least amount of time spent in
hypertext. Group 2 had the longest time in general text and hypertext. Group 3 spent the
most time selecting a guidance preference and in condense information. Group 4 students
spent the least amount of time selecting a guidance preference, in condense information, and

general text.

Table 35. Trace Variable Means for Cluster Groups based on Duration data When All Lessons
are Included

Group pref cond. info | gen. text self-test hypertext
1 2.45 3.9 10.4 5.1 2.2
2 1.5 4.1 15.9 2.6 6.6
3 3.1 13.0 8.4 4.4 5.4
4 1.3 3.7 8.2 1.9 3.0

Cluster analysis groupings based on trace duration data were next analyzed to identify
any significant differences in means for pretest, posttest, gain and time scores. No significant
differences were found for pretest means, both when all lessons were included in the analysis
and when the first lesson visited was omitted. When all lessons are included in the analysis, a
significant difference was found, both for posttest scores and for the time on task variable (See

Table 36).

Table 36. Pretest, Posttest, Gain and Time on Task Means for Cluster Analysis Groups based
on Duration Data When All Lessons are Included

Group | pretest | SD post SD time SD N

1 23.3 12.8 33.2 14.6 40.9 16.0 30
2 25.0 11.4 44.6 10.9 41.4 14.3 57
3 22.9 14.4 21.9 12.0 46.9 16.5 10
4 25.8 14.0 37.7 12.6 27.9 16.4 72

A significant main effect was found for posttest scores (df effect = 3, MS effect =

2174.35, df error = 166, MS error = 152.88 and F=14.22) at a p-level of 0.05. A Tukey post-
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hoc analysis determined that students in group 2 differed from students in the other three
groups. Their scores were significantly higher than scores of students in the other groups. A
significant main effect was also found for the time on task scores (df effect = 3, MS effect =
0.352, df error = 166, MS error = 0.314 and F=11.21) at a p-level of 0.05. A Tukey post-hoc
comparison of the means showed that students in group 4 differed from students in the other
three groups in having spent the least time interacting with the materials.

When the first lesson visited was omitted, the four cluster groups based on trace
duration data show significant differences in the following trace variable means: guidance
mode preference (df effect = 3, MS effect = 0.17, df error = 165, MS efror = 0.11, F = 16.54),
condense information (df effect = 3, MS effect = 0.36, df error = 165, MS error = 0.13, F =
2.77), general text (df effect = 3, MS effect = 0.11, df error = 165, MS error = 0.67, F = 16.59),
self-test (df effect = 3, MS effect = 0.72, df error = 165, MS error = 0.53, F = 13.73), notes (df
effect = 3, MS effect = 0.12, df error = 165, MS error = 0.44, F = 2.73) and hypertext (df effect
=38, MS effect = 0.45, df error = 165, MS error = 0.26, F = 17.48). Table 37 summarizes this

data.

Table 37. Trace Variable Means for Cluster Analysis Groups based on Duration Data When the
First Lesson Visited is Omitted

Group pref cond gen text | self-test notes hyper-text
1 1.0 3.0 6.6 2.0 0.5 2.3
2 1.2 2.9 16.0 2.4 0.4 1.5
3 1.1 3.2 12.9 2.6 1.2 9.4
4 2.3 4.8 7.5 4.6 1.4 1.7

Group 1 spent the least amount of time choosing a guidance preference, in general
text and in self-test. Students in group 2 spent the most time in general text and the least
amount of time in condense information. Group 3 showed the most use of hypertext. Group 4

spent the most time choosing a guidance mode, in condense information, self-test and notes.
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These groups were then analyzed with respect to pretest, posttest, gain and time on
task scores. Significant differences were again obtained for posttest and time on task variable
means. Table 38 below shows the results of this analysis. A significant main effect was
observed for the posttest means (df effect = 3, MS effect = 1518.6, df error = 165, MS effect =
161.34 and F=9.41) at a p-level of 0.05. A Tukey post-hoc analysis showed that students in
group 4 had lower posttest scores than students in the other three groups. In addition,
students in group 2 differed from students in group 1. Students in group 2 had the highest
posttest scores.

A significant main effect was also obtained for the time on task means when the first
lesson visited was omitted from the analysis (df effect = 3, MS effect = 0.237, df error = 165,
MS error = 0.214 and F=11.06) at a p-level of 0.05. A Tukey post-hoc analysis determined that
students in group 1 differed from students in the other groups in that they spent the least

amount of time in interacting with the leaming environment.

Table 38. Pretest, Posttest and Time on Task Scores for Cluster Analysis Groups based on
Duration Data When the First Lesson Visited is Omitted

Group | Pre SD Post SD Gain SD Time-1 | SD N
1 25.8 13.4 37.8 13.7 0.3 0.5 18.0 13.7 79
2 24.3 10.9 45.1 12.3 0.5 0.4 27.3 11.6 36
3 24.7 14.1 42.3 7.9 0.4 0.3 33.4 13.5 21
4 22.9 13.4 29.5 13.2 0.2 0.3 27.4 11.7 33

Cluster analysis groups were next formed using both frequency and duration data.
They were again analyzed for significant differences in trace variables, pretest, posttest, gain
and time on task scores, for all lessons and for the case where the first lesson visited is omitted
from the analysis. When all lessons were included, the cluster analysis groups were found to
differ with respect to trace variables. These results are presented in Table 39 below. Trace
variable means are shown in Table 40.

Students in group 1 spent less time and (or) made less frequent use of the guidance

preference, elaborate information, condense information, general text, self-test and notes
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options. Students in group 2 spent significantly more time on elaborate information,
condense information and general text. They made more frequent use of the condense
information option. Group 3 students were characterized by significantly more frequent use of
elaborate information, condense information, general text, notes and hypertext. They spent
more time in hypertext. These students used the help option less frequently. Students in
group 4 spent more time in guidance mode selection and self-test. They made more frequent
use of the guidance mode selection, help and self-test options. They used general text the
least frequently of all the groups.

Table 39. ANOVA Resuits on Trace Variable Means for Cluster Analysis Groups based on

Both Time and Frequency, When the First Lesson is Omitted (df effect = 3, df error = 166, p-
level = 0.05; time in minutes, frequency in number of times used)

Variable MS effect MS error F
pref time 0.2 0.1 11.3
ref freq 573.7 60.5 9.5
elab time 0.2 0.28 5.8
elab freq 365.9 65.6 5.6
cond tme 0.1 0.18 6.9
cond freq 200.7 23.6 8.5
| gen text time 0.3 0.9 3.2
 gen text freq 165.9 34.6 4.8
help freq 931.8 68 13.7
self-test time 0.64 0.6 11.3
self-test freq 697.9 193.9 3.6
notes freq 21.8 7.4 3.0
hypertext time 0.5 0.4 12.9
hypertext freq 11.0 63.4 17.3
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Cluster analysis groups based on both frequency and duration trace data also showed
significant differences in both posttest means and time on task variable means, when all
lessons were included in the analysis. No significant effects were obtained for the pretest

means and gain means(see Table 41).

Table 40. Trace Variable Means for Cluster Groups based on Frequency and Duration when all
Lessons are Inciuded (time in min, frequency in number of uses)

Variable Group 1 Group 2 Group 3 Group 4
pref time 1.3 1.6 1.5 2.8
ref freq 8.5 10.6 12.2 18.5
elab time 3.1 6.7 4.7 6.5
elab freg 5.6 11.3 12.5 9.5
cond_info time | 2.6 5.7 5.0 5.6
cond_info freq | 4.2 8.3 9.4 6.9
| gen_text time | 9.4 13.9 12.0 9.8
| gen_text freq | 5.1 6.4 10.5 4.2
help freq 1.1 1.2 0.3 13.4
self-test time 2.0 2.8 2.7 5.0
self-test freq 9.8 12.9 16.1 20.4
notes freq 1.0 1.8 3.2 1.2
hyp_text time | 3.0 3.8 11.8 1.8
hyp_text freq |3.7 6.4 18.9 2.8

A significant main effect is obtained for the posttest scores (df effect = 3, MS effect =
663.54, df error = 166, MS error = 160.83 and F=4.125) at a p-level of 0.05. A Tukey post-hoc
analysis showed that students in group 2 and 4 differed from one another. Students in group
2 had the highest posttest score while students in group 4 had the lowest score. A significant

main effect was also obtained for the time on task scores (df effect = 3, MS effect = 0.355, df
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error = 166, MS error = 0.313 and F=11.34) at a p-level of 0.05. A Tukey post-hoc analysis
revealed that students in group 1 differed from the other groups in having spent the least time

on the leaming task.

Table 41. Pretest, Posttest, Gain and Time on Task Means for Cluster Groups based on Both
Time and Frequency When All Lessons are Included

Group | Pre SD Post ISD Gain | SD Time |[SD N
1 27.9 13.67 | 38.7 14.1 0.3 0.3 27.1 16.0 65
2 23.7 12.1 41.8 13.0 0.4 0.4 40.9 15.7 53
3 19.0 10.6 39.2 11.3 0.5 0.5 44.3 16.1 22
4 24.0 13.1 30.2 12.7 0.2 0.3 40.0 13.9 29

When the first lesson was omitted, the groups were found to differ significantly with
respect to trace variables, as summarized in Table 42 below.

Group 1 students spent the most time in general text and used the notes option
frequently. Students in group 2 spent the least amount of time in, and made the least frequent
use of, guidance mode selection, elaborate information, condense information, self-test and
notes.

Group 3 students spent the most time in guidance mode selection, self-test, help and
notes and made the least use of general text and hypertext. Students in group 4 spent the
most time in elaborate information, condense information, general text, self-test and hypertext

with very little use of help (see Table 43 for the variable means).
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Table 42. ANOVAs of Trace Variables for Cluster Groups based on Both Time and Frequency
data When the First Lesson Visited is Omitted (df effect = 3, df error = 165, p-level = 0.05)

Variable MS effect MS etror F
ref time 0.1 0.1 11.9
pref freq 887.6 59.4 15.0
elab time 0.1 0.3 5.3
elab freq 295.3 58.3 5.1
cond time 0.7 0.1 5.9
cond freq 240.9 20.3 11.9
| gen text time 0.2 0.8 2.9
| gen text freq 207.9 40.1 5.2
help freq 2405.7 55.3 43.5
self-test time 0.7 0.5 13.8
self-test freq 1911.2 175.4 10.9
notes time 0.4 0.4 8.8
notes freq 18.0 4.6 3.9
hyp text time 0.2 0.3 5.1
hyp text freq 400.7 47.5 8.4
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Table 43. Trace Variable Means for Cluster Groups based on Time and Frequency Data, When
the First Lesson Visited is Omitted

Variable Group 1 Group 2 Group 3 Group 4
pref time 1.2 1.0 2.1 1.9
pref freq 8.7 5.8 11.4 18.0
elab time 3.6 1.6 4.6 5.2
elab freq 8.1 4.1 7.5 10.4
cond time 3.6 2.4 3.7 5.5
cond freq 5.7 2.3 6.7 7.7
| gen text time 11.9 8.2 7.2 9.6
 gen text freq 6.1 6.1 1.3 8.9
help fraq 1.4 1.8 22.2 1.0
self-test time 2.6 1.8 4.6 4.0
self-test freq 11.5 4.0 9.1 22.8
notes time 0.8 0.2 2.5 0.4
notes freq 1.7 0.4 1.3 1.6
hyp text time 3.6 2.0 0.5 5.7
hyp text freq 5.1 2. 1.2 9.6

These groups were then analyzed with respect to pretest, posttest, gain and time on
task scores. No significant differences are found for the pretest. However. the posttest and
the time on task variable means showed significant differences. Table 44 below shows the

resulits of this analysis.
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Table 44. Pretest, Posttest, Gain and Tme on Task means for Cluster Analysis Groups based
on Both Time and Frequency Data When the First Lesson Visited is Omitted

Group | Pretest | SD Post SD Gain SD Time-1_| SD N
1 24.2 13.2 41.4 13.9 0.4 0.4 27.4 12.8 58
2 26.0 13.6 39.5 13.1 0.3 0.4 17.3 12.8 69
3 25.9 11.8 30.9 11.1 0.2 0.4 25.2 9.1 19
4 21.6 11.5 32.9 13.3 0.3 0.3 32.5 15.6 23

A significant main effect was found for the posttest means (df error = 3, MS error =
783.51, df error = 165, MS error = 174.71 and F = 4.4.8) at a p-level of 0.05 when the first
lesson visited was omitted from the analysis. A Tukey post-hoc comparison showed that
students in group 1 differed from students in groups 3 and 4. Students in group 2 also
differed significantly from students in group 3. The highest scores were obtained by group 1
and the lowest by group 3 students.

A significant main effect was also found for the time on task means when the first
lesson was omitted (df error = 3, MS error = 0.237, df effect = 165, MS effect = 0.214 and F =
11.04) at a p-level of 0.05. A Tukey post-hoc analysis showed that students in group 2
differed from students in all the other groups in that they spent significantly less time
interacting with the learming environment.

The cluster analysis groups thus appear to contribute to the explanation of variance in
the posttest and time on task variables. The critical variables distinguishing the groups appear
to be the amount of time spent in general text, condensing information and hypertext,
together with the frequency of user of help, condense information and general text options. In
the final section, the groupings found using a neural network classification on the same trace
data were analyzed.

Neural network classifications. Two different types of groups were obtained when the

neural network was used to classify students based on their frace variable data. in one the

neural network was constrained, i.e., the number of categories was specified, to be four in
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total. In the second, the network used was an unconstrained one: that is, there was no a priori
determination of the number of categories students were to be assigned to and as a result, the
network placed students into a total of six groups. Results are first presented for the
constrained network, followed by the results for the unconstrained network.

The four groups obtained using the constrained neural network were analyzed with
respect to trace variable means. When all lessons are included in the analysis, they were found
to differ in their use of learning options. The results of these analyses are presented in Table

45 below.

Table 45. ANOVA Results on Trace Variables for Constrained Neural Network Groups (df
effect = 3, df error = 166, p-level = 0.05)

Variable MS effect MS error F
elaborate info time 0.1 0.3 4.0
condense info freq 93.3 26.1 3.6
| general text time 0.39 0.9 4.5
| general text frequency | 105.3 36.0 2.9
help frequency 260.4 84.2 3.1
notes time 0.2 0.5 4.7
hypertext time 0.3 0.4 7.4
hypertext frequency | 696.6 73.1 9.5

The trace variable means are shown in Table 46. Group 1 students spent the most
time in general text and they made the least frequent use of notes. Students in group 2 spend
the most time in hypertext and made the most frequent use of hypertext, condense
information, and help. Group 3 students spent the least amount of time in elaborate
information, general text and hypertext. They made the least frequent use of condense
information, general text and hypertext. The showed significantly more frequent use of help
and spent more time in notes. Students in group 4 spent the most time in elaborate

information and used general text the most frequently.
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Table 46. Trace Variable Means for Constrained Neural Network Groups When All Lessons are

Included
Variable Group 1 Group 2 Group 3 Group 4
elaborate info time | 4.8 3.8 2.1 7.4
condense info freq} 6.5 8.8 2.9 5.7
 general text time 13.2 10.1 5.8 8.0
| general textfreq | 5.7 8.0 0.6 6.3
help frequency 3.1 0.3 13.4 3.8
notes time 0.6 0.9 3.9 0.7
hypertext time 3.1 8.9 0.0 3.6
hypertext freq. 4.2 14.3 0.4 6.3

These groups were then analyzed for pretest, posttest , gain and time on task
differences. No significant main interaction effect was found for pretest scores across the four
neural network groups. A main interaction effect was obtained for the four groups created by
the neural network for both posttest scores and time on task scores, when all lessons were
included in the analysis. The posttest intsraction effect (df effect = 3, MS effect = 1459.84, df
error = 166, MS error = 170.1 and F = 8.58) is significant at a p-level of 0.05. Table 47 below
shows these results. A Tukey post-hoc analysis found that students in group 1 ditfered
significantly from students in group 4. Students in group 1 had the highest posttest score

while students in group 4 had the lowest posttest score.

