QUERY OPTIMIZATION USING VIEWS IN
SEMISTRUCTURED DATABASES

ALEX-IMIR THOMO

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
For THE DEGREE OF DOCTOR OF PHILOSOPHY
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

Jury 2003
© ALex-Imir THOMO, 2003

% |

?taggnnaald l;jbrary gi‘btg;tgsgge nationale
Acquisitions and Acquisitions et)
Bﬁiographic Servicas services bibliographiques
e N K1 O Ottaws O K14 004
Canada Canada Your Sip Vore rittveram
The author has granted a non- L’ auteur a accordé une licence non
exchusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-85270-9

Canadia

Abstract

Query Optimization Using Views in Semistructured Databases

Alex-Imir Thomo, Ph.D. Concordia University

A wealth of query languages for semistructured graph data has emerged, and
what almost all of these languages have in common is a graph navigation mechanisin,
which is not usually found in their relational predecessors. However, the navigation
is very expensive since it typically involves many database or network accesses. As a
consequence, the optimization of the navigational part of the queries is essential for

having commercially attractive query processors similar to those for relational data.

One of the most well known ways for optimizing a query in general, is to use
available information in precomputed or materialized views. At the heart of our
approaches is the leverage of the concept of query rewritings using views. The query
rewriting is a well known problem, which has been solved and deeply investigated
for (non-recursive) queries over relational data. However, for navigational queries,
which are a subset of the bigger family of the recursive datalog queries, the problem

of rewriting is more complex and challenging.

In this thesis we study the problem in two realistic scenarios. The first one is
related to information integration systems such as the Information Manifold, in which
the data sources are modeled as sound views over a global schema. In such cases
the “real” database is not available and what we try to compute for a query is its
“certain answer according to the views.” The second scenario, is query optimization
using views when the real database is available, but the views are cheaper to access.
In such a case we can use the database to answer parts of the query for which there
are no relevant views. We propose algebraic rewritings that focus on extracting as

much information as possible from the views for optimizing navigational queries.

11l

To my wife Mirela

v

Acknowledgments

I want to express my deepest gratitude to my supervisor Dr. Gosta Grahne for so
closely guiding me through all our research. This thesis would not have been possible
without our long discussions about every detail and his exceptional way of encouraging
and advising me. Time by time, I needed a talk with him in order to find the energy

to continue.

I also want to express my gratitude to Professor Jaroslav Opatrny, that in a very

smooth way introduced me to the “hard” Theory of Computing.

I want to especially thank Professor Moshe Vardi for accepting to be one of the
committee members. [t is a great honor for me to have this thesis being read and
reviewed by Professor Moshe Vardi, whose groundbreaking work on the databases

enlightened me many times during the PhD.

Last but not least, I would like to thank my wife Mirela that created my nicest
time ever. Without her the PhD would have been much harder.

Contents

List of Figures ix
1 Introduction 1
1.1 Motivation and alm e e 1

1.2 Databases, queries and views oL 5
1.3 View based rewritingso 8
1.4 The maximally contained {2-rewriting 12
1.5 Finite transducers and rational relations 14
2 Query processing in information integration systems 16
2.1 Introductiono 16
2.2 Formal background oo o000 18
2.3 The possibility rewritingo 20
2.4 Computing the possibility rewriting 22
3 Query optimization using cached views: First attack 27

vi

3.1 Introduction
3.2 Warm-up e
3.3 Replacement — A new algebraic operator
3.4 Exhaustive partial possibility rewriting 000
3.5 [Exhaustive and contained partial rewriting
3.6 Query optimization using partial rewritings

3.7 Complexity analysis.

Better rewritings and optimizations: Second attack

4.1 Introduction

4.2 A taxonomy for rewritings

4.3 Computing the maximal and contained partial rewriting

4.4 Optimizing conjunctive regular path queries

4.5 Complexity analysis

Query rewriting using views under constraints.

5.1 Introduction

9.2 Background

9.3 Query containment under constraints

9.4 A subclass with decidable query containment

Vil

27

29

30

33

35

37

42

47

47

48

o4

99

63

69

6 Epilogue 94

6.1 Conway’s solution for the maximally contained rewriting 94
6.2 More general path queries 99
6.3 Semistructured data: nodes versus edge labels 101
6.4 Semistructured data: graphs versus trees 101
6.5 Regular path queries versus XPATH 102
6.6 Conclusions 103
Bibliography 107

viil

List of Figures

10

11

12

13

14

XML asagraph. o 4
An example of a graph databaseo 0oL 7
The view graph oo oo 7
The DFA for the query and the corresponding “view” automaton. . . 13
The resulting ‘MCR given by DFA B¢, 13
A finite transducer To 15
An example of a view graph 18
Visualisation of the proof for Theorem 5. 21
Decomposing a “macro” transducer I. 22

Decomposing a “macro” transducer II.

................. 23
Query automaton and macro transducer., 24
Transducers for the view definitions. 25
Automatonof the PR. 25
source collection for Example b 26

1X

Construction of a replacement transducer 33

Construction of a replacement transducer 55
The construction of DB,o 77
Proofof Lemma 4. o L. 78
First case of Theorem 39 85
Second case of Theorem 39 85
Hasse diagram for the contained rewritings 106

Chapter 1

Introduction

1.1 Motivation and aim

Until a few years ago the publication of electronic data was limited to a few scientific
and technical areas. It is now becoming universal. Most people see such data as
Web documents, but these documents, rather than being manually composed, are in-
creasingly generated automatically from databases. It is possible to publish enormous
volumes of hypertext data in this way, and we are now starting to see the development

of software that extracts and stores data from the Web.

The emergence of XML (eXtensible Markup Language) as a standard for data
representation on the Web is expected to greatly facilitate the publication of electronic
data by providing a simple syntax that is both human and machine-readable. Since
its introduction, XML has quickly emerged as the universal format for publishing and
exchanging data in the World Wide Web. As a result, data sources, including object-
relational databases, are now faced with a new class of users: clients and customers
who would like to deal directly with XML data rather than being forced to deal with

the data source particular schema and query languages.

Both hypertext (HTML) and XML data are modeled as labeled graphs. In data
published as HTML, the pages can naturally be considered as the graph nodes and

the HREF links between them as the graph edges. Since the HREF links are labeled,

the representing graph is labeled as well.

Let’s consider now the XML data. By just a look at any common XML fragment,
a tree modeling comes also very naturally in mind. It is the nested structure of
XML that directly suggests the model. Intuitively, each element is a node and its
children are the attributes, which can be by themselves complex elements with their
own further nesting. Moreover, because of the possible links between elements, in

fact, the tree is generalized into a graph model.

In both the above database contexts, navigational queries have been proven to
be very useful. Typically, navigational queries are expressed as regular expressions
denoting paths in the graph representing the data. Such queries are called “regular

path queries.”

For an example in the context of hypertext data consider the multisite Web of
Ericsson Inc. at http://www.ericsson.com. As we can easily verify, there are hundreds
of Web pages full of information and we naturally would like to be helped by some
navigational mechanism, instead of endlessly manually browsing. For the appropriate
abstraction level, let there be a function mapping the HREF-links to symbols of an
alphabet. For example, links leading to the Ericsson Canada site could be labeled
with “canada.” Suppose now that the user wants to learn “technical” news about
Bluetooth developments at Ericsson Canada. Unfortunately, he has to do an extensive
browsing for that. He has to read fetched pages, then follow relevant links in those
pages, pressing the “back” button nervously because he probably followed the wrong
path a couple of times, until he finally reaches the right page; that with the Canadian
white papers about Bluetooth. Wouldn’t it be better to just say canada . products .

_* . mobile internet . _* . white papers . pdf and leave the system to do the browsing

for him?

Queries of a navigational nature are also very essential for XML data. To illustrate
this let’s consider an organisation which publishes data about books, articles and

software. For instance a fragment of the organisation XML database would be the
following.

<BOOK bookId="ds">
<TITLE>Distributed Systems</TITLE>
<AUTHOR authorId="smith">
<NAME>Dan Smith</NAME>
<EMAIL>ds@cs.mcgill.ca</EMAIL>
</AUTHOR>
<AUTHOR authorId="bouret'>
<NAME>Emil Bouret</NAME>
<EMAIL>bouret@alpha.net</EMAIL>
</AUTHOR>
</BOOK>

<ARTICLE articleId="xml">
<JOURNAL>ACM J. 2000-12</JOURNAL>
<TITLE>XML Programming</TITLE>
<AUTHOR authorId="smith"/>
<REF refld="ds"/>

</ARTICLE>

<ARTICLE articleId="vb'>
<JOURNAL>PCWorld 2000-12</JOURNAL>
<TITLE>VBScript Integration</TITLE>
<AUTHOR authorId="Bouret"/>
<REF refId="zxml"/>

</ARTICLE>

<SOFTWARE>
<COMPANY>Microsoft</COMPANY>
<PRODUCT>MsOffice</PRODUCT>
<SOFTWARE>
<PRODUCT>MS Access 97</PRODUCT>
</SOFTWARE>
<SOFTWARE>

<PRODUCT>MS PowerPoint 97</PRODUCT>

</SOFTWARE>

<SOFTWARE>
<PRODUCT>Word</PRODUCT>
<30FTWARE>

<SOFTWARE>
<COMPANY>Borland</COMPANY>
<PRODUCT>Borland C++</PRODUCT>
<CATEGORY>Programming</CATEGORY>
</SOFTWARE>

<PRODUCT>MS Equations</PRODUCT>
<CATEGORY>Mathematics</CATEGORY>

</SOFTWARE>
</SOFTWARE>
</SOFTWARE>

<SOFTWARE>
<COMPANY>Microsoft</COMPANY>
<PRODUCT>MsPaint</PRODUCT>
<CATEGORY>Images</CATEGORY>
</SOFTWARE>

book article softwareN_ software softwaré

company
tile Guthor/ author_ author ourny titl prod software
Distributed Systems S ACM T 2000-12 Microsoft MS Office

name email .) prod

software
» v author ’

Emil Bouret bouret@cs.mgill.ca Word

prod
category\,

Equations mathematics

Figure 1: XML as a graph.
Intuitively, this XML database can be represented as the graph of Figure 1.

Suppose now that the user is a mathematician who wants to know what software
is intended primarily for mathematicians. He would try “greping” huge XML files
with the UNIX grep utility for the word “mathematics.” However, this is a very
unsatisfactory solution because his intention is not only to find out where the word
“mathematics” appears. What he really wants is “mathematics” to appear inside a

“software.” Clearly, a keyword search is not a structural search.

Another problem with the “greping” solution is that although XML can exists
in text files, we emphasize here that XML should be considered only as a logical
representation of the data. The days of text XML will soon be over. Almost all
the major database vendors are now using the XML as a front-end to their somehow
“unpopular” object-relational features. Also, we are starting to see the emergence of
native XML repositories that semantically “shred” XML into disk blocks, trying to
provide the usual database characteristics. As a consequence, the “greping” solution
would only work if the whole XML “file” is reassembled and brought to the user, and

this is obviously not an acceptable solution.

Clearly in such cases, querying through regular expressions provides an elegant

solution to the problem. Returning to our concrete example, a typical query that

satisfies our hypothetical mathematician user would be software* . category . math-
ematics, where the node value “mathematics” is considered as a self-loop to the node

itself.

We motivated in the above the usefulness of regular expressions for navigational
querying of the data. However, note that we are querying huge persistent graph
structures. This said, it is not difficult to see that the evaluation of regular expressions
is a slow process and far more complex than the evaluation of first order queries on
relational tables involving a few join steps aided by fast relational index structures.
The navigation often comprises prohibitive database or network accesses. Adding
here the inherent recursion present in regular expressions, we can easily realize that

the traversed paths by a typical navigation can be arbitrarily long and very costly.

Obviously, the optimization of navigational query evaluation on data graphs is
an imperative matter. This thesis follows the paradigm of query optimization using
precomputed or materialized views. We investigate the theoretical ground for using
views to rewrite arbitrary regular path queries. Notably, the rewritings that we obtain
can be used to optimize more general queries like those belonging to the wider family

of conjunctive regular path queries.

We present a detailed overview of our work in the next section, after we introduce

some necessary definitions.

1.2 Databases, queries and views

As mentioned before, we abstract the HTML and XML data by a labeled data-graph.

In general, the data being modeled by graphs are called semistructured.

Formally, let A be a finite alphabet, called the database alphabet. Elements of A will
be denoted R, S, T, R, S',..., Ry, S, ..., etc.

Now, assume that we have a universe of objects D. Objects will be denoted a, b, ¢, o', ¥/,

-, 01,by, ..., and so on. A database DB over (D, A) is a pair (N, E), where N C D

is a set of nodes and E C N x A X N is a set of directed edges labeled with symbols

from A. Figure 2 contains an example of a graph database.

In order to traverse arbitrarily long paths in graph databases, almost all the query
languages for semistructured data provide a facility to the user to query through
“regular path queries,” which are queries represented by regular expressions. The
design of regular path queries is based on the observation that many of the recursive
queries that arise in practice amount to graph traversals. These queries are in essence
graph patterns asking for subgraphs of the database that match the given pattern
IMW95, FLS98, CGLV99, CGLV2000a, CGLV2000b]. For example, the regular path
query (- article) - (_* - ref - * - (ullman + widom)) specifies all the paths having at
some point an edge labeled article, followed by any number of other edges, then by

an edge labeled ref and finally by an edge labeled with ullman or widom.
Formally, we consider a query @) to be a finite or infinite regular language over A.

If there is a path labeled Ry, Ry, ..., R from a node a to a node b we write

Ri.Ra.. Ry
A

Let @ be a query and DB = (N, E) a database. Then the answer to) on DB is
defined as

ans(Q, DB) = {(a,b): {a,b} C N and a -% b for some W € Q}.

Example 1 For instance, if DB is the graph in Figure 2, and Q = {SR, T}, then
ans(Q, DB) = {(b,d), (d,b), (c,a)}.

A view is the result of evaluating a query. The query that generates the view is
called view definition. Let V = {V1,...,V,} be a set of view definitions with each Vi
being a finite or infinite regular language over A. Associated with each view definition
Vi there is a view name v;. We call the set Q = {v,...,v,} the outer or view alphabet.
For each v; € €2, we set def(v;) = V. The substitution def associates with each view
name v;, in the Q alphabet, the language V;. Also, we extend the substitution def to
the A alphabet associating each symbol with itself. The substitution def is applied

6

Figure 2: An example of a graph database

to words, languages, and regular expressions, over U A in the usual way (see e. g.
[HU79]). Sometimes we need to refer to regular expressions representing the languages
@ and V;. In order to simplify the notation, we will blur the distinction between the

regular expressions and the languages that they represent.

Given a database DB, we define the view graph Vpg to be the graph induced by
the set

U {(a,v:,b) : (a,b) € ans(V;, DB)}.
of Q-labeled edges.
Example 2 Let DB be the graph in Figure 2. Suppose that we have two views

available Vi = {SR} and V3 = {STR}. Then, ans(Vi, DB) = {(b,d),(d,b)} and
ans(Va, DB) = {(b,b)}. It is easy to see that the view graph is as shown in Figure 3.

Figure 3: The view graph

1.3 View based rewritings

In data integration, data warehousing and query optimization, the problem of query
rewriting using views is well known [LMSS95, Ul97, CGLV99, Lev2000]. Simply

stated, the problem is to reformulate the query in terms of the view definitions.

Query rewriting in relational databases is by now rather well investigated. Several
papers investigate this problem for the case of conjunctive queries [LMSS95, Ull97,
PV99]. However, in the framework of semistructured data the problem of rewriting

has received much less attention.

Let @ be a query and {V4,..., V. } be view definitions on an alphabet A. Consider
the alphabet Q = {vy,...,v,} of corresponding view symbols. Formally, we define a
rewriting to be a language on U A. There are infinitely many rewritings, and the
problem is to compute the most appropriate rewriting for a specific context. One of
the criteria for reasoning about a rewriting @' is the “relevance” to the given query.

For this we naturally compute def(Q'), which is a language on A, and then “compare”

it with the query language.

Definition 1 A rewriting (' is relevant to a query @ if for each word w € Q' we
have that def(w) N Q # 0.

Definition 2 A rewriting Q' is contained in a query if for each word w & Q' we
have that def(w) C Q.

Definition 3 A rewriting Q' is ezact with respect to a query Q if def (Q") = Q.

Clearly, the exactness implies containment and containment implies relevance.

Hence, any exact or contained rewriting is relevant.

On the other hand, taking into consideration only the relevance is not enough. To
see this, recall that by definition, we also have that the query (J is an exact rewriting

and completely relevant to itself. This indicates that a second criterion should be the

8

“optimality” of a rewriting. Obviously, we want to minimize the A symbols appearing

in the words of a rewriting, since we assume that the view edges are cheaper to access
1

Example 3 Let Q = (RR)T + (RR)S(RR) + T° and suppose we have three views
available: V, = RR, Vo, = S + 85, and V3 = T5. What could be a rewriting? We

present siz relevant rewritings that come to mind.

QW = wivavr + v

Q¥ = T+ vivvr +vs

Q(s) = U3

QW = uT+vSv +v+T°
Q¥ = v T+us

QY = wT +vSv; + s

The first rewriting Q" is (logically) obtained by the following procedure: When-
ever there is a query word w such that w € V; ...V}, replace it with v;...v; in the
rewriting. Intutively, this rewriting is the (maximal) set of all 2 words that are rele-
vant to the query. Formally, we have that w € QW iff w € Q* and def(w) N Q # 0.
This rewriting turns out to be important for answering queries using views in infor-
mation integration systems, where the database is not available. Since, this rewriting
is an {2 language we can “evaluate” it on the view graph only. In Chapter 2 ?, we
present a construction for this rewriting and show that, if we consider it as a query
on the view graph, then the answer that we compute will always contain the “certain

answer” of the original query. Moreover, this will happen even when Q € def (Q™).

The second rewriting Q® is the maximal and optimal relevant rewriting in QUA.
To obtain it, we exhaustively do the following: Choose an arbitrary query word w.
Whenever there is a subword x such that = € V;, for some i € [1,n], replace it with

v; in the rewriting. “Exhaustively” means that in any word of the rewriting there

'We will formally define the optimality in Chapter 3.

2The chapters 2 and 3 are a re-worked version of [Tho2000]. Also, different view points, discus-
sions and proofs have been added since then.

cannot be a subword on A that is also a member of some view language. We present a
construction for computing such rewritings in Chapter 3. In general, this rewriting
is a mixed language on QUA. As such, we cannot evaluate it on the view graph only.
We certainly need also the real database in order to evaluate the subwords on A.
Based on the relationship Q C def (Q®@), (which is easy to verify) in Chapter 3, we
will present an algorithm for using the rewritings of this kind in query optimization
when we have both the view graph and the database graph and accessing the view

graph is cheaper.

The next rewriting Q® is the maximal contained rewriting on {2. This rewriting
is presented in the seminal paper of Calvanese, De Giacomo, Lenzerini, and Vardi
[CGLV99], and formally it is the set of all words w on €, such that def(w) C Q.
Since this rewriting is a pure 2 language, it can be evaluated on the view graph only.
This fact makes it appropriate to be used in the context of integration systems where
the database is not available. As we have mentioned before, this is also true for Q1)

while the other rewritings, being “mixed” languages on ? U A, are mainly aimed for

the optimization in a context where both the view graph and the database graph are

availlable.

The problem with the rewriting Q) is that it can happen to not be exact. To
overcome this problem, a partial rewriting is introduced in [CGLV99]. This is the
rewriting Q® in our example. The idea behind it, is to incrementally add new
elementary one-symbol view definitions to the set of initial view definitions and then
recompute the previous rewriting with the new set. This is repeated each time a
new elementary view is added until an exact rewriting is obtained. The drawback
of this approach is that sometimes “non-optimal” words can be computed as well in
the rewriting. To see this, observe that in order to model the query word (RR)T,
the algorithm is forced at some point to add 7' as a new elementary view definition.
However, by doing so and then recomputing the maximal language on the (new) view
alphabet, will result in computing also the “non-optimal” A word 7°, which could

be avoided since it is exactly modeled by vs.

The rewriting Q® is contained and “optimal.” Intuitively, it will never contain

some subword describing paths in the database that could have been “seen” before

10

by any of the views. This rewriting is studied in Chapter 3, and is formally defined
as the C-largest subset of Q@ that is a contained rewriting. However, as we can see
from the example, this rewriting can happen to not be exact. Consequently, if Q® is
not exact, then we are not guaranteed to obtain all the answers to a given query by
using this rewriting even if we consult the database for evaluating the A subwords of

the rewriting.

We have that Q® C Q®). This means that if we cannot avoid accessing the
database, i.e. when Q® is not exact, then the rewriting Q) is at least as good as
Q®, and it can be in many cases better. To see this, observe that the only way Q)
and Q® could be used for lossless query optimization is to compute @ — def (Q®)
and Q — def(Q®) and then answer this part of the query un-helped directly on the
database. Clearly, Q — def(Q®)) is smaller than @ — def (Q®)).

If we take a closer look in the example, we can see that the non-exactness of
Q®) stems from the fact that v;Sv; is missing from the rewriting. This word is not
there because it was filtered out from the “parent” rewriting @® and computing the
word vyv,v; instead, because the symbol S was considered replaceable by vy (recall
Vo = S+ 585). However, this decision turns out to not allow Q%) to be exact, since it
is defined as a subset of Q®), and being a contained rewriting cannot include v;v,vy,
whose substitution def(vyvev;) € Q.

It is clear from the above discussion that in order to have an exact rewriting we
should not replace S by v, in 1,Sv;. The rewriting Q® does exactly that. Gen-
eralizing the idea, we introduce in Chapter 4 a taxonomy for comparing different
contained rewritings. Then, we compute the “maximal and contained partial rewrit-
ing,” which is the set of all words w on 2 U A such that def(w) C @ and there is no
subword decomposition w = zyz, such that y € V; and zV;z C @, for some ¢ € [1,n].
We prove that this rewriting is “optimal” and exact. If we cannot completely avoid
accessing the database because Q) happens to not be exact, then the QY rewriting
is the most preferable rewriting for lossless (exact) query optimization. A question
can arise here. Does Q) deprecate the use of Q®? The answer is yes, but we still
prefer to present the construction of @® because its computational complexity is

lower than that of Q| and hence could be used in cases when a completely lossless

11

optimization is not necessary.

The rewritings that we have presented so far may look different if we take into
account eventual constraints that we might know or learn about the database on
which the query is to be evaluated. For instance, if we knew in Example 3 that the
query and the views are to be considered with respect to databases in which any two
objects connected by a path spelling the word (RR)S(RR) are also connected by a
path spelling the word (RR)T, then we could say that Q©® = Q®). The study of the

rewritings under constraints is the focus of Chapter 5.

