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ABSTRACT

On the Formal Verification of an Intrusion-Tolerant Group

Communication Protocol

Mohamed Layouni

Intrusion-tolerance is the technique of using fault-tolerance to achieve security prop-
erties. Assuming faults to be unavoidable, the main goal of intrusion-tolerance is
to preserve an acceptable, though possibly degraded, service of the overall system
despite intrusions at some of its parts. In this thesis, we are concerned with the
formal specification and verification of the Enclaves protocol: an intrusion-tolerant
platform for secure group communication. We formally specify the three modules
of Enclaves, namely, Authentication, Leaders Agreement and Group Key Manage-
ment. Then we derive a correctness proof for the whole protocol using an adaptive
combination of techniques, namely, model checking, theorem proving and mathemat-
ical analysis. We use the Murphi model checking tool to verify authentication, then
the PVS theorem prover to formally specify and prove proper Byzantine agreement,
agreement termination and integrity, and finally we analytically prove robustness and

unpredictability of the Group Key Management module.
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Chapter 1

Introduction

1.1 Security Protocols

Research in network security has been always, and continue to be, a big challenge to
the scientific community as well as governments and corporations alike. The main
goal of network security is to prevent intruders from performing any malicious activ-
ity directed towards computer systems or any services they provide. Security proto-
cols come in two main flavors: those using symmetric key encryption (e.g., [76, 77])
and those based on public key cryptography (e.g., [93]). We distinguish also between
those relying on (one or more) trusted third parties to carry out some agreed func-
tion and those that operate purely between two communicating principals that wish
to achieve some mode of authentication [64]. There are further distinctions that can

be made: the number of messages involved in the protocols (e.g. one-pass, two-pass,



three-pass, etc.) and whether one principal wishes to convince the second of some
matter (one-way or unilateral authentication, e.g., [53]) or whether both parties wish
to convince each other of something (two-way or mutual authentication, e.g., [78]).
These distinctions are also made by the ISO entity authentication standards [55].
Lately, and in an attempt to better understand security protocols, researchers have
adopted a number of generic properties such as confidentiality, authentication and
non-repudiation to characterize systems security (e.g., [8, 42, 43, 103]).

Despite the variety of designs and the numerous efforts seen in the literature,
It is well acknowledged that any sufficiently complex computer system will still have
vulnerabilities. In other words, security flaws can be possibly transformed, but
cannot be totally removed and will always remain inherent to computer systems
(e.g., authentication protocols solve the entity authentication problem assuming the
key distribution problem solved, which in reality is very hard to solve). In an attempt
to reinforce systems security, researchers focused their attention on the concept of
intrusion detection and came up with a variety of theories and tools in that direction
(e.g., {28, 80, 97]). This field was believed to be very promising until the MIT
Lincoln Labs publish a series of quite exhaustive evaluation studies [73] covering a
number of well-respected research and commercial intrusion detection systems (IDS),
e.g., [22, 54, 85]. Two aspects of the results are very intriguing. First, new and novel
attacks present a formidable challenge to these systems. Second, little improvement

in performance (e.g., true detection rate and false positive rate) was shown by those



systems after years of further development [48].

It is widely agreed [47, 48, 80] that the serious limitation of “intrusion de-
tection” is due to the fact that, as soon as we focus our attention on the attacks
themselves, we cannot expect to develop a general protection mechanism because all
attacks are not well-defined and there are always unknown attacks.

The alternative approach to the problem is intrusion tolerance. Assuming
that vulnerabilities are inherently unavoidable, the main goal of intrusion tolerance
is to maintain an acceptable, though possibly degraded, level of service regardless
of intrusions at some of the system components. A number of intrusion tolerant
protocols have been developed during the last decade (e.g., [5, 90, 92]). They make
extensive use of basic fault-tolerance techniques (e.g., redundancy and diversity) and
apply them to achieve security goals. The results (in terms of protocol robustness)
have been very promising. One big challenge to intrusion tolerance, however, is to
answer the following question: How to concretely and rigorously model compromised
(possibly dishonest) components which may exhibit a very unpredictable behavior.
One of the primer techniques for the validation of intrusion tolerant systems is the

use of formal methods.



1.2 Formal Analysis of Security Protocols

Many formal techniques and tools have been developed to reason about security and
fault-tolerant protocols. These techniques provide a rigorous mathematical frame-
work for the description and analysis of any protocol. According to Meadows [70]

taxonomy, formal methods used in security fall into four categories:

Type 1

These are approaches that model and verify a protocol using specification languages
and verification tools not specifically developed for the analysis of cryptographic
protocols or fault-tolerant protocols. These include Analytical Mathematics (for

provable security) (e.g., [88]), Theorem Proving (e.g., [81]) and Model Checking

(e.g., [31]).

