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ABSTRACT
Dynamic Analysis of Sandwich Beam and Frame Systems
Abu Bakarr Contéh

The dynamic analysis of a general class of sandwich beam and frame systems is

presented. The beam element employed in the analysis has three degrees of freedom per

node, corresponding to the deflection v, the rotation of the beam ¢ and the slope %x .

The stiffness and consistent mass matrices of the sandwich beam and frame systems are
derived by using the inhomogeneous solution to the fourth order differential equation as
the interpolating function between the degrees of freedom of each node in the element.
The consistent mass matrix of the sandwich beam element is developed by means of a
special shape function consistent with the displacement functions used in the derivation
of the stiffness matrix. Superposing the element matrices of the individual elements, the
total stiffness and mass matrices of the entire structure can be constructed by a method
known as the direct stiffness method which presents the results in a format ideally suited
for computer implementation. Static and dynamic problems are included for
demonstration of the consistency of the theory; the results are comparable with results
published in the literature and the effects of certain important parameters on the
frequency results are evaluated. With the introduction of the uniform axial displacement,

the element is applicable to frame analysis.
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CHAPTER 1

INTRODUCTION (GENERAL OVERVIEW)

1.1  BACKGROUND (DEFINITION)

Beams and frames systems made of more than one material are often used in
structural systems to utilize the advantages of the different materials in the composite. As
an illustration, a reinforced concrete structure comprises of two principal materials
having specific functions; the concrete is excellent in compression but performs badly in
tension whilst the steel can resist tensile forces that may produce bending in the system.
The inclusion of a material in a composite should take into account its function within the

composite. The increased use of advanced composites as high performance structural

S S S S S E— Upper Facesheet

Core

/S S S S Lower Facesheet

Figure 1.1 Sandwich Panel Model
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components necessitates an accurate prediction method that reflects their multi-layered

an-isotropic behavior.

A typical configuration of a sandwich panel model for use in general construction
1s shown in Figure 1.1. According to the American Society for Testing Materials
(ASTM), “a structural sandwich construction can be defined as a special form of a
laminated composite, comprising of a combination of different materials that are bonded
together to each other so as to utilise the properties of each separate element to the

structural advantage of the whole assembly”.

Sandwich construction is a special class of laminates where the inner layers are
composed of more flexible materials. It usually consists of three layers of which the two
outer layers are of high-strength material while the core is often of low strength. It may
also be configured as multiple cores with multiple facings. In any efficient sandwich
construction, the face sheets, which are of high strength, act principally in direct tension
and compression. The core serves to keep the facial layers at the correct distance apart,
must not allow one face to slide over the other, must be able to take transverse shear and
may also act as thermal barrier. Transforming the composite to an equivalent cross
section containing the same material will serve to emphasize the difference in material
properties and functions. The behaviour of a sandwich beam in terms of material
properties is comparable to the I-beam, which is an efficient structural shape because the
stiffer material is placed in the flange situated farthest from the neutral axis'. In this
comparison, the core is replaced with the equivalent cross-section of the face sheet

material.

! Centre of bending of a structure; The midpoint of a symmetric structure
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Structural engineers use sandwich construction to achieve a stiff, lightweight
structure. The use of rectangular Sandwich plates in many branches of engineering such

as civil, mechanical, aeronautical and marine engineering has been extensive.

Sandwich panels are available today for a wide variety of applications in building
structures. Their use ranges from simple walls to applications in the refrigeration and air-
conditioning sector. A number of attractive solutions are offered by sandwich panels in
building, be it roofs or walls. They live up to every architectural and structural challenge
in the building industry. Sandwich panel construction is suitable for all load-bearing
systems and is a viable option for virtually all applications. Modern building materials
must meet a lot of demands. Airports, climate-controlled rooms, cold stores, exhibition
halls, hotels, power plants, sports facilities to mention few are some of the facilities in
building structures that make use of sandwich panels. Sandwich panels are easy and fast
to work with under all weather conditions at the construction site; they therefore allow

accelerated project schedule.

In the foreseeable future, sandwich construction will be used extensively in
weight sensitive structures since it offers the possibility of achieving high bending
stiffness with small weight penalty. One of the unique features of sandwich structures is
that by adjusting the material and geometric parameters of the face-sheets and core,

various sandwich structures can be optimally created for special applications.

1.2 BEHAVIORAL CHARACTERISTICS OF SANDWICH BEAM SYSTEMS



When sandwich construction is subjected to transverse loading, facial materials
tend to resist bending and the core resists the shear stresses as well as compressive
stresses normal to the panel. Membrane action’ is the primary carrier of end moment
leaving only a small amount of the end moment to be resisted by the faces particularly
when the end condition is rigid insert. The most distinct difference in the behavioural
characteristics of the Sandwich beam construction to a homogenous isotropic beam is that

the former has a low resistance to shear parallel to the beams length.

The deformation in Sandwich systems (beams, frames, etc.) is of two parts as

shown in Figure 1.2;

i. deformation due to bending, A,

ii. deformation due to shear, A

Consider the length dx of the sandwich beam section, Figure 1.2, A, and A"b are the first

and second derivatives of the bending deflection respectively and A is the first

derivative of the shear deformation. By superposing the deformation due to bending and
that due to shear, the complete deformation of the sandwich beam is obtained. The
contribution of the bending deformation to the total deflection is more pronounced in
slender beams, almost all the deflection of the beam is due to the bending deformation in
this case. As the depth of the beam is increased, the contribution of the shear deformation
to the total deformation increases. Stresses are developed along the profiles of the faces

due to bending of the faces about their own centroidal axis. The upper portion of the

2 Membrane action is analogous to axial stresses of the faces, resist the stretching and shrinking of fibers in
a given cross-section
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Figure 1.2 Deformation in a Sandwich Element (a) Bending deformation
(b) Shear deformation

profiles is in compression, while the lower portions are in tension. The study of the
behaviours of structures under the influence of external excitation proved that the
structure can take various shapes which differ in frequencies; thus the study of the static

case alone is an under-estimation of the analysis.
Vibration differs from static behaviours in two important respects.

1. First, the vibration of the system with an external force with respect to time.

ii. Secondly, the motion of the structure gives rise to inertia forces.

Inertia forces correspond to the changing momentum and are distributed along the
structure in proportion to its mass. The applied loads, the inertia forces and the elastic

resistance are in a continually changing state of dynamic equilibrium. Structural



calculations for static loads are generally much easier than for dynamic excitation and
that is why structural engineers prefer to adopt equivalent static forces as far as possible
for the analysis. However, most forms of loading have dynamic components and some

forms of structure, especially if they are slender are susceptible to the dynamic effect.

A very important consideration in structural design is the prevention and/or
control of vibration in the structure. Within the general framework of random vibration
theory, three principle problems can be identified depending on whether attention is
focused on the response, the excitation, or the dynamic system. Most commonly, the
system and its excitation are to be known and the problem is to predict the statistical
information about the dynamic response or reliability of the system. The most critical
state in a structural system is when the frequency of excitation of the system approaches
that of the natural frequency of the structure (resonance) in which case there 1s the

possibility of structural failure.

The determination of the natural frequency of the structural system by the use of
mathematical models of the system is of great significance. An approach on the dynamic
mechanical response of a sandwich structure involves the computation of its natural
frequencies corresponding to the different mode shapes. Every snapshot of the system
during motion is a mode shape. This in general emphasizes the difference in analysis of

the static situation of a sandwich construction and that, which involves vibration.

1.3 MATERIALS AND MATERIAL PROPERTIES



The choice of materials is vast and since the introduction of fibre composites the
choice of face materials has increased to an infinite number of different materials, all
with different properties. Choice of material in a sandwich structure depends on the
material requirements (high strength, environmental resistance, surface finish, etc). The
number of available cores has increased dramatically in recent years since the
introduction of more and more competitive cellular plastic. Combination options of the
face sheet materials with different core materials for roofs and walls enable new ideas to
be integrated in a wide range of applications. Hence the design of sandwich structures is

just as much a materials selection problem as a sizing problem.

It is incumbent on the engineer/designer to have reliable information about the
strength and stiffness of the materials used in the design for efficient analysis and design
of sandwich structures. The best bet is to resort to tests for obtaining adequate material
properties. The vast number of material choices may appear as an additional complexity
but is really one of the main features of using sandwich constructions; the materials best
suited for a specific application may be utilized and some drawbacks can be overcome by
geometrical sizing. By increasing the thickness of the core some reinforced plastics can
assume high stiffness comparable to that of metals. Thus, the primary objective of the
designer is to achieve an efficient design that will utilize each material component to its

ultimate limit. The design process typical with sandwich structures is parametric desi o’

Various possibilities exist in the design process; the first and most common is

that which requires the determination of the thickness of the core given that the material

? This type of design concerns with modification of dimensions; If the dimension used in the design does
not meet the design then member sizing is required for a repeat design

-



properties and thickness of the facial materials are provided. The second type requires the
determination of the thickness of the faces and core given that the materials are clearly
specified. The design procedure for the above design processes and others are clearly

outlined in [2].

1.3.1 FACE MATERIALS

A face sheet material can be obtained from any structural material that is available
in the form of a thin sheet and can serve its purpose. Two main groups exist for facial
materials. The first, which is considered the largest, contains materials such as plywood,
cement, reinforced plastic, and fibre components. The latter group contains steel,
stainless steel and aluminium alloys. Following are the functions of the face material;

e High tensile and compressive strength

e High stiffness giving high flexural rigidity

e Impact resistance

e Surface finish

e Environmental resistance (chemical, UV, heat, etc.)

e Wear resistance

Fibre composites has since its introduction been used extensively in sandwich
construction since most composites offers strength properties similar to or even higher
than those of metals, though the stiffness is often lower in magnitude. Thus, with a light

core, the composites produce high rigidity. A second reason is that the manufacturing
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process is easier than that of metal. The anisotropic behavior of the composite posed
some complexity for the engineer but in reality it offers the possibility for the materials to
be placed in the best way possible to support applied loads. A detailed description of
fibre-reinforced composite materials is outlined in [3]. “Almost any structural material
which is available in the form of a thin sheet may be used to form the faces of a sandwich
panel [2]”. This statement is a pointer to the wide variety of materials ranging from
wood, plastics to metals. Typical mechanical examples of some commonly used face

materials can be found in [2] and [5].

1.3.2 CORE MATERIALS

A core must be chosen such that the least load possible is added to the total
weight of the sandwich structure. In serving its key functions, the core must not change in
thickness, thus requiring a fairly high modulus of elasticity perpendicular to the faces.
The core is exposed to shear so that global deformations and core shear stresses are
produced by the shear strains in the core. The selection of a core that will not fail under
the applied load is a primary objective of the designer. The thermal and acoustical
insulation properties of the sandwich structure depend on the core material used and also
the core thickness. Following are the immediate characteristics of the core material;

e Low density

e Stiffness perpendicular to the faces

e Thermal insulation

e Shear modulus and shear strength



In load carrying sandwich construction, the core used can fall into one of the following

groups; corrugated, honeycomb, balsa wood and cellular foams.

A Corrugated material is one that is been bend into ridges, folded to take various
shapes to produce stronger material. Several corrugated and flat materials can be glued
together to increase the effective thickness of the core. The shear stress in the direction of

the corrugations can be so great that it can be taken as infinite.

Honeycomb cores are commonly used in aerospace applications and it exists in a
variety of shapes that depends primarily on the application. Honeycombs have the
excellent mechanical properties, very high stiffness perpendicular to the faces and the
highest shear stiffness and strength to weight ratios of all available core materials. For
any given density a honeycomb core is expected to be stiffer than a corrugated core (in
the plane perpendicular to the corrugations). High cost is the main drawback in the use of

honeycomb as core material.

Balsa was the first material used as core in load carrying sandwich structures. It is
a wood but can be seen under a microscope as a high aspect ratio closed-cell structure.
The sensitivity of Balsa to humidity is high such that there is rapid decline in its
properties with the water content. By utilizing Balsa in its “end-grain” shape (it is cut up
in cubic pieces and bonded together edge wise so that its fibre direction is always in the
direction of the face), this problem can be overcome. The drawback is that all the blocks

have different densities and the limit must be from the piece having the lowest properties.

-10-



Cellular foams do not offer the same high stiffness and strength to weight ratios as
honeycombs but have other very important advantages. Cellular foams are in general less
expensive than honeycomb but more importantly, foam is a solid on a macroscopic level
making the manufacturing of sandwich elements easier; the foam surface is easier to
bond to, surface preparation and shaping is simple and connection of core blocks are
easily performed by adhesive bonding. Cellular foams offer high thermal insulation,
acoustical damping, and the closed cell structure of most foams ensure that the structure
will become buoyant and resistant to water penetration. However, there is the existence
of different foams with different advantages and disadvantages [1] and typical

mechanical and thermal properties of some core materials [12].

1.4 LITERATURE REVIEW

14.1 OVERVIEW

Much research has been done on the bending, vibration and buckling problems of
sandwich construction. Different physical characteristics exists for the face sheets and
core components of a sandwich construction, and as such the analysis of a sandwich
structure (plate/shell) requires a degree of sophistication that is greater than that of

classical or Reissner-Mindlin plate/shell theory.

As an enforcement of the fact that the structural properties of the composite

improves for the better as the thickness of the core material is doubled Dan Zenkert [1]
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estimated the corresponding increase in strength stiffness and strengths and their relative
properties derived. In his study, it was confirmed that when the distance between the
centroids of the facings is doubled, the bending strength is doubled and the flexural
rigidity is increased by four times the existing. Potter, K [4] pointed out that with only a
6% increase in weight of the beam due to the introduction of a honeycomb core material
now sandwich beam, such that the thickness is increased by a factor of four, the bending
stiffness and strengths are increased by 37 and 9 respectively. Thus sandwich
construction has attracted the attention of many researchers and the number of papers that

has been published on this topic in recent years can reflect its importance.

1.42 REVIEW OF PREVIOUS STUDIES

There is considerable body of literature on the vibrations of rectangular plates.
Iguchi (1937, 1940) studied plates with different boundary conditions by means of
analytical methods, and in particular the free vibrations of the completely free plate are
examined in Iguchi (1953). In his latter paper, exact solutions are given for the eigen-
functions by writing them in a sum of two different Levy expansions and by considering
the different symmetries and asymmetries. An approach similar to that mentioned above
was respected by Gorman and Sharma (1976) [6], Gorman (1978) and in the book of
Gorman (1982) [8], which all deal exclusively with the free vibrations of rectangular
plates. Leissa (1973) [7] used similar conditions and referred to Iguchi's results in his
book, "free vibration of rectangular plates for different boundary conditions”. His

approach is related to that of Gorman and Iguchi and is also analogous to procedures used
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in the static plate problems. General assumption for deformation considered by most of
the papers mentioned above is that of Vlasov’s rigid contour assumption, which states
that, “the cross-section remains undisturbed during deformation or plane cross section
assumption, that is to say, the original plane cross-section remains plane during

bending”.

According to Bernoulli, straight lines normal to the middle surface before
deformation remain straight, normal to the middle surface and unchanged in length after
deformation. This theory is comparable to the classical plate theory, which assumes that
“plane sections normal to the mid-plane before deformation remain plane and normal to
the mid-plane after deformation”. In effect the initial and final positions of all points on
the surface are known based on the fact that the initial and final positions of points on the
middle surface are known. The strains at any point on the surface can be calculated in
terms of the displacement of the middle surface alone. This helps in converting a three-
dimensional problem to two-dimensional one, and a two-dimensional problem to a one-
dimensional one. In the paper, Stiffness Matrix analysis for exact solution of Sandwich
beam and Frame systems [25], it was stated that, “not withstanding the complication in
the formulation, the many degrees of freedom, many of the existing finite elements for
Sandwich plates can be specialized or even used directly for the analysis of beams though
the solutions provided to the problem will be approximate because of the dependence of
accuracy on the number of elements used in the model”. Therefore, conclusions arrived at
for plate analysis can be applied to a beam. Love and Kirchoft first applied this theory to

plates and shells.
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Although the idea of a strong, durable and lightweight design is widely accepted,
many of the existing Sandwich models ignore transverse normal and/or shear stresses
even though these stresses are crucial in failure analysis. In the Love-Kirchhoff
approximation, the effects of deformation of both transverse strains and/or transverse
stresses are neglected. This results in natural frequencies that are too high due to the fact
that the classical theory postulates an infinite rigidity in transverse shear. It was seen that
corrections are needed especially for the case of built-up structures such as the
"sandwiched" structure in which the central parts are lightened and have a relatively low
resistance to transverse shear. Corrections are also needed for homogenous structures in
which the wavelength of the deflection is of the order of the magnitude of the thickness

(for instance for thick, stocky structures).

Due to the special properties exhibited by the composite materials, such as high
degrees of anisotropy and weak rigidities in transverse shears, the method of analysis
based on the classical theories become inadequate. It has been shown by Wu, C. and
Vinson, J. R. [29] that the classical beam theory is inadequate for the analysis of thick
laminated plates since it over predicts the natural frequencies. It is important to take into
consideration the effect of shear deformation in the study of relatively thick laminated

plates and therefore the need to use some appropriate shear deformation theories.

Yang et al [30] developed the first-order shear deformation theory. Mindlin plate
theory reported by Reddy [18] include transverse shear and rotary inertia effects by
assuming a shear profile resulting in a closer approximation to the natural frequencies of

the laminate. A linear distribution of the in-plane normal and shear stresses through the
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thickness is given which yields non-zero transverse shear stresses on the plate boundary
planes, and therefore shear correction factors are required. In [17], a higher order theory
is used to develop the stiffness analysis of beams and Bernard Nayroles [21] employed
the higher order finite element method for sandwich plate’s analysis. Reddy [19]
presented the high-order shear deformation theory that leads to a non-linear distribution
of the shear stresses through the thickness. This provides the parabolic distribution by
which the conditions on the boundary plane are fulfilled and the need for shear correction
factors is removed. Reddy, J. N. and Khdeir, A. A. [34] and Reddy, J. N. and Phan, N. D.
[20] used the first-order shear deformation theory and the high-order deformation theory
extensively for the study of free vibration of laminated plates. These theories have been

applied to some extent to study the behaviour of sandwich material.

M. Meunier and R. A. Shenoi [31] presented a closed form solution for natural
frequencies of sandwich plate panels. S. Mirza and Ni Li [32] presented an analytical
approach based on the reciprocal theory for free vibration of sandwich panels. Masoud
Rais-Rohani and Pierre Marcellier [33] presented a method that provides approximated

analytical solutions for the free vibration and buckling of sandwich plates.

Y. Frostig and G. J. Simitses {23] developed a totally analytical approach to study
the bending behaviour of sandwich beams subject to transverse loading. By means of the
variational methods, Vladimir S. Sokolinsky, Steven R. Nutt and Yeoshua Frostig [28]
derived the equation describing the free vibrations of sandwich beam with soft and stiff
core. Different boundary conditions are imposed and finite differences are used to

approximate the governing equations. The frequency equations for vibrating
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homogeneous beams, including the effects due to shear, corresponding to different types
of support are developed in [46]. M. E. Raville and En-Shiuh Ueng Ming-Min Lei [44]
employed an energy approach with the use of the Langragian Multiplier to determine the
natural frequencies of a fixed-fixed sandwich beam. T. Sakiyama, H. Matsuda and C.
Morita [52] employed the Green function in an analytical approach to analyze the free
vibration of sandwich beam. By means of displacement functions, 1. K. Silverman [42]
obtained approximate eigen-values for sandwich beams using the Galerkin type solution.
S. Oskooei and J. S. Hansein [24] and A. Barut, E. Madenci, J. Heinrich, A, Tessler [22]
employed a higher order finite element models for the analysis of sandwich plates. K. M.
Ahmed [47] and K. M. Ahmed [48] presented a displacement based finite element
methods for the dynamic analysis of curved and straight sandwich beams respectively. K.
M. Ahmed [49] presented a displacement based finite element methods for static and
dynamic analysis of sandwich structures. Most of the authors mentioned in this work,
however, assumed that the elastic modulus of the core in the vertical direction was

infinite (incompressible core).

The papers mentioned above describe various approaches to the mathematical
formulation of sandwich construction problems. Most complex engineering problems
cannot be solved by these methods. The reason for this is that most structures may have
certain structural irregularities or complex boundary conditions, which may cause these
methods to fail; or at least become impractical, such that there use is limited because of
the complexity of the governing equation. Analytical solutions are possible only for
simple structures with simple boundary conditions. For complex problems, close form

solutions do not exist and consequently, the use of numerical methods must be resorted
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to. In this class, the finite element method emerges as an elegant, simple and extremely
powerful method, which virtually removes all mentioned limitations. During the last
decades, this new methods have been extensively developed and now reserved a unique

position in the field of structural analysis.

The dynamic behavior of a distributed-parameter beam or beam system described
in a continuous system is obtained with the aid of the dynamic stiffness matrix by
numerical means in [45]. 1. Baychev [39], in his finite element for frames with variable
characteristics presented a numerical formulation of the stiffness matrix, loads vector and
mass matrix for frame elements with smoothly varying geometrical and physical
characteristics. In the study of the dynamic analysis of multistory frame, the dynamic

stiffness matrix is presented in [41] by. means of the force method.

Ha (1991) [25] put forward the formulation of the stiffness matrix and the
procedure for the analysis of a general class of sandwich beam and frame structures
subjected to arbitrary loading and boundary conditions. In this paper, the exact solution
of deflections and stresses are computed such that the governing differential equation, all
boundary conditions, and inter-element compatibility are satisfied. The formulation of the
stiffness matrix and the fixed end moment for common loading were represented with
explicit form expressions. The application of the theory is to sandwich construction of
both thick and thin facings, with or without edge reinforcement. In the analysis, an
equation was derived based on which other essential equations were generated from. The
application of the formulation to the general configuration of sandwich beams with

corrugated or honeycombed cores as well as to the class of beams coupled by elastomeric
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medium is enhanced by the way the basic parameters were defined.