Table 47. Pretest, Posttest, Gain and Time on Task Means for Constrained Neural Network
Groups When All Lessons are Included

Group | Pretest | SD Post SD Gain Sb Time |SD N
1 26.9 12.5 41.8 12.9 0.4 0.4 35.9 16.0 95
2 20.8 11.5 35.4 13.0 0.4 0.4 39.1 20.5 32
3 22.8 13.6 36.9 10.9 0.4 0.4 26.2 18.3 9
4 22.9 14.6 31.8 14.1 0.3 0.4 35.8 15.1 35

138




A main effect was also found for the time on task variable (df effect = 3, MS effect =
0.142, df error = 166, MS error = 0.365, and F= 3.89) at a p-level of 0.05 when all lessons were
included in the analysis. A Tukey post-hoc analysis revealed that students in group 2 were
significantly different from students in group 3. Students in group 2 spent the most amount of
time interacting with the learming environment while students in group 3 spent the least time.

When the first lesson visited was omitted from the analysis, the groups were found to
differ in the time spent in four trace variables: elaborate information (df effect = 3, MS effect =
0.12, df error = 165, MS error = 0.25, F = 4.79), general text (df effect = 3, MS effect = 0.6, df
error = 165, MS error = 0.76, F = 7.93), self-test (df effect = 3, MS effect = 0.19, df error = 0.62,
F =3.1) and hypertext (df effect = 3, MS effect = 0.35, df error = 165, MS error = 0.27, F =
12.76) and the frequency of use of hypertext (df effect = 3, MS effect = 501.39, df error = 165,

MS error = 45.68, F = 10.98) (see Table 48).

Table 48. Trace Variable Means for Constrained Neural Network Groups When the First
Lesson Visited is Omitted

Group elab_info time | gen_text time | self-test time | hyp_text time | hyp._text freq
1 6.1 6.9 3.5 2.0 4.8

2 3.0 11.0 2.9 2.1 2.5

3 2.9 11.7 2.1 8.0 10.7

4 1.2 3.4 1.8 1.3 2.0

Group 1 students spent the most time in elaborate information and self-test. Group 2

students spent the most time in general text and made very infrequent use of hypertext.

Group 3 students also spent a lot of time in general text but they spent the most amount of

time in hypertext and made use of hypertext the most frequently of all the groups. Group 4 is

characterized by the least amount of time spent in all the options and the least frequent use of

the hypertext option.

When the groups were analyzed for pretest, posttest, gain and time on task measures,

no main interaction effect was found for the pretest means. A main interaction effect was
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found for the posttest scores (df effect = 3, MS effect = 631.86, df error = 165, MS effect =
177.46 and F = 3.56) at a p-level of 0.05. Table 49 shows these results. Students in group 2

had the highest posttest score while students in group 1 had the lowest.

Table 49. Pretest, Posttest and Time on Task Means for Constrained Neural Network Groups
When the First Lesson is Omitted

Group | Pre SD Post SD Gain SD Time-1 | SD N

1 22.1 12.4 30.7 13.6 0.3 0.4 24.2 13.5 21
2 26.4 12.5 40.5 13.4 0.4 0.5 24.5 13.4 98
3 24.4 14.0 38.6 11.3 0.4 0.4 29.0 12.5 26
4 24.2 13.0 35.4 14.8 0.3 0.3 14.6 14.6 24

A significant main effect was also found for the time on task variables (df effect = 3, MS
effect = 0.121, df error = 165, MS error = 0.234 and F = 5.15) at a p-level of 0.05. A Tukey
post-hoc analysis showed that students in group 4 were different from students in the other
three groups. Students in group 4 spent the least amount of time interacting with the learning
environment. Thus the four groups formed by a constrained neural network classification
appear to explain some of the posttest variance and the time on task variance. The final
section looks at the results of the unconstrained neural network which found six groups of
students.

The unconstrained neural network groups were first analyzed with respect to
differences on trace variable means. When all lessons are included in the analysis, students
were found to differ in the use of learning environment options (see Table 50). Group 1
students spent the most time in elaborate information and less time in notes. Group 2
students spent the most time in general text and very little time in notes. Group 3 students
spent the longest in the general text option and made greater use of hypertext. Group 4
students spent the most time in notes together with a fairly long time in general text. They
made very infrequent use of hypertext. Group 5 students spent the least amount of time in

hypertext and elaborate information. They had greater time in general text and notes. Group 6
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spent the least amount of time on condense information, general text and hypertext options.

Table 51 shows the trace variable means for these data.

Table 50. ANOVAs of Trace Variable Means for Unconstrained Neural Network Groups When

All Lessons are Included (df effect = 5, df error = 163, p-level = 0.05)

Variable MS effect MS error F
elab_info time 0.8 0.3 2.5
cond_info_time 0.8 0.2 4.4
cond_info_freq 62.1 26.2 2.4
| gen_text time 0.3 0.9 3.2
notes time 0.1 0.5 2.5
hypertext time 0.3 0.4 7.4
hypertext freq 509.8 69.5 7.3

Table 51. Trace Variable Means for Unconstrained Neural Network Groups When All Lessons

are Included

Variable Group1 | Group2 |Group 3 | Group4 | Group5 | Group 6
elab_info time 7.5 4.7 4.1 4.5 3.1 3.3
cond_info time |4.6 4.0 3.3 4.1 9.7 4.7
cond_info freq |5.7 6.7 6.5 4.7 11.3 4.0
gen_text time 8.1 12.9 13.3 13.0 6.8 4.6
notes time 0.8 0.6 1.1 3.9 0.3 0.6
hyp_text time 3.7 2.4 10.3 1.0 7.6 0.3
hyp_text freq 7.1 3.2 15.2 1.0 10.9 1.0

These unconstrained neural network groups were then analyzed with respect to
pretest, posttest, gain and time on task scores. No significant main effect was observed for the
pretest means, gain and time on task means. A main effect is found for the posttest means (df
effect = 5, MS effect = 843.71, df error = 163, MS error = 172.82 and F = 4.88) at a p-level of

0.05. The resuits are summarized in Table 51 below. A Tukey post-hoc analysis showed that
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group 6 was significantly different from group 2. Group 6 had the lowest posttest score while
group 2 had the highest. Table 52 below shows these resuits.

When the first lesson was omitted from the analysis, the six neural network groups
were found to differ with respect to leaming options (see Table 53 below). Group 1 students
spent the most time in elaborate information. They also spent a lot of time in general text and
seif-test. They spent little time in notes. Group 2 students had high general text time and
frequency together with very low amount of time spent in notes. The trace variable means are

presented in Table 54

Table 52. Pretest, Posttest, Gain and Time on Task Variables for the Unconstrained Neural
Network Groups When All Lessons are Included

Group | Pre SD Post |SD Gain_ | SD Time |SD N
1 21.1 15.3 32.7 14.2 0.4 0.4 35.6 16.1 37
2 27.1 12.0 41.4 13.2 0.3 0.3 35.0 16.1 82
3 24.1 12.6 39.5 9.9 0.4 0.5 40.7 16.0 27
4 20.23 ] 14.6 37.9 15.6 0.5 0.6 38.3 26.9 6
5 22.5 10.4 34.5 17.4 0.3 0.4 40.4 20.6 11
6 27.1 11.1 25.9 9.5 0 0.5 31.4 10.79 |14

Group 3 students spent the longest time in general text and hypertext. They were the most

frequent users of hypertext. They used general text frequently and help very infrequently.
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Table 53. ANOVA Results for Unconstrained Neural Network Groups and Trace Variables
When the First Lesson Visited is Omitted (df effect = 5, df error = 162, p-level = 0.05)

Variable MS effect MS error F
pref time 0.4 0.1 3.2
elab_info time 0.7 0.3 2.8
cond_info _time 0.5 0.1 4.2
 gen_text time 0.5 0.7 6.3
| gen_text freq 106.6 40.8 2.6
help freq 364.4 87.4 4.2
self-test time 0.2 0.6 3.0
notes time 0.2 0.4 4.2
hyp_text time 0.2 0.3 6.7
hyp_text freq 263.7 46.1 57

Table 54. Trace Variable Means for Unconstrained Neural Network Groups When the First
Lesson Visited is Omitted

Variable Group 1 Group 2 Group 3 Group 4 Group 5 Group 6
pref time 1.5 1.4 1.0 1.3 1.9 0.1
elab_info time |6.3 3.1 2.9 2.1 1.4 0
cond_info time | 3.4 3.5 2.2 6.6 3.3 0.7
 gen_txt time 7.2 11.6 11.7 5.2 1.8 0.5
| gen_txt freq 6.7 6.7 7.0 4.6 0.4 0.3
help freq 5.5 3.6 0.7 1.6 17.6 0
seli-test time 3.5 2.9 2.1 2.5 2.8 0
notes time 0.4 0.5 1.1 0.3 3.5 0.5
hyp_text time | 2.1 2.2 8.0 2.3 0.4 0
hyp_text freq [ 5.1 2.5 10.7 3.5 1.2 0.4

143




Group 4 students spent the longest time in condense information and the least
amount of time in notes. Group 5 students spent little time in general text and used this option
infrequently. They showed the greatest frequency of use of the help and notes options.
Group 6 was characterized with very low scores on both time and frequency of use of all the
options.

These groups were then analyzed with respect to pretest, posttest, gain and time on
task scores. No significant main effects are observed for the pretest. A main effect was
obtained for the posttest means (df effect = 5, MS effect = 400.36, df error = 162, MS error =

177.62 and F = 2.25) at a p-level of 0.05. The resuits are summarized in table 55 below.

Table 55. Pretest, Posttest and Time on Task Means for Unconstrained Neural Network
Groups When the First Lesson is Omitted

Group | Pre SD Post SD Gain SD Time-1 | SD N
1 18.0 12.7 30.8 14.0 0.4 0.3 24.6 13.7 20
2 26.2 12.4 41.0 13.2 0.4 0.5 25.3 13.3 93
3 24.5 14.0 38.6 11.3 0.4 0.3 29.0 12.5 26
4 20.3 13.8 35.4 15.8 0.4 0.3 20.5 14.0 13
5 28.3 12.5 31.2 11.8 0.1 0.3 14.9 10.2 9
6 28.7 11.3 36.4 16.5 0.2 0.3 11.8 4.8 7

A Tukey post-hoc analysis revealed that groups 1 and 5 had significantly lower posttest
means than group 2, which had the highest. A significant main effect was also obtained for the
time on task means (df effect = 5, MS effect = 0.124, df error = 162, MS error = 0.216 and F=
5.71) for a p-level of 0.05. A Tukey post-hoc analysis showed that group 6 students spent the
least amount of time in learning. Students in group 3 spent the most time on the leaming task.
When all lessons were included, the groupings were found to be significantly correlated with
three trace variables: condense information (0.206), elaborate information (-0.229) and career
plans (0.156). When the first lesson was omitted, the neural network clusters showed

significant correlations with a larger number of trace variables, as shown in Table 56 below.
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Table 56. Significant Correlations of Neural Network Clusters and Trace Variables When the
First Lesson Visited is Omitted

Variable name Correlation coefficient
Kolb AE-RO dimension -0.2
Kolb AE score -0.2
Entwistle reproducing orientation 0.2
Time on task -0.3
Guidance preferences duration -0.2
Elaborate information duration -0.3
General text duration -0.3
Self-test duration -0.3
Guidance preferences frequency -0.3
Elaborate information frequency -0.2
Condense information _frequency -0.2
General text frequency -0.3
| Cluster grouping based on time -0.2
Cluster grouping based on frequency -0.2
Cluster grouping based on time and frequency | -0.2

Multiple Regression Combining Cognitive Science, Learning Style and Trace Variables

An attempt was then made to fit a multiple regression equation using the best possible
combination of cognitive science, leaming style and trace variables in order to maximize the
amount of posttest variance that could be explained in this learning environment. A forward
stepwise multiple regression of all variables was found to be significant, with 17 variables
entered into the equation in the following order: pretest, gen-text-duration, Entwistle
quadrant, help-frequency, hypertext-duration, cond-info-duration, time on task, elab-info-

duration, preference, Kolb LS| AE score, gen-text-frequency, cluster group based on
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frequency trace data, condense-info-frequency, cluster group based on both duration and
frequency trace data, motivation, general knowledge of Al, and the ASI reproducing
orientation score.

Six variables are found to be significant: pretest, help-frequency, condense-info-
duration, time on task, elaborate-info-duration, and general-text-frequency. Table 57
summarizes these results.

When all lessons are included, the best multiple regression equation was found to be:
posttest = 21.93 + 0.39 (pretest) -0.21 help frequency -0.21 condense information duration +
0.39 time on task - 0.24 elaborate information duration -0.15 general text frequency.

When gain was used as the dependent variable, and all lessons were included in the
analysis, the forward stepwise regression was found to be significant. The following variables
were entered into the equation: pretest, hypertext frequency, Kolb LSI AC score, cluster
group based on duration data, time spent in elaborate information and lesson sequence order
group. Of these, the pretest, hypertext duration, cluster analysis group based on duration
data and time spent in elaborate information were found to be significant. The best regression
equation thus appears to be: gain = 18.44 - 0.15 pretest -0.15 hypertext frequency + 0.13
cluster analysis group based on duration data + 0.13 time spent in elaborate information.

Thus the unconstrained neural network groups also appear to contribute to the
explanation of posttest, gain and time on task variance.

When the first lesson visited was omitted, 15 variables were entered into the equation but only
four are found to be significant: pretest, general-text-duration, cluster group based on both

duration and frequency trace data, and general Al knowledge (see Table 58).
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Table 57. Forward Stepwise Muitiple Regression of All Variables.

Variable: Posttest Dep Var Beta Tolerance level | r2 change
pretest 0.39 0.89 0.17
help-frequency -0.21 0.76 0.05
cond-info-duration -0.21 0.68 0.03
time on task 0.38 0.27 0.02
elab-info-duration -0.24 0.61 0.02

| gen_text_frequency -0.15 0.79 0.01

Variable: Gain Dep Var

retest -0.15 0.90 0.2
hypertext_frequency -0.15 0.59 0.07
cluster group duration data 0.13 0.80 0.06
elaborate_info_time 0.13 0.52 0.05

The overall regression was significant with r = 0.59 and r2 = 0.35. The r2 change when
the Entwistle quadrant variable was entered last into the equation was 0.04. The best multiple
regression was found to be: posttest = 37.41 + 0.35 pretest + 0.16 general text duration -
0.27 cluster analysis group based on time and frequency + 0.13 Entwistle quadrant.

Tolerance levels were again acceptable for these values, as shown in Table 58 below.
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Table 58. Forward Stepwise Multiple Regression of All Variables When the First lesson Visited

is Omitted (N=171)

Variable: Posttest Dep Var Beta T?lera}noe r2 change
eve
retest 0.34 0.88 0.17
| general text duration 0.19 0.77 0.04
cluster duration and frequency | -0.26 0.40 0.06
Entwistle quadrant 0.16 0.64 0.04
Variable: Gain Dep Var
retest -0.13 0.91 0.13
elaborate_info_time 0.26 0.52 0.05
condense_info_time 0.16 0.47 0.05

Table 59 below summarizes the major findings of the study. The possible implications are
included in this summary table. While this study did not implement and assess the
effectiveness of any instructional interventions, the implications stated here are possibilities
that may form the subject of future studies. These possible implications are discussed further

in the subsequent Discussion chapter.
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Table 59. Summary of Results and Implications

Phenomenon Variables Observations Poss. implications
Data collection over | Group equivalency No significant it is possibie to pool
six test sessions differences the data collected
from the different test
sessions
Student leaming and | Pretest Content validity exists | The pretest is a valid,
instructional validity of good item difficuity easy to use, reliable a
materials good item discrimin. | priori assessment
normal dist. of scores | tool of existing domain
good inter-rater correl. | knowledge that can
distinguish experts
from novices
Posttest Content validity exists | Both the pretest and
good item difficulty the posttest are valid
good item discrimin. | instruments
normal dist. of scores
goad inter-rater correl.
Gain Average 40% The learning
environment is
Time on task Average 35 minutes | instructionally valid
and students did in
Student leaming Sig. improvement fact leam as they

Exit interviews

Corroborates that
learners were able to
study and leamn

interacted with the
system

Learning styles

Kolb LSI

Entwistle AS!

No relationship to
learning achievement,
learning efficiency,
learning interaction
patterns; expected
profiles not observed

Summary
reproducing and
meaning orientation
scores related to
learning achievement
and interaction
patterns; both
reproducing and
meaning orientation
profiles abserved.......
(details presented on
next page.....)

