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ABSTRACT

A Mathematical Approach for Designing Cell Formation in Cellular

Manufacturing Systems

Zahir Albadawi

One of the major steps in designing cellular manufacturing systems is to form cells. This
mnvolves identification of machine groups and part families. This thesis presents a new
approach for optimally grouping the original set of machines into distinct uncorrelated cells.
The approach involves two phases. In the first phase, machine cells are formed by applying
factor analysis to the matrix of similarity coefficients. In the second phase, integer
programming is used to assign parts to the cells. Because of its mathematical basis, the
approach assures an optimal cell formation through the generation of uncorrelated cell clusters
and the property of variance maximization. Using data set examples, the approach was found
to perform very well in terms of a number of objective criteria. Moreover, the approach
compares favorably to well-known existing methods. Other advantages such as efficient
computational performance, and flexibility during cell formation make this approach very

powetful.
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Chapter 1

INTRODUCTION

We started assembling a motorcar in a single factory. Then as we began to make parts, we
began to departmentalize so that each department would do only one thing. As the factory is
now organized each department makes only a single patt or assembles a patt. A department is
a little factory in itself. The part comes into it as raw material or as a casting, goes through the
sequence of machines and heat treatments, or whatever may be required, and leaves that

department finished. *

1.1 Motivation

Batch manufacturing is 2 dominant manufactuting activity in the world, generating a great deal
of industrial output. It accounts for 60 to 80 percent of all manufacturing activities {16]. The
major difficulties in batch manufacturing are due to high level of product variety and small
manufacturing lot sizes. The product variations present design engineers with the problem of
designing many different parts. The impact of these product variations in manufacturing is
high investment in equipment, high tooling costs, complex scheduling and loading, lengthy
setup time and costs, excessive scrap, and high quality control costs. For this purpose, some
innovative methods are needed to reduce product cost. What 1s also needed 1s a higher level of
mtegration of the design and manufacturing activities in a company [24]. These factors have
led many conventional batch manufacturing systems to convert to cellular manufacturing

systems [23].

* Henry Ford, My Life and Work (1922)



Cellular manufacturing, which is an application of group technology (GT) in
manufacturing, has been recognized as one of the most recent technological innovations in
job-shop or batch-type production to gain economic advantages similar to those of mass
production [19]. Converting to cellular manufacturing systems becomes even more pressing in
today’s severe competitive environment. The design of a cellular manufacturing system must
take many structural and operational issues into consideration [69]. One of the first and most
important problems faced in practice is to select and group parts or machines with similar
features into families; this process is called cell formation [19]. Cell formation is the first and
the most important phase on GT application. This inittal step influences all other decisions
involved in the design of cellular manufacturing systems in which similar parts are aggregated
mnto part families and dissimilar machines are grouped into cells [43]. The above concerns,
among many others, make it important to work on a new method for cell formation that has

the quality of portability into practice and real life applications.

1.2 Cellular Manufacturing

Cellular manufacturing is a manufacturing strategy to win a war against global competition by
reducing manufacturing cost, improving quality, and reducing the delivery lead time of
products in a high variety low demand environment [27]. Cellular manufacturing is an
application of group technology in manufacturing in which all or a portion of a firm’s
machines or processes located in close proximity are dedicated to the manufacturing of a
tamily part [57]. Cellular layouts organize departments around a product or a natrow range of
similar products. An ideal cell manufactures a narrow range of highly similar products. Such an

ideal cell is self-contained with all necessary equipment and resources. Materials sit in an initial
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queue when they enter the cell. Once processing begins, they move directly from process to

process and the result is very fast throughout.

Cellular Manufacturing is an approach that helps building a variety of products with as
little waste as possible. A cell is a group of workstations, machine tools, or equipment
atranged to create a smooth flow so families of parts can be processed progressively from one
workstation to another without waiting for a batch to be completed or requiring additional
handling between operations. Put simply, cellular manufacturing groups together machinery
and a small team of staff, directed by a team leader, so all the work on a product or part can be
accomplished in the same cell, eliminating resources that do not add value to the product [57].
Introduction of cellular manufactuting systems in manufacturing, results in reduced
production lead time, work-in-process, labor, tooling, rework and scrap materials, setup time,

delivery time, and paper works [36].

1.3 Benefits of Cellular Manufacturing

Cellular manufacturing offers substantial benefits to companies. These benefits include:

*  Cellular manufacturing reduces material handling and transit times. By having the
machinery to complete a certain process grouped together in a cell, _the product spends
more time on the machinery and less time in transit between machines. Because parts are
moved within a cell rather than the entire factory, the travel ime and distance are reduced,
resulting in reducing the material handling cost, which constitutes between 20 and 50% of
the total operating cost. By adopting cellular manufacturing, some companies reduced the

cost of material handling by over 21% [69].
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Cellular manufacturing is based on the capability to produce families of similar products
within each cell. Since similar parts are grouped, then it is possible that adjustments
requited to setup machinery would not be significant for each family product. The
reported average reduction in setup times achieved by some companies rang between 35 to

40% [69].

The decrease in setup time leads to an increase capacity of the machines as well as a
decrease in work-in-progtess inventories. Less Work in process (WIP) is easier to manage

and allows the manufacturer to operate with shorter lead times.

With decreased material handling and transit times, accompanied by the elimination of the
g p y

queue times associated with batch processing, the time to produce one unit of a particular

product becomes shortened, thus resulting in shorter delivery dates for the customer.

Some companies achieved up to 24% reduction in manufacturing lead times [69].

Cellular manufacturing systems, associated with one-piece flow, reduce work-in process
mventories. With a continuous and balanced flow of product through the cell, no major
build up of material occurs between workstations, therefore eliminating the need of excess
space to store in-process goods. This also allows workstations and machinery to be moved
closer together, so there will be considerable floor space available for adding machines and

for expansion.

Cellular manufacturing system (CMS) also has an impact on manufacturing and design
engineering areas. The effect for manufacturing is a reduction of the number and variety of

parts, so the process planning for the remaining parts is easier and more consistent. CMS
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also paves the way for progression to computer integrated manufacturing. CMS assist in

the economical justification or elimination of expensive NC machines in job shops.

» Communication is easy within each cell since every operator 1s close to the others. Ease of
communication improves quality and coordination and the sense of common mission

enhances teamwork in the cell.

¢ A cell on average employs a small number of workers that produce a complete part or
product.  Workers become multifunctional and are responsible for operating and
maintaining numerous pieces of equipment and workstations. They are also able to cover
other workstations within the cell when required to do so. In terms of worker productivity,
the ability to deal with a product from start to finish creates a sense of responsibility and
an increased feeling of teamwork. A common purpose and a sense of “ownership” is
created among the production teams. Improving the production of the cell continuously
and adjusting quality issues right away and not after an entire batch has been produced,

greatly enhances the quality and efficiency of the production.

These results confirm the justification of applying the cellular manufacturing concept

in batch manufactuting systems.

1.4 Design of Cellular Manufacturing Systems
Researchers in the past three decades have addressed various issues concerning design and
operational control of Cellular Manufacturing Systems (CMS). These include cell formation,

cell layout, operator allocation issues, short-term scheduling and petformance evaluation.



During the past decade, there has been a tremendous interest in cell formation
problem from practiioners as well as from academics. Cell formation, which involves
identification of machine groups and part familes, is the first step in designing a cellular
manufacturing system. Cell formation 1s considered as a reorganization of an existing job shop
mto group technology shops using information given about the processing requirements of
parts. This information is commonly represented mn a matrix called the part-machine matrix
with 0 or 1 entry. A 1 indicates that part P requires machine » for an operation, and 0 indicates
otherwise [57]. As an example, Figure 1.1 shows the part-machine matrix for a small problem

of seven machines and seven patts.

omZ—IO0O>r QO

Figure 1.1: Example of a machine-part matrix.



To form cells, the part-machine matrix is rearranged to a new matrix such that each
patt family is completely processed within a cell of machines and each part in a part family
processed by every machine in the corresponding machine group. For example, the
rearrangement of the matrix in Figure 1.1 1s shown in Figure 1.2, where three different
machine cells are indicated within blocks. Cell 1 consists of machines 2 and 5, cell 2 consists
of machines 3, 4, and 6, while cell 3 consists of machines 1 and 7. Obviously, three part
families are formed, parts 1 and 7 constitute the first family, parts 3, 4, and 6 constitute the

second family, and the rest of the parts constitute the third family.

Figure 1.2: Example of an optimal clustering.

However, in real life the nature of data sets are such that a perfect decomposition is
hardly ever obtained. In this situation the goal is to obtain a near perfect decomposition

considering the following objectives while partitioning the matrix [47]:



1) To have minimum number of zeros inside the diagonal blocks (voids);

2) To have minimum number of ones outside the diagonal blocks (exceptional elements).

A void indicates that a2 machine assigned to a cell 1s not required for the processing of a
part in the cell. When a part passes a machine without being processed on the machine, it
contributes to an additional intra-cell handling cost. This leads to large, inefficient cells. An
exceptional element is created when a part requires processing on a machme that is not
available in the allocated cell of the part. When a part needs to visit a different cell for its
processing the inter-cell handling cost increases. This also requires more coordinating effort

between cells. Figure 1.3 shows an example of a matrix with voids and exceptional elements.

M
cl
H B
| &
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E
S

Figure 1.3: Example of real problem with voids and

exceptional elements [57].



1.5 Research Objectives

A number of cell formation methods have been developed to this day. The goal of most of
these methods is to obtain mndependent machine cells by minimizing inter-cell movement.
Generally, however, the performance of many of the existing methods deteriorates as the
problem under consideration becomes larger. Also determining the number of cells may not
be straightforward. In some methods, the number of cells is a dependent variable, while in
others it has to be identified in advance. Moreover, because of the unavailability of software

programs supporting them, the industrial applications of the current methods are limited.

The main objective of this research is to develop a new mathematical approach for cell

formation. The approach should:

= perform very well in terms of a number of well known criteria,

" compare favorably to well-known existing methods,

® have the flexibility in allowing the user either to identify the required number

of cells in advance, or consider it as 2 dependent variable,

* be supported by software programs in order to facilitate industrial applications.

1.6 Research Assumptions

Below are the assumptions underlying the use of the proposed approach:



The sequence of operations is ignored by the part-machine matrix and if a part
requires more than one operation on a machine, this cannot be identified in this

matrix.

Only the machine types are referred to in the part-machine matrix, not the number of

copies available of a given machine type.

The machine type within the group to which the part is assigned has sufficient capacity

to process the parts completely.