Amongst other considerations made in this work is the fact that in establishing the
governing differential equation, the total bending moment at any section of the beam is
due to the contribution of bending coming from the couple caused by the in-plane forces
acting on the face sheet layers and that of the facial moments. In order to establish the

fact that there is compatibility between connected members, the following must hold;

1. Continuity of the deflection, v

2. Continuity of the first derivative of the deflection, v'

3. Continuity in the rotation, ¢ or the shear strain, y

Ha [25] and so many other researchers used the conditions mentioned above to
establish the fact that a typical member must have six degrees of freedom i.e. three-
degree of freedom per node”. In his finite element displacement method, Ahmed [47]

modelled displacements v and w in three ways in an increasing order to accommodate

three, four and five degrees of freedom per node with continuity in v, w and By v,

2 .
ayy, w and 5w6y’ and v, %, w, %, and 0 %yz respectively. K. M. Ahmed

[48] includes the effect of transverse shear with honeycomb core in the modelling with

six degree of freedom per node in his beam analysis corresponding to v, %y 9,

a%y , w,and OV, oy’ including three rigid body modes. K. M. Ahmed [49] employed a

model with five and seven degrees of freedom per node. Finite element models with

* The most simple model is that consisting of three-degree of freedom per node
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additional degrees of freedom such as curvatures, higher order derivatives of
displacements or shear strains are particularly necessary when inter-lamina shear stresses

are of special interest.

The focus of the paper, "stiffness matrix for exact solution of sandwich beam and
frame systems" is for the efficient optimum design of sandwich beam systems. The
results presented so far are useful for application to the static case only but as indicated
earlier on by the author, there is room for extension. The author emphasized the fact that
quantitative assessment can be easily carried out with his theory, “Exact stiffness analysis
of beam and frame systems”, with provision for extension for the case of a large
deflection, overall buckling analysis, and vibration analysis. Kinh H. Ha and Luis S.
Salvador (1992) [26] put forward the stiffness matrices for exact analysis of sandwich
beam systems, which is an extension of the Ha (1991) [25]. The paper by K. H. Ha and L.
S. Salvador incorporates buckling analysis, which serves as the prime difference from the

paper put forward by Ha [25].

The formulation and synthesis of the mass matrix has not enjoyed the same
degree of investigation as the stiffness matrix, primarily because the mass matrix is
required for limited but not less important classes of problems. The consistent mass
matrix of the distributed system was developed systematically in [11] and Consistent
stiffness and mass matrices for fixed-hinged beam element taking into account only shear
deformations are developed in explicit expressions in [40]. By using the homogeneous
solution to the fourth order governing differential equation as interpolation function

between the degrees of freedom at each node of the element, the stiffness matrix and
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consistent mass matrix of a thin-walled beam element with an asymmetric cross-section
is established in [38]. John, S. Archer [16], in an attempt to improve the accuracy of the
dynamic analysis as it is affected by the mass matrix, a consistent mass matrix
contribution is investigated that accounts for actual distribution of mass throughout the
structure in a manner similar to Rayleigh Ritz formulation. According to this Author, the
natural frequencies obtained by the use of the consistent mass matrix are upper bound to
the exact solution. By using a general solution for the Bernoulli-Euler differential
equation, Toshiro Hayashikawa and Noboro Watanabe [37] developed an analytical
method for determining eigen-values of continuous beams. In all the approximate
methods based on finite element method presented, frequency values produced by the
consistent mass matrix are upper bound. K. H. Ha and T. M. Tan [50] incorporated the
consistent mass matrix in an efficient dynamic analysis of the continuum shear wall

System.

The purpose of this investigation is to present a numerical approach based on the
displacement finite element methods for the free vibration of sandwich beam and frame
systems applicable to a more general arbitrary boundary conditions. The already derived
governing differential equation, displacement function and the development of the
element stiffness matrix in Ha [25] form a foundation for this study. Whilst the solution
of approximate theories making use of the conventional finite element method depends
on the assumed displacement field, the displacement functions used in this work is exact
such that the governing differential equation satisfies the boundary conditions and inter-
element compatibility. Markus [43], Ahmed [47], Kimel {51] and Mead [53] considered

vibrational effects coming only from the flexural behavior of the sandwich beam whilst
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this work includes rotation and longitudinal vibration effects. By means of special shape
function developed here in, a consistent mass matrix for sandwich beam and frame
systems is presented. The present theory is preferred based on the fact that the governing
differential equation is derived from the model presented and that it is simple and less
complicated. Convergence of results is shown by numerical examples. It will be seen
later on in this work that the theory is consistent while the solution obtained from other
finite element methods will depend primarily on the assumed displacement field used in
the model that produced the approximate results. By comparing computed results with

those of earlier references, the accuracy of the theory included in this work is verified.

1.5 OBIJECTIVE OF STUDY

The main objective of the present study is to present an efficient dynamic analysis
such that the mass matrix is consistent with the shape functions’ used in the derivation of
the stiffness matrix. The difficulty is that the stiffness matrix in [25] was established
without the use of any shape functions. To achieve the goal in this work, the following
objectives must be satisfied:

1. Develop the shape function required for deriving the mass matrix from the
displacement used in the development of the stiffness matrix in a step by step
manner (numerically).

2. Derivation of the mass matrix with the aid of the shape functions.

3. Verification of the theory by comparing the numerical results with related studies.

5 Shape functions are used to convert nodal displacement to displacement anywhere along the beam.
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CHAPTER 2

ELEMENT MATRICES FOR A STRUCTURAL

SANDWICH BEAM

This chapter presents the derivation of element matrices for the proposed
sandwich beam element. For the sake of completeness, the derivation of the governing

differential equation and of the stiffness matrix [25] is also presented.

In conventional finite element, shape functions are formerly represented in the
form of polynomials. The accuracy of the finite element methods for the solution of
structural problems depends mainly on the selection of the displacement field. Unlike the
conventional finite element methods, where the solution is an approximate one because
the shape functions employed are approximate. Here, the governing differential equation

is used to derive the unit-load displacement functions that lead to the element matrices.

First, the displacement functions so developed are used to derive the flexibility

matrix of the simply supported sandwich beam, and subsequently a transformation matrix
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will be developed that converts the flexibility into the stiffness matrix. Since the
flexibility matrix is exact, the stiffness matrix obtained by transformation is expected to

be exact. In this process, no conventional shape functions will be introduced.

2.1 GOVERNING DIFFERENTIAL EQUATION

The governing equation to be derived in the following will be used in the other
sections that follow. Most distinctive is the fact that the basic parameters are so defined
such that the applicability of the formulation is extended to the general configuration of
sandwich construction as well as to the class of beams coupled with elastomeric
medium®. The derivation of the governing differential equation is a very important
requirement in the development of the theory. The stiffness and mass matrices that are
needed to describe the elastic property and the resistance of the system are derived from
the deflection function obtained from the governing differential equation. The accuracy

of the entire theory relies very much on the correctness of this equation.

2.1.1  GENERAL ASSUMPTIONS

In the development of the governing equations the following basic assumptions
are taken into consideration;

1. Linear elastic material

% Material capable of being deformed
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The core resists only shear (i.e. in normal stresses are neglected, thus the entire
bending moment at any section is carried by the faces whose own shear
deformations are neglected)

. The modulus of elasticity of the core in the direction perpendicular to the axis of
the beam 1is infinite; thus, the core is assumed to be inextensible in the thickness /
transverse direction;

All points in a given section deflect the same amount;

Bonding between the layers is perfect to provide continuity/compatibility in the
deformations at the interfaces

The face sheet materials are homogenous and isotropic while the core may be

homogenous

GOVERNING BEAM EQUATION

The differential equation that governs the behaviour of sandwich beams subject to

arbitrary loading and support conditions is derived in this section. This equation will be

used to derive the displacement functions for different unit-load conditions in the static

Accepting the stated assumptions, the differential equation leads to exact solution

of displacement for different loading conditions in the static case. Figure 2.1(a) shows the

forces acting at a section of the sandwich beam; the dimensions of the sandwich beam

components are also shown in this figure. In figure 2.1(b), the variation of the stress
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through a section of the sandwich beam is shown. The displacements due to shear
deformation of the sandwich beam section as explained in the previous chapter are

represented by Figure 2.1(c).

The in-plane force acting on the top and bottom face sheet of the sandwich beam

Figure 2.1 Deformations and Displacements in Sandwich Beam Section
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[pper skin

Lower skin

Figure 2.2 Core Shear in Sandwich Beam

section are F, and F, respectively. In general, the commonly used core matenals,

honeycomb and foam are considered to have low in-plane stiffness as compared to the
transverse stiffness. In the following analysis the face sheet will be the component

responsible for resisting the axial load.

Let u,(x) and u,(x) be the x -displacements of generic points in the centroidal

axes of the top and bottom faces, respectively due to the stretching of the faces caused by
the in-plane forces (Fig. 2.1(c)). The moment caused by the stretching of the faces due to

the in-plane forces F(x) is written as

where F(x) is the in-plane force
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d 1is the distance between the centroids of the two facings.

Although it is assumed that shear in the sandwich beam takes place only in the
core, it does not imply that shear stresses in the skins of the face sheet materials are
neglected. The shear stress 7 of the core for a sandwich beam is as shown in Figure 2.2.
In this figure, it is also indicated that the shear strain is constant across the depth of the

Core

When the net axial force on the cross-section is zero, the same force component

acts on the top and bottom faces and in opposite direction. The condition F} =—~F, = F

holds such that;
Fio= (AE) 1l oo (2.2a)
Fy = (AE) 1) oo (2.2b)

where (4E), and (AE), are the in-plane stiffness of the faces;

u, and u, are the first derivatives with respect to x for the x -displacements of

generic points in the centroidal axis of the top and bottom faces respectively.

Equation 2.2 then leads to

, . F F
— B R S 2.3
e = TE), ), 239
, . F
e B T e e e et et ——————. 2.3b
U, —u, (AE)f ( )
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where

1 1 1
) =5, + (), (2.4)
(4E) L) (2.5)

" (4E), + (4E),

Local bending deformation due to the facial moments M ,, and M ., will be

experienced by the faces in addition to the already established uniform stretching of the

faces. The local bending is related to the overall beams curvature as follows;

M, =M, +M ;, =~(EI)v —(EI),v" =—(EI),v" ..o, (2.6)

where v'= the second derivative of the deflection v(x) with respect to x; and

(ED), =(ED); +(EI) 1y coeoeeeiiieeee s (2.7)

is the sum of the local bending stiffness of the faces.

The total deflection of a sandwich beam is the sum of the deformation due to
bending and that due to shear. Thus, the total bending moment at a beam section is the

sum of the in plane bending forces and the facial bending as follows

MO)=M,+M, =Fd—(EI) V' oo (2.8)
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The preceding equation will become the governing equation once the axial force
F is expressed in terms of the deflection v(x). It is assumed here that the eccentricity of
the net axial thrust is zero. The Eccentricity is zero when the axial thrust is located at the

neutral axis (Fig. 2.1(a)). Its location is at distances d, and d, as shown in Figure 2.1.

For equilibrium of the net force, the distances d, and d, may be defined as

d = o, 2.9
! (4E), (2.92)
AE,
e L 2.9
g (4E), (2.92)

The core is mainly subjected to shear so that the core shear strain produce global
deformations and core shear strains. “Since inter-laminar shear stresses are continuous
across layers, they should not be evaluated using an individual layer’s elastic constants,
but rather by other means, such as equilibrium consideration [15]”. The faces must share
this deformation. Axial equilibrium of an isolated face shows that the interlayer shear

stress shown in Figure 2.2 is

The shear strain in the core is obtained by substitution of # from (2.8) into (2.10)
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Ly,
%:E[M (1) (EL), 7" ()] oo (2.11a)

y(x)=
where G = shear modulus of the core material. The total shear in the core is then
....................................................... (2.11b)

Note that the shear ¥ can also be found as the difference between the total shear V' = M’

and the facing shears, which are determined by moment equilibrium of the faces

1:
4 dx

v,, =—(EI) fzv"'+rb%—

dM t t
14 L +rb51=—~(EI)f]v"'+1b5‘

in which ¢, and ¢, are the facing thicknesses.

To account for shear deformations, the beam rotation degree of freedom ¢ must

be independent of the slope v of the beam. Considering the geometry of the deformed

section shown in Figure 2.1(c), the shear strain can be expressed as
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and c¢ =thickness of the core. The angle ¢(x) can be viewed as the average rotation of
the cross section. Note that positive values of the parameters in (2.12) and (2.13) are as

shown in Figure 2.1. Elimination of y(x) from (2.11a) and (2.12) yields

#(x) = v(x)- de;G [M'(x)+ (EI)f v”'(x)] .............................................. (2.14)

The axial force F can be obtained by substituting the preceding equation into equation

2.3 and is given as

Substituting for F into Eq. 2.8, the following is obtained

M(x) = —-d*(4E) f{v”—~bdcTG[M"+(E])fv'v ]}+(E1)v" ........................... (2.162)

After some simplification, the governing equation can be written as
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d4v(x)¢a2d2v(x) a'zM(x) 1 d2M(x)

= T 2.16b

dx* dx’ El  (EI), dx’ (2-160)

where
2
o = 291 R VTR (2.17)
¢ |(4E), (EI),

and
(ED=(EI), +d*(AE); oo (2.18)
Betancourt-Angel (1972) [9] derived a similar equation by using the variational
formulation, which also yields the following natural boundary conditions;
First, either the shear stress in the core is zero at the end, t.e. from Eq. 2.10,
0 = LI+ ED V] oo (2.19a)
Thus
MWED, V' = 0 i, (2.19D)

or, second, the curvature v" is specified, meaning that the local bending moment in the

faces is prescribed.

Note that the factor (bG)/ ¢ in (2.17) can be replaced by the term S/d”, where

S = beam’s shear stiffness, which can be found by simple experiment. This substitution

effectively removes the parameter b from the formulation, thus generalizing the theory
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for application to sandwich beams with corrugated or honeycombed cores and beams

coupled by an elastomeric layer.

2.2 FLEXIBILITY MATRIX OF A BEAM ELEMENT

Our intention is first of all, to establish the flexibility matrix, which will be used
to derive the stiffness matrix later on in this chapter. The flexibility coefficients are
obtained directly from the displacement function to be derived from the governing

differential equation. The displacement at point i due to a unit force or moment at j is
the flexibility coefficient f;; . This requires that the element must be supported. Among

many stable configurations, the simply supported element is chosen as shown in Figure

2.3.

Careful examination of Eq. 2.12 and Figure 2.1 shows that in order to have
compatibility between connected elements, we need continuity of the deflection v, its
first derivative v' and either the rotation¢ or the shear strain’ y . These parameters may
serve as the nodal degrees of freedom in the sandwich beam element. Thus by definition,

the element’s flexibility relation is

7 Caused by the ability of the material to slide apart
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where the each degree of freedom of a system represents a nodal displacement vector q

and a corresponding nodal force Q defined as

The stiffness matrix can simply be obtained by transformation of the element flexibility

matrix, as will be shown in the upcoming sections.

2.2.1 DISPLACEMENT FUNCTION

The displacement function that is needed for the derivation of the element
matrices to be derived in this section is different from the conventional displacement
function. Consider the simply supported sandwich beam element (Figure 2.3), subjected

to the end moment M, defined by

My = Moy A Mo oot (2.23)
0 di fi

This moment M applied at the end i gives rise to the following moment at section x
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Solution of the governing equation (i.e. Eq. 2.16) for the loading M, can be found as

M ; -

w(x)= 2 (x? —3Lx + 217 )+ 4 3‘—-1+W .................................... (2.25)
6(EI )L L sinha L

The validity of the preceding equation is checked to see if the geometric boundary

conditions are satisfied as follows:

At node i, the following boundary conditions holds

W0) =0, e e (2.26)

At node j, the following boundary conditions holds

WL) =V (L) =0, e (2.27)

where v'(x) is the curvature at abscissa x . Note that the abscissa 0 is for parameters at
node i and abscissa L is the arbitrary coordinate at node j. The implication of the
second boundary condition for node j of the sandwich beam is that shear strain is not

prevented at this end.
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To evaluate the integration constant, A, the skins are assumed to deflect the same

way the whole beam does and as long as the moment M ; exists, curvature is non-zero

and is given by the following boundary condition.

where M ; and (£7), are the local bending moment and the local bending stiftness of

the face skin material at node i as in expressions 2.6 and 2.7 respectively. The negative
sign is to maintain consistency with the sign convention used throughout this work. The
preceding equation is identical to the well known bending moment equation for a

homogenous isotropic beam. From Eq. 2.25 we write

v'(x)= —~——A—/{O—~{x~L}+ Aa’ simha(L-x) (2.29)
EIL sinh L
(1)

At node i

v'(0)= (EI;L+Aa2 ................................................................. (2.30)
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Alternatively the integration constant A4 can be evaluated in a different way as
follows. When rigid edge inserts® prevent relative in-plane displacement of the facings at
the left edge, the core’s shear strain is zero. The whole externally applied shear force is

taken by the skins and Eq. 2.19(b) is written as

(. M)
v (x)= DQED), (2.32)
Thus
MO
( ):HE__']—.)—J—: ...................................................................... (233)

the integration constant can be written as

A=~ M, NN AL o (2.34)
Lua
in which
ca*(EIY,
!
R PO 2.35
Gbd* (2:33)

The preceding solution will lead to the flexibility coefficients as shown is the next

section.

¥ No shear deformation at built-in ends
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2.2.2 ELEMENTS OF FLEXIBILITY MATRIX

In this section, the individual nodal displacements ¢, are derived for unit moment
M, or M ,. Consider the simply supported sandwich beam element of Figure 2.3
subjected to end actions R in which M, and M , are the end moments. All signs of

forces depicted in this figure are taken as positive. We are to establish to establish the
flexibility matrix in the presence of the existing forces of the simply supported sandwich

beam element (constrained element, Figure 2.3).

The rotation of the sandwich beam section, Eq. 2.14, can now be written as

dv c |{M, d’v
& M B 236
#lx) dx+db2G[ L (1), de (2.36)

The above basic solution provides the flexibility coefficients of the first two columns of

Figure 2.3 Simply SupportedSandwich Beam Configuration
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the flexibility matrix f, and the remaining coefficients can be obtained by symmetry of

the system. The flexibility coefficients f; is the displacement at the direction i dueto a

unit nodal force applied at the direction j. As an illustration, by substituting into the

preceding solutions:

My=M, =1 andM ; =0, ...cooriiiiii 2.37)
the following flexibility coefficients are obtained:
fo =S =8(0)
e (2.38)
f31 = f13 =¢ (L)
Ju=In =V (L)
Similarly, by substituting
M,=M,=1 and M, =0, i (2.39)
the coefficients of the second and fourth columns are obtained:
flz = f. 34 = ¢ (O)

= =v (0

Sn=fu=v ( ) (2.40)

fo= 1o :¢(L) .............................................................
S ="V =y (L)
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Maxwell’s law of reciprocity states that, “as long as the material of the structure is
elastic and follows hook’s law the member flexibility matrix will be symmetric”. The

complete flexibility matrix given in Appendix A is found to be symmetric as expected.

2.3 STIFFNESS MATRIX

The vibration of an elastic body is a function of the stiffness £/ as well as its
mass. As the stiffness is increased, in general it may be stated that the frequency of
vibration increases. The stiffness of a structural system is a measure of its resistance. A
typical member #f has six degrees of freedom, which are chosen as in Figure 2.4. A
transformation matrix that includes rigid body motion in the degree of freedom of a
system will be introduced in this section. The stiffness matrix can simply be obtained by

transformation of the element flexibility matrix obtained in the previous section.

2.3.1 STIFFNESS MATRIX OF A BEAM ELEMENT

The degrees of freedom for a sandwich beam element should be selected to allow

for flexural deformations and rigid body motion. The six-degree of freedom member ij

as shown in Figure 2.4 of nodal load forces, R that includes the rigid body motions has

the following relationship with Q
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Reu=BaiQ iy (2.41)
where B is the force transformation matrix that can be derived by consideration of
equilibrium.
/L YL YL /L]
1 0 0 0
B = 0 ! 0 0 (2.42)
— —'l/L -__I/L _I/L —l/L --------------------------------------------------- -
0 0 1 0
0 0 0 1
Q =M, M MyM,{ e (2.43)
R =W, MuM,V, MyMyE e (2.44)

where V' is the total shear at the end i and i and all other notations carry their usual

meanings.

V=V 4V, V0 e (2.45)
M, =M, +M; (2.46)
The nodal displacements corresponding to {R} are

r= {vl. b, v, v, ¢ vj} ................................................................. (2.47)
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Figure 2.4 Sandwich Beam Element with no Restraint

By definition, the stiffness matrix K relates the nodal displacements to the nodal
forces R. The following relation can be used to transform the already derived flexibility
matrix of Eq. 2.38 and Eq. 2.40 to the 6x 6 stiffness matrix K and R = Kr corresponding

to the degrees of freedom of the beam element.

K = Bf'B’

Like the flexibility matrix, the stiffness matrix will result as a non-diagonal one

and thus referred to as Static coupling. The stiffness matrix K has coefficients k ; that

represent the elastic restraining force at i developed by a unit displacement x ; given that

all other coordinate displacements are zero. From Eq. 2.21 and Eq. 2.22, the displacement

vector q corresponding to Q is

= BT e (2.49)
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2.3.2 STIFFNESS MATRIX INCLUDING AXIAL ACTION

It has been assumed in the previous sections that the resultant axial force is zero.

Nevertheless, the possibility still exists for a non-zero resultant axial force and the

necessary modifications to include this effect to the established expressions are included

in this section. Figure 2.5 shows the unrestrained sandwich beam element that includes

axial displacement.

The forces and displacement equations that includes axial action, corresponding

to the degrees of freedom for a sandwich beam simply supported at its ends can be

written as
Q =My MMy M, Nf e (2.50)
q ={¢i v, Y u} ............................................................... (2.51)

where N = the resultant axial force

TV,—___-> y

Qs

M,

Figure 2.5 Sandwich Beam Element with no Restraint including axial effect



u = the axial deformation of the section

The flexibility matrix is refined to 5x5 and the last element is known as the axial

flexibility coefficient and is written as

The set of forces corresponding to the degrees of freedom of the sandwich beam element

including axial effect are

R=W,N, My MV, N, MyM{ oo (2.53)

and the corresponding nodal displacements corresponding to these degrees of freedom

arc

i

F SV, U B ViV, U .V oo e ea e (2.54)
AR S R RO Bl B

To include the axial effect, the force transformation matrix that transforms the flexibility

matrix to an 8 x 8 stiffness matrix is



YL YL YL YL o
0 0 0 0 -1
1 0 0 0
0 1 0 0
-1/L -1L =YL -1/L
0 0 0 0
0 0 1 0
0 0 0 1

S o - O O O

The stiffness matrix can now be established with the aid of Eq. 2.48.