Not a useful apriori
assassment tool to
use in this context

useful a priori
assessment tool to
help predict posttest
achievement and
specific learmner
behaviors with respect
to leaming
environment options

(details presented on
next page....)
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Table 59.....continued

Detailed Entwistle ASI
variables

Observations

Possible implications

Students with high meaning
orientation and high
reproducing orientation
scores

High posttest scores

Because these students were
successful learners, no further
intervention is necessary

Low reproducing orientation | low posttest scores These students require early

and high meaning orientation intervention as they are not

scores successful at learning with this
system

High meaning score should

be linked to:

(1) higher use of notes observed These students could be
encouraged to try to self-test

(2) higher use of elaborate observed or quiz themselves more, at

information least after each lesson
module, in order to improve

(3) greater time on task not observed their posttest scores

(4) a depth-first lesson order
sequence

not observed

High reproducing score
should be linked to:

(1) higher use of self-test

(2) higher use of defer
posttest

(3) higher use of definitions
and dictionary (elaborate
information option)

(4) low time on task

(5) breadth-first lesson order
sequence

observed

not observed

not observed

not observed

not observed

Feedback to encourage these
students to spend less time
on self-testing and more time
interacting with the content
(as found in the general text
option) in order to increase
leaming achievement
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Table 59....continued

Phenomenon Variables Observations Implications
Summary_Interaction Trace data from leamer- | Cluster analysis and ANNs are useful real-
variables yield distinct | system interactions ANNSs find very similar | time leamner diagnosis
groups of learners groups that differ with | tools to predict posttest

respect to learning
achievement and
leaming efficiency -

achievement, time on
task; these data can be
used to update an

except for the fourth initial stereotype model
group (see next page (see next page for
for details) details)
Guidance preference General General General (see next page
groups Guidance preference No link to posttest for details) Guidance
was used to create the | performance mode preference
following groups: appears to be just that -

(1) prefer guidance

(2) prefer seif-guidance

(3) no clear preference

changed guidance
mode less; spent less
time in all options, used
help an average of
three times

spent more time in
elaborate information;
used help an average of
seven times

frequent change of
guidance mode; spent
more time in all options;
used help an average of
nine times

a preference

Students a bit passive -
can be encouraged to
make more use of the
options offered

Would be helpful to
initially guide these
students, in order to
decrease use of help

These students may
require human
intervention to help
them understand the
difference between the
two modes |

Lesson order
ssquence groups

General

Lesson selections used
to create the following
groups:

(1) depth-first strategy

(2) breadth-first strategy

(3) no clear preference

(4) guided 100% of the
time

General
Related to posttest
achisvement

low posttest score

high posttest score

high posttest score

high posttest score
high use of notes

These students may
have to be reminded
that they need to allow
enough time to visit all
five lesson modules

Successful leamers - no
intervention needed

Successful leamers - no
intervention nesded

successful learners - no
intervention needed
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Table 59...Continued (Detailed Qutcomes of Cluster Analysis)

Cluster analysis of Cluster analysis on Related to posttest, | Conventional
trace data trace data based on time on task and statistical analysis of
time and frequency interaction variable trace data yields
created the following | mean scores groups that differ in
groups: learning achievement,
efficiency and use of
learning options
(1) high posttest score | very interactive Successful learners

with low time on task

(2) high posttest score
with moderate time

(3) high posttest score
with moderate time

(4) low posttest score
with high time on task

students who made
frequent use of all the
options without
spending too much
time in any one option

longer time spent in all
the options used,
especially general
text, elaborate
information,
condense information

frequent use of all the
options together with
greater use of
hypertext and much
less use of help

spent less time in
general text and made
greater use of self-
test

Successful learmers
who require
intervention only if
there are time
constraints on
learning

Successful learners
who are proficient
users of the system
features; may require
intervention only if
there are time
constraints

Early feedback may be
required to re-direct
these students to
content options such
as general text with
less focus on self-
testing
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Table 59....Continued (Detailed Outcomes of ANN Classification)

ANN classification of | ANN pattern related to posttest, ANN analysis of trace
tracedata classification yielded | time on task and data yields groups that
the following groups: | interaction variable differ in learning
mean scores achievement,

(1) high achievement
with high efficiency

(2) high achievement
with moderate
efficiency

(3) high achievement
with moderate
efficiency

(4) poor achievement

spent less time in
options and made
greater use of notes
and help

less use of notes and
greater time spent in
general text

greater use of
hypertext and less
use of help

frequent use of

efficiency and use of
learning options

Successful leamners; a
study of their help
usage can be used to
improve the system
design

Successful learners;

no feedback required
unless there are time
constraints

Succsssful learners
and proficient at using
the system; no
feedback required
unless there are time
constraints

Human intervention

with moderate general text may be required to
efficiency identify the causes of
poor performance
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CHAPTER6. DISCUSSION
Introduction

The central research question addressed by this study was how to endow
computerized leaming systems with greater adaptivity. In order to be intelligently adaptive, a
system needs to have a valid and useful model of users (Kearsley, 1987). To date, three
disciplines have contributed to learner modeling, Educational Psychology, Cognitive Science
and Artificial Intelligence, but there has been little cross-fertilization of concepts and methods
across the three fields (Ohlsson, 1991). Intelligent learning applications have yet to
demonstrate a level of adaptivity that approximates the effectiveness of one-to-one human
tutoring interactions, leading some to conclude that the learner modeling problem is an
intractable one (Lesgold, 1994; Orey and Nelson, 1992). Others circumvent the problem by
maintaining that a learner model is not needed at all if one has a sufficiently rich environment for
discovery learning (e.g., Sleeman, 1989). More recently, researchers have begun to question
the need for deep, domain-based models of the learner that are capable of explaining the
origin of all possible learning errors and suboptimal problem solving strategies (Collins, 1996).
This is more compatible with advances in leamning theory that advocate constructivist learning
environments with an emphasis on the interaction between learners and learning materials
(Cooper, 1993; Fox, 1994). As a result, this study addressed not only learning outcomss, in
the form of posttest achievement, but also learning processes, in the form of leaming
environment options and paths selected. Finally, recent technological advances have made it
possible to study complex and data-rich learning interactions more easily .

This study represents an attempt at improving leamer modeling by providing a means
of quickly assessing local usefulness of learner variables derived from the three disciplines in
using data acquired during usage (i.e., during the learning interaction). The subset of
variables extracted from the three disciplines was integrated into a systems approach to learmer
modeling to identify which, if any, proved to be useful to inlcude in a learner model and

whether they showed any relationship to posttest score (achievement) and time on task
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(efficiency of learning). These variables, identified from a priori assessment tools, can be used
as default values in a stereotype user model (Rich, 1983). The basic premise of this research
was that the model can be updated using additional information from the leamer’s on-line
learing behaviors, and as the leamner's knowledge and skills evolve over time (Sollohub,
1989).

From Cognitive Science, tests of prior knowledge, time on task and motivational
variables were selected and used to evaluate the instructional validity of the learning
environment. From Educational Psychology, variables drawn from learning style instruments
by Entwistle and Kolb were used to predict on-line leamer behavior by using the theoretical
constructs of the two respective leaming theories. Those expected behaviors were then
compared to actual learner behaviors manifested in the learner trace data in order to assess the
local usefulness of these instruments. The field of Artificial Intelligence contributed the Artificial
Neural Network technique (ANNSs) to collect and analyze learner keystroke-level data was
investigated with respect to its potential usefuiness as an enabling technology for dynamic,
real-time leamer modeling using the integrated approach. In addition to achievement variance,
the variables were assessed with respect to how well they distinguished between different
pattemns of learner behavior.

Summary of Major Findings

The study results, as summarized in the Results chapter (p.148), raise a number of
issues with important instructional implications. The so-called cognitive science variables, prior
knowledge and time on task, have traditionally been good predictors of learning achievement.
The former should always be incorporated into a leamer modei; the latter a probable indication
that the student is attending to critical, new content, this assumed to be at the heart of the
instructional goals. As expected, these variables did indeed account for the majority of
variance on a posttest of leaming achievement. This result both confirmed the central role of
these indices in any instructional design, and by their effect, helped to establish the validity of

this study's instructional environment and materials. However, in the context of dynamic,
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computer-based instructional systems, added variables from educational psychology (leamning
styles) and artificial intelligence (pattern recognition trace data) may also prove useful for
learner models.

Of the leamning style variables, the investigation of the Kolb LS! did not provide any
useful information in this particular leaming context. However, the Entwistle ASI did prove
useful: The ASI contributed to an explanation of posttest and gain variance and some
expected learner profiles were observed. The behavioral analysis showed that students with a
high reproducing orientation score made greater use of the self-test option (58% more time
and twice as frequently), whereas high meaning orientation students made more use of notes
(53% more time in notes, 2.3 times more frequently), as expected from their profiles. The
reproducing and meaning orientation scores thus appear to be good candidates to use in a
learner model, at least as default values, or starting points. The basic premise of this study has
been, however, that computer-based systems can benefit from dynamic, individualized learner
models which require additional learner data beyond such a priori categorization, i.e., trace
variables. Analyses were thus extended into the domain of behavioral, pattern recognition
strategies for learner propensities (i.e., Al-based trace data analysis).

The Al learner trace variables used duration and frequency data (extracted at the
keystroke/location level) on each leamer as thev progressed through the five modules in the
computerized learning environment. Of central importance to this thesis was the finding that
the way in which students chose to cover the five modules (lesson order strategy) showed a
clear relation with learning achievement. Students with a depth-first strategy had lower
posttest scores. These data support learner-control studies which promote the continued use
of sound, instructional design principles in designing and directing the leaming process.

Further ANN-based pattern recognition analysis yielded a series of additional,
interesting outcomes. The frequency with which certain options were used discriminated well
between different leaming patterns early on in the learning and the time students spent in

each option became a useful parameter after they had interacted with the system. The best
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discrimination between leamning patterns was achieved by using a combination of frequency
and duration trace data. It appears that an analysis of trace data can pick out students who are
"in trouble” fairly early on in the leamning process and, after a certain amount of time has
elapsed, it became easier to identify students who were most likely to show both good and
poor learing achievement and learning efficiency. For example, the ANN identified a group of
students who performed poorly (average score of 64% on the posttest; see Table 47) based
on their early learning interactions. This learning pattern was characterized by students who
made no use of the help and self-test options, who spent very little time in all options and who
spent twice as much time in condense information as in general text. Another group of
students learned well (80% on the posttest) in a short space of time (28 min.) and were
characterized by having spent twice as much time in general text as in condense information.
The key difference between these data and those generated by a priori measures is that they
are responsive to the context (content, task demands, delivery medium, instructional design,
etc.). Trace data generated as learners interact with a computerized learning environment can
thus be used to adapt the learning environment to maximize learning achievement and
learning efficiency based on the leaming interaction pattern of each student.
Major Findings
Study | - Formative Evaluation
As described in the Methods section, both data and observation of procedures
gathered from Study | were used as a pilot study and formative evaluation to prepare Study II.
Data obtained in Study I were then used in the testing of research hypotheses. The principal
changes included modifications to: the software interface, the instructional design, the course
content, and the pretest and posttests used for the actual study. The software interface was
simplified and improved in order to minimize the problem of leaming to navigate through the
course materials. The pedagogical design was modified through: the addition of self-test
questions, an option to obtain supplementary information on any given topic, an option to

defer taking the posttest, and the inclusion of more illustrative examples for each of the lesson
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topics. Finally, the pretest and posttest instruments were modified based on results of item
analyses in order to provide a more accurate assessment of knowledge of the course content
prior to and following interaction with the course materials (see detailed discussion of the pilot
study in the Methods section and in Appendix B).

Study 1l - Experimental Sessions

The second study consisted of a total of 171 data sets collected over a two-year
period. The sample population represented a multi-ethnic mix of students, who were
predominately francophone or native French speakers. Biographical information obtained from
the questionnaire showed that the majority (69%) were male. The vast majority had some
knowledge of artificial intelligence (93%) but very little, if any, familiarity with neural networks
(13%). Reasons given for participating in the study included personal interest, being required
to, or a combination of the two.

Instructional Validity of the Learning Environment

One of the first questions addressed was whether the leaming materials and learning
environment used to collect the experimental data were instructionally valid. Time on task (total
amount of time spent interacting with the leaming materials) and learing (measured as the
difference in scores between the pretest and the posttest) were used to establish the validity
of the learing environment for the study. In particular, they were used to test whether the
pretests and posttests were acceptable instruments, whether or not the different
experimental groups were equivalent with respect to prior knowledge of content, and whether
or not significant iearning had taken place.

The pretest and posttest instruments were found to be valid and reliable. Tests of
homogeneity confirmed that the pretest and posttest scores had normal distributions. Results
showed that there was an acceptable level of discrimination for all items and an acceptable
range of difficulty for both the pretest and posttest questions. Content validity was established
due to the fact that the items were created by subject matter experts and all questions were

related to specific learning content.
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Group equivalencies were demonstrated for the six test groups used for data
collection. There were no statistically significant differences between session groups for the
overall pretest scores of the six sessions. Similarly, there were no significant differences for
overall posttest scores for all sessions. Therefore the data from all six session groups could be
combined.

The average time spent in on-task learning was 35.44 minutes with a standard
deviation of 17.34. A test of significance of learning found that significant learning occurred
with multiple choice items, with short answer items, and for the combined test items. The
interaction time was therefore long enough to allow for significant learing to occur. The
minimum number of interactions was caiculated to be 35 (five modules with seven different
options each) when all lessons are included and 28 without the first lesson visited. The
average number of interactions exceeded these in both cases (57 and 45, respectively). The
post-session interview data showed that most students felt they were able to learn and study
the way they normally would have and all those interviewed found the exercise was a useful
one (see Appendix D). Given that students were able to leam in this context and that the tests
devised for this study were able to detect that learning had occurred, the instruments were
deemed to be acceptable in testing the research hypotheses.

Contribution of Cognitive Science Variables

Three major variables from the cognitive science domain were first examined to assess
what proportion of the posttest variance could be accounted for to assess their usefulness in
providing default values for a stereotype user model. The three variables investigated were
time on task, motivation and prior knowledge. A muitiple regression with pretest, time on task
and motivation variables was significant. However, only the pretest and time on task variables
were found to be significant. The pretest accounted for 43% of the total posttest variance and
the time on task accounted for 18%. The longer students spent interacting with the course
materials and the higher they scored on a pretest of prior knowledge, the higher their

achievement score on a posttest. These are traditional variables that are well tested and well
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researched. The learning environment and leaming materials were thus instructionally valid;
students could be said to have undergone a realistic learning task with sufficiently challenging
material.

Student data on prior knowiedge, which can be easily assessed through an a priori
pretest, appears to be a useful element in a default stereotype learner model. This information
can be used to select, for example, an appropriate starting point for the student. The system
may recommend a lesson madule but the student may or may not elect to follows the
recommendation. This type of mixed initiative interaction can allow for adaptivity both on the
part of the system and on the part of the student.

The time on task variable, which can only be assessed a posteriori, is also a useful
leamer model parameter. This parameter can be assessed on-line and added to the learner
model during learning interaction (for example, the time spent on each lesson module) in order
to update the learner model continually. Better methods of assessing student motivation
appear to be required, as the single questionnaire item did not appear to be a valid measure of
the student motivation and task perception.

Contribution of Educational Psycholoqy Variables

Two leamning style instruments were administered prior to learning in order to evaluate
their predictive value within this particular learning context: the Kolb Learning Style Inventory
(LSI) and the Entwistle Approaches to Studying instrument (ASI).

Kolb LSI. The first research question addressed was to assess the relative
contribution of the Kolb learing style instrument to posttest variance, beyond what can be
explained by the pretest and time on task variables. None of the Kolb data (dimensions, axes,
groups) proved significant when introduced into a muitiple regression together with the
pretest and time on task variables. The apriori assessments of learners using this instrument
do not appear to be useful in predicting achievement and do not provide any useful initial

values of a leamer model.
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The Kolb LSl is based on the premise that leaming styles represent stable long term
traits. Kolb viewed leaming styles as innate ways of leaming and as such, they were not
necessarily contextualized but rather more analogous to personality type. Researchers have
expressed some contradictory views on this point: while some maintain that learning styles are
neutral with respect to learning achievement (e.g., Messick, 1984), others have reported
findings that showed convergers performed better in computerized leaming environments
(e.g., McNeal, 1986), particularly in hypermedia-based environments. (e.g., Esischaikul et al,
1994). This study was unable to find a correlation between higher achievement results and the
converger group.

The second research question to be addressed was whether students exhibited the
behaviors postulated by their responses to the Kolb LSI. Expected profiles were established
for each of the four groups and compared to actual student on-line learning behaviors. None
of the hypothesized learning behaviours were observed using the Kolb profiles with the
exception of low positive correlations between a high RO score and the frequency of self-test
as well as with time spent in the help option. The Kolb groups, axes and dimensions thus
appear to have no predictive value in this learning context.

