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ABSTRACT

A New z - Domain Continued Fraction Expansion and its
Use in the Generation of Stable Transfer Functions

Ling Luo

A new z - domain continued fraction expansion ( CFE ) has been proposed.
It is shown that the ratio of an anti-mirror - image polynomial to a mirror - image
polynomial originating from the denominator of a transfer function can be expanded
into this new type of z - domain CFFE . Unlike the earlier types of z - domain
continued fraction expansions, this new type is not unique for a given polynomial,
and there will be a large number of possibilities. Algorithms have been proposed to
obtain the various possible CF Es, which are implemented using MATLAB software.
For the denominators of some well - known filters like Butterworth lowpass filters,
Butterworth lowpass Complementary Pole-pair Filters ( CPPF ) and Chebyshev
lowpass filters, the required coefficients of the CFEs are obtained. Also, starting
from the coefficients of the C'F' Es, algorithms have been presented to generate stable
transfer functions for filters such as lowpass, highpass and bandpass in the z -

domain.
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Chapter 1

Introduction

1.1 General

The design of any filter requires that the resulting transfer function be stable. In

1 — D discrete domain, it is required that the denominator polynomial shall contain

its roots within the unit circle. For a 1 — D IIR filter ( Infinite-duration Impulse

Response ), a transfer function is given by

H(z) = N(z) po+pizt +poz 2+ ... +pyz ™

T D(2)  do+dizt+dez 2+ ... +dyzN

which can be put in factored forms as:

_ Do Hljcwzl(l ~&27)
do Hllcvzl(l — Az71)

H(z)

_ 2o v-an Ita (2 — &)
do TThei(z — M)

(L.1)

(1.2)

(1.3)

where £1,&,...,{) are the finite zeros of H(z), and A(, Ay...\x are the finite poles of

H(z). For a causal IIR filter, the ROC ( Region of Convergence, the set of values

of z for which the z - transform converges ) of the transfer function H(z) is thus



exterior to the unit circle going through the pole furthest from the origin, the ROC

is given by
|z| > mazk| A

It implies that all poles of a stable and causal transfer function H(z) must be
strictly inside the unit circle. It means the zeros of D(z) shall be contained within
the unit circle.

If the transfer function is available in the factored forms as shown in [1], it is
relatively easy to determine, whether it is stable or not.

However, when a digital filter is implemented, it is highly preferable that
alternative conditions are desired so that one doesn’t have to obtain the transfer
function and then determine its stability. Also, when the denominator of the transfer
function is not given in the factored forms, tests can be carried out, like Jury-Marden

Stability Criterion [1], in order to determine the stability of the filter.

1.2 Mirror-image and Anti-mirror-image Polynomi-
als and Some Important Properties

The authors of [2], [3] and[4] have established several useful properties of a stable
polynomial D(z) having all its roots inside the unit circle in the z-plane. Some of

those properties are discussed below[2]. Let,

n
D(Z) — a,nzn —+ an_lz""l + ...+ az -+ Qg = Z aizi (]‘4)
i=0

with ay, is positive. D(z) can be decomposed as the sum of mirror-image

polynomial

(1.5)



and the anti-mirror-image polynomial

[D(z) = 2"D(z"")]
2

For D(z) which has its zeros inside the unit circle, the necessary and sufficient
conditions are [2],
(a) the zeros of Fi(z) and Fy(z) are located on the unit circle,
(b) they are simple,
(c) they separate each other and
(@ 2] <1, |4

In this paper, we affix the subscript "e” for all polynomials and functions when
the order n is even, and the subscript o’ when n is odd. Thus, Fi(z) and Fy(z)
should be represented by Fi.(z) and Fy(z) respectively when n is even; and by
Fi,(z) and Fy,(0) respectively when n is odd.

It is also necessary to ensure that [1]
(a) D(1) > 0, and
(b) (-1)"D(-1) >0
these are necessary conditions for the zeros of D(z) to be contained within the unit
circle.

Some properties of the mirror-image and the anti-mirror-image polynomials

are discussed below [5].

Result 1 If D(z) contains a factor di(2) =2 + a2 + 1, 0<|a;| < 2, then
both Fi(z) and F,(2) also contain d(z).

Result 2 (z + 1) is a factor of both Fy(z) and Fi,(z).

Result 3 (2 — 1) is a factor of both Fb(z) and Fy,(2).

From Schussler’s theorem and Results 1, 2 and 3, it is concluded:



(a) All the zeros of F. are complex conjugate pairs and lie on the unit circle.

(b) A zero of Fy, is -1, other zeros are complex conjugate pairs and lie on the unit

circle.

(c) &1 are zeros of Fa, other zeros are complex conjugate pairs and lie on the unit

circle.

(d) A zero of Fy, is 1, other zeros are complex conjugate pairs and lie on the unit

circle.

Therefore, these polynomials can be expressed as follows.

Table 1.1: Expansions of Fi(z) and Fy(z) [5]

Fl and F2

n even Fio = k1o [T2(22 + aiz +1),0 < |a;| < 2

Foe = (2° — 1)kye H,(ZIWQ(ZQ +Biz+1),0< |6 < 2
nodd | Fio= (24 Dk, [I%7 (2% + 72 +1),0 < || < 2
Foo = (2 — Dkao [T"7V%(22 + 6i2 +1),0 < |6;] < 2

where kie, koe, koo and ko, are real and positive constants.

1.3 Known Continued Fraction Expansions [3][6]

Based on the above properties, certain continued fraction expansions exist, which
are discussed below:

The types of CFEs are:



1) CFEL:

When 7 is even or odd,

Fi(2) . (z+1) 1 L7
e e T R "
where ka(l), ka(2)...ka(n) are real and positive.
2) CFE2:
(a) CFE 2a :
For n is even,
Fie(2) — kb(1 (-1 1 1.8
Foe(2) " )(z+1) " kb(2) & + kb(s)éﬁﬁ% (-8
where kb(1), kb(2)...kb(n) are real and positive.
(b) CFE 2b:
or if n is odd,
Foo(z z—1 1
Fjgz; = k(1) Ez + 1; * kb(2)E=R 4 1 (19)

(e+1) 7 kb(3) g+
where kb(1), kb(2)...kb(n) are real and positive.
3) CFE la

In addition to the above set of continued fraction expansions, there exist other

forms, one of them ( we call this as CFE la ) is obtained by reformulating the

mirror - image and anti - mirror - image polynomials, and they are briefly discussed

below [7]:

If the degree is even,

(1.10)



and

Fy(z) = o (1.11)
If the degree is odd,
D(z) +z"D(z7!
Fy(z) = 20 P (+7) (1.12)
and
2D(2) — 2"D(z71
Py(e) = 22X )z+1 ) (1.13)
The CFFE 1a is obtained as
n = even
Fi(2) 1
= rl(z - 1) + 1 1 (114)
F2(2) T2(1 -z ) + r3(z—1)+;4(lTl_1—)+_%“
n = odd
Fy(z) !
=r(z—-1)+ - 1 (1.15)
Fi(2) (1 —271) + ra(z—1)+r4(—1_,1——1)rr

where the coeflicients r's are positive. It must be noted that the positivity of r's
will not be sufficient to prove that D(z) contains all its zeros within the unit circle([8]
and [9]. In [8], there are alternative forms of CF'E's based on the decompositions
given in Egs (1.10) , (1.11) and Egs (1.12) , (1.13). They are not considered in this
thesis, because the positiveness of the coefficients does not guarantee stability of the
transfer function generated by these CFEs .

4) CFE3

It has been recently reported that another type of continued fraction expansion

is possible, as given below [6].



For n is odd,

CFE 3a
Fio(2) z+1 1
k(1 1.16
Fyo(2) ( )z—l kf(2)%+kz(2)%+jlj ( )
For n is even,
CFE 3b
Fle(z) z—1 Z+ 1 1
= 1.17
TN B A o B P I Y0 E S o =2 s g S

1.4 Scope of the thesis

It is known that, for a stable 1 — D IIR filter, the denominator of the transfer
function, whose zeros lie inside the unit circle, can be decomposed as the mirror-
image polynomial Fi(z) and the anti-mirror-image polynomial Fy(z). In addition,
the function %%)2 or its reciprocal has simple poles and zeros on the unit circle, and
they interlace. The methods to generate continued fraction expansions from mirror-
image polynomials F;(z) and the anti-mirror-image polynomials Fy(z) are discussed
in following chapters.

One of the objectives of this thesis is to expand the denominator of a stable
transfer function into CF E's.

Chapter 1 povides an overview of the stability of the IIR filter, mirror-image
polynomial, anti-mirror-image polynomial and some properties; it also presents an
introduction to the field of the known CFE1, CFE2 and CFE3. In Chapter 2, the
methods to generate the coefficients of continued fraction expansions are described,

which are illustrated with MATLAB. Chapter 2 is concerned primarily with the new
expansion type of CFFE4, which is given below:



CFE4:

For n = odd,
Fao(z) _ (2=1) (=*-1) 1
Fi,(z) - kc(O) (2-1-1) + kc(l)(z2+71z+l) + ke(2) (22-1)

T 1
(z24v22+1) (z2-1) 1
*e) g T

where kc(0), kc(1), ke(2)...kc(25+) are real and positive; 0 < |y < 2,i =
1,2..%54

For n = even,

Fe(z) — (zz—l) 1
Ffe(z) - kc(l)(zz'i"YlZ'f‘l) + kC(Z)( (22_1)

1
2 + y
T ke i

where kc(0) = 0; kc(1), kc(2)...kc(%) are real and positive; 0 < || < 2,i =
1,2..2.

In addition, algorithms have been given to obtain the various coefficients of
CFEA.

In Chapter 3, Chapter 4 and Chapter 5, a few applications are outlined. The
most common types of filters, namely Butterworth lowpass filters, Butterworth low-
pass CPPF (Complementary Pole-pair Filter) and Chebyshev lowpass filter, have
been considered in detail with respect to the above mentioned theories. Chapter 3
establishes algorithms to produce the coefficients ka, kb, kc and « of the continued
fraction expansions (CF E's) using the concept of mirror-image polynomial and anti-
mirror-image polynomial for Butterworth lowpass filters and Butterworth CPPF's
lowpass filters in 2 domain after bilinear transformation.

Chapter 4 is devoted to an algorithm which produces the coefficients ka, kb,
kc and « of the continued fraction expansion (CF Es) using the concept of mirror-
image polynomial and anti-mirror-image polynomial for Chebyshev lowpass filters
in z domain after bilinear transformation.

Another objective of this thesis is to produce stable lowpass filter transfer
functions from coefficients kc and « of continued fraction expansion (CFE4). To
produce highpass and bandpass filters in z domain, first, highpass and bandpass

filters in s domain are characterized; then, using bilinear transformation, the transfer



functions in z domain are obtained, and are discussed in Chapter 5.
This thesis can be considered as a starting point for application of contin-
ued fraction expansions in filter design. The same methods can be considered as

suggestions for any other stable filter designs.



Chapter 2

The New Type of Continued Fraction
Expansion and the Determination of

1ts Coeflicients

First, we review some of the issues associated with CFE1, CFE2 and CFE3 tech-
niques; then we produce a new type of CFE4 . The sufficient and necessary con-
dition are that the denominator of a stable IIR filter can be decomposed as the

mirror-image polynomial Fi(z) and the anti-mirror-image polynomial F3(2), and

Fi(z) Fo(
Fa(z) Fi(

(or zg) can be expressed as continued fraction expansions of CFE1, CFE2,
CFE3 and CFFE4, where all coefficients of the continued fraction expansions are
real and positive.

Secondly, the methods of coefficient determination for four kinds of continued
fraction expansions are introduced.

Finally, there are programmes on the computer by using MATLAB to obtain

the various coefficients.

10



2.1 The new type of z - domain CFE

We now introduce the new type of continued fraction expansion given as follows:

CFFE 4a: For n odd,

Fyo(2) (z—-1) (z* = 1) 1
ke(0) + ke(1) + z
Fio(2 z+1 (24+mz+1)  ke(2) 2220 L
to(2) ( ) ' D@ + k6(3)(z2(127;;11)+f
(2.1)
CFFE 4b: For n even,
F(2) (22 - 1) 1
= k(1) + (2.2)
F 2 1 (22-1) 1
16(3) (Z + YR -+ ) kC(2) (z2+72z+1) + ke(3) - :_i;zl_i_l)-f--:%
We shall now prove the existence of CFE 4a .
Since n is odd, there exists a zero of F,(z) at 2 = —1, we can write
Fgo(Z) (Z — 1)
—— = kc(0 + 2.3
Fm(z) C( )(Z+ 1) ¢1(z) ( )
where ¢,(z) is of the type %%; the degree of ¢1(2) is one less than that of
?fzg; and is of even order now.
It is known from [3] that kc(0) is real and positive.
$1(2) can now be written as
2?2 -1
=ke(l) ———— 2.4
612) = ke(l) 2+ a(2) (2.4

This is possible, because ¢;(2) contains its poles and zeros located on the unit
circle which are simple and interlacing [5], which means that |y,| < 2.
It is known that kc(1) is real and positive [10]; also ¢2(z) is of similar form

as ¢1(z). ¢2(2) contains poles and zeros on the unit circle which are simple and

11



interlace. One of the poles of -1 is chosen and then expanded further. Therefore,

$2(z)
-1 - can now be expanded similar to the one given in Equ (2.4), and the process

2(z
:a(n)be continued. This shows that CFE 4a given by Equ (2.1) and CFE 4b given
by Equ (2.2) are always possible.

The steps for the process will be as follows:

(i) Starting from the given D(z) , formulate the mirror - image polynomial
Fi(2) as given by Eqs (1.5) and the anti - mirror - image polynomial F5(2) as given
by Egs (1.6).

)

(il ) Select one pair of roots on the unit circle from Fj(z) and expand gfg)

into CFE 4a or CFE 4b, as the case maybe.

The following observations can be made:

(1) If the order of D(z) is even, we start with the ratio %j% The coeflicient
kc(0) corresponding to the term % doesn’t need be taken out first. The same can
be obtained in CFE 4b at any step during the expansion.

(i) One can choose any of the zeros of Fi,(2) or Fi.(2) to start with. In fact,
the same is possible at every step in CFE 4a or CFE 4b. Therefore, a large number
of CFE's of this type will be possible. This is in sharp contract to the existence of

CFFE1l , CFE?2 and CFE3, which are unique.

2.2 Determination of the Coeflicients of the Contin-
ued Fraction Expansion

1) CFE1:

For n even or odd,

R(E) _ D) |
i = PG 50 (2.5)

12



z —1Fi(2)

1) = B 2.6
ka(1) = Jim = S s (2.6
The above procedure is recursive, so,
Fi(z) (z+1) 1
= KRQa 2 7 27
e~ Pt e 0

Using the same procedure, we can obtain ka(1), ka(2), ka(3)...ka(n), where n
is the degree of mirror-image polynomial or anti-mirror polynomial.

2)

(a) CFE 2a:

For n even,

Fie(z (z—1) 1

)
e\ — kp(1 : 2.
Pz - PG T ER (2:8)

Fi(2)
_ z+1 Fi(2)
k(1) = B ) (2.9)
The above procedure is recursive, so,
Fi(z) (z—1) 1
= kb(2 i

10 kb( )(z T EE (2.10)

()

Using the same procedure, we can obtain kb(1), kb(2), kb(3)...kb(n), where n
is the degree of mirror-image polynomial or anti-mirror polynomial.