2.3.3 DEGREES OF FREEDOM

A member has to be free of supports within its span in order to avoid the
introduction of unknown reaction forces; every member must be continuous since each
member has its element matrix associated to their material properties and dimensions.
Members and nodes together form the complete system and the support conditions are
specified by restraining the nodes. The deformed shape of the sandwich beam system has
to be consistent with the support conditions as well as the member connection types.
Once the members are connected together, they will be matched with the nodal

displacements.

The isolated members, Figures 2.3 and 2.4 are members of a complete system
whose internal forces depend on their loadings. The member-end shears and moments
may be thought of as external forces acting on the member ends. The displaced positions

are represented by the end displacements and the corresponding forces of shear restrained
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Figure 2.6 Sandwich Beam Element’s degrees of freedom

element Figure 2.3 are as indicated by Eq. 2.21 and Eq. 2.22 and the unrestrained element
model Figure 2.4 are as indicated by Eq. 2.44 and Eq. 2.47; Figure 2.5 includes axial
vibration effects and its degrees of freedom and corresponding force are as indicated by

Eq. 2.54 and Eq. 2.53.

To ensure that the solution satisfies compatibility as well as equilibrium and
material properties throughout the system, it is seen convenient for the system model to
be an assembly of members interconnected by nodes. The degrees of freedom of the
system must be sufficient to describe the deformed shape of the system as well as the
deformations in the members. The degree of freedom corresponding to the end actions for

the sandwich beam element is as shown in Figure 2.6.
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2.3.4 SYSTEM STIFFNESS MATRIX

In finite element methods, a system is modeled as an assemblage of finite
elements and hence, the stiffness matrix for the system is assembled from that of the
elements’ stiffness matrices. For this assemblage of individual elements to represent the
structure adequately, there must be geometric compatibility at the elements nodes, 1.¢.,
the displacements at the nodes shared by several elements must be the same for every
such element. Moreover, the corresponding nodal forces must be statically equivalent to

the applied forces.

The equation of motion of the complete system can be obtained by an assembling
process that amounts to expressing the potential energy (i.¢., for the stiffness) and the
kinetic energy (i.e., for the mass) in terms of contributions from the individual elements.
The potential energy of a system consists of the strain energy stored in elastic elements,
and the energy, which is a function of the distances between system masses and some
arbitrary datum. Thus, the potential energy which is a function of the system’s resistance,

accounts for the system’s stiffness.

The potential energy can be written in the form
1 & (AT (- 1 (T (-
V(Z)=52{q} H {q} = > {r} [K} {r} FEV e (2.56)
e=1 e e e e=l e e e

where
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is the symmetric stiffness matrix for the complete system. Because of static couplingg, the

final stiffness matrix is expected to be non-diagonal.

The direct stiffness method is employed in the analysis as this has gained
popularity for the solution of structural problems due to its simplicity and amenability to
computer analysis. In the direct stiffness method, the element matrices of individual
elements are transformed from their local coordinate to global coordinates. The element

matrices are then superimposed in the global coordinate to obtain the system matrix.

2.3.5 DISPLACEMENTS AND STRESSES

Consideration in this section will be made for the case of a sandwich beam

subjected to bending only. The flexibility equation for a general element is written as

Qua = FagQuat G coeemmemmeeee oo ee ettt (2.58)

where the vector q,, contains the nodal displacements due to member loading on a

simply supported beam with no end-shear restraint (Fig. 2.3),

? the principle coordinate is not the only coordinate system used to describe such system
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The vector of Fixed-end forces Q §, is found by equating Eq. 2.52 to zero such that

Q0 = o e (2.60)

The number of component displacements and forces can be adjusted accordingly
to include axial translational effects as discussed in Section 2.3.2. For use in the direct
stiffness matrix the vector of fixed end forces due to member loading is obtained by

transformation as;

The final member end forces are given by the relation

The stresses can be calculated at a nodal point 1, directly from R and r as,

Mdi

B o 2.1
_ Dy

n (51), M o (2.63a)
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and

P 2.63b
72 (EI)A, 7 ( )

Solutions for sections not at the nodal points can be obtained by using earlier
equations in Section 2.1.2 in conjunction with the influence functions generated from the
previously presented basic solution function in Section 2.2.1. Alternatively, these
solutions can also be obtained by interpolation of the foregoing solutions of the known

nodal points.

2.4 MASS MATRIX

As mentioned in earlier chapters, the vibration of a body may be classified as
either forced or free. Initial conditions or disturbances on a structural system can cause
the structure to vibrate. The conditions generally manifest themselves as an energy input
such as velocity imparted to the mass of a structure and thus associated to its kinetic
energy. As a result of the system’s distributed mass, inertia forces are developed in the
system; the mass of a Sandwich beam is a measure of its inertia'®. The mass matrix is a

very important requirement in the dynamic analysis of a structural system.

In the case of free vibration, the resulting structural vibration occurs in the
absence of any externally applied forces. A body vibrating freely (that is, without

impressed vibration from an outside source) does so at one or more of its natural

10 The resistance to a change in motion
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frequencies. Since, there is no external excitation acting on the structure, the vibration
diminishes with time as the energy input of the structure from the initial conditions

eventually is dissipated.

The formulation of a consistent mass matrix needed for dynamic analysis will be
presented in this section. The procedure is similar to that used by Ha and Tan [27] for
continuum shear walls. The mass matrix is consistent when both the mass matrix and the
stiffness matrix are derivable from the same shape functions. To derive the mass matrix,
we need shape functions, which however were not directly used in the derivation of the
stiffness matrix. The shape functions will be established in such a way that they facilitate

the numerical evaluation of the mass matrix by numerical integration.

In an attempt to improve the accuracy of the dynamic analysis as it is affected by
the mass matrix, a consistent mass matrix construction is investigated, that accounts for
the actual distribution of mass throughout the structure. The total kinetic energy T of the
beam element is a contribution of the kinetic energy due to the vertical translation,
rotation and axial translation of the Sandwich beam. The third part of the kinetic energy
has been neglected in most of the existing sandwich beam theories. In order that this
theory is appropriate for the general class of sandwich beam element, the axial translation
energy is taken into consideration in the vibration analysis. This is true since the axial
kinetic energy increases as the possibility of the extreme layers sliding apart increases,

which will be evident from the formulation. Thus the total kinetic energy is formulated as

2 2

L 2 L 2 L ) )
T =%_"p(A1 +A4,)v dx+%j‘p(ll +1,)vs dx+%fp(Al ur+ Ay u2)dx i (2.64)
0 0 0
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where, the three integrals represent the contribution due to, respectively, the transverse

translation, rotation and axial action. The term v denotes the time derivative of ¥(x); v,
denotes the derivative of v(x) with respect to x; p is the mass density and with the
area A = A + A,; and the area moment of inertia about the neutral axis /, = I, +1,, Eq.

2.64 can be written as

2 2

lL 2 1L 2 lL ) .
T:E_(.;pAv dx+-2—£p1fvxdx+5£p(/11 Uy + Ay UMK oo (2.653)

Eq. 2.65(a) can be written in matrix form as

Lly 0 I 0 0 '
lj Vs Pl O (2.65b)
200 (o o pa 0l

Ll Lo 0 0 p4

Uz

The above equation will lead to mass matrix once the displacements are expressed in

terms of nodal displacements via shape functions.

2.4.1 ELEMENT MASS MATRIX DUE TO TRANSLATIONAL KINETIC ENERGY
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Consider the sandwich beam element displaced from the initial position as shown

in Figure 2.7. The displacement function P is due to the nodal forces {0} . Tt can be

found as the sum of the product of the nodal forces and the displacement functions due to

unit forces:
wx) = ZQig,. = 80 e (2.66)
where

Q,, force at degrees of freedom for a simply supported element as shown in
Figure 2.3

g, , displacement function due to unit load applied O, as shown in Figure 2.3

the subscript v represents quantities associated only with the restrained Sandwich
beam

From the basic equation for displacement or stiffness method analysis:

From Eq. 2.41, the force transformation matrix can be incorporated as

R = BO e (2.68)

or simply written in the form
Q= BIr e (2.69)

Substituting for q in Eq. 2.67
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Q = B T e (2.70)

Substituting for Q in Eq. 2.66

Wx) = g f'BTr = NTr e, (2.71)
in which
N7 = g £7'B7 (2.72)

Eq. 2.72 defines the shape function in a manner consistent with the displacement

V(x
v
(a)
/ Vy
X
Vi ”L“(sz"'vl)'H’l
X
T
(a)

Figure 2.7 Sandwich Beam Element’s displacement (a) Restrained
(b) Unrestrained
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functions used in the derivation of the flexibility matrix. It is very important to impress
the fact that the rigid body motionv, and v, (Fig. 2.7) are not yet included in this

equation. Note also that the transformation matrix in the above equation can be
represented as shown in Eq. 2.42 and 2.55 depending on whether the axial vibration

effect is included in the analysis.

The unit load deflection function g, (x) can be derived numerically by using the

displacement function v(x) (i.e. Eq. 2.25). The function g, (x) can be written in the

following way

g, (x)=g,(x)+ gﬁ(x)+ gy (x)+ gﬁ(x)+ goX) (2.73)

where the influence function g, (x) correspond to the loading condition specified by

My=M, =1 andM ; =0, .cooorriiiiiii (2.74)
g (x) correspond to the loading condition specified by
My=M,=1and M, =0, ...oooooooiiiiiii (2.75)

and g, (x) is solution due to member loading acting over the simply supported element

of Figure 2.3. The influence functions for the actions at j are obtained by symmetry, i.e
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by change of variable;

The displacement function g(x) due to unit load applied at the degrees of freedom of a

simply supported beam is as shown in Appendix B.

The shape function N’/ derived for the sandwich beam so far corresponds to the
restrained element in Figure 2.7(a). The final shape function matrix N must be corrected
for rigid body motion v, and v, corresponding to the first and fourth degrees of freedom
respectively, as shown in Figure 2.7(b). Two degree of freedom adjusted for because of
rigid body motion at both ends (for a uniform bar element undergoing uniform

deformation) to the already existing shape function matrix.

Wx) = NTEHN LV F NV, oot (2.78)
vl 71 vd "4

The shape functions needed to correct for rigid body motion are linear and are given as

No = 1o%] e (2.79)
Niy = % e (2.79b)
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Eq. 2.66 can therefore be represented as

V. = N7 (2.81a)
Vo= N F (2.81b)
Vo = N F (2.81¢)

where N _ 1s the first derivative of the shape function N with respect to x.

Using the preceding equations, the first term in Eq. 2.65, the translation mass term M,

can be extracted as indicated below:

L ) L , ) T .
T, = ljvavdx = lijrTNTNrczx _ 1, M, F oo, (2.82)
24 25 2
The Translational mass matrix can be written as
L
M, = pAJ' NTNAY e (2.83)
[}
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2.4.2 ELEMENT MASS MATRIX DUE TO ROTATIONAL KINETIC ENERGY

In a similar way, the rotational mass inertia of the beam element, M, can be

extracted as indicated below:

17 : 17 T 1- :
T, = Ejvxp]fvxdx = 5g,[ﬂfr NINrds = —r M7 (2.84)

0

The Rotational mass matrix is written as

2.4.3 ELEMENT MASS MATRIX DUE TO AXIAL KINETIC ENERGY

For axial deformation, in-plane displacement occurs at the mid-plane of the
individual layers. Starting from the bottom layer, these displacements can be eliminated

layer by layer thereby leaving those associated with the top and bottom to represent a

degree of freedom. The velocity components ur and u, of Eq. 2.66 can be found by
relating u, and u, to the nodal displacements vector r through the use of the rotation

function ¢(x). It can be easily shown from Figure 2.1© that:

U, = Uy +did (2.864a)
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where the term in #, contains the uniform stretching of the element at both ends and d,

and d, are the distances from the centroid of the Sandwich beam element to the centroids

of the top and bottom face sheets.

By following the same procedure used in the derivation of the shape function N, a

similar set of shape functions N ; can be established:

Ppx) = g, 8"B'r = N,r (2.87)
in which
N, = g, 07'B7 (2.88)

Similarly g ,, the rotation function can be generated numerically by using the following
¢

relation

g¢(x)= g,,,di(x)+ " (x)+ & (x)+ gg_,ﬁ(x)+ g¢0(x) .................................... (3.89)

The fifth term, which is the influence due to member loading, is not needed for deriving
the mass matrix. Applying the loading conditions given by Eq. 2.74 and Eq. 2.75, these
terms can be obtained as given in Appendix C.

Using Eq. 2.87, Eq. 2.86 can be written as
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u, = uy—d, N, r et (2.90b)

u, = (l—%ju1+Lu4 ................................................................ (2.91)
where

N, = {o,p%,o,o,o,%,o,o} ..................................................... (2.92)
e =  N,oTU (2.93)
Eq. 3.90 then becomes

u, = N,r+dNyr (2.94a)
u, = Nr—d,N,r (2.94b)

Taking the time derivative of the previous equation:

Extracting the last term of Eq. 2.66 and then making use of the preceding equations, the

term 7, can be expressed as
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L . .
T, = g!(/‘% ”12+A2 ”g)dx
0
L . . . .
- gI[A](Nar+le¢r)2+A2(Nar—-d2N¢r)2]dx ...................... (2.962)
0
Pl ‘
T =  ZV[A4r"NIN,r
3 2_(‘)‘[ a a

+ (Ad] + A,d2)rT NIN,

o 2Ad, — Ady))rT NN FIX e (2.96b)
T, = -.rTMaln-;-r'T M =1 MaF oo, (2.96¢)
L
Malszj NINLAX e (2.97)
0
L
M= p(4d;] + 4,d])|[ NINydx i (2.98)
0
L
M =2p(4d, ~ 4,d;)[ NINdx o, (2.99)
0

The Axial mass matrix can be written as

M = M/ +M_, +M_, (2.100)
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By summing masses from translational, rotational and axial kinetic energy, the final mass

for the element can be computed from the following equation as;

.......................................................... (2.101)

244 SYSTEM MASS MATRIX

Since the degree of freedom for the element is a subset of the degree of freedom of the
system, the consistent mass matrix for the system is obtained in a way similar to
mentioned for the stiffness matrix. Whilst in the stiffness matrix, the potential energy
accounts for the system’s stiffness, here the kinetic energy accounts for the system’s
mass. The kinetic energy of the system is a function of the system masses, thus the

kinetic energy can be written in the form

14— ! e 1 & |- ' S0
(@) = 52 g [m} ar = S [M:| r F=0  e.(2.102)
e=1 e e=l e

[M] = i{M} ......................................................... (2.103)
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is the symmetric mass matrix for the complete system, which is obtained by a simple

addition of the extended element mass matrices. The resulting mass matrix M has

coefficients m; representing the mass inertial load at coordinate i developed by unit

acceleration x; =1. The final mass matrix will be non-diagonal therefore referred to as

dynamic coupling”. As before, the direct stiffness method is employed in this section to

obtain the system mass matrix.

" Non-diagonal mass matrix due to z , ¢ and/or x
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CHAPTER 3

SOLUTIONS FOR SANDWICH BEAM AND FRAME

SYSTEM

This chapter has two sections; one section presents the standard eigen-value
formulation for free vibration, and the other concerns with the implementation of the

present theory to the general class of sandwich beam and frame systems.

3.1 FREE VIBRATION FREQUENCY FOR SANDWICH BEAMS

Any structure possessing mass and elastic properties is subject to vibration. When
a system is displaced from its static equilibrium position and then released, it vibrates
freely with a frequency that depends upon the mass and stiffness of the system. For an
ideal elastic structure (one with no internal damping force), the structure may vibrate for
an indefinitely long period of time after excitation. In areas of the world where
carthquake activity is a matter of record and may reasonably be anticipated in the future,

natural frequencies of vibration of new structures must be considered as a major factor in
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the design procedure.

An elastic body may have infinite number of modes of vibration. In a free
vibration mode all particles are vibrating at the same frequency. Since each frequency
requires a coordinate to define the particle’s position at any instant, it follows that the
system has infinite degrees of freedom. A dynamic system can take several mode shapes
that are associated with different frequencies. Each mode shape can be described as a
fundamental set of special deflection form by means of which any general deflection of
the structure may be expressed. The mode shape depends primarily on the end condition.
The configurations for the first three modes of a sandwich beam, simply supported at

both ends are as shown in Figure 3.1. The number of independent coordinates required to

-
- -

First mode Second mode

Third mode

Figure 3.1 First three mode configuration of a simply supported sandwich
beam
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describe the configurations of a system during its vibration depends upon the number of
degrees of freedom of the model used to represent the system, which corresponds to the

various natural frequencies.

The lowest frequency of vibration is called the fundamental frequency and the
highest frequencies are termed harmonics. In many problems, especially those dealing
with structures, the fundamental mode is of particular importance because the amplitudes

of vibration are the largest.

3.1.1 SYMMETRIC AND ANTISYMMETRIC MODES IN SANDWICH

CONSTRUCTION

In the case of sandwich construction, the solution of the eigen-value problem falls
into one of two types, namely, symmetric (a displacement pattern that is symmetric with
respect to the beam’s center line i.e. the two faces moves 180 degrees out of phase),
Figure 3.2(a) and the antisymmetric mode (a displacement pattern that is antisymmetric
with respect to the beam’s center line i.e. the two face sheets moves in phase) Figure
3.2(b). Since, the assumption in our theory is that of a perfect bond between the core and
the face sheets thus the type of mode shape expected is one that is global in behavior

(antisymmetric).

3.1.2 EIGEN VALUE PROBLEM
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Any linearly elastic continuum will have natural frequencies and modes
ofvibration that can be investigated by considering the mass of the body as well as the
stiffness. The differential equation of motion for a system in which structural damping or

viscous damping is either not present or considered insignificant and also the applied

force being zero is written in a compact form as

where M = the mass matrix of the system

K = the stiffness matrix of the system

=
Nt
I

the elastic displacement of the beam/frame system

the acceleration of the beam/frame system

0
N
i

(=)
St
ft

the null column matrix containing only zero elements

The preceding equation represents the general formulation of a wide range of
problems in dynamics of structures for free un-damped system. In what follows, Eq. 3.1
serves as the fundamental equation for the formulation of the equation pertinent to

determining the natural frequencies of the n-degree of freedom sandwich beam systems.

A very unique characteristic of the mass and stiffness matrices of linear elastic
systems is that they are symmetric, that is the elements of the mass matrix should indicate

that m; =m,, and the elements of the stiffness matrix indicates k; = k;; . Given that the
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mass matrix is non-diagonal and symmetric and further assuming that the motion is

harmonic'?, so that x, = X ,e’”, and that the relationship existing for the amplitude

{x} = —w* {x}, obtained from the equation of motion is written as

Kix} = o'™{x} 3.1
or
M7K{x) = 0% {8} e (3.3)

where @ = the circular frequency of vibration, rad /sec

f= %7; , frequency in Hz

X = the amplitude of the motion

All other terms carry their usual meaning

The relationships among the amplitudes x are called eigen-functions or

characteristic functions. The squares of the natural frequencies and corresponding sets of
coordinate {x} values describing the normal mode shapes are referred to as eigen-values
and eigen-vectors (characteristic vector, or modal column) respectively, and they are one

of the fundamental importance in the analysis of free vibration of multiple degree of

freedom system.

12 A motion is harmonic when the acceleration of the mass is proportional to the displacement, with
damping neglected
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a) Symmetric

a) Antisymmetric

Figure 3.2 Vibration modes of Sandwiéh beam

3.2 IMPLEMENTATION OF THE THEORY TO THE GENERAL CLASS OF

SANDWICH BEAM AND FRAME SYSTEMS

In this section, it will be shown that the developed Sandwich beam element is
applicable to the analysis of a general class of Sandwich beam and frame systems. In
order to extend the beam element to apply to frame systems the overall axial action is
superposed with the bending action resulting in an 8 by 8 element stiffness matrix that

can be transformed into global coordinates.
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3.2.1 ELEMENT MATRICES FOR SANDWICH BEAM AND FRAME SYSTEMS

The preceding chapter was centered on the typical beam element; this section put
forward adjustments required for the theory to be good for the general class of beam and
frame systems. Various types of elements are used in the finite element analysis of
different types of systems. The elements of the element matrices are written such that the
axial and bending deformations are accounted for. The task at hand is the need for the
derivation of the stiffness and mass matrices such that the boundary conditions, axial
thrust and the inclination of the sandwich beam and frame element are taken into

consideration.

3.2.1.1 AXIAL THRUST

In a bid to generalize the theory to that of general class of sandwich beam and
frame systems, the theory must incorporate the uniform stretching of the entire frame

section. The following modifications in the formulation are deemed necessary.

The contribution of the axial thrust will be significant and will appear in the

flexibility matrix f and geometric stiffness matrix K, of the following stiffness relation;

K = Bf7'B7 4+ K[ e (3.5)
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where K ., the geometric stiffness matrix, accounts for the secondary moments produced

by the thrust P and is written as;

1 00 0 -1 0 0 O]
0 000 0 00O
0 000 0 00O
PO 000 O 000
Ko = | (3.6)
Li-1 000 1 000
0 000 0 OO0 O
0 000 0 00O
0 000 0 0 0 O
"1/ 1L 1L 1L O]
0 0 0 0
1 0 0 0 0
B = 0 : 0 R I (2.49)
-1/L -1/L -Y/L =1/L 0O
0 0 0 0 -1
0 0 1 0 o0
0 0 0 1 0

The eight degree of freedom element is as shown in Figure 2.5. From the previous
equations, it is evident that the degree of freedom has increased by two. The vectors of

nodal displacements and nodal forces are, respectively;

r ={v,. u, . v, vou;, ¢ v]} ........................................................ (2.48)
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R={, N, MuM,V, Ny My Mg o oo (2.47)

3.2.1.2 COORDINATE TRANSFORMATION

The second issue is that of the relationship between the Jocal and global axis. It
can be recalled that according to the finite element method, the dynamic system is
regarded as an assemblage of individual discrete elements. The displacement components
at the joints of any individual elements are chosen in a direction that depends on the
nature of the element under consideration. The individual elements can be part of
structural members and the structural members in turn can be part of a more complex
structure, such as a frame. The individual elements have to be treated such that they can
have different orientations in space necessitating the transformation of local coordinates

into global coordinates.