The processing capacities of all the machines of a certain type are considered equal.

A unique process plan exists for each product which specifies the sequence of
machine types requited for its production, as well as the corresponding set-up and

processing times for each operation.

Machines belonging to the same work-center type are assumed to be

interchangeable; i.e., any member of the group can be utilized to process a part.

1.7 Outline of the Thesis

This thesis is organized in six chapters. Chapter 2 presents a literature review of relevant

previous work done in the area of cell formation. Chapter 3 provides a general introduction of

factor analysis. In chapter 4 the technical details associated with implementing the proposed

approach is discussed and a detailed algorithm for the method 1s presented. Evaluating the

petformance of the proposed approach is the subject of chapter 5. This includes

10



implementation of the approach on a number of notable problems from the literature, and a
comparison between the proposed approach with other well-known methods. Finally, the

conclusion, the contributions, and directions for future works are presented in Chapter 6.

11



Chapter 2

LITERATURE REVIEW

This chapter provides a survey of research to date mcluding emerging work in the area of
stochastic search techniques such as genetic algonthms and neural network approaches.
Models are discussed mn terms of assumptions, analytic methods, performance ctiteria, and
limitations. Emphasis 1s given to reporting empirical results and comparative evaluations of
techniques. The methodological classification of techniques shown m Figure 2.1 [27] is
adopted to improve readability and to facilitate an understanding of the basic advantages or
limits of generic approaches. The impact of considering alternative process plan and additional

machine copies if available is also considered in these methods.

Cellular
Manufacturing
Production Design
Oriented Oriented
Array-Based | | | Hierarchical ‘ " I -
Methods Clustering Others CIasnﬂcz-;tlon &
Coding
Non-Hierarchical | | | Graph
Clustering Theoretic
Artificial | | | Mathematical
Intelligence Programming
Heuristics

Figure 2.1: Categories of cell formation approaches.
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2.1 Array-Based Clustering Algorithms

Array-based clustering is one of the simplest classes of production-oriented cell formation
method. This class of algorithms utilizes the machine-part incidence matrix, each row of which
represents a part and each column a machine. The elements of this matrix assume values of 0
or 1, a value of 1 for the entry 4;representing an operation upon part 7 by machine . Rows and
columns are permutated to form a set of blocks with high deﬁsities of 1s along the diagonal
(see Figures 1.1, 1.2). Any tightly clustered blocks represent the candidate part families and
machine cells, which are formed simultaneously. Chandrasekharan and Rajagopalan [15] and
Venugopal and Narendran [63] have done analysis of the 0-1 machine-part incidence matrix in

order to exploit properties of this matrix for developing cell formation algorithms.

Methods which belong to this class of algorithms are [25]: (i) the rank order clustering
approach of King [30], which rearranges the machine-part incidence matrix based on the
'binary rank otders' of its rows and columns; (ii) the direct clustering algorithm of Chan and
Milner [12], which forms part and machine families by rearranging the rows and the columns
of the incidence matrix, based on the number of non-zero elements in each; (iit) the method of
McCotmick et al. [46], which maximizes the total 'bond enetgy' of the machine-part incidence
matrix; (iv) Rank order clustering 2 (ROC2) method developed by King and Nakotnchai [31]
and modified rank order clustering (MODROC) method developed by Chandrasekaran and
Rajagopalan [14]. The common objective of all these methods is to maximize the number of
operations petformed on the part families within their corresponding machine cells. Here only
three of them Rank order clustering (ROC), direct clustering analysis (DCA), and bond energy

analysis (BEA), were selected for the comparison.

13



2.1.1 Rank Order Clustering (ROC)

ROC, as proposed by King, [29, 30] is a well-known clustering technique that attempts to
create a block-diagonal form by repeatedly reallocating the columns and rows of a machine-
patt matrix according to binaty values to reduce the computational effort of BEA. It provides
a simple, effective and efficient analytical technique, which can be easily computerized. In
addition, it has fast convergence and a low computational time. Each row (column) in the
machine-patt matrix is read as a binaty word. The procedure convetrts these binary words for
each row (columns) into decimal equivalents. The algorithm successively rearranges the rows

(columns) iteratively in order of descending values until there 1s no change possible.

Although ROC is easy to apply, several limitations have been identified and explained
by other researchers as well as by King himself. First, the quality of the results is strongly
dependent on the initial disposition of the machine-part incidence matrix [12, 19, 68].
Therefore, identification of exceptional elements and bottleneck machines is somewhat
arbitrary [14]. Second, the binary value that is used for the reallocation restricts the size of the
problem that the technique can handle [19, 68]. If exceptional elements exist, the influence is
much greater in the higher order bits, which can lead to a non-block form. A revised vetsion,
called ROC2, has been developed by King and Nakornchai [31] to over come the size

limitation and to increase computational efficiency.

2.1.2 Direct Clustering Algorithm (DCA)
DCA [12] was proposed to form tight groups along the diagonal of the machine-part matrix. It

rearranges the matrix by moving the rows with the left-most positive cells to the top and the

14



columns with the top-most positive cells to the left where a positive cell has a;=1. After

several iterations, all the positive cells will form diagonal blocks from the top left corner to the
bottom right corer. Identical outcomes result from any initial starting matrix, unlike ROC
because DCA initiates the procedure by counting the number of positive cells mstead of
depending on intuition. This method allows mote flexibility in the size of the problem due to
computer word length and converges in a relatively few iterations. This procedure again has a
limitation because it may not necessarily always produce diagonal solutions. According to
Wemmerlov, [68] the proposed algorithm may not produce viable or acceptable solutions
because it redirects the diagonal with each iteration. A modified version by Wemmetlov, [68]
removes this flaw and can reproduce the examples in the original paper by Chan and Milner
[12]. Chu and Tsai[19] showed that even the modified version of DCA has difficulty producing
natural diagonal blocks even when they exist in the input matrix. The modified version of
DCA has been shown to perform pootly when applied to large, real-wotld data sets as it tends
to form one small group in the northwest corner and then a very large, spatse group

containing the rest of the machines and parts [68].

2.1.3 Bond Energy Algorithm (BEA)

The bond energy analysis algorithm was developed by McCormick, Schweitzer and White [46]
to identify and exhibit the interrelations within each cell and associations among the clustered
groups by means of total bond energy. A bond is claimed to exist between each pair of the
neighboring rows and columns if they have positive cells in the machine-part matrix. These

bonds create an energy, which is defined as the sum of products of adjoining elements. For a
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particular row permutation () and column permutation (0 ), the total bond energy (ITBE) 1s

given by the following:

1 M N »
TBE(r, p) = '2‘22“,, (@ +a; 0 +a,;+a,)) 2.1)

i=1 j=1
where

Aio=qipn = ; =Qpn; = 0

M=the number of machines
N=the number of parts

BEA seeks to maximize the TBE over all NI M! Permutations. BEA algorithm begins
with an atbitratily selected column (or row). It then places that column with the greatest
contribution to the total bond energy beside the assigned column (or row). It repeats the same
procedure for all the columns and rows. The method 1s applicable to problems of any size
because the BEA has nothing to do with calculating the binary values. However, since the first
step of the algorithm is determined by intuition, many possible solutions can be generated; that

is, the solution depends on the initial row (or column) selected for starting the process.

2.1.4 Comparison of Array-Based Methods

Comparing each of the three array-based clustering techniques, BEA, ROC and DCA, Chu
concluded that BEA significantly outperformed the other two in problems with and without
exceptional elements and bottleneck machines [19]. The array-based clustering techniques used

in the design of manufacturing cells are both efficient and simple to apply to the patt-machine

16



matrix. However, these algorithms generally do not take into account other types of
manufacturing data such as cost of machines and maximum cell size, and they usually require

visual inspection of the output to determine the composition of the manufacturing cells.

2.2 Hierarchical Clustering Algorithms

Hierarchical clustering techniques operate on an input data set described in terms of a
similatity or distance function and produce a hierarchy of clusters or partitions. At each
similarity level in the hierarchy, there can be a different number of clusters with different
numbers of members. Unlike the array-based techniques, hierarchical clustering methods do
not form machine cells and part families simultaneously. These methods can be described as
either divisive or agglomerative. Divisive algorithms start with all data (machines or parts) in a
single group and create a series of partitions until each machine (part) is in a singleton cluster.
Stanfel [59] is the only researcher to apply a divisive method to cellular manufacturing;
therefore, attention is focused on agglomerative clustering algorithms that start with singleton
clusters and proceed to merge them mnto larger partitions until a partition containing the whole
set is obtained. Hierarchical clustering methods involve a two-stage process that first calculates
similarity coefficients between each pair of individuals (machines or parts). This can be
represented as a lower triangular matrix since the similarity coefficient between individuals is
commutative. The second stage of the process determines how the pairs with roughly
equivalent similarity levels should be merged. The specific logic for each individual method is

described below [25]:
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(i) The single linkage algorithm of McAuley [45], that defines the similarity between
two machines mn terms of the number of parts which visit both machines and the number of
parts visiting either machine; he then aggregates machines with high smulanty into
manufacturing cells; (11) the method proposed by Leskowsky et al. [40], which uses the average
common part weighting metric to quantify similarities among parts; (i) the acknowledged
based group technology system of Kusiak [38], which forms work center cells and part families
in such a way, that each part 1s manufactured exclusively by work centers in its corresponding
cell or by bottleneck machines; (iv) the numerical taxonomy approach of Carrie [11], which is
similar to the one proposed by McAuley; (v) the method of Wet and Kern [67], who, again,

enumerate similarities between machines for use in their linear clusteting algorithm.

2.2.1 Choice of Similarity Measure

In the hierarchical algorithms, the basis is to define similarity coefficients that incorporate
manufactuting data other than just the binaty part-machine incidence matrix [22, 53]. A variety
of similarity measures have been defined. McAuley [45] used the generic Jaccatd coefficient to
form machine cells. Carrie, [11] who applied McAuley's work to several real problems, defined
a similarity coefficient between pairs of parts to form part families first. There does not appear
to be any inherent advantage to forming the part families or machine cells fitst [68]. Gupta and
Seifoddini's [22] similarity coefficient incorporates production requitements, the machine-part
mncidence matrix, the actual sequence of operations, the average production volume for each
part, and the unit processing time for each of the part's operations. Seifoddini and Djassemi
[51] modified the Jaccard similarity to take into account production volume. When compared
with the Jaccard similatity, the production volume based similarity reduces the sum of
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intercellular and intracelluar movements as well as improves the scheduling process. Mosier
[52, 51] proposed the additive similarity coefficient (ASC), a weighted adaptation of the Jaccard
coefficient that incorporates the relative importance of each part, and the multiplicative

sitnilarity coefficient (MSC), which is approximately a correlation coefficient.