(b) CFE2 2b :

For n odd,

F20(z
FIO(Z

(z—1) 1
+ = (2.11)
SRR &

= kb(1)

S | e
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z+1 FQO(Z)

1) = = 2.
) = I T Fue) (212)
The above procedure is recursive, so,
Fi(2) (z-1) 1
=kb(2 : 1
16 B RV O 219
5 z

Using the same procedure, we can obtain kb(1), kb(2), kb(3)...kb(n), where n
is the degree of mirror-image polynomial or anti-mirror polynomial.

3)

(a) CFE 3a :

For n is odd,

. z—1 Fla(Z)
kz(1) =1 | .
z(1) AT Foo(2) |a=1 (2.14)

where £f(1) =0.
(b) CFE 3b:

For n is even,

b(1) = tim ZEID (215
be(l) = fim 2102 (216)

= lim
=—1 2+ 1 Fye(2)

14



4)

(a) CFE 4a :

For n odd,
Fal®) _, 0 =1)  F(2)
Fote) ~ "G T ELG) (217)
ke(0) = tim 2 iF22), (2.18)

z——-1z — 1 F1,(2)

Then, the degrees of Fi,(z) and Fj (z) are even.

Fy(2) (22— 1) 1
oy = kel ; 9.19
)~ W@ e e (49
3e z

. Z2 + Y1 +1 Fée(z)
kC(l) - zkgloot 22 -1 Fl'e(z)

|2=21 (2.20)

2, is one of the pair of roots of complex conjugate for 22 + v,z + 1.

Using the same procedure, we can obtain kc(0), ke(1), ke(2)...kc(%5+), where
n is the degree of mirror-image polynomial or anti-mirror polynomial.

(b) CFE 4b :

For n even,

kc(0) = 0.

The remaining coefficients are obtained as in Egs (2.19) and (2.20).

Remark:

The foregoing algorithm describes a way of obtaining kc and v coefficients
of a continued fraction expansion. However, for CFE4, as the degree of mirror-
image polynomial and anti-mirror-image polynomial increases, the number of dif-

ferent terms in ke(1), kc(2)... and ~y(1), ¥(2)... increases correspondingly. kc(1),

15



kc(2)...and (1), v(2)... are different values when we change the order of selecting
subpolynomials of Fi.(z) or Fi,(2), Fs.(z) or F3,(2), Fse(2) or FZ (2)...... as the de-
nominators z? 4+ 7;z + 1 of the continued fraction expansion, ¢ = 1,2,3...%, n = even
ori=1,23..%% n=odd

We know that Fi(z) and Fy(z) can be expressed as:

7, even

n/2
Fie =k [ [(2" + a2 +1),0 < |a;] < 2 (2.21)

=1

(n—2)/2
Fpe= (2 = Dkae [] 2>+ Biz+1),0< 8] <2 (2.22)

i=1
n odd

(n—-1)/2
Fio=(z+ Dk, [[ 2+m2+1),0< |wl <2 (2.23)

i=1

(n-1)/2
Fyo=(2—Dke ] (2*+6:2+1),0<6] <2 (2.24)

i=1

Where k1., k2, k1o and kqoare positive constants.
ke(1), kc(2)...and (1), ¥(2)... in different groups are determined when we
change the order of selecting subpolynomials of Fi.(z) or F{,(z), F3.(2) or F} (2),
Fse(z) or F(2)...... as the denominators z* + ;2 + 1 of the continued fraction

expansion, which is illustrated by an example as follows, assuming n = 6.

16



2.2.1 Example

F1e=

select v = (; or 1, = (, for kc(2); that means that there are two options to select
subpolynomial (2% +(12+1) or (22 +(22+1) of F3.(2) as the denominators 22 +722+1
of the continued fraction expansion. If we select the first subpolynomial (2% +¢;2+1)
of F3.(2) as the denominators z* 4+ 9z + 1 of the continued fraction expansion; then

obtain 7, ¥, and <3 in the first group as the following respectively,

22 + 722 + 1 of the continued fraction expansion; then obtain 7,, 72 and 73 in the

(22 + a1z + 1) (2% + a2z + 1)(22 + asz + 1), 0< |a;| < 2
1) step 1, we first select 71 = a, for ke(1),
Foe(z) kc( ) (z —1) + 1

Fie(z) (224-a12+1)
then, Fs.(2) = (22 + C12 + 1)(z + Gz + 1), 0< |Gl < 2,

step 2, we select o = (3, for kc(2),

er(z (1) Z _1 _+_ 1
Fie(z) zz+a1z+1 ke (2)_2___+
2%+(z+1 _Gg_(_5(5
F

then, F.(z) = (2° + 012 + 1), 0< |oy] < 2,

(z) )

Step3,we select 3 = o7, for kc(3),
2) In step2, if we select v, = (3, intead of (3, for kc(2),

Foe(2) kC(l) (22-1) + 1
Fre(z) (z24a1z+1) ke(2) s2o1 1
Z24Cgztl Eﬁgﬁ%
Fpe (2

then, Fy.(2) = (22 + gz + 1) 0< || < 2,

Then, in step3,we select 3 = ¢1, for kc(3)

This example has given the values of v; respectively in two groups when we

al:Claal

If we select the second subpolynomial (2% + (22 + 1) of F3.(2) as denominators

second group as the following respectively,

«i, C27 S1

17



3) If in Stepl, we first select ;1 = ao, for kc(1); then, v, and 73 will be different

from the above values

a1, (1,01
or
a1, (2,1
4) Similarly, we first select 71 = a3, for k¢(1), then, v, and ~y3 will be different
again.

Now, we get the conclusion, the values of ; are different in each group de-
pending on the order of the subpolynomials which are selected as the denominators

of continued fraction expansions.

a1 Cl a1

651 Cz S1

Let Ncoe = 5, when n = even
= 2-1, when n = odd
where n is the degree of mirror-image polynomial or anti-mirror-image polyno-
mial in Matlab function cfekc.m, we suggest that the coefficients of rootsele vector
are the subscript values of o4,(;, o1and ¢, (5,51 and so on respectively.

For example, for the above example, one of z2+7iz—|—1 terms is z2+a1z+1,z2+§ 1z+1

and 2240,z + 1 respectively, so

subscript
0!1,§1,0‘1”__>—171717

18



then, rootsele=[1 1 1].
Another 22 + vz + 1 term is 22 + a2z + 1, 22 + Gz + 1, 22+ ¢ + 1, so

subscript
x, CQ; gl—_—)———17 27 17

then, rootsele=[1 2 1].

The maximum number of different terms in kc(1), kc(2)... and (1),7(2)... =
Ncoe x (Ncoe —1) X (Ncoe —2) X ..3x2x1

The table below gives the coefficients for each of rootsele vectors to obtain the
different kc and v terms for MATLAB function cfekc.m, and we can produce the

different kc and +y vectors correspondingly when we run function cfekc.m.
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Table 2.1: Rootsele Vector

rootsele Ncoe =4 Ncoe =3 Ncoe =2 Ncoe =1
1 1 1 1
1 1 2 1
1 2 1 1
1 2 2 1
1 3 1 1
1 3 2 1
2 1 1 1
2 1 2 1
2 2 1 1
2 2 2 1
2 3 1 1
2 3 2 1
3 1 1 1
3 1 2 1
3 2 1 1
3 2 2 1
3 3 1 1
3 3 2 1
4 1 1 1
4 1 2 1
4 2 1 1
4 2 2 1
4 3 1 1
4 3 2 1

20




From the table,

1) If Ncoe =1,

The number of different terms in kc¢(1), kc(2)... and (1), v(2)...= Ncoe X
(Ncoe—1) X (Ncoe—2)x...3x2x1=1. As aresult, the only one is that rootsele = [1].
The length of rootsele vector = Ncoe =1.

2) If Ncoe = 2,

The number of different terms in kc(1), ke(2)... and (1), ¥(2)...= Ncoe x
(Ncoe — 1) X (Ncoe —2) x ...3 x 2 x 1=2x1. As a result, the two rootseles are [1
1] and [2 1]. The length of each rootsele vector =Ncoe= 2.

3) If Ncoe =3,

The number of different terms in kc(1), kc(2)... and (1), ¥(2)...= Ncoe x
(Ncoe — 1) X (Ncoe — 2) X ...3 x 2 x 1=3x2x1. As a result, the six rootseles are |1
11],121],[211],[221],[311] and [3 2 1] respectively. The length of each rootsele
vector =Ncoe= 3

4) If Ncoe = m, m is an integer,

The total number of different terms in ke(1), kc(2)... and (1), ¥(2)...= Ncoe x
(Ncoe —1) X (Necoe —2) x ..3x2x1=mx(m—-1)x (m—2)%x..3x2x1.

rootsele(1) = 1,2,3...m

rootsele(2) = 3..(m—1)

rootsele(3) = 1,2,3...(m — 2)

rootsele(m —2)=1,2,3

rootsele(m —1) = 1,2

rootsele(m) =1

The length of each rootsele vector =Ncoe=m.
5) If n = 1, rootsele = any value.

But not all rootseles can be determined as kc and . For example, assume,
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n =6, D(z) = 33.79722°% + 26.2840z* + 3.85962% + 0.0592 .
Fie = (2 +a1z2+1)(2* + aaz + 1)(2* + a3z + 1), 0< |a;| < 2
=(22 4+ 1.45242 + 1)(2? — 1.45242 + 1) (2% + 1)

Fy, = 16.86902% + 11.21222* — 11.21222% — 16.8690

and if we set rootsele =[1 2 1].

Step 1: because rootsele(l) = 1, so, we select the first subpolynomial (22 +
1.4524z + 1) of Fi.(z) as the denominator 2* + 712 + 1 of the continued fraction
expansion, y; = 1.4524.

Peld— 0.4191 oSl ot % , and k(1) = 0.4191.

It is easy to find F3, = (2% — 0.39842 + 1)(2% — 1)
Fye = 16.92822% — 24.58772% + 33.856422 — 24.5877z + 16.9282

Step 2: because rootsele(2) = 2, so, we select the second subpolynomial (22—1)
of F3.(z) as the denominator 22 + 2z + 1 of the continued fraction expansion. As
we have known before, this condition, the zeros of 2% +v;z + 1 are strictly inside the
unit circle, must be satisfied, so (2 — 1) can’t be as the denominator 22 + v,z + 1.

As a result, there is no solution for rootsele = [1 2 1].

2.3 Implementation of Algorithms for Coeflicient

Determination

2.3.1 The M-file cfekakb.m is Employed to Compute Coeffi-
cients ka and kb of CFE1 and CFE2 Respectively

Algorithm 1: Matlab Function cfekakb.m

function [ka,kb] = cfekakb( d )
RGBT RT TR TR T T R %% BT T R % o %% %% % %% % %% % % % %% % % % %
% [ka,kb] = cfekakb(d) finds the coefficients ka and kb of the continued
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% fraction expansion (CFE) for F\(z)/Fy(z) or Fa(2)/Fi(z), where Fi(z)
% 1is mirror-image polynomial; Fy(2) is antimirror-image polynomial of D.
% Fi(z) = "D

% Fy(z) = [D(z)~ z;‘D(z“)]

% d is the coefficients of polynomial respectively in descending powers of z |

% and d(1) > 0

%

% CFE1L:

% For n = even or odd,

% i;gzg (1)(§+B ( )(Z+1) | !

% CFE?2:

% For n = even,

9 Felz) kb()"l)—i— . m

Foe (2)

(z+1) " kb(2) (z+1)+kb(3) = —
% Or if n = odd,
Feol(z) __ (z— 1) 1
# Flo(z) kb( ) z+l) kb(2) (;+i%+kb(3) < ll 41

% d is coefficients of polynomial D respectwely in descending powers of z.

%% Convert Fy(2)/Fa(z) or Fy(2)/Fi(z) to continued fraction expansions %%

% d(1) is non- negative

if( d(1) <=10)
error(’First coefficient in d vector must be non- negative.’)
return

end
% Obtain the mirror- image polynomial f1 and
% antimirror-image polynomial f2

f1=0.5%d+0.5*fliplr (d);
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2=0.5%d-0.5*Aiplr(d);
LF1 = length(f1);
LF2 = length(f2);

if( LF2 == 1)
error(’No continued-fraction ezpansion!’)
return

end

% Check if 1 and -1 are the roots of f1 and f2
flvalue=polyval(f1,1); % the value of f1 at z =1
f2ualue=polyval(f2,1); % the value of f2 at z =1
flval=polyval(f1,-1); % the value of f1 at z = —1
f2val=polyval(f2,-1); % the value of f2 at z =1

tol = 0.000001; % tolerance

% If f1/2 can be expressed in (z+1)/(2-1) form
if abs(f2value)<=tol

fnum=[1 1]; fden=[1,-1];

rootfden=1;

mir_poly = f1; antimir_poly = f2;

ka=subcfekakb( mir_ poly,antimir_ poly, fnum,fden,rootfden);
else

disp(’No coefficients ka.’)

end

% If f1/12 or f2/f1 can be expressed in (2-1)/(z+1) form
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if abs(f2val)<= tol
fnum=[1 -1]; fden=[1,1];
rootfden=-1,
mir_poly = f1; antimir_poly = f2;
kb—=subcfekakb( mir_ poly,antimir_ poly,fnum,fden,rootfden);

% If -1 is a root of f1,exchange f1 and
% 12,12/f1 can be expressed as (z-1)/(z+1)form
elseif (abs(f2val)> tol)&(abs(flval)<= tol)
Ncoe = LF2-1;
mir_poly = f2; antimir_poly = f1;
fnum=[1 -1]; fden=[1,1];
rootfden=-1;
kb=subcfekakb( mir_ poly,antimir_ poly, fnum,fden,rootfden);
else
disp(’No coefficients kb.’)

end

Algorithm 2: Matlab Subfunction subcfekakb.m

function [ k ] = subcfekakb( mir_ poly,antimir_ poly,fnum, fden,rootfden)

%% % RN T %R %% % %% % %% %% % %% % %% %% %% %% %% % %% % % %% %
% This function is a subfunction of cfekakb

%% Convert Fi(z)/Fa(z) or Fy(z)/F1(z) to continued fraction expansions %%

% Tolerance of poles
pole_tol=0.001;
Ncoe = length(antimir_poly)-1;
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% Initial coefficients k
k=zeros(1,Ncoe);

% Obtain k
for j=1: Ncoe  %— number of k
f4=deconv(antimir_ poly,fden); %—
k(j)=polyval(mir_ poly,rootfden). /(polyval (f4,rootfden). *polyval(fnum,rootfden));
ftemp = conv(mir_poly,fden)-k(j) *conv(antimir_ poly,fnum);
f8=deconv(ftemp,conv(fden,fden)); %—
f3value=polyval(f3,rootfden);
% If rootfden is a root of f3, continue loop structure
if (abs(f3value) <= pole_tol)
mir_poly=f4;
antimir_ poly=f3;
else
break
end

end

2.3.2 The M-file cfekeo.m is Employed to Compute Coeffi-
cients kf and kz of CFE3

Algorithm 3: Matlab Function cfekeo.m

function [kf,kz] = cfekeo(d)
%% B HH T TR %% %% % %% % % % % % % % % % % % % % % % % % % % % % % % % %
% [kf,kz] = cfekeo(d) finds the coefficients kf and kz of the continued
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% fraction expansion (CFE3) of Fi(z)/Fs(z) , where Fi(z) is mirror-image
% polynomial and Fy(2) is antimirror-image polynomial of D.