The orientation of the global axis is arbitrary but is generally selected to be
parallel to as many as possible of the local axes of the system elements. To make the
displacements and forces compatible at a node so that they can be matched or added up, a
transformation of the element stiffness matrix has to be performed. The following

relations transform the element’s displacements and forces from global axes to local axes;

and in explicit form;
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Vi

- v;

Uu;

— ui

¢i ¢

v, v,

) = [T] 47 (3.8b)
V; Vj

u, "

y J

¢, v

Vj

Q7 = TR” e (3.8¢)

From Figure 3.3, it can be seen that the local nodal displacements v;, u:, ¢;, vi, v;,

u;,¢; and v; and global joint displacement v, u;, 4,, v, v, u;, ¢, and v, for nodes

i and j are related by;

Vi = v,cosa-—u;sina

u; = v sina+u,cosa

B et ettt it (3.9a)
¢i = ¢i

vi = v,

and

vi = v, cosa—ujsina

u; = Vv,;sina+u;cosqa

e (3.9b)
¢j = ¢j
1_/']' = Vv
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respectively.

The member global stiffness and mass matrices is obtained from the following relation;

K” = TTEK™T oo, (3.10)

M” = T M T e (3.11)

where K™ and M™ are the element’s global stiffness and mass matrices, “K” and “M”
are the element’s local stiffness and mass matrices and T is the matrix of direction

cosines and is written as;

<
=
=
=
<
i
RS
.
<

“'lcosa —sina 0 0 O 0 0 0
“|'sihna cosa 0 0 0 0 00
%0 0 0 10 0 0 00
T = " 0 0 o1 0 9 S (3.12a)
v;| O 0 0 0 cosa ~-sina 0 0
L_:j 0 0 0 0 sina cosa O O
;5' 0 0 0 0 0 0 1 0
Lo 0o 00 0 0 0 1]
Vj

where « is the angle that the element makes with the global horizontal axis as shown on
the Figure 3.3. When uniform axial stretching is excluded, the transformation matrix for

the six degree of freedom element becomes
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Yifcosa 0 0 0 0 0]
%00 10 0 00
vl O 01 0 00
T = T, (3.12b)

v;| 0 0 0 cosa 0 O
| 0o 00 0 10
¢,

Lo 00 0 0 1]
Vj

3.2.2 BOUNDARY CONDITION

Boundary condition affects the natural frequencies of a structural system vibrating
about positions of equilibrium. There is some form of joint supports of some type in a
structural system that prevents movement/displacement at one of its degrees of freedom,
which must be accounted for in the analysis. So far, the joints of the structure have been
treated with the assumption that they are free in all direction and can be referred to as a
system composing of natural joints. Boundary conditions for sandwich structure may be
seen to differ from that of ordinary structures particularly because of the pronounced
shear behavior of sandwich structures. Sandwich beam and frame systems boundary
conditions can be classified as either soft or hard depending on whether shear is allowed

or prevented at a support.

Boundary conditions can now be imposed on the system to specialize the problem
and the resulting element matrices will be an appropriate one to be used in vibration

analysis. The introduction of constraints to a structural system reduces the degrees of
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Figure 3.3 Sandwich Beam Element’s Local Coordinate

freedom of such system, which in turn increases the stability of the system. It is true in
this case that one, all or none of the four-degree of freedom i.e. deflection or vertical
translation, longitudinal or axial translation, slope or first derivative of the deflection and
the rotation of the section can be restrained depending on the constraint condition. It was
clearly shown in previous chapters that each node comprises of three/four degree of
freedom and these displacements are either allowed or prevented depending on whether
the boundary condition is free, simply supported and/or clamped/fixed. As the stability of
the Sandwich beam is increased by an increase in the restrained directions, the energy is
transferred to the system thereby causing an increase in the natural frequency of

vibration.
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3.2.2.1 FREE END

At the free end, the node is free to displace. However, if the end has a rigid-insert
the transverse shear strain becomes zero. This type of boundary condition imposes the

equality of the rotation ¢ and the slope V', in according to the following:

3.2.2.2 SIMPLE SUPPORT

Consider a beam with a simply supported end where there is no restraint against
deformation due to shear; the condition here is that there is zero transverse displacement

(deflection) as shown by the following boundary condition;

The preceding boundary condition is illustrated in Figure 3.4(a) by allocating zero (1.e. no
displacement) to the restrained direction. In the case where in an additional condition is
imposed such as that where the shear strain is non-existent (¥ = 0). Such a boundary
condition is imposed by, in according to Eq. 3.13, imposing the equality of the rotation ¢
and the slope v'. Figure 3.4(b) illustrates this type of boundary condition (i.e. degrees of
freedom 1 and 2 happens to be equal). In this Figure, the two rotations are assigned with

the same degree of freedom as an indication of coupling of the two nodal degrees of
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(a) ()

(%)

Figure 3.4 Practical and Theoretical Boundary Conditions for Sandwich Beam
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freedom. Note that a condition of zero moment can be directly imposed by means of the

nodal moments M, and M ,.

3.2.2.3  FIXED SUPPORT

Given the condition that the end is clamped, one can say that the node has been

restrained in all direction.

In the case of a clamped support on roller (Fig. 3.4©) the slope V' and the rotation

¢ are constrained (i.e. v #0, v'=0 and ¢ = 0). Note that apart from the practical

boundary conditions that exist, it is possible theoretically, to impose only one of the
degrees of freedom corresponding to the sandwich beam’s end moment. (only one of the
last two conditions of Expression 3.15 can be imposed), that is either the faces are

allowed to rotate without translation (Fig. 3.4(d)) or the faces translate without rotation

(Fig.3.4(e)).

There are theoretical possibilities to impose various/different support conditions
to the different element at a support and this may cause a change in the sandwich beam’s
response. One would expect that as more restraint stiffens the system, the natural

frequency is increased.
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CHAPTER 4

NUMERICAL EXAMPLE PROBLEMS OF

SANDWICH BEAMS

This chapter presents numerical examples of sandwich beam analysis using the
developed element matrices from the previous chapters. Numerical solutions are
computed using CMAP (version 6.6.8) programming package run on an IBM-compatible
PC under Windows Operating System [14]. CMAP provides many built-in functions for

quick and easy implementation.

Several numerical examples will be presented later on in this chapter on Sandwich
beam and frame systems incorporating the ideas explained in previous chapters. The
reason for the numerical investigation is to verify the validity of the element matrices, the

convergence characteristics in both static and dynamic problems

4.1 STATICS
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The validity of the stiffness matrix and its ability to produce exact solution for the
static case has been established [25]. For the present implementation, it is of interest to
verify its correctness. For this purpose, test cases have been introduced to verify that;

1. The solution is exact using one or more elements
2. The result approaches those predicted by Engineering Beam theory when the

core’s shear modulus increases.

It is not surprising that the results produced by the element were found to be exact
because the element stiffness matrix is exact and all the boundary conditions and inter-
element compatibility are satisfied. Solutions by this theory were compared with results
from other available exact analytical solutions by [1], [10] and [13]; the solutions were
identical. Even though one member element is enough to produce exact results as
indicated in case one, as a further test for consistency of the theory and its
implementation, the number of elements was increased up to three and identical results
were obtained for all the different tests. As a final test, the modulus of elasticity of the
core material is increased to a very high value, up to six times the elastic modulus of the
faces. The solutions produced for deflection and stresses approaches that by a
homogenous isotropic beam since the sandwich beam with a stiff core behave as a single
unit. The solution to the deflection and stresses can therefore be referred to as exact. The
stiffness matrix employed in this work has been proved to be accurate, what remains to

be investigated is the validity of the mass matrix.

4.2 DYNAMICS
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The natural frequencies of vibration will be determined numerically using the
developed theory for sandwich beams and frame systems having different combinations
of thickness and physical properties of the material components and also variable
boundary conditions. For practical applications, the higher frequencies are usually not of
prime interest since the lower frequencies carry most of the system energy. Numerical

results in this section will be presented for the lower modes.

4.2.1 NUMERICAL RESULTS FOR SANDWICH BEAM

Numerical verification of the present theory “Dynamic analysis of sandwich beam

and frame systems” will be presented for the following
e Consistency and Convergence of Solution
e Accuracy of the Theory
e Axial action effect
e Effects of Core shear modulus

e Effects of Dimensional factors

The Cmap program with its program listings written for numerical testing of the various

possibilities outlined above can be found in Appendices E, F and G.

4.2.1.1 CONSISTENCY AND CONVERGENCE OF SOLUTION
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To investigate the consistency of the theory, the program written for sandwich beam in

appendix E is used to produce results for comparison with the homogeneous beam

Table 4.1 Frequency Parameter 1, for sandwich beam with a core of high shear modulus

(modeling a homogenous beam) for different support conditions

Number of Elements

n 6 7 10 12 14 18 24 30 | Exact

ol 1501 3176| 3.16]3.155|3.150 | 3.148 | 3.145 | 3.144 | 3.143 | 3.1416
£ 8 2 | 6.525 | 6.471 | 6.382 | 6.353 | 6.335 | 6.314 | 6.301 | 6.295 | 6.2832
2B 39 1 9056 |9.925|9.731 | 9.647 | 9.592 | 9.528 | 9.484 | 9.463 | 9.4248
Eo ! 4" | 12.6413.16|13.19 | 13.05 | 12.94 | 12.80 | 12.70 | 12.65 | 12.566
25 5" 11387[15.33|16.61 | 16.52 | 16.38 | 16.15 | 15.97 | 15.88 | 15.708
£ § 6:: 16.32 | 16.30 | 19.61 | 19.93 | 19.86 | 19.57 | 19.29 | 19.14 | 18.850
Sal| 7 19.05 | 21.73 | 23.00 | 23.26 | 23.04 | 22.67 | 22.44 | 21.991
22 8" 22.93|25.38 | 26.38 | 26.52 | 26.09 | 25.79 | 25.133
o ] oF 23.50 | 26.94 | 28.94 | 29.91 | 29.56 | 29.18 | 28.274
» | 10" 27.23|27.84 | 30.79 | 33.08 | 33.04 | 32.61 | 31.416
132 1.87411.87411.874|1.875|1.875|1.875|1.875 | 1.875 | 1.8751

2" | 4775 4.753 | 4.723 | 4.714 | 4.708 | 4.703 | 4.699 | 4.697 | 4.6941

E | 39 | 8.223(8.143(8.006 | 7.961 | 7.933 | 7.902 | 7.881 | 7.871 | 7.8548
g3 4% 1711621164 |11.4011.29]11.22|11.13 | 11.07 | 11.05 | 10.996
o c 50171375 14.69 | 14.90 | 14.74 | 14.61 | 14.43 | 14.31 | 14.25 | 14.137
e 6" | 1512 | 16.23|18.28 | 18.23[18.07 | 17.81|17.59 | 17.48 | 17.279
og| 7™ 17.64 | 21.07 | 21.61 | 21.57 | 21.26 | 20.93 | 20.76 | 20.420
S18" 22.76 | 24.53 1 24.94 | 24.75 | 24.33 | 24.07 | 23.562
g" 23.48 1 26.60 | 27.94 | 28.22 | 27.77 | 27.44 | 26.704

10" 25.20 | 27.75 | 30.26 | 31.59 | 31.26 | 30.84 | 29.845

15U | 4.781 | 4.771 | 4.752 | 4.746 | 4.742 | 4.737 | 4.734 | 4.733 | 4.7300

2" | 8.058 | 8.053 | 7.981 | 7.947 | 7.924 | 7.897 | 7.878 | 7.869 | 7.8532

E1 37 1 11.01[11.29[11.32[11.25|11.20 | 11.12| 11.07 | 11.04 | 10.996
@lgg 4" 1 713.01[13.91|14.67 [ 14.63 | 14.54|14.41|14.30 | 14.24 | 14.137
& | 597 | 13.97 1560 |17.76 | 17.98 | 17.94 | 17.76 | 17.57 | 17.47 | 17.279
$s| 6" | 18.61]16.38|20.27 | 21.10 | 21.29 | 21.16 | 20.90 | 20.74 | 20.420
=o 7" 21.71122.04 |23.76 | 24.45 | 24.57 | 24.27 | 24.05 | 23.562
Sl 8" 23.08 | 25.80 | 27.21 [ 27.93 | 27.68 | 27.40 | 26.704
gh 23.54|27.16 [ 29.44 | 31.12|31.11 | 30.78 | 29.845

10" 31.04 | 27.94 | 31.08 | 34.02 | 34.53 | 34.20 | 32.987
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—x-12 =14
—a— Exact

Frequency parameter
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Figure 4.1 Convergence of the natural frequency parameter to the exact
Value (Homogenous beam) for a Simply supported sandwich

—— B R

10 =12 =14
-—18 —+—24 —30 -s—Exact

Frequency parameter

0 2 4 6 8 10 12

mode number

Figure 4.2 Convergence of the natural frequency parameter to the exact
Value (homogenous beam) for a Cantilever sandwich beam
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Figure 4.3 Convergence of the natural frequency parameter to the exact
Value (Homogenous beam) for a Fixed-fixed sandwich beam

situation. To achieve this goal, the core is made very stiff by increasing the shear

modulus to a very high value (up to the Elastic modulus of the face sheet material).

Following are the dimensions and material properties of the sandwich beam,
selected arbitrarily; Length of beam, / = 2.5m, thickness of core ¢ = 0.0127m , thickness

of face 11 =12 = 0.0004572m , Elastic modulus of faces E, = £, = £ =6.8x10 GPa,

Core shear modulus G = E and the density of the facial material is p = 2.680x10°

ky
m
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The natural frequency parameter for the sandwich beam shown in Table 4.1 for

comparison with the homogenous isotropic beam can be calculated by means of the

following equation.
1 p L1
El

Figures 4.1, 4.2 and 4.3 show the convergence of the natural frequency parameter

A for the simply supported, cantilever and fixed-fixed sandwich beams respectively to

the exact values for a homogenous isotropic beam. Each graph of Figures 4.1, 4.2 and 4.3

Table 4.2 Convergence of the solution [natural frequencies f (Hz)] due to Transverse and

Rotational vibration effects for simply supported sandwich beam

Modes

13(

2nd

3rd

20

5th

6[h

7th

Stﬁ

gfh

1 Oth

Number of Elements

68.84

66.33

250.8

64.37

268.7

517.2

63.34

262.0

576.9

860.0

62.76

255.3

574.5

957.6

1264

62.42

250.6

561.1

966.5

1388

1710

62.17

2473

549.3

949.9

1408

1851

2180

OOI~ND OB [WIN

62.01

245.0

539.7

930.3

1391

1878

2330

2661

10 | 61.88

243.3

532.6

913.2

1365

1861

2364

2817

3142

11 |1 61.80

2421

5271

897.8

1340

1831

2347

2855

3303

3920

12 | 61.74

2411

522.8

888.1

1319

1799

2108

2839

3347

3785

24 161.47

237.2

505.6

841.4

1223

1635

2068

2516

2979

3454

40 |61.43

236.4

501.9

830.7

1201

1596

2006

2424

2847

3275

56 | 61.41

236.2

500.9

828.4

1195

1585

1988

2397

2810

3225

64 | 61.41

236.1

500.7

827.8

1194

1583

1984

2391

2801

3213

72 | 61.41

236.1

500.5

827.3

1193

1581

1981

2387

2795

3205
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represents a sample model for a certain number of elements in the sandwich beam and

one corresponding to that of the exact results for the homogenous isotropic beam.

To study the convergence characteristics of the present theory, the simply
supported sandwich beam is used as the model for analysis. The dimensions and material
properties of the sandwich beam arbitrarily selected as follows; Length of beam,

[ =0.9144m , thickness of core ¢ = 0.0127m , thickness of face ¢1 =2 = 0.0004572m,

Elastic modulus of faces E, = E, = E = 6.8 x10 GPa, Core shear modulus G = 0.0012F

and the density of the facial material is p = 2.680x10° kg pry This model is analyzed

with increasing number of elements in a single span sandwich beam and the results

observed to check the rate of convergence.

——mode 1 —2—mode 2 —— mode 3 —<— mode 4

1200

= 1000
+

E 800
)

c 600
©
o

g 400
T

200

0

0 20 40 60 80
Number of Elements (N)

Figure 4.4 Convergence Study for the lower Modes for simply supported
sandwich beam due to translational and rotational effects
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Figure 4.5 Convergence Study for the upper Modes for simply supported
sandwich beam due to translational and rotational effects

Numerical values for the vibration frequency @, obtained from the simply
supported single span sandwich beam, starting from two members per span with
successive increase in the number of elements is shown in Table 4.2. Figures 4.3 and 4.4
shows the graphs of frequencies plotted against the number of elements used in the
sandwich beam for the lowest 8 modes. These figures are very appropriate for

convergence study of the theory.

4.2.1.1.1 DISCUSSION OF RESULTS ON CONSISTENCY AND CONVERGENCE
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The values of the 10 lowest natural frequency parameter A, of simply supported,
cantilever and fixed-fixed sandwich beams produced by the program for sandwich beam
when the core is made stiff is similar to that of a homogeneous isotropic beam as shown
in Table 4.1. As the number of elements is increased, the results approach that of the
exact solution of a homogeneous isotropic beam as indicated in Figures 4.1, 4.2 and 4.3.
The theory is therefore consistent. The sandwich beam can be modeled to behave in a
way similar to the homogenous isotropic beam by modeling the core stiff (as stiff as the

face sheet materials).

It is important to note also that the natural frequency of vibration of the sandwich
beam system depends on the end condition; as the degree of stability of sandwich beam is
increased by changing the end support condition, the energy of vibration in turn is
transferred to the system causing an increase in the natural frequency. Boundary
condition therefore continues to be a dependent factor for the natural frequency of the

sandwich beam as explained in the previous chapter.

The results shown in Table 4.2 are the natural frequency of a sandwich beam
taking into consideration only translational and rotational effects. The reduction in mesh
size tends to reduce the element stiffness while the mass remains unaltered; thus the
natural frequency is expected to decrease subsequently. From Figure 4.4, the fundamental
mode decreases monotonically while the other modes are a bit complicated. Figure 4.5
shows the natural frequency for the higher modes. The higher modes increases briefly as
the mesh size is reduced until a local maximum is reached, followed by a steady decline

until the mesh size is finest. The higher the particular mode, the higher the number of
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element for which the corresponding frequencies curve reaches its local maximum. The
phenomena behind the complication in the natural frequency results are explained in
terms of the ratio of the depth of the sandwich beam to the depth of the core (d /c) by
reference [42]. The author asserted that an increase in face thickness did not necessarily
lead to an increase in frequency, irrespective of the mode. Higher vibration modes of
Sandwich beam with less pronounced or complete neglect to axial vibration effects are

disrupted.

In the paper by Toshiro Hayashikara and Noboro Watanabe [37], it was shown

that the consistent mass matrix method can produce results to within one percent of

Table 4.3 Convergence of the solution [natural frequencies f (Hz)] due to Transverse and
Rotation and Axial vibration effects for simply supported sandwich beam

Modes

1 st 2nd 31’(] 4th 5th 6th 7th 8th gth 1 Oth

2 168.79
3 |66.31]250.2
4 |64.37|267.9|504.3
5 163.34|261.4|572.3|848.3

6 |62.76 | 254.9 | 570.3 | 940.8 | 1228
7

8

9

62.40 | 250.3 | 558.0 | 947.7 | 1339 | 1619
62.17 | 247.1 | 546.5 | 935.1 | 1357 | 1735 | 1992
62.00 | 244.8 | 537.6 | 917.3 | 1343 | 1758 | 2101 | 2324
10 | 61.89 | 243.1 | 530.7 | 901.2 | 1322 | 1745 | 2125 | 2421 | 2609
11161.80|241.9 |525.5|888.8 | 1301 | 1722 | 2113 | 2443 | 2691 | 2764
12 161.741241.0 | 521.3 | 878.7 | 1282 | 1698 | 2090 | 2433 | 2711 | 2762
24 1 61.48 | 237.2 | 504.8 | 835.1 | 1198 | 1565 | 1913 | 2229 | 2505 | 2744
40| 61.43 | 236.4 | 501.1 |825.5| 1179 | 1533 | 1866 | 2165 | 2427 | 2651
56 | 61.41 | 236.2 | 500.1 | 822.8 | 1173 | 1524 | 1853 | 2148 | 2404 | 2622
64 | 61.41|236.1{499.9 | 822.2 1172 | 1521 | 1849 | 2143 | 2398 | 2616

72 161.41|236.1|499.7 | 821.8 | 1171 | 1520 | 1847 | 2140 | 2394 | 2611

Number of Elements
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Table 4.4 Convergence of the theory [natural frequencies f (Hz)] for Transverse,
Rotational and Axial vibration effects for sandwich beam with soft core

Modes

13(

2nd

3l’d

4th 5th Gth

7th

8th

gth

10"

Number of Elements

35.45

33.42

81.22

32.67

77.09

124.2

74.65

119.8

163.5

32.11

73.23

115.9

159.9 | 198.5

32.00

72.36

113.4

155.6 | 196.8 | 229.7

31.91

71.78

111.6

1562.2 1 192.7 | 229.9

257.4

2
3
4
5 |132.31
6
7
8
9

31.86

71.39

110.4

149.6 | 188.9 | 226.6

259.3

282.0

10 | 31.82

71.10

109.5

147.7 | 185.8 | 223.0

257.2

285.3

303.9

11131.79

70.89

108.8

146.2 | 183.3 | 219.7

254.0

284.4

308.3

323.6

12 | 31.77

70.73

108.3

145.1 1 181.3 | 216.8

250.8

282.0

308.6

328.9

24 1 31.69

70.10

106.2

140.5 | 172.8 | 203.4

232.4

259.8

285.7

310.5

40 | 31.67

69.96

105.8

139.4 | 170.9 | 200.1

227.3

252.4

275.8

297.8

56 | 31.66

69.92

105.7

139.1 | 170.3 | 199.1

225.6

250.1

272.7

293.6

64 | 31.66

69.90

105.6

139.0 | 170.1 | 198.8

225.2

2495

271.8

292.5

72 | 31.66

69.90

105.6

139.0 | 170.0 | 198.6

224.9

2491

271.2

2017
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140
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100
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60
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Frequency w(Hz)
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Figure 4.6 Convergence Study for the lower Modes for a simply supported
Sandwich beam with soft core due to the three vibration effects
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——mode 5 —a— mode 6 —— mode 7 —<« mode 8

Frequency w(Hz)
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Figure 4.7 Convergence Study for the upper Modes for a simply supported
Sandwich beam with soft core due to the three vibration effects

accuracy if the number of beam segments used in the analysis is twice the number of
eigen-values required. In Table 4.2, frequency values for higher vibration modes for
smaller number of elements are not represented because they don’t correspond to the
flexural behavior of the sandwich beam. It is the number of available translational
degrees of freedom that will dictate how many degrees of freedom modes will be
considered. However, further steps can be taken to investigate the convergence

characteristics of the sandwich beam.