Type 11

In these approaches, a protocol designer develops expert systems to create and exam-
ine different scenarios, from which he/she may draw conclusions about the security

of the protocols being studied. Example expert systems are Millen’s Interrogator

[72] and the NRL Analyzer [71].



Type II1

These approaches model the requirements of a protocol family using logics developed
specifically for the analysis of knowledge and belief. Major research has been done

about techniques of this type (e.g., [1, 3, 16, 45, 101]).

Type IV

Finally, these approaches develop a formal model based on the algebraic term-

rewriting properties of cryptographic systems (e.g., [32, 99]).

Our work fits within the class of techniques of type I. Our choice has been
mainly motivated by the generality of these techniques and also by the maturity
reached by many tools implementing them. In the following, we briefly outline the
mainstream specification and verification techniques used, as well as their application

domains.

1.2.1 Formal Specification

Specification is the process of describing a system and its desired properties. Formal
specification uses a language with a mathematically-defined syntax and semantics.
The target system properties might include functional behavior, timing behavior,
performance characteristics, etc. So far, formal specification has been most successful

for behavioral properties, real-time constraints, security protocols, and architectural



designs. One current trend is to find a way to formally express impossibility results
such as the Diffie-Hellman [30] and the Discrete logarithm [67] problems. These
are usually fundamental correctness arguments for a large number of cryptographic

schemes.

1.2.2 Verification Techniques

Model Checking

Model checking [27] is a technique that relies on building a finite model of a system
and checking that a desired property holds in that model. Roughly speaking the
check is performed as an exhaustive state space search which is guaranteed to termi-
nate since the model is finite. The main challenge in model checking is in devising
algorithms and data structures that allow the tools to handle large search spaces.
Two general approaches to model checking are used: Explicit state enumeration and
Symbolic model checking. In the first, the states of the system under verification are
basically encoded and stored in a table and then checked against the desired proper-
ties. Many state reduction techniques have been developed to help reduce the state
space without affecting the ability of the tool to discover bugs (e.g., {26, 35, 56]).
Other techniques, called algorithmic techniques have been devised in order to opti-
mize, both, the search and storage procedures without reducing the size of the state
space (e.g., [98, 102]). Both techniques have proved to be useful in many notable

verification examples (e.g., [56, 58, 100]). The second approach to model checking



is Symbolic Model Checking [69]. This approach brought some remedy to the state
space explosion problem of model checking and is based on the use of Ordered Binary
Decision Diagrams (OBDDs) [15]. Using OBDDs allows for an efficient representa-
tion of systems state transitions, thereby increasing the size of systems that could
be verified.

To date, the practice of model checking succeeded to handle systems with

over 10120

reachable states. It is also believed that, by using appropriate abstraction
techniques, model checkers can support systems with an essentially unlimited number

of states {27]. In a nutshell, the discipline proved powerful “enough” that it is

becoming a widely used tool in the verification of newly developed industrial designs.

Theorem Proving

Theorem proving is a technique where both the system and its desired properties are
expressed as formulas in some mathematical logic. The logic is given by a formal
system based on a set of axioms and inference rules. Theorem proving is the process
of finding proofs using axioms of the system. Steps in the proof appeal to the axioms
and rules, and possibly derived definitions and intermediate lemmas. Nowadays,
theorem provers are being increasingly used in the mechanical verification of safety
critical properties of hardware and software systems.

Theorem provers based on higher-order logic are distinguished by a high level

of expressiveness and generality compared to model checkers. They do, however,



require a lot of user expertise and interactivity. A significant amount of work has
been witnessed in an effort to automate these tools. One notable example is the
Timed Automata Modeling Environment (TAME) [7] developed at the Center for
High Assurance Computer Systems of the Naval Research Laboratory (NRL). TAME
is an interface to the theorem proving system PVS [81], it provides a set of templates
for specifying timed automata, a number of auxiliary theories, and a set of specialized
PVS strategies to reason about them. In contrast to model checkers, theorem provers
can deal with infinite state spaces. They rely on techniques like structural induction
to prove over infinite domains. Although, theorem proving is a slow process that
requires much of human interaction, it gives invaluable insight to the user on the

system or the property being proved.