% d is coefficients of polynomial D respectively in descending powers of z.

%

% For n is odd,

% CFE 3a

% 228 = ka(1) 24 + kf(2)ﬁ+kzl(2)j—‘*_%+%

% For n is even,

% CFE 3b

Fie(z) _ -1 +1 1
% F;e(z) - kf(l)z? +k2(1 P kf(2) ] +hz(2) 1+ -

%% Convert Fy(2)/Fy(2) to continued fraction expansions %%

il d(1) <= 0)
error(’First coefficient in d vector must be non- negative.’)
return

end

% The coefficient of d vector must be real value
for ii=1:length(d)
if( any(imag(d(ii))))
error(’The coefficient of d vector must be real value.’)
return
end

end
% To obtain mirror-imagine poly f1 and antimirror-imagine polynomial
f1=0.5%d+0.5%fliplr(d);

f2=0.5*d-0.5*fliplr (d);
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LF1 = length(f1);
LF2 = length(f2);

antimir_poly = f2;
mir_poly = f1;
numz=[1 1J;
denf=[1 -1];
numf=[1 -1];
denz=[1 1J;

% If degree of d is odd, To obtain coefficients kf and kz of continued-fractor
% expansion
if rem((length(mir_poly)-1),2)==1 %— degree of d is odd
tempfl1=deconv(antimir_poly,denf); %—
ko(1)=polyval(mir_ poly,1)./(polyval(tempf1,1). *polyval(numaz,1));
tempantif2 = conv(mir_ poly,denf)-ko(1)*conv(antimir_ poly,numz);
tempf2=deconv(conv(tempantif2,tempf1),conv(antimir_poly,denf)); %—
mir_ poly=tempf1;
antimir_poly=tempf2;
[knumberf, knumberz]=subcfekeo (mir_ poly,antimir_ poly);
kz=[ko(1) knumberz];
kf=[0 knumberf];

% If degree of d is even, To obtain coefficients kf and kz of continued-fraction
% expansion
elseif rem((length(mir_poly)-1),2)==0 %— degree of d is even

[kf, kz]=subcfekeo (mir_ poly,antimir_ poly);

end
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Algorithm 4: Matlab Function subckekeo.m

function [ knumberf,knumberz | = subcfekeo( mir_poly,antimir_poly)
% nR%RR% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% % %% %
% This function is a subfunction of cfekeo

%% Convert Fy(z)/Fy(2) to continued fraction expansions %%

pole_tol=0.001; % Tolerance of poles
numz=[1 1];

denf=[1 -1];

numf=[1 -1];

denz=[1 1J;

if rem((length(mir_poly)-1),2)==1 %— degree of d is odd
Ncoe = (length(antimir_ poly)-2)/2;

elseif rem((length(mir_poly)-1),2)==0 %— degree of d is even
Ncoe = (length(antimir_poly)-1)/2;

end

knumberf=zeros(1,Ncoe); % Initial coefficients of vector

knumberz=zeros(1,Ncoe); % Initial coefficients of vector

for j=1: Neoe  %— number of k
fden=conv(denz,denf);
fdenl=deconv(antimir_ poly,denz);
knumberf(j)=polyval(mir_ poly,-1). /(polyval(fdeni,-1). *polyval(numf,-1));
fden2—=deconv(antimir_poly,denf);
knumberz(j)=polyval(mir_ poly,1)./(polyval(fden2,1). *polyval(numz,1));
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f3=deconv(antimir_poly,fden); %—

temp=knumberf(j) *conv(numf,denf )+ knumberz(j) *conv(numz,denz);
fitemp = mir_poly - conv(temp,f3);
f4=deconv(conv(fitemp,f3),antimir_poly); %—
Ffvaluez=polyval(f},1);

fvaluef=polyval(fi,-1);

% If rootfden is a root of f3, continue loop structure
if (abs(fivaluez) <= pole_tol)& (abs(fivaluef) <= pole_tol)
antimir_ poly=f4;
mir_poly=f3;
else
break
end

end

2.3.3 The M-file cfekc.m is Employed to Compute Coeffi-
cients kc and v of CFFE4

Algorithm 5: The Matlab Function cfekc.m

function [k0,kc,r] = cfeke(d,rootsele)

%% %R%% %% %% %% % %R % % %% % %% % %% % % %% %% %% % %% %% %
% [k0,kc,r] = cfekc(d,rootsele) finds the coefficients kc and 7y of the continued
% fraction expansion (CFE) of Fa(z)/Fi(z), where Fi(z) is mirror-image
% polynomial and Fy(z) is antimirror-image polynomial of D.

% Fl(Z) — D(z!—i—z;‘D(z"l)

% FQ(Z) _ Dgz)~z;‘D(z_1)
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% d is the coefficients of polynomial respectively in descending powers of z ,
% and d(1) > 0
%

% CFEA4:

% For n = odd,

2_

% Fio(z; = kc(0 )é__il + ke(1 )(zz(z,ﬂzl+) 1) ke(2) (2-1) S+ 1 _2(_2_&.
+ #4122+ gy o

E (= 3z+1)

% CFEA:
% For n = even,kc(0)
% 22 = ke(1) % ) S o

et T oo

%% Convert Fy(z)/Fi(z) to continued fmctzon e:cpanswns %%

% format short;

if(d(1) <=0)
error(’First coefficient in d vector must be non- negative.’)
return

end

% The coefficient of d vector must be real
for ii=1:length(d)
if( any(imag(d(ii))))
error("The coefficient of d vector must be real value.’)
return
end

end

% To obtain mirror-imagine poly f1 and antimirror-imagine polynomsial

f1=0.5%d+0.5*fliplr(d);
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2=0.5%d-0.5* fliplr(d);
LF1 = length(f1);
LF2 = length(f2);

% Tolerance of imag of polynomial

wmag_tol=0.000001;

antimir_poly = f2;
mir_poly = f1;

% 1If degree of d is odd, obtain coefficients k0 and kc of continued-fractor

% expansion and z"2+riz+1

if rem((length(mir_poly)-1),2)==1 % degree of d is odd
tempden=[1 1];
tempnum=[1 -1J;
f00=deconv(mir_ poly,tempden);
kO=polyval(antimir_poly,-1). /(polyval(f00,-1). *polyval (tempnum,-1) );
ftemp = conv(antimir_ poly,tempden )-k0*conv(mir_ poly,tempnum);
f01=deconv(ftemp, conv(tempden,tempden));
mar_ poly=f00;
antimir_poly=f01;
[k,r]=subcfekc(mir_ poly,antimir_ poly,rootsele);
kc=k;

% If degree of d is even, To obtain coefficients kc of continued-fractor
% expansion and z°2+4r1Z+1
elseif rem((length(mir_poly)-1),2)==0 % degree of d is even
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[k,r]=subcfekc(mir_ poly,antimir_ poly,rootsele);
kO =0;
ke=k;

end

Algorithm 6: Matlab Subfunction subcfekc.m

function [k,r] = subcfeke(mir_ poly,antimir_ poly,rootsele)

%% R R%% % %% %% % %% % % %% % % %% % %% % % % %% % % % % % % % % % %
% This function is a subfunction of cfekc.

% Find the coefficients of the continued-fractionezpansion of Fa(2)/Fi(z),
% for n = even; Fi(z) is mirror-image polynomial and F»(z) is antimirror-

% image polynomial of D.

%
% CFFE4 :
% For n = even,kc(0)
Faelz) __ (22 —-1) 1
% Ff (z) kc(l)(z2+’71z+l) + ke(2) . =Z=1)

gD T, 3 )72(:,3—% ......
%% Convert Fy(2)/F1(z) to continued fraction expansions %%

imag_tol = 0.000001;

if rem((length(mir_poly)-1),2)==0 % degree of d is even
Ncoe = (length(mir_poly)-1)/2;
k=zeros(1,Ncoe); % initialize coefficients k
fden = zeros(Ncoe,8); % initialize Z~2+r(n)z+1
1=0;
373=0;

end
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for j=1:Ncoe, % number of k
i=it1;
Ji=a+1;
antimir_root = roots(antimir_ poly);

mir_root = roots(mir_ poly);

if (1 <= Ncoe-1)
% index 2°2+r(n)z+1
index=rootsele(7j);

ind = find((imag(mir_root)<= 0)&(abs(real(mir_root)-1))>=imag_tol);

if (abs(imag(mir_root(ind(indezx))))<=imag_tol)
error(’No solution.’)
return
end
fdenroot = [mir_root(ind(index)),conj(mir_root(ind(indez)))];
fden(j,:) = poly(fdenroot); % set Z~2+r(n)+1
% busld subpolynomial of f1 for denominator of continued-fractor
% expansion
fnum=[1 0 -1J;
% build the numerator of continued-fractor poly

rootfden = mir_root(ind(indezx)); % initial z = a root of 2°2+r(n)z+1

F4=deconv(mir_poly,fden(j,:)); %—

k(j)=real(polyval(antimir_ poly,rootfden)./(polyval(f{,rootfden). *polyval(fnum,rootfden)))
ftemp = antimir_ poly-k(j) *conv(f4,fnum);
f3=deconv(ftemp,fden(j,:)); %—
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if (abs(imag(f8)) <= imag_tol) % If f3 is real, continue loop structure
antimir_poly=real(f}); % coefficients of antimir_poly are real

mir_ poly=real(f3);

else
break
end
% keyboard;
elseif i==Ncoe
% When degree is 6,10,14..., fi= z2"2-1,
% obtain the last continued-fractor poly
if rem(Ncoe,2)==1
fdenroot = [mir_root(1),conj(mir_root(1))];
fden(j,:) = poly(fdenroot);
k(j)= antimir_ poly(1)/mir_poly(1);

end

% When degree is 4,8,12...f8= 2"2-1, obtain the last continued-fractor poly
if rem(Ncoe,2)==0
fdenroot = [antimir_root(1),conj(antimir_root(1))];
fden(j,:) = poly(fdenroot);
k(j)= mir_poly(1)/antimir_ poly(1);
end
end

end

r=fden(:,2);

r=r’;
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2.4 Summary and Discussion

In this chapter, a new type of 2 — domain continued fraction expansion CF'E4 has

been introduced. It is known that this type of C'F'E4 is always possible for a rational

function formulated by the ratio (ifzg:g or %z—g) of anti - mirror - image polynomial

to mirror - image polynomial, which are obtained by a Schur polynomial containing
all its zeros within the unit circle. The coefficients of this CF'E are of the type given
in Egs (2.18) and Egs (2.20). It is also shown that this type of CFE is non-unique
as compared with the other three types of CFEs - CFE1, CFE2 and CFE3, which

are unique. This is because the coefficients of CF'E4 are dependent on the poles

Foo(2) Fre(z)
Ff,,(z) or Ffe(z)

possible CFE4's .

and zeros of the . Algorithms have been given in order to obtain all
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Chapter 3

The New Continued Fraction
Expansion for Butterworth Lowpass

Filter and Butterworth Lowpass

CPPF Filter in 2z Domain

Generally, Butterworth lowpass filter approximations are based in Laplace transform
domain[11] and [12]. By applying the bilinear transformation s = %, the transfer
functions in discrete domain are characterized. In this chapter, we shall obtain the
denominator polynomials of Butterworth lowpass filters of different order and also
the coeflicients in the various continued fraction expansions.

In addition, we shall discuss the new family of transitional filters - Complemen-
tary Pole-pair Filters (CPPF's) [13], whose design is based on the judicious position

of symmetry poles in the s-plane. For such filters also, we obtain the coefficients in

the various continued fraction expansions.
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3.1 The Application of the Continued Fraction Ex-
pansion for Butterworth Lowpass Filter in z do-
main

First we take the nth-order Butterworth lowpass filter polynomial in s domain, and

z—1

2=, we obtain the digital lowpass

by applying the bilinear transformation s = k

transfer functions

Dalz) ~ Daal2) (3.1)

Tpy =

In this thesis, k£ is chosen to be unity. For each order of Dp4(2), the Butterworth
polynomials in the z - domain are obtained which are listed in Table 3.1 up to
order n = 8 . For these polynomials, the mirror-image polynomial Fg;(z) and the

anti-mirror-image polynomials Fipq(z) are obtained and listed in Table 3.2.

Table 3.1: The Butterworth Denominator Polynomials in the z - domain

Dpqy(z)

3.41422% + 0.5858

6.00002°% + 22

10.64052% + 5.171622 + 0.1880

18.94432° + 12.00002% 4+ 1.05572

33.797225 + 26.28402* + 3.859622 + 0.0592

60.367227 + 55.53622° + 11.63282° + 0.46382

107.906528 + 114.481825 + 31.38872* + 2.204522 + 0.0185

0 | 3|0 | Ol | W N
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Table 3.2: The Mirror - image and Anti - mirror - image Polynomials of the z -
domain Butterworth Denominator Polynomials Given in Table 3.1

n FBl(z) and FBz(Z)

2 | Fpi(z) = 2.000022 + 2.0000

Fgo(z) = 1.414222 — 1.4142

3 | Fpi(z) =3.000023 + 22 + z + 3

Fpgo(z) = 3.00002% — 22 42 -3

4 | Fpi(z) =5.41422% + 5.171622 + 5.4142

Fga(z) = 5.22637% — 5.2263

5 | Fpi(z) = 9.472125 + 0.5279z% + 6.0000z% + 6.000022 + 0.5279z + 9.4721

Fpo(z) = 9.472125 — 0.5279z% + 6.000023 — 6.000022 + 0.5279z — 9.4721

6 | Fpi(z) = 16.92822% + 15.07182* + 15.071822 + 16.9282

Fpgo(z) = 16.86902% + 11.2122z% — 11.212222 — 16.8690

7 | Fei(z) = 30.183627 + 0.23192% 4 27.768125 + 5.81642% + 5.816423 + 27.768122 + 0.2319z + 30.1836

Fpa(z) = 30.183627 — 0.231925 + 27.768125 — 5.81642% + 5.816423 — 27.768122 + 0.2319z — 30.1836

8 | Fpi(z) = 53.962528 + 58.343125 4 31.38872% + 58.343122 + 53.9625

Fpa(2) = 53.94402% + 56.13872% — 56.138722 — 53.9440

The following algorithm, called butterworthkakb.m, is employed to obtain ka
and kb coefficients of continued fraction expansions for a nth-order denominator of

Butterworth lowpass filter polynomial in z domain.

Algorithm 7: Matlab Function butterworthkakb.m

function [ka, kb] = butterworthkakb(d)
%% %% %R RS % %% %% % %% % BT T T BT T %% %% T % %% % %% % %%
% d is a vector which represents the coefficients of a denominator polynomial

% of Butterworth filter respectively in descending powers of s domain,

Npg(2) _ (z+1)"
Dpg(z) ~— Dpa(z)’

-1

% applying bilinear transformation s = —

we get TBd = kB
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% Dpqy(z) is a denominator polynomial of Butterworth filter in z domain.
% Find coefficients ka and kb of the continued-fractionezpansion (CFE) of
% Fp1(2)/Fp2(2) or Fpe(2)/Fpi(2), where Fp(2) is mirror-image

% polynomial, and Fpy(2) is antimirror-image polynomial of Dpy(2).