Whereas the posttest and gain scores measured learmning achievement, the time on
task variable could be considered to be an indicator of learning process (efficiency). However,
this study showed no differences in time on task across the different Kolb profiles. No useful
learner data could be abtained from the Kolb LS! despite the variety of ways used to treat the
LSI data and the variety of methods used to analyse these data. This one-shot a priori
measure, although used extensively in diagnosing leamners to prescribe instruction, does not
serve to make initial large-grained stereotypical models.

It was next hypothesized that perhaps the Kolb constructs had some validity but the
instrument used did not adequately measure them. To this end, the behavioral variables were
used to categorize students into four groups. This was done using conventional statistics

(cluster analysis) and neural network-based pattern recognition. The third research question
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addressed was to assess the similarity between groupings generated by the Kolb instrument
and groupings generated independently, through both a cluster analysis of trace data and
neural network classification on the same leamer trace data. No significant correlation was
obtained between the four groups generated by the Kolb LSI and classifications generated
using cluster analysis on trace data, nor with those classifications produced using a neural
network. The neural network was used to place all students into four different groups, using
the same trace data, and no significant correlation was obtained with the four Kolb groups.
ANOVA analyses did not show any significant differences found for any of the trace variable
means.

Therefore, the Kolb LS! data do not help differentiate learners with respect to how well
they learned, how quickly they completed the learning task, nor the particular learning options
they availed themselves of during the learning process,which lends further support to the
variety of critiques on both the reliability and validity of the Kolb LS| that have been published.
(e.g . Newstead, 1992; Stumpf and Freedman, 1981). Any further consideration of the Kolb
LSl instrument in this context must therefore take one of two approaches. Either the LSI does
not validly represent the underlying theoretical constructs, or, alternatively, it may be that the
LS! does not in fact represent the theorietical learning constructs well, but that these
constructs are not useful in creating an initial learner model for computer-based learning
environments. This instrument thus appears to be a very weak candidate to establish defauit
values for a stereotype learner model in this learning environment,

Entwistle ASI. The first research question addressed was whether the Entwistle
groupings could prove useful in specifying the default values of a learner model and whether
the ASI could help explain any of postiest variance beyond that accounted for by the pretest
and time on task variables. This was done both for the Entwistle dimensions as assessed by
the ASI and for the four quadrants that were created using the meaning orientation and
reproducing orientation dimensions (which were created to be able to compare Entwistle

groupings with Kolb and trace data groupings using cluster analysis).
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A multiple regression with all eight Entwistle dimensions showed that only the
reproducing dimension was significant, accounting for 22% of posttest variance. The
reproducing dimension appears to be the most useful predictor of learner success in this
environment, which is in keeping with previous research findings (Allinson, 1991).

A multiple regression with pretest, time on task and the Entwistle quadrant variables
was also significant and all three variables were significant. The pretest variable explained 41%
of the posttest variance, time on task 20% and the Entwistle quadrant 19%. The creation of
four quadrants based on the Entwistle dimensions of reproducing orientation and meaning
orientation thus appear to be useful predictors of student achievement in this leaming context.

The Entwistle instrument yields eight sets of raw scores for each individual and does
not group them in any way, as the Kolb LS| does. Previous research (Newstead, 1992), as well
as this study, has shown that two of these dimensions, the meaning orientation and the
reproducing orientation, are found to be more reliable and valid. It was therefore expedient to
take these two dimensions and assign students to one of four groups, using an arbitrary cutoff
score of 12 to distinguish between a 'high' and 'low' score on the two dimensions. These four
quadrants enabled a more direct comparison of the Kolb and Entwistle instruments using
cluster analysis. Stereotype user models necessarily require that learners be assigned to one
of a few classes or categories as early as possible in order to adapt the subsequent learning
experience. The use of these quadrants enabled an assessment of the Entwistle ASI as a
good stereotype learner modeling tool to be made.

Students in the four Entwistle quadrants were found to differ in pretest and posttest
scores. Students with low reproducing orientation scores and high meaning orientation scores
(Quadrant Il) had the lowest pretest scores and posttest scores. Students with both high
reproducing and high meaning orientation scores (Quadrant IV) had the highest posttest
scores, with concurrently high pretest scores. Students in the second quadrant had the
highest gain scores. No significant differences were found for the time on task. Quadrant II

students had significantly less prior knowledge of the content and consequently, showed
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significantly less leaming. The difference in achievement for Quadrant Il students may
therefore have less to do with the Entwistle ASI constructs than with the fact that prior
knowledge accounts for a large amount of achievement variance in learning.

The second research question addressed was to compare the expected learner
behaviors, as extrapolated from their Entwistle ASI responses, to their actual leamning behavior
pattems, as detected by their leamer trace data. Leamner profiles were established for the two
dimensions: reproducing orientation and meaning orientation. Students with a high
reproducing orientation score are characterized as surface learners who are primarily motivated
by acheivement. They tend to try to learn things by rote, especially if they perceive these
items or concepts to figure prominently on any subsequent tests to be taken (Marton, 1981).
In terms of on-line learning behaviours, these students were expected to make extensive use
of the self-test and condense information options. They were not expected to spend too long
in the overall learning task and to use a breadth-first lesson selection strategy.

As expected, a significant correlation was found between the reproducing dimension
and time spent in self-test. The Entwistle reproducing dimension thus appears to be an
interesting a priori predictor of learning activities. Students who have a high reproducing
orientation, as assessed by the ASI, are much more prone to self-testing, which was expected,
and also much less prone to seek help, which was not expected. Given that they
predominantly used general text and self-test options, these students would not have
required help in terms of explaining what the other options offered. The correlations were
about the same both with and without the first lesson visited, which means that these learning
profiles did not change substantially during the process of leaming.

Some of the expected comprehension dimension learming behaviors were also
observed. A significant correlation was found between a high comprehension orientation
score and with time spent in notes and for time spent in the elaborate information option. The
Entwistle meaning orientation thus also appears to have local predictive value in this learning

context. The correlations were slightly greater when the first lesson visited was omitted,
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suggesting that it may take some time before leamers are comfortable enough with the new
learning environment to be abie to leam in their preferred or habitual manner. Students who
score high on the meaning orientation scale probably take some time to study the material
using a deeper approach before they exhibit note-taking and efaborate information behaviors.

The Entwistle ASI thus appears to provide some useful information that can be used to
initialize a stereotype leamer model. In particular, student scores on the reproducing and
meaning orientations can serve to ciassify students into one of four quadrants, each with a
characteristic expected pattern of interaction with the learning environment and each with a
different expected learning achievement and learning efficiency outcomes. It is possible to
predict some specific learning environment options that will be selected by students in the
different quadrants. This type of a priori, one-shot assessment can be used to populate a
stereotype leamer model template with starting values and these can serve as the basis for
preliminary instructional decisions in adapting the learning environment to each group of
students. For example, in selecting the best starting point or level of difficulty in test items for a
given student. Once again, a duality exists in that both the learner and the system are capable
of, and make use of, adaptivity.

Next, the four Entwistle groupings were compared to groupings obtained using both
conventional cluster analysis techniques and neural network-based classification. This was
done to address the third research question which was whether the learner trace data,
independent of any AS| theoretical constructs, showed any variation across the four Entwistle
quadrants. It was expected that there would be a correlation between Entwistle quadrants,
based on reproducing and comprehension orientation scores, and trace variables.

The Entwistle quadrants showed some weak correlations with classifications based on
lesson order strategy, classifications based on guidance preference duration data and cluster
analysis classifications based on both frequency and duration data. The strongest correlation
was with the cluster analysis classification based on duration trace data, after the first lesson

visited was eliminated from the analysis. This finding is likely explained by the fact that most
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users faced with a never before encountered system will tend to explore the available options
extensively at first, in order to become more familiar and comfortable in interacting with the
system (Baecker et al, 1995). This type of 'novelty effect’ may vary considerably from individual
to individual - some may spend a few seconds exploring, others may spend considerably
longer. In order to eliminate the effects of this interface exploration, the first lesson visited by
students was omitted in its entirety and compared to analyses with all the lessons. This was a
better way of dealing with the noisy data then eliminating a certain preliminary segment of time
given the variability across individuals. The correlation was strengthened when the first lesson
visited was omitted as the time devoted to learning how to use the interface was not taken into
account. Student interactions with the system in subsequent lessons are much more likely to
be focused on the course content than on the system interface and as such will yield more
valid learner data.

Students with low reproducing and high meaning orientation scores (Quadrant (1)
differed from students in the other quadrants in that they spent much more time in the self-test
option, as well as using the help option longer and more frequently than students in any of the
other three quadrants. Students, with both high reproducing and high meaning orientation
scores, had the lowest help use frequency (averaging once during the session). Students in
the other two quadrants had about the same frequency of use and this was at an intermediate
level between the other quadrants. No differences were found for learning time.

The pretest is used to classify students as either expert or novice with respect to the
content of the learning materials (in this case, ANNs). The use of the help option during
learning helps to classify students as novices or experts with respect to using the system and
its features (the interface or navigational expertise). The Entwistle ASI adds to these two items
of information by predicting whether students will be more likely to make use of notes or the
self-test option, based on their responses to the ASI questions.

it appears that the Entwistle ASl is useful not only in predicting posttest achievement,

along with pretest score and time on task, but it can also predict some specific leaming
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behaviours, in particular, the use of the self-test and help options. The ASI can thus be used
prior to learning and make use of reproducing orientation and meaning orientation scores to
populate the stereotype learner model with some default data on the learner.

In summary, the educational psychology and cognitive science variables produce
useful information but one has to be very careful in selecting the learning style instruments.
The Entwistle ASI meaning and reproducing dimensions appear to be useful in this learmning
context and merit further experimentation.

Contribution of Artificial Intelligence Variables

The next research question addressed was to look at the classification of learmers
based on trace data. The values obtained for the trace variables were analyzed in order to
identify learning behavior exhibited by the students. The relative contribution of trace variables
to user model design was then analyzed. Three types of classifications were generated:
groups based on guidance preference, groups based on lesson order strategy, and groups
based on cluster analysis and neural network pattern classification of the learner trace data.

Classifications based on user preference for system guidance vs. learner control made
use of two types of data: frequency of selection of a clear guidance preference, and the
amount of time spent as a percentage of total time in a particular guidance mode. Each type of
data was used to classify learners into one of three groups: (1) students with a clear
preference for system guidance , where 'clear preference' was defined to be in excess of 75%
of selections made or or of total time spent in this mode, (2) those with a clear preference for
student guidance (in excess of 75% of the selections or duration spent in learner control), and
(3) students who did not show a clear preference pattern.

Classifications were also derived from the way in which students chose to study the
five lesson modules. Four types of lesson order strategies were defined: (1) students who
exhibited a depth-first lesson selection strategy, as manifested by selection of two or fewer
lessons for the first five lesson choices; (2) students who chose to look at four or more lessons

within their first five lesson choices, thus exhibiting a breadth-first search strategy; (3) students
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who chose three lessons within their first five lesson choices and thus did not show a clear
strategy preference; and (4) students who remained in system-guided mode throughout their
interaction time and thus followed the system recommended lesson strategy.

Two parallel methods were used to classify leamers based on their trace data: the first
was statistical clustering and the second method used a Kohonen neural network to group
students. Both methods used the same inputs to generate three classifications: one based
on time data, one based on frequency data and one based on both time and frequency data.
This was then repeated for the trace data after the first lesson visited was omitted.

The similarities between the different types of groups were analyzed first. Some
correlations are to be expected as grouping methods were redundant (e.g., cluster analysis
groups based on duration data and those based on frequency data). There was some
correlation between the groupings produced by the constrained neural network classification
and the groupings produced by a cluster analysis on the same data. This suggests that the
neural network is classifying the data in a similar but not identical way. When the first lesson
visited is omitted from the analysis, the correlation between the constrained and
unconstrained neural network groups is quite high (r2=0.78) which indicates that the neural
network classification is likely to be more useful if samples of learner data are obtained after a
certain amount of time has elapsed. This allows the system to exclude any behavior patterns
that may be due to novelty effects of the learning environment. Altematively, it may require a
certain amount of time before useful leamer differences are manifested in learning
environments, as most leamers may act in a similar way when using a learning tool for the first
time.

Groups based on guidance preference. No significant differences were found on the
pretest, posttest, gain and time on task variables for the groupings based on guidance
preference (both using frequency data, duration data, for all lessons and when the first lesson
visited was omitted). The groups based on guidance preference do not appear to explain any

additional variance in the posttest, gain and time on task variables. This is probably due to the
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fact that the majority of students (78%) showed a clear preference for the system-guided mode
which meant there was not enough diversity in learmner behaviors.

Students in the different groups did show some differences in terms of their use of
learning environment options. Students who showed a preference for guided mode spent
less time changing their guidance mode, in elaborate information, condense information,
notes and self-test. Their behavior was somewhat more passive or less active in that they most
likely expected the system to take them through the various screens and options.

Students who preferred self-guided learning made significantly greater use of the
elaborate information and notes options. This demonstrates a more reflective approach in that
students spent a lot of time reading supplementary information on a given topic and making
their own notes rather than interacting with the system (i.e. making a lot of selections within a
given lesson).

Those students in a third group did not show a clear preference for either guidance
mode. Consequently, they spent more time in changing their guidance mode. They also
spent significantly longer in the elaborate information, condense information, notes and self-
test options in addition to using the general text option more frequently. These students
exhibited higher levels of interaction throughout their learmning (i.e. they chose more options
and chose options more frequently than students in the other groups).

When the first lesson visited was omitted from the analysis, the only significant
difference across the three groups was the frequency with which help was used. Guided
students used help an average of three times, unguided students seven times and those
without a clear preference, nine times. This is expected as students following the guided
mode benefit from the instructional design whereas students striking out on their own or those
who kept switching back and forth will be more likely to require assistance.

Guidance preference appears to be related to a facet of leamner behavior which may be
described in terms similar to the learning style constructs: active, passive, and reflective.

However, rather than describing long-term learner traits, these characteristics are most likely
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based on leamer expectations of the role of the system. Once a student selects an initial
guidance mode, they expect the system to behave in a certain manner and they may adjust
their own learning behaviors accordingly.

Groups based on lesson sequence strateqy. When the lesson sequence based
groups were analyzed, no significant main effects were found for the pretest, gain and time on
task variables. A significant main effect was found for the posttest scores of these groups.
Students who exhibited a depth-first lesson order strategy had posttest scores that were
significantly lower than students who chose to remain in system-guided mode throughout their
interaction with the learning environment, both when all lessons were included and when the
first lesson visited was omitted. it thus appears that the choice of lesson topic strategy was
related to posttest achievement.

These groups were created in order to study student learning strategies which may
prove to be similar to those strategies described as deep vs. surface learning (Marton, 1981,
1988) or holist vs. serialist leaming (Pask, 1972, 1976, 1988). As such, no differences were
expected with respect to learning achievement between the depth-first and breadth-first
strategies. Students who were guided throughout their leaming leamed better in this
environment since they benefited from the instructional design. Students who adopted a
depth-first strategy may not have covered all of the topics in sufficient detail in order for them to
learn effectively, in terms of posttest requirements. This implies that some type of instructional
or system feedback to students exhibiting this lesson order strategy may help them to
maximize their leaming success. This feedback could be in the form of prompts, hints or other
types of advice that would encourage students to make sure they looked at all five lesson
modules and not to spend too much time in the initial lesson topics selected. This feedback
would be particularly warranted in the case of any time constraints on students.

Students in the lesson sequence strategy groups were found to differ with respect to
only one trace variable - notes. Those students who chose to remain in guided mode

throughout the leaming interaction made much more extensive use of the notes option than
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students in the other groups. This small group of students, eight in total, thus exhibited
distinct leaming behaviors that led to high achievement in this learning environment,
characterized by a preference for system guidance and reliance on self-generated notes
during the leaming process.

Cluster analysis classification based on trace variables. Trace variables were then used
to classify leamers using statistical cluster analysis. Only learner choices served as input into
the cluster analysis (the a priorimeasures and achievement data were not used in generating
the clusters). Three types of learner trace data were used and each generated four groups of
learners: the duration data, the frequency data and combined frequency and duration data on
all the learning environment variables. The classifications based on both time and frequency
data showed the greatest number of significant differences in trace variable means for the
groups, when all lessons were included in the analysis. This method of grouping students
thus appears to be, as expected, more comprehensive than groups based on frequency data
alone or on frequency data alone as this classification better captures both dimensions of
student leaming behaviours. The results from this combined grouping are discussed as
follows.