Mathematical Analysis: Provable Security

What is provable security? In fact, provable security stems from the concept of
reductions in complexity theory. A reduction is a common way to solve a new problem
in complexity theory. The paradigm is as follows. Take some goal, like achieving
privacy via encryption. The first step is to make a formal adversarial model and
define what does it mean for an encryption scheme to be secure. With this in hand,
a particular scheme, based on some particular atomic primitives, can be analyzed
from the point of view of meeting a certain definition of security. Eventually, one

shows that the scheme “works” via a reduction (e.g., {11, 68]). The reduction shows



that the only way to defeat the protocol is to break the underlying atomic primitives.
In other words, there is no need to directly cryptanalyze the protocol, i.e., if one is
able to find a weakness in the protocol then necessarily he or she would have exploited
a weakness in the underlying atomic primitives. Therefore, it is more profitable (in
terms of complexity) and sufficient to focus on the atomic primitives. And if we
believe the latter are secure, we know, without further cryptanalysis of the protocol,
that the protocol is secure.

In order to enable a reduction one must also have a formal notion of what is
meant by the security of the underlying atomic primitives: what attacks, exactly,
does it withstand? For example, we might assume RSA (Rivest, Shamir and Adleman
public-key encryption algorithm [91]) is a collision-resistant one-way function, and
consider a protocol P using RSA. A reduction based on the one-wayness of RSA
to the security of P, is a transformation 1" with the following properties. Suppose
one claims to be able to break protocol P. Let A; be the attack in question. The
transformation T, takes A; and rewrites it, resulting in an attack Ay. This attack
provably breaks RSA, but since we believe that RSA is unbreakable, then there
could be no such attack on the protocol P. In other words, the protocol P is secure.
Cryptographic reductions represent the backbone technique of provable security, and

have been extended from classical to quantum cryptography as well [10].



1.3 Scope and Contributions of the Thesis

During the last decade, we have witnessed a substantial progress in the formal verifi-
cation of cryptographic protocols; a wide variety of techniques has been developed to
verify a number of key security properties ranging from confidentiality and authenti-
cation to atomic transactions and non-repudiation (e.g., [84, 94]). Nevertheless, most
of the focus was either on two-party protocols (i.e., involving only a pair of users) or,
in the best cases, on group protocols with centralized leadership (i.e., a presumably
trusted fault-free server managing a group of users).

The work in this thesis is an attempt to the formal analysis of a more chal-
lenging and increasingly popular class of protocols, referred to as “Byzantine® fault-
tolerant” protocols. In particular, we are considering the formal specification and
verification of the Enclaves [33] protocol. Enclaves is a group-membership protocol
with a distributed leadership architecture, where the authority of the traditional sin-
gle server is shared among a set of n independent elementary servers, of which at
most f could fail at the same time. The protocol has a maximum resilience of one
third (i.e., f < |2%5*]) and uses an algorithm similar to the consistent broadcast of
Bracha and Toueg [13].

The primary goal of Enclaves is to preserve an acceptable group-membership

service of the overall system despite intrusions at some of its sub-parts. For instance,

LA process is said to be a “Byzantine fault” or to exhibit a Byzantine behavior with respect to
a given protocol if it does not follow the protocol rules and behaves arbitrarily {61].

10



an authorized user u who requests to join an active group of users should be even-
tually accepted, despite the fact that faulty leaders may coordinate their messages
in such a way as to mislead non-faulty leaders (the majority) into disagreement,
and thus into rejecting user u. Moreover, in order to prevent malicious leaders from
leaking sensitive information (e.g., group keys) or providing clients with fake group
keys, Enclaves uses a verifiably secure secret sharing scheme.

To achieve its intrusion-tolerant capabilities, Enclaves relies on the combina-
tion of a cryptographic authentication protocol, a Byzantine fault-tolerant leader
agreement protocol and a secret sharing scheme. Although we assume the underly-
ing cryptographic primitives and fault-tolerant components to be perfect, one cannot
easily guarantee security of the whole protocol. In fact, several protocols had been
long thought to be secure until a simple attack was found (see [25] for a survey).
Therefore, the question of whether or not a protocol actually achieves its security
goals becomes paramount.

An important issue that arises in formal verification of Byzantine fault-tolerant
protocols, is the modeling of Byzantine behavior. How much power should be given
to a Byzantine fault and how general should the model be to capture the arbitrary
nature of a Byzantine fault behavior? These questions have been extensively studied
[20, 60, 62] and continue to be a center of focus. In this thesis, we specify our faults
to be able to crash and misbehave arbitrarily at any time. Faults are however limited

by the protocol resiliency (no failure of more than the third of all principles) and by

11



cryptographic constraints. More details about our fault assumptions are discussed
in Chapter 4 of this thesis.