0
% Fpa(z) = Pod2=zPede0)
%

% CFE1:

% FB1(z) = [DBd(z)+z;DBd(z_1)]

% For n = even or odd,

7 Fgi(z) _ ka (z+1) + _ 1
mouty =MD o

% CFE2:

% For n = even,

Ble(z z—1) 1
6 Foacla) = kb( )(z+1) " kb(2) §z+3+kb(3) z 11 .

% Or if n = odd,

% i—w"i kb(1) & 2+ T
@) @ T OGS

% Convert Fp,(z)/Fpa(z) or Fpa(z2)/ F B1(2) to continued fraction ezpansions

% d(1) must be non-negative.

if(d(l) <=0)
error(’First coefficient in d vector must be non- negative.’)
return

end

% The coefficient of d vector must be real
for it = 1:length(d)
if( any(imag(d(ii))))

error("The coefficient of d vector must be real value.’)
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return
end

end

% Get ka and kb coefficients of the continued-fraction ezpansion
[Nd,Dd]=bilinear(1,d,0.5);

denpoly=Dd/Nd(1);

[ka,kb]=cfekakb(denpoly);

The following table 3.3 gives the coefficients ka's of CF'E1 for denominators
of Butterworth lowpass polynomials.

d is a vector which represents the coefficients of a denominator polynomial of
Butterworth lowpass filter respectively in descending powers of s domain, in the form
s +a18" 1+ ags" 2+ ... +an_982 +a,_15+1, for a Butterworth filter function of the
order n, with pass-band from 0 to 1 rad/sec. By applying bilinear transformation
§ = %, we present Tpy = Z—Z% = %—;}(%, Dp4(2) is a denominator polynomial of
Butterworth lowpass filter in 2 domain. ka's are coefficients of the continued-fraction
expansion (CFE1) of Fg(2)/Fpa(z) , where F, () is mirror-image polynomial, and

Fpy(2) is antimirror-image polynomial of Dpgy(z).
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Table 3.3: The Values of ka’s in CFE1 for Denominators of Butterworth Lowpass
Polynomials

n | ka(l) | ka(2) | ka(3) | ka(4) | ka(5) | ka(6) | ka(7) | ka(8)
0.7071 | 1.4142
0.5000 | 1.3333 | 1.5000
0.3827 | 1.0824 | 1.5772 | 1.5307
0.3090 | 0.8944 | 1.3820 | 1.6944 | 1.5451
0.2588 | 0.7579 | 1.2016 | 1.5529 | 1.7593 | 1.5529
0.2225 | 0.6560 | 1.0650 | 1.3971 | 1.6589 | 1.7988 | 1.5576
0.1950 | 0.5774 | 0.9367 | 1.2583 | 1.5277 | 1.7283 | 1.8252 | 1.5636

W | N | O | O~ ]W | N

The following table 3.4 gives the coefficients of k¥'s of C F'E2 for denominators

of Butterworth lowpass polynomials.

We present Tpy = gﬁﬁ; = g;dl():).

fraction expansion (CFE2) of Fp1(2)/Fp2(2) or Fpa(z)/Fpi(z), where Fpi(2) is

kb's are coefficients of the continued-

mirror-image polynomial, and Fps(2) is antimirror-image polynomial of Dpy(z).

Table 3.4: The Values of kb's in CFE2 for Denominators of Butterworth Lowpass
Polynomials

n| kb(1) | kb(2) | kb(3) | kb(4) | kb(5) | kb(6) | Kb(7) | kb(8)
0.7071 | 1.4142
0.5000 | 1.3333 | 1.5000
0.3827 | 1.0824 | 1.5772 | 1.5307
0.3090 | 0.8944 | 1.3820 | 1.6944 | 1.5451
0.2588 | 0.7579 | 1.2016 | 1.5529 | 1.7593 | 1.5529
0.2225 | 0.6560 | 1.0550 | 1.3971 | 1.6589 | 1.7988 | 1.5576
0.1950 | 0.5774 | 0.9367 | 1.2583 | 1.5277 | 1.7283 | 1.8252 | 1.5636

DI OO =W
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Using matlab function cfekeo.m, we obtain the values of kf's and kz's in

CFE3. The following table 3.5 gives the values of kf's and kz's in CFE3

Table 3.5: The Values of kf's and kz's in CFE3 for Denominators of Butterworth
Lowpass Polynomials

n| kf(1) | kz(1) | kf(2) | kz(2) | kf(3) | k=z(3) | kf(4) | kz(4)
0.7071 | 0.7071
0 0.5000 | 0.6667 | 1.3333
0.3827 | 0.3827 | 1.8478 | 1.8478
0.3090 | 0.3416 | 0.8944 | 2.1180 | 2.6180
0.2588 | 0.2588 | 0.9428 | 0.9428 | 2.8978 | 2.8978
0 0.2225 | 0.2341 | 0.6560 | 0.9695 | 1.4010 | 3.0778 | 3.4161
0.1951 | 0.1951 | 0.6509 | 0.6509 | 1.4194 | 1.4194 | 3.9231 | 3.9231

O |~ | O | CU W | N
o

The algorithm, called butterworthkc.m, is employed to compute kc or k0 and
v coeflicients of CFE4 for a nth-order denominator of Butterworth lowpass filter

polynomial.

Algorithm 8: Matlab Function butterworthke.m

function [kO, ke, r] = butterworthke(d,rootsele)
RRRTRT "% T R T TR D% R T % B %% %% % %% % %% % %% %% % %% %%

% d is a vector which represents the coefficients of a denominator polynomial

% of Butterworth filter respectively in descending powers of s domain,

—1 _ Na(z) _ (z+1)"
arnwe 9et Tpa = oy = oty

% Dpq(z) is a denominator polynomial of Butterworth filter in z domain.

% applying bilinear transformation s =

% Find coefficients kc and v of the continued-fraction expansion (CFE) of
% Fpi1(2)/Fpa(z) or Fpa(z)/Fpi(z), where Fg,(2) is mirror-image
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% polynomial, and Fpy(2) is antimirror-image polynomial of Dpy(2).

% Fpi(z) = [Dpa(2)+2"Dpa(="")]

2

% FBZ(Z) = [DBd(z)—ngBd(z_l)]
%
% CFE4:
% Forn = Odd

Fo(z) — 1) (zz_l) 1
g Fi,(z) = ke(0) (§+1) + kc(l)(z2+’)’1z+1) + ke(2) —22=1)

PRIy ke (3)72(;213_2:{_ T

% CFEA:
% Forn = even,kc(0)

Foe(z) .
% p2 Ezg kc( )( 2(—7—"/1z+1) + ) = 1

%% Convert Fa(z)/F1(2) to continued fmctzon expanszons %%

% d(1) must be non-negative.

if(d(1) <=10)
error(’First coefficient in d vector must be non- negative.’)
return

end

% The coefficient of d vector must be real value
for ii = 1:length(d)
if( any(imag(d(ii))))
error(’The coefficient of d vector must be real value.’)
return
end

end

% Get kc and r coefficients of the continued-fraction expansion
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[Nd,Dd]=bilinear(1,d,0.5);
denpoly=Dd/Nd(1);
k0, ke, r[=cfekc(denpoly,rootsele);

The following table 3.6 gives the values of coefficients kc's and 4's in CFE4

for denominators of Butterworth lowpass filters.

We present Tpq = gj—gzzg = (bz:dl();.

fraction expansion (CFE4) of Fpy(2)/Fp1(z) , where Fp(2) is mirror-image poly-

kc and v are coeflicients of the continued-

nomial, and Fpg(2) is antimirror-image polynomial of Dpy(z).
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Table 3.6: The values of kc's and +'s for Denominators of Butterworth LP Filters

n| ke(0) | ke(l) | ke(2) | ke(3) | ke(4) (1) 7(2) 7(3) v(4)
2 0.7071 0.0000
3 | 0.5000 | 0.5000 -0.6667
4 0.4826 | 0.4826 1.0222 | -1.0222
0.4826 | 0.4826 -1.0222 | 1.0222
5 1 0.3090 | 0.4578 | 0.2332 -1.2754 | 0.3311
0.3090 | 0.2332 | 0.4578 0.3311 | -1.2754
6 0.4191 | 0.1893 | 0.6483 1.4525 | -0.3984 | -1.2323
0.4191 | 0.1893 | 0.6483 -1.4525 | 0.3984 1.2323
0.1584 | 0.6293 | 1.7735 0.0000 | 0.0000 | 0.0000
7 | 0.2225 | 0.3803 | 0.1489 | 0.4222 -1.5758 | 0.1566 0.4635
0.2225 | 0.2519 | 0.1939 | 0.5852 0.7951 | -0.5887 | -1.4015
0.2225 | 0.1453 | 0.5358 | 0.9560 -0.2116 | -0.1497 | -1.0310
8 0.3454 | 0.2371 | 0.6809 | 0.0935 1.6637 | -0.8770 | -1.4063 | 0.2972
0.3454 | 0.2371 | 0.0935 | 0.6809 1.6637 | -0.8770 | 0.2972 | -1.4063
0.3454 | 0.0997 | 0.3366 | 0.3634 1.6637 { 0.0915 | -0.1722 [ -1.6379
0.3454 | 0.0997 | 0.3634 | 0.3366 1.6637 | 0.0915 | -1.6379 | -0.1722
0.3454 | 0.2371 | 0.6809 | 0.0935 -1.6637 | 0.8770 1.4063 | -0.2972
0.3454 | 0.2371 | 0.0935 | 0.6809 -1.6637 | 0.8770 | -0.2972 | 1.4063
0.3454 | 0.0997 | 0.3366 | 0.3634 -1.6637 | -0.0915 | 0.1722 1.6379
0.3454 | 0.0997 | 0.3634 | 0.3366 -1.6637 | -0.0915 | 1.6379 | 0.1722
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Continued

n | ke(0) | ke(l) | ke(2) | ke(3) | ke(4) (1) 7(2) 7(3) 7(4)

8 0.1545 | 0.5177 | 1.1130 | 0.3897 0.3899 | 0.5695 | 0.9654 | -1.5371
0.1545 | 0.5177 | 0.3897 | 1.1130 0.3899 | 0.5695 | -1.5371 | 0.9654
0.1545 | 0.2493 | 0.6959 | 0.3749 0.3899 | -0.8882 | -1.3751 | 1.6173
0.1545 | 0.2493 | 0.3749 | 0.6959 0.3899 | -0.8882 | 1.6173 | -1.3751
0.1545 | 0.5177 | 1.1130 | 0.3897 -0.3899 | -0.5695 | -0.9654 | 1.5371
0.1545 | 0.5177 | 0.3897 | 1.1130 -0.3899 | -0.5695 | 1.5371 [ -0.9654
0.1545 | 0.2493 | 0.6959 | 0.3749 -0.3899 0.8882 1.3751 [ -1.6173
0.1545 | 0.2493 | 0.3749 | 0.6959 -0.3899 | 0.8882 | -1.6173 | 1.3751

3.2 The Application of the Continued Fraction Ex-

pansion for Butterworth Lowpass CPPF Filter

in z domain

3.2.1 Pole-parameter Representation [10]

In following section, we give a brief summary of the Pole-Parameter Representation
and Complementary Pole -pair Filters. We will introduce the terminology, “pole-
parameters”. The line which joins any pole with the origin of the co-ordinates is
referred to as the “pole-phasor”. The magnitude w, and the angle 6, of pole-phasor
are shown in figure below, wherein the pole-parameters (wp,,) corresponding to a
negative real pole (s,) and a complex conjugate pole-pair (s, sx) are defined. In

addition, the pole-parameter w, is “pole-frequency”, and the polar-angle 8, is related

to the pole-Q.

— 1
QP T 2cos(6p)
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Pole-parameters defined

15 T T T T T T T T
w
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Real axls

Figure 3.1: Pole Parameter Representation

3.2.2 Complementary Symmetry Among Butterworth Poles

[10]

For a specified order Butterworth filter, the poles located uniformly on the left-half

of s- plane, on second and third quadrant, on the

the horizontal axis, and exhibit a mirror-image symmetry. Therefore all poles on
the left-half plane of the s-plane can be expressed just by poles on the second-
quadrant only. In addition, for a nth-order Butterworth filter, the pole-parameters

corresponding to poles in the second-quadrant can be written as follows:

and

48

unit circle, are symmetrical about



(@k—L)r k=1,2,..%5, for n even

2n

Opr, = k -1
o k=0,1,2,.."%~ for mn odd

(3.3)

The squared-magnitude of this Butterworth filter is
AYw) =

14w?n

For the general case, all pole-phasors have magnitudes equal to w, ( not nec-
essarily unity), and the polar angles 6, are related at values given by the Equ(3.3).
Furthermore, we normalize the d.c. values of A(w) to unity at w = 0 (at DC), so
that A(w) at w = 0 is independent of w,; then, we can write the squared-magnitude
of transfer function,

A (w) =

_ Y
w2n4w3n

In general, for any odd or even order Butterworth filter, the poles exhibit half-
plane symmetry properties with respect to both real and imaginary axis. Based
on the fact that even order filters ( order is 2¥, k is integers) exhibit additional
symmetry properties, for example, n = 16, from Equ (3.3), we get

S — 157
[91’"32 98‘“32

— 8 — 18w
[92“32 97—32

— om = l=m
[93_32 96_32

— I — 9
[04—32 95_32
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Figure 3.2: s-plane Pole-pattern of the Butterworth Filter of n = 16

We can easily find adjacent Butterworth poles in the second quadrant pos-
sess another symmetry - the adjacent pole-pairs (s, 32), (83, $4),(Ss, S6),(s7, sg) are
symmetrical about the lines OA,OB,0C and OD whose angles are %, 3% 52 It
respectively, and each of the four symmetrical pairs adds up to 3.

(61 + 05) = (02 + 07) = (05 + bg) = (64 + 05) = 3

We designate such pole-pairs, whose 8, values add up to 7, as “ Complementary
Pole Pairs (CPPs)”.

(6r + 9(%—I‘+1)) =5 I=12,.,

]
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3.2.3 Modification of Butterworth Pole-pattern Preserving
the C PPF Properties [10]

If we swing the pole-vectors of each adjacent pole-pair about Butterworth filters by
equal angle 6, toward the respective axes of symmetry, the new set of polar angles
will be

0, =35+0 Os= BT 9]

[0y = 3:,”—; — by 0; = 13” + o)

[0s =32+ 60 05 = L— 0o]

[0s=12 -0 05=% +6]

1 «  no shift
+ bdeg shift
* —5deg shift

TSP SUUUE FOP OO MR 75 trestHORO0S OONN SO O

270

Figure 3.3: s-plane Pole-pattern of the CPPF of n = 16

o1



The reference pole-pattern of any specified order n = 2*¥ Butterworth filter can

be modified as:

v (2k—- D7

== +(—1)'°—190,k=1,2,...g (3.4)

where 6y < ||

When 6, > 0, modified transfer function is a low-@Q filter (LQF), or 6y < 0, it
is a high-Q filter (HQF).

Then, we can see the second-order transfer function corresponding to a complex

conjugate pole-pair with wy, as magnitude and +0,; as pole-parameters can be

obtained as

wf,k
T (s) =
k(s) 82 + 2uwpk, cos(Opr)s + Wi,

(3.5)

Furthmore, it is easy to get a nth-order T'(s) transfer function,which is the
product of all T}(s).

T(s) = IT}(s), k = 1,2, g (3.6)

The algorithm, called cppkakb.m, is employed to compute ka and kb coeffi-

cients of continued fraction expansions of C'PP filters.