The developed theory assumes perfect bonding, and therefore it’s always
antisymmetric (global) response. The discrepancy in the eigen-values for the higher

modes is reduced with the introduction of axial effects in Table 4.3. It is important to note
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that the convergence characteristics can still be improved particularly for the higher

modes.

Table 4.4 shows the convergence of frequency values when the shear modulus of
the core is replaced with the value G = 0.000012F . Here, the disruption in the sandwich
beam behavior is shifted to very high modes whilst the modal frequencies considered in
this section are seen to converge monolithically. Figure 4.6 and 4.7 shows the rate of

convergence of the sandwich beam element with soft core.

The fundamental mode carries over 90% of the total energy of the sandwich beam
which is demonstrated by its very high amplitude, thus will not be expected to deviate
easily from its expected shape. It is for this reason that the fundamental modal frequency
will be used in the study of the sandwich beam’s behavior in the sections that follows.

The convergence characteristic of the model considered in this work is good.

42.1.2 ACCURACY OF THEORY

Natural frequencies of sandwich beams with various boundary conditions will be
presented in this section. Results produced by this theory will be compared with available

results from existing theories in the literature.

42.1.2.1 SIMPLY SUPPORTED SANDWICH BEAM (S-S)
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Numerical solutions for a simply supported sandwich beam are compared as

given in Table 4.5, along with other theoretical results by other authors. Following are the

dimensions and material properties of the sandwich beam used by other references in the

literature; Length of beam,/ = 0.9144m , thickness of core ¢ = 0.0127m , thickness of face

1 =12 = 0.0004572m , Elastic modulus of faces £, = £, = E = 6.89x10 GPa , Core

shear modulus G = 0.0012F and the density of the facial material is p

ky
m’’

= 2.680x10°

Table 4.5 Comparisons with other theoretical natural frequencies [ (Hz) for simply

supported sandwich beam

Mode | Present Theory Ref. Mead [53] Ref. | Ref.
N 72 Elements [52] [48] | [47]
T&R | T,R& Simpso | Trapez | Cubic
A n oidal
15t 1 61.805 | 61.805 | 56.159 | 55.996 | 56.023 | 55.996 | 55.50 | 57.5
2" | 23767 | 23762 21582 | -—
39 | 503.79 | 502.99 | 457.22 | 456.89 | 459.14 | 456.86 | 451.0 | 467.0
4" 183264 | 82715 755.05 | -
5" 112009 | 1178.8| 1087.9 | 1090.1 | 1107.7 | 1089.9 | 1073 | 1111
6™ | 15915 | 1523.0| 14403 | -
7" 119942 | 18509.5| 1802.7 | 1811.6 | 1876.3 | 1811.6 | 1779 | 1842
8™ | 24027 | 21542 | 21698 | -
o | 2813.9 | 2400.5| 2538.2 | 2555.6 | 2723.0 | 2561.3 | 2510 | 2594
10" | 3225.8 | 2627.7| 2906.2 | -
11" | 3637.7 | 2772.7| -— | 3290.7 | 3655.5 | 3329.5 | -
12" | 40495 | 2813.0| -
13" | 44614 | 2970.3| - | 3993.6 | 4707.8 | 41383 | -
14" | 48739 | 3104.1| -—
15" | 5285.8 | 3219.5| - | 5738.1 | 5937.8 | 5042.7 | -
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Table 4.6 Comparisons with other theoretical natural frequencies f(Hz) for

Cantilever beams
Mode Present Theory T. Sakiyama | Mead | Ahmed | Ahmed
N 72 Elements H. Matsuda [82] [48] [47]
and
T&R | T.R&A | o Moita [52]
1 36.509 36.5085 33.146 34.242 | 32.79 |33.97
ond 215.30 215.241 195.96 201.85 | 193.5 |200.5
3" 554.53 553.162 503.43 520.85 499 517
4" 982.64 971.365 893.28 9204 | 886 |918
50 1462.92 1415.76 1328.5 1381.3 | 1320 | 1368
6" 1969.92 | 1782.25 1790.7 1867 1779 | 1844
7" 2490.15 | 1838.91 2260.2 2374 | 2249 | 23331
g 3014.71 2211.62 2738.9 2905 | 2723 | 2824
g 3540.61 2521.98 3212.8
10" 4066.08 2774.04 3691.6 o —— |
42.12.2 CANTILEVERED SANDWICH BEAM (C-F)

Numerical solutions for Cantilever sandwich beam are compared as given in
Table 4.6, along with other theoretical results by other authors. Following are the
dimensions and material properties of the sandwich beam; Length of beam, /= 0.7112m,
thickness of core ¢ = 0.0127m , thickness of face #1 =¢2 = 0.0004572m , Elastic modulus

of faces E, = E, = E = 6.89x10 GPa , Core shear modulus G = 0.0012E and the density
of the facial material is p = 2.680x10° ke iy The agreement between the present

theory and other theories can be studied from the results of table 4.6 for a cantilever

beam.
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Table 4.7(a) Comparisons with other theoretical and experimental natural frequencies
f(Hz), of Fixed-fixed Sandwich beams

Mode Present Theory T. Sakiyama Raville's
n 72 Elements H. Matsuda Exp. Results
T&R T, R&A and [44]
C. Morita [52]
qst 10.202 10.202 8.5228 e
ond 27.959 27 959 23.359 o
3" 54.416 54.416 45.454
4t 89.141 89.141 74.460 e
gt 131.78 131.78 110.06 112.3
gt 181.88 181.88 151.89 154.3
7th 239.00 239.00 199.52 202.1
gth 302.69 302.56 252.58 254.9
gth 372.37 372.16 310.66 312.5
10t 447.65 447 25 373.34 376.0

4.2.1.2.3 CLAMPED/FIXED SANDWICH BEAM (C-C)

Numerical solutions for fixed sandwich beam are compared as given in table 4.7(a),

4.7(b) and 4.7(c), along with other theoretical and experimental results by other authors.

Following are the dimensions and material properties of the sandwich beam; Length of

beam,/ = 2.43744m,

1.82808m,

1.21872m for tables 4.7(a), 4.7(b) and 4.7(c)

respectively, thickness of core, ¢ = 0.0063475m , thickness of face ¢1 =2 = 0.00040624

m , Elastic modulus of faces E, = E, = E = 6.89x10 GPa , Core shear modulus

G =0.001E and the density of the facial material is p = 2.6873x10° k%3 .
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Table 4.7(b) Comparisons with other theoretical and experimental natural frequencies
f(Hz), of Fixed-fixed sandwich beams

Mode Present Theory T. Sakiyama Raville’s
n 72 Elements H. Matsuda Exp. Results
T&R T,R&A and [44]
C. Morita [52]
1st 18.063 18.063 15.080 e
ond 49.266 49.266 41.159 —
3rd 95.307 95.294 79.614 ——
4t 155.02 155.01 129.48 134.8
5t 227.32 227.26 189.83 196.3
g 310.94 310.86 259.67 269.5
7t 404.77 404.52 337.91 349.6
gt 507.55 507.05 423.61 431.6
gth 618.25 617.02 515.86 519.5
10" 735.91 733.67 613.70 632.8

Table 4.7(c) Comparisons with other theoretical and experimental natural frequencies
7(Hz), of Fixed beams

Mode Present Theory T. V.S.Sokolins Raville's
N 72 Elements Sakiyama ky Exp.
T&R T R&A H. Matsuda Steven R. Results
and Nutt [44]
C. Morita And Y.
[52] Frostig
[28]
1st 40.175 40.175 33.563 34.6 -—--
ond 108.17 108.17 90.364 93.1 e
3rd 205.98 205.98 172.07 177.2 185.5
4t 329.12 328.09 274.91 282.8 280.3
gth 473.47 473.01 395.42 406.3 399.4
6 635.02 633.83 530.34 544.3 535.2
7th 810.75 807.46 676.85 693.7 680.7
gth 997.48 990.60 832.43 852.0 867.2
gth 1192.92 1180.80 995.36 1017.1 1120.0
1o 1395.31 1372.98 1163.9 1187.3 1201.0
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4.2.1.2.4 DISCUSSION OF RESULTS ON ACCURACY TESTS

Natural frequency results for various boundary conditions were presented above
to check the accuracy of the theory. The deviations of the results by the other authors to
the present theory for effects due to translation and rotation are summarized below;

1. For the Sandwich beam, simply supported at both ends, the percentage difference

in the results varies from 7% to 10%

2. For the case of the Cantilever Sandwich beam, the percentage difference in the

results varies from 5% to 11%

3. For the case of the Fixed-fixed Sandwich beam, the percentage difference in the

results varies from 9% to 17%

From the deviation results, one can conclude that there is good agreement between the

present theory and those from other references.

One feature of the present theory is its ability to simulate the natural frequency
values for all the modes of a sandwich beam element with various boundary conditions.
There is a consistent increase in frequency of subsequent modes as the modes increases.
The slight discrepancies between the results of the present work and those from other

authors may be due to the differences mentioned below.

According to Toshiro Hayashikara and Noboro Watanabe [37], eigen values
obtained by consistent mass matrix method are upper bound to the exact values whilst
that from lump mass method is lower bound. In the paper by John S. Acher [16], it is
shown that the natural frequencies obtained by the use of the consistent mass matrix are

upper bound to the exact values. A large number of beam segments were needed for the
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lump mass method to obtain the same degree of accuracy. The procedure is applicable to
the general dynamic response analysis and is demonstrably superior to the usual
procedure of physical mass lumping by application to frequency analysis for sandwich

beam with different boundary conditions with uniformly distributed masses.

The prediction of the higher order frequencies with equal accuracy to the lower
ones constitutes a significant challenge for other analytical approaches, including that of
finite element. D. J. Mead and S. Sivakumuran [53] applied the Stodola method to study
vibration of sandwich beam. This method involves a four-fold integration of an initial
approximate method to obtain a better approximation to the mode. Convergence of this
theory can only be assured for the fundamental mode. The authors continued by stating
that the integration process by the Simpson rule may sometimes give accurate results for
the lower modes and the cubic rule gives accurate results for higher modes. Results
produced by [16] and other references making use of the Rayleigh’s method are believed
to be limited to the fundamental natural frequency since a different shape function must
be used for each higher modes. The higher order frequencies are predicted with the same
degree of accuracy as the lower ones by the present theory. The other papers, except for
T. Sakiyama, H. Matsuda and C. Morita [52] and V. S. Sokolinsky, Steven R. Nutt and

Y. Frostig [28] could not provide frequency values for all the modes.

Most of the papers mentioned in this section have similar assumptions that are
comparable to the ones used in this work. However, additional assumptions made by the

papers mentioned above limit their applicability.
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Further assumptions made by K. M. Ahmed [48] in his displacement based finite
element technique are that;
1. The thicknesses of the face sheets, however, are assumed to be equal and small
compared with the overall thickness of the sandwich section.

2. The faces have the same material

In an unsymmetrically laminated multi-core sandwich beam, a bending stretching
coupling occurs that is not present in a symmetrically laminated structure. In general,
most of the papers in the literature are good for sandwich beam with symmetric
configuration. Although the main qualitative features of vibration response are more
readily perceived using beams with symmetric section, it would have been a better idea
for the theory to be general, incorporating the non-identical face sheet sandwich beam.
By way of including uniform stretching in the face sheet materials, the present theory is
capable of treating sandwich beam with anti-symmetric configuration. This feature

renders the theory fit for application to the general class of beams and frame system.

In addition to the limitations caused by these assumptions, the theory itself is
completely analytical making use of assumed displacement fields that dictates the
accuracy of the generalized mass and stiffness matrices. If the displacement functions are
not properly selected, the results obtained may not converge to the correct answers. The
major difference between this paper and [47] which is by the same author is the number
of degrees of freedom considered per node. Higher degrees of freedom are considered in
[48], which makes the element less stiff. More importantly, [48] considered in-plane

action in the formulation of the sandwich beam energy relation.
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T. Sakiyama, H. Matsuda and C. Morita [52] presented a completely analytical
solution based on the discrete green function. The Green function is an assumed
displacement function, which depends on the mode shape and length of the beam; it is
obtained as a discrete solution of differential equation governing the flexural behavior of
the sandwich beam under the action of a concentrated load. Without the introduction of a
characteristic equation that is derived from the discrete Green function, the determination
of the natural frequency would have been by trial and error. There are lots of complex

equations in this method, which increases the possibility of error accumulation.

In the paper by V. S. Sokolinsky, Steven R. Nutt and Y. Frostig [28], the use of
assumed displacement techniques was avoided, instead, employed finite differences to
approximate the governing equation for different support condition. According to the
author, the highest order of derivatives entering the mathematical formulation was
reduced to two by the introduction of new functions. However, the exclusion of certain
terms in the approximation of governing equations could affect the results produced by
this means. They consider shear in the core by using the higher order theory, and that the

core is transversely flexible.

Note also that the equations describing free vibrations of sandwich beams with a
soft core used in [28] were derived by the application of Hamilton’s principle. Among
several assumptions made in deriving these equations were the following;

1. Acceleration fields of the face sheets have the same shape as their static
deformation fields.

2. The effects of rotatory inertia of the face sheets is negligible
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It was mentioned by several authors, M. E. Raville, En Shinh Ueng and Ming-
Min Lei {44] in particular that ideal fixed ends can never be achieved experimentally.

The lower frequency results by [44] may be due to the lack of complete fixity.

The references mentioned above considered the contribution due to flexural and
shearing motion in the course of the formulation of the overall mass matrix and frequency
relation although the primary concern is flexure except that the paper by Ahmed [47] and
Mead [53], which considered only the flexural characteristics of the sandwich beam. In
the present work, equal attention is given to all the motions of the sandwich beam during
vibration. The dynamic analysis presented is quite general in the sense that the mass
matrix due to flexural mode, uniform stretching and shearing (rotation) can be readily
obtained as well as its applicability to the general frame element and to a much more

general boundary condition.

4213 AXIAL ACTION EFFECTS

While the author of this definition realized that axial action had some effects on
the behavior of the sandwich beam, it is necessary to illustrate such effects by means of
example problems. Material properties and dimensions for the sandwich beam in the
example problem for the study on consistency of theory are used here, only that the shear
modulus is been replaced by G = 0.0012F . Numerical solutions for a sandwich beam
with different support conditions are analyzed for transverse and radial effects and these

results are compared with those that include axial effects as given in Table 4.8.
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4.2.1.3.1 DISCUSSION OF RESULTS ON AXIAL ACTION

Table 4.8 gives values of natural frequency of sandwich beam with various
boundary conditions due to different vibration effects. The few papers considered in the
previous section provided natural frequency results coming from translational and
rotational effects. Somehow, as in many cases, some amount of the axial vibration effects
can be incorporated in the analysis. Some of the references are convinced that axial
vibration effect was completely included in their analysis. This is explained by the idea

that the slope and curvature incorporates stretching of the sandwich beam’s faces.

Most part of the natural frequency is due to the translational mass effect and the
contribution from the rotational inertia is almost negligible. This work includes the
contribution due to axial (longitudinal) inertia effects, which has made significant
difference to the total frequency. The introduction of the axial vibration effects brings the
frequency values for subsequent modes more closely. The axial vibration effect becomes
more pronounced as the vibration mode is increased from the first going upwards; there is
considerable decrease in the numerical values for the eigen-values of higher vibration
modes. The effect on the natural frequency of the sandwich beam due to the rotation mass
is almost negligible for the various support conditions considered for numerical analysis.
Thus, most approximate theories would give zero effect to the mass matrix due to
rotation on the natural frequency of a sandwich beam. A complete vibration analysis must

take into consideration the natural frequency coming from the axial action effect.

As mentioned in Section 4.2.1.1.1, because of its high amplitude the fundamental

mode is expected to possess most of the energy of the sandwich beam, thus it is barely
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affected by changes made to the vibration effects. The fundamental mode will be

considered for behavioral study of the sandwich beam in the upcoming sections.

Table 4.8 Comparing natural frequencies f (Hz) due to various vibration effects, for
different support conditions

30 Mode Translation Translation Translation Translation
Elem. n and Rotation | Rotation and and Axial Effect
Effect Axial Effect Effect
ol 1% 8.322 8.322 8.322 8.322
o 2™ 33.187 33.187 33.187 33.187
E 3 3¢ 74.310 74.310 74.310 74.310
g B 4" 131.223 131.204 131.204 131.223
£E£5 5" 203.320 203.257 203.257 203.320
28 6" 289.862 289.600 289.600 289.862
S @ /b 390.010 389.392 389.392 390.01
o 2 8" 502.939 501.476 501.476 502.939
g o" 627.804 624.568 624.568 627.804
?l 10" 763.444 757.449 757.449 763.444
18t 2.965 2.965 2.965 2.965
2nd 18.506 18.506 18.506 18.506
= 3 51.547 51.523 51.523 51.547
S @ 4" 100.255 100.242 100.242 100.255
2 c 5t 164.246 164.246 164.246 164.246
s | 6" 242.835 242.678 242.678 242.835
OB 7" 335.171 334.755 334.755 335.171
S gt 440.487 439.509 439,509 440.487
gt 557.950 503.794 503.794 557.950
10" 686.582 555.903 555.903 686.582
15t 18.724 18.724 18.724 18.724
2nd 51.202 51.202 51.202 51.202
- E [ 3¢ 99.405 99.392 99.392 99.405
® @ 4 162.462 162.462 162.462 162.462
ol 5 239.632 239.526 239.526 239.632
§ s g™ 330.107 329.684 329.684 330.107
i o 7" 432.947 431.981 431.981 432 947
& gh 547.408 545.322 545.322 547.408
g™ 672.416 668.260 668.260 672.416
10" 807.464 799.900 799.900 807.464

-104-




Table 4.9 Frequency Parameter A, for a single span sandwich beam with varying

core stiffness for different support conditions
G/E

Mode | 1/107 | 1/10° | 1/10° | 1/10* | 1/10° | 1/10% | 1/10 1 Exact
%
15t 11.206 | 2.045 | 2.859 | 3.107 | 3.139 | 3.142 | 3.142 | 3.142 | 3.1416

RN
o ©
3
>

[72]
£ 5 2" 11.736|3.001 | 4.845|6.030 | 6.261 | 6.287 | 6.289 | 6.290 | 6.2832
28 | 39 [2.171]3.709]6.265 | 8.660 | 9.351 | 9.437 | 9.445 | 9.446 | 9.4248
Eo | 4" [2574|4.305 | 7.393 | 10.98 | 12.39 | 12.59 | 12.61 | 12.62 | 12.566
2% | 5" [2065)|4.835]8.351|13.01 | 15.38 | 15.76 | 15.80 | 15.81 | 15.708
£ & 6" [3.354|5.320 | 9.197 | 14.81 | 18.29 | 18.94 | 19.01 | 19.02 | 18.850
S o | 7" |3745|5775|9.960 | 16.41|21.13|22.13|22.24 | 22.25 | 21.991
221 8" 14.139]6.205|10.66 | 17.85 | 23.88 | 25.33 | 25.49 | 25.51 | 25.133
8% o 14536[6.619]|11.31]19.17|26.53 | 28.54 | 28.77 | 28.80 | 28.274

10™ [4.9377.019|11.92|20.37|29.09 | 31.77 | 32.08 | 32.11 | 31.416
15t 10.864|1.400|1.785|1.865 | 1.874 | 1.875| 1.875 | 1.875 | 1.8751
2" 11513|2.489 | 3.747 | 4.534 | 4678 | 4.694 | 4.696 | 4.695 | 4.6941
39 11.006|3.369 | 5.470 | 7.286 | 7.794 | 7.858 | 7.863 | 7.865 | 7.8548
4" 12414 4.020|6.755|9.713|10.85| 11.01 | 11.02 | 11.02 | 10.996
5" 128094592 |7.824|11.86|13.84]14.16 | 14.20 | 14.20 | 14.137
6" |3.196|5.102|8.740 | 13.77 | 16.78 | 17.33 | 17.39 | 17.40 | 17.279
7" 13.581|5576 | 9.558 | 15.47 | 19.63 | 20.51 | 20.60 | 20.61 | 20.420
8" 13.068|6.019|10.30|17.00 | 22.40 | 23.69 | 23.84 | 23.85 | 23.562
9" 14.359|6.443 | 10.98 | 18.40 | 24.43 | 24.43 | 24.43 | 24.43 | 26.704
10" [4.75216.850 | 11.62 | 19.66 | 25.08 | 26.89 | 27.10 | 27.12 | 29.845
150 1 1.267 | 2.155 | 3.510 | 4.493 | 4.705 | 4.729 | 4.731 | 4.731 | 4.7300
2" 11.816|3.048 | 5.049|7.095|7.766 | 7.852 | 7.861 | 7.863 | 7.8532
39 122713764 | 6.361 | 9.430 | 10.80 | 11.00 | 11.02 | 11.02 | 10.996
4" 126914366 |7.453|11.51 | 13.76 | 14.15| 14.19 | 14.20 | 14.137
5" 13,097 | 4.903 | 8.401 | 13.37 | 16.66 | 17.31 | 17.38 | 17.39 | 17.279
6" 13.498|5.394 |9.243|15.05|19.47 | 20.48 | 20.59 | 20.61 | 20.420
7% 13.900|5.855 | 10.01 | 16.58 | 22.20 | 23.66 | 23.83 | 23.84 | 23.562
8" 14.30216.291|10.71|17.98 | 24.84 | 26.85|27.08 | 27.11 | 26.704
g™ 14.707|6.709 | 11.36 | 19.26 | 27.39 | 30.04 | 30.37 | 30.40 | 29.845
10" 5.11217.114 [ 11.97 | 20.44 | 29.84 | 33.25 | 33.67 | 33.71 | 32.987