One cluster of students (Group 1) consisted of learners who exhibited both high
posttest scores and low time on task. Learners in this group interacted extensively with the
learning environment but did not stay too long in any one option. In particular, they made less
use of the guidance mode selection, elaborate information, condense information, general
text, self-test and notes options than students in other groups. These students thus
exhibited a "balanced" interaction pattern - they appeared to have spent roughly equivalent
periods of time on all the options and showed approximately the same frequency of use of all
the options offered by the learning environment.

Students in a second cluster also had a high posttest score but they spent longer
periods of time, thus exhibiting lower leamer efficiency. They spent longer in the elaborate

information, condense information, and general text options. They also made more frequent
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use of the condense information option. Their leaming behaviours thus showed a focus on
content; they used those options which presented, summarized and expanded upon course
content. The instructional implications for this group are that if learning efficiency is a
requirement (i.e. there are time constraints) then these students should be given feedback to
the effect that they should spend less time in the options they are selecting. If efficiency is not
an issue, then these students should be allowed to praceed at their own pace as their pattern
of interaction does lead to good achievement within this learming environment.

Students in a third cluster also did well on the posttest and had a time on task that was
comparable to the second cluster. However, they were characterized by much greater
frequency of use of the elaborate information, condense information, general text, notes and
hypertext options. They did not necessarily spend a long time in these options, but over the
course of their interaction with the learning materials, they selected these options with greater
frequency than students in other groups. These students also made significantly less use of
the help option. These students thus appear to be exploring the leaming environment fully
and with minimal assistance. They also made greater use of two options, notes and hypertext,
which was not observed with the previous two groups.

Students in a fourth cluster group exhibited both poor achievement and poor learning
efficiency. Their trace data showed a very different pattern of interaction than thoss found with
the previous three groups. These students made little use of general text while making more
extensive use of self-test and help options. These students also changed their guidance
preference more often. Thus although these students spent just as long on the learning task,
they spent that time in less productive options. They focused on achievement as evidenced
by their high levels of self-test use and yet spent little time on the general text screens of the
lessons.

The cluster analysis groups thus appear to provide additional information beyond that
provided by the posttest and time on task variables beyond what can be obtained from a priori

measures such as pretests and learning style inventories. These resuits demonstrate that
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learner interaction patterns with this leaming environment can be assessed fairly rapidly (i.e.
within a short period of interaction) and they appear to be useful in predicting learmer
achievement and learner efficiency. Trace data based on both duration and frequency
information appear to discriminate well between different learner profiles. The critical variables
distinguishing the groups appear to be the amount of time spent in general text, condensing
information and hypertext, together with the frequency of help use, condense information and
general text options. These data are useful in updating the existing stereotype learner model
values (adding, deleting or modifying them) as well as in providing new values to "fill in the
remaining blanks."”

The findings related to the frequency and duration of help option use support earlier
research that used neural networks to distinguish between experts and novices (Beale and
Finlay, 1989, 1992; Sorenson, 1993). However, these experiments focused on domain
expertise at a more global or macro level. Students were classified in a binary fashion - they
were either novices or experts based on how much help they required throughout their entire
interaction with the learning environment. The trace variables analyzed from this learing
environment can be used to conduct a similar classification but in a more dynamic fashion and
at a more micro or detailed level. Students may exhibit novice-like behavior or expert-like
behavior and this may change depending on the lesson and a number of other factors. For
example, students used help very frequently but sometimes only in a specific lesson or while
studying a specific topic in that lesson. In the cluster analysis groups there were no significant
differences in pretest scores of the four groups. Thus the cluster of students which had
significantly lower achievement, did not simply consist of students who started off with less
prior knowledge. Use of the help facility, together with patterns of usage of the other trace
variables, appear to distinguish between students in a manner that is not limited to how much
domain knowledge they may have, or have acquired.

Neural network dassifications based on trace data - Constrained neural network. As

was done with cluster analysis, learner choices (trace data) were used as inputs, this time into a
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neural network pattern recognition system. Once again, no a priori measures, such as pretest
or learning style instrument scores, were included in the input data set, nor were posttest
achievement, gain scores and time on task. The constrained neural network was used to
classify learners into a maximum of four groups based on their trace data. These groups were
then analyzed with respect to leaming achievement, efficiency and differences in learmning
patterns. The four groups of students were quite similar to the four groups found using cluster
analysis in the previous section.

One group of students (Group 3) showed both high posttest scores and low time on
task and were similar to the first group (Group 1) found using cluster analysis classification.
These students spent less time spent in elaborate information, general text, and hypertext.
They made infrequent use of condense information, general text and hypertext and they
showed significantly more frequent use of the help and notes option.

Students in another group (Group 1) had high posttest scores with moderate time on
task. This group is similar to the second cluster analysis group. These students spent longer
in general text and made infrequent use of notes.

Students in Group 2 were quite similar to Group 3 as classified by cluster analysis.
They too had high posttest scores but only moderate time on task. These students differed,
howaever, in that they made more frequent use of condense information and hypertext, very
infrequent use of help and they spent longer periods of time in hypertext.

Group 4 students were quite similar to Group 4 found using cluster analysis. They
exhibited poor posttest scores. They spent significantly longer periods of time in elaborate
information and showed a high frequency of general text. Unlike the cluster analysis Group 4,
however, this group did not show significantly longer time on task.

Thus the four groups formed by a constrained neural network classification appear to
explain some of the posttest variance and the time on task variance. The use of a neural
network to form these groups appears to be at least comparable to groups obtained using the

better known and more widely used technique of cluster analysis. Similar types of learner
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behaviors appear to be distinguished using both methods. It is possible to identify students
who will spend significantly longer interacting with the learing materials. It is also possible to
identify students who will do better and those who will not fare as well on the posttest. The
greatest advantage offered by a neural network tool over a conventional statistical analysis
package is that the neural network can collect and analyze these data during the process of
learning. Statistical analyses, in contrast, must be done off-line. Neural networks thus offer the
possibility of true dynamic modeling and systems that can adapt to the student in real time.

Unconstrained neural network. The analysis was repeated for the unconstrained

neural network groups of which there were six. Two of these groups had very few individuals
(four in Group 4 and six in Group 6) which may reflect outliers or highly idiosyncratic learner
behaviors. If these groups of possible outliers are omitted, then the unconstrained neural
network groups are similar to the groups obtained using the constrained neural network and,
consequently, with groups obtained using cluster analysis.

Students in two of the neural network groups showed high posttest scores and low
time on task. They were thus similar to one of the constrained ANN group (3) and one of the
cluster analysis groups (1). Students in the first group were distinct in that they spent longer in
the elaborate information option and less time in the notes option. Students in the second
group spent most of their time in the general text option and little time in notes. Thus the
unconstrained ANN differentiated between these two groups whereas the constrained ANN
and cluster analysis simply lumped them itno the same category. These students exhibit
different learning interaction patterns that both lead to comparable learning success.

Another group of students (Group 3) achieved a good posttest scores with moderate
time on task but they differed in that they spent significantly more time in general text and
showed a marked preference for the hypertext option. This group is similar to a constrained
ANN group (1) and a cluster analysis group (2).

A separate group of learers again showed good posttest scores and moderate time

on task but they exhibited a different interaction pattern: they spent much more time in notes
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and showed very infrequent use of the help option. This group is similar to two of the
unconstrained neural network groups (1 and 2), and a cluster analysis group (3). These
students preferred to personalize their learning experience by actively constructing their own
annotations and summaries as they learned, through use of the notes option.

As with the constrained neural network group 4 and the cluster analysis group 4, one
group of students showed both poor posttest scores and high time on task. These students
spent very little time in general text, condense text and hypertext and hence, spent very little
time interacting with the actual course content. The instructional implications for these
students are to intervene as soon as this profile is detected as students exhibiting this pattern
of learning behaviour need to be helped early on in the learning process. Feedback directing
them to spend more time in learning the concepts presented in the general text options of the
lesson modules would be particularly appropriate.

A final group of students had moderate posttest and time on task scores and did not
appear to show any similarities with either the constrained ANN groups, nor the cluster analysis
groups. These students spent less time in elaborate information and hypertext and more time
in both general text and notes. This group appears to be a distinct group that is classified only
by the unconstrained neural network. They appear to be attending to the course content but
their time spent in interacting with the materials does not appear to be effective, nor particularly
efficient. This group of students would likely benefit from direct human tutorial intervention, as
soon as this profile is detected. This may help determine the cause of the difficulties learners
are experiencing. The new information obtained by the human tutors can then be
incorporarated for subsequent system learner diagnoses. Human intervention and "manual
learner diagnosis” is required whenever a new category of learners is detected, or whenever
an individual student cannot be classified as belonging to one of the existing groups. In this
way, the more the system is used, the more its diagnostic capabilities (and adaptive

capabilities) will be expanded and fine-tuned.
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Summary. The unconstrained neural network did not differ substantially from the
constrained one. This is primarily due to the fact that there are very few students in two of the
six groups in the unconstrained network. These students likely represent outliers. Ina
constrained network, they were "made to fit" into one of the four categories. Both types of
neural network classifications yielded groups with characteristics similar to those obtained
using cluster analysis. The neural network approach to learner modeling thus appears to be a
useful one, both for the assessment of local usefulness of existing measures and sources of
information about the leamer (such as leaming style inventories) as well as providing
information about actual learner behaviors.

The trace variables that were used in distinguishing between learner groups were the
following: general text duration, help frequency and condense information duration using
multiple regression analysis on all trace variables, together with pretest, time on task and the
Entwistle reproducing orientation score. A forward stepwise regression of all trace variables
identified six variables, including the same three from the multiple regression analysis, and in
addition: condense information frequency, general text frequency and hypertext duration.
The highest amount was explained when the first iesson is omitted and with the variables
general text duration, help use frequency and time spent in elaboration of information. Thus
trace variables appear to contribute to a small percentage of the posttest variance, after the
pretest, time on task and Entwistle reproducing orientation variables are taken into account.
Summary of Major Findings

The contributions of selected Educational Psychology, Cognitive Science and Artificial
Intelligence variables to leamer modeling were assessed in a computerized learning
environment. A reasonably large sample size was used, based on a two-year data collection
period using six separate groups. This resulted in a large number of data points for each
individual learner. The instructional validity of the learning materials and the leaming
environments was demonstrated to be sound, through formative evaluations using a pilot

study, and through the correlations of pretest and time on task variables with learning
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achievement as measured by a posttest. Thus learners interacted with the environment for a
period of time that was sufficient for significant leamning to have occurred. Very sophisticated
analyses were then conducted on this data in order to assess the relative usefuiness of each
type of leamer variable and leamer behavior. In addition, the potential usefulness of ANN-
based leamer modeling was assessed for dynamic learner modeling in real-time.

Certain learner behaviours, or profiles, were linked to higher levels of achievement and
learning efficiency. Itis therefore possible to predict how well students do on a posttest of
achievement and roughly how much time they will take to lear, based solely on their learner
trace data. In this way, the leaming system can be more adaptive to leamers as they are
learning, or in "real-time." Conventional analytical tools such as cluster analysis can only be
used once students have completed a learning session ("off-line" learner diagnosis). Artificial
neural networks can diagnose as soon as enough learner behaviour trace data has been
collected and the system can basae instructions decisions at a micro-adaptation level (e.g.,
within a lesson module or even within an option in a given lesson module).

Leamer trace data thus provided additional information that could serve as a basis for
adaptivity. The ANN-based leaming environment presents a much more controlied test
situation and one in which much more information can be gleaned as students learn (as
compared to, for example, tasks used to assess student leaming styles, such as reading long
sections of prose; Entwistle, 1983, 1988). It is much easier to follow exactly what students are
doing and for how long using the learner trace facility and do so in only 35 minutes of
interaction time.

These findings have several implications for learning theory. It may be possible to use
an ANN-based leamning environment to rapidly and reliably assess the contextual usefulness of
learning constructs and specific instruments such as learning style or personality type
inventories. Researchers can extract expected user profiles and map these onto specific
learning behaviours that can be manifested in a computerized learning environment and then

track student behaviours to observe whether or not these hypotheses were confirmed. These
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profiles can also be used to better design leaming environments, both when a diversity of
learning behaviours is desired (e.g., individualized learning) or when convergence is the goal
(e.g., mastery skill learning). In this way, instructors can select the most appropriate a priori
measures for their target student groups, for a given leaming task, goal or content.

The ANN-based tool provides a great deal of flexibility in changing the a priori
measures, and in changing the system design, including the interface. The results of the data
analysis can also be used in the formative evaluation of the learning system and its interface.

Another potential contribution to advances in learning theory is to use the ANN-
ciassified learner groups to identify new learning constructs in an empirical fashion. Those
behaviours which distinguish between different, stable leamer interaction patterns can be
further investigated in order to identify the underlying cognitive processes that give rise to
these types of learing behaviours. The advantage is that these behaviours are already
operationally defined and can be easily detected in a computerized learning environment.

In addition to a conceptual advance in general system design, a number of implications
emerge for the design of intelligent or interactive learning environments. The results show
that in addition to valuable information from sources such as pretest of domain knowledge and
instruments such as the Entwistle ASI which purport to measure learner-preferred approaches
to studying, it is also possible to track actual student leaming behavior during the process of
learning.

Variables which proved to be useful in distinguishing students based solely on an
analysis of their trace data were found to be: the help option, the self-test option, the note-
taking option, general text and hypertext. When the first lesson visited is omitted in an attempt
to eliminate any non-typical learmner behavior due to e.g., novelty effect of a new system, four
variables are found to be useful in predicting achievement: pretest score, time on task score,
Entwistle ASI reproducing orientation score, and time spent in (or frequency of use of) the

following options: elaborate information and condense information.
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These are good candidates as parameters of a dynamic learner model that can be
updated continually as students interact with the learning environment. The pretest score and
Entwistle ASI reproducing dimension scores are good candidates for providing default values
for an initial learner model (Sollohub, 1989). The latter is envisioned as a stereotype or best-
guess model that provides the system with something upon which to base initial adaptive
decisions. This represents an improvement over starting off with a blank slate and building up
a model exclusively from keystroke-level information, which may be trying to do too much with
too little information.

The best approach to learner diagnosis thus appears to be a combination of a priori
assessment of prior knowledge, preferred approach to studying and demographic information
together with contextual information on actual learner behaviours during interaction with the
learning environment. The a priori measures can be used to establish a defauit stereotype
learner model of each leamer (, categories such as novice/achievement-oriented/science
background or intermediate/deep-processing approach/administrative sciences major). Thus,
in the early phases of learning, system guidance can be quite high for students who are
novices with respect to the content and the particular learning environment. Instruction can be
based on a classic Gagne (Gagne et al, 1988) hierarchy of prerequisite concepts in order to
maximize learning effectiveness and efficiency for all students. This would be particularly
appropriate for lesson one, which introduces the basic concepts and vocabulary associated
with neural networks. Students could be guided towards mastery leaming of this lesson
module.

As learning progresses, which may be measured in elapsed learning time, number of
lessons attempted or number of options selected within a given lesson, then the a priori
measures may become redundant and they lose much of their predictive usefulness.
Students evolve from novices to expert as their level of knowledge and skills improves. At this
point, they may be more likely to prefer self-guided interaction with the system and begin to

exhibit differences in leaming interaction patterns. The contextual trace information, on the
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other hand, should remain continually up-to-date and relevant for instructional prescriptions in
subsequent lesson modules. This diagnostic information may potentially be used to
individualize instruction, through accommodation of some leamer preferences and through
challenges that help learners increase their repertory of learning skills, in order to not only
maximize learning effectiveness and efficiency for each individual leamer, but also to optimize
the learning experience for each learner.

Trace data can be used to derive leamer models that are much finer-grained than the
initial stereotype models. Even under what may be termed near-ideal test conditions, i.e. a
highly controlled environment where learning behaviors can be directly observed, the Kolb LSI
did not have any useful predictive value and the Entwistle had some value. These instruments
are thus insufficient for valid instructional responses to be made on an individual basis to
learners. ANNSs thus appear to be a useful enabling technology for learner modeling in
adaptive leamning environments. They provide a means of coping with the evolution of learner
knowledge states and learner behaviors. Leamer data collected and analyzed using the
systems approach to learner modesling thus serves to increase the bandwidth between
learners and the learmning environments.