In the following sections, single linkage clustering (SLC), average linkage clustering
(ALC), complete linkage clustering (CLC), and linear cell clustering (LCC), the four most

important similarity coefficient based clustering methods are discussed.

2.2.2 Single Linkage Clustering (SLC)

The first step in hierarchical clustering is to group the two individuals, 7 and 7, with the highest
level of similarity into one cluster, 7. The combined cluster behaves as if it is a single individual.
The similarity between this cluster and individual £, as defined by the SLC [45] algorithm, 1s
the maximum of the similarities between £ and the component members of the cluster 7.
Iterations continue to merge the groups with the largest similarity coefficient until a single
group exists. The most common way to display the hierarchy of clusters generated by the
algorithm is in the form of a dendogram. The cell designer must choose a similarity level or
threshold in order to define the number of clusters. As the threshold increases, the number of
cells increases while the size of each cell decreases. Seifoddini and Wolfe [54] selected a
threshold that produces the mmnimum total material handling cost (intercellular plus
intracellular). Hierarchical clustering algorithms do not cluster machines and parts

simultaneously, so initially only cells or families are formed. The final step is to reapply

19



hierarchical clustering or a secondary procedure, such as ROC, to allocate parts (machines) to

the families (cells).

The major drawback of SLC is the “chaining” problem, which may be caused by two
clusters joining together. The two machine cells may join together just because two of their
members are similar, but the other members may remain far apart in terms of similarity. In
other word two clusters can be grouped based merely upon a single bond between one
machine in each cluster [22, 45, 53, 50]. The chaining problem can lead to improper machine
assignment in the groups [55]. The main advantage of SLC is its simplicity and less

computational requirement.

2.2.3 Average Linkage Clustering (ALC)

To help reduce the chaining problem, Seifoddini and Wolfe [50] applied the average linkage
clustering (ALC) algorithm. The similarity between two clustets is defined as the average of the
similarity coefficients for all of the members of the two clusters. When clusters » and £ are

merged, the sum of pairwise similarity between the two clusters 1s:

225

— MEl nev

tv Nt % Nv 2.2)

where the double summation is the sum of pairwise similarity between all machines of the two

groups, and N,, N are the number of machines in groups 7 and » respectively.
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Since in ALC two machine cells join together based on the overall similarity coefficient
between all their members, it is unlikely that two similar members in two machine cells cause
the machine cells to join together but the remaining members may not be similar enough. ALC
usually applies the same rules as SLC except that anytime the similarity coefficient matrix
should be revised. In the revised similatity coefficient matrix, the similarity coefficient between
the newly formed machine cell and the remaining cells should be recalculated. The major
drawback of ALC is its computational requirement that is significantly higher than in SLC due

to revision of the similatity coefficient matrix anytime a new machine cell is formed [27].

2.2.4 Complete Linkage Clustering (CLC)

Complete linkage clustering (CLC) further reduces the chaining problem by selecting the
minimum similarity coefficient as the in-between cluster relationship instead of the maximum
[22]. SLC, ALC, and CLC algotithms can deal with both similanty coefficients as well as
Euclidean distances in which clusters are merged by selecting the minimum distance between

clusters instead of the maximum similarity.

2.2.5 Linear Cell Clusteting (LCC)

One of the limitations of SLC and CLC is that the similarity coefficient used in these methods
does not give importance to the parts that do not need processing by the machine pairs. The
LCC method overcomes this problem. It clusters machines based on the use of a commonality
score that defines the similarity between two machines. The commonality score not only
considers the parts that require both machines for processing, but also the parts, which do not

requite both machines. The commonality score is presented as below:
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C,,=2.0a,,.a,) 2.3)
p=l

(P-1), if a,=a,=1
where: éa,,.a,)=11 if a, =a, =0

0, if a,, #a,,

P, g are indexes for parts and # , 7 are indexes for machines.

2.2.6 Compatison of Hierarchical Algorithms

Hierarchical clusteting methods can be implemented easily and have an advantage relative to
array-based clustering, ie., they have the flexibility to incorporate manufacturing data other
than the binary machine-part incidence matrix [22, 53]. One disadvantage is that the designer
must decide on an appropriate sitnilarity level to select the groups. In small applications, this is
not a problem since the designer can visually evaluate the dendrogram. However, as
applications become too large for output in the form of a dendrogram, other means of storing
the hierarchy must be employed, such as minimum spanning trees [45]. The duplication of
bottleneck machines is not handled by most algorithms, although Seifoddini and Wolf [53]
employed a strategy for this problem. Shafer [55], and Vakharia and Wemmerlov [61]
conducted an in-depth comparison of many different hierarchical clustering algorithms with
different similarity and distance coefficients. Seifoddini and Hsu [52] showed that the weighted
similarity coetficient produces better solutions based on the number of exceptional elements
than the Jacard similarity score. They show that grouping efficiency, and the grouping

capability indices were not consistent performance evaluation measutes [27].
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2.3 Methods Based on Artificial Intelligence

Researchers have increasingly applied artificial intelligence (AI) techniques to the cellular
manufacturing problem. Many of these methods use solution methodologies patterned after
non-hierarchical clustering methods, attay-based clusteting methods, etc. However, their Al

implementation offers advantages over traditional cell formation methods.

2.3.1 Artificial Neural Networks

Artificial neural networks have been applied successfully to many manufacturing areas. Several
researchers have applied a supervised learning approach to the classification and coding
problem based on the back-propagation learning algorithm [27]. This method can be also
applied to a production- otiented method to determine the machine cells and part families.
Unsupervised learning techniques are better suited for the general clustering problem. It is not
necessary to specify a prioni the number of clusters or the representative members of these
clusters. Once the part families and machine cells are determined, a supetvised model can be
trained to assign new parts to the existing cells. Malave and Ramchandran [44] applied a
modified version of the Hebbian learning rule to the cell formation problem, while others have
applied other unsupervised neural learning algorithms such as competittve learning and
Kohonen nets [62]. Several researchers used the neural network classifier based on an
unsupervised learning model by Catpenter-Grossberg [10] called adaptive resonance theory
(ART1) and its variants [62]. Unsupervised learning techniques such as ART1 cluster the input
vectors into separate groups based upon similarities. The artificial neural network technique
executed quickly and obtained good clusters. The real advantage is its ability to solve large data

sets (10,000 parts and 100 machine types). ART and its variants can be classified as non-
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hierarchical clustering methods [27]. Another variant of the ART models, Fuzzy-ART, handles
both analogue and binary- valued inputs while utilizing a new learning law. Burke and Kamal
[9] compared Fuzzy-ART with ART1, DCA [12], Hebbian Learning [44], and a procedure by
Ballakur and Steudel [22] and concluded that Fuzzy-ART was a viable algorithm that
outpetformed all the other algotithms. However, this comparison was based on very small data
sets and did not test the robustness of each algorithm. Fuzzy-ART produced superior
solutions in terms of the bond energy recovery ratio (BERR), where BERR is the ratio of the

final bond energy to the initial bond energy.

2.3.2 Fuzzy Logic

Most clustering methods assume “that part families are mutually exclusive and collectively
exhaustive [18]. While some parts definitely belong to certain part families, it is not always clear
which family is appropriate [18, 41, 70]. Li and Ding [41] and Xu and Wang [70] applied fuzzy
mathematics to this problem. Chu and Hayya [18] applied a fuzzy ¢ means clustering algorithm
to production data. The fuzzy ~means clustering can be classified as a non-hierarchical method
and suffers from the same problems associated with those methods. The number of part
families, ¢, must be specified a priori. The authors stated that if ¢ is underestimated, the result is
far from optimal. Also, a poor stopping criterion leads to inferior clusters. However, the
technique is unaffected by exceptional elements. The workload among machine cells can be
balanced better by using a reallocation scheme that utilizes the degree of membership a part
has in a particular family. Chu and Hayya compared the fuzzy approach to the optimal 0-1
mteger-programming model and a heuristic approach. The fuzzy approach was clearly better

than the integer programming (IP) approach in both execution time and the quality of the
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solution. It was not as efficient as the heuristic but provided more information than is available

from a “crisp” definition of families and cells.

2.3.3 Genetic Algorithms and Simulated Annealing

Genetic algorithms and simulated annealing are very efficient stochastic search algorithms that
try to emulate natural phenomena. These algorithms have been used successfully to solve a
wide range of optimization problems, especially combinatorial problems. Because of the NP-
completeness of the grouping problem and existence of local minima, these stochastic search
algorithms [34, 65] offer promising solution techniques for large-scale problems. Boctor [5]
and Venugopal et al. [64] used simulated annealing to solve integer programming formulations
of the cell formation problem. Genetic algorithms (GAs) have proven to be an effective and
flexible optimization tool that can produce optimal or near-optimal solutions. Joines et al. [26]
developed a genetic algorithm approach to solve integer-programming formulations of the cell
design problem, allowing multi-criteria objective functions and constraints on the number of
permissible cells. Venugopal et al. [65] also used GAs to solve a multi-objective integer
programming formulation of the cell formation problem. These stochastic search techniques
offer capabilities (missing in many of the more traditional methods) that can provide the basis
for more practically useful cell formation algorithms. GAs do not make strong assumptions
about the form of the objective function as do many other optimization techniques. Also, the
objective function is independent of the algorithm, i.e., the stochastic decision rules. The only
objective function requirement is that it maps the solutions into a partially ordered set. This
offers the flexibility to interchange various objective functions and to utilize multi-ctitetia

objective functions. Convenient substitution of various evaluation functions allows the system
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designer to generate and review alternative cell designs quickly. Single-criteria objective
funcdons limit a method's usefulness to that of assisting the cell designer rather than
autonomously forming the system. To move toward a satisfactory algorithmic result, multiple
criteria objective functions that include such things as sehp time requirements, tooling and
crewing requirements, alternative routings, cost of machines, inter-cell transfers, and reduced
machine utllization are needed. GAs also offer the ability to constrain the number of
permissible cells or part families selectively. Most clustering algorithms cannot identify all
naturally occurring clusters and find solutions with a constrained number of clusters. The cell
designer, at least initially, might specify an unconstrained problem to identify the naturally
occutring groups of parts and/or machines. Afterwards, practical limits on the number of cells
arising from availability of poor space, maximum work team sizes, or excessive machine
redundancy requirements can be imposed. The ability to analyze the ordering of operations
within routing sequences is important not just for material row considerations, but also
because cell throughputs are dependent upon setup times, which are usually sequence
dependent. Joines [26] and Daskin [20] developed non- classical, array-based clusteting
teéhniques using order-based genetic algorithms. Order based GAs have the potential for
analyzing operation precedence relationships to further refine the cell design process.
Industrial data sets are often too large for visual methods to associate machine cells and patt
families effectively. GAs can form machine cells and part families simultaneously and avoid
visual inspection of the data. Further exploitation of genetic algorithm capabilities makes

practical solutions to industrial scale problems more realistic.