1.4 The maximally contained ()-rewriting

In order to make the thesis self-contained we briefly present in this section the query
rewriting (Q®) of Calvanese, De Giacomo, Lenzerini, and Vardi [CGLV99]. It is
the C-largest contained rewriting on (), and reflecting this property, we call it: the
Mazimally Contained Rewriting (MCR) on €. Formally, for a given query @, the
maximally contained rewriting MCRy (@), is the set of all words on €2 such that their

substitution through def is contained in the query language @. In symbols,

MCRy(Q) = {w:w € Q" and def(w) C Q}.

An elegant method for computing the MCR of a query is given in [CGLV99]. Their
algorithm is:
1. Construct a DFA Ag(A, S, 50,6, F) such that @ = L(Ag).

2. Construct automaton B = (€2, 5,s0,0', S — F), where (s;,v,5;) € & iff there
exists w € V such that (s;, w, s;) € 6*.

3. The McCR is the) language accepted by complementing the B automaton.

Step 2 can also be expressed slightly different: Consider each pair of states. If

they are connected in Ag by a walk labeled with a word in V;, put a transition v;
between them in B.

12

Figure 4: The DFA for the query and the corresponding “view” automaton.

Example 4 Let Q = (RS)* and Vi = R+ 5%, V, =5, V3 =SSR, Vy = (RS)?. Then
the minimalP DFA Ag for the query Q is shown in Figure 4, left and the corresponding
automaton B is shown in in Figure 5, right. The resulting complement automaton B*

is shown in Figure 5. Note that the. “trap” and unreachable states have been removed

for clearness.

¢
DFA B¢

Figure 5: The resulting MCR given by DFA B°.

Observe that, if B accepts an 2-word vy - - - v,,, then there exist m A-words wy,

.., Wy, such that w; € V; for 1 = 1,...,m and such that the A-word w; ... w,, is
rejected by Ag. On the other hand if there exists a A-word w; ... w,, that is rejected
by Ag such that w; € V; for ¢« = 1,...,m, then the Q-word v ---v,, is accepted
by B. That is, B accepts an §2-word vy ---v,, if and only if there is a A-word in
def (vy - - - vy,) that is rejected by Ag. Hence, B¢ being the complement of B accepts

an {2-word if and only if all A-words w = w;y ... w,, such that w; € V;fori=1,...,m
are accepted by Ag.

3

The complexity of computing the MCR of a regular path query @ is in 2EXPTIME
and this bound is shown to be tight ((CGLV99]).

In order to use the MCR of a query @ for losless query optimization, we should

3The constructed DFA for the query does not need to be minimal.

13

test its exactness. An algorithm for this is given in [CGLV99] and is as follows.

1. Construct an automaton B = (4, Sg,sgo, 05, Fp) that accepts def (Q)'), by
replacing each edge labeled by v; in the automaton for Q', say Ag, by an
automaton A; such that L(4;) = def(v;) for t = 1,...,n. Each edge labeled
by v; is replaced by a fresh copy of A;. We assume without loss of generality,
that A; has unique start state and accepting state, which are identified with the

source and target of the edge respectively. Observe that, since Q' is a contained
rewriting of @, L(B) C Q = L(Ag)-

2. Check whether L(Ag) C L(B), that is, check whether L(Ag N B¢) = 0.

Theorem 1 [CGLV99] The MCR Q' is an exact rewriting of the query Q with respect
to a set V of reqular view definitions, if and only if L{(Ag N B¢) = .

Corollary 1 [CGLV99] An exact rewriting of () with respect to 'V exists if and only
Zf L(AQ M Bc) = @

Theorem 2 [CGLV99] The problem of verifying the existence of an ezact rewriting

of a regular path query Q) with respect to a set V of regular view definitions, is in
2EXPSPACE.

Finally, in [CGLV99], it is shown that the complexity bounds established in the

previous theorems are essentially optimal.

1.5 Finite transducers and rational relations

In most of our constructions, the concept of the (rational) transducer is instrumental.

It provides a succint approach for transforming words and for mappings between

languages.

14

A finite transducer T = (P, I, O, 6, po, F) consists of a finite set of states P,
an input alphabet I, and an output alphabet O, also a starting state pg, a set of
final states F', and a transition-output relation 6 C P xI* x P xO*. Intuitively,
for instance, (po,u, p1, w) € § means that if the transducer is in state py and reads
word u it can go to state p; and emit the word w. For a given word v € I, we say
that a word w € O* is an output of T for u if there exists a sequence (pg, U1, Pi,
wy) € 6, (p1, g, P2, Wa) € &, .., (Pn-1, Un, Pn, Wn) € & of state transitions in T,
such that p, € F, v = ;... Uy, and w = w; ... w,. A finite automaton is simply a
transducer without output, i.e. the tuples in the transition relation are triplets of the

form (p, a, q) instead of quadruplets of the for (p,a,q,b).

An example of a finite transducer ({po, p1, P2}, 2, A, 6, {p2}) is shown in Figure 6.

v,/ SRS
v,/ R v, /€ vi/R

5‘5”0> v,/ SRS e/SS %

Figure 6: A finite transducer T

D

We shall also use the symbol 7 to denote the set of all pairs (v, w) € I* x O*, where
w an output of 7 for v. Finally, T can also be seen as a mapping from languages to

languages, and we write
T(L) ={w: (v,w) € T, for some v € L}.
It is well known that 7 (L) is regular whenever L is.

A finite transducer T = (P, 1,0, 6, po, F) is said to be in the standard form, if § C
S x (TU{e}) x S x (OU{e}). Intuitively. the standard form restricts the input and
output of each transition to be only a single letter or e. It is known that any finite

transducer is equivalent to a finite transducer in standard form (see [Yu97]).

15

Chapter 2

Query processing in information

integration systems

2.1 Introduction

Much of the work on answering queries using views has been spurred because of its
application to data integration systems. A data integration system provides a uniform
query interface to a multitude of autonomous heterogeneous data sources. The goal
of data integration is to free the user from having to find the data sources relevant

to the query, interact with each source in isolation, and manually combine data from

the different sources.

To provide a uniform interface, a data integration system exposes to the user a
mediated global schema. A mediated global schema is set of virtual relations, in the
sense that they are not stored anywhere. The mediated global schema is designed
manually for a particular data integration application. To be able to answer the

quertes the system must also contain a set of source descriptions that specify the

contents of the data sources.

One of the approaches that has been adopted in several systems, known as local-

as-view (LAV), is to describe the contents of the local sources as wviews over the

16

mediated global schema. In order to answer a query, a data integration system needs
to translate a query formulated on the mediated schema into one that refers directly
to the schemas in data sources. Since the contents of the data sources are described
as views, the translation problem amounts to finding a way to answer a query using
a set of views. In a LAV architecture, a local change to a data source can be handled
locally, by adding, removing or updating only the view definition concerning this

source; therefore LAV scales very well.

For illustrating the problem, let the mediated schema be that of our bookstore
database graph of Figure 1. In other words the virtual (binary) relations are those
specified by the edge labels of the graph. However, recall that the real database does

not exist; it is virtual.

Suppose now, that we have the following three data sources. The first provides a
listing of (z,y) object pairs, such that z is an article that refers to the article or book

y. This source can be described by the following view definition.
ArticleRefArticle: ref.

The second source contains (x,y) pairs of objects, such that z is a book and y is
either a book, article or software referred to, directly or indirectly, in the book. This

source can be described by the following view definition.
BookRefs: ref*.

Finally, the third source contains (x,y) pairs of objects, such that y 1s a sub-software

of . This source can be described by the following view definition.
SoftwareAndSubs: software
If we were to ask now, “which software is somehow related to some book or article,”
Le. @ = ref*.software*, and we have only the contents of the above data sources

available, then we would be able to answer this query using the following regular

expression on the views.
Q' : (ArticleRefArticle + BookRefs)*.SoftwareAndSubs®*.

17

It is important to note here that this formulation of the query is to be answered

on the view graph only, which could be as shown in Figure 7.

Bookrefs
ArticleRefArticl;(
Bookrefs

ArticleRefArticle

Bookrefs

Soft|{AndSubs

/hokrefs

Figure 7: An example of a view graph

SoftAndSubs

SoftAndSubs

2.2 Formal background

Let V. = {V;,...,V,} be a set of view definitions and let © = {v1,...v,} be the
corresponding view alphabet. Consider V to be the view graph for the set of objects
found in the views. As we have mentioned before V is a database over (D,). In
the terminology of data integration, a view graph is called a source collection, and we
prefer to use this name in this chapter for compatibility with previous work on the
subject. However, we retain the symbol V in order to clearly emphasize that a source

collection and a view graph are essentially the same.

A source collection V defines a set poss(V) of databases over (D,A) as follows
(see [GMO99)):

poss(V) = {DB : VC |J {(a,v:,b):(a,b) € ans(V;, DB)}}.

ie{l,....,n}
Suppose now the user gives a query) on the database alphabet A, but we only

have a source collection V available. This situation is the basic scenario in information

integration (see e.g. [Ul97, LMSS95, GM99]). The best we can do is to approximate

18

by the certain answer for Q@ using V.
certy(Q) =[] ans(Q,DB).
DBeposs(V)
In [CGLV2000a], Calvanese, De Giacomo, Lenzerini and Vardi describe an exponential
algorithm Ag y(a,b) that returns “yes” or “no” depending on whether a given pair
(a,b) is in the certain answer for @ or not. Since this problem is coNP-complete in the
number of objects in V (data complexity), it is highly unlikely to find an essentially

better algorithm for computing the certain answer.

The possibility of using rewritings for answering queries is (briefly) discussed in
[CGLV2000a]. Since rewritings have proved to be highly successful in attacking the
corresponding problem for relational databases [Lev2000], one might hope that the
same technique could be used for semistructured databases. Indeed, when the exact
rewriting of a query Q using V exists, Calvanese et. al. show that, under the “exact
view assumption” the rewriting can be used to answer () using V. However, under

n 1

the more realistic “sound view assumption” * adopted in this chapter we are only

guaranteed to get a subset of the certain answer. The following propositions hold:

Theorem 3 Let Q' be the mazimally contained Q-rewriting (MCR) of Q@ using V.

Then, for each source collection V over V,

ans(Q', V) C certy(Q).

PrOOF. Let (a,0) € Q'(V) and let DB be an arbitrary database in poss(V). Since
(a,b) € Q'(V) there exist objects ¢, ...c; and a path av ¢ ... ¢ v, b in V such
that vy, ... v;,,, € Q. Since DB € poss(V), there must be a path a w;,c;, . . Ci Wiy, b
in DB, where w;; € def(v;,), for j € {1,...,k + 1}. Furthermore we have that
w;, - .- wi, € def(Q') C Q. In other words, (a,b) € ans(Q, DB). (]

Theorem 4 There is a query @ and a set of view definitions V, such that there is an
ezact rewriting Q' of Q using V, but for some source collections V, the set ans(Q',V)

is a proper subset of certy(Q).

'If all views are relational projections, the exact view assumption corresponds to the pure uni-
versal relation assumption, and the sound view assumption corresponds to the weak instance as-
sumption. For an explanation of the relational assumptions, see [Var88].

19

The data-complexity for using the rewriting is NLOGSPACE, which is a consid-
erable improvement from coNP. There is an EXSPACE price to pay though. At the
compilation time finding the rewriting requires exponential amount of space mea-
sured in the size of the regular expressions used to represent the query and the view
definitions (expression complexity). Nevertheless, it usually pays to sacrifice expres-
sion complexity for data complexity. The problem is however that by evaluating the
MCR on the source collection V we get a subset of the certain answer. In the next
section we describe a “possibility” rewriting Q" of @ using V, such that for all source

collections V:

certy(Q) C ans(Q", V).

2.3 The possibility rewriting

We will compute the biggest relevant rewriting on €. We call this rewriting the
possibility rewriting, and denote it PR. Intuitively, the PR is the set of all words on
the view alphabet €2, such that their substitution by def contains at least a word in

. Formally, a language Q" on € is the PR of Q if
Q" ={w:we Q" and def(w)NQ # 0B}

The possibility rewriting has the following desirable property:
Theorem 5 certy,(Q) C ans(Q", V), for each source collection V.

PROOF. Assume that there exists a source collection V and a pair (a, b) € certy(Q),
such that (a,b) ¢ ans(Q", V). Since the pair (g, b) is in the certain answer of the query
@, it follows that for each database DB ¢ poss(V) there is a path a 25 b, where
w € . Now, we will construct from V a database DBy such that ans(@, DBy) 3
(a,b). For each edge labeled v; from one ob ject = to another object y in V we choose
an arbitrary word w; € def(v;) and put in DBy, the “new” objects ¢, ..., cx_1, where

k is the length of w;, and a path z,¢,, ... ,Ck—1,y labeled with the word w,;. Each

20

b4
VZ.I“‘VI'MQ Q

","New.Nodes New NOd@‘IY‘\‘
FR R P B P
Rf/]k Rl[Rl[
----- W;IE 'dé.f(vil) Wl'me def((/'im)
"Old" nodes

Figure 8: Visualisation of the proof for Theorem 5.

time we introduce “new” objects, so all the constructed paths are disjoint. Obviously,
DBy € poss(V). It is easy to see that ans(Q, DBy) # (a,b) because otherwise there
would be a path v;, ... v, in V from a to b such that def(v;, ... v;,) NQ # 0, that is
v, ..., € Q" and (a,b) € ans(Q",V), From the fact that ans(Q, DBy) # (a,b) it
then follows that certy(Q) # (a,b); a contradiction. For a visualisation of the proof

see Figure 8.]

It is worth noting here that Theorem 5 shows that ans(Q", V) contains the certain

answer to the query @ even when algebraically def (Q") 2 Q.

Now, we want to reason about the other tuples (pairs), which are not in the
certy((), and which we can obtain by the evaluation of the possibility rewriting on the
source collection. We show that although those tuples are not in the certy,(Q), they
are at least “possible” in the sense that there exist databases, which are consistent

with the views, and such that if we evaluate the query on them, we obtain the afore
mentioned tuples.

Theorem 6 Let (a,b) € ans(Q", V). Then, there exist a database DBy, such that
(a,b) € ans(Q, DBy).

ProoF. From the source collection V, we build the database DBy by replacing each

edge v; by an automaton for V;. We introduce “new” objects for representing the

21

internal states of the automaton, while we represent the initial state, and final state
2 by the the source and destination node of the edge labeled by v;. Clearly, DBy
is consistent with the views. Now, since (a,b) € ans(Q",V), there exists a path
e Q" from a to b in V. From the fact v;, ...v;, € Q", we get
that V;, ... V;, NQ # 0, i.e. there exists a word w € V, ... V;, N Q. Now, from the

construction of DBy, we have that between a and b, for each word in V;, ... V;_, there

spelling v;, ... v;

.

exists a path spelling it. So, we can also find a path spelling w, and this means that
(a,b) € ans(Q, DBy). o

2.4 Computing the possibility rewriting

Our aim in this section is to construct a transducer 7, such that 7(Q) = Q" (PR
of Q). We start with one node representing both the starting state and the final
state. Then we build a “macro-transducer” by putting a self-loop corresponding to
each v; € € on the sole state. In each such self-loop we first have the view symbol
v; as input and a regular expression representing the substitution of v; as output.
After that, we transform the “macro-transducer” into an ordinary one in standard
form. The transformation is done by applying recursively the following three steps.
First, replace each edge v/(F) + ... + E,), n > 1, by the n edges v/Ey, ..., v/E,.
Second, for each edge of the form v/F; ... E; from a node p to a node ¢ (Figure 9,
left), we introduce k& — 1 new nodes ry, ...7,_; and replace the edge v/E, ... E; by
the edges v/E, from p to ri, ¢/E, from 7y to ry, ..., €/E}, from r4_; to ¢ (Figure 9,

right). Third, we get rid of “macro-transitions” of the form v/E*. Suppose we have

. v/E] . £/E> O\\

AN
3

{
. v/E;-- Ey . . E/Ek . e/EL 1 . .. /,

Figure 9: Decomposing a “macro” transducer I.

an edge labeled v/E* from p to ¢ in the “macro-transducer.” (See Figure 10, left).

*Without loss of generality, we assume that the automaton for V; is one with a single final state.

22

We introduce a new node r and replace the edge v/E™ by the edges v /e from p to T,

¢/E from 7 to r, and €/e from 7 to ¢, as shown in Figure 10, right.

e/E

@_V_/fj_»@ @ v/e 5 /€ 0

Figure 10: Decomposing a “macro” transducer IL.

At the end, we interchange the input and output of the transitions. Let’s call the

resulting transducer 7. The following theorem is true.
Theorem 7 For the PR Q", we have that Q" = T(Q).

PROOF. Recall that by definition @ = {w : w € Qand def(w) N Q # 0} and
T(Q) = {w : (u,w) € T, for some u € Q}.

“C” Let w = w;, ...v;, be in Q". This means that there exists a word u in
Vi, ...V, N Q. From the construction of T, the automaton that we get if we ignore
the output of the transitions accepts the language (V; + ... + V,)*. Hence, we have

that (u,w) € 7. Now, since u is also in @, we finally have that w € T(Q).

“2” Let w = vy, ...v; be in T(Q). Since w € T(Q), we have that there exists a
word u € @, such that (u,w) € 7. Now, from the construction of 7 we have that
u € V;, ... V. This means that V;, ...V, N Q # 0. From the last, w € Q" follows.

We now describe an algorithm that given a regular language L and finite trans-
ducer 7 constructs a finite state automaton that accepts the language 7(L). For
this, let A = (P4, 1,04,p0, F4) be an efree NFA that accepts L, and let 7 =
(Pr,1,0,071,q0, Fir) be a transducer in standard form. Then, we construct an NFA:

AT(L) = (PA X PT7O7 6T(L)7 (p(hQO)) FA X FT))

23

where 07z is defined by,

((pz Q)7U7 (pla q,)) : (p3 pr,) € 514 and (q7 Ra qI) U) < 5T}
((pa Q)7U: (p7 ql>) : (Q7 = qlwv) € 6T}

oray = |
u |
Theorem 8 ([Yu97]) The automaton Ay accepts ezactly the language T(L).

Collecting the results together, we now have the following conclusion.

Corollary 2 Given a query Q and a set'V of view definitions, the possibility rewriting

of Q using 'V can be effectively constructed. |

Example 5 Let the query be @ = (RS)*. and the views be V; = R+ 5% V, = S,
Vi3 = SR, and V; = (RS)% The corresponding view alphabet is Q = {v1, vy, v3, v4}.

The DFA 3 A accepting the query @ is given in Figure 11 (left), and the transducer
characterizing the views is given in Figure 11 (right). We transform the transducer
into standard form (Figure 12, left), and then interchange the input with output
(Figure 12, right). The constructed automaton is shown in Figure 13, where 1y =

(po, q0), 1 = (p1, qo), 72 = (po, ¢2) and the inaccessible and garbage states have been
removed.

vi/R+5°

. vo/S
@)

Vj/SR

Vi/(RS)

Figure 11: Query automaton and macro transducer.

3An e-free NFA would do as well.

24

Figure 13: Automaton of the PR.

Our algorithm computes the PR Q" represented by (v4 + v1v5v2)*, and the algo-
rithm of [CGLV99] computes the MCR @' represented by v;. Now, suppose that the

source collection V, is induced by the following set of labeled edges (see Figure 14):

{({,v,4;) :1<i<n-1} U
{{aj,ve,i+1) 1 <i<n-—1} U
{{ai,v3,0541) 1 <i<n—1} U

)

{(i,vg,7+2 1

IN

i <n-—2}

We can now compute
CLTLS(Q”, Vn) = {(7’7]) : 1 S Z S n— 1,'& S 7 S 77/},

and

ans(Q', Vo) = {(4,2k) : 1 <i<n—-1,0 < k < n/2}.

Finally, regarding the computational complexity for computing the possibility

rewriting, it is easy to verify the following theorem.

25

Figure 14: Source collection for Example 5

Theorem 9 The automaton characterizing the PR can be built in time polynomial in
the size of the regular expression representing the query and the size of the reqular

erpressions representing the views. B

26

Chapter 3

Query optimization using cached

views: First attack

3.1 Introduction

Based on practical observations, the most expensive part of answering queries on
semistructured data is finding those graph patterns described by regular expressions.
This is because a regular expression can describe arbitrarily long paths in the database
which means in turn an arbitrary number of physical accesses. Hence, it is clear that
having a good optimizer for answering regular path (sub)queries is very important.
Such an optimizer can be used for the broader class of full fledged query languages

for semistructured data.

In semistructured data, as well as in other data models such as relational and
“object oriented”, the importance of utilizing views for query optimization is well
recognized [LMSS95], [CGLV99], [Lev2000]. Clearly, by having available informa-

tion on relevant views we can greatly enhance the query evaluation with respect to

efficiency.

As we have already seen, the notion of query rewriting in terms of the view

definitions is instrumental for taking into account the information available in the

27

views for query answering. Hence, the first question that comes to mind is whether
the rewritings that we have presented so far, namely the MCR of [CGLV99] and the
PR, can help in the process of query optimization. In fact, they can surely be used

for this purpose, but as we show in this chapter, we can definitely do better.

The problem with the above mentioned rewritings is that, since the context was
data integration where the “real” database is usually not available, the rewritings
were pure §2 languages in order to allow their evaluation on the view graph only. In
other words, those rewritings model —using views— only complete words of the query.
But in practice, the cases in which we can infer from the views full words for the
query, are very rare. The views can cover partial words that can be satisfactorily long
for using them in optimization, but if they are not complete words, they are ignored
by the above mentioned rewritings. It would therefore be desirable to have partial

rewritings in order to capture and utilize all the information provided by the views.

The problem of computing a partial rewriting is initially treated by Calvanese,
De Giacomo, Lenzerini, and Vardi in [CGLV99]. There this problem is considered
as an extension of the complete rewriting, enriching the set of the views with new
elementary one-symbol views, chosen among the database relations (or symbols).
The choice of the new elementary views is done in a brute force way, using a cost
criterion depending on the application. However, there are cases when the algorithm
of [CGLV99] for computing partial rewritings gives “too much” in the sense illustrated

by @¥ in the Example 3. It essentially contains redundant un-rewritten words and

subwords from the query.

In this chapter we use a different approach for computing partial rewritings. For
each word in the query language we exhaustively replace the subwords that appear as
words in any of the view languages. In this spirit we compute two partial rewritings.
The first is the biggest “exhaustive” relevance rewriting. The other is a contained
one. Namely, it is the biggest contained subset of the first rewriting. Both of them
have been illustrated in Example 3 by Q@ and Q® respectively, and their properties

have also been briefly discussed after.