The major advantage with ANNSs is their dynamic nature which makes them much better
suited to endowing systems with adaptivity in real time. Leamer classifications created using
the ANN tool proved to be quite similar to those created using conventional cluster analysis
techniques. This supports the use of ANNs to group leamers since the ANN appears to be
using the same, if not identical, criteria to assign learners to a given group. Thus the two
techniques are comparable as they both make use of the same subset of leamer trace data in
discriminating between groups. The ANN method can potentially be used to derive and
update individual, fine-grained, learner-based learner models that are contextually valid and
useful in adapting the computer based instruction so that it can be tailored to each learner.

The results lead to the conclusion that it may be possible to guide learners not based

on general stable predispositions measured before leaming takes place, such as those
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postulated by Kolb, but rather based on context sensitive information that can be obtained
from leamer behavior traces as leamers are interacting with the learning materials.
Weaknesses

This study was not an attempt at a comprehensive analysis of the three disciplines of
educational psychology, cognitive science and artificial intelligence. A subset of variables was
selected from each of the three domains but these may not have been representative of the
field. Although the variables selected have been shown to be relevant in extensive previous
research, other variables (e.g., the interface design) may be equally or more potent factors
affecting learning effectiveness and efficiency.

While the number of data points yielded statistically established robust distributions,
subjects tested tended to be quite homogenous with respect to age, educational background
and prior knowledge of the subject matter. It would be beneficial to test out the same course
content with a wider range of test subjects.

The pretest and posttest had only a limited number of items and two-thirds of these
were multiple choice in format. A more sophisticated test of learner knowledge, such as an
evaluation of an actual implementation of a neural network at the end of the five course
madules, would be more effective. it would have also been useful to have longer tests and to
have spent more time perhaps in face to face interviews to assess some of the data that was
gathered using a questionnaire. In particular, the motivation of learners was not well assessed
by a single question on the questionnaire. A better instrument or method of assessing the
underlying motivations of students with respect to the leaming task at hand is required.

Very tew individuals took the opportunity to use the neural network editor that was
supplied within the learning environment. It would have been useful to directly guide students
to try this module and then assess the resuits of their work. This would have provided
information on how well students were able to apply the knowledge they acquired in the

course.
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A single subject matter (Introduction to Neural Networks) was utilized for data collection
purposes. The results would have been more generalizable had more than one instructional
treatment and content been used with the test subjects.

The total amount of time that the leamers spent logged on the system was a function
of the time they spent interacting with the content, minus any time they spent in briefing
sessions and in pause mode. This total time ranged from a few minutes to over four hours for
some students, with an average of 35 minutes. Although at first glance this appears to be a
short period of time, in computer-based environments it has been found that significant
learning can occur within fairly short bursts of interaction with the system (e.g. Corbett et a/,
1995). There is a minimum amount of time required to attend to the information presented on
the screen. In the case of this study, this time may in fact be better represented in terms of
number of options selected per lesson module (e.g. at a minimum, having looked at all seven
options available for each module). There are also maximum fimits which are typically a function
of the physiological and cognitive factors such as fatigue and information overioad (Baeker st
a, 1990) Ideally, data collection should span several learning sessions spread out over time,
such a semester, in order to ensure a more representative and more comprehensive sampling
of learner behaviors. A longer data collection time period would also yield data on how learner
patterns evolve with time, as leamners gain more domain expertise and more familiarity with the
leamning environment.

The leaming tool was a prototype system only - it would be vaiuable to implement the
trace analysis facility within an existing course that has already been well establishad with
respect to educational effectiveness and efficiency (for example, the LISP tutor).

Finally, there was a good deal of subjective inferencing required in establishing profiles
of expected learner behaviors in this leaming environment, as projected from the two leaming
style constructs, and secondly, in assessing whether or not students did in fact exhibit these
expected behaviors. Descriptions provided by the authors of the leaming style instruments

were mapped on to the functions available within the learning environment (e.g. help, self-test)
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to the best of my ability. Despite the fact that this was a subjective exercise, the cluster analysis
and the ANN produced theoretical constructs or factors that were similar to those proposed by
the authors. The classifications of leamers were particularly well-matched with the theoretical
constructs published by Entwistle, namely, the meaning and reproducing orientation to study.
Thus, in an independent fashion, it was possible to find students who exhibited reproducing
orientations and meaning orientations with respect to how they undertook to learn in this
learning environment. These weak but suggestive links between the subjective inferences
used and statistical outcomes obtained indicate that further research using the ANN tool for
user modeling is warranted.

The amount of posttest variance accounted for by this subset of variables was low and
the strength of the relationships observed was low, due mainly to the fact that the study looked
at data from a single learning session which had a fairly short interaction time. In addition, there
was a significant amount of inferencing required to map potential learning style constructs to
concrete learner behaviors expected in the learning environment. It would have been useful
to collect data over several leaming sessions in order to produce stronger correlations and
explain a greater portion of the achievement variance. Despite these limitations, however,
statistically significant effects were observed. Clearly, further research is required where
extended interaction with the learning environment could be tracked in order to replicate and
validate the nature of the phenomena observed in this study.

This research was largely heuristic in nature in that it contributes to the design,
hypothesis-testing and the use of new technologies in leaming. New techniques were tried
out under unique circumstances in order to uncover new questions rather than to produce
answers as such. The testbed was used by a fairly homogenous group of students, the
instructional design and course content was not varied, students interacted with the system an
average of 35 minutes, with some students having spent in excess of four hours on the
system, and lesson modules all had the same set of seven learning options available to

learners. Interesting results were obtained in spite of the limitations of the research design. A
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critical area for future research lies in the use of ANNs to extract leamer characteristics and
online learming behaviors for user modeling over time. The abserved interaction patterns will
either increase in strength, stabilize or disappear altogether as students progress through the
learning environment. This prototype environment can thus serve as the basis for future
testing of learning variables for inclusion in valid, contextual learner models.

Implications for Future Work

Learner modeling can be augmented through the use of artificial neural networks as it
becomes possible to integrate a large number of variables and perspectives emanating from
different disciplines into a single learning environment testbed. The learning environment that
was designed and developed for this study can be used to test a wide variety of variables in a
similar manner such as: different leaming style inventories or other instruments such as the
MBTI; with a wide range of learners; for different skills and subject matters; and with different
instructional designs in order to provide a highly controlled environment for research on
learner behavior in computerized leaming environment.

Learner behavioral data can be collected in real-time, both to test specific theoretical
constructs, such as those found in leamning style theories, and to identify new constructs that
merit further study. Validated trace data that can distinguish between different types of
learmers and which can also be related to how well students learn and/or the efficiency of their
leaming processes may some day render instruments such as the learning style inventories
redundant.

A variety of different types of data can be obtained and prove to be useful about
learners when building learner models. These data can be drawn from different fields, each of
which may use different theoretical constructs and different instruments to assess them. This
leaming environment can be used to critically assess the different sources of leamer data and
integrate them in a meaningful fashion in a systems approach to leamer modeling. A different
mix of educational psychology, cognitive science and artificial intelligence variables may be

best for different learning tasks. A priori assessments are almost exclusively based on domain
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knowledge assessment. A learner model needs to take into account the context as well as the
processes of leaming. This tool may prove to be a useful testbed to evaluate the relative
contributions of different learner variables.

Learner modeling requires both domain-based and learner-based approaches. This
research can help move computerized learmning environments towards a more constructivist
approach, one which entails a different way of assessing and modeling learners beyond a priori
global and static measures such as a leaming style type. Earlier and more contextual learmer
assessment is required if leaming systems are to adapt to individual learners in any meaningful
fashion. Some means of contextually vaiid learner diagnosis is required in order for the
learning system to respond in real time and in an appropriate manner. Thus not only would
learners be corrected, in the sense of a domain overlay model of expertise, but they would also
be guided in a way that is best suited for learning to take place for that particular individual.

Future system design enhancements could include continual or adaptive domain
knowledge testing (e.g. Desmarais et al, 1988). In this way, the evolution of learner skill and
knowledge, along with learner interaction patterns, can be used to classify different types of
learners and tailor instructional feedback accordingly. The dynamic learmer model could thus
be both dornain-based and learner-based in order to take into account both iearner knowledge
states and learner approaches to studying.

In the context of future research, it may also be useful to look at motivational issues.
Motivational states may be continually monitored and appropriate interventions undertaken to
help maintain high levels of student interest in the learning materials and in pursuing their
learning goals. It may be possible to monitor how active students are in order to detect waning
interest, fatigue or diminishing morale as they perceive they are not learning well or not
learning fast enough. It may be possible to identify such a thing as a boredom signature much
the same way as task signatures have been identified using ANN pattern analysis on human-
computer interactions. The leaming system feedback can then take the form of asking the

student whether or not he is tired and suggesting he take a break. The adaptivity of the
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learning system can thus be expanded to take into account cognitive learning interaction
preferences and patterns, level and rate at which domain knowledge and skills are being
acquired, and affective factors such as learner motivation. The ANN tool can be used to collect
data over longer periods of time as it may be necessary for a certain amount of time to elapse
before distinct learning pattemns emerge and it is likely that these patterns will change with
subsequent leaming. it would be valuable to monitor changes in learner knowledge states,
motivational states and leaming behaviours over long periods to make use of them in flexible
instructional prescriptions throughout the learning interaction (Langer and Bodendorf, 1995).

Since the data of this study were analyzed, the research team and | continued to do
research on the data. The use of a Markov chain (see Appendix E) to analyze the sequence
data from leamner traces proved to be a useful technique and some interesting results were
obtained. In general terms, this method permits the construction of a probabilistic decision
tree which shows the probability that a given choice will be made, given a particular sequence
of previous choices. Preliminary work done on the trace data generated by this study show
that this method is a robust and valuable means of modeling learner behaviours, especially
over longer periods of time, with a high degree of accuracy. Sequences of consecutive
learner choices lead to predictions as to how likely it is that the learner will select one of the
seven available options. For example, it was found that learners who chose to defer the
posttest chose to look at general text over 90% of the time. This is a promising area for future
research. Markov chain analyses of long-term learning behaviours can be used to investigate
the stability or persistence of particular learning profiles (intra-individual variability). It would be
possible to study how much they changed with different interfaces, different course content
and different instructional designs (inter-individual variability).

Studies to collect data on leamer behaviors over extended periods of time, such as a
semaester, could be carried out in order to revisit the principles of the Kolb Theory of
Experiential Learning. In his theory, Kolb discusses the four stages a learner is expected to

progress through, much in a Piagetian sense. The Kolb LSI may thus measure the current
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stage aleamer is in. In addition, longer term studies would enable the observation of learner
progression in terms of competence, from novice to expert, as they evolve or become more
competent, both with respect to the subject matter (domain-related) and with respect to
learning skills (leamer-related).

Since the data for this study were collected (1992-1993), many researchers have
begun to question the need for deep, sophisticated learner models to explain the improper
reasoning and misconceptions behind each type of leamer error (Carbanaro et al, 1995;
Ragnemalm, 1996). Researchers are focusing on the interaction with the system rather than
endowing the system with greater intelligence (Collins, 1996). This is consistent with the
constructivist school of thought which maintains that the intelligence of an Intelligent Learning
Environment lies in the interaction between the learner and the system. This also moves away
from the old domain-based approaches to leamer modeling. A different role is being carved
out for adaptivity and individualization of instruction - one that moves away from being domain-
based to one that is based on the leamer and specific, contextual learner characteristics. The
tools and techniques created and implemented in this study will help researchers and
developers to operationalize this new strategy for learner modeling. The ANN-based tool and
approach will enable researchers to create learing environments and learner models that are

in line with current interest in adaptive constructivst learning environments.
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Appendix B. Summary of Study [ (Pilot Study)



Summary of Study I - Pilot Study Results

Sample size
The sample size for Study [ was 69 with an attrition of 8, leaving 61 complete data sets. [t was

realized that both cluster analysis and ANN analysis required a much larger sample size and this was done
for Study I1.

Software

The software was modified following an ergonomic analysis of the interface design. The screens
were made much more user-friendly and the look and feel was standardized by having options appear in
the same order. Menus were made context-sensitive so as to reduce screen clutter. The sound option was
turned off as students found it too noisy. The software was optimized so it ran much more rapidly,
reducing waiting time for users. The entire code was debugged as system crashes had occurred
periodically. Different versions of the system were created for different Macintosh platforms and the
internal clock was weighted according to each type of computer’s processing speed (in order to standardize
the duration data collected).

Materials

The pretest and posttest were extensively modified. The original tests were multiple choice items
only. Five short answer questions were added for Study II. The tests were tests of general knowledge
only. This was changed so as to concentrate on course content presented in the modules. A ceiling effect
was observed for the posttest. The average score on the pretest was 44% and that on the posttest 48%.
Thus the tests were not adequately measuring the learning that took place. The average item difficulty was
too high for posttest items (average of 37%) and the item discrimination index was less than 0.3 for over
half of the test items. In Study II, a pool of 20 test items was created, two per lesson module. 10 items
were randomly selected from each of the five pairs, to make up the pretest. Remaining items made up the
posttest. Five short answer questions were selected from a pool of ten and assigned to the pretest. The
remaining five were used on the posttest. An answer grid was developed for the short answer questions
and more than one person was used to score the tests. In this way, the test instruments used in the second
study were valid and could measure learning that occurred.

The course content was changed from a training course for knowledge engineets to a less
ambitious goal of imparting the fundamental concepts of artificial neural networks in five computerized
lesson modules. General content on artificial intelligence was eliminated. The course content was
evaluated by subject matter experts and practitioners in the field of neural networks. The revised content
was used for Study II.

The pedagogical design was modified based on student feedback and subject matter experts’
suggestions. In place of a the self-evaluation screen at the end of each module, a quiz option was added.
Students could attempt to answer a given question a maximum of three times. A ‘Defer Posttest’ option
was added as students wanted to be able to decide when to take the final test and to go back and study
some more if they wanted to before selected the posttest option. A number of screen options were
climinated or renamed based on student usage. Those options which students did not use at all were
eliminated or regrouped with others (for example, dictionary and definitions). A better help facility was
designed for Study II, based on questions that were (repeatedly) asked during the test sessions.

Procedures

Students were given the opportunity to sign up for a test session time slot, as opposed to
scheduling everyone to a time. This gave them more flexibility and resulted in less ‘no shows.’
The questionnaire and learning style instruments were initially computerized. However, students speat too
long on these and became tired of using the computer. As a result, for Study II, these were handed out to
students a week prior to the actual test sessions. This streamlined the process and ensured that when
students were on the computer, they had only one system and one interface to use and that this was related
only to the course content. -



A debriefing session was added to the beginning of the test session. It was found that many
students did not understand the concept of a pretest and posttest. They became discouraged because they
felt they should have known more of the answers on the pretest. A 15-minute debriefing script was
prepared and used for each test session. The purpose of the exercise was explained, students were thanked
for their participation and so on. This was done by myself, the system designer and the professor of the
course. In addition, a diagram was put up on the board at the front of the room, to explain the various
options available on the system and what each one did (see Appendix A). For Study II, the professors
decided to give students five bonus marks for taking part in the testing. Finally, based on the level of effort
that was required for Study I test sessions, many more volunteers were on hand to answer student questions
during the test sessions for Study II. Each took notes on observations of students, such as problems with
computers, consulting with other students, and they took part in the exit interviews.