Algorithm 9: Matlab Function cppkakb.m

function [ka,kb] = cppkakb(n)
h%% %N %% %% %% %% %% %% %% % %% %% % % % %% % %% % % % % % % %

% Continued fraction ezpansion for Low-Q Complementary Pole-Pair Filters
% (CPPF).

% n is the degree of CPPF in s domain
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— wlL? — — Ko
% T = 8242wl cos(ak)stwl?? =10 =5

% D4 = s* +2wLcos(ak)s + wl?, k=1,2.... n/2,

% dy 1s the product of all terms of Dy, ka are coefficients of the continued
% fraction expansion (CFE) of Fi(z)/Fy(z), whereF(z) is mirror-image
% polynomial,and Fy(2) is antimirror-image polynomial of dy.

% Fi(z) = otz

% Fy(z) = =G

%

% CFE1L:

% For n = even or odd,

9% F1(z) = ka (z-+1) + _ 1
Fal2) ( )(z Y ka (2)(Z+B+k (3)K:z+1)+__

% CFE2:
% For n — even,
e(z) (2—1 1
7 F: (2) kb(l)(z—}-l) kb(2 )(z ) 1
1) ko) & z 1 .
% Or if n = odd,
Fo!Z! z ].) 1
% Fj () — kb( )(z+1) + kb(2) (Z+3+ 1
kb(3) (z+1 +—=

%% Convert Fi(2)/Fa(z) or Fy(2)/Fi(z) to continued fraction expansions %%

format short;
wB=1;
a0= 5%pi/180;

% Get wp of CPP

for j=1:n/2,
a (§) = (2%-1)%i/(2%) + (-1)"(5-1)*a0;
lowq_ wLN=[1 2*wB"(2%n)*cos(n*a(1)) -wB"(2*n)];
rootlowg_wLN=roots(lowq_wLN);
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ind = find(rootlowg_wLN >= 0);
rootlowq_wLN=rootlowg _wLN(ind);
wL = (rootlowg_wLN)."(1/n);

end

d = zeros(n/2,3);
do=1;

% To obtain denominator d0 of T
for j=1:n/2,
d(j,:)= [1 2*wL*cos(a (5 )) wL"2J;
d0= conv ( d0,d (3,:));

end

[ka,kb[=butterworthkakb (d0);

Continued fraction expansion for Low-@) Complementary Pole-Pair Filters

(LQF's).
T, = wL? — 0 =50
k= 52+2wL cos{ak)s+wL?? =0y =

Dy, = s + 2wL cos(ak)s + wL?, k=1,2.... n/2,

do is the product of all terms of Dy, ,Fi (), F5(2) are mirror-image polynomial

and antimirror-image polynomial of d0.
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Table 3.7: The Denominator Polynomials of Butterworth CPPF's in s- domain
(6o = 59)

n|d=s"+an_15"" 1 +..+a1s+ao0

2 | 5%+ 1.4016s + 1.1886

4 | s*+2.9337s% +4.303252 4 3.4698s + 1.3989

8 | s®+5.6034s7 4+ 15.69925° + 28.4658s5 + 36.2733s% + 33.11535% + 21.2465352 + 8.8220s + 1.8316

Remark: The numerator of Butterworth CPPF's in s domain is same as the
ag-.
The following table 3.8 gives the z - domain denominator polynomials of

CPPFs (6, =5 .

Table 3.8: The Denominator Polynomials of Butterworth Lowpass CPPF's in z-
domain ( 6y = 5°)

n | Dop(z)

2 | 3.0205z% + 0.3174z + 0.6621

4 | 9.36852% + 1.90712% + 4.136822 + 0.37412 + 0.2135

8 | 83.02062% + 31.368127 - 87.77662° + 22.68112° + 25.32902* + 3.93882° + 1.73552% + 0.1262z + 0.0241

The following table 3.9 gives the mirror - image and anti - mirror - image

polynomials of the z - domain polynomial of the CPPFs ( 6y =5°) .
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Table 3.9: The Mirror - image and Anti - mirror - image Polynomials of the 2 -
domain Butterworth Denominator Polynomials Given in Table 3.8 (6, = 5° )

Fecp1(z) and Feppa(z)

2 | Feppi(z) = 1.841322 + 0.31742 + 1.8413

Feppa(z) = 1.179222 — 1.1792

4 | Fuppi(z) = 4.79102* + 1.14062% + 4.136822 + 1.14062 + 4.7910

Fepp2(z) = 4.57752% + 0.76652% — 0.76652 — 4.5775

8 | Feppi(2) = 41.52142% + 15.746827 + 44.75512°% + 13.309625 + 25.32842% + 13.30962° + 44.755122 + 15.74682z + 41.5214

Feppa(2) = 41.49732% + 15.620627 + 43.01962° + 9.37092% — 9.37092% — 43.019622 — 15.6206z — 41.4973

ka's are coefficients of the continued-fractionexpansion (CFE) of Fi(z)/F»(z),
where Fi(z) is mirror-image polynomial,and F(2) is antimirror-image polynomial

of do.

Table 3.10: The values of CFE1 for CPPF Filters ( 6, =5° ) - ka's

n | ka(l) | ka(2) | ka(3) | ka(4) | ka(5) | ka(6) | ka(7) | ka(8)
2 |1 0.8481 | 1.4016
410.4032 | 1.1120 | 1.7129 | 1.8217
8 1 0.2076 | 0.6139 | 0.9928 | 1.3206 | 1.5914 | 1.8400 | 2.0469 | 1.8290

kb's are coefficients of the continued-fraction expansion (CFE) of Fy(z)/Fy(2)
or FQ(Z)/Fl(Z)

Table 3.11: The values of CFE2 for CPPF Filters ( 6y =5° ) - kb's

n | kb(1) | kb(2) | kb(3) | kb(4) | kb(5) | kb(6) | kb(7) | kb(8)
0.7135 | 1.1792
0.3409 | 0.9401 | 1.4483 | 1.5402
0.1785 | 0.5277 | 0.8534 | 1.1351 | 1.3679 | 1.5817 | 1.7595 | 1.5722

o B IS N I V]
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Using matlab function cfekeo.m, we obtain the values of kf’'s and kz's in

CFE3.

Table 3.12: The values of CFE3 for CPPF Filters ( 6y =5° ) - kf's and kZ's

n | kf(l) | kz(1) | kf(2) | kz(2) | kf(3) | kz(3) | kf(4) | kz(4)
2 10.7134 | 0.8480
4 | 0.3409 | 0.4032 | 1.5140 | 1.7907
8 10.1785 | 0.2076 | 0.5926 | 0.6894 | 1.2682 | 1.4754 | 3.0394 | 3.5359

The algorithm, called cppke.m, is employed to compute kc and +y coeflicients

of continued fraction expansions of CPPF filters.

Algorithm 10: Matlab Function cppkc.m

function [k0,ke,r] = cppke(n,rootsele)

GRT T T RT TN TR T T N Rl % N % %% % %% % %% %% % %% % %% %% % %
% Continued fraction expansion for Low-Q Complementary Pole-Pair Filters
% m s the degree of CPPF in s domain

% Ty = 212wl cL:sIEZk)s+wL2’ o= =5

% Dy = s* + 2wL cos(ak)s +wl?, k=1,2.... n/2,

% dy is the product of all terms of Dy, ka are coefficients of the continued
% fraction expansion (CFE) of Fi(z)/Fs(z), whereFi(2) is mirror-image

% polynomial,and F5(z) is antimirror-image polynomial of dy.

9 Fl(z) — do(2)+2"do(2~ 1)

2

% FQ(Z) — do!z)—z"do(z_1)

2

% CFE3:
% For n = odd,
Fao(z) __ (z2—1) (zz—l) 1
% Fio(Z) = kc(0) @+ T kc(l)(z2+71z+1) ke(2) —Z2=D) 1
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% CFE3:
% For n = even,kc(0)
2_
5 58 = )ty + g

24mz+1) 1
kC(z) (22_‘_7224_1) ke(3) (22_1) +;
(P tyge+) e

%% Convert Fy(z)/Fi(z) to continued fraction expansions %%

format short;
wB=1;
a0= 5%pi/180;

% Get wp of CPP

for j=1:n/2,
a (j) = (2%-1)"pi/(2*n) + (-1)"(j-1)*al;
lowg_wLN=[1 2*wB"(2%n)*cos(n*a(1)) -wB~(2%*n)];
rootlowq_ wLN=roots(lowg_wLN);
ind = find(rootlowq_wLN >= 0);
rootlowq_ wLN=rootlowq wLN(ind);
wL = (rootlowq _wLN).~(1/n);

end

d = zeros(n/2,3);
d0=1;

% To obtain denominator d0 of T
for j=1:n/2,

d(j,:)=[1 2*wL*cos(a (j ) wL"2];

d0= conv ( d0,d (3,:)); % d0 is the CPPF in s domain
end

[k0,ke,r]=butterworthkc (d0,rootsele);
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The following table 3.13 gives the values of k¢'s and +'s coefficients of the
continued-fraction expansion C PPF Filters ( 6y = 5°).

kcd's and +'s are coefficients of the continued-fraction expansion (CFE) of

Fy(2)/ F1(2).

Table 3.13: The values of CF E4 for CPPF Filters ( 6y = 5°) - kc's and +'s

n | ke(l) | ke(2) | ke(3) | ke(4) (1) r(2) (3) r(4)

2 | 0.6404 0.1724
4 10.4993 | 0.4562 -0.9537 | 1.1917
0.4562 | 0.4993 1.1917 | -0.9537

8 1 0.3622 | 0.2234 | 0.6376 | 0.1053 -1.6239 | 1.0294 | 1.4911 | -0.1925
0.3622 | 0.2234 | 0.1053 | 0.6376 -1.6239 | 1.0294 | -0.1925 | 1.4911
0.3622 | 0.1161 | 0.3502 | 0.3379 -1.6239 | 0.0462 | 0.3450 | 1.6898
0.3622 | 0.1161 | 0.3379 | 0.3502 -1.6239 | 0.0462 | 1.6898 | 0.3450
0.3192 | 0.2393 | 0.7098 | 0.1027 1.7151 | -0.7901 | -1.3409 | 0.4858
0.3192 | 0.2393 | 0.1027 | 0.7098 1.7151 | -0.7901 | 0.4858 | -1.3409
0.3192 | 0.1152 | 0.3826 | 0.3554 1.7151 | 0.2550 | -1.5914 | -0.0459
0.3192 | 0.1152 | 0.3554 | 0.3826 1.7151 | 0.2550 | -0.0459 | -1.5914
0.1616 | 0.2330 | 0.6500 | 0.3910 -0.2847 | 1.0386 | 1.4675 | -1.5761
0.1616 | 0.2330 | 0.3910 | 0.6500 -0.2847 | 1.0386 | -1.5761 | 1.4675
0.1616 | 0.5474 | 1.1873 | 0.3603 -0.2847 | -0.4329 | -0.8244 | 1.6039
0.1616 | 0.5474 | 0.3603 | 1.1873 -0.2847 | -0.4329 | 1.6039 | -0.8244
0.1564 | 0.5241 | 1.1054 | 0.4050 0.5728 | 0.7101 | 1.0592 | -1.4821
0.1564 | 0.5241 | 0.4050 | 1.1054 0.5728 | 0.7101 | -1.4821 | 1.0592
0.1564 | 0.2498 | 0.7222 | 0.3457 0.5728 | -0.8007 | -1.3118 | 1.6779
0.1564 | 0.2498 | 0.3457 | 0.7222 0.5728 | -0.8007 | 1.6779 | -1.3118
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3.3 Summary and Discussion

This chapter gives the algorithms for obtaining the coefficients of the different contin-
ued fraction expansions for the z - domain denominator polynomials corresponding

to Butterworth lowpass filters and complementary pole - pair lowpass filters.
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Chapter 4

The Application. of the Continued
Fraction Expansion for Chebyshev

Lowpass Filter in z Domain

Chebyshev lowpass filter approximations are based on Laplace domain. By applying
the bilinear transformation s = iﬁ’ the transfer functions in discrete domain are
characterized.

The purpose of this chapter is to establish an algorithm to obtain the coeffi-
cients ka’s , kb’s and kc’s and 7's of continued fraction expansion (CF'E) using the

concept of mirror-image polynomial and anti-mirror-image polynomial for Cheby-

shev lowpass filters in z domain after bilinear transformation.
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4.1 The Application of the Continued Fraction Ex-
pansion for Chebyshev Lowpass Filter in z do-
main

First we take the nth-order Chebyshev lowpass filter polynomial, and apply bilinear

z—1
z+1?
Ng(2) — (z+1)"™

Dy(z) Doug(z)”

mirror-image and anti-mirror-image polynomials.

transformation s = then we will get lowpass transfer functions in discrete

domain Toge(z) = For each order of D¢y4(z), we can produce the

Each order of Dcng(2), the denominator polynomial of Chebyshev lowpass
filters in the 2 - domain, is obtained which is listed in Table 4.1 up to order n = 6.
For these polynomials, the mirror-image polynomial Fog(z) and the anti-mirror-

image polynomials Fopa(2) are obtained and are listed in Table 4.2.
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Table 4.1: The Denominator Polynomials of Chebyshev Lowpass Filters in the z -

domain

passaband ripple Ap

Dorp(?)