26



2.4 Mathematical Programming Methods

Purcheck [49] was among the first to apply linear programming techniques to the GT problem.
As an optimization technique, the objective in cluster analysis is to maximize the total sum of
similarities between each pair of individuals (machines or patts) or to minimize the distances
between each pair. As stated by Kusiak, [37] the distance between any pair can be any
symmetric function. The Minkowksi, the weighted Minkowksi, and the Hamming distance
measures are the most often used in connection with cell formation [35, 37]. Models
developed with distance-based objective functions can easily be extended to simiarities.
Mathematical programming approaches for the clustering problem are nonlinear or linear
integer programming problems [35, 37]. These approaches offer the distinct advantage of
being able to incotporate ordered sequences of operations, alternative process plans, non-
consecutive patt operations on the same machine, setup and processing times, the use of
multiple identical as well as outsourcing of patts. These formulations also suffer from three
critical limitations. First, because of the resulting nonlinear form of the objective function,
most approaches do not concutrently group machines into cells and parts into families.
Second, the number of machine cells must be specified a prion, affecting the grouping process
and potentially obscuring natural cell formations in the data. Third, since the variables are
constrained to integer values, most of these models are computationally intractable for
realistically sized problems [39]. Large scale problems typically require heuristic and
approximate methods with Lagrangean relaxation and subgradient optimization having been
proposed, as well as a variety of simulated annealing and genetic algorithm approaches. This
section presents some mathematical models that can be used for part family formation and
machine grouping.
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2.4.1 P-Median Model

Kusiak [35,37] proposed the p-median model to identify part families. This was the first model
to form part families using mathematical programming. This mathematical model remains the
same for cell formation; except for this case we consider the maximization for similarity
instead of minimization of distance. The p-median model is used to cluster # parts (machines)
into p part families (machine cells). Constramnts specify that each part can belong to only one
part family and the required number of part families is p. A part can be only assigned to a part
family that has been formed. Similatity between two parts is defined as the number of
machines the two parts have in common. This procedure identifies only the part families, and

an additional procedure is needed to identify the machine groups.

2.4.2 Assignment Model

Srinivasan et al. [58] proposed an assighment model for the part families and machine
grouping problem. They provided a sequential procedure to identify machine groups followed
by identification of part families. The objective of assignment model is to maximize the
similarity. This approach is reported to be supetior both in terms of quality of solution and

computational time in comparison with the p-median model.

2.4.3 Quadratic Programming Model
The clustering algorithms and p-median model minimize the distance ot maximize the
similarity between parts by considering the family group mean or median. However parts

within the family interact with each other. Therefore, it becomes impottant to account for the
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total farnily group interaction. Kusiak et al. [34] proposed a quadratic programming model for

this purpose. They proposed solving this model by an eigenvector-based algorithm.

2.4.4 Assignment Allocation Algorithm (AAA)- Nonlinear Model

In a manufacturing situation, for different machine-part combinations the associated costs of
voids and exceptional elements may vary and in general are not the same. For example there
might be a special machine that all the parts requiring processing on this machine should be
placed in a small cell [8]. This can be achieved if a high weighting value is given to the
exceptional elements corresponding to this machine for all patts, while identifying the groups.
This shows that there is a need to consider the importance of voids and exceptional elements

explicitly.

Adil et al. [1] proposed a nonlinear mathematical model to identify part families and
machine groups simultaneously without manual intervention. The objective of the model is to
explicitly minimize the weighted sum of exceptional elements and voids. These parts can be
considered to have potential for subcontracting or developing alternative process plans before
allocating them to cells. By changing weights for voids and exceptional elements the uset has
the flexibility to form large loose cells, or small tight cells to suit the situation. The results
obtained using the AAA compare favorably with well-known algorithms in the literature. The

AAA is simple and less computer intensive.
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2.5 Other Heuristics Methods

The cell design process is relatively complex and often proceeds in stages. As stated earlier, the
algorithms for cell formation provide the first rough-cut groups. The exceptional elements and
all groups can be individually considered in a more detailed analysis that includes other
manufacturing aspects such as part sequence, processing times, machine capacities and the
trade-off between the putchase of additional machines and material handling in order to make
groups independent. Other than the mathematical programming techniques, most cell
formation methods are heuristics. However, those discussed so far have been placed in
aggregate categories, e.g., array- based clustering, artificial intelligence techniques, etc., based on

their general solution approach. This section explains an additional diverse set of heuristics.

This class of cell-formation methods includes: (1) the cost-based heunstic of Askin and
Subramanian [2]. This procedure can be classified as a similarity coefficient-based method that
takes into account the fixed machine costs, material handling costs, WIP inventory costs,
production cycle inventory costs, variable production costs and setup costs; (ii) the inter class
traffic minimization method [3], which forms machine cells and the corresponding part
families in order to minimize the total inter-cell traffic of parts within the shop; (i)
identification, clustering, refinement, merging and allocation heuristic(ICRMA) of Tabucanon
and Ojha [60], which also aims at reducing the inter-cell material flow in the system through
four stages of machine formation and subsequent solution refinement; (iv) a versatile inter-cell
flow reduction heuristic, developed by Okogbaa et al. [21], which produces different
alternatives for different designer input, e.g., number of cells, cell size restrictions, etc.;(v)

technique developed by Minis et al. [48] that groups production machines into cells and patts
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into families by minimizing the inter-cell traffic subject to capacity constramnts. This method
has the capability of including unique, as well as multiple-function, identical machines in the
grouping procedure; (vi) A few procedures that wotk on further improving the solution
obtained by cell formation algorithms are by Kern and Wei [28], Logendran, and Shafer[42].
These procedures assume that the option to change the parts processing plans to suit the cell
has already been considered. Only a few researchers have addressed the importance of

considering alternative process plans during cell formation [35].

2.6 Summary

This chapter has given an overview of the methods of cell formation and important factors
mvolved. It can be concluded from the overview that these methods suffer from one ot more
drawbacks. Their major common drawbacks include the deterioration of performance as the
problem under consideration becomes larger, the inflexibility in determining the number of
cells, 1e., in some methods, the number of cells 1s a dependent varable, while 1 others it has
to be identified in advance, and the hmited industrial application due to the unavailability of
software programs supporting them. Therefore, new cell formation approaches that
overcome these limitations are clearly needed. In response to this need, this thesis presents
a new mathematical approach for the manufacturing cell formation, which is mainly based
on factor analysis. Providing a background on this technique is the subject of the following

chapter.
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Chapter 3

FACTOR ANALYSIS

Since cell formation can be considered as a dimension reduction problem in which a large
number of interrelated machines are grouped into a smaller set of independent cells, the
proposed approach applies factor analysis, a dimension reduction technique, to the similarity
coefficient matrix to form machine cells. The objective of this chapter is to provide the reader

with an introduction to this technique.

3.1 Introduction

Factor analysis, is a powerful tool of multivariate analysis. This method seeks to discover if a
complex set of observed variables could be explained in terms of a smaller number of variables
called factors. In many experimental setups, variables cannot be chosen as independent
phenomenon, and have covarying influences. Cortelations among variables may result from a
situation whetre distinct groups or clusters of variables possess a common property not shared
by the remaining set, for example they may be measuring the same driving principle behind the
behavior of the system, which is not measured by the rest of the varables. In many systems
there are only a few such driving forces. When this happens, we can take advantage of this
redundancy of information and simplify our problem by replacing a group of correlated
vatiables with a single new variable. Factor analysis attempts to answer what is the most
elementary question in the multivariate analysis: how can we explain the systematic behavior of

the observed variables by means of a smaller set of computed variables? In other words the
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objective of a factor analysis model is to identify the underlying structure of a system when we
suspect that the observed variables depend on a “smaller number of unobserved variables”
which account for the true variance/covarance structure of the data set. This will result in a
clustering of the original vartables to uncorrelated groups, and thus a dimension reduction of

the original data set.

In order to better visualize how can factor analysis replace the correlated variables with
a new variable one can bring the example of finding the regression line in the scatter-plot of
two vatiables. A regression line can be fitted to represent the best summary of the linear
relationship between the variables. If we could define a variable that would approximate the
regression line in such a plot, then the variable would capture most of the “essence” of the two
items. In a sense we have reduced the two variables into one factor. Note that the new varnable
is a linear combination of the two old variables. This example desctibed above, combining two
correlated variables into one factor, illustrates the basic idea of factor analysis. If we extend the
two-variable example to multiple variables, then the computations become more involved, but
the basic principle of expressing two or more variables by a single factor remains the same.
When there are more than two variables, we can think of them as defining a “space”, just as
two variables define a plane, and the generalization of the curve fitting will be a hyper-plane

fiting through the data points.

The most straightforward and quantitatively rigorous method that seeks to achieve this
objective is the principal component analysis (PCA). This method generates a new set of
variables, called principal components (corresponding to factors in factor analysis). Fach

principal component is a linear combination of the otiginal vatiables. In this method all the
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principal components are generated in a way that they are orthogonal to each other so the
correlation between them 1s zero. The principal components, as a whole, form an orthogonal
basis for the space of the data points. But what makes the principal components basis special
is not only the orthogonality, but what is special about them is that the extraction of the
principal components amounts to a vatiance maximizing rotation of the original variable space.

What does this mean?

The first principal component is a single axis in space. When you project the data
points on this new axis, a new variable is generated. This variable is generated in a way that its
variance is the maximum among all possible choices of the first axis. The second principal
component is another axis in space perpendicular to the first. Projecting the data points on this
axis generates another new variable, whose variance is the maximum among all the choices for
the second axis. The full set of the principal components is as large as the original set of
variables, but usually the variances of the first few principal components exceed 80% of the
total variance of the original data. This property means that the data points can be rigorously
separated into distinct clusters when projected into a space spanned by the first few principal

components. This also results in the dimensionality reduction objective of factor analysis.