Appendix C Category Codes for Questionnaire Data



Category Codes used for Questionnaire Data

Age

1 = less than 20 ’
2=20-25

3=26-30

4=31-40

5 =over 40

Educational Background

I =DEC or DES

2 =DEC or DES and one or more certificates
3 =DEC or DES, one or more certificates, and BACC or BAA
4 = anything other than the above

Major

1=MIS

2 = Science (pure and applied sciences, math)

3 = Computer Science (software engineering)

4 = Administration (commerce, administrative sciences)

5 = Finance (accounting, economic science)

6 = other (engineering, telecommunications, social sciences)

Program

1 = computer science, MIS

2 = management

3 = human resource management
4 = accounting

5 =other

Future Career Plans

1 = programmer/analyst, computer scientist

2 = finish studies, obtain degree, do a master’s

3 = manager, executive, project head, administration

4 = start own company, consultant

5 = other (accountant, financial analyst, mutual funds manager, sales representative)

Reason for Participation

1 = personal interest (want to learn, interested in content, interested in the exercise, want to learn)
2 = because it is mandatory, because of the 5 bonus points for participating

3 = mandatory and personal interest

4 = other or no answer



Kolb LSI

1 =accomodator
2 = assirnilator

3 =converger

4 = diverger

Entwistle Quadrants
reproducing orientation score meaning orientation score

1= less than 12 less than 12
2= less than 12 more than 12
3= more than 12 less than 12
4= more than 12 more than 12

Requested learning style results?

l=yes
2=n0

Guidance Preference Group

1 = greater than 75% spent in guided mode
2 = greater than 75% spent in unguided mode
3 =no clear preference

Lesson Order Sequence Group

1 = depth-first (1 or 2 lessons selected within the first five lesson choices)

2 = breadth-first (4 or 5 lessons selected within the first five lesson choices)
3 =mixed (3 different lessons selected within the first five lesson choices)
4 = remained in guided mode throughout the interaction (100% guided)
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Appendix D Transcripts of Exit Interviews
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Exit Interview Checklist - UQAM tests

° Introduction: | would like to ask you some questions conceming your reaction to the
system you have just used. This will only take 5 minutes of your time now or, if you
prefer, | can take down your phone number and contact you at a later date. To speed
things up, | would like to record this interview, unless you have any objections...

° What are some of the features you liked about the system?

° What didn't you like about it?

° What did you think about the leaming style tests?

° When you study, what are some of your habits? (example: do you cram before a test?
do you like to spread out your papers? do you like to read everything at least once?....)

° Were you able to study in your usual manner when interacting with this system? is
so, how were you able to do so? (example: used the notepad option, etc..)

° in general, do you prefer a completely unconstrained environment or do you like to
have some guidance in navigating through study materials?

NOTE: try to interview 3-5 people per session and try to get a range of
completion times (i.e. don't wait until the end of three hours but talk to
people who leave after an hour, 2 hours, etc.
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Three individuals were selected at random and interviewed from each test session. A total of individuals
were interviewed. These interviews were taped, when students gave their consent. All students were asked
the following questions: How did you feel about the experience? Were you able to study in your usual
manner? Do you feel you learned something about neural networks? The following are extracts from the
interview transcripts (several of these comments were repeated by more than one student):

It was a difficult subject. One that is not very well known. Difficult reading as the themes were not our
usual course themes.

I liked it very much and found the subject interesting.
I liked the way the software was structured as this is how I like to study. For example, I like to first read
about the topic then see many examples.

I liked the course content very much. There was a lot of information. I feel I learned a lot although I can’t
remember all of the definitions. You would have to memorize them to really learn them

I would have like to have had a book along with the software.

I particularly enjoyed the applications section. I learned that neural networks could be applied to the
domain of speech recognition.

You mean like at home? Yes, pretty much. It was like a tutorial class. I still had to go through to find all
the important materials.

I found it too dense. There was too much to leam. Not enough time to go through everything.

I like to proceed in a certain way but I felt the software allowed me to do this so yes, I studied the way I
normally would.

I liked it very much. I learned quite a bit. It was fun. I am an instinctive person. I liked to be able to jump
around a bit in the software.

I liked that we had so much freedom and that I could choose where I wanted to go. I like the action - for
example, I liked asking for the definitions of terms I did not know.

I was able to go through things rapidly.
I learned yes but I already knew about neural networks - some of it was quite new though. I would like to

see how the technology improves in the future. Now, in voice recognition, for example, it still isn’t 100%
successful and many characters are not understood.
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Description du réseau de neurones Kohonen
Jean-Francois Arcand

Résumé

Ce document présente I'architecture du réseau de neurones artificiels (RNA) utilisé dans le cadre du
projet HIT. Deux algorithmes furent utilisés pour classifier les traces :
e la premiére tache consistait & classifier I'échantilion de traces (169 traces) en 4 groupes.
L'algorithme utilisé sera présenté a la section 1 de ce document :
e la seconde tiche consistait & découvrir le nombre exact de groupes contenus dans
I'échantillon de traces. L'algorithme utilisé sera présenté a la section 2 de ce document.
Comme l'algorithme de la section 1 de méme que P'aigorithme de la section 2 utilise comme la méthode de
Kohonen comme algorithme d’apprentissage, un résumé de la méthode sera présenté en introduction.

Introduction « KOHONEN FEATURE MAP »

Cet article présente la théorie concernant les réseaux de neurones de type Kohonen. On ydéﬁnira donc
les fonctions d’entrée, les fonctions d'activation, les fonctions d’'apprentissage et I'algorithme a utiliser
avec les réseaux de Kohonen.

ARCHITECTURE DU RESEAU DE KOHONEN

Le réseau de Kohonen est composé de deux couches de neurones : une couche d’entrée et une couche
de sortie, appelée Kohonen. La couche d’entrée envoie le vecteur des données d'entrée a chacune des
neurones de la couche de Kohonen(figure 1). Ainsi, toutes les neurones de la couche de Kohonen ont
recu toutes les informations d’entrée. Le vecteur d’entrée est pondéré, a chaque neurone, par un vecteur
de poids qui représente la force des liens entre le neurone et le vecteur d’entrée. Ensuite, les neurones
de la couche de Kohonen font la compétition : le gagnant sera celui dont I'activation est la plus forte. Seul
le neurone gagnant produira un signal de sortie. La compétition a lieu & travers les connections quily a
entre les neurones de la méme couche (figure 1). Les neurones de la couche de Kohonen sont donc
elles-mémes interconnectées. -

Pour étre cohérent avec le fonctionnement du cortex cérébral, on devrait définir les interactions (i.e. les
. poids) entre les neurones en fonction de la distance entre chacune d'elles. En effet, dans le cortex, un
neurone central qui envoie un signal excite son voisinage environnant avec des connexions positives. Au
fur et & mesure que la distance avec le neurone central diminue, le degré d'excitation diminue jusqu'a
devenir inhibiteur, négatif. Cette inhibition continue sur une distance déterminée pour revenir & une faible
excitation positive & une distance considérablement éloignée du centre[4]. Cela donne une fonction en
forme de chapeau de mexicain et c’est ce qui fait que les neurones « compétitionnent » entre eux
(figure2). Cependant, nous utiliserons une approximation de cette fonction afin de simplifier les calculs.

Dans les réseaux de type Kohonen, on n'utilise pas une bonne réponse donnée afin de modifier les poids,
on procéde en se basant seulement sur les données d'entrée. C'est donc de I'apprentissage non
supervisé, « unsupervised leaming »[5].

FORMALISME MATHEMATIQUE :

Notons le réseau de neurones utilisé comme suit: Soit A=(a,,a;,a,..3,...a,) qui représente la couche
d'entrée et B=(b,,b,,b,, ...b, ...b,) qui représente la couche de Kohonen. Soit W=(wyy, Wya,... Wyi...W) OU
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w; représente le poids reliant le neurone i de l'entrée au neurone j de la couche de Kohonen, Wi=( wy,
Wa-.. Wy,...Wr) représente le vecteur des connections de la couche d'entrée au neurone j de la couche de
Kohonen et V=(vy,, vy,,... Vi,...Veom) OU vy; représente le poids reliant le neurone k de la couche de Kohonen
au neurone j de la méme couche.

FONCTION D'ENTREE

A la premiére itération, chaque neurone regoit le méme signal, le méme vecteur de données d'entrée.
Pour l'instant, on ne tient pas compte des connexions entre voisins, parce qu'a la premiére itération, ils
n'ont pas encore réagit aux données. Ainsi, le neurone j calcule une valeur d’entrée :
;= Zw;a, = W;-A o les w; sont les poids et g, les entrées.
Ensuite, les neurones s’activent, envoient des signaux puis en regoivent des autres neurones. L'entrée
sera donc constituée des valeurs d'entrée du réseau et des signaux provenant des autres neurones. Pour
le neurone j, on aura :
S; = Zw;a + Zvby oi les v; sont les poids des connexions entre les neurones k et le
neurone j et les b, sont les valeurs de sortie des neurones k.

Cependant, un seul neurone aura une valeur de sortie différente de zéro. La sommation du deuxiéme
terme de I'équation sera donc réduite a un terme.

FONCTION D’ACTIVATION : LA COMPETITION

On doit maintenant trouver le neurone dont I'activation est Ia plus grande, le neurone qui répond le plus
fort au pattem d'entrée. Ce sera le neurone dont le vecteur poids est le plus prés du vecteur d’enfrée. Il y
a plusieurs fagons de déterminer le neurone dit « gagnant » dont le produit scalaire et la distance
euclidienne.

Le produit scalaire :

Selon Freeman et Skapura[4], I'activation d’'un neurone est définit par I'équation suivante :
N=-ny)+§+Lzy,

ou r; (y;) est le terme d’oubli, souvent exprimé par Ay, ot A est une constante e [0,=[. %, Z; y, représente les
interactions fatérales et z; est une fonction qui représente les liens entre les neurones de la méme couche.
Lorsque z, prendla forme d'un chapeau de mexicain (comme dans la figure 2), alors le réseau
développera une bulle d'activité autour du neurone qui a la plus grande valeur d'entrée, nommé le
gagnant[4]. Cette bulle correspond au voisinage qui sera définit dans les prochains paragraphes.
L'activation est déterminée en majeure partie parle terme S;. Donc, le neurone gagnant sera celui quiala
plus grande valeur d’entrée, qui correspond au produit scalaire entre les entrées et les poids[6].

On peut aussi expliquer l'utilisation du produit scalaire de la fagon suivante : le neurone gagnant sera celui
dont le vecteur poids est le plus prés du vecteur d’entrée. Le produit scalaire donne Ia distance angulaire
entre deux vecteurs lorsque les deux vecteurs sont normalisés :

XY =[X][Y|cos 6 ou 6 est I'angle entre les deux vecteurs.

Plus le produit scalaire sera grand, plus la distance angulaire entre les deux vecteurs sera petite.
Notons le neurone gagnant b,. Il est déterminé par :
WA =max {WA}

Sur la figure 3, le neurone gagnant serait le #2 car il est celui dont le vecteur poids a le plus petit angle
avec le vecteur d’entrée.
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Normaliser les deux vecteurs fait en sorte qu'ils sont inclut dans la méme hypershére et dans le méme
espace dimensionnel (figure 3 )[2]. Cela élimine aussi toutes dimensions que I'on aurait pu donner aux
composantes des vecteurs.

Certains affirment qu'on peut aussi utiliser le produit scalaire lorsque seul le vecteur d'entrée est
normalisé, car le vecteur poids tendra a le devenir au fur et & mesure des itérations[10]. Lorsque les
vecteurs ne sont pas normalisés, le produit scalaire donne alors une mesure de la projection du vecteur
poids sur le vecteur d'entrée. Cependant, si on recherche le vecteur poids qui est le plus prés du vecteur
d’entrée, alors le produit scalaire ne sera pas exact. En effet, si un vecteur poids plus grand était plus loin
du vecteur d’entrée qu'un autre vecteur poids plus petit et plus court (figure 4), alors le produit scalaire
pour le premier vecteur poids pourrait étre le plus grand et le mauvais neurone (en pointillé) serait déclaré
gagnant.

La distance euclidienne :

La distance euclidienne entre deux vecteurs est donnée par:
IX-YIl = (Z(x -yi)?)* ol x et y, sont respectivement les composantes des vecteurs X et Y

Cette formule donne Ia distance entre les bouts des vecteurs X et Y. Si on l'utilise pour déterminer le
neurone gagnant, alors on calcule la distance euclidienne entre chaque vecteur poids et le vecteur
d’entrée, et le neurone dont la distance est la plus courte est le gagnant (figure 5) :

[1A-Wel| =min [JA-W[{

Ainsi, sur la figure 5, le neurone gagnant est celui dont le vecteur poids n'est pas en pointillé, dont Ia
distance avec le vecteur d'entrée est la plus courte. Il est donc intéressant de l'utiliser lorsqu’on ne
normalise pas les vecteurs[4].

Lorsque les vecteurs sont normalisés, alors :

AW = ( (A-W,)2)%
= ((A2- 2 AW, + WP))*
On a A? = A -A = [A]|Alcos O = [AP = une constante, car A est normalisé. [l en est de méme pour
W,. On obtient donc,
[IA-Wj[| = ((constante - 2 A-W,))*

La distance euclidienne dépend donc directement du produit scalaire lorsque les deux vecteurs concernés
sont normalisés. Dans ce cas, il sera donc équivalent d'utiliser le produit scalaire ou la distance
euclidienne(S][10]. Gallant{5], utilise la distance euclidienne parce qu'il normalise le vecteur d'entrée et
tous les vecteurs poids au départ mais ne s’occupe pas de renormaliser les poids a chaque itération.

Les choix de la normalisation des vecteurs, de méme que le choix de ia fagon de calculer la distance entre
les vecteurs, varient d’'un probléme 2 P'autre.

Seul le neurone gagnant produira une sortie de 1, alors que tous les autres neurones de la couche auront
une valeur de sortie égale a 0[3][6].

FONCTION D'APPRENTISSAGE

Une fois qu'on a trouvé le neurone gagnant, on doit définir ce qu’on appelle le vaoisinage. Ce sera sur cet
ensemble de neurones que se feront les changements de poids. |I peut étre en carré, en losange ou en

hexagone[9], et sa grandeur peut varier (voir figure 6). En fait, tous les neurones dont le vecteur poids,
sont assez prés du gagnant, sur I'hypersphére, feront partie du voisinage([5][1].
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Quelque soit la forme de cet ensemble de neurones, il est généralement trés grand au début et il diminue
au fur et @ mesure des époques d'apprentissage jusqu’a ne contenir qu'un certain nombre de neurones.
On peut, par exemple, commencer en utilisant 80% du réseau et diminuer jusqu’a 6 neurones [1], ou
diminuer jusqu'a ce que I'ensemble ne contienne que le neurone gagnant[4].

La forme et la grandeur de cet ensemble de neurone varient beaucoup. Maintenant qu'on a déterminé le
voisinage, on modifie les poids des neurones de cet ensemble en les rapprochant un peu du vecteur
d'entrée, de fagon & ce que ces neurones répondent plus fortement au pattem d'entrée (Figure 7).

Ainsiona:
Aw; = aft) [ -wy] sij e voisinage,
0 sinon.

Le changement de poids du voisinage est une trés grossiére approximation de la fonction en forme de
chapeau. Pour un temps donné t, « joue le réle d'une constante et on modifie tous les neurones de
'ensemble selon la méme proportion (figure 8a), plutét que de diminuer o selon la distance avec le
neurone gagnant.

On pourrait aussi, dans notre approximation, tenir compte des liens inhibiteurs et considérer un deuxiéme
ensemble de neurones dont les vecteurs poids sont plus loin du vecteur d’entrée que ceux du premier
ensemble. [I faudrait alors utiliser un autre taux d'apprentissage B, qui serait négatif cette fois.

Aw; = B(t) [a,-wy] sij e du 2°® voisinage,
On éloignerait donc un peu ces vecteurs poids du vecteur d'entrée. Ce serait une autre approximation de
la fonction en chapeau (figure 8b).

Dans la fonction des changements de poids, a(t) est un taux d'apprentissage. Sa valeur représente la
vitesse d'apprentissage du réseau de neurones. Pendant une itération, si la valeur de « est grande, les
vecteurs poids se rapprocheront beaucoup du vecteur d’entrée. lis leur faudra donc moins de temps pour
étre trés prés du vecteur d’entrée que si la valeur de « était petite. Les valeurs de a doivent étre plus
petites que 1, afin d’assurer la convergence, et ensuite diminuer pour tendre vers zéro en fonction du
nombre d'itérations. Il'y a d"ailleurs plusieurs fagon de définir «. On a suggeéré :

a=cexp (- [WWJP ) ol £ est une trés petite constante (prés de zéro), W, représente les poids
L ) du neurone j, W, représente les poids du neurone gagnant et ou la

variance ¢%/2 contréle le rayon du voisinage[10].
a(t)=(1-t1 )
T ) odt=1aT, Treprésentant le nb total d'itérations [5].

at) =t ot t=1 45000 ou 12 10000, (nous sommes ala t* itération) [11].

aft)=2(1-_t ) out=12a5000o0u1a 10000, (nous sommes 4 la t° itération) [11].
\ 10000/

ou encore simplement une constante [3].