1.3493z + 0.6507

2.753922 + 0.7213z + 0.7619

A, =0.5dB 6.292523 — 0.79772% 4 3.2065z — 0.7912
e = 0.3493 14.86322% — 7.901923 + 13.526922 — 5.9800z + 2.4398
35.494925 — 33.49532% + 51.11332° — 34.17792% + 18.8155z — 5.7505
85.17362% — 115.564825 + 181.82252% — 157.66312% + 110.542422 — 50.57082 + 14.0525
1.5088z + 0.4912
3.256922 + 0.2086z + 1.0226
A, =1.0dB 7.56772% — 2597222 + 4.57397 — 1.5444
€ = 0.5089 18.01312* — 13.50632% 4 19.319622 — 10.0837z + 4.2097
43.188825 — 50.24402% + 72.778923 — 54.002222 + 30.3400z — 10.0597
103.83002% — 163.713625 + 256.19312% — 238.644323 4 172.490222 — 82.7969z + 24.4508
1.7648% + 0.2352
4.01802% — 0.5413z + 1.5590
Ap = 2.0dB 9.44322% — 5.30752% + 6.79332 — 2.9291
€ =0.7648 22.60862% — 21.877523 + 28.888222 — 16,9972z + 7.5208

54.337025 — 75.11752% + 107.22632% — 86.590822 + 50.2212z — 18.0762

131.86412% — 235.03852% + 372.25322% — 368.896823 + 276.493222 — 138.91712 + 43.8129
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Table 4.2: The Mirror - image and Anti - mirror - image Polynomials of Denomina-
tors of the z - domain Chebyshev Lowpass Polynomials Given in Table 4.1

Ap Fepi(z) and Fogao(z)
Fog1(z) = 1.0000z 4 1.0000
Foma(z) = 0.3493z — 0.3493
Foui(z) = 1.75792% + 0.7213z + 1.7579
Foga(z) = 0.996022 — 0.9960
Fopi1(z) = 2.75062% + 1.249422 4 1.2494z + 2.7506
Ap = 0.5dB Foma(z) = 3.541923 — 2.047122 + 2.0471z — 3.5419
£ = 0.3493 Fopi(z) = 8.65152% — 6.94092° + 13.526922 — 6.94092 + 8.6515

Fopga{z) = 6.21172% — 0.960923 + 0.9609z — 6.2117

Fomi(z) = 14.872225 — 7.33992* + 8.46772% + 8.46772% — 7.33992 + 14.8722

Foma(z) = 20.622725 — 26.15542% 4 42.64562% — 42.645622 + 26.1564z — 20.6227

Fomi(2) = 49.613028 — 83.067825 4 146.18252* — 157.663123 4 146.182522 — 83.06782 + 49.6130

Fora(z) = 35.560526 — 32.497025 + 35.640124 — 35.640122 + 32.4970z — 35.5605
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Ap Fopgi(z) and Fopa(z)
Fou1{z) = 1.0000z + 1.0000
Fone{Z) = 0.50882 — 0.5088
Feni1(Z) = 2.13972% 4 0.2086z + 2.1397
Fopa(Z) = 1117222 — 1.1172
For1(Z) = 3.01172°% + 0.988322 + 0.9883z + 3.0117
Ap =1.0dB Foma(Z) = 4556023 — 3.585522 + 3.5855z — 4.5560
£ = 0.5089 Fop1(Z) = 11.1114z% — 11.79502% + 19.31962% — 11.7950z + 11.1114
Fona(Z) = 6.90172% — 1.71132% + 1.7113z — 6.9017
Fon1(Z) = 16.560325 — 9.94842* 4 0.38812% + 9.388122 — 9.94842 + 16.5603
Foya(Z) = 26.617625 — 40.27802* + 63.36932% — 63.369322 + 40.2780z — 26.6176
Fop1(Z) = 64.14042% — 123.255325 + 214.34162% — 238.644323 4 214.341622 — 123.2553z + 64.1404
Fora(Z) = 39.68962% — 40.458325 + 41.85142% — 41.851422 + 40.4583z — 39.6896
Ap Fopi(z) and Fopa(z)
Feri(2) = 1.0000z + 1.0000
Foma(Z) = 0.7648z — 0.7648
Fog1(Z) = 2.788522 — 0.5413z + 2.7885
Fou2(Z) = 1.22952% — 1.2295
Fon1(Z) = 3.257T12% 4 0.742922 + 0.7429z + 3.2571
Ap = 2.0dB Foua(Z) = 6.18612% — 6.05042% + 6.0504z — 6.1861
€ = 0.7648 For1(z) = 15.06472% — 19.43742% + 28.888222 — 19.43742 + 15.0647

Fopa(Z) = 7.5439z% — 2.440223 + 2.4402z — 7.5439

Fomi1(Z) = 18.13042% — 12.44812% 4 10.31772% + 10.31772% — 12.4481z + 18.1304

Fopa(Z) = 36.206625 — 62.66932% + 96.908623 — 96.908622 + 62.6693z — 36.2066

For1(Z) = 87.338528 — 186.97782% + 324.37322* — 368.89682° -+ 324.373222 — 186.97782 + 87.3385

Foma(Z) = 43.525625 — 48.060725 4 47.88002* — 47.880022 + 48.0607z — 43.5256
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The following algorithm, called chebyshevkakb.m, is employed to obtain ka
and kb coefficients of continued fraction expansions for a nth-order denominator

polynomial of Chebyshev lowpass filter.

Algorithm 11: Matlab Function chebyshevkakb.m

function [ka, kb] = chebyshevkakb(d)

BRI RR%%T %% %% %% %% % % % % % % % % % % % % % %6 % % % %6 % % % % % %

% d is a denominator polynomial of Chebyshev filter in s domain, apply

Nona(z) _ _(z+1)"
Dora(z) Dcry(z)

% bilinear transformation s = er_,L,we get Tena(z) = ken
% Dq4(z) is a denominator polynomial of Chebyshev filter in z domain.

% Find coefficients ka and kb of the continued-fractionezpansion (CFE) of
% F1(z)] Fy(z) or Fy(z)/Fi(z), where Fi(2) is mirror-image polynomial,

% and Fy(z) is antimirror-image polynomial of Dy(z).

% Fi(z) = [Dd(Z)+Z’2‘Dd(Z“‘)]

% Fy(z) = [Da(z)=2"Dy(2~")]

2

%

% CFE1:

% For n = even or odd,

Fl(z (Z+1 1

% Falz) ( )(z 1) ka(2) (z+3~}—,E @ ,_:1 -
z=1) " ...

% CFE2:

% For n = even,

y Fl (zl) k‘b(]-) (Z+1) kb(2) (z=1) 1

(Z+1)+kb(3) z— 1+ 1

% Or if n = odd,

Foolz) __ (z—1) 1
% Fio(z) — kb(l)(z+1) + kb(2) g+3+k;,(3) L

% d 1s coefficients of polynomial D respectwely wn descending powers of z.

%% Convert F\(z)/Fy(z) or Fa(2)/Fi(z) to continued fraction expansions %%
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% d(1) must be non-negative.

if(d(1) <=0)
error(’First coefficient in d vector must be non- negative.’)
return

end

% The coefficient of d vector must be real value
for i1 = I:length(d)
if( any(imag(d(i5))))
error(’The coefficient of d vector must be real value.’)
return
end

end

% Get ka and kb coefficients of the continued-fraction expansion

[Nd,Dd]=bilinear(1,d,0.5);

denpoly=Dd/Nd(1);

[ka,kb]=cfekakb(denpoly);

The following table 4.3 gives the coefficients ka's of CFE1 for denominator
polynomials of Chebyshev lowpass filters.

d is a vector which represents the coefficients of a denominator polynomial of
Chebyshev filter respectively in descending powers of s domain, in the form s +
a18" ' 4+ ags" 2+ ... + Gp_28% + Gn_15 + an, for Chebyshev filter function of order n,

with pass-band from 0 to 1 rad/sec. By applying bilinear transformation s = —zﬁ,we

Ny(z) _ (e41)"

get Ta = Dyy™ “Date) ?

Dy(2) is a denominator polynomial of Chebyshev lowpass
filter in z domain. ka are coefficients of the continued-fractionexpansion (CFE) of
Fy(2)/Fy(z) , where Fj(z) is mirror-image polynomial,and F5(z) is antimirror-image

polynomial of Dy(z).
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Table 4.3: The Values of ka's in CF E1 for Denominator Polynomials of Chebyshev

Lowpass Filters

passaband ripple A,

3

Ka(1)

ka(2)

ka(3)

ka(4)

ka(5)

ka(6)

A, = 0.5dB
e = 0.3493

2.8628

1.0635

1.4256

0.4663

1.9512

0.7866

0.3696

0.8047

3.2454

0.3926

0.2378

0.8864

0.7656

6.5573

0.1691

0.2192

0.5251

1.4130

0.5703

16.0217

0.0638

A, =1.0dB
£ = 0.5089

1.9652

1.0044

1.0977

0.3967

2.0933

0.5916

0.3712

0.6749

3.9696

0.2779

0.2116

0.9408

0.6131

8.9738

0.1122

0.2244

0.4586

1.6245

0.4295

23.9259

0.0401

A, =2.0dB
e = 0.7648

1.3076

1.0239

0.8038

0.3198

2.4453

0.4180

0.3982

0.5321

5.2744

0.1842

0.1779

1.0765

0.4585

13.2920

0.0700

S| WINdDN R, ]WIN|R OO AW |~

0.2446

0.3759

2.0325

0.3014

38.1753

0.0239

The following table 4.4 gives the coefficients kb's of CFE2 for denominator

polynomials of Chebyshev lowpass filters.
kb's are coefficients of the continued-fraction expansion (CFE) of Fy(2)/Fs(z)

or Fy(2)/F\(2).
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Table 4.4: The Values of kb's of CFE2 for Denominator Polynomials of Chebyshev
Lowpass Filters

passaband ripple A, | n | Kb(1) | kb(2) | kb(3) | kb(4) | kb(5) | kb(6)

0.3493
0.7014 | 0.9403
0.7981 | 1.3001 | 1.3465
0.8352 | 1.3916 | 1.7279 | 1.3138
0.8529 | 1.4291 | 1.8142 | 1.6426 | 1.5388
0.8627 | 1.4483 | 1.8494 | 1.7101 | 1.9018 | 1.4042
0.5088
0.9110 | 0.9957
1.0118 | 1.3332 | 1.5088
1.0495 | 1.4126 | 1.9093 | 1.2817
1.0674 | 1.4441 | 1.9938 | 1.5908 | 1.6652
1.0773 | 1.4601 | 2.0270 | 1.6507 | 2.0491 | 1.3457
0.7648
1.2441 | 0.9766
1.35563 | 1.2740 | 1.7717
1.3962 | 1.3389 | 2.2169 | 1.1727
1.4155 | 1.3640 | 2.3049 | 1.4468 | 1.9004
1.4261 | 1.3765 | 2.3383 | 1.4974 | 2.3304 | 1.2137

A, = 0.5dB
£ = 0.3493

Oy | CU | = | WO | DN | =

A, =1.0dB
e = 0.5089

Oy | CU = [ W (DN |

Ju—y

A, =2.0dB
£ = 0.7648

Sy O AW N

Using matlab function cfekeo.m, we obtain the values of kf’'s and kz's in

CFE3. The following table gives the values of kf's and k2's in CFE3.
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Table 4.5: The Values of kf’s and kz's in CFE3 for Denominator Polynomials of
Chebyshev Lowpass Filters

Kf(1) | k2(1) | kF(2) | k2(2) | KF(3) | K2(3)
0 2.8628
0.7014 | 1.0635
0 0.4663 | 1.2712 | 1.9512
0.8352 | 0.3696 | 2.8656 | 2.4541
0 0.2378 | 1.0698 | 0.8864 | 4.6600 | 4.2323
0.8627 | 0.2192 | 2.1218 | 0.9599 | 4.9832 | 4.1085
0 1.9652
0.9110 | 1.0044
0 0.3967 | 1.6903 | 2.0933
1.0495 | 0.3712 | 2.9693 | 2.3143
0 0.2116 | 1.3788 | 0.9408 | 4.6590 | 3.9642
1.0773 | 0.2244 | 2.1715 | 0.9064 | 5.4102 | 4.2876
0 1.3076
1.2441 | 1.0239
0 0.3198 | 2.3922 | 2.4453
1.3962 | 0.3982 | 2.8677 | 2.0693
0 0.1779 | 1.8920 | 1.0765 | 4.2884 | 3.4620
1.4261 | 0.2446 | 2.0754 | 0.8103 | 6.1786 | 4.7452

3

passaband ripple 4,

A, =0.5dB
£ = 0.3493

A, =1.0dB
£ = 0.5089

A, = 2.0dB
£ = 0.7648

| W D O[Ok | W=y O] d]Ww ||~

The M-file chebyshevke.m, is employed to compute kc or k0 and +y coefficients of
continued fraction expansions for the denominator polynomial of Chebyshev

Lowpass Filter.

70



Algorithm 12: Matlab Function chebyshevke.m

function [kO, ke, r] = chebyshevke(d,rootsele)
%RTR T TR %% %% %% %% % %% %% % % % % % % % % % %6 % %6 % %6 % % % % % %

% d is a denominator polynomial of Chebyshev filter in s domain, apply

Na(z) _ (z+1)"
+1,we get Ty = DZ(ﬁ)— lz)d(z)) ’

% bilinear transformation s =
% Dgy(z) is a denominator polynomial of Chebyshev filter in z domain.

% Find coefficients kc/r of the continued-fraction ezpansion of Fi(z)/Fz(z)
% or Fa(z)/Fi(z), where Fi(z) is mirror-image polynomial, and Fy(z) is

% antimirror-image polynomial of Dy(2).

% Fi(z) = [Dd(z)-i'z;Dd(z_l)]

% Fy(z) = [Dd(z)—z;‘Dd(Z‘l)]

% CFE4:
% Forn = odd,
Fo( _ ( —l! -1
% 7 = ke(0) G + he() it + P -
(z2+—72z+1) kc(3) ‘$+2 1+21
731 ------
% CFE4:
% For n = even,kc(0)
% 2 = ke(l) it + 1

Ptnz+l) T (o) 220
(z

%% Convert Fy(2)/Fa(2) or Fa(2)/Fi(2) to contmued fmctwn expansions %%

% d(1) must be non-negative.
ifl d(1) <=0)
error(’First coefficient in d vector must be non- negative.’)

return

end
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% The coefficient of d vector must be real value
for @i = 1:length(d)
if( any(imag(d(i4))))
error("The coefficient of d vector must be real value.’)
return
end

end

% Get ka and kb coefficients of the continued-fraction expansion
[Nd,Dd]=bilinear(1,d,0.5);

denpoly=Dd/Nd(1);

[kO, kc, r]=cfeke(denpoly,rootsele);

The following table 4.6 gives the coefficients k¢'s and 's of C FE4 for denom-
inator polynomials of Chebyshev lowpass filters.

kd's and +'s are coefficients of the continued-fraction expansion (CFE) of
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Table 4.6: The Values of kc's and 7's of CF E4 for Denominator Polynomials of
Chebyshev Lowpass Filters

passband ripple A, | 70 | kc(0) | ke(1) | kc(2) | kc(3) (1) v(2) v(3)
110.3493
2 0.5666 0.4103
3 | 0.7981 | 0.4895 -0.5458
4 0.4735 | 0.2445 -1.1740 | 0.3718
Ap =0.5dB 0.2445 | 0.4735 0.3718 | -1.1740
e =10.3493 5 | 0.8529 | 0.4324 | 0.1014 -1.4502 | -0.0434
0.8529 | 0.1014 | 0.4324 -0.0434 | -1.4502
6 0.3382 | 0.0676 | 0.3885 -1.6437 | -0.0590 | 0.0276
0.2149 | 0.2185 | 0.5636 0.3074 | -0.7638 | -1.4619
0.1637 | 0.4307 | 0.7261 -0.3380 | -0.4508 | -1.3033
passband ripple 4, | 71 | kc(0) | ke(l) | ke(2) | ke(3) (1) 7(2) v(3)
11 0.5088
2 0.5221 0.0975
3 (1.0118 | 0.5010 -0.6718
4 0.4298 | 0.1914 -1.2676 | 0.2061
A, =1.0dB 0.1914 | 0.4298 0.2061 | -1.2676
e=10.5089 |5 |1.0674 | 0.4416 | 0.0982 -1.4881 | -0.1127
1.0674 | 0.0982 | 0.4416 -0.1127 | -1.4881
6 0.3076 | 0.0712 | 0.3183 -1.6737 | -0.1080 | -0.1456
0.1472 | 0.2309 | 0.5292 0.1738 | -0.8571 | -1.4943
0.1640 | 0.4301 | 0.5654 -0.4217 | -0.4244 | -1.4403
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passband ripple 4, | 1 | kc(0) | ke(1) | ke(2) | ke(3) (1) v(2) v(3)
1] 0.7648
2 0.4409 -0.1941
3 | 1.3553 | 0.5439 -0.7719
4 0.3644 | 0.1363 -1.3512 | 0.0610
A, =2.0dB 0.1363 | 0.3644 0.0610 | -1.3512
e =0.7648 5 | 1.4155 | 0.4798 | 0.1017 -1.56182 | -0.1684
1.4155 | 0.1017 | 0.4798 -0.1684 | -1.5182
6 0.2632 | 0.0824 | 0.2398 -1.7011 | -0.1471 | -0.3013
0.0877 | 0.2557 | 0.4588 0.0672 | -0.9355 | -1.5316
0.1474 | 0.4328 | 0.4139 -0.5069 | -0.3749 | -1.5517

4.2 Summary and Discussion

This chapter gives the algorithms for obtaining the coefficients of the different con-

tinued fraction expansions CF'E for the z - domain denominator polynomials cor-

responding to Chebyshev lowpass filters.