Cantilever
Sandwich Beam

Fixed-fixed
Sandwich Beam

4.2.1.4 EFFECTS OF CORE SHEAR MODULUS

The shear modulus of the core material has significant impact on the response of

sandwich beams. A very stiff core would make the sandwich beam behave in a manner
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Figure 4.8 Fundamental frequency parameter 1, plotted against the ratio
G/ E for different support conditions
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Figure 4.9 Fundamental frequency parameter 1, for the early values of
G/ E (magnified) for different support conditions
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Table 4.10 Natural frequency @, of sandwich beam with varying core thickness for
different support conditions f° ( Hz)

clt

Mode | 1 2 5 10 20 30 40 50
W

1% 14.503 | 6.606 | 13.01 | 23.72 | 45.01 | 66.10 | 86.97 | 107.7
29 118.01{26.38 | 51.74 | 93.60 | 175.1 | 253.6 | 329.2 | 402.1
39 140.54(59.23]115.3|206.1|377.1 | 535.2 | 680.8 | 814.2
4" 17210]104.9|202.2 | 356.0 | 633.8 | 876.4 | 1085 | 1258
112.7 | 163.3 | 310.7 | 537.1 | 927.1 | 1243 | 1485 | 1656
6" [162.3|234.0|438.8|743.6| 1239 | 1602 | 1839 | 1967
7" 1220.9|316.6 | 584.3 [ 969.0 | 1556 | 1933 | 2129 | 2198
8" 1288.6|410.7|745.0| 1208 | 1865 | 2222 | 2359 | 2369
o™ |365.3|516.0|918.8 | 1457 | 2157 | 2470 | 2540 | 2496
10™ | 450.8631.6| 1104 | 1710 | 2428 | 2677 | 2683 | 2594

1% 11.603 | 2.353 | 4.640 | 8.468 | 16.11 | 23.72 | 31.30 | 38.84
2" 110.05|14.72 | 28.89 | 52.38 | 98.28 | 142.8 | 185.9 | 227.9
39 12812141.10|80.13|143.7|264.3 | 377.0 | 482.5 | 581.1
4" 15500] 80.2 | 155.0 | 273.8 | 490.8 | 683.8 | 855.3 | 1005
5" 191.021132.1]252.0|437.6|761.6| 1033 | 1255 | 1377
6" [136.0]196.2 | 369.3 | 629.0 | 1060 | 1377 | 1377 | 1428
7" 1189.9]272.4|504.8|842.0| 1372 | 1393 | 1634 | 1790
8" 1252.71360.2|656.4| 1072 | 1377 | 1739 | 1962 | 2069
9" 1324.5|459.2|821.9| 1313 | 1683 | 2053 | 2229 | 2275
10™ | 405.2 | 568.7 | 999.6 | 1377 | 1985 | 2327 | 2439 | 2428
15t 110.19 | 14.92 | 29.21 { 52.71 | 98.16 | 141.6 | 183.1 | 223.0
2" 128.06|40.96]79.48 | 141.5 | 256.9 | 362.3 | 459.1 | 548.1
39 1549579.90|153.4|268.5| 474.1 | 652.7 | 808.6 | 943.5
4™ 190.77 | 131.3|248.8 | 427.4 | 732.5|982.3 | 1185 | 1344
5" 11355|194.9|363.7|6125| 1017 | 1326 | 1551 | 1701
6" [189.0|270.3|496.2|818.5| 1316 | 1662 | 1877 | 1990
7" |2515|357.0|644.1| 1040 | 1618 | 1972 | 2151 | 2210
8" 1322.7|454.6|805.7 | 1274 | 1912 | 2248 | 2372 | 2376
o™ 1402.6|562.7|978.9| 1516 | 2193 | 2486 | 2548 | 2501
10" | 491.2|680.7 | 1162 | 1762 | 2455 | 2689 | 2689 | 2599

OIS
& O
3
=

Sandwich Beam
with

simply supported edges
ay,

Cantilever
Sandwich Beam

Fixed-fixed
Sandwich Beam

similar to that of a homogenous isotropic beam. This was indicated in the early sections
of this chapter. One may be curious to ascertain it’s impact on sandwich beam when the

shear modulus in that material is varied. This section presents the behavior of the
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Table 4.11 Natural frequency @, of sandwich beam with varying face sheet
thickness for different support conditions f(Hz)

t/c
40 Mode 1 2 5 10 20 30 40 50
elem. n

W
2 18t | 95.97 | 130.1 | 217.2|244.5|172.9|141.2 | 122.2 | 109.3

k) 29 | 264.3 | 348.9|345.8|299.4 | 341.8 | 348.5 | 349.6 | 349.4

€ © [ 39 | 4463 |546.7 | 531.9 | 630.0 | 668.1 | 676.7 | 679.9 | 681.6
S B 4" | 637.4 |597.0]840.5|953.1|997.7 | 1010 | 1016 | 1019
5§‘§ 5F 1 773.3 | 858.0 | 846.8 | 996.6 | 1330 | 1346 | 1354 | 1359
-;3% 6" | 835.2 |891.1| 1158 | 1276 | 1528 | 1686 | 1696 | 1701
2 @ | 7° 11037.4| 1123 | 1467 | 1601 | 1665 | 2029 | 2041 | 2048
o =1 8" | 1039 | 1389 | 1777 | 1929 | 2004 | 2085 | 2389 | 2398
E | 9" | 1243 | 1636 | 2063 | 2260 | 2347 | 2375 | 2591 | 2753

® 710" | 1451 | 1656 | 2089 | 2595 | 2693 | 2726 | 2743 | 2755

1%t | 39.07 | 56.29 | 103.1 | 161.4 | 201.6 | 202.7 | 199.0 | 195.4

2" 171695 | 233.9|366.4 | 387.6 | 440.8 | 481.4 | 497.3 | 504.3

£ 39 1 350.0 | 474.7 | 528.3|584.3|684.4|815.0 | 841.1 | 846.4

S @ 4" | 546.7 | 646.5|658.7 | 761.6 | 825.8 | 865.9 | 1024 | 1163
25 5% 1 736.8 | 724619815 1104 | 1163 | 1180 | 1192 | 1235
= 6" | 847.4 |960.0| 1246 | 1377 | 1377 | 1377 | 1377 | 1377
02 7% 1 930.1 | 1226 | 1377 | 1413 | 1491 | 1513 | 1524 | 1530
& 8" | 1120 | 1289 | 1492 | 1748 | 1831 | 1855 | 1868 | 1874

ob | 1316 | 1377 | 1605 | 1943 | 2169 | 2200 | 2213 | 2222
10™ | 1355 | 1515 | 1929 | 2123 | 2515 | 2548 | 2565 | 2574

15t | 149.6 | 209.0 | 381.2 | 545.3 | 640.2 | 663.5 | 672.4 | 675.4
2" 1 325.0 | 463.3|695.9|700.5| 686.0 | 680.3 | 677.3 | 676.7
39 | 5255 |740.4|843.2|959.0| 1020 | 1036 | 1042 | 1046
4" 1 732.8 | 882.7] 1067 | 1230 | 1316 | 1340 | 1350 | 1356
57 1 9437 | 1028 | 1417 | 1586 | 1665 | 1688. | 1699 | 1705
6" | 1038 | 1289 | 1608 | 1867 | 1992 | 2024 | 2038 | 2046
7% | 1158 | 1576 | 1835 | 2190 | 2343 | 2375 | 2390 | 2398
8" 1 1369 | 1578 | 2045 | 2246 | 2680 | 2722 | 2741 | 2751
9" | 1587 | 1872 | 2390 | 2608 | 2755 | 2755 | 2755 | 2755
10™ | 1622 | 2113 | 2672 | 2755 | 3042 | 3081 | 3101 | 3112

Fixed-fixed
Sandwich Beam

sandwich beam, represented in the natural frequency parameter A for easy comparison

with the case of the homogeneous beam shown in Table 4.9. Material properties and
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dimensions for the sandwich beam in the example problem for the axial action effect is
used here, only that the shear modulus of the core is varied. Eq. 4.1 is used to calculate

the frequency parameter, 4.

4.2.1.4.1 DISCUSSION OF RESULTS ON EFFECTS OF CORE SHEAR

MODULUS

The values of the 10 lowest natural frequency parameter A, of simply supported,
cantilever and fixed sandwich beams produced by the program for sandwich beam when
the shear in the core is varied is as shown in Table 4.9. The effect of increasing the
stiffness of the core material on the fundamental frequency of sandwich beams under
various boundary conditions is shown on Figure 4.8. It is seen that as the ratio G/ E
increases, the natural frequency of a sandwich beam approaches that of the homogenous
isotropic beam. As expected for a consistent mass matrix, the frequency parameters are
upper bound to the exact values of homogeneous isotropic beam. It can also be seen from
Table 4.9 that the effect of core rigidity on the higher frequencies is very pronounced, the
frequencies being increased appreciably with increasing shear rigidity. Therefore theories
that neglects shear deformation might give acceptable answers only for the first few

modes, provided that the core used is stiff.

For clarity, the curves representing the variation of fundamental frequency
parameter 4 with the ratio G/ E are shown on Figure 4.9. This region completely

describes the behavior of the sandwich beam with soft core.
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4.2.1.5 EFFECTS OF DIMENSIONAL FACTORS

Free vibrations of sandwich beams for different supporting cases are studied
assuming different configurations and sets of material properties. More importantly, this
section outlines the observations for the natural frequency when certain important

parameters are varied.

Numerical solutions for the natural frequency of a symmetric rectangular
sandwich beam with various boundary conditions are presented for the following
possibilities

1) Table 4.10 shows frequencies when the core thickness is varied, all the
remaining parameters fixed

i1) Table 4.11 shows frequencies when the thickness of the face sheets is varied,
all the remaining parameters remain fixed

1i1) Table 4.12 shows frequencies when the length of the beam is varied,

all the remaining parameters remain fixed.

Following are the dimensions and material properties of the sandwich beam selected
arbitrarily; Length of beam, / = 0.9144m , thickness of core ¢ = 0.0127m, thickness of

face 11 = 2 = 0.0004572m, Elastic modulus of faces E| = E, = £ = 6.8x10 GPa,

Core shear modulus G = 0.0012E and the density of the facial material is p = 2.680 %

k
10° %3
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Table 4.12 Natural frequency @, of sandwich beam with varying span length for
different support conditions f (Hz)

Aspect ratio Li{c+11+12)

40 Mode | 1 2 5 10 20 30 40 50
elem n
» 150 [ 4075 | 3896 | 3099 | 1750 | 609.4 | 292.0 | 169.0 | 109.6
£ 8 | 29 | 4125 | 4075 | 3786 | 3102 | 1752 | 986.1 | 610.2 | 409.6
=73 39 | 74467 | 4128 | 3975 3581 | 2611 | 1755 | 1185 | 833.2
Eo 4% 14938 | 4290 | 4074 | 3797 | 3111 | 2378 | 1759 | 1306
St 50 1 5529 | 4480 | 4075 | 3919 | 3409 | 2818 | 2247 | 1764
< g | 6" | 6211 | 4708 | 4150 | 4000 | 3601 | 3124 | 2628 | 2165
= 77 | 6959 | 4972 | 4223 | 4062 | 3733 | 3342 | 2918 | 2498
22 | 8" | 7761 | 5269 |4299 | 4075 | 3830 | 3502 | 3140 | 2767
®E o | 8605 | 5598 | 4382 | 4116 | 3905 | 3626 | 3313 | 2983
@ | 10" | 9483 | 5951 | 4473 | 4166 | 3966 | 3723 | 3450 | 3159
15t 1 3976 | 3471 | 1949 | 781.6 | 233.0 | 107.6 | 61.39 | 39.55
2" 174240 | 4049 | 3583 | 2436 | 1078 | 573.4 | 348.5 | 232.1
E | 3% | 4673 | 4191 [3918 | 3393 | 2154 | 1317 | 856.8 | 593.2
g3 4" 1 5208 | 4366 | 4035 | 3715 | 2857 | 2027 | 1428 | 1035
o c 57 | 5854 | 4579 | 4108 | 3875 | 3269 | 2580 | 1967 | 1499
= 6" | 6572 | 4827 | 4178 | 3970 | 3514 | 2965 | 2312 | 1850
08 7% 1 7350 | 5110 | 4252 | 4035 | 3676 | 3083 | 2414 | 1932
3 8" |1 8174 | 5423 | 4333 | 4088 | 3790 | 3233 | 2760 | 2307
of | 9037 | 5765 | 4420 | 4137 | 3874 | 3425 | 3022 | 2616
10" | 9930 | 6131 | 4516 | 4185 | 3941 | 3568 | 3224 | 2865
15t | 4437 | 4015 | 3205 | 2061 | 967.2 | 538.1 | 335.7 | 227.1
2" 14850 | 4247 | 3837 | 3147 | 1897 | 1187 | 792.7 | 559.8
E | 39 | 5520 | 4458 | 4019 | 3616 | 2659 | 1860 | 1323 | 971.6
33 4% [ 6150 | 4681 | 4118 | 3827 | 3137 | 2424 | 1839 | 1408
& 5% 16054 | 4960 | 4200 | 3947 | 3431 | 2843 | 2289 | 1829
BS | 6" | 7710 | 5247 | 4282 4027 | 3621 | 3142 | 2652 | 2204
=9 7% 18600 | 5589 | 4367 | 4090 | 3752 | 3357 | 2935 | 2522
o 8% | 9440 | 5932 | 4460 | 4146 | 3849 | 3517 | 3154 | 2783
o 110389 | 6322 [ 4561 | 4198 | 3924 | 3640 | 3325 | 2996
10" [ 11202 | 6711 | 4669 | 4250 | 3985 | 3737 | 3461 | 3170
4.2.1.5.1 DISCUSSION OF RESULTS ON DIMENSIONAL FACTORS
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The effect of changing the core thickness with constant face thickness on the
frequency is shown in Table 4.10 and Figure 4.10 shows the graph of the fundamental

frequency plotted against the core to face sheet thickness ratio, ¢/, (¢ = 11 = 12), for the

different should be focused on the behavior of the curves; a growth in frequency values is
shown by all the curves as the ratio ¢/¢ is increased. This is because an increase in this

ratio has the effect of increasing the stiffness of the sandwich beam.

The wide range of values considered did not show any sign of abnormality as no
extremum points were detected. The curves for the various boundary conditions
considered show some form of linear dependence between the frequency and core to face
sheet thickness ratio. The thicker the core, the higher the frequency and the sandwich
beam behavior is improved when the core thickness is increased, provided that local

instability does not occur.

The effect of increasing the face thickness on the vibration response of sandwich
beam appears on Table 4.11 and Figure 4.11 shows the graph of fundamental frequency
plotted against the face sheet to core thickness ratio ¢/¢ for the different boundary
conditions. An increase in the thickness of the face sheet leads to an increase in the
stiffness of the section and at the same time increases the mass density. The combined

effect is such that the natural frequency increases with thickness.

The cantilever type sandwich beam frequency increases rapidly at the start of the
curve and continues to increase albeit slowly. The behaviour of the fixed-fixed type
sandwich beam is similar to that of the cantilever only that it is of higher frequencies. In

the case of the simply supported sandwich beam, the curve continues to rise until a local
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} —— Simply supported —s— Cantilever —— Fixed-fixed
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Figure 4.10 Fundamental frequency (Hz) plotted against the ratio ¢/t (core
thickness to face thickness) for different support conditions
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Figure 4.11 Fundamental frequency (#z) plotted against the ratio /¢ (face
thickness to core thickness) for different support conditions
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maximum is reached and then begins to fall. This disruption in the behavior of the
sandwich beam is due to the fact that the simply supported sandwich beam is not
restrained along the longitudinal direction. As the face sheet thickness increases the axial
vibration effects are promoted thus the system becomes unstable. At this stage, there is
the tendency for the face sheet materials to vibrate independently (i.e. in a local manner)
as shown in Figure 3.2(a). The antisymmetric vibration modes give way to the symmetric

vibration modes as the thickness ratio ¢/¢ is increased to a high value.

Figure 4.12 shows the frequency curves for the fundamental frequency for the
different support conditions given that the axial vibration effect is neglected. Although

some changes is observed in the dependence of the frequency and the face sheet to core

—e— Simply supported —s— Cantilever —— Fixed-fixed

3500
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2000
1500
1000

500

Natural freugency w(Hz)

0 10 20 30 40 50 60
tlc

Figure 4.12 Fundamental frequency (Hz) plotted against the ratio ¢/c (face

thickness to core thickness) for different support conditions
neglecting axial vibration effects
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5000
4500
4000
3500
3000
2500
2000
1500
1000

500

Natural frequency w(Hz)

0 10 20 30 40 50 60
Li(c +t1 +t2)

Figure 4.13 Fundamental frequency (Hz) plotted against the ratio
L/(c+1+12) (Aspect ratio) for different support conditions

thickness ratio for the cantilever and fixed-fixed sandwich beam, dramatic change is seen
for the curve in question which now increases with the ratio face sheet to core thickness
ratio (t / c) in a continuous manner. The study shows that increasing the thickness of the

faces does not necessarily lead to an increase in the natural frequencies of end supported

sandwich beams.

This characteristic behavior of the sandwich beam re-emphasizes the importance
of uniform axial stretching effects in the free vibration of sandwich beams. A complete
study on the behavior of sandwich beam must take into consideration the contribution

of the uniform axial stretching in the formulations.
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The effect of increasing the length of the sandwich beam on the vibration effect is
shown on Table 4.12 and Figure 4.13 shows the graph of the fundamental frequencies
plotted against the aspect ratio, L/(c+¢1+¢2). Increasing the length will dramatically
decrease the bending stiffness of the beam, thus leading to a decline in frequency value.
The frequency curves for all support conditions drops rapidly within a short range and
then continues to fall albeit slowly. In general, increasing the aspect ratio in turn reduces

the bending stiffness of the sandwich beam, thus the frequency is expected to fall.
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CHAPTER 5

SUMMARY AND CONCLUSION

The increasing use of sandwich construction and the need to predict accurately
their static and dynamic behavior requires the use of a more general theory. Since the
displacement function was derived from the governing differential equation for the
general class of sandwich beam and frame systems, it can easily be applied to the static
and dynamic analysis of such structures. While an exact stiffness matrix for sandwich
beam element is available, its application to vibration analysis is enhanced by the use of a
consistent mass matrix. The derivation of a special shape functions required for obtaining

the mass matrix was presented.

The natural frequencies of free vibration of sandwich beam and frame systems
with different boﬁndary conditions have been investigated by the displacement based
finite element method in which an element having six and eight-degrees of freedom 1.c.
three and four degrees of freedom per node is used. The range of application for this tool
varies from specially designed materials for aerospace and marine applications to thick

sandwich structures used in civil engineering structures. Computer programs capable of
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handling any type of sandwich beam and frame structures were developed.

Application of the six and eight-degrees of freedom element to the general class

of sandwich beam and frame systems leads to the following conclusions;

1.

The deflection functions exhibit good convergence characteristics, and enable the

medium frequency regime to be explored at minimum computational expense.

The solution for free vibration approaches that of a homogeneous isotropic beam
when the shear modulus of the core material is increased. The theory can be

referred to as consistent.

The results produced by this theory are in good agreement with results from the
literature. The higher order frequencies are predicted with the same accuracy as
the lower ones, a task that constitutes a significant challenge for most of the

theories in the literature.

The model considered so far is the simplest for a sandwich beam since continuity

is maintained in deflection v, slope v' and rotatation ¢ . It takes into account shear

deformations without the introduction of any degree of freedom other than the
nodal deflection, edge rotations and slope. Generally, it is indicated by some of
the references, [47] and [48] to mention a few, that the higher the degree of
freedom per node the softer the element. K.M. Ahmed [49] who modeled the
clement with five and seven degrees of freedom per node confirmed that the
element incorporating the seven degrees of freedom per node can be relied upon

to give reasonably accurate results for both static and dynamic analysis of
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sandwich structures. The seven degrees of freedom model requires fewer
elements for convergence.

. Boundary support condition is another factor that influences the natural
frequencies of a sandwich beam element. It was also agreed upon by many
authors M. E. Raville, En Shinh Ueng and Ming-Min Lei [44] in particular that
ideal fixed ends can never be exactly achieved experimentally and thus the lack of
complete fixity results in lower frequencies. Theories that are in excellent
agreement with experimental results assumes similar support conditions. The fact
that the theoretical support condition considered in this theory cannot be easily
achieved experimentally is a clear manifestation that there is the possibility that

the frequencies predicted by this theory could be higher.

. The inclusion of axial action in the dynamic analysis of sandwich beam and frame
systems is advancement in the theory. It is evident from the results that the
frequency contribution due to axial action is significant. A systematic decline in
values of the ratio of the frequency that includes axial effect to that excluding
axial effect indicates that the axial effect is more pronounced at higher modes
because the amplitude of the mode shapes decreases with increase in modal

values.

The frequency of vibration of the sandwich beam depends on its dimensional
factors. The frequency of a sandwich beam increases with increase in thickness of
the core and decreases when the length is increased. The study also showed that

increasing the thickness of the face does not necessarily lead to an increase in the
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natural frequencies of end supported sandwich beam. Thus the frequency

decreases with increase in the aspect ratio.