In this chapter we will begin by giving the mathematical background of PCA method
and then we proceed to describing the basic concepts of factor analysis used in next chapters.
This discussion is followed by the presentation of the rotation method and the famous
algorithms used for this purpose are introduced. The references used for the mathematical

theorems of PCA and their proofs are the following [4,32].
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3.2 Principal Component Analysis
From a purely mathematical viewpoint the purpose of a ptincipal component (PC) model is to

transform p correlated random vatiables to an uncortelated orthogonal set of variables. A
number of methods exist which can be used to orthogonalize a set of random variables. The
PCA method uses the eigenvectot, eigenvalue analysis of the covariance ot cotrelation matrix
of the variables to achieve this aim. Let X, X3,..., X , represent a set of random variables

distributed according to some multivariate probability function with zero mean. And assume

that we have p sample points of this p-dimensional probability function, so that

X= (X1,Xi,' . -,XP)T can be seen as a (p X p) matrix, where each column cotresponds to

the coordinates of data points in our p dimensional data space, and each row can be seen as a
set of continuous random vatiables of zero mean. The covariance matrix of this set is formed
as the expectation: E( X X T) = )., where each element c; shows the covariance between the
random variables of set X; and )X ;. This matrix is a symmetric mattix. If the matrix X is
diagonal, the sets of random variables X are already orthogonal and uncorrelated and they
represent an orthogonal basis for illustrating the clusters of the data points. As the covariance
between the random wvatiables X, X5,...,.X pincrease, they contain more redundant
information, and can be replaced by a smaller number of new orthogonal set of variables
(factors), which may be regarded as the genuine explanatory variables of the data set. As we

said before the objective of the principal component analysis is to compute these new vatiables

as linear combinations of the old random variables in a way, which also maximizes the
vatiances of these new random variables. So now let’s form the linear combination& = 1" X ,

whete:
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(3.1)

Tp To2p " Tpp

is a (p X p) matrix of fixed non-random coefficients and & = (@,52,' . -,gp)T are the new

random vatiables formed as follows:
E=muXitanXot ¥ o X,=II X

T
E=muXitanXot trpX,=I1 X

E, = mp Xt map Xot 4 X, =T, X (3.2)

The new random variables &, are known as principal components (factors) and the

coefficients s; are known as the loadings. Now the problem is how to calculate the coefficient

7y so that & are orthogonal, and also the variances of £, are maximized. In order to do so

lets first compute the variance and the covariance of &,

var(g )= E(¢?)= E[(HIT X) (HiT Xﬂ =117 E(X X" =17 21,

for i=1,2,+,p (3.3)
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In order to maximize the variance of £, we have to maximize the quadratic form

7201 . We can now formulate the problem as maximizing the following Lagrangian

expression
@, = I 211 - li(HiTHi _1)
i=12,-,p (3.5)

with respect to IT;, with the constraint of 'L =1 for (i =12,--, p) (ie. standardizing the

eigenvectors to unit length). For solving the maximization problem we set the partial

detivatives to zero

-%%=2ZHrQZJL=0 (3.6)
which reduces to
E-20m=0
i=12,,p 3.7)
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Equation (3.7) is an eigenvalue, eigenvector equation where the terms

A2 A2+ 2 4, are the real, non-negative roots of the determinant polynomial of degree p

=-41]=0 (3.8)

where [ is the identity matrix. The equation is solved for parameter jJ,, and then []; can be
calculated using the values of 4, in equation (3.7). Therefore the objective function (3.5) is
maximized by the eigenvectors [];, which correspond to the eigenvalues j;. Furthermore, it

is also known that the eigenvalue-eigenvector solution of symmetric matrices, has an additional

property according to which any two eigenvectors [];and [];which correspond to
eigenvalues 4, and j4; respectively are orthogonal, that is [T, I1;=0, and therefore

cov(¢,, ¢ J-) =1I; X1 ;=0. The variance of each factor is

var(€) =TI ZI1, = A 39

The result of this discussion is that when &, =TI, X, and g, = [1; X ate any two
linear combinations of p random variables X, such that I]; and TJ; are the eigenvectors of

E(x x")=Y (the covariance matrix) then &,

H

and £, are uncotrelated random variables. And
given a set of random variables X, X5,..., X ,, the set of variables fl,fz,--',é‘p which are

produced as the linear combinations &, =TT; X, with the eigenvectors of the covariance

matrix 2 as the coefficients of the equation, are orthogonal and have maximum variance.
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Ranking the roots in the decteasing order of explanatory varance or power,
A 24, 2...2 A, maximizes the quadratic forms 17 ST1; in a sequential manner so that the

number of the orthogonal components that account for a given percentage of variance can be

kept to a minimum. The expansion (3.2) may be terminated at any stage 1 <r < pif it is felt
that a satisfactory percentage of the variance of the original variables has been accounted for
by the f,-(,-zl,z,m,r), for somel <r < p. Since each PC maximizes the variance, we can

always retain the number of 7 < pwhich accounts for some predetermined minimal

percentage of the total variance. Alternatively all PCs can be computed and the last

p—r omitted if they account for an insignificant propottion of variance. Both approaches
result in identical coefficients IT,. The higher the correlation among the values of X, the

smaller is the number of PCs required to account for a fixed percentage of variance. Once the
eigenvectors are known, equation (3.2) can be inverted to express the random variables in

terms of the PCs.
X1=7Z'11§1+7Z'12§2+"'+7Z'1p§,,=H1T§

Xz=7Z'21$E1+7Z22§2+"'+ﬂ'2p§p=H£§

X,,=7rp1§1+7tp2§2+"'+7zpp§p=H;§ (310)
whete [T, is the i th row vector of IT in matrix form X =TI&.
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Now let Aand IT be the eigenvalues and the eigenvectors of >

A=| (3.11)

Then covariance between X, and fj are given by the ith and jth elements of ITA , which

can be written as:
cov(X ;&) =E(x,£)=EQT & &) =TIl E(¢ £)=A,7;

G,j=L12,--,p) (3.12)

We have assumed un-standardized £ to this point. In order to standardize & we

divide it by its standard deviation (the square root of the variance). Standardizing the new

variables we obtain

1

£/ =228 (3.13)

so that 5* becomes orthonormal (orthogonal and of unit length ). Then the covatiance

between X and f* are given by

cov(X,,E) = Ao ny (3.14)
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The coefficients between X; and fj in equation (3.10), which is referred to as the
covariance loading indicates how strongly the variable X; could be reflected by factor fj. When

a normalized covariance matrix (correlation matrix) is used, the covariance loadings are called
corvelation loadings. The loadings can be of aid when deciding which components are to be

retained and which to be deleted.

3.3 Rotation

Factor analysis as introduced previously is a multivariable method that has as its aim the
explanation of relationships among several difficult to interpret correlated variables in terms of
a few conceptually meaningful, relatively independent new variables which in the factor

analysis literature are called the factors.

In the past section we provided the mathematical basis of the computation of these
new factors (principal components) using the principal components method. In this section we
intend to define the main steps involved in factor analysis based on the previous discussion.
The factor analysis method is generally composed of three steps: The first step involves setting
up the data for the input, which includes the formation of the correlation matrix for the
original variables. The second step involves using the correlation matrix to determine a set of
mitia] factors. This is usually accomplished by the method of principal components, which we
have described in the previous section. Derivation of the factors allows us to represent the
information contained in the original variables in terms of a smaller number of new variables,
which are statistically independent. The factor loadings describe the correlations between the

factors emerging from the factor analysis and the original variables used in the construction of
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the factors. The primary use of such a matrix, where the numbers in each column are the
correlations of a specific factor with the original variables, is to pinpoint those varables that
are highly correlated (i.e. load high) with a given factor, so that the factor can be conceptually
interpreted. The third step involves some further manipulation of the original factors in order
to make them easier to interpret. This involves rotation to achieve conceptual meaningfulness.

The concept of rotation is discussed in next section.

In statistical data analysis the location of a set of coordinate axes is arbitrary, in the
sense that the variances, angles, and distances of the data points are invariant with respect to

position of the axes. The » < p dimensional subspace of the ordinary principal components

model is chosen so as to satisfy two general constraints, the orthogonality of axes and the
stepwise optimization of vatiance. When searching for clusters of variables or searching for the
best intetpretable factors, however, different constraints are usually required. Once the optimal
“cotrect” ¥ -dimensional subspace is found we may wish to introduce an additional condition,
namely, that each factor be maximally correlated with a single subset or cluster of random
vatiables. This permits a straightforward identification of the factors in terms of the clusters, if
such clusters exist. This generally implies the elimination, from a principal component
solution, the initial conditions of vatiance maximization and component orthogonahty since a
second linear transformation is applied to the prncipal components. Such secondary

transformations ot rotations can be orthogonal or mote generally oblique.

The reason why usually the original principal components, before rotation, are not
useful in scientific work 1s that, the principal component method is designed to extract

approximately as much variance as possible with the extraction of each successive component,
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resulting in a sharp drop off in variance from the first factor to the last factor. The unrotated
factors tend to be highly complex factor constructs that relate to ot ovetlap with many of the
variables rather than just a few. The first factor for example can have appreciable loadings for
almost all variables. Such complex, overlapping factors are usually difficult to interptet because
they contain within them many unrelated parts. For this reason the factor matrix is rotated to
another form, which is mathematically equivalent to the original unrotated matrix but which
represents simpler and much more useful factor constructs. Following the computation of the
cottelations, extraction of the unrotated factors, and the rotation of the unrotated factors, one

can pick out the variables in each rotated factor that have high loadings.

Translation of a factor with a “simple structure” to quantitative terms would be a
factor structure in which each of the original variables relates highly to only one factor and
each factor can be identified as representing what is common to a relatively small number of
variables. Thus, a simple factor structure is achieved when, for each factor, the factor loadings
for most variables are zero and the remaining factor loadings are relatively large. In such a case,
the factor can be conceived as desctibing the variation shared in common by the subset of
variables highly related to it and not desctibing the variation in the other variables. Figure (3.1)

illustrates geometrically how rotation conceives simple structure.

In order to understand the geometrical description better let’s first consider the

equations from the previous discussion:

X1 = ané, +a12¢2+”'+a1p§p
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Xo=and tané,+ +ay,d,

szap1§1+ap2§2+'“+app§p (3.15)

whete ¢; ate the cotrelation loadings, and the X are the original variables and the &, ate the

rincipal components (factors) befote rotation. For simplification let’s consider the matrix
p p p p

form of the set of the equations above.