The partial rewritings can be used to optimize the query evaluation by using the

28

following simple idea. If a query subword is to see a database sub-path that a view has
traversed before, we use that view for evaluation. Generalizing this idea we present
two query answering algorithms that are “lazy” in the sense that they access the
database only when necessary. For the ”been there” subpaths our algorithms use the
views. Note that we do not materialize any new view; we only consult the database

"on the fly,” as needed.

The outline of the chapter is as follows. In Section 3.2 we recall the definitions
of the MCR and PR for a query, and present a warm-up example for which the MCR
and PR are empty, while the partial information provided by the views is no less than
99% of the complete “missing” information. In Section 3.3 we introduce and formally
define a new algebraic, formal-language operator, the exhaustive replacement. Simply
described, given two languages Ly and Lo, the result of the exhaustive replacement
of L, in L, is the replacement, by a special symbol, of all the words of L that occur
as sub-words in the words of L;. Then, we give a theorem showing that the result
of the exhaustive replacement can be represented as an intersection of a (rational)
transduction and a regular language. The proof of the theorem is constructive and
provides an algorithm for computing the exhaustive replacement operator. In Section
3.4 we present the exhaustive partial possibility rewriting that is a generalization of
the previously introduced exhaustive replacement operator. In Section 3.5 we define
a partial contained rewriting, which as mentioned before is related to the partial
possibility rewriting. In Section 3.6 we review a typical query answering algorithm for
regular path queries and show how two modify it into two other “lazy” algorithms for
utilizing the partial rewritings. The computational complexity is studied in Section
4.5. We show that, although exponential, the algorithms proposed for computing

the exhaustive possibility and contained partial rewritings are essentially (or almost)

optimal.

3.2 Warm-up

Let us recall the definition of the maximally contained rewriting MCR and the possi-

bility rewriting PR for a given query () using a set of view definitions V = {V},...,V,.}

29

with € = {v1,...,v,} as the corresponding view alphabet.

The MCR is the set {w: w € 9 and def(w) € Q}. The containment condition
could be very strong in practice, and can result in very small or empty rewritings.

By relaxing this condition we got the possibility rewriting PR. The PR is the set
{w:we Q and def(w) NQ # 0}

However, both the MCR and PR of a query could be empty. Suppose for example
that query Q is @ = Ry ... Rjg and we have available two views V; and V5, where
Vi = Ry...Rs and Vo = Rs;...Ryg. It is easy to see that the MCR and PR are
empty, while depending on the application, a “partial rewriting” such as v;Rsovz
could be useful. In the next section we develop a formal algebraic framework for the
partial rewritings. This framework is flexible enough and can be easily tailored to the

specific needs of the various applications.

3.3 Replacement — A new algebraic operator

In this section we introduce and study a new algebraic operation, the exhaustive
replacement in words and languages. It is similar in spirit to the deletion and insertion

language operations studied in [Kari91].

Let w be a word, and M a e-free ! language, both over some alphabet A, and let

1 be a symbol outside A. Then we define

{witws : 3 wy € M such that w = wywews} if non-empty
pyv(w) =

{w} otherwise.

Furthermore, let L be a set of words over the same alphabet A as M. Then define

(L) = Uyer, prr(w). We can now define the powers of pus as follows:

Pre{w}) = par(w), P ({w}) = par (P ({w})).

'The restriction for M to be e-free is not really important because it is difficult to envision an

application where we want to obtain a node of a graph related (or paired) with itself through an
empty relation.

30

Let & be the smallest integer such that pf/ ' ({w}) = pi,({w}). We then set

pir(w) = o ({w}).

(It is clear that k is at most the number of symbols in w.)

The eghaustive replacement of an e-free language M in a language L, using a

special symbol 1 not in the alphabet A, can be simply defined as

L M= pu(w).
weL
Intuitively, the exhaustive replacement L t> M replaces in every word w € L the
non-overlapping occurrences of words from M with the special symbol {. Moreover,
between two occurrences of words of M that have been replaced, no word from M

remains as a subword.

Example 6 Let L = {RSRSRSR, RRSRSR, RSRRSRRSR}, M = {RSR}. Then
Lt M = {tSt, RSTSR, RTSR, RRST, {11},
being the union of the sets:
Plrsry(RSRSASK) = {1St, RStSR},

Pinsm (RRSRSR) = {R{SR,RRSt},
szSR}(RSRRSRRSR) = {tti}

Computing the Replacement Operation. To this end, we will give first a char-
acterization of the > operator. The construction in the proof of our characterization
provides the basic algorithm for computing the result of the > operator on given

languages. The construction is based on finite transducers.

Theorem 10 Let L and M be regular languages over an alphabet . There exists a

finite transducer T and a regular language M' such that:

LeM=T(L)nM'.

31

PrROOF. Let 4 = (S, A, 4, s, F') be a nondeterministic finite automaton that accepts

the language M. Let us consider the finite transducer:
T =(SU{sp}, AT, 8, s {s0}),

where T' = A U {1}, and, written as a relation,

= {(s,R,s',¢): (s,R, &) €} U (1)
{(s, R,s5,R) : R e A} U (2)
{(s}, R,s,€): (s0,R,s) €0} U (3)
{(sh, R, s, 1) : (50, R,s) €6 and s € F} U (4)
{(s,R,s},1): (s,R,s") €6 and s € F'}. (5)

Intuitively, transitions in the first set of ¢’ are the transitions of the “old” automaton
modified so as to produce € as output. Transitions in the second set mean that “if
we like, we can leave everything unchanged,” i.e. each symbol gives itself as output.
Transitions in the third set are for jumping non-deterministically from the new initial
state s}, to the states of the old automaton A, that are reachable in one step from the
old initial state so. These transitions give € as output. Transitions in the fourth set
are for handling special cases, when from the old initial state ¢o, an old final state
can be reached in one step. In these cases we can replace the one symbol words
accepted by A with the special symbol 1. Finally, the transitions of the fifth set are
the most significant. Their meaning is: in a state, where the old automaton has a
transition by a symbol, say R, to an old final state, there will in the transducer be
an additional transition R/ to sj, which is also the (only) final state of 7. Observe,
that if the transducer 7 decides to leave the state s; while a suffix U of the input
string is unscanned, and enter the old automaton A, then it can return back only if
there is a prefix U’ of U, such that U' € L(A). In this case the transducer replaces
U', which is a subword of the input string, by the special symbol 7.

Given a word of w € L as input, the finite transducer T replaces arbitrarily many

occurrences of words of M in w with the special symbol §.

For an example, suppose M is R(SR)* + RST. Then an automaton that accepts

this language is given in Figure 15 drawn with solid arrows. The corresponding finite

32

Figure 15: Construction of a replacement transducer

transducer is shown in the same figure in the right. It consists of the automaton
A, whose transitions now produce as output €, plus the state s; and the additional

transitions drawn with dashed arrows.
It is straightforward to verity that

T(L) =Lu {UtUst...1Ug : for some U in L and words w; in M,

U= []ﬂi)ﬂ]gﬂ]z . .wklek}.

From the transduction 7 (L) we get all the words of L having replaced in them an
arbitrary number of words from M. What we like is not an arbitrary but an exhaustive
replacement of words from M. To achieve this goal we will intersect the language
T (L) with a regular language M’ which will serve as a “mask” for the words of L> M.
We set

M' = (I"MT")°,

where (.)¢ denotes the set complement. Now M’ guarantees that no other candidate

for replacing occurs inside the words of the final result. |

3.4 Exhaustive partial possibility rewriting

We can give a natural generalization of the definition of the replacement operator for
the case when we like to exhaustively replace subwords not from one language only,

but from a finite set of languages (such as a finite set of view definitions). For this

33

purpose, let w be a word and M = {My,...,M,} be a set of languages over some
alphabet, and let {f,,...,1,} be a set of symbols outside that alphabet. Now we
define

(10) { {wit;ws : 3wy € M; such that w = wiwewz} if non-empty
v \W) =

{w} otherwise.

Then, pyy 1s defined similarly to pj,.

The generalized ezhaustive replacement of M = {My,..., M,} in a language L,

by the corresponding special symbols t,, ..., 1, 18

LeM= | pp(w).
weL

In the following we will define the notion of the ezhaustive partial possibility rewrit-

ing of a database query @) using a set V.= {V},...,V,} of view definitions.

Definition 4 The ezhaustive partial possibility rewriting (EPPR) of a query @) over

A using a set V = {V|,...,V,} of view definitions over A is
QrV,
with = {v,...,v,} as the corresponding set of special symbols.

As a generalization of Theorem 10 we can give the following result about the EPPR

of a query @ over A using a set V.= {Vi,... V,} of view definitions over A.

Theorem 11 The EPPR for a query () can be effectively computed.

ProoOF. Let A; = (S, A, d;, s, Fy), for i € [1,n] be n nondeterministic finite au-
tomata, that accept the corresponding V; languages. Let us consider the finite trans-

ducer:

T=(S1U...US, U{sp}, A, AUQ, 8, sq,{s0}),

34

where

{(s,R,s,¢): (s,R,s") € §;, i € [L,n]} U

{(sh, R, s, R) : Re AU

{(sh, R, s,¢€) : (s0i, By 5) € 6, i € [1,n]} U

{(s}, R, sh,v:) - (s0i, R, 8) € 6; and s € Fi, i € [1,n]} U
{(s,R,sh,v:): (5,R,s') € 6; and §' € F}, i € [1,n]}.

The transducer 7 performs the following task: given a word of () as input, if replaces
nondeterministically some words of V; U ...U V, from the input with the correspond-

ing special symbols. The proof of this claim is similar to the previous theorem.

From the transduction 7(Q) we get all the words of ¢ having replaced in them
an arbitrary number of words from V; U...UV,. But what we want is the exhaustive

replacement Q> V. For this we intersect the language T(@)) with the regular language
(AUQ) (VLU...UV) (AU,

which will serve as a mask for extracting the words in the exhaustive replacement.

The EPPR is a generalization of the PR. The conceptual similarity of these two
rewritings can also be observed in the following way. Change the above mask to Q*

and the result will be the PR, as opposed to the EPPR.

3.5 Exhaustive and contained partial rewriting

In this section we will be concerned with extracting the biggest contained rewriting
from the EPPR.

Definition 5 The ezhaustive and contained partial rewriting (ECPR) of a query @ on
A 1s the language on 2 U A given by

{we(@>V):def(w) CQ}.

We now present a method for computing the ECPR given a query @ and a set V =

{(V1,...,V,} of view definitions as input.
Algorithm 1

1. Compute the complement Q¢ of the query.

9. Construct the transducer 7 used for the EPPR. Then compute the transduction
T(Q°)
3. Compute the complement (7 (Q¢)) of the previous transduction.

4. Intersect the complement (7 (Q°))° with the mask

M= ((AUQ)" (ViU...UVa)(AUD))

Denote with @' the result. B
Theorem 12 The above language Q' is exactly the ECPR of Q.

PROOF. “C”. T(Q°) is the set of all words w on QU A such that def(w) N Q¢ # 0.
Hence, (T (Q°))°, being the complement of this set, will contain only Q U A words
such that all the A-words in their substitution by def will be contained in). This is
the first condition for a word on U A to be in the ECPR. Furthermore, intersecting
with the mask M we keep in (7 (Q°))° only the Q U A words that do not contain A

subwords in V; U ---UV,,. This is the second condition for a word on 2 U A to be in
the ECPR.

“27. We will prove this direction by a contradiction. First observe that both the
ECPR and the set) are subsets of the EPPR. It follows that, all their words “pass” the
mask M. In other words their words do not have subwords in V; U---UV,,. Suppose
now, that the mixed Q U A-word w is in the ECPR but not in ¢'. Then def(w) C Q,
and on the other hand, since w ¢ Q' it follows that w € @, which means that
w € T(Q°) U M°. But as we mentioned before, the word w, which belongs in the
ECPR, “passes” the mask M and this implies that it cannot “pass” the complement

of the mask, i.e. w € T(Q%). Thus def(w) N Q° # @ that is, def(w) € Q, i.e. w
cannot be in the ECPR, and this is a contradiction. N

36

3.6 Query optimization using partial rewritings

In this section we show how to utilize partial rewritings in query optimization in a
scenario where we have available a set of precomputed views, as well as the database
itself. The views could be materialized views in a warehouse, or locally cached results
from previous queries in a client/server environment. In this scenario the views are
assumed to be exact, and we are interested in answering the query by consulting the

views as far as possible, and by accessing the database only when necessary.

Let V be the view graph and DB the database. It is easy to show, that if a
language Q' is the MCR for a query Q, and it is exact, then ans(Q, DB) = ans(Q', V)
[CGLV2000a]. Suppose now that @' is instead the ECPR of a query Q). If the ECPR
is exact, then we can use it for computing the full answer to the query. For this,
we evaluate the ECPR trying to do the best on the view-graph, and accessing the
database in a “lazy” fashion, only when necessary. Our lazy algorithm can be used
even in the cases when the ECPR is not exact. In general, the algorithm can be used
with any contained partial rewriting). The output will be a set of object pairs that
is subset of the full answer to the query. In particular, if the partial rewriting is exact,
then we obtain the answer to the query in its entirety. If the rewriting is not exact,
then we need to compute the answer to the difference @ — def(Q') directly on the
database. Notably, in order to test whether a rewriting is exact or not, we can use
the optimal algorithm presented in [CGLV99].

Now, returning to the ECPR versus MCR, we note that even when the ECPR is not
exact, it 1s more useful for optimization than the McR. This is because the ECPR
always contains the MCR. Hence, the ECPR is at least as good as the MCR, and
can be better in many cases. The following example illustrates this fact. Suppose
@ = RST+U and V = RS. Then the MCR is empty, while the ECPR is Q' = VT,

which at least always gives a subset of the desired answer.

Before describing our lazy algorithm, let us review how query answering on semistruc-
tured databases typically works [ABS99].

Algorithm 2

37

Input: A regular path query @ and a database DB.
Output: The answer to query () on database DB.

Method: First construct an automaton Ag for Q. Let N be the set of nodes in the database
graph, and sg be the initial state in Ag. For each node ¢ € N compute a set Reach, as

follows.

1. Initialize Reach, to {(a,s0)}-
2. Repeat 3 until Reach, no longer changes.

3. Choose a pair (b, s) € Reach,. If there is a database symbol R, such that there is an
edge b B, ¥ in the database DB and there is a transition s & ¢ in Ag, then add

the pair (b, s') to Reachy,.

Finally, set

ans(@Q, DB) = {(a,b) : a € N, (b,s) € Reach,, and s is a final state in Ag}.

It is easy to see that the above algorithm can be interpreted as an “intersection”
of the query automaton and the database graph considered as an NFA automaton,
where the nodes are both initial and final states. Now, if Ag = (S, A, 4, sq, F) is the
query automaton, then a pair (a,b) is in ans(Q, DB) if there is a state s € F' such

that (b, s) is reachable from (a, s¢) in the intersection automaton (through Cartesian
product) DB x Ag.
In the following we will modify the Algorithm 2 into a lazy algorithm for evaluating

any contained partial rewriting of a query @) (and in particular the ECPR), with respect

to a set of exact views.

Algorithm 3
[nput: A contained partial rewriting @', a view graph V, and a database DB.

38

Output: The evaluation of Q' on the view graph V and database DB.

Method: First construct an automaton Ag: for @'. Let sg be the initial state in Agr. Then,

for each node a € N, we compute a set Reach, as follows.

1. Initialize Reach, to {{(a,s0)}.

2. For each transition sg £ sin Agy, access DB and add to V the subgraph of DB
induced by all the edges originating from the nodes b, which have some outgoing

edges R. For each such node b, create a flag Ezpandeds, and set it to true.
3. Repeat 4 until Reach, no longer changes.

4. Choose a pair (b,s) € Reach,.

(a) If there is a transition s —= s' in Agr, and there is an edge b 25 8 in V, then
add the pair (b, s') to Reach,.

(b) Similarly, if there is a transition s A s in Agr, and there is an edge b RNy
in V, then add the pair (V/,s') to Reach,.

(¢) Otherwise, if there is a transition s Ly s in Agr, but there is not an edge
b -2 b in V, and there is not a flag Frzpanded, = true, then access the

database and add to V the subgraph of DB induced by all the edges originating
from b. Create a flag Ezpanded,, and set it to true.

Set eval(Q',V, DB) = {(a,b) : (b,s) € Reach,, and s is a final state in A }. |

Let’s recall that the set of nodes comprising the viewgraph V is a subset of
the nodes comprising the database graph DB. As shown in [CGLV2000a], if the
views are exact and (' is the MCR that happens to be exact, then eval(Q',V, DB),
which becomes ans(Q)',V) in the MCR case, is equal to ans(Q, DB). This is be-
cause, in such a case, every word R; ... R, € @ will have some representative word
Uy ...V € Q' such that def(vy...vy,) D Ry ... R,. This means in turn that, if there
is a path a foln g in the database, then there will also be a path a "““%" b in
the viewgraph, ie. ans(Q,DB) C ans(Q’,V). On the other hand since @' is ex-

act, we have that def(vi...v,) C @ for any v;...v,, € @, and this means that
ans(@',V) C ans(Q, DB).

39

In the case when ()’ is an exact partial rewriting, all the above reasoning re-
mains the same except that now we need to answer Q' not simply on V but on the
union Y U DB. Clearly, ans(Q',V U DB) = ans(Q, DB). As we have already men-
tioned, computing the answer to a query, is the same as computing the intersection
through Cartesian product of the query with the database graph. So, for computing
ans(Q', VUDB) in essence we have to compute @' x (VUDB) = Q' xVYU(Q' x DB).
We use on purpose the sign “x” instead “N”. The intersection as languages could be
empty, while the needed part of Cartesian product not. For example if Q' = v Rvy,
the viewgraph is V = {a —> b,c —2%; d}, and there is an edge labeled by R between
b and ¢ in the database, then Q' x (VU DB) = {(a,d)}.

The hope in using the ECPR in query answering is that the smaller the needed
portion of the second part ' x DB is, the greater the optimization 1s. We compute
this part in a lazy fashion in Algorithm 3. In the steps 2 and 5 we add parts of the
database in the viewgraph “on demand” by the query answering algorithm. In fact
in step 5 if we need to access a node in the database we add in the viewgraph all (not
only what we need) the outgoing edges and the neighbor nodes. This was motivated
by considering the database as set of HTML pages related to each other through links.
Accessing a page in the web could be time consuming, but then to parse the HTML
text in main memory for finding the links and the adresses where these links point
is efficient. During the evaluation of a query, a page (node) could be visited many
times, and if it is already fetched before from the database with all its links, then
there is no need to consult the database again. For each page z that was fetched from
the database during the execution of the algorithm, we set the corresponding flag

Ezxpanded, to true, meaning that now we have full local information for this page.
From all the above, we have that

Theorem 13 Given a query QQ and a set of exact views, if the ECPR (' is exact, then
eval(Q)',V, DB) = ans(Q, DB).

Next, let us discuss how to utilize the EPPR Q" of a query @) for computing
the answer set ans(Q, DB). If we use the same algorithm as in the case of the

ECPR we might get a proper superset of the answer. Note however that, contrary to

40

Theorem 13, in any case the EPPR does not need to be exact.

Theorem 14 Given a query Q and a set V of exact views, if Q" us the EPPR of ()
using V, then ans(Q, DB) C eval(Q",V, DB).

PROOF. Straightforward from the exactness of the views and the fact that) C

def (Q"). B

In other words, we are not sure if all the pairs are valid. To be able to discard
false hits, suppose that the views are materialized using Algorithm 2. We can then
associate each pair (a,b) in the viewgraph with their derivation. That is, for each pair
(a,b) connected with an edge, say v;, in the viewgraph, we associate an automaton,
say Agp, with start state o and final states {b}. What is this automaton? For each
pair (a,b), we can consider the database graph as a non-deterministic automaton

DB, with initial state a and final states {b}. It is now easy to see that
Agy = DB NAy,
where Ay, is an automaton for the view V;. We are now ready to formulate the

algorithm for using the EPPR in query answering.

Algorithm 4

Input: The EPPR Q", a view graph V, and a database DB.
Output: The answer to query Q.

Method:

1. Compute eval(Q",V, DB) using Algorithm 3. During the execution of Algorithm 3 the
viewgraph V is extended with new edges and nodes as described. Call the extended

viewgraph V'.

2. Replace in V' each edge labeled with a view symbol, say v;, between two objects a

and b with the automaton A,y of the derivation. Call the new graph V.

41

3. Set verified(Q",V, DB) = eval(Q",V, DB) N {(a,b) : @ N L(") # 0}, where Vy, is a

non-deterministic automaton similarly defined as DB .

The usefulness of the above algorithm can be expressed as the following result.

Theorem 15 Given a query Q and a set V of ezact views, if Q" is the EPPR of @,
then by using V, we have that verified(Q",V, DB) = ans(Q, DB).

ProOOF. Easy to see from the fact that since the views are exact, the automaton Vg,
will serve as an accurate snapshot or dataguide [NUWC97] for the database sub-graph

between the nodes a and b. &

3.7 Complexity analysis

The following theorem establishes an upper bound for the problem of generating the

exhaustive replacement L > M, where [and M are regular languages.

Theorem 16 Generating the ezhaustive replacement of a reqular language M from

another language L can be done in ezponential time.

PROOF. Let us refer to the cost of the steps in the constructive proof of the Theo-
rem 10. To construct a non-deterministic automaton for the language M and using it
to construct the transducer 7 takes polynomial time. To compute the transduction
of the regular language L, T (L), takes again polynomial time. But at the end, in
order to compute the subset of the words in 7 (L), to which no more replacement can
be applied takes exponential time. This is because we intersect with a mask that is

a language described by an extended regular language containing complementation.

42

In order to show that the above upper complexity bound is essentially (or almost)

optimal we need the following theorem.

Theorem 17 Let I be an alphabet and A, B be regular languages over I'. Then the
problem of deciding the emptiness of AN (I*BI*)¢ is PSPACE complete.

ProoF. First, observe that

[AN (I*BIr*)° =] < [A C [BIY

But this problem is a sub-case of the problem of testing regular expression contain-
ment, which is known to be PSPACE complete [HRS76]. So there exists an algorithm

running in polynomial space that decides the above problem.

Next, we show that the problem is PSPACE-hard. Let £ be a language that is
decided by a Turing machine M running in polynomial space n* for some constant

k. The reduction maps an input w into a pair of regular expressions explained in the

following.