74




Chapter 5

The Generation of the Transfer

Functions

The previous chapters dealt with the determination of the coeflicients of continued
fraction expansions using the concept of mirror-image polynomial and anti-mirror-
image polynomial for Butterworth lowpass filter, Butterworth lowpass C PPF' filter
and Chebyshev lowpass filter approximations in z domain after bilinear transforma-
tion.

It must be noted that the positivity of kc's will not be sufficient to prove that
D(z) contains all its zeros within the unit circle. However, when C F Es in this thesis
are considered, kc's are positive, and magnitudes of 7;’s are less than 2. From these,
stable transfer functions D(z) can be obtained. The purpose of this chapter is to
establish an algorithm to obtain stable transfer functions of the filters in 2z domain
from coefficients kc and - of the continued fraction expansions (CFE4). For exam-
ple, we would like to use coefficients k0 , kc and v of continued fraction expansions
for Butterworth lowpass filters, Butterworth C PP F's filter and Chebyshev lowpass
filter approximations in z domain, which are obtained in chapter 3 and chapter 4,

to get the transfer functions of the filters.
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5.1 Generation of the Stable Transfer Functions from
Coefficients kc and ~ of Continued Fraction Ex-

pansion

5.1.1 Lowpass Filter
a)

Given kc (and kg) and «y coefficients of a continued fraction expansion for a

lowpass filter, we can easily represent the denominator Dg(z) of transfer function in

z domain whose zeros are satisfied inside the unit circle.

T(z) = - (5.1)

We can normalize Equ (5.1) to make the maximum of T}4(z) unity.
For a nth-order lowpass filter transfer function, we will get digital transfer

function

(5.2)

b)

The code dlowpoly.m used to design the denominators of lowpass filter transfer
functions is given below. Then we select 3 frequencies randomly in passband to
examine the magnitude values of lowpass filter transfer functions. The range of 3
frequencies are [ 0, 2xarctan(1)].

The M-file dlowpoly.m is employed to examine the magnitude values of lowpass
filter transfer functions coming from k0 , kc and « coefficients of continued fraction

expansions.
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Algorithm 13: Matlab Function dlowpoly.m

function [wl, Maglow] = dlowpoly(k0,kc,r)
BR%T% R BT R T% R TR T T %% % %% %% %% %% %% % %% %% % % %%
# d) = ()l

Fao(z) _ (z—1)
% F2 k ( ) +1) +kc(1) (z2+71z+1)+ ( )( 2(22 1) ) =
=2 tr2e+l kc(3)—2-(———L
(z +'y3z+l

% kO, kc are coefficients of the continued-fraction expansion for a

1

% denominator of lowpass

% r are coefficients of 2> + y(n)z + 1 respectively

% Maglow is the vector of magnitudes values at wl in [0, 2%arctan(1)]

% randomly

%% % %% Obtain a denominator polynomial from coefficients of CFE %% %% %

k=kc;
= length(k);
LR = length(r);
w = -p1:0.001:ps;
if (LK >=2)
for ii= I:length(k)
if( k(i) <=0)
error(’Coefficient in k vector must be positive.’)
return
end
if( imag(k(ii)) "= 0)
error(’The coefficient in k vector must be real value.’)
return
end

end
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for ii=1:length(r)
if(imag(r(ii)) "=10)
error("The coefficient in a vector must be real value.’)
return
end

end

% Obtain denominator of filter transfer function

if (k0==0) % if the degree of antimirror/mirror-image polynomial is even
odddeg = 0;
[m,a] = dpolyeven(k,r);
d = m+a;

else % When the degree of antimirror/mirror-image polynomial is odd
odddeg = 1;
[m,a] = dpolyeven(k,r);
fdenodddeg = [1 1];
fnumodddeg = [1 -1];
modddeg = conv(m,fdenodddeg);
aodddeg = conv(m,k0*fnumodddeg)+conv(a,fdenodddeg);
d = modddeg+aodddeg;

end

% Obtain numerator of lowpass filter transfer function
numlowpass = 1;
numlowpass0 = [1 1];
for ii=1:(2*length(r)-+odddeg),
numlowpass = conv( numlowpass,numlowpass0);

end
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attenlow = maz(abs(freqz(numlowpass,d,w)));
wl = 1.5708%*rand(1,3);

Maglowpass = freqz(numlowpass,d,wl) /attenlow;
Maglow = abs(Maglowpass);

Dlow=—d*attenlow;

end
if (LK <=1)
if (LK==1)8(LR==1)8(k0==0)8k~=0 % n=2
a=k*[1 0 -1];
m=[1r 1];
d = m+a;
numlowpass = [1 2 1];
attenlow = maz(abs(fregz(numlowpass,d,w)));
wl = 1.5708%rand(1,3);
Maglowpass = freqz(numlowpass,d,wl) /attenlow;
Maglow = abs(Maglowpass);
Dlow=d*attenlow;
end

if (LK==1)8(LR==1)6(k0"=0)8k~=0 % n=3
a=k*[1 0 -1];
m=[1r 1];
fdenodddeg = [1 1];
fnumodddeg = [1 -1];
modddeg = conv(m,fdenodddeyg);
aodddeg = conv(m,k0*fnumodddeg)+conv(a,fdenodddeg);
d = modddeg+aodddeg;
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numlowpass = [1 3 3 1];

attenlow = maz(abs(freqz(numlowpass,d,w)));
wl = 1.5708%*rand(1,3);

Maglowpass = fregz(numlowpass,d,wl) /attenlow;
Maglow = abs(Maglowpass);

Dlow=d*attenlow;

end

if ((LK==08LR==0)8k0~=0)/((k==08r==0)&k0"=0) % n=1
fdenodddeg = [1 1];
fnumodddeg = [1 -1];
modddeg=fdenodddeg;
aodddeg—k0*fnumodddeg;
d = modddeg+aodddeg;
numlowpass = [1 1];
attenlow = maz(abs(freqz(numlowpass,d,w)));
wl = 1.5708%rand(1,3)
Maglowpass = freqz(numlowpass,d,wl) /attenlow;
Maglow = abs(Maglowpass);
Dlow=d*attenlow;
end

end

w=0.01:0.05:p1;
lowpass = freqz(numlowpass,d,w)/attenlow,
Flowpass = fregz(numlowpass, Dlow,w);

plot(w,abs(lowpass));
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%set(gca, X Tick’,0:pi/2:pi)

%set(gca,”X TickLabel’,{°0°,’pi/2’,’pi’})
wlabel(’\ omega’);

ylabel(’Frequency Response of Lowpass’);
azis([0 pi 0 1.2])

Algorithm 14: Matlab Subfunction dpolyeven.m

function [m,a] =dpolyeven(k,r)

%% % %% % % %% %% %% %% %% %% %% %% %% % % %% % % %% % %% % % % %
% This function is a subfunction of dpoly.

% From the coefficients of continued-fraction expansion of Fy(z)/Fi(z),

% find the denominator of transfer function

%% Convert Fy(z)/Fi(2) to continued fraction expansions %%

Ncoe = length(r);
fnum=[10 -1];
m = zeros(1,2*Ncoe);

a = zeros(1,2*Ncoe);

1= Ncoe;
F1=[1 r(i) 1];
2=k(i)*fnum;
for 11=2:Ncoe
i=1-1;
fa=[1r(i) 1];
3=k (i) *fnum;

if rem(Ncoe,2)==0 % number of k is even
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a =conv(f2,f4)+ conv(f1,f3);

fl=a;
fe=m;

end

if rem(Ncoe,2)==1 % number of k is odd

a =conv(f1,f1)+ conv(f2,f3);

m=con(f2,f4);
f2=a;
f1=m;

end

end

Table 5.1: The Selected Frequencies and Magnitude Values of the Transfer Functions
for Butterworth Lowpass Filters in z domain

k0 and kc r w1 magl wy mag2 w3 mag3
[0 0.7071] 1.4925 | 0.7601 0.3631 0.9994 | 0.9532 | 0.9663
[0.50000 0.5000} [-0.6667] 0.7634 | 0.9979 1.4001 0.8584 1.1971 0.9532
[0 0.4826 0.4826] {1.0222 -1.0222] 0.7170 | 0.9998 | 0.0291 1.0000 1.2903 | 0.9522
ip [0.3090 0.4578 0.2332] [-1.2754 0.3311] 0.6985 0.9999 | 0.9687 | 0.9991 1.2440 | 0.9824
[0 0.4191 0.1893 0.8483] [1.4525 -0.3984 -1.2323] 1.4480 | 0.9025 1.1596 | 0.9970 | 0.2769 | 0.9999
[0.2225 0.3803 0.1489 0.4222] [-1.5758 0.1566 0.4635] 0.6373 | 0.9999 1.4694 | 0.8975 1.4403 | 0.9285
[0 0.3454 0.2371 0.6809 0.0935] [1.6637 -0.8770 -1.4063 0.2972] | 0.6445 0.9999 1.4037 | 0.9653 | 0.0909 | 1.0000
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Table 5.2: The Selected Frequencies and Magnitude Values of the Transfer Functions
for Butterworth C PPF Lowpass Filters in 2 domain

ke T w1 magl wa mag2 w3 mag3
[0 0.6404] [0.1724] 0.5543 | 0.9943 1.2773 | 0.9592 0.0155 | 0.9848
ip [0 0.4993 0.4562] [-0.9537 1.1817] 0.9484 | 0.9823 | 0.4276 | 0.9995 0.3123 | 0.9998
[0 0.3622 0.2234 0.6376 0.1053] [-1.6239 1.0294 1.4911 -0.1925] 0.0240 1.0000 1.1731 0.9867 0.6992 | 0.9999
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Table 5.3: The Selected Frequencies and Magnitude Values of the Transfer Functions
for Chebyshev Lowpass Filters in 2 domain

ke 7 wq magl w2 mag2 w3 mag3
[0.3493] 1.4925 0.9516 0.3631 0.9980 0.9532 0.9841
{0 0.5664] [0.4102] 0.7634 0.9730 1.4001 0.9895 1.1971 0.9997
Ap = 0.5dB [0.7981 0.4894] [-0.5455] 0.7170 0.9524 0.0291 0.9995 1.2903 0.9818
e = 0.3493 [0 0.4732 0.2445] [-1.1742 0.3719] 0.6985 0.9996 0.9667 0.9790 1.2440 0.9440
[0.8529 0.4324 0.1014] [-1.4502 -0.0433] 1.4480 0.9663 1.1598 0.9895 0.2769 0.97567
[0 0.3382 0.06875 0.3885] [-1.6435 -0.0590 0.0276] 0.6373 0.9876 1.4694 0.9550 1.4403 0.94486
[0.5089] 0.6445 0.9859 1.4037 0.91886 0.0909 0.9997
[0 0.5221] [0.0980] 0.5543 0.9198 1.2773 0.9987 0.01556 0.8913
Ap = 1.0dB [1.0121 0.5010] [-0.6721] 0.2182 0.9867 0.3185 0.9731 0.3122 0.9740
& = 0.5089 [0 0.4299 0.1913] [-1.2667 0.2059] 0.9484 0.9609 0.4276 0.9481 0.3123 0.9225
[1.06875 0.4416 0.0982] [-1.4882 -0.1126] 0.0240 0.9995 1.1731 0.9717 0.6992 0.8990
[0 0.3076 0.0712 0.3182] [-1.6737 -0.1080 -0.1456] 1.4637 0.9063 0.7320 0.9399 0.8576 0.9691
[0.76451 1.3292 0.8579 0.8249 0.9483 0.3183 0.9926
[0 0.4911} [-0.4435] 1.0558 0.9989 1.3185 0.8899 0.0308 0.8704
Ap =2.0dB [1.3550 0.5436] [-0.7718] 1.0702 0.8104 0.5961 0.8511 1.3068 0.9335
e = 0.7648 [0 0.3648 0.1360] [-1.8502 0.0602] 0.7898 0.9886 1.1144 0.8207 0.6737 0.9890
[1.4154 0.4798 0.1017] [-1.5183 -0.1684] 0.4785 0.8110 0.2979 0.8861 0.3038 0.8830
[0 0.2633 0.0823 0.2397] [-1.7014 -0.1471 -0.3011] 0.2370 0.8658 1.00683 0.8803 0.5943 0.9742
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Figure 5.1: Graph of Lowpass Frequency Responses

5.1.2 Highpass Filter

a)
Using s — % transformation or m-file [p2hp, wo = 1, a highpass filter, whose

cutoff frequency is 1, can be prooduced from a lowpass filter in s domain.
b)

First we take the nth-order highpass filter polynomial in s domain, and by

applying the bilinear transformation s = ;—jﬁ, we obtain a nth-order highpass filter

transfer function in discrete domain.

_ Ng(z) (=17

Thd a Dd(z) o th(Z)

(5.3)

c)
The m-files of dhighbutter.m, dhighcpp.m and dhighcheby.m, which are used to

examine the magnitude values of highpass filter transfer functions, are given below.
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Then we select 3 frequencies randomly in passband, and the range of 3 frequencies
is [ 2xarctan(1), 7).
The M-file dhighbutter.m is employed to examine the magnitude values of

highpass filter transfer functions for Butterworth filters.

Algorithm 15: Matlab function dhighbutter.m

function [wh, Maghighbutter]|= dhighbutter(N)
% N is the order of Butterworth filters
% Maghighbutter is the vector of magnitudes values at wh in

% [ 2*arctan(1), w] randomly

[nums, dens|=butter(N,1, high’,’s’);
[NUMZ,DENZ]=bilinear(nums,dens,0.5);

wh = 4*atan(1)-2*atan(1)*rand(1,3);
Maghighbutter=abs(freqz(NUMZ,DENZ,wh));
w=0.01:0.01:pi;

highpass = freqz(NUMZ,DENZ,w);
plot(w,abs(highpass));

zlabel(’|omega’);

ylabel(’Frequency Response of Highpass’);
azis([0 pi 0 1.0])

86



Table 5.4: The Selected Frequencies and Magnitude Values of the Transfer Functions
for Butterworth Highpass Filters in 2 domain

niw magl | wa mag2 | ws mag3

2 | 2.3616 | 0.9860 | 1.7282 | 0.8081 | 1.8510 | 0.8700
2.6044 | 0.9998 | 2.6865 | 0.9999 | 2.6056 | 0.9998
1.8245 | 0.9413 | 2.2493 | 0.9986 | 2.5597 | 1.0000

2.0506 | 0.9966 | 2.1656 | 0.9991 | 1.8931 | 0.9817

2.8699 | 1.0000 | 1.6026 | 0.7709 | 2.7152 | 1.0000

2.9271 | 1.0000 | 3.1231 | 1.0000 | 1.7375 | 0.9552

>
=
ol N | |ot kx| w

2.6948 | 1.0000 | 2.4045 | 1.0000 | 3.0398 | 1.0000

The M-file dhighcpp.m is employed to examine the magnitude values of high-
pass filter transfer functions for Butterworth C PPF filters.