8. The vibration modes of sandwich beams with thin and thick face sheets and
constrained longitudinal displacements corresponding to low and higher
frequencies, consists predominantly of antisymmetric vertical displacement of the
face sheets. For a simply supported sandwich beam, at certain range of
frequencies, there is a localized vibration pattern consisting of a longitudinal
displacements and small symmetrical vertical displacements between the

supports.

Above all that needs mention about in this work is that of the problem of
modeling and it was evident in the results that the primary concern of a Structural Civil
Engineer must be that of how a problem should be modeled. Over-Simplification of a
problem could change the problem, thus any physical system to be solved has to be
reduced such that the material taken to the lab for analysis provides a good representation

of the true system.

The main advantage of the developed element is that it facilitates the analysis of
complex systems that becomes intractable to analytical treatment. The procedure
included is straightforward and easy to understand when compared with theories in the
literature. The model presented herein is very efficient and versatile for the dynamic

analysis of sandwich beam and frame systems.

RECOMMENDATION FOR FUTURE WORK
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1.

Regarding future work the following should be considered,
The theory and analysis presented in this thesis can easily be extended for solution
of a class of fourth order differential equation. The technique is efficient and
provides exact solution to static or steady state problems.
Part of the energy dissipated during vibration is absorbed by the vibrating system.
This is accompanied by a decrease in amplitude of the modes which indicates that
there is some amount of damping in the system. An extension of the present theory
to include the damping must be considered for further studies.
The theory and analysis in this thesis is applicable to sandwich construction of both
single core and multiple cores with multiple facings. An extension of the present
theory to solutions of problems involving multi-layer system of elements as in soil

is recommended.
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Appendix A Elements of Flexibility Matrix

1 3 3c(4E), 1 H
Ju=ts = 3(EI)[1+L2012 e }L (Ez)atanhaLLz(El)f -

L 1 1 o
Ji =fn = f34 :f43 = 3(E])+ a?—(E])(z— tanhaLJ

L 1{1 a
S =Ju —3@‘—;(2_ tanhaLj

1 L 11 a
I =Jto=lu=Ia ~(§1—)[“6“+;7(Z_ SinhaLj}

f24 :f42 ___{4____1—[1___&_)

B _—L—- .__l- 1 C(AE)f 1 ad
f,g—fsx‘(EI)( 6+a2L2)+ bGL +oz(ElT)Smh"‘LL‘Z(EI)f —1}
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Appendix B Deflection function elements for unit load (g)

I

6(E1)L a’(EI)| L sinha L

gz()

6(E1)L ( ~3Lx" +2L'x ) ! ((};I) (E;), J{—E— 1 +§.i.n§h%—;i)}
- ~r—>—< >——m[ ]
(Axial load deflection function is assumed to be zero as shown below)

gs(x)zo
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Appendix C Rotation function elements for unit load (g,)

1 2 ) 1 1 cosha(L—x)
- 3x% ~ 6Lx +2L LR k)
2a) s ’ )+a2(EJ)L T inhal }

“MCTG[ L) - “{’;ﬁi‘;ﬁ’;ﬂ

1 N 101 1 Y1  cosha(L-x)
20 = g 0 -6Ls+2L )+ ((EI) o )][Z"““;Ih‘;?}
1 1 cosha(L—x)
" bd’ G[ + (1), {(EI)L ((EI)'(EI)_,) sinhar H
1 2 2 1 1 coshax
81slx)= o(ENL B ~2')q aZ(Ez)[Z"a sinhaL}
c | 1 acoshax
T bd’G| L + (1), {(EI)L (Ez)sinhaLH
1 2 2 1 1 1 1 coshax
A AR )7((;55‘(5}; ]

c 1 1 1 1 coshax
bd’G [_ 7 (1), {(EI)L - 0{ (1) (E1), ] sinhar H

(Axial load rotation function is assumed to be zero as shown below)

g¢5(x)= 0
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Appendix D Deflection function for a simply supported beam subjected
to uniform load q over the entire span of length L (no shear

restraint at the ends )

qx 3 2 3
= —2L L
v(x) 24(EI)(x x° + )+ ,uaz

L
cosha[;—xj
1 -1 +—)2£(L—x)

cosh Qfé
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Appendix E Program for Dynamic Analysis of continuous Sandwich beam

and frame Systems Due to translational and Rotational Effect.

(This program calculates Eigenvalues),

The model corresponds to the data given in this program for a continuous sandwich beam
divided into equal elements with numbered system nodal coordinates. The program could
be written to accept data input during runtime; however, it is more convenient to include

the data within the program itself.

float sDOF, // Number of free nodal displacements: System DOF
nDOF =3, // Number of degrees of freedom/node
eNODE =2, // Number of nodes/element

eDOF = nDOF * eNODE; // Number of element dof

main()

{7*
PROGRAM FOR SYMMETRIC AND ASSYMMETRIC SANDWICH BEAM
AND FRAME ANALYSIS. DIRECT STIFFNESS METHOD FOR

CONSTRAINED SYSTEM,; i.e. EIGENVALUES ARE OBTAINED FOR ALL
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NODAL DISPLACEMENTS EXCLUDING RESTRAINED DIRECTIONS.

PROGRAM CONSIDERS ONLY TRANSLATIONAL AND ROTATIONAL

EFFECTS
*/
GetData(); // Define all data for beam, truss or frame
NodelD(); // Generate id matrix for nodal DOF
SystemStiff(); // Setup system stiffness matrix
Systemmass(); // Setup system mass matrix
Constraint(); // Impose constraint conditions on [M] and [K]
print(K2,M2);
EigenValue(); /I Compute squares of natural frequencies
¥
GetData()

{ // This function defines ALL data required for problem.
// --- General data ---

sEl = getnum("Enter number of element", 5);

sNodes = sEl + 1; // number of nodal points
sPreDispls = 0; // number of non-zero prescribed displacements
I/ mmmmee Define coordinates --------

Totallength = 0.9144;

Member = Totallength/sEl;
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defmat(x[sNodes], 0 :: Totallength :: Member );
defmat(y[sNodes], sNodes : 0);

print("Nodal coordinates”,x,y);

// -- Define element connectivity and end-condition ----
defmat(EICon[eNODE,sEl],
1::sEL: 1, // i: first node of each element
2 :: sNodes :: 1); /1 j: second node
print(*"Element connectivity",ElCon);
// -- Define element properties --
b=0.03; ¢=0.0127; t1 = 0.0004572; t2 = 0.0004572; // meters

El =6.89¢+10; E2=6.89¢+10; G =0.0012*E1, // Pa

// --- Define member axial forces ---

defmat(P[sEl], sE1:0);

// Convenient data
Al=b*tl; A2=b*t2;

Elf1=b*E1*t173/12; EIf2=b*E2*12°3/12;

//' 5 Basic parameters: ¢,d,bG,EIf,AEf

d = cH(t1+2)/2;

bG =b*G;
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EIf=EIfl +EIf2;
J/EIf = E1*((c+H1+2)"3)*b/12;

AEf=(A1*E1 * A2*E2) / (A1*El + A2*E2);

// Derived parameters

al2=bG*(1/AEf+d"2/Elf)/c;

al=sqrt(al2);

AG=d"2*bG/c;

Mu=al2"2*EIf"2/AG; EI=EIf+d"2*AEf;

If1 = EIf1/E1; If2 = EIf2/E2;

rhol = 2680; /I kilogram per cubic meter
rho2 = 2680, // kilogram per cubic meter
A=Al + A2; If =If] +1{2;

d1 = (A2*E2/AEf)*d;

d2 = (AI*E1/AED*d;

// -- Define nodal restraints by inserting 1 into id matrix --

zero(id[nDOF,sNodes]); // clear before filling with 1

/* 1:shear 2: global moment 3:local facing moment

*/

/* Condition for Node 1: the first node.

Place selected condition last */
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id[1,11=0; id[2,1]=0; id[3,1]=0;
id[1,1]=1; id[2,11=1; id[3,1]=1;
id[1,11=1; id[2,1]=0; id[3,1]=2;

id[1,11=1; id[2,11=0; id[3,1]=0;

/* Condition for Node 2: the second node.
Place selected condition last */
id[1,2]=1; id[2,2]=1; id[3,2]=1;
id[1,2]=1; 1d[2,2]=0; id[3,2]=2;
id[1,2]=1; id[2,2]=0; id[3,2]=0;

id[1,2] = 0; id[2,2]=0; id[3,2]=0;

/* Condition for Node 3: the second node.
Place selected condition last */
id[1,3]1=1; 1d[2,3]1=0; 1id[3,3]=0;
id[1,3]=1; id[2,3]=1; 1d[3,3]=1;
id[1,3]=1; 1id[2,3]=0; id[3,3]=2;

id[1,3]1=0; id[2,3]=0; id[3,3]=0;

/* Condition for Node 4: the second node.

Place selected condition last */
id[1,4]1=1; id[2,4]=1; id[3,4]=1;

id[1,4]=1; id[2,4]1=0; id[3,4]=2;
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// Free
/I Clamped
// Smpl. and no shear def.

// Smpl. with shear def.

// Clamped
// Smpl. and no shear def.
// Smpl. with shear def.

/! Free

// Smpl. with shear def.
/I Clamped
// Smpl. and no shear def.

/! Free

// Clamped

/! Smpl. and no shear def.



id[1,4]=1; id[2,4]=0; 1d[3,4]=0; // Smpl. with shear def.

id[1,4]=0; id[2,4]=0; id[3.4]=0; // Free

/* Condition for Node 5: the second node.

Place selected condition last */

id[1,5]=1; id[2,5]=1; 1id[3,5]=1; // Clamped

id[1,5]1=1; id[2,5]=0; id[3,5]=2; // Smpl and no shear def.
id[1,5]1=1; 1d[2,5]=0; 1d[3,5]=0; // Smpl with shear def.
1d[1,5] =0; id[2,5]1=0; id[3,5]=0; /l Free

/* Condition for Node 6: the first node.

Place selected condition last */

id[1,6] = 0; 1d[2,6] =0; id[3,6]=0; // Free

id[1,6]=1; id[2,6]=1; 1id[3,6]=1; // Clamped

id[1,6]1=1; 1d[2,6]=0; id[3,6]=2; // Smpl. and no shear def.
id[1,6]=1; 1d[2,6]=0; id[3,6]=0; // Smpl. with shear def.

print(""Nodal restraint list",id);

SystemStiff()
{ // Setup system stiffness matrix [K] and impose boundary conditions
float m;

mat €l i1d[eDOF], Km[eDOF,eDOF];
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zero(K[sDOF,sDOFJ); // Initialize system stiffness [K]

for(m=1;m<=sEl;m=m+1) { // For each member m
ElementID(m, el _id); // Get member end-displ labels
ElementStiff(m,Km); /{ Member stiffness [Km] in global axes
subop(Km+KJel id;el 1d]); /1 Assembled into [K]
}
IK2=K; // Save copy in [K2]
}
Constraint()

{ // Provide cnstraint for the system mass and stiffness matices
float 1, j;
zero(Fo[sDOFY);
for(n=1;n<=sDOF;n=n+1) {

¢ = constr[n}];

switch (1) { // Inspect each direction
case ¢ == 0 : break; // No constraint here
case ¢ == i#: ¢ = (; // Fully restrained: displ =0
default:

subop(Fo > K2[n;1::sDOFJ);
subop(Fo > K2[1::sDOF;n]);
subop(Fo > M2[n;1::sDOF]);

subop(Fo > M2[1::sDOF:n));
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for(i=1; i<=sDOF; i=i+1){
for(7=1; j<=sDOF; j=j+1){
ifi=){
f(K2[1,j]1==0) {K2[i,j]=1;}

if(M2[1,j]==0) {M2{i,j}=1;}

ElementID(float m, mat d)

{ // Return nodal displacement numbers of element m // 3 DOF per node
float i=ElCon[1,m], j=ElCon[2,m]; // element nodes
d[1]=1d[1.i}; d[2}=1d[2,i]; d[3]=id[3.i];
d[4] =id[1,j]; d[5]=1d[2,]; d[6]=1id[3];

}

Length1(float m)
{ // Returns the horizontal distance of element m
float i, j, L;

i =ElCon[1,m]; j= ElCon{2,m]; // element nodes
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L1 =x[3]-x[1];
return L1,

}

Length2(float m)

{ // Returns the vertical distance of element m
float i, j, L;
1=ElCon[1,m}]; j= ElCon|[2,m]; /I element nodes
L2 =y[i}-vli};

return 1.2

Length(float m)
{ // Returns length of the z-x plane of element m
float i, j, L;
Length1(m);
Length2(m);
L = sqrt(L2"2+L1"2);
Al=al*L; AL2=AL/2;
if(L<=0) { print("""Incorrect nodal x and y-coordinates",j,1); end; }

return L;

}
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Transformation(float m)
{ // Transforms member axis to that of the global
Lengthl(m);
Length2(m);
alpha=L1/L;
defmat(T76,6], alpha, 0,0, 0, 0, 0,
0,1,0,0,0,0,
0,0,1,0,0,0,
0, 0, 0, alpha, 0, 0,
0,0,0,0,1,0,

0,0,0,0,0,1);

NodelD()
{ /* . Save constraint info into {constr} for later use;
. Fill id[nDOF,sNodes] with displ. numbers even at restraints;
. Compute number of system nodal displacements sDOF.
Input: id[nDOF,sNodes]: nodal constraint information
output:id[nDOF,sNodes]: nodal displacement numbers
constr[nDOF*sNodes]: assigns a value at each nodal direction:
0 : no restraint.
i# = 1.e30: infinite restraint (i.e. zero displacement)

a value less than i#: prescribed non-zero displacement.
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sDOF: number of system DOF */

float 1, j, k, n; // local vars for loop control

zero (constr[nDOF*sNodes]);
sDOF=0;
for(n=1;n<=sNodes;n=n+1) {
for(j3=1;j<=nDOFj=j+1) {
1=1d[j,n};

if(i==0 || i==1) { sDOF=sDOF+1;}

switch(TRUE=1) {

case i==1:
constr[sDOF=1#;

case i==0:
1d[},n}=sDOF;
break;

case >1 && n>=i:
id[j,n]=id[j-1,1];

break;

// initialized to zero

// each node starting from 1

// each DOF: x, y, rotation

/* count number of displcmts

at but exclude coupled directions */

// fully restrained direction
// mark direction
/I free to displace

// assign DOF even at restraint

// dof coupled to node i>1

// pick up previous DOF at node 1

default: print(~"Invalid data in id[j,n},j,n =",1,3,n);

end;
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print(""Nodal displacement numbers",id);

for(i=1; i<= sPreDispls; 1=1+1) { // Prescribed non-zero displacement
n = Ndis[i,1]; // Node number where there is prescribed displ.
for(j=1;j<=nDOF;j=j+1) { // each DOF: x, vy, rotation
k =1d[j,n}; // Nodal displacemnt number

if(Ndis[i,j+1]) {
if(constr[k]==i#) { print(*"Bad prescribed displ data: Node",
n," Direction" k," was fully restrained"); end; }

constr[k] = Ndis[i,j+1]; // save value

}

}

} // end NodelD()

B _matrix(float m)

{ // produces rotation matrix [T] for element m
float i=ElCon[1,m], j=ElCon[2,m]}; // element nodes
L=Length(m);
defmat(B[6,4],4:1/L,1,4:0,1,0,0,4:-1/L,0,0,1,4:0,1);

}

ElementStiff(float m, mat Km)

{ // Compute element stiffness matrix [Km] of element m
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L=Length(m);

zero(F{4,4]);

Bfive(Mo=1,Mf=0);

F[3,3]1=F[1,1]=phi(0);

F[1,31=F[3,1}=phi(L);

F[4,31=F[2,1]=v1(0);

F[2,3]=F[4,1]=v1(L);

Bfive(Mo=1,Mf=1);

F[1,21=F[3,4]=phi(0);

F[3,2]=F[1,4]=phi(L);

F[2,2]=F[4,4}=v1(0);

F[4,2]=F[2,4}=v1(L);

'k4=F"-1; // Stiffness matrix obtained from

// transformation of Flexibility matrix

defmat(KG[6,6],-1,0,0,1,0,0, /! Geometric stiffness matrix
0,0,0,0,0,0,
0,0,0,0,0,0,

1,0,0,-1,0,0,

0,0,0,0,0,0,
0,0,0,0,0,0);
B matrix(m);
Transformation(m);
if(P[m] == 0)
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IKm=T~*(B*k4*B~)*T;

}

else{

'Km=(T~*(B*k4*B~)*T) + P[m]*KG/L;

Bfive(float Mo, float Mf)

{

B5=(Mo/EL-Mf/Elf)/al2;

// Deflection function for sandwich beam with end moment
v(float x) {
return Mo*(2*¥LA2-3*L*x+x"2)*x/(6*EI*L) + B5*(x/L-1+hsos(al*(L-x),AL));

}

/] Derivatives of deflection function for sandwich beam with end moment
v1(float x) {
return Mo*(2*¥L"2-6*L*x+3*x/2)/(6*EI*L) + B5*(1/L-al*hcos(al*(L-x),AL));

}
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v2(float x) {
return Mo*(6*x-6*L)/(6*EI*L) + B5*al2*hsos(al*(L-x),AL);

}

v3(float x) {
return Mo/(EI*L) - B5*al*3*hcos(al*(L-x),AL);

}

v4(float x) {

return B5*al2”2*hsos(al*(L-x),AL);

v5(float x) {

return -B5*al*5*hcos(al*(L-x),AL);

// Skin rotation (ul-u2)/d for sandwich beam section
phi(float x) {

return v1(x) - c*(-Mo/L+EIf*v3(x))/(bG*d"2);

// Influence displacement functions for sandwich beam with end moments

gl(float x) /* Influence displacement function for the first DOF*/
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return (x3-3*L*x 2+2*LA2*x)/(6*EI*L) +

(x/L-1+hsos(al*(L-x),AL))/(al2*El);

g2(float x)
{
return (x3-3*¥L*x"2+2* L 2*x)/(6*EI*L) +

(x/L-1+hsos(al*(L-x),AL))*(1/EI-1/EIf)/al2;

g3(float x)
{
return -(x"3-L"2*x)/(6*EI*L) +

(-x/L+hsos(al*x,AL))/(al2*El);

g4(float x)

{
return -(x"3-L"2*x)/(6*EI*L) +

(-x/L+hsos(al*x,AL))*(1/EI-1/EIf)/al2;
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// Derivatives of influence displ. Functions for sandwich beam with end moment
gl1(float x) /*First derivative of Influence displacement function for the first DOF*/

{
return (3*x72-6¥L#*x+2*L2)/(6*EI*L) +

(1/L-al*hcos(al*(L-x),AL))/(al2*EI);

g12(float x)
{
return (3*x"2-6*L*x-+2*L"2)/(6*EI*L) +

(1/L-  al*hcos(al*(L-x),AL))*(1/El-1/EIf)/al2;

g13(float x)

{
return -(3*x2-L"2)/(6*EI*L) +

(-1/L+al*hcos(al*x,AL))/(al2*EI);

gld(float x)

{
return -(3*x2-LA2)/(6*EI*L) +

(-1/L+al*hcos(al*x,AL))*(1/EI-1/EIf)/al2;
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Shapes(float x)
{
// Compute shape function matrices for element m
zero(N[1,6], Nx[1,6], Nphi[1,6]);
defmat(N1[6], 1-x/L, 0, 0, 0, 0, 0); // rigid body motion in node i
defmat(N2[6], 0, 0, 0, x/L, 0, 0); // rigid body motion in node j
defmat(N3[1,6], -1/L, 0, 0, 0, 0, 0);
defmat(N4[1,6], 0, 0, 0, 1/L, 0, 0);
defmat(g[1,4], g1(x), g2(x), £3(x), g4(x));
defmat(gd[1,4], g11(x), g12(x), gl13(x), gl4(x));
Bfive(Mo=1,Mf=0);
F[3,31=F[1,1]=phi(0);
F[1,3]=F[3,1}=phi(L);
F[4,3}1=F[2,1]=v1(0);
F[2,3}=F[4,1]=v1(L);
Bfive(Mo=1,Mf=1);
F[1,2]=F[3,4]=phi(0);
F[3,2]=F[1,4]=phi(L);
F[2,21=F[4,4]=v1(0);

F[4,2]=F[2,4]=v1(L);
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// Final shape function matrices

INS=g* F*1* B~

IN=N5+N1+N2; /I Sandwich beam deflection shape function matrix
IN6 = gd * F~-1 * B~;

INx = N6 + N3 +N4; // First derivative of sandwich beam deflection matrix

Elementmasses(float m, mat Mm)
{ // Compute element mass matrix [Mm] of element m due to translational [Mt]
// and rotation [Mr] effects
float x;
mat Mt[6,6], Mr[6,6], Mal[6,6], Ma2[6,6], Ma3[6,6];
zero(Mm[6,6]);
B matrix(m);
gausspt(n = 4, XG, XW, 0, L); // Exact weights
for(i=1; i<=n; 1=1+1){
Shapes(XGli}]);
IMt = Mt + (XW[i]*(rhol1*Al+rho2*A2)* N~*N);
'Mr = Mr + (XW[i]*(tho1 *If1+rho2*If2)*Nx~* Nx);
}

IMm = Mt + Mr;
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Systemmass()

{ // Setup system mass matrix [M] and impose boundary conditions

float m;

mat el _id[eDOF}, Mm[eDOF,eDOF];

zero(M[sDOF,sDOFT);

for(m=1;m<=sEl;m=m+1) {
ElementID(m, el _id);
Elementmasses(m,Mm);

subop(Mm+M[el_id;el id]);

IM2=M;

EigenValue()

// Initialize system mass [M]

// For each member m

// Get member end-displ labels

// Member mass [Mm] in global axes

// Assembled nto [M]

// Save copy in [M2]

{ // Computes the squares of the natural frequencies

/I eigen(lv=K2, ev);
eigen(!V =K2, M2, EV);
/fprint(V);

print(EV);
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/! Generalized form



Appendix F Program for Dynamic Analysis of continuous Sandwich beam

and frame Systems Due to Translational, Rotational and Uniform

Axial stretching Effects (This program calculates Eigenvalues).