Let’s denote with I'" the alphabet consisting of all symbols that may appear in
a computation history. If ¥ and) are the M’s tape alphabet and states, then
[=32 UQU {#}. We assume that all configurations have length n* and are padded
on the right by blank symbols if they otherwise would be too short. Let’s suppose for
a moment that we have organized some configurations in a tableau where each row of
the tableau contains a configuration and we mark the begining and the end of each
one by the marker #. Now, in this organization we consider all the 2 x 3 windows.
A window is legal if that window does not violate the actions specified by the M’s
transition function. In other words, a window is legal if it might appear when each
configuration correctly follows another. By a proved claim in the the proof of the
Cook-Levin Theorem (see [Sip96]) we know that, if the top row of the table is the
start configuration and every window in the table is legal, each row of the table is a
configuration that legally follows the preceding one. We encode a set of configurations

Cy ... () as a single string, with the configurations separated from each other by the

43

symbol as shown in the following figure.

b A A
Ct Cy Cy
Now, we can describe the set of words in I'* with at least one illegal window with
the following regular expression.
rBr
where

B= |J abcl ™ 2def.
bad(abe,def)

Clearly, the set of configuration sequences with no illegal windows is described by
(T BT™)“.

What we need now, is be able to extract from the set of sequences of this form, an

accepting computation history for the input w. We already have assured that there is

not any illegal window. After that, we need two more things: the start configuration
(' must be

#qul...wnU...U#,

nk—n
where w = w; ...w,, and there must appear a symbol Quecep- We encapture the

condition about C'; by the regular expression
A= #QOU)1 <o Wy Unk—n #F*7

and the condition that there should be an accepting configuration by the regular
expresion

Az = T Quccept ™
Putting A; and A, together we have the following regular expression
A= AN Ay = Haewn . wn U™ T Gueep] ™
Summarising, there is an accepting computation of M on input w if and only if
AN (T*BT™)¢ £ (.
We finish the proof by emphasizing that the size of A and that of B in the above

expression is polynomial. |

We are now in a position to prove the following result.

44

Theorem 18 There ezist reqular languages L and M, such that the exhaustive re-

placement Lt> M cannot be computed in polynomial time, unless PTIME = PSPACE.

PROOF. Suppose that given two regular expressions A and B on alphabet I' we like
to test the emptiness of AN (I'*BI'*)°. Without loss of generality let us assume that
there exists one symbol in A that does not not appear in B. To see why even with
this restriction the above problem of emptiness is still PSPACE complete, imagine
that we can simply have a tape symbol which does not appear at all in the definition
of the transition function of the Turing machine. Then this symbol will appear in the
above set A4 but not in B. Let us denote this special symbol with {. We substitute
the T symbol in A with the regular expression B. The result will be another regular

expression A’ which has polynomial size. Clearly, AN (I'*BI*)¢= AN (A'> B).

As a conclusion, if we had a polynomial time algorithm producing a polynomial
size representation for A'> B, we could polynomially construct an NFA for AN(A'>B).
Then we could check in NLOGSPACE the emptiness of this NFA. This means that,
the emptiness of AN (I'*BT*)¢ could be checked in PTIME, which is a contradiction,
unless PTIME=PSPACE. |

Corollary 3 The algorithm in the proof of Theorem 11 for computing the EPPR of a

query @ using a set V.= {Vq,..., Vo,} of view definitions, is essentially (or almost)
optimal.

Theorem 19 Given a query Q and a set V = {Vi,..., V,} of view definitions, the
ECPR of) can be computed in 2EXPTIME.

PRroOOF. Let us refer to the constructive proof of the Theorem 12. To compute the
complement Q¢ of the query is exponential. To transduce it to 7T (Q°) is polyno-
mial. To complement again is exponential. So, in total we have 2EXPTIME. To

compute the mask is EXPTIME and to intersect is polynomial. Finally, 2EXPTIME
+ EXPTIME = 2EXPTIME. |

For the lower bound of the ECPR we have the following.

45

Theorem 20 Algorithm 1 for computing the ECPR of a query @) using a set V. =
{Vi,...,V.} of view definitions, ts optimal.

PRrRoOOF. Polynomially intersect the ECPR with Q* and get the MCR of [CGLV99|.
But, the MCR is optimally computed in doubly exponential time in [CGLV99], so our

algorithm is optimal. B

46

Chapter 4

Better rewritings and

optimizations: Second attack

4.1 Introduction

In this chapter we will present a better rewriting that has all the desirable properties
that we have mentioned before. First, let us briefly discuss again the contained
rewritings in a query optimization context. As explained in Chapter 3, in such a
context the partial rewritings usually provide more help in query answering. Hence,

let’s focus on the partial rewriting of [CGLV99] and in the ECPR presented in Chapter
3.

In [CGLV99|, the problem of computing a partial rewriting is considered as an
extension of the complete rewriting MCR, enriching the set of the views with new el-
ementary one-symbol views, chosen among the database relations (or symbols). The
choice of the new elementary views is done in a brute force way, using a cost criterion
depending on the application. It is worth saying here that although the space of
choices for the new views is exponential on the alphabet size, this exponential com-

ponent is absorbed by the double-exponential complexity of the query rewriting and

47

hence the algorithm is essentially optimal. However, there are cases when the algo-
rithm of [CGLV99] for computing partial rewritings gives “too much” as illustrated
in our initial example of Chapter 1. It essentially contains redundant un-rewritten

(sub)words from the query.

On the other hand, we presented in the previous chapter an algorithm for com-
puting the ECPR for a query. Using that algorithm we avoided getting “too much”
in the rewriting, but unfortunately, the rewriting is not guaranteed to be exact, and

this fact diminishes its usability.

In this chapter we will introduce the “maximal and contained partial rewritings”
(McPR’s) for regular path queries using views. We will show that they don’t give
“too much,” that they are always exact and more useful for the optimization of the
regular path queries. Then, by using the Algorithm 3 we can obtain an evaluation

that equals the answer to the original query.

We also explore the use of the partial rewritings for the optimization of the wider
class of conjunctive regular path queries (CRPQ’s). We introduce the “conjunctive

exact partial rewritings” (CEPR’s) and present an algorithm for utilizing them in
CRPQ evaluation.

Finally, through a complexity theoretic analysis, we prove that our algorithm for

computing the “maximal and contained partial rewritings” is essentially optimal.

4.2 A taxonomy for rewritings

Let L be a language and M an e-free language, both of them over some alphabet A.

Let { be a symbol outside A and set def(f) = M. Similarly as in Chapter 1 we use
the following definitions.

1. A partial M-rewriting (PR) of L is a language L' over A U {t}.

2. A PR is a contained partial M-rewriting (CPR) of L if def(L') C L.

48

3. A CPR is said to be ezact, if def (L) = L.

Also, we note here that the (complete) rewritings, i.e. the ones that use only the
1 symbol, are special cases of the contained partial rewritings. Hence, we will blur

the distinction between them and call the partial rewritings just rewritings.

It is clear that there can be several rewritings of the same language L. In order
to compare different rewritings, we introduce a partial order between the languages
over AU {}}. With this partial order we want to capture the intuition that the more
subwords on the A-alphabet that have been replaced by { in a rewriting, the “bigger”

(and “better”) the rewriting.

Let L, and Lo be languages over AU {{}. We define L, to be M-smaller than
Ly, denoted Ly <ps Lo, if it is possible to substitute by { some (not necessarily all)
occurrences of words over M occurring as subwords in L1, and obtain L, as a result.

Also, the same word can participate more than once in the creation of new words.

Obviously <,y is transitive and reflexive. It is not antisymmetric, as for instance

{TRR, tt, RRRR} <; {11, RRRR}, and {YRR, {1, RRRR} > {1, RRRR}, when
M is for example { RR}. However, if we define L, =y Ly iff Ly <j; Ly and Ly <u; Ly,

we will get a partial order on the equivalence classes.

Notably, we have that if a set L' is <,/-maximal, then its equivalence class is a

singleton. To show this, we first present the following theorem.

Theorem 21 Let I/ be a language on AU{{}. Then L' is <pr-mazimal, if and only

if, there does not exist a word w € L', such that w = wiwyws, and wy € M.

Proor. “if.” This direction is easy to see because, if there is no word of M that
appears as a subword in any of the words of L', then it is impossible to obtain any

new <j;-larger language by substituting some subword belonging to M with .

“only if.” Let’s suppose that there are subwords of L/, which belong to M. Then,

for each word w € L' compute a word wy, by exhaustively replacing occurrences of M

49

words in w until nothing can be replaced anymore. If there is no subword in w that
can be replaced by 1, then compute wy; equal with w. Clearly, for each word w there
is at least one such word, and the number of steps for computing it is bounded by
the length of w. Now, consider the language L" = Uye {wn . For the language L”
we have that (a) L” # L', (b) L' <ur L", and (c) we cannot obtain any new language
from L" by substituting 1 in place of some subword belonging to M. We can see that
from (a) and (c), L’ and L" cannot belong to the same equivalence class, and from
(b), L" is <p-larger than L'. All the above show that L' cannot be maximal, and

this is a contradiction.]

Corollary 4 Let L' be a language on AU {t}. If L' is <p-mazimal, then ils =p-

equivalence class s a singleton.

PROOF. Since L' is <,,-maximal, from the above theorem we have that from L' we
cannot obtain any new language by substituting t in place of some subword belonging

to M. This means in turn, that the equivalence class of L' is a singleton.]

Now, consider this partial order restricted to the set of all the contained M-
rewritings of a language L. We will denote the restricted partial order with <%,.
Obviously, we are interested in the <t -maximal contained M-rewritings of L. With
a similar reasoning as before, we can prove the next theorem and corollary. The main
difference is that we cannot now replace just any subword which is a word in M.
Naturally, a word w = wywyws, where wy € M and def(witws) € L, is not yet an

“optimal” word, and we call wy a subword eligible for replacement.

Theorem 22 Let L' be a contained rewriting of L on A U {t}. Then L' is <%k -

mazimal, if and only if, there does not exist a word w € L', such that w = wywows,
where wy € M, and def (witws) C L.

Proor. “if.” This direction is easy to see because, if there is no word of M that
appears as a subword eligible for replacement in any of the words of L', then it is

impossible to obtain any new (<4,-larger) rewriting from L.

50

“only if.” Let’s suppose that there are subwords eligible for replacement in the
words of I'. Then, for each word w € L' compute a word wy, by exhaustively
replacing the eligible for replacement subwords in w, until nothing can be replaced
anymore. If there is no eligible for replacement subword in w, then compute wps equal
with w. Clearly, for each word w there is at least one such word wyy, and the number
of steps for computing it, is bounded on the length of w. Now, consider the rewriting
L" = Uyper {wn }- For the rewriting L” we have that (a) L” # L', (b) L’ <t L", and
(¢) we cannot obtain any new <},-larger rewriting from L". We can see that from (a)
and (c), L' and L" cannot belong to the same equivalence class, and from (b), L" is
<L -larger than L'. All the above show that L' cannot be a §]L\/[—maximal rewriting,

and this is a contradiction.]

Corollary 5 Let I be a contained rewriting on AU {{}. If L' is <§;-mazimal, then

its =k -equivalence class is a singleton.

PROOF. Since I/ is <%,-maximal, from the above theorem we have that from L' we

cannot obtain any new <} -larger rewriting. This means in turn that the equivalence

class of L' is a singleton.

Also, we require exactness for a rewriting. If such, the rewriting is more useful for
query optimization [CGLV2000a, GT2001a].

A contained rewriting that is both §ﬁ[-maximal and exact is the union of all SIM“
maximal M-rewritings of L. We call this rewriting the mazimal and contained partial

M -rewriting of L, and denote it with MCPRy(L).

From all the above, we can see that the MCPRy (L) is the set of all the words on

A U {1} with no subword for potential “contained replacement.”

Example 7 Let M = {RSR, S}, and

L ={RSRS,SRSR,RSRRSR,SS,SRSRS,SSS}.

Then
MCPRy (L) = {{1,51S}.

51

Here, 11 is obtained from RSRS, SRSR, RSRRSR, or S5S. The word S{5 is obtained
from SRSRS or SSS. There are no more eligible subwords for replacement. For
instance, replacing subwords in StS that belong to M, would violate the containment

condition necessary for being a rewriting.
Formally, we have that:
Theorem 23 The MCPRy (L) is <k-mazimal and ezact.

ProoF. The <%,-maximality follows from the fact that the MCPRy (L) is the union
of the sets of words w with no subwords eligible for replacement. For the exactness,
observe that by the definition we have def(MCPRy (L)) € L. On the other hand,
consider a word w € L. Testing a finite number of times (function of the length of w)
we can find a word w' € (AU {{})* with the smallest possible number of A symbols,
and such that w € def(w') C L. Clearly, w' € MCPRy(L). w

We can give a natural generalization of the definition of the MCPR for the case
when we like to replace subwords not from one language only, but from a finite set
of languages (such as a finite set of view definitions). For this purpose, suppose we
are given the e-free view languages V = {V1,...,V,,} and a target query language @,
all of them over the alphabet A. Also, consider the view alphabet Q = {vy,...,v,},
for which as defined in Chapter 1, we have def(v;) = V;, for i € [1,n]. As defined
there, a contained partial V-rewriting of Q) is a language Q' over A U, such that
def(Q') C Q. The partial rewriting is said to be ezact if def (@) = Q. Then, in order

to compare the rewriting we define analogously the partial order <y on (AU Q)* as
follows.

Let)1 and @, be languages over A U). We define @; to be V-smaller than Q,,
denoted Q) <y @y, if it is possible to substitute by v;,,...,v;, some (not necessarily
all) occurrences of words over V;,,...,V;, respectively, occurring as subwords in @,

and obtain (), as a result.

As before, we restrict this partial order to the set of all the contained V-rewritings

of a language (). Similarly, we denote the restricted partial order with g?,. Finally,

52

we define the mazimal and contained partial V-rewriting of @), denoted MCPRyv(Q),
to be the union of all S%—maximal V-rewritings @' of Q. Clearly, as in Theorem 23,
Q
\s

we can show that the MCPRv () is <J-maximal and exact.

In the following, we will compare the MCPR with the partial rewritings presented
so far. We begin with the partial rewriting of [CGLV99]. In that paper, candidate
sub-alphabets A’ C A are selected using some cost criteria, and then the symbols of A’
are considered as new elementary one-symbol views. Each time, using the algorithm
presented in [CGLV99], a rewriting is computed and after that its exactness is tested.
However, the algorithm used, although very suitable for computing all the rewritings
in the view alphabet £2, can compute “non-optimal” A U2 words when it is used for
computing partial rewritings. In general, the partial rewriting of [CGLV99], although
an exact one, is not always <$-maximal. We call the partial rewriting of [CGLV99]
the greatest contained partial rewriting or GCPR because it contains all the words w
over A’USY, such that def (w) C (). Observe here that the maximality in this rewriting
is with respect to the containment of A"UQ words and not really to their optimality

regarding the non-view symbols.

Now, let’s consider the ECPR presented in Chapter 3. This rewriting can also be
seen as the union of all <y-maximal and contained V-rewritings of Q). By Theorem 21
we have that this is the set of all “mixed” words w on the alphabet Q U A with
no subword in Vi U --- UV, such that their substitution by def is contained in
the query Q. Clearly, for computing ECPR, we replace subwords of () with view
symbols thinking only about the optimality of words with regard to the non-view
symbols, but not caring about the exactness of the rewriting. Since any <y-maximal
and contained rewriting is also <¢-maximal, the result is that we get always a <%-

maximal rewriting, but its exactness is not guaranteed.

Finally, the MCPR is a rewriting that satisfies both the optimality with regard to
the non-view symbols and the exactness. Summarizing, and also including the maxi-

mally contained (complete) rewriting MCR in the comparison, we have the following
table.

a3

l ” S%—maximality Exactness

MCR [CGLV99] YES NO
GCPR [CGLV99) NO YES
ECPR [GT2001a] YES NO
MCPR [GT2003a] YES YES

Table 1: Maximality and exactness of the contained rewritings

4.3 Computing the maximal and contained partial

rewriting

To this end, we will first give a characterization of the maximal and contained partial
M-rewriting of a language L. The construction in the proof of our characterization

provides the basic algorithm for computing the MCPRy (L) on a given regular language
L.

Theorem 24 Let L and M be regular languages over an alphabet . There exists a

Jinite transducer T and a reqular language M', such that
MCPRys (L) = (T (L)) n M,

where (.)¢ denotes set complement.

PROOF. Let A = (S, A, 4, 50, F) be a nondeterministic finite automaton that accepts

the language M. Similarly as in Thoerem 10, we construct the finite transducer:
T=(SU{sp}, A, AU {t},8, s, {s6}),
where ¢, written as a relation, is
{(s;R,s",€): (s,R,8') € 5} U
{(sg, R, sy, R): R A}u
{(s0: R, 5,€) : (s0, R,8) € §}U
{(s0, R, 50, 1) (s0, R,s) € §and s € F} U
{(s,R,50,1) : (s,R,s') € § and 5" € F}.

54

Figure 16: Construction of a replacement transducer

Given a word of w € A* as input, the finite transducer 7 replaces arbitrarily many
occurrences of words of M in w with the special symbol . For another example !,
suppose M is given by the automaton in Figure 16, top. The corresponding finite
transducer is shown at the bottom of the same figure. It consists of the automaton for
M, whose transitions now produce as output ¢, plus the state sj, and the additional

transitions, which are drawn with dashed arrows.

As in Theorem 10, if L' is a language on A, it is straightforward to verify that

TL) =LU {urfust... tug:
for some u € L' and words w; € M,

U = U W UgW3 - . . Wk Uk }-

Recall that, we have def (1) = M, and def(R) = R for each R € A. From the above,
we can also easily characterize the set 7(L') from another point of view. Namely,

T (L") is the set of all words w on A U {1}, such that def(w) N L' # §.

Now, let’s consider the transduction 7(Lf). As characterized above, T (L) will
be the set of all words w on A U {}} such that def(w) N L¢ # 0. Hence, T(L¢))e,
being the complement of this set, will contain all the AU {1} words, such that all the

!One example is given in Theorem 10

a5

A-words in their substitution by def will be contained in L. This is the containment
condition for a word on AU{{} to be in a cPr. Clearly, 7(L°))¢ is a CPR, and namely,
it is the union of all the (M-) cPR’s of L. Hence, MCPRp (L) C T (L))"

However, in order to compute M PR (L), what we like is not a contained ar-
bitrary, but a contained exhaustive replacement of words from M. To achieve this
goal, we should filter out from the set T(L¢)¢, the words having eligible subwords for
replacements that do not violate the containment constraint. Formally speaking, we

are interested in filtering out the non <% -maximal words from T'(L¢)°.

For this, consider another special symbol {', such that ' ¢ A U {{}, and the
substitution def’ : AU {1} U {}'} — AU {{}, such that

def'({) = M, def'(1) =1, and def (R) = R for R € A.

Now, we build a transducer 7' in the same way as we did for the transducer 7,
but for the extended alphabet A U {}{} and considering ' as the special symbol.
Reasoning similarly as before, if we transduce the complement of (7(L))¢i.e. T(L°),
we have that (7'(T(L¢))) is the set of all words w € A U {1} U {'}, such that
def'(w) C (T(L°))¢. Let Ly be the subset of (T"(T(L¢))) such that the words in Ly

have at least one {' symbol. Formally,

Ly = (T(TL))) nAu b hAau{hh.

We show the following lemma.

Lemma 1 def'(Ly) is the set of all (contained) non <% -mazimal words on AU {1}

Proof. Let w € Ly. Then, w = w;f'w, and since w € (T"(T(L)))¢ we have that
def'(w) € ((T(L9)))° that is def'(wi)M def'(w;) C ((T'(LF)))¢, which means that

def (def'(wi) M def'(w;)) C L. Hence, the set def'(w) = def'(wi) M def'(w,) contains

only (contained) non <¥ -maximal words.

On the other hand, let w be an arbitrary (contained) non <k -maximal word on
AU {f}. We can write w = wywyws, where w, € M and def(w,)M def (w;) C L.
Also, we have that def (w1)M def(ws) = def (wy Mw;). Since (T(L¢))® is the set of all

26

the words u on AU {}} such that def(u) C L, we have that w; Mws C (T(L¢))°. This
tells us that w,fws € (T(T(L9)))°. Also, wit'ws € (AU{H, T} T (AU{t,1'H").
Hence, for the arbitrary non <%,-maximal word w, we found a word w' = wit'ws in

Ly, such that w € def'(w'). B Lemma 1

From the above lemma it becomes clear that
MPRy (L) = (T(L%))° N (def’(LT:))c.

As a generalization of Theorem 24, we can give the following result about the
maximal partial V-rewriting, of a query () with respect to a set V.= {V,...,V,} of

view definitions.

Theorem 25 Given a regular path query @, the MCPRy(Q) can be effectively com-
puted.

Proor. Let A; = (S;, A, 6, s0i, Fi), for i € [1,n], be n nondeterministic finite au-
tomata that accept the corresponding V; languages. Let us consider the finite trans-

ducer:
T =(S1U...US, U{s,}, A, AU, s {s)}),

where

3 = {(s,R,¢,¢): (s,R,s') €6;, 1€ [1,n]} U
{(s5; R, s, R) : Re A} U
{(s0, R, s,€) : (soi, B,8) € 6;, i € [1,n]} U
{(sg, R, s, v;) : (501, R,8) € 6; and s € Fy, i € [1,n]} U
{(s,R,s5,v;) : (8, R,§') € §; and §' € F}, i € [1,n]}.
The transducer 7 performs the following task: given a language L' as input, it pro-

duces as output all the words of L', having replaced in them an arbitrary number of

words from V; U ... U V,, with the corresponding special symbols.

Let’s now consider the transduction 7(Q¢). As in the proof of Theorem 24, we

can also see the transduction 7(Q°) as the set of all words w on A U € such that

o7

def(w) N Q° # . Hence, (T (Q°))°, being the complement of this set, will contain
only A U Q words, such that all the A-words in their substitution by def will be

contained in (). This is the containment condition for a word on A U £} to be in the

MCPRy(Q).

However, what we like is not a contained arbitrary, but a contained exhaustive
replacement of words from Vi U ...U V,,. To achieve this goal, we filter out from
T(Q°)¢ the words that still have subwords for potential “contained replacements.”

Formally speaking, we are interested in filtering out the non gg—maximal words from

Q)"

For this, we consider the alphabet ' = {v{,...,v}}, such that Q' N (AU Q) = 0.
We define the substitution def' : AUQUQ — AUQ, such that

def'(v)) = V;, def'(v;) = v;, fori € [1,n], and def'(R) = R for R € A.