X =A¢ (3.16)

where A is the matrix of the correlation loadings. Now we can look at this equation from a
new point of view. If we consider the space spanned by the orthogonal axes £,,¢£,,...5, , we

can illustrate the original variables X, X5,... X ,, with ¢ being the coordinate of X; on axis

&

Figure (3.1) portrays an exemplary case of rotation of the principle axes for a two-
dimensional case, 1.e. there are two main principal components. In this figure there are as many
dots as there are variables, and each dot cotrespond to a particular variable. As we said above,
associated with each dot (variable) are two loadings, which are the coordinates of each variable
on the principal components. If these axes are rotated then we shall have two new rotated
factors. The objective is now to rotate the axis so that each dot is only close to one of the two

rotated axes.
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Figure 3.1: Illustration of the purpose of rotation: The goal here is to rotate the

axes so that each dot is close to only one of the two rotated axes.

The conceptual accomplishment of the rotation is that now the variables can be seen

as clustered into two subgroups, one subgroup lying close to one rotated axis, and the other
subgroup closer to the other rotated axis. Now the new rotated axes (factor) can be interpreted

in terms of the particular subgroup of variables lying close to that factor.
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In performing a rotation two methods can be chosen. First, the new axes can stil be
kept orthogonal after rotation. This method is called orthogonal rotation. Second method is
that each axis may be rotated independently, so they are not necessarily perpendicular to one
another after rotation, this is called oblique rotation. An important statistical difference
between orthogonal and oblique rotation is that factors resulting from the orthogonal rotation
of the principal components will remain statistically uncorrelated, whereas factors resulting

from an oblique rotation are usually correlated to some extent.

Another desirable propetty of orthogonal rotation over oblique rotation is that the
amount of the total vatiation accounted for by the factors under consideration is unaffected by
the rotation. But sometimes the goal of simple structure 1s better achieved by permitting the
factor axes to become oblique. There are three algorithms for orthogonal rotation available in
most factor analysis computer programs. They are called varimax, quartimax, and equimax
methods. The essential difference between these three methods is that the varimax method
attempts to achieve simple structure with respect to the columns of the factor loading matrix,
quartimax attempts to achieve simple structure with respect to rows of the factor loading
matnx, and the equimax attempts to achieve simple structure with respect to both rows and

columns of the factor loading matrix.
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Figure 3.2: Orthogonal and oblique rotation.

The ctitetion that is used in the varimax method for finding the optimal position of
the component axes is as the follows: Let B ' denote the (rxp)new (rotated) loading matrix

with typical elementb,; , and consider the expression:

i

2
¥ 1( 2,2 (3.17)

for j=12,---,r This equation represents the variance of the (squared) loadings p; on the
J th principal component. Reminder: for an arbitrary random variable x the variance can be

calculated as

var(x)=E[x—E(x)=E(x?)-E(x) (3.18)
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Squared loadings are used to avoid negative signs, but they represent contributions to

the total variance explained by the jth component for the ith variable. The varimax

algorithm finds the p,;, which maximizes the sum

ij >

V*ziV:_ (3.19)

j=1

which results in a pattern of elements of B where some are made as small as possible, and the
others are made as large as possible. Actually the varimax criterion tries to obtain principal
components with a high correlation for some variables or no correlation at all with others. For
this reason it minimizes the number of principal components and is well suited for locating
clusters that lie at right angles to each other. The varimax criterion seeks to maximize the

variance of the loadings across the variables.

An older critetion is the equimax criterion, which seeks to maximize the variance

across the principal components. Let

Q%Z(bi -—lz(i bé) (3.20)
! v\ =l

for i=1,2,.., p, where p; are the new loadings. Equation (3.20) represents the variance of the

squared loadings, which in turn represents the contribution of the variables to variance. The

quartimax algorithm maximizes

0= ZQx (3:21)



the sum of variances of the rotated loadings. Since the quartimax criterion attempts to
maximize the variance across the components, and concentrates the vatiance on the first
component, it tends to produce a dominant component, which makes it undesirable for a

cluster analysis problem.

A large number of algorithms have been developed to perform oblique rotation. Those
most conveniently available are the oblimin, quartimin, biquartimin, and covarimin algorithms.
All of these represent algorithms designed to satisfy various types of simple structure criteria.
Unfortunately, not any one algorithm always gives the best solution, so a number of algorithms

have to be tested to find which one works best for a given data set.

The results of rotation are usually quantified and evaluated through the consideration
of the factor loading matrices. The goal of a simple structure is achieved when, comparing the
factor loadings of initial factors versus rotated factors, the factor loading matrix of rotated
factors contains high loadings on only a few variables for each factor, with close to zero

loadings otherwise.

3.4 Summary

In this chapter, we reviewed the basic concepts involved in PCA and factor analysis methods.
We also reviewed the concept of rotation. In the next chapter we will report on the application
of the methods presented in this chapter for solving the problem of cell formation and the

experiments designed for the implementation and evaluation of this method.
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Chapter 4

A PROPOSED MATHEMATICAL APPROACH FOR CELL FORMATION

4.1 Introduction

The approach presented m this chapter is based on factor analysis method and seeks to
findout if the original set of variables (machines) can be grouped into distinct uncorrelated
clusters (cells). For this purpose, the principal component analysis (PCA) method is used to
first generate a set of orthogonal factors from the linear combination of the original variables
and then to project the original variables mnto a new space spanned by these factors. After the
original variables are projected into the space generated by the factors, each factor can be
maximally correlated with a subset (cluster) of the original variables (machines) through the
study of the loading coefficients. These clusters are the initial cells and the orthogonality of the
factors guarantee the non-correlation of the cells thus formed. The factors obtained by the
PCA method usually have a complex structure and are difficult to interpret since they may
have a significant loading for many of the original variables. For solving this problem another
method from statistical data analysis is used. Rotation methods transform the factors to
stmpler and more interpretable constructs. After rotation, each variable will be only related to

one of the factors and each factor will have high loadings for only a small set of variables.

The proposed approach is implemented in two phases. In the fitst phase, the machine

cells are formed by using factor analysis. In the second stage, the parts are assigned to the
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machine cells by using an integer programming model. The steps of the proposed approach

are demonstrated through an example [57].

4.2 Phase 1: Machine Cells Formation Using Factor Analysis

To apply factor analysis to a cell formation problem, the following major steps are carried out:
1) Generation of a similarity coefficient matrix for the machines. By considering similarity
between machines as the measure of distance between every pair of machines, we can obtain
the correlation matrix required for the principal component analysis method in the form of a
similarity coefficient matrix; 2) Extraction of the initial cells using the PCA method. The
percentage of the total variance explained by each factor is used to decide the number of cells;

3) Optimization of the initial cell formation using certain exchange techniques such as rotation.

The machine-part matrix 1s required for the generation of the similarity coefficient
matrix. We proceed to discuss the three stages of the factor analysis approach to cell formation
in the following sections. Also the program for calculation of eigenvalues and eigenvectors of

the similarity coefficient matrix is provided in the appendix of the thesis.

4.2.1 Generation of a Similarity Coefficient Matrix

The machine-part matrix can be regarded as a given data set of » different binary patterns,
where 7 is the number of machines. Each pattern corresponds to an #» dimensional column
vector, where 7 1s the number of parts. Similarity coefficient, S ;» 1s defined between any two

machines by equation (4.1).
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where:

X = operation on part & performed both on machine 7 and

Yi = operation on part £ performed on machine 7,

Z 4 = operation on part £ performed on machine /.

This coefficient indicates maximum similarity when the two machines process the
same part types, S, ;7~1,and maximum dissimilarity when the two machines do not process the

same part types, 5,=0

The measure defined by equation (4.1) is called Jacard similarity measure [56]. Other
similarity measures proposed in the literature could also be used. The similarity coefficient
matrix thus defined is symmetric, with non-negative elements, and with diagonal elements

equal to one. Therefore it 1s shown that it this matrix is a positive semi-definite matrix.

Optimally the data matrix has to be standardized. Since the input matrix 1s binary, the
data matrix never needs to be standardized in this problem. Figure 4.1 i1s an example of an
initial machine-part matrix involving six machines (labeled 1 to 6) and eight components
(labeled 1 to 8). Applying equation (4.1) to the machine-component matrix given in Figure 4.1
yields the similarity coefficient matrix given in Figure 4.2. This figure illustrates machine pair

similarity coefficient matrix for this initial matrix. The matrix in Figure 4.2 is considered as the
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correlation matrix for the extraction of the initial cells since diagobal elements are 1 and S, P 1s

symmetric.

nmzZ—=TOr R

Figure 4.1: Machine-component matrix [57].

[1.00 0.00 0.67 0.17 0.00 0.40]
0.00 1.00 0.25 040 0.75 0.17
0.67 0.25 1.00 0.12 0.12 0.50
0.17 040 0.12 1.00 0.50 0.00
0.00 075 0.12 0.50 1.00 0.00

1040 0.17 0.50 0.00 0.00 1.00

Figure 4.2: Similarity coefficient matrix.

4.2.2 Extraction of Initial Cells
Assuming the machines as the original set of variables, and the similarity coefficient matrix as
an estimate of the cotrelation matrix explaining the cotrelations between each pair of

machines, we proceed to use the factor analysis framework for grouping the machines into

separate independent clusters, which form the initial cells.

To extract out the initial cells, equation (4.2) 1s solved for the eigenvalues and the

elgenvectors.
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$—I)Y =0 (4.2)

whete S is the similarity coefficient matrix; I 1s the unit matrix; A are the characteristic roots

(eigenvalues); and Y are the eigenvectors.

From matrix computation theory, the similarity coefficient matrix should have =
independent eigenvectors, where each eigenvector (factor) represents a cell. These cells have
low inter-correlations because the eigenvectors are uncorrelated, and therefore there should be
low similarities between machines that are associated with different cells. Furthermore, the
elements of the eigenvectors reflect the degree of association between the cells and the

machines.

To determine how many cells are needed to group machines, the user has two options,
either to identify the required number of cells in advance, or consider it as a dependent
vatiable. In both cases, the cells have to be ranked in a descending order according to the
percentage of total variance explained by each cell. The total variance of each cell is the sum of
the variances of all machines in the cell, or the eigenvalue corresponding to that cell. If the
number of cells has to be determined by the user, then cells with highest eigenvalues should be

selected. This criterion ensures that a high percentage of the variance 1s accounted for.