The model corresponds to the data given in this program for a continuous sandwich beam
divided into equal elements with numbered system nodal coordinates. The program could
be written to accept data input during runtime; however, it is more convenient to include

the data within the program itself.

float sDOF, // Number of free nodal displacements: System DOF
nDOF =4, // Number of degrees of freedom/node
eNODE = 2, // Number of nodes/element

eDOF = nDOF * eNODE; // Number of element dof
main()
{7*
PROGRAM FOR SYMMETRIC AND ASSYMMETRIC SANDWICH BEAM
AND FRAME ANALYSIS. DIRECT STIFFNESS METHOD FOR

CONSTRAINED SYSTEM; i.e. EIGENVALUES ARE OBTAINED FOR ALL
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NODAL DISPLACEMENTS EXCLUDING RESTRAINED DIRECTIONS.

PROGRAM CONSIDERS TRANSLATIONAL, ROTATIONAL AND AXJIAL

EFFECTS
*/
GetData(); // Define all data for beam, truss or frame
NodelID(); // Generate id matrix for nodal DOF
SystemStiff(); // Setup system stiffness matrix
Systemmass(); // Setup system mass matrix
Constraint(); // Impose constraint conditions on [M] and [K]
/fprint(K2,M2);
EigenValue(); // Computes the squares of the natural frequencies
}
GetData()

{ // This function defines ALL data required for problem.
// --- General data ---

sEl = getnum("Enter number of element”, 5);

sNodes = sEl + 1; // number of nodal points
sPreDispls = 0; // number of non-zero prescribed displacements
/] =mmmmeen Define coordinates --------

Totallength = 0.9144;

Member = Totallength/sEl;
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defmat(x[sNodes], O :: Totallength :: Member );
defmat(y[sNodes], sNodes : 0);

print("Nodal coordinates”, x, y);

// -- Define element connectivity and end-condition ----
defmat(E1Con[eNODE,sEl],
1:sEL: 1, // 1: first node of each element
2 :: sNodes :: 1); /1 j: second node
print(""Element connectivity",ElCon);
// -- Define element properties --
b=0.03; ¢=0.0127; t1 =0.0004572; t2=0.0004572; // meters

El =6.89e+10; E2 =6.89¢+10; G = 0.0012*E1; /I Pa

// ~-- Define member axial forces ---

defmat(P[sEl], sE1:0);

// Convenient data
Al=b*tl; A2=b*t2;

Elfl=b*E1*t1"3/12; EIf2=b*E2*t2"3/12;

// 5 Basic parameters: ¢,d,bG,EIf, AEf

d = c+(t1+t2)/2;

bG =b*G;
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EIf=EIf1+EIf2;
J/EIf = E1*((c+1+2)"3)¥b/12;

AEf= (A1*El * A2*E2) / (A1*E1 + A2*E2);

// Derived parameters

al2=bG*(1/AEf+d"2/Elf)/c;

al=sqrt(al2);

AG=d"2*bG/c;

Mu=al2"2*EIlf*2/AG; EI=EIf+d"2* AEf;

Ifl = EIf1/E1; 1f2 = EIf2/E2;

thol = 2680; // kilogram per cubic meter
tho2 = 2680; /I kilogram per cubic meter
A=A1+A2; If=1f1 +1f2;

d1 = (A2*E2/AEf)*d;

d2 = (A1*E1/AEf)*d;

// -- Define nodal restraints by inserting 1 into id matrix --

zero(id[nDOF,sNodes]); // clear before filling with 1

/* 1:shear 2: global moment 3:local facing moment

*/

/* Condition for Node 1: the first node.

Place selected condition last */
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id[1,1] = 0;id[2,1] = 0; id[3,1] = 0; id[4,1] = 0;
id[1,11=1;id[2,1] = 1;1d[3,1] = 1; id[4,1] = 1;
id[1,1] = 1;id[2,1] = 1;id[3,1] = 0; id[4,1] = 2;

id[1,11 = 1;1d[2,1] = 1;1d[3,1] = 0; 1d[4,1] = 0;

/* Condition for Node 2: the second node.
Place selected condition last */
id[1,2] = 1;1d[2,2] = 1, id[3,2] = 1; id[4,2] = 1;
id[1,2] = 1; 1d[2,2] = 1;1d[3,2] = 0; id[4,2] = 2;
id[1,2] = 1; 1d[2,2] = 1; id[3,2] = 0; 1d[4,2] = 0;

1d[1,2] = 0; 1d[2,2] = 0; 1d[3,2] = 05 id[4,2] = 0;

/* Condition for Node 3: the second node.
Place selected condition last */

id[1,3] = 1;1d[2,3] = 1; id[3,3] = 0; 1d[4,3] = 0;

id[1,3] = 1;1d{2,3] = 1;1d[3,3] = 1; 1d[4,3] = 1;

1d[1,3] = 1; 1d[2,3] = 1; 1d[3,3] = 0; 1d[4,3] = 2;

id[1,3] = 0; id[2,3] = 0; id[3,3] = 0; 1d[4,3] = 0;

/* Condition for Node 4: the second node.
Place selected condition last */
id[1,4] = 1;1d[2,4] = 1; 1d[3,4] = 1;id[44] = 1;

id{1,4] = 1; 1d[2,4] = 1; 1d[3,4] = 0; 1d[4,4] = 2;
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// Free
// Clamped
// Smpl. and no shear def.

// Smpl. with shear def.

// Clamped
// Smpl. and no shear def.
// Smpl. with shear def.

// Free

// Smpl. with shear def.
// Clamped
// Smpl. and no shear def.

/! Free

// Clamped

// Smpl. and no shear def.



id[1,4] = 1; id[2,4] = 1; id[3,4] = 0; id[4,4] = O; // Smpl. with shear def,

id[1,4] = 0; id[2,4] = 0; id[3,4] = 0; id[4,4] = 0; // Free

/* Condition for Node 5: the second node.

Place selected condition last */

id[1,5] = 1; id[2,5] = 1;1d[3,5] = 1;id[4,5] = 1; // Clamped

id[1,5] = 1; id[2,5] = 1;1d[3,5] = 0; 1d[4,5] = 2; // Smpl. and no shear def.
id[1,5] = 1; id[2,5] = 1;1d[3,5] = 0; id[4,5] = O; // Smpl. with shear def.
id[1,5] = 0; id[2,5] = 0; id[3,5] = 0; 1d[4,5] = 0; // Free

/* Condition for Node 6: the first node.

Place selected condition last */

id[1,6] = 0; id[2,6] = 0; 1d[3,6] = 0; id[4,6] = O; // Free

id[1,6] = 1; id[2,6] = 1; id[3,6] = 1; id[4,6] = 1; // Clamped

id[1,6] = 1;1d[2,6] = 1; 1d[3,6] = 0; 1d[4,6] = 2; // Smpl. and no shear def.
id[1,6] = 1;id[2,6] = 1;1d[3,6] = 0; 1d[4,6] = O; // Smpl. with shear def.

print(“"Nodal restraint list",id);

SystemStiff()
{ // Setup system stiffness matrix [K] and impose boundary conditions
float m;

mat el_id[eDOF], Km[eDOF,eDOF];
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zero(K[sDOF,sDOF1); // Initialize system stiffness [K]

for(m=1;m<=sEl;m=m+1) { // For each member m
ElementID(m, el_id); /! Get member end-displ labels
ElementStiffim,Km); // Member stiffness [Km] in global axes
subop(Km+K[el id;el_id]); // Assembled into [K]
}
IK2=K; /I Save copy in [K2]
}
Constraint()

{ // Provide cnstraint for the system mass and stiffness matices
float 1, j;
zero(Fo[sDOFY);
for(n=1;n<=sDOF;n=n+1) {

¢ = constr{n];

switch (1) { // Inspect each direction
case ¢ == ( : break; // No constraint here
casec==1i#: c=0; // Fully restrained: displ = 0
default:

subop(Fo > K2[n;1::sDOF});
subop(Fo > K2[1::sDOF;n]);
subop(Fo > M2[n;1::sDOF});

subop(Fo > M2[1::sDOF;n]);
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for(i=1; i<=sDOF; i=i+1){
for(j=1; j<=sDOF; j=j+1){
ifi==){
if(K2[i,j]==0) {K2[i,j]=1;}

if(M2[1,j]==0) {M2[i,j]=1;}

ElementID(float m, mat d)

{ // Return nodal displ numbers of element m // 4 DOF per node
float i=ElCon[1,m]}, j=ElCon[2,m]; // element nodes
d[1]=1d[1,i]; d[2]=1d[2,i]; d[3]=1d[3,i]; d[4] =id[4,i];
d[5]=1d[1,j]; d[6] =id[2,j]; d[7]=1d[3j]; d[8] =1id[4,j];

}

Lengthl1(float m)
{ // Returns the horizontal distance of element m
float 1, j, L;

1= ElCon[1,m]; j=ElCon[2,m]; // element nodes
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L1 = x[j]-x[i};
return L1;

}

Length2(float m)
{ // Returns the vertical distance of element m
float i, j, L;
i = ElCon{[1,m]; j= ElCon{2,m]; // element nodes
L2 =y[j]-ylil;
return L.2;

}

Length(float m)
{ // Returns length of the z-x plane of element m
float i, j, L;
Length1(m);
Length2(m);
L = sqrt(L2"2+L1"2);
Al=al*L; AL2=AL/2;
if(L<=0) { print(*""Incorrect nodal x and y-coordinates",j,i); end;}

return L;

}
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Transformation(float m)
{ // Transforms member axias to that of the global
Length1(m);
Length2(m);
Alpha=L1/L;
Beta = L2/L;
defmat(T[8,8], Alpha, -Beta, 0,0, 0,0, 0, 0,
Beta, Alpha, 0, 0, 0, 0, 0, 0,
0,0,1,0,0,0,0,0,
0,0,0,1,0,0,0,0,
0,0, 0, 0, Alpha, -Beta, 0, 0,
0, 0,0, 0, Beta, Alpha, 0, 0,
0,0,0,0,0,0,1,0,

0,0,0,0,0,0,0,1);

NodeID()
{ /* . Save constraint info into {constr} for later use;
. Fill id[nDOF,sNodes] with displ. numbers even at restraints;
. Compute number of system nodal displacements sDOF.
Input: id[nDOF,sNodes]: nodal constraint information
output:id[nDOF,sNodes]: nodal displacement numbers

constr[nDOF*sNodes]: assigns a value at each nodal direction:
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0 : no restraint.

i# = 1.€30: infinite restraint (i.e. zero displacement)

a value less than i#: prescribed non-zero displacement.

sDOF: number of system DOF */

float 1, j, k, n; // local vars for loop control

zero (constr[nDOF*sNodes));
sDOF=0;
for(n=1;n<=sNodes;n=n+1) {
for(j=1;j<=nDOF;j=j+1) {
1 =1d[j,n];

if(i==0 || i==1) { SDOF=sDOF+1;}

switch(TRUE=1) {

case i==1:
constr[sDOF |=i#;

case 1==0:
1d[j,n]}=sDOF;
break;

case i>1 && n>=1:
id[j,n]=1d[j-1,1];

break;

// initialized to zero

// each node starting from 1

// each DOF: x, y, rotation

/* count number of displemts

at but exclude coupled directions */

// fully restrained direction
// mark direction
// free to displace

/l assign DOF even at restraint

// dof coupled to node >1

/I pick up previous DOF at node 1

default: print(*"Invalid data in id[j,n],j,n =",1,j,n);

end;



}
}
print(""Nodal displacement numbers",id);
for(i=1; i<= sPreDispls; i=i+1) { // Prescribed non-zero displacement
n = Ndis[i,1]; // Node number where there is prescribed displ.
for(=1;)<=nDOF;j=1+1) { // each DOF: x, y, rotation
k =1id[j,n}; // Nodal displacemnt number

if(Ndis[1,j+1]) {
if(constr[k]==i#) { print(*"Bad prescribed displ data: Node",
n," Direction" k," was fully restrained"); end; }

constr[k] = Ndis[1,j+1]; // save value

}

}

} // end NodelD()

B matrix(float m)

{ // produces rotation matrix [T] for element m

float i=ElCon[1,m], j=ElCon[2,m]; // element nodes
L=Length(m);
defmat(B[8,5],4:1/L,0, 4:0,-1,

1,4:0, 0,1,3:0,
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4:-1/L,0, 4:0,1,

2:0,1,2:0, 3:0,1,0);

ElementStiff(float m, mat Km)
{ // Compute element stiffness matrix [Km] of sandwich beam element, m
L=Length(m);
zero(F[5,5]);
Bfive(Mo=1,Mf=0);
F[3,3]=F[1,1]=phi(0);
F[1,3]1=F[3,1]=phi(L);
F[4,3]1=F[2,1]=v1(0);
F[2,3]=F[4,1}=v1(L);
Bfive(Mo=1Mf=1);
F[1,2]=F[3,4]=phi(0);
F[3,2]=F[1,4]=phi(L);
F[2,2]=F[4,4]=v1(0);
F[4,2]=F[2,4]=v1(L);
F[5,51= L/((E1*AT1)Y+(E2*A2)); /I Axial stiffness coefficient
1k4=F"-1; // Stiffness matrix obtained from
// transformation of Flexibility matrix
defmat(KGf{8,8],-1,0,0,0,1,0,0, 0, // Geometric stiffness matrix

0,0,0,0,0,0,0,0,
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0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
1,0,0,0,-1,0, 0, 0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0);
B _matrix(m);
Transformation(m);
if(P[m] == 0)
{
IKm=T~*(B*k4*B~)*T;
}
else{

IKm=(T~*(B*k4*B~)*T) + P[m]*KG/L;

Bfive(float Mo, float Mf)

{

B5=(Mo/EI-M{/EIf)/al2;

// Deflection function for sandwich beam with end moment

-167-



v(float x) {
return Mo*(2*¥L"2-3*L*x+x"2)*x/(6*EI*L) + B5*(x/L-1+hsos(al*(L-x),AL));

}

// Derivatives of deflection function for sandwich beam with end moment
vi(float x) {
return Mo*(2*L"2-6*L*x+3*x/2)/(6*EI*L) + B5*(1/L-al*hcos(al*(L-x),AL));

}

v2(float x) {
return Mo*(6*x-6*L)/(6*EI*L) + B5*al2*hsos(al*(L-x),AL);

}

v3(float x) {
return Mo/(E1*L) - B5*al”*3*hcos(al*(L-x),AL);

}

v4(float x) {

return B5*al2”2*hsos(al*(L-x),AL);

v5(float x) {

return -B5*al*5*hcos(al*(L-x),AL);

-168-



// Skin rotation (ul-u2)/d for a sandwich beam section
phi(float x) {

return v1(x) - c*(-Mo/L+EIf*v3(x))/(bG*d"2);

/ Influence displacement functions for sandwich beam with end moment
gl(float x) /* Influence displacement function for the first DOF*/
{

return (x"3-3*L*x"2+2*L 2%x)/(6*EI*L) +

(x/L-1+hsos(al*(L-x),AL))/(al2*El);

g2(float x)
{
return (X"3-3*L*x"2+2* L 2*x)/(6¥EI*L) +

(x/L-1+hsos(al*(L-x),AL))*(1/EI-1/Elf)/al2;

g3(float x)

{

return -(x"3-L"2*x)/(6*EI*L) +
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(-x/L+hsos(al*x,AL))/(al2*El);

g4(float x)
{
return -(x"3-L"2*x)/(6*EI*L) +

(-x/L+hsos(al*x,AL))*(1/EI-1/Elf)/al2;

// Derivatives of influence displ. functions for sandwich beam with end moment

gl1(float x) /*First derivative of Influence displacement function for the first DOF*/

{
return (3*x/2-6*L*x+2*L2)/(6*EI*L) +

(1/L-al*hcos(al*(L-x),AL))/(al2*ED);

g12(float x)

{
return (3*x"2-6¥L*x+2*L"2)/(6*EI*L) +

(1/L- al*hcos(al*(L-x),AL))*(1/EI-1/EIf)/al2;

gl13(float x)
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return ~(3*x"2-L"2)/(6*EI*L) +

(-1/L+al*hcos(al*x,AL))/(al2*EI);

gl4(float x)
{
return -(3*x"2-L"2)/(6*E1*L) +

(-1/L+al*hcos(al*x,AL))*(1/EI-1/EIf)/al2;

// Influence rotation functions for a sandwich beam with end moment
gphil(float x) /* Influence rotation function for the first DOF*/
{
return (3*x/2-6*L*x+2*L"2)/(6*EI*L) +
(1/L-al*hcos(al*(L-x),AL))/(al2*EI) -

(-1/L+EIf*(1/(ET*L)-al*(1/EDy*hcos(al*(L-x),AL))) *c/(b*d"2*G);

gphi2(float x)
{
return (3*x"2-6*¥L*x+2*L"2)/(6*EI*L) +

(1/L-al*hcos(al*(L-x),AL))*(1/EI-1/EIf)/al2 -
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(-1/L+EIP*(1/(ET*L)-al*(1/EL-1/EIf)*hcos(al*(Lx),AL)))*c/(b*d"2*G);

gphi3(float x)
{
return (3*x2-L"2)/(6*EI*L) +
(1/L-al*hcos(al*x,AL))/(al2*ET) -

(-1/L+EIfH(1/(ET*L)-al*(1/E])*hcos(al *x, AL)))*c/(b*d"2*G);

gphi4(float x)
{
return (3*x”2-L"2)/(6*EI*L) +
(1/L-al*hcos(al*x,AL))*(1/EI-1/Elf)/al2 -

(-1/L+EIf*(1/(EI*L)-al*(1/El-1/EIf)*hcos(al*x, AL)))*c/(b*d*2*G);

Shapes(float x)

{

// Compute shape function matrices for sandwich beam element, m
zero(N[1,8], Nx[1,8], Nphi[1,8]);
defmat(Na[1,8], 0, 1-x/L, 0, 0, 0, x/L, 0, 0); /* Uniform stretching shape

*/ function matrix
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defmat(N1[8], 1-x/L, 0, 0, 0, 0, 0, 0, 0); // rigid body motion in node i
defmat(N2[8], 0, 0, 0, 0, x/L, 0, 0, 0); // rigid body motion in node j
defmat(N3[1,8],-1/L, 0,0, 0, 0, 0, 0, 0);

defmat(N4{1,81,0,0, 0,0, 1/L, 0, 0, 0);

defmat(g[1,5], gl(x), g2(x), g3(x), g4(x), 0);

defmat(gd[1,5], g1 1(x), g12(x), g13(x), gl4(x), 0);

defmat(gphi[1,5], gphil(x), gphi2(x), gphi3(x), gphi4(x), 0);

Bfive(Mo=1,Mf=0);

F[3,3]=F[1,1]=phi(0);

F[1,3]=F{3,1}=phi(L);

F[4,31=F[2,1]=v1(0);

F[2,3]=F[4,1}=vI(L);

Bfive(Mo=1Mf=1);

F[1,2]=F[3,4]=phi(0);

F[3,2]=F[1,4]=phi(L);

F[2,2]=F[4,4]=v1(0);

F[4,21=F[2,4}=v1(L);

F[5,5]= LA(E1*A1)+(E2*A2));

// Final shape function matrices
IN5 =g * F*-1 * B~;
IN=N5+N1+N2; // Sandwich beam deflection shape function matrix

IN6 = gd * F~-1 * B~;
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INx = N6 + N3 + N4, // First derivative of sandwich beam deflection matrix

!Nphi= gphi*F~-1 * B~; // Sandwich beam rotation shape function matrix

Elementmasses(float m, mat Mm)
{ // Compute element mass matrix [Mm] of element m due to translation [Mt],
// rotation [Mr] and uniform axial stretching [Ma] effects
float x;
mat Mt[8,8], Mr[8,8], Ma[8,8], Ma1[8,8], Ma2{8,8], Ma3[8,8];
zero(Mm(8§,8]);
B_matrix(m);
gausspt(n = 4, XG, XW, 0, L); // Exact weights
for(i=1; i<=n; i=1+1){
Shapes(XG[i]);
IMt = Mt + (XW[i]*(thol1 *A1+rho2*A2)* N~*N);
'Mr = Mr + (XW[i]*(rho1 *If1+rho2*If2)*Nx~* Nx);
Mal = Mal + (XW[i]*(thol*Al+rho2*A2)*Na~*Na);
Ma2 = Ma2 + (XW[i}*(thol *A1*d1"2+rho2* A2*d2/2)*Nphi~*Nphi);
Ma3 = Ma3 + (XW[i}*2*(tho1*A1*d1-tho2*A2*d2)*Na~*Nphi);
}
'Ma = Mal +Ma2 + Ma3;

Mm = Mt + Mr + Ma;
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Systemmass()

{ // setup system mass matrix [M] and impose boundary conditions

float m;

mat el_id[eDOF], Mm[eDOF,eDOF];

zero(M[sDOF,sDOF1); // Initialize system mass [M]
for(m=1;m<=sEl;m=m+1) { // For each member m
ElementID(m, el_id); // Get member end-displ labels
Flementmasses(m,Mm); / Member mass [Mm] in global axes
subop(Mm+M]Jel id;el id]); /I Assembled into [M]
}
IM2=M; // Save copy in [M2]
}
EigenValue()

{  // Compute the squares of the natural frequencies
/1 eigen(lv = K2, ev); // Standard form

eigen(!V = K2, M2, EV); // Generalized form

print(",EV, V);
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Appendix G Program for calculating frequency parameter for a

homogeneous beam.

main()

b=0.01; t1=0.0004572; t2=0.0004572; c=0.0127;, // meters
El1=E2 =6.8¢+10; // Pa
thol = rho2 = 2680; thoc = 119.69;

d = cH(t1+12)/2;

Al=b*tl; A2=b*t2;

EIf1=b*E1*t173/12; EIf2=b*E2*t2"3/12;

EIf=EIf1+EIf2;

AEf=(A1*El1 * A2*E2) / (A1*El + A2*E2),

EI=EIf + d"2*AEf;

w2 = 347; // Square of the natural frequency
w = (sqrt(w2));///(2*pi#);

L=25;

lambda = ((w*(L"2))*sqrt((2*rho1*A1) / E1))"0.5;

//lambda = (w2*(L"4)*(thol1 *Al+rho2*A2) / EI)"0.25;

print(",Jambda);
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