Now, we build a transducer 7" in the same way as we did for the transducer T, but
for the extended alphabet A U Q and considering ' as the set of special symbols.
Reasoning similarly as before, if we transduce the complement of (7(Q%))¢ i.e. T(Q°),
we have that (7'(7(Q°)))¢ is the set of all words w € AUQUY, such that def'(w) C

(T(Q%))°. Let Qq be the subset of (T"(T(Q¢)))¢ such that the words in Q¢ have at
least one 2" symbol. Formally,

Qo = (T(TQ))* N (AUQUOYY(AUQUQ)

As for the Theorem 24 we can show the following lemma.

Lemma 2 def'(Qq) is the set of all (contained) non <$-mazimal words on A U Q.

From the above lemma it becomes clear that

MPRy(Q) = (T(Q9))° N (def (Qu))“.

o8

4.4 Optimizing conjunctive regular path queries

The MCPR can be used as the input rewriting for the Algorithm 3, and in a lazy
fashion we can compute the answer to the original query. Moreover, since the MCPR
is an exact rewriting, it is all we need for computing the whole answer. In this section
we will try for something more advanced. Our aim is to optimize the evaluation of the
conjunctive regular path queries by using exact partial rewritings and in particular

the MCPR.

A conjunctive regular path query (CRPQ) @ is an expression of the form
Q(xlu EERE] xl) : ’ylElzlv Tty ykE/czlm

where 21, ..., 2, Y1,.-., Yk, %1, -, 2, are (not necessarily all distinct) variables over
the universe of objects D, such that all the distinguished (head) variables z,,..., 2
occur in the body, 1. e. each x; is some y or z, and E\, ..., Ej are regular languages (or
regular path queries, RPQ) over the database alphabet A. We call the conjunctions
yEz of a CRPQ, regular path atoms, or simply atoms.

The answer set ans(Q, DB) to a CRPQ Q over a database DB = (N, [) is the
set of tuples (ay, ..., @) of nodes of DB, such that there is a total mapping 7 from
Yi, -5 Yk, 21, -« - 2; t0 N with 7(z;) = q; for every distinguished variable z; of Q,

and (7(y), 7(2)) € ans(E, DB) for every atom yEz in Q.

We say for an atom yEz, when 7(y) = a and 7(2) = b, that y and z have been

bound to the objects a and b respectively.

Suppose now, that we have available aset V = {V;,...,V,} of conjunctive regular

path views, which are defined as
Vi(@ir, - za,) © —yaEaza, - - - Yie, Bix, Zik,

for7 € [1,n]. Let E be the set of all Ey; above, for i € [1,7], and Q be a set of € & A
corresponding symbols. Then, we define the conjunctive ezact partial V -rewriting, or
CEPRy(Q), of a CRPQ @ with respect to a set V of conjunctive regular path view

definitions, as

f 4
CEPRv (Z1,..., %) : —1 Eiz1, . .., yn B2k,

99

where E!, for i € [1,k], is an ezact partial rewriting of the regular language £; with

respect to E, with 2 as the corresponding set of special symbols.

Suppose that the sub-mechanism for answering the regular path atoms of the
CRPQ’s remembers the regular expressions and caches the corresponding answer
sets of the regular path atoms in the recently processed CRPQ’s. Observe that the
cached answer sets of the regular path atoms F;; do not necessarily contain the full set
ans(Ey;, DB), but only those pairs that were called for, by the sideways information
passing mechanism used. To formalize the “fullness” of a cached answer set, we

introduce the notions of the “global completeness” and “local completeness,” for the
subsets of ans(E, DB), for some L.

Let P be a subset of ans(E, DB), for some E and DB. Then P is said to be
globally complete if P = ans(E, DB). On the other hand, P is locally complete with
respect to a node a, if P D og,—,(ans(E, DB)). If P is locally complete wrt all nodes
in g, (P), we say that P is locally complete *.

We observe that, if the query processor can traverse the database graph only in
the forward direction (as is the case in the web, see [AV99]), then the cached answer
set of any atom yFj;z, for which z is not already bound to some objects, is locally
complete. For simplicity, we call the atoms locally complete, when we have computed
for them locally complete answer sets. As we will see, the locally complete atoms can

be very useful in the query optimization.

Now, let’s consider the atoms, which have the z variable already bound to some
objects. We observe that, for such atoms, we could have computed locally incomplete
answer sets. In order to see this, suppose for example, that the variable z has been
bound to the objects b and ¢. Then, if the variable y bounds to an object, say a, the
RPQ answering sub-mechanism using “cut”-like constructs, can stop the evaluation
after computing in the answer, starting to navigate from a, the objects b and c.
But, the object a could be connected with paths spelling words in the same regular

language, to other database objects besides b and c.

However, if the variable z has been also bound to another object, say d, which

2We consider for the simplicity of notations a set of object pairs as a binary relational table.

60

cannot be reached from a, by following a path spelling a word in E;;, then we in-
evitably have to compute a locally complete answer set for the (sub)atom aFEj;z, in
order to reject the pair (a,d). I such a case, the “cut”-like constructs do not have
have a chance to execute. So, aEj;z is locally complete, and we cache its answer set

for future optimizations.

Now, let’s see how we can optimize the answering of the conjunctive regular path

queries using conjunctive exact partial rewritings.

Consider the regular path atom yFE;;z in some recently processed view V. As
explained before, if the variable z is not bound to some database object, then yF;;z
is locally complete. Otherwise, we consider all the (sub)atoms aF;;z, which are locally
complete. Let’s denote with cache;;, the cached answer set of the locally complete
atom y£;;z, or if otherwise, the union of the cached answer sets of its locally complete
(sub)atoms. Then, we define the atom-view-graph V to be a database over (D,)
induced by the set

U {(a,ei;,0) : (a,b) € cachey;}.

of Q-labeled edges. 3

The evaluation will alternate between the database-graph and atom-view-graph.
Suppose that we want to answer the atom yEz and y has already been bound to a
node, say a. We now need to compute the nodes reachable from a, by a path spelling
a word in E. Recall that for E' we have computed a corresponding exact rewriting
E'. We start by answering aE'z on DB. Intuitively, when during the navigation
we are in a node b, and the regular expression for E’ requires an Q-symbol, say €ij,
to be matched, then we look at the atom-view-graph V. If there is a node b in V,
and in that node we find outgoing e;; edges, then we advance the navigation in the
atom-view-graph. Since the cached answer for E;; is locally complete, we are sure

that we get all the answers had we answered E;; directly in the database starting
from b.

On the other hand, if we do not find an object b in V, or even if we find b in V, but

3From another point of view, we can also see that a regular path atom (or (sub)atom), along
with its locally complete answer set, is nothing else but a local node constraint as defined in [AV99]

61

there are no outgoing edges labeled with e;;, then we evaluate I;;, starting from b in
the database graph, and enrich the atom-view-graph accordingly. Clearly, we do not
add by this operation any overhead for answering parts of some new A* word, that is
not in F, because the rewriting is exact. Formally, we have the following algorithm

for answering aFz on the basis of E'.

Algorithm 5
Input: An exact rewriting E' for the (sub)atom aFEz, and a database DB.
Output: The answer to the (sub)atom aEz on database DB.

Method: First construct an automaton Ap for E'. Let so be the initial state in Ag. We

compute the set Reach, as follows.

1. Initialize Reach, to {(a,sg)}-
2. Repeat 3 until Reach, no longer changes.

3. Choose a pair (b, s) € Reach,,.

(a) If there is a transition s —% &' in Apy, and there is an edge b —% ¢ in V, then
add the pair (V',s') to Reach,.

(b) Otherwise, if there is a transition s —% s’ in Agr, but there is not an edge

b 25 b in V, answer bE;;z on DB and enrich V accordingly.
(c) If there is a transition s = &' in Apr, and there is an edge b -2 ' in the
database DB, then add the pair (b, s') to Reach,.

Finally, set eval(E', a, DB) = {(a,b) : (b,s) € Reach,, and s is a final state in A} [

It is easy to see that the following theorem is true.

Theorem 26 Given a CRPQ Q and a set V of views as above, using the rewriting

CEPRv(Q), we have that for some reqular atom E in Q, the answer to aFz equals
eval(E', a, DB).

62

Now, for the case of regular path atoms aFz, where the variable z has already been
bound to some objects, we slightly modify the above algorithm to evaluate the an-
swer to such atoms as well. For this, let B be the set of objects where z has been
bound. Then, in the above algorithm we incrementally compute in each step the set
eval(E',a, DB) and change the loop (2) to

Repeat 3 until Reach, no longer changes or mga(eval (E', a, DB)) equals B.

We note that, the second condition of the loop termination is there for restricting
the search space, in case we find (or verify) that we can reach from a all the objects in
B by following paths, which spell words in £. Clearly, in this case, the answer set of
the atom aEz equals a x B. On the other hand, we also stop if Reach, reaches a fixed
point, and in this case the answer to the atom aFz equals a X (mg(eval(E', a, DB))
M B). In such a case, although the variable z had already been bound, the set
eval(E’', a, DB)) is fully computed and so, it is locally complete.

Finally, if we set B = @), when the variable z has not been already bound to some
objects, then we can have a single RPQ-answer-and-cache algorithm. This algorithm
would compute the answer set to an atom yFz, by iterating over all the objects a,
where the variable y could be bound, and compute affz by using an exact partial
rewriting aF'z, as described above. At the end, we check whether the set Reach, has

reached a fixed point. If yes, then we cache the locally complete eval(E’,a, DB)), for
future RPQ optimizations.

4.5 Complexity analysis

Theorem 27 Given a language L and an e-free language M both of them over an

alphabet A, the problem of generating the MCPRy, (L) is in SEXPTIME.

PRrROOF. Let us refer to the constructive proof of the Theorem 24. From there we
have that

MPRy(L) = (T(L%))* 0 (def'(Ly))".

63

Consider the first term of the intersection. To compute the complement Q¢ of the
query is exponential. To transduce 1t to T(Q°) is polynomial. To complement again

is exponential. So, we can compute the first term in 2EXPTIME.

Now, let’s consider the second term. We have that

Ly = (T(T(L)) nAu{h, 1 H@u{tih"

Clearly, to compute Ly is in 2EXPTIME and to compute def'(Ly) is polynomial. To
complement again is exponential. So, we can compute (def'(Ly))¢ in SEXPTIME.

Totally, we have 2EXPTIME + 3EXPTIME = 3EXPTIME. |

From the above theorem, we can easily derive the following corollary, regarding
the upper complexity bound for the generation of the MCPRv(Q) of a query @, with
respect to a set V.= {V|,...,V,} of view definitions.

Corollary 6 Given a language Q and a set V. = {Vy, ..., Vo,} of view definitions,
the problem of generating the MCPRy (@) is in SEXPTIME.

We emphasize here that the above complexity analysis is a worst case analysis.
In fact, the above complexity comes from possible DFA’s state “blow up.” However,
despite these worst case possibilities, experimental results in [GW97], for converting
graphs into DFA’s, are encouraging, indicating that for the majority of the cases, the
running time is very reasonable and the resulting DFA’s are significantly smaller than
their sources. Also, observe that if the probability of getting an exponential size DFA
for an NFA is p << 1, then the probability of getting a triple exponential “blow up”

in our case would roughly be p®, which is very small.

Now, in order to prove that the above established upper bound is essentially

optimal we will need the following constructions and theorems. Consider the set
(T@NN(AVY) (Viu...uV (AU,

where the transducer 7 is defined as in Theorem 25. This is the ezxhaustive contained

partial rewriting (ECPR), presented in Chapter 3. As discussed before, it is the set of

64

all “mixed” words w on the alphabet AU, with no subword in V1U- - -UV,,, such that
their substitution by def is contained in the query ¢). Obviously, def (ECPRv(Q)) C Q
and we are interested in the complexity of testing its exactness with respect to the
query . We prove the following theorem regarding the upper bound of the above

exactness problem.

Theorem 28 Given a query @ and a set V.= {Vi,...,V,} of view definitions, the
problem of testing def (ECPRv(Q)) = @ is in 2EXPSPACE.

ProOF. By Theorem 27 the automaton (7(Q¢))¢ can exponentially “blow up” and

namely be of doubly exponential size. The automaton for
(AU (Viu...uV)(AU 0)*)°

can also exponentially “blow up” but its size can be up to single exponential. So, in
total the automaton for ECPRy(Q) can be of up to doubly exponential size. Now,
let’s consider def(ECPRy(Q)). For the substitution def there exists a polynomial
size transducer Tger such that def (ECPRv(Q)) = Taer (BCPRy(Q)) [Yu97, GT2000].
Thus, the size of the automaton 7Tyf(ECPRy(@)) will be polynomial on the size of
the automaton for ECPRy(Q) i.e. it can be doubly exponential on the size of the
automaton for). Now, to test the exactness def (ECPRy(Q)) = @ is in PSPACE
with regard to the size of the automaton for ECPRy(Q). So, in total we have that
testing the exactness of ECPRv(Q) is in 2EXPSPACE. l

For the lower bound of the exactness def (ECPRv(Q)) = @ we will use the maxi-
mally contained rewriting, MCRv(Q) of [CGLV99]. As we know, the MCRv(Q)) is the
set of all words w in ©*, such that def(w) € Q. In [CGLV99], the exactness problem
for the MCRy/(() is proven to be 2EXPSPACE complete. We will give in the follow-

ing a reduction of the exactness problem for MCRyv (@) to the exactness problem for
ECPRv(Q).

Consider a query ¢ and a set V = {Vi,...,V,} of view definitions. Now, consider
the set V' = {V{,..., V/} of new view definitions, where V/ = $V;$ for i = [1,n] and
$ ¢ AU, Regarding the query @, we will transform it into a new query ' through

a transduction. For this we construct the following transducer.

65

Let A; = (Si, A, 6, s, F3), for ¢ € [1,n] be n nondeterministic finite automata
that accept the corresponding V; languages. Let us consider the finite transducer:
Tss = (S1U...US, U {sp}, A, AU{$}, 8, s, {s4}), where

§ = {(s,R,s,R): (s,R,s') € d;, i € [1,n|} U
{(86?61 30i7$) S [1,7’2,]} U
{(s,¢€,85,%) : s € Fy, i €[l,n]}.

The transducer Tgg performs the following task: given a language L as input, it
produces as output all the words of L having inserted in them the symbol § to
mark the beginning and the end of a subword that belongs to V; for some i € [1,n].
Moreover, only the words of L, which we can divide into a sequence of subwords, such

that each belongs to some view language, are transduced. All the other L words are

filtered out. Formally,

E$(L) = {$U1$$U2$.. uk :
for some u in L,u = ujug ... ug

and Vi € [1,k] 35 € [1,n] such that u; € V}}.

Theorem 29 Consider a query Q@ and a set V.= {Vy, ..., V,,} of view definitions.
Construct Q) and V' = {V{, ..., VI} as above. Let ' = {v},... v} and def be the
usual view substitution on ', di.e. def(v;) = V/, for i € [1,n]. Also, let defg ,, be
the substitution that erases the symbol $ from some language on AU {$}. Then, the

Jollowing is true: the MCRy(Q) is ezact if and only if

1. defs , (Q) = Q, and

2. ECPRv/(Q'), with respect to V' = {V/, ... V'}, is exact.

PROOF. “if.” The fact that defs ,.(Q') = Q means that for any word w € Q there
exists a representation w = ujuy ... u, such that Vi € [1,k] 3j € [1,n] for which we
have u; € V. In other words, for each w € Q there exists a corresponding w' € '
with inserted markers §. Now, observe that, because of the markers $, the ECPRy (@)

is forced to be equal with the MCRv/(Q'). So, the exactness of ECPRy«(Q') means

66

exactness of MCRy/(Q'), which in turn means that for each word w' € @' there is a
word v} ...v] such that w' € def(v], .0), and def(v], .. vi) © Q. Tt is easy
to see that for the corresponding word w = defg ,.(w') we have that w € def (v;, ...
v;) and def (v, ... vi,,) € Q. Since we showed that for each w € Q) there exists a
w' € ', we imply that each word of () can be represented by some word in * which
belongs to the MCRy(Q). Together with the fact that def(MCRv(Q)) C @, from the

above we conclude the exactness of MCRv(Q).

“only if.” From the exactness def (MCRv(Q)) = @, we have that for each word
w € Q there exists a word vj, ...v;,, € MCRy(Q) such that w € def(v;, ... v,). But,
this means that w can be written as w = uj ... un,, where u; € V;, for i € [1,m].
From this, we have that w' = $u;$%us$... $u,,$ € @', Since all the above hold for
each word of @, the condition (1) follows.

Regarding the condition (2) recall that because of the markers $ we have that
ECPRy/(Q') = MCRy/(Q'). From the construction of ¢)', observe that for each word
Uy ...V, € MCRv(Q) the corresponding word v} ... v} isin the MCRy/(Q'). From

this, it is not difficult to conclude that MCRy ('), and in turn ECPRy:(()') are exact
with respect to Q. [|

Based on the above theorem we give the following theorem regarding the optimal-
ity of the construction given in Theorem 28 for testing the exactness of the ECPR of

a query Q).

Theorem 30 Given a query Q and a set V. = {Vy,...,V,,} of view definitions, the
problem of testing def (ECPRy(Q)) = Q is 2EXPSPACE complete.

PROOF. For the upper bound we refer to Theorem 28. For the lower bound consider
the reduction from the exactness problem for the MCR of an arbitrary query and an
arbitrary set of view definition to the testing of the conditions (1) and (2) in Theorem
29. Observe that the automaton for the modified query of the first condition, since it
is being obtained by a polynomial size transducer, is polynomial as well. This means

in turn that to test the language equality of the first condition of Theorem 28 is in

67

PSPACE. So, since the exactness problem for the MCR is 2EXPSPACE complete, the
lower bound for the exactness problem of the ECPR is also 2EXPSPACE. B

Theorem 31 If for all the queries Q and sets of views V, we were able to com- -
pute the MCPRv(Q) in 2EXPTIME, then we would be able to decide the exactness of
ECPRy(Q) in 2EXPTIME, which is impossible by Theorem 30, unless 2EXPTIME =
2EXPSPACE.

ProoF. Consider the ECPRy(Q). Recall that this is the set of all “mixed” words w
on the alphabet QUA, with no subword in V;U- - -UV;,, such that their substitution by
def is contained in the query Q. So, such words qualify for inclusion in MCPRy(Q).
Hence, we have that BECPRy(Q) € MCPRy((). On the other hand, observe that
if ECPRv(Q) is eract then we must have ECPRv(Q) = MCPRv(Q). Now, we can
test the exactness of ECPRy(Q) by testing the condition MCPRy(Q) € ECPRv((Q),
which is equivalent with the non emptiness of MCPRv(Q) N (ECPRv(Q))°. Since by
construction, we get a DFA for the ECPRy (@), to complement does not add anything
to the complexity of testing the emptiness of the above intersection. So, this test
can be done in polynomial time in the size of MCPRv(Q) and ECPRy(Q). Now,
if we were able to generate the MCPRy(Q) in, say, 2EXPTIME, and since we are
able to generate the ECPRy(Q) in 2EXPTIME, then we could test the exactness of

ECPRy(Q) in 2EXPTIME, which is impossible by Theorem 30, unless 2EXPTIME =
2EXPSPACE. |

From the above theorem, we conclude that we cannot compute the MCPRv(Q)
in 2EXPTIME, unless 2EXPTIME = 2EXPSPACE. Now, the question whether our
3EXPTIME algorithm for computing the MCPRy () is optimal or not, is equivalent to

the (clasical) question of the existence of some complexity gap between 2EXPSPACE
and 3EXPTIME [Sip96].

68

Chapter 5

Query rewriting using views under

constraints.

5.1 Introduction

In this chapter, our aim is to reason about query containment and query rewriting
using views, all under constraints. The constraints are facts that we know or learn
about the structure of the databases, on which a query is to be evaluated. Intuition
says that if we have some knowledge about the territory we are going to navigate,
then we can navigate more wisely. Notably, constraints for semistructured data are
investigated in [AV99, BFW98, BFW99, DT2001]. In [AV99], local path constraints
are introduced. As defined there, a path constraint with respect to a node a of
the database, is a pair of regular path queries (Q1,Qs), such that in the intended
databases, the set of nodes reachable from a along paths spelling words in Q;, is a

subset of the nodes reachable from a along paths spelling words in Q.

An important extension of path constraints for databases having a special root
node, say r, has been considered in [BFW98, BEW99]. There, a path constraint holds
only from nodes a that are reachable from r, by following paths labeled with words

in a prefix language which is regular as well.

69

In all of [AV99, BFW98, BFW99], the constraint implication problem is studied.
Namely, the implication problem is to test whether a new constraint follows from the
ones already known. As a constraint is a query containment in [AV99], by solving the
implication problem, the containment problem is being solved as well. However, there
are limitations. The implication is based only on the constraints holding in (from) a
particular node, and so, it doesn’t take into consideration other constraints holding in
nearby nodes. Also, the constraints holding in a node only imply constraints holding
in that same node. As a result, the methods presented in [AV99] can only be used to
decide containment of regular path queries starting from the same node as the local
constraints, and under the assumption that there are no other constraints holding in

the nearby nodes, which the queries can eventually reach.

In [BFW98, BFW99], for the databases having the special root node, it is shown
that in general, implication of extended path constraints is undecidable, and the pa-
pers leave open the question of query containment. Finally, we can also view [DT2001]
as solving containment of regular path queries under constraints, for restricted classes

of regular path queries, namely those expressible by first order logic.

In our study we consider general semistructured databases (as defined in Chap-
ter 1), which do not have any special root nodes. We capture (partial) knowledge
about such databases, with path constraints where each constraint is a pair of reg-
ular path queries for which the containment or equality of their answer sets on the
target databases is known to hold. The queries in such constraints ask for pairs of
nodes connected by paths spelling words in the corresponding queries, rather than
the nodes reachable by such paths from some root. Our constraints are a seman-
tic generalization of the path constraints in [AV99], while they can be considered as
a special case of the constraints in [BFW98, BFW99], when the prefix language is
“everything” i.e. the star of the database alphabet. With our semantics for the reg-
ular path constraints, we eliminate the afore mentioned limitations associated with
the constraints in [AV99], and we are able to capture most of the practical cases for
which the constraints in [BFW98, BFW99] are motivated.

We study query containment in this general setting. Query containment is con-

sidered starting from all the nodes of the database, not just from a special node.

70

Then, based on the query containment, we reason about the query rewriting using
views. We define constrained rewritings and give a characterization that enables their
computation. We demonstrate that when we take constraints into account, we can
always compute more useful rewritings, which use the views optimally. As mentioned
before, query rewriting using views offers substantial optimization when the views are

relevant to the query, and by using constraints we make more room for such relevance.