The computed eigenvalues for the matrix given in Figure 4.2 are listed in Table 4.1.
The eigenvalue crterion indicates that only the first two cells are needed to group the
machines. Table 4.1 illustrates the initial statistics for each cell. The total variance explained by
each cell 1s listed in the column labeled eigenvalue. The next column contains the percentage

of the total variance attributable to each cell. The last column, the cumulative percentage,
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indicates the percentage of variance attributable to that cell and those that precede it in the
table. Table 4.1 shows that almost 70% of the total variance are attributable to the first two
cells. The remaining 4 cells together, account for only 30% of the variance. Thus, a2 model with
2 cells may be adequate to represent the data. One of the best advantages of this method is
having the possibility of obtaining the optimum number of cells by considering the cells with

the greater percentages of the total variance.

Table 4.2 displays the cotrelation loadings that relate the machines to these two cells.
Each row of Table 4.2 contains the loadings used to express a machine in terms of the cells.
Cells with latge loadings (in absolute value) for a machine are closely related to that machine.
For example, machine 1 is related more to cell 2 and not celll, and the correlation between
machinel and cell 1 is 0.36. Unfortunately, it is difficult to decide whether machine 5 is related
to cell 1 or 2. Thus, to achieve more interpretability, the mitial cells corresponding to the

resulting eigenvalues have to be optimized.

Table 4.1: The computed eigenvalues.

Cumulative
Cells Eigenvalue % of total variance percentage
Cell 1 2.38 39.70% 39.70%
Cell 2 1.81 30.00% 69.70%
Cell 3 0.78 13.00% 82.70%
Cell 4 0.53 9.00% 91.70%
Cell 5 0.29 4.80% 96.50%
Cell 6 0.2 3.50% 100.00%
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Table 4.2: Machine-cell matrx.

Machines Cell 1 Cell 2
1 0.36 -0.47
2 0.47 0.37
3 0.45 -0.41
4 0.38 0.31
5 0.44 0.46
6 0.33 -0.41

4.2.3 Optimizing the Initial Cell Formation

Although the matrix obtained in the extraction phase indicates the relationship between the
cells and the individual machines, it is usually difficult to identify meaningful cells based on this
matrix. In other words, in many cases, it is not easy to determine which machine cotresponds
to which cell. Often the machines and cells do not appear correlated in any interpretable
pattern and most cells are correlated with many machines. To overcome this problem, the
structure of the initial cells needs to be simplified. This could be done by using one of the
rotations algorithms, such as the varimax method, which attempts to minimize the number of

machines that are more correlated with a single cell.

To explain the basic concept of this method, consider the graphical representation of
the two cells in Figure 4.3. As shown in Figure 4.3, the purpose of the vatimax rotation
algorithm is to rotate the axes so that each machine is close to only one of the two rotated

axes. Mathematically, the algorithm finds new coordinates for each machine, p,, that

i >

maximizes objective function (4.3)
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where rrepresents the number of cells and p represents number of the machines.

Applying the varimax method to the initial cells shown in Table 4.2 yields the matrix
shown in Table 4.3. As shown in Table 4.3, machines 2, 4 and 5 have the highest loadings
(correlation) on cell 1, while machines 1, 3 and 6 have the highest loadings on cell 2.
Therefore, the best grouping for the six machines is to group them into two cells. Cell 1

consists of machines 2, 4, and 5, while cell 2 consists of machines 1, 3, and 6.

Table 4.3: Machine-cell matrix after rotation.

Machines Cells
1 2
M1 -4.02E-02 0.594
M2 0.596 3.37E-02
M3 7.26E-02 0.607
M4 0.488 2.11E-02
M5 0.633 -6.16E-02
M6 -2.30E-02 0.523
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Eigenvector 1

Figure 4.3 Machine and cells after rotation

4.3 Phase 2: Assigning Parts to Cells

alone, for the machine groups obtained [57].

Using the first option, the following simple integer-programming model is constructed

tor allocating parts to machine groups.

58

To complete the cell formation, the parts need to be allocated to the machine cells. This can be
done in one of the following ways: (1) Allocate each part to the machine group which performs
the maximum number of operations on that part. If a machine group is not assigned to any
parts, assign these machines to the groups where they can petform the maximum number of

operations; (i) Algorithms such as ROC or the DCA can be performed on the patt columns



Maximize 2 2 Prclke @.4)

k ¢

Subject to:

S =1 Vk (4.5)

whete 7, = 1 if part £ is assigned to cell ¢ and otherwise zero, #,,is the number of visits to cell ¢
by patt £ Applying the model to the problem under consideration has yielded the cell given in

Figure 4.3.

OomZ—ITO>» =2

Figure 4.4: Final cell formation.

One major problem with clustering arises when a large number of components need
to be processed in a machine (such a machine is called a bottleneck machine) or when
exceptional elements exist in the machine-part matrix. Under these conditions, the parts or
machines may not be divisible into mutually exclusive groups. In many cases, there 1s usually
more than one copy of each type of machine. The machine-part matrix does not indicate the

existence of such copies. If additional copies are not available, 2 machine can be purchased if
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the associated reduction in intet- group travel cost is greater than the cost of duplication. If the
saving in intet-group material handling cost equals or exceeds the duplication cost, the
purchase of a new machine is justified. It is, however, recommended that other factors such as
set up costs and cost saving due to better scheduling be considered in the decision-making
process. Moreover, if the fraction is very small, other alternatives such as subcontracting or
generating an alternative process plan should be considered prior to evaluating the duplication
alternative. To determine the way duplication should be catried out, additional processing or

human interfaces are needed [19].

The evaluation follows these steps: First of all, the algorithm clusters the problem set.
If the results indicate that bottleneck machines or exceptional elements exist, additional
procedures such as those desctibed in this section are then applied. Such procedures, which
introduce a2 human interface with the algorithm, offer much greater flexibility in dealing with

exceptional elements and bottleneck machines.
I) The case of bottleneck machines

When bottleneck machines exist, components similar in nature may be dispersed over
more than one cluster; therefore, it is difficult to form the diagonal block structure. The

following procedure [31] can be followed to improve performance:

1) Identify the bottleneck machines.
2) Temporarily remove the bottleneck machines from the matrix.
3) Reapply the algorithm to generate a diagonal structure.

4) Duplicate the bottleneck machines into each group.
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IT) The case of exceptional elements

Exceptional elements may disrupt the clustering process and result in a poor cell

formadon. The following procedute [31] can be followed to improve performance:

1) Identify the exceptional elements.
2) Temporarily remove the exceptional elements from the matrix.
3) Reapply the algorithm to the matrix.

4) Restore the previously ignored exceptional elements.

4.4 Summary

This chapter has presented a mathematical approach for manufacturing cell formation. The
approach consists of two phases. In the first phase, the similarity coefficients matrix is used as
an input to factor analysis. Using principal components analysis, factor analysis extracts out
initial cells. The initial cells are then optimized using the varimax rotation algorithm. Once the
machine cells are formed, a simple integer-programming model is implemented in the second
phase to identify part families and allocate them to the cells. Since the machine cells and part
families are identified quantitatively, the proposed approach is expected to perform very well.

A detailed analysis of performance is presented in the following chapter.
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Chapter 5

PERFORMANCE EVALUATION

In this chapter a number of objective criteria are used to evaluate the performance of the
proposed approach. Moteover, the approach is tested against well-known existing methods in

solving test problems from literature. This is followed by an analysis of the results.

5.1 Evaluation Procedure

For problems of even moderate sizes, determination of algorithm performance becomes very
difficult. A variety of performance measures have been proposed. Stated by Chu [17] the
petformance of cell formation algotithms can be based on their computational efficiency or
their grouping effectiveness. According to Chu [17] and Wei [67], computational efficiency of
a method can be measured by computational complexity, execution time, or memory storage
requitements. The determination of the grouping effectiveness measure is itself a challenging
task. Some measurement criterion 1s necessary to compate the clustering solution to the
original data, a standard result, or solutions from other algorithms. This critetion can be an
independent measure or an aggregate measure. Iwo of the most commonly used independent
measures are the number of exceptional elements produced and the total bond energy [40].
Since many heuristics use an objective function based on costs, a natural aggregate measure

can be based on the minimum cost. Chandrasekharan and Rajagopalan [13] developed
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grouping efficiency to measure the effectiveness of forming disjointed block diagonal sub-
matrices. Grouping efficiency (GE) 1s a weighted sum of inter-cell movements and within-
group utithzation. A perfectly diagonal block solution with no voids in the blocks and no
exceptional elements has an efficiency of 100%. Grouping efficiency has been used widely to
determine cluster performance. Chandrasekharan and Rajagopalan [13] suggested giving equal
weighting to inter-cell movement and machine utlization. However, Kumar and
Chandrasekharan [33] observed in cases with more than two cells and large or sparse solution
matrices, the machine utilization factor overshadows the inter-cell movement factor, making it

virtually absent in the computation of the criterion.

Since they have been widely used in the literature, three objective criteria were selected
for performance evaluation. These criteria are percentage of exceptional elements, machine

utilization, and grouping efficiency [17].

5.1.1 Percentage of Exceptional Elements

The quality of a clustering can be measured by the number of machine-part cells that remain
outside the diagonal blocks [12,30]. These off-diagonal machine-part cells are called
exceptional elements. Percent of exceptional elements (PE), obtained from dividing the
number of exceptional elements by the total number of elements with '1" in the entry, is used
to include the possible effect of problem size. Better clustering algorithms results in a smaller

percentage of exceptional clements.

number of exceptional elements

PE =

x100 (5.1)

total number of operations

63



5.1.2 Machine Utilization
Machine utilization (MU) indicates the percentage of times the machines within the clusters are

used in production. MU can be computed as [13]:

N

Machine Utilization, MU = (5.2

9
Z my Py
k=1

where N is the total number of ones within the part family—machine cell, O 1s the number of
cells, p; is the number of machines in the 4th cell, and p, is the number of parts in the kth
cell. Generally speaking, the higher the value, the better the machines are being utilized.

However, in some special cases, even if the clustering method produces a smaller percentage

of exceptional elements and higher total bond energy, the machine utilization may be lower.