Une autre option pourrait aussi étre offerte & l'usager : celle de considérer 2 phases lors d'une époque,
comme suggéré par Haykin[7]. Une premiére phase dans laquelle se définit I'ordre des neurones, la
topologie de la carte de Kohonen. Pendant cette phase, a diminue jusqu'a environ 0.1 en méme temps
que le voisinage rétrécit jusqu'a ne contenir que les derniers neurones. La deuxiéme phase, nommée
phase de convergence [7], sert au renforcement du gagnant. La valeur de a continue & diminuer et le
voisinage ne contient plus que le neurones gagnant et ses voisins immédiats.
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ALGORITHME :

On doit premiérement choisir les fonctions et les paramétres utilisés: l2 formule de la distance, la
normalisation des vecteurs, la forme, la grandeur de départ et la limite inférieure de la grandeur du
vaisinage ainsi que le rythme auquel il rapetisse et le taux d'apprentissage.

On doit aussi initialiser les poids du réseau en leur donnant des valeurs aléatoires comprises dans un
intervalle choisi par I'usager.

Ensuite, on présente un pattemn d’entrée au réseau. On trouve le neurone dont le vecteur poids est le plus
du vecteur d’entrée puis on modifie les poids du gagnant et du voisinage. Les deux derniéres étapes
doivent étre répétées jusqu'a ce le neurone gagnant soit assez renforcé, c'est-a-dire jusqu'a ce qu'il soit
assez prés du vecteur d'entrée. En fait, on peut s'arréter quand a est rendu trés petit [11], quand le
voisinage s'est rétrécit & sa plus petite grandeur [4] et quand les changements de poids du neurone
gagnant sont presque nuls [9]. Autrement dit, on s’arréte lorsqu’on est rendu & un état stable.

ALGORITHME :

1. choisir les fonctions utilisées

2. initialiser tous les poids du réseau en utilisant une variable aléatoire prise dans l'intervalie [-,-]
choisie par I'utilisateur

3. pour chaque pattern d’entrée, on fait :

{
3.1 présenter le pattern au réseau
3.2 répéter
{
3.2.1 calculer la distance de chaque neurone avec le pattern d’entrée
WA = |W||Ajcos 8 ou HA-W] = ( Z(a;-w;)* ou une autre fonction
3.2.1 trouver le neurone gagnant
WA =max {W-A} ou HA-W,I| =min; [|A-W]]|
3.2.1 ajuster les poids du gagnant et des neurones de son voisinage
Aw; = aft) [a,-wg] sij e voisinage,
0 sinon.
3.2.1 tant que la grandeur du voisinage n'a pas atteint sa limite inférieure,
diminuer la grandeur du voisinage, s’il y a lieu
} jJusqu’a ce que le réseau converge
}
Section 1

Un neurone est ici représenté par un groupe. Le réseau de neurones utilisé posséde une couche d'entrée
représentant les variables de la traces, de méme qu'une couche de sortie (couche Kohonen) représentant
la classification, c'est-a-dire le groupe. Les poids entre la couche d’entrée et la couche Kohonen sont fixé
par les valeurs des traces représentant le centre des groupes. Par exemple, une trace représenté par le
vecteur (0.4, 0.3, 0.6 , 0.4) aura un réseau de neurones de la forme :

L'algorithme utilisé se comporte de la fagon suivante :

1. Prendre aléatoirement 4 traces de I'échantillon. Ces quatre traces possédent chacune un
vecteur représentant les valeurs des interactions de I'utilisateur avec le logiciel HIT. Ces 4
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traces représenteront les centres de gravité des 4 groupes. Ces vecteurs seront appelés
vecteurs centres.

2. Fixer un seuil de voisinage. Pour I'expérimentation, des valeurs situées entre 0.2 et 0.8 ont
été utilisées. Une vérification de Ia stabilité des groupes a permis de déterminer qu'un
voisinagede 7 ? ?

3. Pour chaque trace de I’échantillon

e on mesure la distance entre le vecteur centre et le vecteur échantilion (distance
Euclidienne, voir annexe A pour explication)

¢ on obtient ainsi quatre distances, car il y a quatre vecteur centre. On chaisie la
distance la plus petite, et cette trace est classifiée dans le groupe représentant le
vecteur centre

4. On obtient comme résultat final une classification en quatre groupes.

Section 2

L'algorithme utilisé se comporte de la fagon suivante :

1. A priori, on ne posséde aucun groupe. Chaque vecteur trace représente un groupe. On
commence donc avec 169 groupes.
2. Fixer un seuil de voisinage. Pour I'expérimentation, des valeurs situées entre 0.2 et 0.8 ont
été utilisées.
3. Pour chaque trace de I'échantillon
e On calcule fa distance entre les autres traces de I"échantillon. Si la distance entre Ia
trace et les traces de I'échantilion est inférieure au seuil de voisinage, on regroupe la
traces avec le méme groupe que la trace de I'échantilion. .
¢ On réduit ainsi le nombre de groupe jusqu'a ce que ce stabilise I'algorithme. Parfois,
cela peut prendre 4 entrainement au réseau de neurones pour ce stabiliser.
On obtient comme résuitat final une classification en n groupes.
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Markov Analysis
Jean-Francois Arcand

« A Bayesian network is a directed acyclic graph in which each node represents a2 random
variable, that is, a set of mutually exclusive and collectively exhaustive propositions. Each set of
arcs into a node represents a probabilistic dependence between the node and its parents (the nodes
at the other ends of the incoming arcs). A Bayesian network represents, through its structure, the
conditional independence relations among the variables in the network. These independeace
relations provide a framework within which to acquire probabilistic information. The conditional
independences between variables also render inference tractable in a large number of real-world
situations. » [Fung, Del Favro, p. ]

The basic idea behind models such as Bayesian networks and Markov chains is to organize propositions
into graphs of elements interrelated by probabilities representing their degrees of dependency. These
networks provide a formal way to organize related evidences into graphs. Such graphs are easier to
understand as compared to analyzing all the pieces of evidence in an independently. The main difference
between the Bayesian networks and the Markov chains lies in the meaning of the arcs linking the nodes. A
Markov chain, sometimes called a Markov network, is an undirected graph whose links represent
symmetrical probabilistic dependencies between the linked nodes. On the other hand, a Bayesian network
is a directed acyclic graph with arrows representing causal influences or class-property relationships.

[Pearl]

Lets take the example of three events, A (interactor 1, ¢.g. a2 General button), B (interactor 2, e.g. a Outline
button), and C (interactor 3, e.g. a Consultation button), and a relation r taking place among these
interactors. Within a Markov Chain, ry represents a symmetrical relation between the nodes being
connected through. The value given to the arcs representing the 1y relationship can be interpreted as the
probability level associated to the relation for the linked pair of events. For example, the probability of co-
occurrence of two events A and B (ry(AB)). (possible value of rye [0,1]) A possible Markov chain
expressing the dependancy relation r for the given set of events is:
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If the symmetry principle does not hold for the type of relation being expressed, then Markov chains
cannot be used. However, such relations can be represented by Bayesian networks. Within the project HIT,
we could have symmetrical relation as well as non-symmetrical relation. Possible Bayesian networks
representing a non-symmetric relation ryg for our set of nodes are:

OGN0

W\@

Figure 2.

(O

fus(AC) \ /. T(BC)

Figure 3.

Tns(AB) Ius(BC)
O D= O

Figure 4.

Two observations are valid for all the three Bayesian networks presented in Figures 2 to 4: 1) all of their
arcs have a direction, and 2) none of the networks contain cycles, which means that one cannot start from a
node and return to it by following the arcs.

In both types of networks, Markov and Bayesian, the values attributed to the links are based on
observations of how strongly the relation represented by the arc holds for a particular pair of nodes. In
essence, such values can be based on statistical evidence, thus representing the likelihood attributed to r in
regards to the linked nodes. For example, lets say that the non-symmetrical relation Touccesscu= IS TEPrEsented

by a Bayesian network, rSM(f i 1 representing the probability of success of 496 i given that it hires

¢k, such a value being based on statistical evidence cumulated from past interaction between the two
agents. Furthermore, let us say that the agents keep a cumulated value for their probability of success in all

given context (the total probability or prior probability expressed as Osuccess(f ) in section 4.1.3) From
the expression of these likelihoods and prior probabilities, posterior probabilities can then be calculated. In
effect, from the chain rule of basic probability theory it is established that every distribution function P(x,,
«-» X,) for a given relation r can be represented as a product:

P(xy, X -y X)) = P(x,[xy, - Xq0) . P(X5l%,) P(x))
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Let us say that the following Bayesian network represents the relation FSuccess-rae 35 described before between -
the three interactors ¢3 fA &% k, ¢"'g:

Tsuccessrate Lsuccess-rate
6% £, &% 6% 4,
osuccess(¢a ) Osuecess( ¢wg)
Figure 5.

From this network, we can then calculate the probability of success of ¢8 I» given that ¢B i is followed by
¢k which in turn hires ¢°g-
P(Hle) = P(e[H)P(EHD)

P(e) .
F{ouccess of ¢8 i | success of ¢ k¢wg) = P(success of ¢ ¢"’g[ success of ¢8 i ) P(success of ¢B =

P(success of ¢~ kP g)

P(success of ) Osyccess(d; )
Markov's Analysis in HIT

This function allows the analyst to perform a Markov-type analysis. The analyst can find out about
particular chains of operators that were activated. The analyst can add any operator to the existing one
to form a chain by clicking on the selected operator from the top row. The chosen operator will be
added before the ones found in the first column. The table is then refreshed and will display the
number of chains of interactions formed with the new sequence shown in the first column preceded by
the operator in the top row. The next operators to be added to the chain in the first column is inserted
to the left of the original operator. The resulting analysis can be saved as a file in the project (See

figure 6).
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Appendix F. Pretest and Posttast Instruments
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SEWille - - mMatricuile: -

Pré test
Ne noircir qu’une seule réponse par question

1.Quelle caractéristique les systdémes «naturellement intelligents» possédent-i

O A. raissonnement dit par association

O B. calculs efficaces

O C. traitement rapide d'un grand volume d'information
O D. aucune de ces réponses

2.Lequel parmi les termes suilvants a le méme sens qu’un réseau de neurones’

O A. systéme d'aide A la décision

O B. systéme expert

O C. syst2me 2 base de connaissances
OD. syst2me connexionniste -

S.Laquelle parmi les sulvantes est une propriété des réseaux de neurones?

O A. ils justifient leur solution A un probléme
O B. ils fournissent une réponse pour un échantillon de données qu'ils n'ont jamais rencontré
8 g igs fournissent une réponse pour un échantillon de données incomplet

.betc

4.Quelle est I'une des plus grandes lacunes des réseaux neuronaux?

O A. les algorithmes d'apprentissage ne sont pas trés puissants _
O B. ils ne s'appliquent qu'a des domaines possédant un patrimoine d'expérience varié et étendu
8 lC). la cagacité de traiter les connaissances floues est trés faible

.aet

5.Pourquol dit-on que les reseaux de neurones sont intelligents?

O A. ils ont Ia capacité de générer leurs propres régles
O ls sont espables dapprente 4 porm do e a-orpurisaton

ils sont ! partir de leurs propres iences
OD.toutesc;.:Ptéponsessontbonnes

ool

B b .

¥fo  wm



¢.Les polds assoclés aux Interconnexions:

O A. sont des nombres récls k
O B. servent A donner 'emphase sur certains signaux d'entrée en multipliant leur valeur

O C. servent 2 minimiser I'emphase de certains signaux d'entrée en multipliant leur valeur

O D. toutes ces réponses sont bonnes

7.Quel est la premidre étape dans la modélisation des réseaux neuronaux?

O A. préanalyser les données

O B. évaluer 1a taille du probléme A résoudre

O C. diviser le probléme 2 résoudre en sous-problémes

O D. vérifier si le probléme 2 résoudre est bien adapté 3 une résolution par réseaux de neurones

s.L’algorithme d’apprentissage:

O A. nécessite un trés grande nombre d'échantillons de données

O B. est un processus d'amélioration progressive par essais et erreurs

O C. est capable de fournir une réponse aux cas qu'il n'a jamais rencontrés
O D. toutes ces réponses sont bonnes

9.Les applications fructueuses de réseaux de neurones ont généralement M
les caractéristiques sulvantes:

O A. une partie des données est incomplete

O B. les données contiennent des erreurs

8 g. les hll:mains ne savent pas comment résoudre le probléme
.act

10.Lequel parmi les suivants pourra étre une application de réseaux de neuron

O A. la reconnaissance de caractires

O B. le traitement de demandes de crédits

O C. I'établissement d'horaires de vols pour une compagnie aérienne
O D. toutes ces réponses sont bonnes



Donner des réponses courtes et précises pour les cinq prochaines questions

11.Qu’est-ce qul distingue les réseaux de neurénes des systémes & base de
connaissances en ce qui a trait au stockage et au traitement des connaissa:

12.Comment définiriez-vous le concept «réseau neuronal»?

13.Décrivez la structure et le fonctionnement d’un réseau neuronal

14.Quelles sont les étapes de modélisation d’un réseau neuronal?

15.Quels sont les critéres a partir desquels on peut juger si un probléme est |
propice a l'utilisation des réseaux de neurones?




Post test

Ne noircir qu’une seule réponse par question

1.L'approche informatique conventionnelle s’adresse surtout aux:

O A. traitements rapides d'information

O B. calculs qui dépassent les capacités des humains
O C. tiches cognitives de bas nivean

OD.aetb

2.Lequel parmi les termes suivants est Interchangeable avec le terme «réseau
neuronali»?

O A. systéme connexionniste’

O B. traitement paralléle

O C. naturellement intelligent

OD. toutes les réponses sont bonnes

3.Quel énoncé caractérise les réseaux de neurones?

O A. ils réagissent en paralléle aux stimulis auxquels ils sont soumis
O B. ils exécutent une série d'instructions

O C. ils justifient leurs solutions 3 un probléme

OD. ils font des déductions 2 partir d'une base de données

4.Laquelle par'ml les suivants est I'une des plus grandes contraintes des réseau
neurones?

O A. le filtrage des données demande une intervention humaine ]

O B. ils nécessitent un nombre impressionnant d'exemples pour apprendre et généraliser

O C. la plupart des modeles de réseaux de neurones peuvent étre simulés sur des ordinateurs standards
O D. toutes les réponses sont bonnes

5.Quelle caractéristique, en comparaison avec les systédmes experts,
rend les réseaux de neurones Intelligents?

gg.ll;e 'w;m agénér.a]iser ‘ '
. leur capaci 1dre et R
O C. ils peuvent déterminer eux-mémes quelles parties des données sont significatives
O D. leur capacité  fournir une réponse précise dans un laps de temps réduit

ue '1
?'> Lb (J
st wme



6.A quol se référe «la somme pondéréé des potentiels d’entrée»? '8

O A. un signal d'entrée multiplié par la valeur du poids associ€ au lien d'interconnexion
O B. 1a seuil de réponse

O C. l'algorithme d'apprentissage

O D. aucune de ces réponses

7.Quels sont les caractéristiques qui distinguent les problémes bien adaptés a
solution par réseaux de neurones

O A. il existe des solutions technologiques courantes
O B. le probldme nécessite une grande rapidité de traitement (i.e. en temps réel)
8 g. 1: probléme peut évoluer

.betc

8.Ce qui fait la puissance d'un réseau de neurones est que: ™M

O A. il traite l'information qu'il regoit de fagon paralitle

O B. I'abondance des liens d'interconnexion permet de créer des redondances
O C. chacun des neurones agit indépendemment des autres

O D. toutes ces réponses sont bonnes

9.Les réseaux de neurones représentent une solution idéale pour résoudre de:
probléemes:

O A. comportant une large partie d'appariement de modgles
O B. pour lesquels on dispose d'une quantité considérable d'exemples

O C. pour lesquels un expert humain est disponible
OD.aetb

10.Lequel parmi les suivants représente un exemple d’application de réseaux C
neurones?

O A. la reconnaissance vocale

O B. l'optimisation des routes de camionnage
O C. une aide A 1a tiche pour les mécaniciens
OD. toutes ces réponses sont bonnes



Donner des réponses courtes et précises pour les cinq prochaines questions

11.Pour queis genres de taches les réseaux de neurones sont-lis reconnus pour
obtenir de mellleurs résultats que les systémes Informatiques conventionnels

12.Comment définissez-vous le concept «systéme expert» (ou systéme a base
de connaissances)?

13.Quels sont les avantages & combiner les réseaux de neurones avec d’'autres
technologles?

14.Quels sont les trols réles que peut prendre la sortie d’'un neurone?

15.Quels sont les principaux domaines d’application des réseaux de neurones?
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