Even if the queries and the views are to be evaluated starting from all the nodes
in the database, as is shown in Chapter 3, a rewriting can be efficiently used to
optimize the query evaluation in the case when the query is to be computed, or the
views have been computed, starting from some nodes only. Such partial query/view
evaluations usually occur when dealing with regular path atoms of conjunctive regular
path queries. A formal algorithm for this case is given in Section 4.4. The algorithm
is based on the intuition of “un-rewriting” when reaching nodes from which a view

has not been evaluated.

Query rewriting using views has also other applications apart from traditional
query optimization. In the following example we illustrate how beneficial our rewrit-
ings are in a Web based scenario. The example also shows the need for the generalized

path constraints used in this chapter.

Let’s consider again the HTML pages of the multi-site Web of Ericsson Inc. As
mentioned in Chapter 1, for the appropriate abstraction level, let there be a function
mapping the HREF links to symbols of an alphabet. For example, links for the
Ericsson Canada site could be labeled with “canade.” By browsing, the reader can

easily verify that the following constraints hold from all the nodes of the Ericsson
Web.

e canada . products . mobile systems . mobile internet = canada . mobile internet

e italy . tecnologie . bluetooth . white papers =

canada . technology . bluetooth . white papers

We can continue a long way learning constraints like these. Observe that the

above constraints also hold from the nodes not having at all a link labeled “canada”

71

or “taly.” In such cases, the constraints hold because the left-hand side and the

right-hand side queries have both empty answer sets.

Let’s take a closer look at the first constraint. It is true because at the moment
there exists a shortcut link labeled “mobile systems’ in the main page of Ericsson
Canada. As a matter of fact, such shortcuts are temporary and will be replaced with
something else in a couple of days. However, we would like to answer the users still

asking queries like) = .*

_ canada . mobile internet . white papers. By considering
some important long browsing paths as regular path views, e.g. V = . canada .
products . mobile systems . mobile internet . white papers, we could rewrite Q@ as

V . white papers and answer the user.

Now consider the second constraint. It is clear that, if the user gives a query
having a subquery asking for Canadian technology Bluetooth white papers, and the
Ericsson Canada site is down for maintenance, then we could answer the user by using
a query rewriting with a corresponding path view in the Italian site. Obviously, in

neither case would we be able to have a rewriting if we lacked the knowledge captured

in the constraints.

5.2 Background

Path queries and constraints. As we know, a (regular) path query' Q is a finite

or infinite (regular) language over the alphabet A.

A query Q) is contained in a query @)y, denoted Q1 = Qs iff ans(Q1, DB) C ans(Q,, DB),
for all DB’s. We say that), is equivalent to () and write Q1 = @3, when Q; C Q,
and @y C Q. It is easy to see that the above query containment coincides with the
(algebraic) language containment of ¢); and @, and the query equivalence coincides
with the language equality, i.e. Q7 E Qs iff Q) C @5 and Q1 = Q5 iff Q1 = Q5. This

is the reason why we silently, in all the previous chapters, considered only language

LA query @ could be non-regular as well. However, perhaps since very few problems would be
decidable, larger classes of queries have not been considered in previous literature. We also restrict
ourselves to regular path-queries, except for a technicality in Section 5.5.

72

containment, and used for simplicity only the symbol “C.”

If for two queries @1 and @y, we have in general (1 Z @2, we could be interested
in the set {DB} of databases, such that ans(Q\, DB) C ans(Qy, DB). Clearly, an
expression @, C @2 could be scen as a constraint restricting the set of databases to

only those satisfying the containment. We now proceed with the following definition:

Definition 6

1. A path constraint is an expression of the form Q; T @, where @, and @), are

path queries.

2. A database DB satisfies a path constraint, denoted DB = @y C Qo if ans(Qy, DB)
C ans(Qq, DB).

3. DB satisfies a set C of path constraints, denoted by DB = C, if it satisfies each

constraint in C.

4. A query @, is contained in a query (Jo under a finite set of constraints C,
denoted @y C¢ s, if for each database DB such that DB = C, we also have
a’nS(DB7 Ql) ~C. CLNS(DB, QZ)

5. A query @ is equivalent to a query (Jo under a finite set of constraints C,
denoted Q1 =¢ @2, if Q1 Cc 2 and Q2 Ce Q1.

6. If two queries (J; and (J; are words, i.e., simply sequences of labels, the con-
straint (}; C)9 is called a word constraint. Word constraints will also be

written as w; C wq, when @ equals w; and (), equals wo.

We can easily see now, that the query containment (equivalence) under constraints,

no longer coincides with the containment (equality) of regular languages.

Rewrite systems. A (semi-Thue) rewrite system R is a finite subset of A* x A*.

The elements of R are called rewrite rules. A rewrite system R induces a single-step

73

reduction relation —5 over A* defined as

—r = {(v,w):v =gty and w = zuy

for some (t,u) € R, and z,y € A"}.

We denote with —s. the reflexive and transitive closure of —5. Testing whether a
given pair (v, w) is an element of X5« is called the rewrite problem for 3. We shall
sometimes use infix notation for the reduction relation and write (u,w) € —x as

u—r v. For 53, the convention is similar.

The following fundamental result is well known (see e.g. [BO93])
Theorem 32 The rewrite problem is undecidable in general.

We define the set of rewrite ancestors and rewrite descendants of a word w, with
respect to R, to be ance(w) = {x € A* : 2 5w} and desc,(w) = {z € A :
w S, z}, respectively. For a language L C A* we set ancg (L) = Uyer ance(w), and

descr (L) = Uyer, descg (w),

We say that two A-words v and w are equivalent with respect to R iff v, w
and w5, v. We denote the equivalence class of a word w with respect to R by [w]x,

or simply by [w], if R is evident from the context.

Let us now consider a reduction relation we would obtain by applying the rewrite

rules only in the prefix of words. Formally, we define the prefiz-reduction relation

e = {(v,w):v=_ty, and w = uy,

for some (¢t,u) € R and y € A"}

We will denote the reflexive an transitive closure of +, with ..

We define the set of prefiz rewrite ancestors and prefix rewrite descendants of a
word w, with respect to R, to be panc,(w) = {z € A* : x5, w} and pdesc,(w)
= {z € A* : w1z}, respectively. For a language L C A* we set panc, (L) =
Uyer panc, (w) and pdesc, (L) = Uyey pdesc, (w).

74

Finite transducers and rational relations. Let 7 = (P, I, O, §, s, F') be a
finite transducer. We repeat here some concepts introduced in Chapter 1 for ease of
reading, and also introduce some more definitions and finally a lemma. As mentioned
in Chapter 1, we also use the symbol 7 to denote the set of all pairs (v, w) € 1" x O,
where w is an output of 7 when providing v as input. Finally, 7 can also be seen as

a mapping from languages to languages, and we write

T(L) = {w: (v,w) € T, for some v € L}.

It is well known that 7 (L) is regular whenever L is.

A possibly infinite subset of A* x A* will be called a word relation. A word relation
Z is rational if there exists a transducer 7 = (P, A, A, ¢, s, F'), such that Z = T.
We say that the transducer 7 recognizes the relation Z. It is easy to see that, if we
reverse the input with the output in a transducer 7, we get a transducer recognizing
the inverse Z ! of the relation % that 7 recognizes. We call the transducer obtained

in this way from 7', the inverse transducer and denote it with 7.

Let Z be a word relation. We define the powers of Z as follows: Z° = 0, %' = %,

and
BT = (v, ww') (v, w) € #', and (v, w') € Z}.
The power closure of Z is defined as Z® = U;en Z°.

It is also easy to see that class of rational relations is closed under power closure.

Formally, we have

Lemma 3 Let % be a rational relation. Then Z° is rational.

ProoF. Construct a transducer 7 = (P, A, A, 4, s, F) for Z. Then, the
transducer 7' = (P, A, A, ¢', 5, F), where ¢’ = 6§ U {(f,¢,5,¢) : f € F}, recognizes

the relation #°. %

75

5.3 Query containment under constraints

In this section we show that for word queries and constraints, the query contain-
ment problem is equivalent to the rewrite problem for general semi-Thue systems.
Although this tells us that, in general, the query containment is undecidable even for
word constraints, the equivalence is important because from that we will derive a char-
acterization for reasoning about the containment of arbitrary regular path queries. In
fact, there are useful subclasses of word constraints for which the (arbitrary) query

containment is decidable, and we show one such subclass in the next section.

Let C = {t; C u; : © € [1,n]} be a set of word constraints. Consider the corre-
sponding semi-Thue word rewriting system R, = {(¢;,u;) : i € [1,n]}. With slight
abuse of notation, we shall denote the induced relations by —., ~», anc.(-), and
desc.(+). Now, suppose we are given two word queries w; and w,, and we want to test
the containment w; CTe wy. The following theorem shows that deciding the above

word query containment coincides with deciding the w; = wy word rewrite problem.

Theorem 33 w; C¢ wy iff w; e ws.

PRroOOF. It is easy to see that if w; v, w, then w; e wy. To prove the converse,
we will build a database DB, such that DB, k&= C and

(8) If DB, = w; C wy then w; . ws.

To see why this is important, suppose that we have this database DB, and also have
that wy Cc ws. Since wy; C¢ wy and DB, = C, we get that DB, = w C wy. By (§),
this means in turn that w; =, w,.

In order to construct the above mentioned database we generalize the construction
of Lemma 4.4 in [AV99]. Since the development is neither trivial nor derivable from

[AV99], we go in the details of the construction and its properties.

Let & be the number of symbols in the longer of the two words w; and w,. We

76

[SR]

Figure 17: The construction of DB,

then set DB, = (N, E.), where
Ne = {[z] : x € A" and |z| < k},
where [z] is the equivalence class of z with respect to the relation 5., and
Ee = {([=], R, [y]) : ({2}, [y]) € Ne x Ne and y € ance(sR)}.

It should be emphasized that the definition of E. does not require that the [zR] is a
node in NN,.

We note here that to “really” build this database we need to be able to decide
whether y € anc.(z) for any [z] and [y] in N,. Clearly, this is possible only if we are
able to decide the rewrite problem for the corresponding semi-Thue system. However,
what we actually show is the existence of DB,, although its construction might not

be executable by a halting Turing machine.

For an example of the construction of the database DB, let’s take C = {R C S},
that gives a corresponding rewrite system {(R, S)}, for which the rewrite problem is
decidable. The construction for & = 2 is presented in Figure 17. The solid arrows

represent database edges, while a dashed arrow from [z] to [y] indicates that y €

ance(x).

We prove that any database DB, constructed as described above, always satisfies

the set C of word constraints, from which it was derived. For this we need the following

77

Figure 18: Proof of Lemma 4

lemma, which says that, starting from a node, say [z], and following paths labeled
with some (non-empty) word w, we reach all the nodes corresponding to the ancestors
of [zw]. In order to simplify the notation, we will denote with Reach(|z], w) the set

of nodes that can be reached from [z] by following paths labeled with w in DB, i.c.

Reach(l«], w) = {ly] : ([z], [y]) € ans(w, DBc)},

and with Anc([z]) we will denote the set of nodes [y], such that y 5.z, i.c.

Anc([z]) = {{y] € Ne : y € ance(x)}.
Again, we emphasize that [z] is not required to be a node in DB, for the definition
of Anc([z]).

Lemma 4 For each w € AT and [z] € N, we have that

Reach(|z}, w) = Anc([zw]).

PROOF. We proceed by induction. First, observe that by the construction, for
R € A we have that [y] € Reach([z], R) iff y € anc.(zR), i.e. [y] € Anc([zR]).

78

Suppose (by induction on the length of w) that Reach([z], w) = Anc([zw]), and let
R ¢ A. Then, by the induction hypothesis and the construction of DB, Reach([z], wR)

contains Anc([zwR]).

Let’s show the converse. If Reach([z],wR) is empty, then the claimed equality
follows. Let [2] be in Reach([z], wR). Then, there exists y, such that [y] is reachable
from [z] with a path spelling w, and there is an R-edge from [y] to [z] (see Figure 18).
From the induction hypothesis we get [y] € Anc([zw]). Also, by the construction of
DB., [z] € Anc([yR]). Now, since [y] € Anc([zw]) we have that [yR] € Anc([zwR)),
so Anc([yR]) C Anc(jzwR]). Thus, [2] is in Anc([zwR]), and finally we have that
Reach([z], wR) = Anc([zwR]). B Lemma 4

Let’s return to the proof of Theorem 33. For any constraint f; T u; in C, we
have Anc([t;]) € Anc([w,]). This implies that, for any node [z] € DB, Anc([zt;])
C Anc([zu;}), which by Lemma 4 is equivalent with Reach([z], ;) C Reach([z], ;).
Since [x] was an arbitrary DB, node, we have that DB, = t; C u;. Hence, DB, |= C.

Consider now z = e. Lemma 4 transforms in this case into Reach(le],w) =
Anc([wl]). Then, if DB = wy T ws, we conclude that Reach(le], w,) C Reach([e], ws),
which in turn implies that Anc({wi]) € Anc([ws]). Recall that by definition we
have that |w] € Anc(lw]), where w is a word. So, Anc([w;]) C Anc(Jws]) implies
[wi] € Anc([ws]), which finally implies w; ~. ws.

g2 Theorem 33

From the above theorem and Theorem 32 we get the following corollaries.

Corollary 7 Query containment under constraints is undecidable.

Corollary 8 The query containment problem for a class of word constraints is decid-

able iff the the word rewrite problem for the corresponding class of semi- Thue rewrite

systems is decidable.

The second corollary is a positive result, so we would be interested in knowing whether

the general query containment is decidable for a subclass of word constraints with

79

decidable word query containment. Unfortunately, the answer to this question is neg-
ative as we show by the following lemmas and theorems. Nevertheless, they provide
the basis for showing (in the next section) that a useful subclass of word constraints

has decidable general query containment problem.

The following lemma is a generalization of Lemma 4.6 in [AV99].

Lemma 5 Let C be a finite set of word constraints and @1, Q2 regular path quertes.

If Q1 Cc Qq then for each wy € Q there exists wy € Qo such that wy e wo.

PROOF. Let wy € Qy. Then, if C = Q; T Q5 we have that C = w; T Q. Now,
let’s consider the database DB, described in the proof of Theorem 33, for k > jw,|.
Since DB, satisfies C, it must also satisfy w; T Q2. So, the nodes that we can reach
from let’s say [¢] by following w; are a subset of the nodes that we can reach by

following the words in (2. Formally, we have

Reach([e],un) C) Reach([e], ws).

w2€Q2

Clearly, the node [w,] € Reach([e],w;), and so we have [wq] € Uy,eq, Reach([e], wy).
It follows that that the node [wi] € Reach([e], wq) for some wy € QJy. It easy to see
that by the construction of DB, following paths spelling some word w, we reach
only nodes [w'] such that w' € anc.(w). So, for the word wy € @2, since we reach
by spelling it the node [w,], we get that w; € anc.(w,). This means that w; ~> wy,

which as we showed in Theorem 33, coincides with w, C¢ ws. E

From the above lemma and Theorem 33, we can easily see that the following is
true.

Theorem 34 Given a finite set C of word constraints, and (general) reqular path

queries Q1 and @y, we have that Q1 T Qo iff Q1 C anc.(Q2).

Let R be a word rewriting system and R™! its inverse, obtained by reversing the
direction of the pairs in R. Clearly, the inverse of a word rewriting system is also a

word rewriting system. It is easy to verify the following lemma.

80

Lemma 6 "5, = (Z3) " and ance (L) = descg-1(L), for each language L € A™.

Now, we are ready to show that containment for (general) regular path queries,
under finite sets of word constraints with decidable word query containment, is un-
decidable.

Theorem 35 There exists a class of word constraints with decidable word query con-

tainment, but with undecidable query containment in general.

PRrROOF. The proof is based on the notion of monadic word rewriting systems.
A word rewriting system R is length-reducing if [¢| > |u] for each pair (t,u) € R. A
word rewriting system R is monadic if it is length-reducing, and u € A for each pair
(t,u) € R. Tt is well known that the rewrite problem for length-reducing systems is

decidable, and so it is for monadic systems [BO93].

Let us now consider the universality problem for the context free class CF'G of

grammars. Formally, this problem says that the language
{<G>:G € CFG and L(G) = A"},

where <G> is a grammar encoding, is undecidable [Sip96]. Let C'FGsq be the
subclass of context free grammars whose productions have right side of length greater

or equal to 2. Without loss of generality, we have that the slightly modified language
{<G>:G € CFGs; and L(G) = A* - A}

is also undecidable. We will now present a reduction from this undecidable problem.

Let G be a grammar in CFG>, with nonterminal symbols I', start symbol S, and
productions of the form (head, body). Clearly,

R = {(body, head) : (head, body) is a production in G}

1s a monadic rewrite system over the extended alphabet A UT. In this proof we will
consider A U T as the database alphabet.

We take G = A%, Qs = S, and C = {body C head : (body, head) € Rg}. Since Rg

belongs to the class of monadic rewrite systems, which has a decidable word rewrite

81

problem, from Corollary 8 it follows that C belongs in a subclass of word constraints
with a decidable word query containment problem. Clearly, L(G) C (A" — A). On
the other hand, based on Lemma 6, we have that (A" — A) C L(G) iff (AT —A) €
ance(S) N (AT — A), which is equivalent with (A* —A) C ance (S), and this is finally
equivalent by Theorem 34 with @ C¢ (>-

5.4 A subclass with decidable query containment

Often, in a Web based scenario we can encounter sets of constraints, such that any
left-hand side overlaps (if it does) with some right-hand side only by prefix. For
example, the constraints presented in Section 5.1 were such ones. The high frequency
of this type of constraints is because they, after a short prefix, start expressing local
information about a node, say «, and the prefix is nothing else but the link (or
sequence of few links) that we need to navigate from another node in order to reach
a. In our example of Section 5.1, from any HTML page of the Ericsson Web, we can
jump to the Ericsson Canada main page, only if there is a link labeled “canada” ~the

prefix— and then, various local facts can hold starting from there.

The local constraints —connected with particular nodes— have been very well moti-
vated in [AV99]. However, as explained in Section 5.1, there are limitations associated
with the way the constraints are treated in [AV99], most important of which are: (a)
the non-extensibility of the methods to decide query containment when the queries
start from other nodes than the constraints, and (b) not taking into consideration
the interaction with other local constraints in nearby nodes. By prefixing the local
constraints with the link label(s) needed to reach the relevant node, the local con-
straints are transformed into global ones, and we will give decision procedures that

do not have the mentioned limitations 2

2If from some node there is no link(s) leading to the relevant node, then the constraints still hold
since the sets of the reachable nodes with the left- and right-hand sides (words) are empty.

82

We also relax the notion of “overlapping” to be more “generous,” in the sense
that it allows a left-hand side to not overlap at all with any right-hand side, and it
also allows strictly internal sub-words to overlap. This relaxation of the overlapping
allows for expressing not only local constraints, but also “pure” global constraints as
it is the second constraint in Section 5.1 or the constraint canada . events . bluetooth
. latest T bluetooth . events . latest, in which the left-hand side overlaps with the
right-hand side by a strictly internal subword.

Now let’s formally define our subclass of word constraints. We will start by con-
sidering rewrite systems R. We first set left(R) = {t : (t,u) € R, for some u € A*},
and right(R) = {u : (t,u) € R, for some ¢t € A*}. Now we have

Definition 7 ([Sen90]). Let R be a rewrite system. Then R is said to be

L. Internal overlapping, if some ¢t € left(R) is a substring of a word u € right(R)

Or vice versa.

2. Right overlapping, if there are z,y,w € A%, t € left(R), and u € right(R),

such that t = zw and u = wy, for w # .
3. Left overlapping, if there are z,y, w € A", t € left(R), and u € right(R), such

that v = yw and ¢t = wx, for w +# €.

If a rewrite system R is neither internal, nor left or right overlapping, we say
that R is prefiz overlapping. Clearly, a prefix overlapping system allows in addition

for non-overlap-ping at all, or overlappings of left- with right-hand sides by strictly
mternal subwords.

The following result has recently been obtained by Caucal.

Theorem 36 ([Ca2001]). Let R be a prefic overlapping rewrite system. Then, we
have that

Abiteboul and Vianu have an important related recent result.

83

Theorem 37 ([AV99]). Let R be an arbitrary rewrite system and L C A* a reqular
language. Then, the set of prefiz rewrite ancestors panc,(L) is regular as well, and

computable in PTIME from an automaton for L.
Based on the above theorem and reasoning similarly as for Lemma 6, we also have

Theorem 38 Let R be an arbitrary rewrite system and L C A* a regular language.
Then, the set of prefir rewrite descendants pdesc, (L) is reqular as well, and com-
putable in PTIME from an automaton for L.

Here we strengthen these results for ¥3,. We show that >, is rational for any

arbitrary rewrite system R.

We do this in order to compute ancy(L) for a regular language L and a prefix
overlapping rewrite system R. It can be easily verified that, ancy (L) is not equal in

general with (panc, (L))®, as we could think at the first glance on Theorem 36.
Let R be a rewrite system, and (v, w) a pair of words. Then the prefiz lineage

through (v, w) induced by R is defined as

pling(v,w) = {(z,y) : © € panc,(v) and y € pdesc, (w)}.

We have the following theorem.

Theorem 39 Let S = U{plin,(t,u) : (t,u) € R} U {e,€}. Then, s, = Fr

PROOF. We will prove that, for the rewrite system P, Wi Fg we if and only
if wy = wy, or, wy = 2z and w, = yz, where {z,y,z} C A*, and there exists a a pair
(t,u) € R, such that such that £+, ¢ and uvs,y. Clearly from this, the theorem
follows.

The If-direction is straightforward. For the converse we will use induction on n,

[.
for wy =, ws. For n = 0 we must indeed have Wy = Wy.

84

. +1
Suppose that the claim is true for n, and let’s show it for n + 1. Let w5y wy.
There exists a word v, such that w; ¥, v+ wy. By the induction hypothesis w; =

x1z; and v = yy 21, and for some (t;,u;) € R we have that z; Pty and U P g Y1.

Since v > wo, there exists a pair (ta,us) € R, such that v = ty25 and wy = ugz,.

S0, v = tyz9 = Y1z, and we have that either y; is a prefix of t5, or vice versa.