Algorithm 16: Matlab Function dhighcpp.m

function [wh, Maghighcpp]= dhighcpp(num,den)

% den is the coefficients of denominator for CPPF filters

% num is the numerator of CPPF filters

% Maghighcheby is the vector of magnitudes values at wh in
% [ 2*arctan(1), ©]

% randomly

[nums,dens]=Ip2hp(num,den,1);
[NUMZ,DENZ|=bilinear(nums,dens,0.5);
wh = 4*atan(1)-2*atan(1)*rand(1,3);
Maghighcpp=abs(freqz(NUMZ,DENZ,wh));
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w=0.01:0.01:p1;

highpass = freqz(NUMZ,DENZ,w);

plot(w,abs(highpass));

%set(gca,”X Tick’,0:pi/2:pi)

%set(gca, X TickLabel’,{’0°,’pi/2’, 'pi’})

zlabel(’\ omega’);

ylabel(’Frequency Response of Highpass’);

azis(f0 pi 0 1.0])

Table 5.5: The Selected Frequencies and Magnitude Values of the Transfer Functions

for Butterworth C PPF Highpass Filters in 2 domain

n | wr magl

()]

mag?2

w3

mag3

2 | 3.1176 | 1.0000

1.9685

0.9955

2.4424

1.0134

hp | 4 | 1.8124 | 0.8920

2.3167

0.9908

2.8233

0.9998

8 | 2.0714 | 0.9947

2.5455

1.0000

1.8350

0.9592

The M-file dhighcheby.m is employed to examine the

highpass filter transfer functions for Chebyshev filters.

magnitude values of

Algorithm 17: Matlab Function dhighcheby.m

function [wh, Maghighcheby]/= dhighcheby(N,A)

% N is the order of Chebyshev filters

% with A decibels of peak-to-peak ripple in the

% passband.

% Maghighcheby is the vector of magnitudes values at wh in

% [ 2*arctan(1), 7]
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% randomly

[nums,dens|=chebyl(N,A,1,’high’,’s’);
[NUMZ,DENZ]=bilinear(nums,dens,0.5);

wh = 4*atan(1)-2*atan(1)*rand(1,3);
Maghighcheby=abs(freqz(NUMZ,DENZ,wh));

w=0.01:0.01:pi;
highpass = freqz(NUMZ,DENZ,w);
plot(w,abs(highpass));

%set(gca, "X Tick’,0:pi/2:pi)

J%set(gca, X TickLabel’, {°0°,'pi/2’, 'pi’})
zlabel(’\ omega’);

ylabel(’Frequency Response of Highpass’);
azis([0 pi 0 1.0])
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Table 5.6: The Selected Frequencies and Magnitude Values of the Transfer Functions
for Chebyshev Highpass Filters in z domain

n|w magl | wo mag2 | ws mag3

1 | 2.6044 | 0.9954 | 2.6865 | 0.9967 | 2.6056 | 0.9954

2.3027 | 0.9786 | 1.9994 | 0.9981 | 2.6558 | 0.9561
1.8245 | 0.9869 | 2.2493 | 0.9443 | 2.5597 | 0.9639

A, =0.5dB

€ = 0.3493 2.0377 | 0.9556 | 2.2830 | 0.9936 | 2.4428 | 0.9996

2.0506 | 0.9991 | 2.1656 | 0.9931 | 1.8931 | 0.9656

Sy | O s | N

1.6386 | 0.9803 | 2.3207 | 0.9535 | 1.7591 | 0.9533

1.5891 | 0.8946 | 2.2261 | 0.9700 | 2.4764 | 0.9849

[

2.3318 | 0.9519 | 2.6170 | 0.9168 | 2.4616 | 0.9343

A, =1.0dB 2.7867 | 0.9673 | 2.2308 | 0.8914 | 1.9472 | 0.9291

e = 0.5089 2.3093 | 0.9915 | 2.1355 | 0.9437 | 2.8132 | 0.9284

2.5450 | 0.8913 | 1.9111 | 0.9412 | 2.0721 | 0.9999
2.4173 | 0.9436 | 2.2496 | 0.8933 | 1.8940 | 0.9985

S | O W N

—

2.4891 | 0.9681 | 2.6625 | 0.9830 | 1.7681 | 0.8472
3.1180 | 0.7944 | 1.9353 | 0.9992 | 1.6166 | 0.8458

A, =2.0dB 1.5864 | 0.8344 | 1.9025 | 0.8849 | 2.4525 | 0.8262

e = 0.7648 2.3588 | 0.9951 | 2.8055 | 0.8598 | 2.1308 | 0.8818

2.6389 | 0.8051 | 1.6335 | 0.9906 | 2.0002 | 0.9684

S | O W N

2.4945 | 0.9427 | 1.9720 | 0.9636 | 2.7207 | 0.9785
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Figure 5.2: Graph of Highpass Frequency Responses

5.1.3 Bandpass Filter

a)

Using s — i—;ffl transformation or m-file [p2bp, a bandpass filter can be

prooduced from a lowpass filter in s domain; for example, center frequency {2 =1,
and bandwidth B, = 1.
b)

First we take the nth-order bandpass filter polynomial in s domain, and by

z—1

applying the bilinear transformation s = £33,

we obtain a nth-order bandpass filter

transfer function in discrete domain.

Ty = = (5.4)
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c)

The M-files of dbandbutter.m, dbandcpp.m and dbandcheby.m, which are used
to examine the magnitude values of bandpass filter transfer functions, are given
below. Then we select 3 frequencies randomly in passband, and the range of 3
frequencies is | 2xarctan(0.6180), 2xarctan(1.6180)].

The M-file dbandbutter.m is employed to examine the magnitude values of

bandpass filter transfer functions for Butterworth filters.

Algorithm 18: Matlab function dbandbutter.m

function [wb, Magbandbutter/= dbandbutter(N)
% N is the order of Butter filters
% Magbandbutter is the vector of magnitudes values at wb in

% [ 2*arctan(0.6180),2*arctan(0.6180)] randomly

[b,a]=butter(N,1,’s’);

[nums,dens|=lp2bp(b,a,1,1);
[NUMZ,DENZ]=bilinear(nums,dens,0.5);

wh = 2*atan(0.6180)+(2*atan(1.6180)-2*atan(0.6180))*rand(1,3);
Magbandbutter=abs(freqz2(NUMZ,DENZ,wb));

w—0.01:0.01:p3;
bandpass = freqz(NUMZ,DENZ,w);
plot(w,abs(bandpass));

zlabel(’|omega’);

ylabel(’Frequency Response of Bandpass’);
azis({0 pi 0 1.0])
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Table 5.7: The Selected Frequencies and Magnitude Values of the Transfer Functions
for Butterworth Bandpass Filters in z domain

n | w magl | we mag2 | ws mag3

2 | 1.7051 | 0.9973 | 1.8656 | 0.9382 | 1.7193 | 0.9960

1.6024 | 1.0000 | 1.7814 | 0.9970 | 1.3939 | 0.9990
1.7588 | 0.9998 | 1.6139 | 1.0000 | 1.5196 | 1.0000
1.9944 | 0.8588 | 1.5917 | 1.0000 | 1.9233 | 0.9776
1.3411 | 0.9999 | 1.9192 | 0.9894 | 1.7908 | 1.0000

1.2918 | 0.9998 | 1.3841 | 1.0000 | 1.7205 | 1.0000

| NS | ot e W

2.0236 | 0.7795 | 1.6475 | 1.0000 | 1.4998 | 1.0000

The M-file dbandcpp.m is employed to examine the magnitude values of band-

pass filter transfer functions for Butterworth CPPF bandpass filters.

Algorithm 19: Matlab Function dbandcpp.m

function [wb, Magbandcpp]= dbandcpp(num, den)

% den is the coefficients of denominator for CPPF filters in s domain
% num is the numerator for CPPF filters in s domain

% Magbandcpp is the vector of magnitudes values at wb in

% [ 2%arctan(0.6180),2*arctan(0.6180)] randomly

[nums, dens]=Ilp2bp (num,den,1,1);
[NUMZ,DENZ]=bilinear(nums,dens,0.5);

wh = 2*atan(0.6180)+(2*atan(1.6180)-2%atan(0.6180))*rand(1,3);
Magbandcpp—abs(freqz(NUMZ,DENZ,wb));

w=0.01:0.01:ps;
bandpass = freqz(NUMZ,DENZ,w);
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plot(w,abs(bandpass));

zlabel(’|omega’);
ylabel(’Frequency Response of Bandpass’);
azis(f0 pi 0 1.0])

Table 5.8: The Selected Frequencies and Magnitude Values of the Transfer Functions
for Butterworth C PPF Bandpass Filters in z domain

n | w magl | wo mag2 | ws mag3

2 | 1.9712 | 0.9308 | 1.5392 | 1.0006 | 1.4953 | 1.0032

hp | 4 | 1.7304 | 0.9974 | 1.8843 | 0.9524 | 1.1253 | 0.7537
8 | 1.5734 | 1.0000 | 1.7650 | 0.9998 | 1.5048 | 1.0000

The M-file dbandcheby.m is employed to examine the magnitude values of

bandpass filter transfer functions for Chebyshev filters.

Algorithm 20: Matlab function dbandcheby.m

function [wb, Magbandcheby]= dbandcheby(N,A)

% N is the order of Chebyshev filters

% with A decibels of peak-to-peak ripple in the

% passband.

% Magbandcheby is the vector of magnitudes values at wb in

% [ 2*arctan(0.6180),2*arctan(0.6180)] randomly

[b,a]=chebyl(N,A,1,’s’);

[nums,dens]=Ip2bp(b,a,1,1);
[NUMZ,DENZ]=bilinear(nums,dens,0.5);

wh = 2%atan(0.6180)+(2*atan(1.6180)-2*atan(0.6180))*rand(1,3);
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Magbandcheby=abs(freqz(NUMZ,DENZ,wb));

w=0.01:0.01:pi;
bandpass = freqz(NUMZ,DENZ,w);
plot(w,abs(bandpass));

zlabel(’\ omega’);

ylabel(’Frequency Response of Bandpass’);
azis({0 pi 0 1.0])
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Table 5.9: The Selected Frequencies and Magnitude Values of the Transfer Functions
for Chebyshev Bandpass Filters in z domain

n | w magl | wo mag2 | ws mag3

1 | 1.5578 | 1.0000 | 1.9336 | 0.9666 | 1.8138 | 0.9853

1.5304 | 0.9454 | 1.1243 | 0.9601 | 1.8688 | 0.9964

Ap =0.5dB 1.5195 | 0.9944 | 1.6778 | 0.9784 | 1.8415 | 0.9460

€ =0.3493 1.9619 | 0.9682 | 1.7917 | 0.9950 | 1.2706 | 0.9548

1.4833 | 0.9655 | 1.9746 | 0.9524 | 1.9574 | 0.9442

Yy | O W N

1.4876 | 0.9830 | 1.9358 | 0.9859 | 1.1608 | 0.9441

p—t

1.4343 | 0.9904 | 1.8612 | 0.9567 | 1.1162 | 0.8954

1.2359 | 0.9999 | 1.2951 | 0.9836 | 1.2914 | 0.9852

A, =1.0dB 1.6670 | 0.9630 | 1.3595 | 0.8965 | 1.2915 | 0.8975

e = 0.5089 1.1213 | 0.9706 | 1.7996 | 0.9837 | 1.5198 | 0.9061

1.9712 | 0.9013 | 1.5392 | 0.9877 | 1.4953 | 0.9438
1.8918 | 0.9854 | 1.5941 | 0.8983 | 1.2950 | 0.9105

Sy | O W

[y

1.7304 | 0.9710 | 1.8843 | 0.8959 | 1.1253 | 0.8075
1.7389 | 0.8618 | 1.4590 | 0.8240 | 1.8784 | 0.9894

A, =2.0dB 1.5734 | 0.9999 | 1.7650 | 0.8129 | 1.5048 | 0.9588

e =0.7648 1.3896 | 0.9986 | 1.2830 | 0.8468 | 1.2865 | 0.8532

1.7397 | 0.7986 | 1.3879 | 0.8096 | 1.6094 | 0.9608

Sy | O | W N

1.2470 | 0.9758 | 1.7543 | 0.8948 | 1.4580 | 0.9887
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Frequency Responses
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Figure 5.3: Graph of Bandpass Frequency Responses

5.2 Summary and Discussion

In this chapter techniques are developed for establishing algorithms to obtain stable
transfer functions of filters in z domain from coefficients k¢ and 7 of the continued
fraction expansions (CFE4).

The chapter has also considered the computer-aided design of filters.
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Chapter 6

Summary and Discussion

In this thesis, the following three types of continued fraction expansions CFE1,CFE?2
and CFE3 have been discussed.
1) CFEL:

For n is even or odd,

Fz) _ ka (1)(24'1) 1

R G0 T

ka(3) ‘+1 +——

where ka(1), ka(2)...ka(n) are real and posﬂ;ive.

2) CFE2:
(a) CFE 2a :
For n is even,

Fie(z 1
F; (z) kb( ) z—{—l) + kb(2) = D4 .

1

(G kb(3) (z+i +——

where kb(1), kb(2)...kb(n) are real and positive.

(b) CFFE 2b:
If n is odd,

Foolz) __ (z— 1) 1
Ff o = = kb(1 )(z—}-l) T2 B 1
G+D kb(3)£_l(z+i)+‘- .....

where kb(1), kb(2)...kb(n) are real and positive.
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F‘(z)zr(z—1)+ 1
1 —
4) CFE3
For n is odd,
CFFE 3a
o\%) __ z+1
e = kW + CrERe =

z+1 +

For n is even,

CFE 3b
el 1 +1
F; (i) = ke(l)z + ke(2 )Z + 4 BT +ke(4)—="—+—

where kf and kz are real and positive.

MATLAB programmes have been developed so that the various coefficients in

each continued fraction expansion can be obtained.

5) We have also produced the new type of continued fraction expansion given
as follows CFE4:
For n = odd,

Fop z
Ff o= = kc ( )(z+3 + kC(l) (z2+’71z+1) + ke(2) 2(z2 1)) :

(= +»12z+1) ke(3) $i7;z1+2 ]
where kc(0), kc(1), kc(2)...ke(%5L) are real and posmve 0 < |fy,| < 2,0 =

n—1
1,2..7%5L,
For n = even,
Fge Z) _— Z —1) 1
Fie( z) kC(l) 2—1—’)’12’«’-1--1) ke(2) (z2-1) 1
(=2+721+1) ke(3) 221 +——-—1
(2+y32+1) oo

where kc(0) = 0; kc(1), ke(2)...kc(2) are real and positive;0 < |y < 2, =
1,2..2.
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Unlike the CFE1, CFE2 and CFE3, CFE4 is non-unique for a given Schur
polynomial D(z). This is because the CFE is based on the zeros of a mirror-image
or an anti-mirror image polynomial located on the unit circle. This shows that a
large number of possibilities exist. Algorithms have been given to obtain the various
possible CF E4’s for a given D(z), and some have been written in MATLAB.

In addition, it is shown that given coefficients of a CFE4 have been shown,
it is possible to obtain stable transfer functions so that filters can be designed from
the coefficients of CFE4 .

The three necessary frequency samples have been taken randomly for lowpass,
highpass and bandpass respectively. The techniques produce good performance
filters with good magnitude responses of lowpass, highpass and bandpass filters.

This thesis can be considered as a starting point for application of continued
fraction expansions in filter design. The same methods are suggestions for any other

kinds of stable filter design.
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