5.1.3 Grouping Efficiency
Grouping efficiency (GE) is an aggregate measure, which takes both the number of

exceptional elements and machine utilization into consideration. GE can be defined as [13]:
Grouping efficiency, GE =1 =47, +(1-9)n, (5.3)

where 7], is a measure of the density of ones in the diagonal blocks of the binary machine-part

matrix, which is given by:

m= 0 (54)
2 my Py

k=1
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1, represents the density of zeros out side the diagonal blocks and define as:

n,=1-__NE (5.5)
MN—imkpk
K=1

MN is the size of machines-part matrix, and NE is the number of exceptional
elements. 4 is the weight ranging between 0 and 1. Many researchers used 4=0.5, but Kumar
and Chandrasekharan [33] concluded that for any number of cells greater than 2, an equal
value for ¢4 and (7-4) may widen the disparity between the first and the second term of equation
(5.3) They have suggested that q can be selected based on the size and number of cells in the

solution as follows:

4]
zmkpk
_ k=l

9= (5-6)

The result of maximizing 77is the maximized concentration of ones in the diagonal

clusters and mmimized number of exceptional elements. As a general rule, the higher the

grouping efficiency, the better the clustering results.

5.2 The Data Sets

Since clustering results are highly data dependent, the selection of data sets for testing is very
important. The testing data can be either generated from a random number generator via
computer or collected from the literature [17]. In order to compare the performance of the

tested algorithms with other clustering algorithms published elsewhere, we decided to use the
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existing data sets. Fight sets of data (problems) from the literature as shown in Table 5.1 have
been collected for the evaluation. Table 5.1 summarizes the special features, the sources, and

weighting factors, g, of these data sets.

Table5.1: Features and sources of cell formation problems.

Test Problems Size No. of Cells |Weighting Factor References
1 5x7 2 0.5 King & Nakornchai [31]
2 5x7 2 0.5 Waghodekar & Sahu[66]
3 12x10 3 0.5 McAuley [45]
4 15x10 3 0.5 Chan & Milner [12]
5 8x20 3 0.5 Chandrasekharan & Rajagopalan [14]
6 14x24 4 0.5 King [29]
7 16x43 4 0.5 King & Nakornchai [31]
8 16x43 5 0.5 Burbidge [7]

5.3 Computational Results
To evaluate 1ts performance, the proposed approach was applied to test problems listed in

Table 5.1. The results of implementation are presented i Figures 5.1 to 5.8.

66



mZ—Ima» X

(b)

Figure 5.1: The result of applying the proposed
method on problem 1 (2) initial matrix, (b) final

matrix.
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Figure 5.2: The tesult of applying the proposed
method on problem 2 (a) initial matrix, (b) final

matrix.
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Figure 5.3: The result of applying the proposed

method on problem 3 (a) mitial matrix, (b) final

matrix.

69



<

= oA 2

(®)
Figure 5.4: The result of applying the proposed

method on problem 4 (a) mitial matrix, (b) final

matrix.
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Figure 5.5: The result of applying the proposed

method on problem 5(a) initial matrix, (b) final
matrix
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Figure 5.6: The result of applying the proposed

method on problem 6 (a) initial matrix, (b) final
matrix.
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Figure 5.7: The result of applying the proposed
method on problem 7 (a) intial matrix, (b) final

matrix.
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Figure 5.8: The result of applying the proposed

method on problem 8 (a) initial matrix, (b) final

matrix.
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The proposed approach was found to perform very well in terms of the criteria used.
As shown in Table 5.2 the computed percentage of exceptional elements ranged from 0% to
14.8%, the percentage of machine utilization ranged from 50.2% to 100%, and the percentage
of group efficiency ranged from 75.02% to 96%. The best clustering performance results that
were obtained from the literatures atre also included for comparison purposes [19]. As shown
in Table 5.2, on average, the proposed approach compares favorably to rank order clustering,
ROC [29], single direct clustering analysis, DCA [12], and bound energy [46] methods. Boe
and Cheng [6] compared eleven algorithms by the number of times they give the best results in
the test. The best result to a problem is defined as a grouping solution with the highest
grouping efficiently. ROC, DCA, and BEA each produce the best results in 45%, 54%, and
82% of the problems, respectively. Boe and Cheng [6] also compared these eleven algorithms
in terms of average grouping efficiency, and average CPU time. BEA has the highest average
grouping efficiency and ROC and DCA each has the lowest average of CPU time among the
eleven proposed algorithms. For these reasons these algorithms are considered as the standard
algorithms for comparisons in the literature. Table 5.2 shows that the proposed approach
produced the best results for all problems. It means that m all problems our algorithm gives
the solution matrix with a desirable structure. On average the proposed approach generated
higher grouping efficiency and machine utilization, with the lowest number of exceptional

elements.
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Table 5.2: The performance of the algorithm based on the computational results.

ROC DCA BEA Proposed Approach

Problem | NC | PE% | MU% | GE% | PE% | MU% | GE% | PE% | MU% | GE% | PE% | MU% | GE%
1 2 |125] 824 | 856|188 | 76,5 | 794 | 125| 824 | 856 | 12.5| 824 | 856
2 2 | 18.8 7222 (77.29] 188 | 72.22 177.29] 12.5 | 82.35 | 85.62| 12.5 | 82.35 | 85.62
3 3 |132] 786 | 86.1 | 184 | 81.6 | 865|132 | 825 | 881 | 128 | 85 | 894
4 310 92 | 96 | 0 92 | 96 | 0 92 [ 96 | 0 92 | 96
5 3 |213] 8 |86 * * * 1148] 100 | 958 | 148 | 100 | 95.8
6 4166|663 |83]66] 663 |83]33]|686]|839] 33| 686|839
7 4 08 | 502 [75.02] * * * 108 |4717]| 73.5] 0.8 | 502 |75.02
8 5124|618 |8.7| 241599 |7981] 24 |6181]|80.7] 24 | 61.8 | 80.7
Average 9.45 | 73.69 | 83.70] 8.13 | 56.07 | 62.66] 7.43 | 77.1 | 86.15] 7.38 | 77.79 | 86.5

5.4 Summary

This chapter presented the results of the implementation of the proposed method on the data
sets from the literature. The proposed approach was found to perform very well in terms of a
number of objective criterta such as exceptional elements, machine utilization and grouping
efficiency. Moreover, the approach compares very favbrably to well-known existing methods
such as rank order clustering (ROC) method, direct clustering algorithm (DCA) method, and
bound energy method. Clustering and data reorganization methods such as bond energy
algorithm (BEA), do not always give a solution matrix with a desirable structure. For some
simple problems, the user may manually interchange some rows and columns of a solution
matrix so as to obtain non-ovetlapping blocks. However, for large problems, the manual
method is impossible. There are no known systematic procedures to replace the manual

method for this purpose [6]. Array sorting (ARS) methods such as the ROC algotithm have
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fast convergence and a low computation time. However, they do not always give good
grouping solution to problems and must rely on the user to identify exceptional element and
bottleneck machines that prevent the formation of a block structure in a solution matrix. The
DCA algorithm cannot produce exact diagonal matrices [6]. The proposed approach performs
better than the mentioned algorithins in two ways: (1) it gives the best diagonal block solution
mattices; (1) it employs specific data storage and analysis techniques, which greatly simplify the
machine-component grouping process. The results of performance evaluation show that this

approach not only converges quickly, but also gives quality results.
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Chapter 6

CONCLUSIONS

6.1 Overview and Discussion

During the last three decades of research numerous algorithms have been developed to solve
cell formation problems and the interest appeats to remain even today. Designing appropriate
cells is the first step towards configuring a cellular manufacturing system. A properly designed

cell seeks to provide a structural basis on which other issues could be studied further.

This thesis presented a new mathematical approach for the manufacturing cell
formation. The principal objective of the proposed approach is to formulate a multivaniate
analysis model to generate optimal machine cells and part families. The original contribution of
this thests 1s to apply the rotation method to optimizing the cell formation. The approach has
the capability of providing good solutions compared to other existing methods. Furthermore,
because of its mathematical foundation the petformance of the proposed approach does not
deteriorate as the problem under consideration becomes larger. Real life problems are typically
large, and solving such problems requires special solution procedures. This research provides a

suggestion of a solution for this purpose.

The user of this approach has the option to identify the required number of cells n
advance, or consider it as a dependent vatiable. This approach also generates all alternative

solutions and provides the user with the opportunity to evaluate different options and choose
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one of them. Furthermore, the proposed approach provides a mathematical means to test the
suitability of adopting a cellular manufacturing system and it also has the flexibility to allow the
cell designer to use various objective functions and incorporate design constraints during cell

formation.

Another aspect of this research relates to the portability of it into practice. The
approach does not require special software programs since it uses algorithms, which are

available in many commercial software packages.

6.2 Future Work

The following recommendations are suggested for further research:

e The similarity coefficient measure discussed in this research requires only information
provided in the machine-part matrix. The possibility of using the similarity coefficient
that considered manufacturing features such as part volumes, part sequence,
processing time, setup time, and other issues while computing the similarity measures

can be constder as future work.

¢ TFurther research in this area should focus on developing approaches that meet the test

of industrial application.
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APPENDIX

[ HEHBH R HHH R R R R R

Program: Calculation of eigenvalues and eigenvectors.
Program description: This program creates the interface for inputting machine-part matnx to
Matlab and calculates the similarity coefficient matrix. The output is the eigenvalues and
eigenvectors of the calculated similarity coefficient matrix.
HHHBHH AR HH B HAR AR BB B R R H B R R R H BT
% Interface for inputting machine-part matrix to Matlab
N=input(Row?\n')
M=input(columnr\n")

A=zeros(N,M);

rep=input('If you want to enter the row and column of A matrix press y\n','s");

while (rep=="y")
i=input(Row of A matrix?\n');
j=input(Column of A matrix?\n');
AQ)=1;
if (==N)
rep=input('if you want to continue press y, if not press n\n','s");

end
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end

save -ASCII Afile.asc A;

[ HHHHHHHHHH TR R T R R R

clear

% the row number is the number of machines, and the size of N
% in similarity matrix is the same N.

N=input(Row?\n')

M=input('column?\n')

A=zeros(N,M);

n=zeros(1,N);

1=zeros(N,N);

p=zeros(N,N);

% calculation of similarity matrix from the machine-part mattix

load (Afile.asc");
A=Afile;
for i=1:N
for j=1:M
if A@j)==1

n(1,)=n(1,1)+1end
end

end
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for1=1:N
for k=1:N
forj=1:M
i (AG)==A()) & (AG)==1)
1,k)=1@,k)+1;end
end
end
end
for i=1:N
for j=1:N
PE)=1G)/ (1) +n(1,)-16,));
end
end

% calculation of eigenvalues and eigenvectors

[v.d]=eig(p);

save -ASCII pfile.asc p;
save -ASCII vfile.asc v;

save -ASCII dfile.asc d;

load(pfile.asc);
load('vfile.asc");

load('dfile.asc");
91