Wa
w, —_
— Y
Xpi Xy 21 |1 1— iy ult—féyl Iy u,
nl 1 s s |
Z4 Zq Z1 zy 7y Z1
Figure 19: First case of Theorem 39
w
W o
— v v
Xp{xp sy {1 s My fUp ==y, byl yu,
i ST 1
[<1 71
Z3 LZz <2

Figure 20: Second case of Theorem 39

In the first case (see Figure 19) ¢, is a prefix of y,. So, Y1 = 195 and z5 = s2;.
Thus, wy = 2121 and wy = uszy = ussz,. By the induction hypothesis (z; =, t;
and u; Fre y1), we have that o, v ¢ +5p ug ¥ 1. Since Y1 = 128, Uy g 195 g
uzs. On the other hand, recall that ws = uys2;. So, in total we have Wy = T12;
and wy = uyszy, where z; > ¢ and u; Ky Uuss. Hence, in this case we take r = 1,

Y =us, z =z, and (t,u) = (1, uy).

In the second case (see Figure 20) we have £, = 15 and 2z; = s2y. Thus, w; =

T12) = %1522, and by the induction hypothesis (z;+35 ¢, and u; 5, Y1), we have that

85

. * —_—
18 yr 118 U1 Sy 115, Since yis = ty, we have that z15 >z ¢y (recall w) = z1529).
On the other hand, recall that wy = uszy. Hence, in this case we take x = z1s, y = ua,

7 = 2y, and (t,u) = (to, ug).]

Theorem 40 5, is a rational relation.

ProoF. Observe that for a pair (v, w), pling (v, w) = panc,(v) X pdesc,(w).
Since from Theorem 37 and Theorem 38, panc,(v) and pdesc,(w) are regular lan-
guages, we have from Theorem 39 that the corresponding rewrite system & is a union

of Cartesian products of regular languages.

It is not difficult to construct a transducer for a Cartesian product L x M of two
regular languages. For this, let Ay, = (Pr, A, 6r, 51, Fr) and Ay = (Par, A, 8pr, 501, Far)
be finite automata recognizing L and M, respectively. Then construct the transducer
Tosnr = (P U Py, A A6 s, Fir), where § contains all the tuples (p,a,q) of &
expanded as (p,a,q,€), all the tuples (p,b,q) of)y expanded as (p, ¢, q,b), the set
{(f,€,sm,€) : f € Fr}, and nothing else. It is easily seen that 7., recognizes
exactly L x M.

Finally, we construct a transducer for —¢ by taking the (finite) union of the
transducers recognizing the above Cartesian products, concatenating at the end with

a transducer “leaving everything unchanged.” [|
From the above theorem and Theorem 36 we have the following corollary.
Corollary 9 Let R be prefiz overlapping. Then <>, is rational.

We say that a finite set C of word constraints is prefix overlapping, if the corre-

sponding rewrite system R is prefix overlapping. We now finally have

Theorem 41 Let C be a prefiz overlapping finite set of word constraints, and Q; and

Qo regular path queries. Then, Q1 C¢ Qy is decidable and complete in PSPACE.

86

PRrROOF. From all the above it follows that the relation =5, is rational and a
transducer T¢ recognizing it can be computed in polynomial time. It is easy now to

verify that

ance(Q) = T HQ).

Based on this fact and Theorem 34, we conclude that deciding the containment Q1 C¢
@2, for general path queries, under a prefix overlapping set C of word constraints, is
equivalent with deciding @, € 7, '(Q3), and this is in PSPACE. The lower bound is
the same because in the absence of constraints, the query containment coincides with

the algebraic containment of regular languages, which is PSPACE complete. |

5.5 Query rewriting using views under constraints

We will now reason about rewriting of regular path queries using views based on the

query containment under constraints.

Let V.= {W,...,V.} be a set of view definitions with each V; being a finite or
infinite regular language over A. Let Q = {vy,...,v,} be the outer or view alphabet.
Finally, let def be the substitution that associates with each view name v; in 0
alphabet the language V;.

Suppose now that we have a set C of constraints available. The question is if
can we use the constraints to get “bigger and better” rewritings. For example, let
Q = Ry - RogRypg - - Rago, and suppose that we have two views, V] and V5, where
Vi=51-8g, Vo= Rig1-+ Rygg, and C = {R; L S; : i € 1,9IU{S;C R, :i¢
[1,99]}. Then, MCPRv(Q) = R; - - - RggR100v2Rope. On the other hand, the rewriting

v Ryogva oo is “bigger and better” because vi Rigovs Rago is C-equivalent to Q.

In the rest of this section we show how to obtain such “biggest and best” rewrit-

ings, using constraints.

87

Let C be a finite set of constraints, and let . C A*. Then we define the maxi-

mization of L under C, denoted maz.(L) to be the C-largest language M, such that
M =c L.

Intuitively, under constraints we can replace more subwords and still have a rewrit-
ing. We capture this intuition by enlarging the view languages V; to maxz.(V;), for
i€ [1,n].

We then define the substitution def, : QU A — A* as def (v;) = maz.(V;), for
v; € Q, and def (R) = {R} for R € A.

A C-constrained contained partial V-rewriting (CCPR) of @ is a language Q' on
QU A, such that def,(Q") Cc Q. The rewriting is said to be C-constrained ezact if
def.(Q') =¢ Q. As in Chapter 4 we will often drop the adjective “partial” since the

non-partial rewritings are simply special sub-cases.

In order to compare different rewritings, we generalize the partial order in [GT2003a]
to take constraints into account. With this partial order we want to capture the in-
tuition that the more subwords on the A-alphabet that have been replaced by €}

symbols in a rewriting, the “bigger and better” the rewriting is.

Let ¢y and Q3 be C-constrained contained V-rewritings (over QUA) of Q. Then,
(1 is “smaller” than Q,, denoted Q) g?,,c (9, if it is possible to substitute by Uiy s Vi,
some (not necessarily all) occurrences of words in mazc(V;,), ..., maz.(V;,) respec-

tively, occurring as subwords in @y, and obtain Q; as a result. Also, a word in @

can participate in the creation of more than one word in Q.

Obviously, g?,’c is transitive and reflexive. Is is not antisymmetric, as for instance
{vRR, vo, RRRR} <$. {vv, RRRR}, and {vRR, vv, RRRR} z?,’c {vv, RRRR},
when for example there is a single view V = {RR}, with v as the corresponding rep-
resentative view symbol, and C = §). However, if we define Q, E?,,C Q9 iff Q4 g‘Q,,C Qs

and () g?,p (1, we get a partial order on the equivalence classes.

Notably, we have that if a set Q' is S%C—maximal, then its equivalence class is

a singleton. For this, observe that we cannot replace Just any subword which is in

88

some word of some maz.(V;), for ¢ € [1,n]. However, a word w = wjwyws, where
wy € maze(V;) and def (wiv;ws) Ec Q, is not yet an “optimal” word, and we call w,
a subword C-eligible for replacement. On the other hand, we call a word on QUA,

that has no subwords C-eligible for replacement, a C-optimal word.

Theorem 42 Let Q' be a C-CCPR of Q using V. Then, Q' is Sc\g,)c-maaximal, if and

only if, there does not exist a non C-optimal word in Q)'.

ProoF. (If.) This direction is easy to see because, if there is no word in max.(V;),
for any 4 € [1,n], that appears as a subword C-eligible for replacement in any of the

words of ', then it is impossible to obtain any new g%c—larger rewriting from @'

(Only if.) Let’s suppose that there are subwords C-eligible for replacement in the
words of (). Then, for each word w € @' compute a word wy by exhaustively
replacing the subwords C-eligible for replacement in w, until nothing can be replaced
anymore. If there are no subwords C-eligible for replacement in w, then wy equals
w. Clearly, for each word w there is at least one such word wy, and the number of
steps for computing it, is bounded by the length of w. Now, consider the rewriting
Q" = Uyeg {wv}. For the rewriting Q" we have that (a) Q" # @', (b) Q' S%c Q"
and (c) we cannot obtain any new S\Q,’C—larger rewriting from Q”. We can see that,
from (a) and (¢) @' and Q" cannot belong to the same equivalence class, and from

(b), Q" is g%c-mrger than @'. All the above show that ()’ cannot be a maximal

rewriting, and this is a contradiction. |

Corollary 10 If @' is §3’C-mam'mal, then its E%’C—equivalence class is a singleton.

PROOF. Since ()’ is g%c-maximal, from the above theorem we have that, from
(', there cannot be obtained any new Sg’c—larger rewriting. This means in turn that

the equivalence class of @) is a singleton.]

As discussed before a rewriting ' is (more) useful for query optimization when

it is exact. A rewriting, that is both gc{z,,c—maximal and exact, is the union of all

89

56\3, c-maximal V-rewritings of (). We call this rewriting the C-constrained mazimal

and contained partial V-rewriting of @, and denote it with CMCPRy(Q).

From all the above, we can see that the CMCPR is the set of all the words on QUA

with no subword C-eligible for replacement. Formally, we have:

Theorem 43 The CMCPRv(Q) is §3’c—maa:imal and C-constrained exact.

Proor. The g%c—maximality follows from the fact that CMCPRy (@) is the
union of the sets of words w with no subwords C-eligible for replacement. For C-
constrained exactness, observe that by definition we have def (CMCPRv(Q)) Cc Q. On
the other hand, consider a word w € Q. Iterating a finite number of times (function
of the length of w) we can find a word w' € (U A)* with the smallest possible
number of A symbols and such that w € def.(w') C¢ Q. Clearly, w’ € cMCPRv(Q).

&

Now, let’s consider again the contained rewritings without considering constraints.
As mentioned before, a contained V-rewriting of () is any language ¢ on QU A, such
that def(Q") C). Notably, the definition of the contained V-rewritings of @) is
compliant with the definition of the C-constrained contained V-rewritings of ¢}, and
the partial order g% is also compliant with the partial order S%,c- Formally speaking,
§€, is a restriction of S%C. This is because any (algebraically contained) rewriting,

by the following theorem, is also a C-constrained rewriting.

Theorem 44 Let Q' be a contained V -rewriting of Q. Then, Q' 1s also a C-constrained

contained V -rewriting of ().

Consider now the maximal and contained partial rewriting MCPR of Q. The MCPR
is defined as the union of all g({?,~maximal V-rewritings of (), and in simple words
this means that the MCPR is the set of all “optimal” words w on Q U A, such that
def (w) C Q. Naturally, a word w = wjwews, where wy € V; and def (wyv;ws) C Q,
for some 7 € [1,n], is not yet an “optimal” word, and we call wy a subword eligible
for replacement. On the other hand, we call a word on QU A, that has no subwords

eligible for replacement, an optimal word.

90

Since §% is a restriction of g?,yc, we have that, in general, MCPRy(Q) 5370
cMCPRy(Q), and this means that, in the presence of constraints, CMCPRy (@) is
always a better (never worse) rewriting than MCPRv(Q)). Finally, when the set C of

constraints is empty, CMCPRy (@) coincides with MCPRy (Q).

We will now give a characterization for computing the rewriting CMCPRy(Q)-
Namely, we show that we can compute it by a language theoretic construction. Let
V = {Vi,...,Vu}. Then maz.(V) = {mazc(V1), ..., mazc(V,)}. Consider for

maz.(V) the same alphabet §) of view symbols.

Theorem 45 CMCPRy(Q) = MCPR, ... vy (maze(Q)).

PROOF. (C-direction). Let w € CMCPRy(Q). For w we have that def,(w) Cc
Q, and since maz.(Q) is the C-largest C-equivalent language on A, we have that
def.(w) € maz.(Q). This is the first condition for a word to be in a contained
mazx,(V)-rewriting of maz.(Q). Additionally, we should show that w is optimal with
respect to the sets max.(V) and maxz.(Q). Let’s suppose that w is not optimal. This
means in turn that w can be written as w = wywows, where wy € maz.(V;) and
def . (wiv;ws) C max.(Q), for some ¢ € [1,n]. This fact, in other words, means that

w is not C-optimal and so, it cannot belong to CMCPRy (@), which is a contradiction.

(D-direction). Let w € MCPR, ... vy (Mmaz.(Q)). For w we have that def (w) C
maz.(Q), which implies that def.(w) C¢ . This is the first condition for a word
to be in a C-constrained contained V-rewriting of (). Additionally, we should show
that w is C-optimal. Let’s suppose that w is not C-optimal. This means in turn
that w can be written as w = wywows, where wy € maz:(V;) and def . (wiv;ws)
Cc @, for some i € [1,n]. Similarly as in the first part of the proof, this implies
def.(wiv;ws) C maz.(Q). Finally, the last containment says that in w there are still

subwords eligible for replacement, and so w cannot belong to MCPR, .., v)(mazc(Q)),
which is a contradiction. |

Based on the above theorem and Theorem 34, we have the following corollary.

91

Corollary 11 IfC is a set of word constraints, then CMCPRy (Q) = MCPR, ... v)(ance(Q)),
where ance(V) = {anc.(V1), ..., anc.(Vy)}.

A set C of constraints is regularity preserving when, for any regular language L on
A, maz.(L) is regular as well. Similarly, C is context-freeness preserving when, for

any context-free language L on A, max.(L) is context-free as well.

Now, a first conclusion from Theorem 45 is that, when C is regularity preserving,

CMCPRy (@) can be effectively computed by the algorithm given in Chapter 4

We can raise the question about rewriting using views when the set C of constraints
is not regularity preserving. We show that in such cases, even when C is context-
freeness preserving, it is undecidable in general to test the existence of a “useful”
contained rewriting using views. We define a rewriting as useful when it contains at

least one word, which has at least one view symbol in it.

Theorem 46 There exists a query Q, and a set V of views, such that the existence
of a (constrained) useful rewriting of @ by V is undecidable for the class of context-

freeness preserving constraints.

PROOF. We give a reduction from the universality problem for the context free
class CFG of grammars. Let G = (I', A, S,) be a grammar in CFG, with T" and A
being its sets of non-terminals and terminals respectively ([N A = @), S € A being

the start symbol, and IT being the set of production rules

{(ui ty) cu; € 0,1, € (AUT)Y, fori € [1,m]}.

Clearly, for the set C = {t; T u; : 1 € [1,m]} of word constraints on A U T, we
have that L(G) = anc (S) N A*. Also, for any symbol T € T', anc,(T) is context-free
since it is the set of all the sentential forms of a context-free sub-grammar. On the
other hand, for any symbol R € A, anc.(R) = {R}. Since the context free languages
are closed under union, concatenation and Kleene star, we conclude that the ancestor

function anc. applied to regular languages on A U T does not escape from the class

92

of context-free languages. Since by Theorem 34, maz. = anc., we have that C is

context-freeness preserving.

Let $ be a special symbol not in A U . We take the database alphabet to be
AUTU{$}, Q = {85$}, C as above, and a single view V' = $A*§. From Corollary 11,
CMCPR(Q) = MCPR,,.. o (ance(Q)), where anc.(V) = {anc.(V)}. We observe that
ance(V) = ance({3A*$}) = V. So, in fact MCPR,,..vy(ancc(Q)) = MCPR(anc.(Q))-
Now, because of the special symbol $, testing if there is a useful constrained rewriting
is equivalent with testing if MCPR(anc.(Q)) N Q # O. The last can happen if and
only if V' C anc.(Q). This is $A*$ C anc.($5%) = $anc.(S5)$, which is equivalent
to A* C anc.(S). Finally, A* C anc.(9) is equivalent to A* C anc.(S) N A*, which
is nothing else but A* C L(G), i.e. A* = L(G) since L(G) is a pure A language. H

Let us now analyze the complexity of computing the CMCPRy(Q), when C is a
prefix overlapping set of word constraints. As shown in Section 5.4, for any regular
language L on A, we can polynomially compute its language of ancestors anc.(L},
which is regular as well. Then, by Corollary 11, we conclude that the computation of
CMCPRy(()) remains in the same complexity class as that of MCPRy(Q). The lower
bound can be established by the fact that in the absence of constraints, i.e. when

C =10, cMCPRy(Q) coincides with MCPRy(Q).

93

Chapter 6

Epilogue

6.1 Conway’s solution for the maximally contained

rewriting

The regular path queries are yet another example of the applications of the founda-
tional theory of formal languages. Since the core of the formal language theory has

been developed a long time ago, a natural question is whether there is some related

work from before.

In the best of our knowledge, there is one more solution to the problem of com-
puting the maximally contained rewriting (MCR) of [CGLV99]. This solution is from
Conway [Con71], who is based on a theory of factorizations for obtaining the maxi-
mal “approximation” to a regular language. The Conway’s approach is very different
in nature compared to the automata-oriented solution of [CGLV99]. However, both
approaches compute the same language: the maximally contained rewriting (MCR).

In the following, we present the Conway’s solution.

Let K and F' be two languages. We say that £ < F if E C F. Now, let
E and Fy,..., F, be all regular languages. We will find a regular function f such

that f(Fy, ..., F,) is the best “approximation” of F, in terms of Fy,..., F,. The

94

approximation is such that f (F\,...,F,) < E, and there does not exists another
function f' such that f(Fi,..., Fn) < f/(F1,.. LF) < E.

Definition 8

1. F.G...H...JK is a subfactorization of F if and only if

FG...H...JK<E. (§

2. PG .. H'...J . K' dominates F.G...H...JK, if F < F', G < ¢, ...
H< H, . J<J K<K.

3. A term H is mazimal if it cannot be increased without violating (§).

4. A factorization of E is a subfactorization with every term maximal.

5. A factor of F is any language, which is a term in some factorization of E.

6. A left (right) factor is one, which can be the leftmost (rightmost) term in a
factorization.

It is easy to verify the following theorem.

Theorem 47 Any left (right) factor is the left (right) factor in some 2-term factor-

izatton. Any factor is the central term in some 3-term factorization.

From the above theorem we can easily prove:

Theorem 48 The condition that M.N be a factorization of E defines a 1 — 1 corre-

spondence between the left and right factors.

Proor. The previous theorem shows that each left factor M corresponds to at least
one right factor NV, and vice versa - but for given M the union of all possible N’s is

the only possible maximal V. [|

95

Now, we index the left and right factors as M;, V; so that M;.N; is a factorization,
and define E;; by the condition that M;.E;; N; be a subfactorization of F in which

ki is maximal.

Note. Conway did not give a way to compute the E;; given M; and N;. However,
we can compute F;; by using our algorithm for the maximal and contained partial
rewriting (MCPR). For this, let # be a marker symbol, not in the alphabet of the
languages. We compute the MCPR{fgiar, n,.(#33({#}E{#}), by using as “view”
symbols, say m; and n;. Clearly, because of the marker #, the symbols m; and n;
will appear respectively only on the left and the right of the words of the rewriting.
It is easy to build now an erasing transducer, which erases m; and n;. Finally, if we

transduce the above rewriting we get the F;;.

Theorem 49 FEach E;j is a factor of E, and each factor of E is one of the E;;. There
erist unique indices [, v such that F = Ey,., and M; = Ey;, N; = By, for each i.

PROOF. E;; is maximal in M;.E;;.N;. From this, it is easy to see that E;; is a factor.
Each factor H is the central term in a 3-term factorization M;H N;. Since this is a

factorization, H is maximal. So, H = F;.

The term FE is maximal in the subfactorization {¢}.£, dominated by M,;.E, say,
whence £ = N; and M; > {e}. Now for any i, M;.M;.N; is a subfactorization with
M;, N; maximal, and so M; = Ej;. Defining r similarly by the condition that £.N, be
a factorization, we find that M;F < F and EN, < E, so M;E N, is a subfactorization
with £ maximal, whence £ = F),.]

Hence, the factors naturally form a square matrix among the entries of which is
E. Now the question is how we can compute the factors of a language E. The proof
of the following theorem is constructive and gives a way to compute the right factors
of a language F if it is regular. Symmetrically, we can compute the left factors, if we

consider the mirror language of F, that we get if we write the words of F in reverse

order.

Theorem 50 A regular language E has finitely many factors.

96

ProOF. The right factors NV of E are just the maximal events with M.N < E, M
ranging over all events. But, M.N < E if and only if {w}.N < E for each w € M;
that is to say, if and only if N < MyearEy, where Ey is the left word derivative of
E with respect to w, {v : wv € E}. Since N is maximal, we have instead equality
N = Nyem Fyw. Recall that w € M, and M could be any language. Hence, we can
obtain the right factors by taking all the possible combinations of intersections of
the left word derivatives. It is part of the folklore that the left word derivatives are
finitely many, and are the languages accepted by the DFA’s that we get by repetitively
changing the initial state of a DFA for . |

After we compute the left and right factors, we can use the reasoning in the proof
of Theorem 48, do find out their 1-1 correspondence. Then as explained before (in
the note), we can compute the E;; factors of E. Hence the factor matrix, denoted

with |F|, is indeed constructible. We will show the following lemma.

Lemma 7

1. AB < Ei, if and only if A < E;;, B < Ej;, for some j.

2. F,F, ... Fyif and only if there are indicesl, m, n, ..., q, r for which F, < Fy,,,
Fy < Epn, .., Fr < Eg (I, v as usual).

Proor. If AB < Ejy, then M;A.BN, < £, and so M;A < M;, BN, < N; for some
J, so that M;AN; < F and M;BN, < E, whence A < I;;, B < Ej, which proves
the first part of the lemma. The second part can be inductively proved from the first
part. |

The matrix |E] is a “Kleene matrix.” Formally, a Kleene matriz M is a square
matrix whose entries M|i, j] are languages. We can visualize such a (square) matrix
by building a “macro” automaton Axg, whose states are labeled by the indices ¢ of
the matrix rows (and columns), and whose “macro” transitions are labeled with the
languages M|z, j] if going from state ¢ to j. We define the languages ij as the set

of all words taking Ax from state ¢ to j passing exactly k£ “macro” transitions. It is

97

easy to see that ij = MFi, j], where the matrix multiplication is with respect to the
language concatenation (“.”) and union (“+”). Now, let L;; be the set of all words
taking Ax¢ from the state i to j (regardless of how many “macro” transitions are
passed). Clearly L;; = M*[i, j|, where M denotes the matrix M - M? + Note
that we can effectively construct M*. For this, we compute the languages between
any two states of Ay, by using the standard Kleene algorithm [HU79]. Then we build
a new Kleene matrix of the same dimensions as M, where the (i, j) entries are the

languages between the i and j states in Ax. This matrix is M.

Let’s return now to the factor matrix |E|. We can “approximate” it in terms of
Fy,...,F, by “approximating” its entries individually. Let’s become more specific
on what the “approximation” means in that context. First we consider the special
symbols fi,..., f.! for representing the languages Fi,..., F,. For an entry E;; we
define the best linear approzimation as the sum of all the symbols f; for which F}; <
E;;. Also, we define the best constant approzimation as the € or 0ife € Ej or
€ ¢ E;; respectively. Naturally, the best approzimation is the language of all the

words fofy. .. fr such that F,F, ... F, < F;;. Now, we are ready to state the main
theorem.

Theorem 51 Let |E|p, |El|c, |E|L denote respectively the best, best constant, best

linear approzimation matrices for |E| by Fy,..., F,. Then

\Elp = |Elc + B[}

ProoF. The non-empty word fofy ... fr belongs to |F|rli, j] if and only if Fy, Fj,
... Fy, satisfy the conditions of the Lemma 7 (second part), which are precisely the
conditions under which it belongs to |£|;. The empty word belongs to |E|p if and
only if [Elcli, 7] = {e}- B

The above theorem embodies an algorithm for computing the best approximating
function. We first compute the factor matrix |E}, then replace every entry E;; by the
sum of all f; for which F;, < E;;, together with € if € € Ej;, and then take the ([, r)

entry in the star of the resulting matrix.

'These special symbols have the same role as the symbols of the Q alphabet in the previous
chapters.

98

6.2 More general path queries

In this section we will demonstrate that our data and query framework can be eas-
ily adapted to capture some additional aspects not explicitly in the model [AV99].
For example, some languages with path expressions (such as Lorel [AQM+97]) view
labels as strings of characters and use regular expressions that work at two levels of
granularity: the label (viewed as a string of characters) and the path (viewed as a

sequence of labels). For instance, consider the following general path expression:
“doc” (“[sS]ections?” “text”+ “[pPlaragraph”)

which specifies a path starting with an edge labeled doc, either followed by an edge
labeled section(s) (possibly starting with a capital S) and a tezt-edge, or followed by
an edge labeled paragraph (possibly with a capital P).

We used here a syntax based on grep E-regular expressions for string patterns,

and quotes to separate labels (strings of characters) from paths (sequences of labels).

Call such queries general path queries. We claim that these can essentially be
captured by our framework, modulo some preprocessing of labels. Let Q be a general
path query and let IT be the set of string patterns occurring in Q. We will reduce
the problem of the evaluation of the general path query @) on a database DB with
possibly infinitely many labels, to the problem of the evaluation of a regular path
query p(Q) on a database (D B) with finitely many labels. To do this, consider the
equivalence relation on strings defined by: w = ' if w and w' satisfy precisely the
same patterns in I1. For each equivalence class [w], choose a particular label say {([w])

in [w] and let A be the set of such labels. Observe that A is finite. Now i is defined
as

L. for each label/string w, pu(w) = I({w]) and p(a) = a for each node a in DB: this
defines p(DB).

2. for each string pattern s occurring in @, let pu(s) = [([w]) +. .. +1([wy]), where

[wi], . - ., [wk] are the equivalence classes of words satisfying s; this defines w(Q).

99

The construction is illustrated next. Consider the general path expression:
Q — (“R*S” “SR*”) + (uR*Sn “Tn) + (“SR*” czTn) + (uUU*n)-}-.

One can find six equivalence classes:

1. [S] = R*SNSR* = S,

9. [RS] = R*S — SR* = RR*S,

3. [SR] = SR* — R*S = SRR,

4. [T) =T,

5. [U] = UU”,

6. [V]= A — ([S]U[RS] USRI UT]UU)).

Let “S,7 “RS) “SR)” “T) “U, “V” be the labels representing the equivalence
classes. The query u{Q) is

M(Q) — ((QLSH+“RS77)(Hkgi‘)+445‘R77))+(((LS77+£4RS77)C(T??))+((€(S?7+C£SR”)((T77)+<“U7?)‘i”.
Clearly, a tuple (pair) is in ans(Q, DB), if and only if it is in ans(u(Q), p(DB).

This allows us to reduce the problem of the evaluation of a general path query
involving potentially infinitely many labels to the evaluation of a regular path query

on a finite alphabet of labels, via preprocessing of labels.

We want to emphasize here that in the case of the query rewriting using views,
which are all expressed as general path queries, we apply exactly the above prepro-
cessing of labels considering in this case all the string patterns in the general path
expressions of the query and the views. Clearly, after such a preprocessing of the

labels we can apply the algorithms of the previous chapters for computing rewritings

using views.

100

6.3 Semistructured data: nodes versus edge labels

Semistructured data is a bare-bones abstraction of irregular, self-describing data
found across the Web. It is also motivated by applications such as scientific databases,
and integration of heterogeneous data. Several variants of the semi-structured data
model have been proposed, with minor differences in formalism. Some of the vari-
ants consider the data being organized in graphs where only the edges are labeled,
some other consider only the nodes being labeled, while another more general vari-
ant considers both the edges and the nodes being labeled. The last variant is more
practical for the Web data, especially for networks of linked Web pages, which have
also content, in the form of text. A node a with “content” w (where w is a word)
can be modeled in our contezt by having an edge labeled “content=w" outgoing from
o and pointing to a itself. Now content-based selections can be specified using the
general path expressions just discussed in Section 6.2. For instance, the reachable
nodes that contain the word “SGML” can be retrieved using the general path query

(“(.)*)*“content=(.)*SGML(.)*”, where “(.)*” indicates some arbitrary sequence of

characters.

6.4 Semistructured data: graphs versus trees

A question arises: If our databases were trees instead of general graphs, then does
this restriction helps in reasoning about query rewriting using views? This question is
related to the fact most of the XML documents are modeled by trees and not by gen-
eral graphs. Our answer in the above question is negative: The query rewriting using
views does not become any easier by considering tree target databases instead of gen-
eral graphs. We give this answer based on the following observations. Firstly, all the
rewritings (except PR) that we presented are based on our ability to reason about the
query containment. Deciding or ensuring containment is their most expensive part.
We argue here that the query containment does not become any easier if we restrict
ourselves to the tree databases only. For this, consider as an example the containment

of two queries () C ()y. Take now the family F;, of all the linear databases on the

101

A alphabet, i.e. for any word w € A* (w = Ry .. . Ry) construct a database DB,
by introducing k -+ 1 nodes, a1, . .., @41, and the edges (a1, Ry, az), .- ., (ak, R, ags1)-
Clearly, a linear database is a special case of a tree database. It is easy to see that
by cousidering the family Fi, of databases, if ans(Qy, DB) C ans(Q,, DB) for each
DB € Fyn, then Q1 C Qg as formal languages. Hence, at the end we conclude that
even being restricted to linear databases only, we still need to decide “pure” formal

language containment and nothing less than that.

6.5 Regular path queries versus XPATH

The most popular incarnation of regular path queries is in the XPATH query language
that is mainly used to elegantly access different parts of an XML document. As a

typical example consider the following XPATH query
/publications//journal/article[author/name=“Emil Bouret”]/ref/software/category,

where the “/” semantically stands for concatenation, “//” for A*, and [author/name=
“Emil Bouret”] is a condition with a regular expression which is to be evaluated
starting from the nodes, that we reach from a “root” node by following a path spelling

a word in “/publications//journal/article.”

'The above query exemplifies almost all the constructs with regular expressions
that we can meet in XPATH. Suppose now that we have evaluated the above query
on the database, and are interested in what can be cached for optimizing future

queries. Observe that we can break the above XPATH query into three parts:

1. @y = “/publications//journal/article”,
2.)y = “author/name”, and

3. Q3 = “/ref/software/category”.

Reasoning similarly as in Section 4.4, we can say that @, is locally complete, with

respect to the node from where we started evaluating it (we start with the root of the

102

document in this case), Qs is not locally complete unless there is no article authored
by “Emil Bouret” (because in such a case the “cut” like constructs could not be used),
and finally Q3 is indeed locally complete with respect to all the nodes from where we

started evaluating it.

Clearly, we should cache the answers of the locally complete parts of the XPATH
queries. In our example we cache the answer to () and Q3. As mentioned above
some partial answer to @y could also be cached if it happens, as explained above, to
be locally complete. 2 After a few cachings we will have a useful view graph, which

we could use to optimize the future XPATH queries.

Let V = {V4,...,V,} be the regular languages of those locally complete parts of
the previously answered XPATH queries. Let V be the associated cached view graph.
Now, consider an XPATH query with regular expressions @y, ..., Q. We rewrite
each one of them into Q' ..., Q}, where @}, for ¢ € [1, k], is an exact partial rewriting
of Q; using V. Then, we evaluate on V and DB, the new XPATH query, which is
obtained by replacing @; with Q. for i € [1, k], in the initial XPATH query. When
we need to evaluate 0}, for some ¢ € [1, k], starting from a node, say a, we use exactly

the same algorithm as in Section 4.4.

6.6 Conclusions

We have throroughly studied the rewriting of regular path queries using views. We
study the problem in two realistic settings. The first is the optimization of the
information integration from different data sources represented as views, and the
second is the query optimization using a set of cached views. Our optimizations
are in fact minimizations of the expensive direct data accesses. As such they are

guarantied to be always better than direct access methods.

Qur contributions are sumarized as follows.

1. We reason about two different kinds of rewritings: the relevance and contained

2See also Section 4.4 for a more detailed analysis of such cases.

103

rewritings. The contained rewritings are also relevant rewritings, but they have
the desired property to be contained in the original query after the substitution
of the view symbols (or names) by the corresponding view languages. This
property makes the contained rewritings ideal choices for query optimization,
because by evaluating them we do not get false tuples (pairs). On the other hand
the relevance rewritings are in general bigger languages, and if the path history
of the view graph computation has been cached as well, then the relevance

rewritings become very useful in query optimization.

. We present a polynomial time algorithm for obtaining all the certain answers in
a LAV data integration system, under the most realistic assumption, where the
data sources are modeled as sound views over a global schema. We achieve the
polynomial time by computing the most relevant (or possibility) rewriting (PR).
Although we can get some more tuples, not in the certain answer, those tuples
are still useful in the sense that they are possible, i.e. there exist databases,
which are consistent with the views and on which the query evaluation produces

the afore mentioned tuples.

. We introduce a general framework for comparing rewritings. We define two
partial orders, one for the relevance rewritings and another for the contained
rewritings. Then, we compute the best known (partial) rewritings according to
the corresponding orders. They are the ezhaustive possibility partial rewriting

(BPPR) and the mazimal and contained partial rewriting (MCPR).

. We present algorithms which by making use of the rewritings minimize as much
as possible the direct data accesses. The contained rewritings are the choice
when there is no cached path history. On the other hand, the relevance rewriting

are more profitable should we have cached the path histories.

. We are the first to present a “cache-and-optimize” algorithm for conjunctive
regular path queries (CPRQ) using view based rewritings. Our opinion is that
the rewriting of the CPRQ’s should be approached by rewriting each atom in
particular instead of rewriting the whole query at once. Notably, we show that
the ideas for optimizing CPR(Q)’s using views, could be naturally extended to the
optimization of the XPATH queries, which have become so popular nowadays

for querying XML databases.

104

10.

11.

We introduce the general path constraints, which can capture a lot of knowledge
about the database(s) we are going to navigate with regular path queries. Our
constraints can be detected either manually by browsing or by automated agents

and database spiders (like Web spiders).

We explore the inherent relationship between word constraints and semi-Thue
rewrite systems. This relationship is particularly important because it provides

the bridge between the world of databases and the world of the formal languages.

. The relationship between word constraints and semi-Thue rewrite systems tells

us that the word query containment under word constraints is decidable when-
ever the corresponding class of semi-Thue systems has a decidable word prob-
lem. Notably, there are a lot of useful classes of semi-Thue systems with de-
cidable word problem. Now, the question is whether the (general) query con-
tainment is decidable for a class of word constraints with decidable word query
containment. Our answer is negative based on a reduction from the universality

problem for context-free grammars, which is known to be undecidable.

We present a wide class of word constraints under which the (general) query
containment is decidable. We call this class “prefix overlapping” to convey
the type of the allowed explicit overlapping between the left and right hand
sides of the constraints. However, other implicit overlappings are allowed, or

no overlappings at all, making our class capable of capturing almost all the

constraints in real world examples.

We are the first to reason about the query rewriting under constraints. By
considering constraints we are to obtain bigger and better rewritings through
which we can optimize the queries even more. Notably, we transform the query

rewriting under constraints into a pure language theoretic construct.

We discuss related work from the formal language research comunity about
rewriting using views (Conway’s solution for the MCR). We also discuss the
rewritings when the target databases are trees versus graphs, and when there
are node contents (labels) as well. We argue that considering tree databases

does not make the rewriting problem any easier, while a database model having

105

node labels can be easily transformed into our initial database model via a

preprocessing of the labels.

Closing, we present the containment relationship between the relevance and con-
tained rewritings, a Hasse diagram (with respect to the partial order <%, Figure 21)
and a sumarizing table (Table 2) with the optimality (with respect to the partial
orders <y and g?,), exactness (with respect to the query) and the computational

complexity (with respect to query and view expression lengths) of the rewritings.
PR C PPR

MCR C ECPR C MCPR C GCPR

MCR ECPR MCPR

GCPR

Figure 21: Hasse diagram for the contained rewritings

1 H <y or g?, -maximality | Exactness | Complexity

PR [G'T2000] YES NO PTIME

PPR [GT2001a] YES NO EXPTIME
MCR [CGLV99] YES NO | 2EXPTIME
GCPR [CGLV99] NO YES 2EXPTIME
ECPR |G'12001a] YES NO 2EXPTIME
MCPR [GT2003a] YES YES 3EXPTIME

Table 2: Maximality, exactness and complexity of the rewritings

Future work. As an extension of our work we see the introduction of weighted
regular path queries and weighted database graphs. The weights (over closed semir-
ings) can represent the cost of traversing a link to access a Web page, the link (page)
reputation, the price we want to pay for traversing specific links and many other

quantitative characteristics about the way, in which the user wants the regular path

106

queries to be evaluated. We are working toward optimal algorithms for query an-
swering, query containment and query rewriting using views in this “weighted world”

setting.

107

Bibliography

[Abi97]

[AD9S]

[ABS99]

[AHVO5]

[AQM+97]

[AV99)

(BNS1]

[BO93]|

[Bun97]

S. Abiteboul. Querying Semistructured Data. Proc. of the 6th Int’l
Conference on Database Theory 1997 pp. 1-18.

S. Abiteboul, O. M. Duschka. Complexity of Answering Queries Us-
ing Materialized Views. Proc. of the 17th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems 1998 pp. 254-
263

S. Abiteboul, P. Buneman and D. Suciu. Data on the Web : From
Relations to Semistructured Data and XML. Morgan Kaufmann, 1999.

S. Abiteboul, R. Hull and V. Vianu. Foundations of Databases.
Addison-Wesley, 1995.

S. Abiteboul, D. Quass, J. McHugh, J. Widom and J. L. Wiener. The
Lorel Query Language for Semistructured Data. Int’l Journal on Dig-
ital Libraries 1997 1(1) pp. 68-88.

S. Abiteboul, V. Vianu. Regular Path Queries with Constraints. Jour-
nal of Computing and System Sciences 58(3) 1999, pp. 428-452

L. Boasson, M. Nivat. Centers of Languages. Proc. of Theoretical Com-

puter Science, 5th GI-Conference 1981, LNCS 104, pp. 245-251.
R. Book, F. Otto String Rewriting Systems Springer Verlag, 1993.

P. Buneman. Semistructured Data. Proc. of the 16th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems
1997, pp. 117-121.

108

[BDFS97

[BFWOS)]

[BFW99]

[Brzo64]

[BLSO]

[CGLV99)

[CGLV2000a]

[CGLV2000b)]

[CGLV2000c]

P. Buneman, S. B. Davidson, M. F. Fernandez and D. Suciu. Adding
Structure to Unstructured Data. Proc. of the 6th Int’l Conference on
Database Theory 1997, pp. 336-350.

P. Buneman. W. Fan, S. Weinstein. Path Constraints in Semistructured
and Structured Databases. Proc. of the 17th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems 1998, pp. 129-
138.

P. Buneman. W. Fan, S. Weinstein. Query Optimization for Semistruc-
tured Data Using Path Constraints in a Deterministic Data Model.
Proc. Int’l Workshop on Database Programming Languages 1999, pp.
208-223.

J. A. Brzozowski. Derivatives of Regular Expressions. Journal of the
ACM 11(4) 1964, pp. 481-494

J. A. Brzozowski and E. L. Leiss. On Equations for Regular Languages,
Finite Automata, and Sequential Networks. Theoretical Computer Sci-
ence 10, 1980, pp. 19-35

D. Calvanese, G. Giacomo, M. Lenzerini and M. Y. Vardi. Rewrit-
ing of Regular Expressions and Regular Path Queries. Proc. of the
18th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems 1999, pp. 194-204.

D. Calvanese, G. Giacomo, M. Lenzerini and M. Y. Vardi. Answering
Regular Path Queries Using Views. Proc. of the 16th Int’l Conference
on Data Engineering 2000, pp. 389-398.

D. Calvanese, G. Giacomo, M. Lenzerini and M. Y. Vardi. View-Based
Query Processing for Regular Path Queries with Inverse. Proc. of the
19th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems 2000, pp. 58-66.

D. Calvanese, G. Giacomo, M. Lenzerini and M. Y. Vardi. What is
View-Based Query Rewriting? Proc. of the 7th International Workshop
on Knowledge Representation meets Databases 2000, pp. 17-27.

109

[CGLV2002] D. Calvanese, G. Giacomo, M. Lenzerini and M. Y. Vardi. Lossless

[Ca2001]

[ConT1]

[DFF-+99]

[DT2001]

[DGY7]

[FS98]

[FLS98]

[GWY7]

[GM99]

Regular Views. Proc. of the 21st ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems 2002, pp. 247-258.

D. Caucal. On the Transition Graphs of Turing Machines. Proc. of Ma-
chines, Computations, and Universality, Third Int’l Conference. 2001,
pp. 177-189

J. H. Conway. Regular Algebra and Finite Machines. Chapman and
Hall 1971.

A. Deutsch, M. F. Fernandez, D. Florescu, A. Y. Levy, D. Suciu.
A Query Language for XML. WWW8/Computer Networks 31(11-16)
1999, pp. 1155-116.

A. Deutsch, V. Tannen. Optimization Properties for Classes of Con-
junctive Regular Path Queries. Proc. of Int’l Workshop on Database
Programming Languages 2001, pp. 21-39.

O. Duschka and M. R. Genesereth. Answering Recursive Queries Us-
ing Views. Proc. of the 16th ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systems 1997, pp. 109-116.

M. F. Fernandez and D. Suciu. Optimizing Regular path Expressions
Using Graph Schemas Proc. of the 14th International Conference on
Data Engineering 1998, pp. 14-23.

D. Florescu, A. Y. Levy, D. Suciu Query Containment for Conjunctive
Queries with Regular Expressions Proc. of the 17th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems
1998, pp. 139-148.

R. Goldman and J. Widom. DataGuides: Enabling query Formula-
tion and Optimization in Semistructured Databases. Proc. of the 23rd

International Conference on Very Large Data Bases 1997 pp. 436-445.

G. Grahne and A. O. Mendelzon. Tableau Techniques for Querying
Information Sources through Global Schemas. Proc. of 7th Int’l Con-
ference on Database Theory 1999 pp. 332-347.

110

[GT2000]

[GT2001a]

[GT2001b]

[GT2003a)]

[G'T2003b)

[HU79]

[HRS76]

[Kari9l]

[Lev2000]

G. Grahne and A. Thomo. An Optimization Technique for Answering
Regular Path Queries. Proc. of Web and Databases 2000 pp. 99-104,
and Lecture Notes in Computer Science 1997 Springer 2001 pp. 215-
225.

G. Grahne and A. Thomo. Algebraic Rewritings for Optimizing Regu-
lar Path Queries. Proc. of the 8th Int’l Conference on Database Theory
2001, Lecture Notes in Computer Science 1973 Springer 2001 pp. 301-
315.

G. Grahne and A. Thomo. Approximate Reasoning in Semistructured
Data. Proc. of the 8th International Workshop on Knowledge Repre-

sentation meets Databases 2001.

G. Grahne and A. Thomo. New Rewritings and Optimizations for Reg-
ular Path Queries. Proc. of the 9th Int’l Conference on Database The-
ory, Lecture Notes in Computer Science 2572 Springer 2002 pp. 242-
258.

G. Grahne and A. Thomo. Query Containment and Rewriting Us-
ing Views for Regular Path Queries under Constraints Proc. of the
22d ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems 2003 pp. 111-122.

J. E. Hopcroft and J. D. Ullman Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley 1979.

H. B. Hunt and D. J. Rosenkrantz, and T. G. Szymanski, On the
Equivalence, Containment, and Covering Problems for the Regular and

Context-Free Languages. Journal of Compuling and System Sciences
12(2) 1976, pp. 222-268

L. Kari. On Insertion and Deletion in Formal Languages. Ph.D. Thesis,
1991, Department of Mathematics, University of Turku, Finland.

A.Y. Levy. Answering queries using views: a survey. Technical Report,

Computer Science Dept., Washington Univ., 2000.

111

[LMSS95]

[MWO5]

MMMO7]

[MS99]

[INUWC97]

[PV99)]

[Sen90)]

[Sip96]

[Tho2000]

[U1197]

[Var88]

[Yu97]

A. Y. Levy, A. O. Mendelzon, Y. Sagiv, D. Srivastava. Answering
Queries Using Views. Proc. of the 14th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Dalabase Systems 1995, pp. 95-
104.

A. O. Mendelzon and P. T. Wood, Finding Regular Simple Paths in
Graph Databases. SIAM Journal on Computing 24:6, 1995.

A. O. Mendelzon, G. A. Mihaila and T. Milo. Querying the World
Wide Web. Int’l Journal on Digital Libraries 1(1), 1997 pp. 54-67.

T. Milo and D. Suciu. Index Structures for Path Expressions. Proc. of
the 7th Int’l Conference on Database Theory, 1999, pp. 277-295.

S. Nestorov, J. D. Ullman, J. L. Wiener, S. S. Chawathe. Representa-
tive Objects: Concise Representations of Semistructured, Hierarchical

Data. Proc. of the 13th International Conference on Data Engineering,
1997, pp. 79-90.

Y. Papakonstantinou, V. Vassalos. Query Rewriting for Semistructured
Data. proc. of SIGMOD 1999, pp. 455-466

G. Senizergues. Some Decision Problems about Controlled Rewriting

Systems. Theoretical Computer Science 71(3), 1990, pp. 281-346

M. Sipser. Introduction to the Theory of Computation PWS Pub. Co.,
1996.

A. Thomo. Query Processing Using Views in Semistructured Databases

Master Thesis, Concordia University Pub., 2000.

J. D. Ullman. Information Integration Using Logical Views. Proc. of

the 6th Int’l Conference on Database Theory 1997, pp. 19-40.

M. Y. Vardi. The universal-relation model for logical independence.
IEEE Software 5(2), 1988, pp. 80-85.

S. Yu. Regular Languages. In: Handbook of Formal Languages.

G. Rozenberg and A. Salomaa (Eds.). Springer Verlag 1997, pp. 41-
110

112