In our verification of Enclaves, we have adopted an adaptive combination of
techniques chosen according to the nature of the correctness arguments in each mod-
ule, the environment assumptions and the easiness of performing verification. For
instance, we found it more profitable to model-check the authentication module by
taking advantage of the reduction techniques available in the Murphi model checking
tool [31]. The Byzantine leaders agreement module, however, was a little trickier.
In fact, the latter relies, to a large extent, on the timing and the coordination of a
sét of distributed actions, possibly performed by Byzantine faulty processes whose
behavior is hard to assess in a model checker. Instead, we use the PVS theorem
prover [81] and formalize the protocol in the style of Timed Automata [4]. This for-
malism makes it easy to express timing constraints on transitions. It also captures
several useful aspects of real-time systems such as liveness, periodicity and bounded
timing delays. Using this formalism, we specified the protocol for any number of
leaders, and we proved safety and liveness properties such as Proper Agreement,
Agreement Termination and Integrity. Finally, the group-key management module
of Enclaves is based on a secret sharing scheme whose security relies fundamentally
on the hardness of computing discrete logarithms in groups of large prime order. Due
to the hardness of expressing the latter correctness arguments in the logic language

of a formal verification tool, we found it more convenient to give a manual proof of

12



the module’s robustness and unpredictability properties, using the Random Oracle
model [9].

Finally, it is important to note that our choice for the Murphi and PVS tools,
has been largely prompted by their known performance, easiness of use, and the
success of a number of security-related verifications making use of them, e.g., [51,
59, 75] for Murphi and [6, 62] for PVS. The work presented in this thesis can, however,

be done using other model checking and theorem proving tools.

1.4 Related Work

There has been a rich history of computer-assisted formal verification of security and
fault-tolerance in distributed protocols. Some of these verifications deal with the
Byzantine failure model [20], while others remain limited to the benign form [51].
Also, some of them specialized in the two-party sort of protocols (e.g. mutual au-
thentication) deploying particularly dedicated security logics (e.g., BAN [16], SPC [3]
and Spi calculus [1}), while others, remained more general (e.g., theorem proving and
model checking) and adopted different automata formalisms to specify and reason
about protocols (e.g., [7, 20, 60, 75, 89]).

The idea behind security logics is to formalize the epistemic reasoning of agents
executing a protocol. More precisely, the logics provide constructs, axioms and
inference rules for expressing simple notions of security (e.g., data secrecy) and for

describing how the beliefs and knowledge of agents involved in a protocol execution

13



evolve as messages are exchanged.

Despite their success in detecting a number of design flaws, security logics
still suffer two major limitations: (1) They are often limited to special execution
configurations; for instance in the original BAN one cannot express interleaved ex-
ecutions, yet main source of vulnerability in the Needham-Schroeder Public Key
protocol [79]; (2) They often lack an appropriate semantics for epistemic-like notions
such as awareness and belief.

Another notable alternative to the reasoning about security protocols is to con-
sider protocols as sets of possible communication traces. For instance, Paulson [84]
uses inductive definitions in higher-order logic to express security protocols and prop-
erties about them. In Paulson’s approach [84], a protocol along with its adversarial
model correspond to a set of rules expressing the observable events (i.e., message
exchanges) that can be seen on the network; the property of closure under these
rules yields an inductively defined set of traces modeling all possible communica-
tions between the agents as well as the intruder. Using these models, Paulson [84],
interactively proves by induction that violations of security properties cannot occur
in any trace. Similar logics (e.g., awareness-based logic) and inductive definitions are
used by Accrosi et al. [2], Fagin et al. [36], and Vardi et al. [37]. Although inductive
methods proved successful in finding attacks in security protocols, expressing security
goals as inductive properties of states or traces, still remains a tricky procedure.

General-purpose automated theorem proving is the more traditional approach

14



to verifying security properties. Early work on automated reasoning about security
made use of the AFFIRM [41], Boyer-Moore [12], and Ina Jo [63] theorem-proving
systems. More recently, theorem provers such as HOL [46], PVS [81], and Isabelle [83]
have been used to express and reason about security protocols. These latter verifi-
cation systems support specification in higher-order logic and allow users to create
customized proof strategies to help automate proof search. Although major research
has been put into the area of proof automation, only simple lemmas could be proved
completely automatically. In other words, human guidance is still necessary for most
interesting proofs.

In the same spirit as above and closer to our work, Castro and Liskov [20]
specified a Byzantine fault-tolerant replication algorithm (similar to ours) using the
I/O automata of Lynch and Tuttle [66]. Proofs about the algorithm’s safety were
manually done using invariant assertions and simulation relations. Liveness issues,
however, have not been addressed. Although successful in a pen-and-paper fashion,
this work has never been conducted mechanically in any theorem prover.

Kwiatkowska and Norman [60], in turn, analyzed the Asynchronous Binary
Byzantine Agreement protocol [17] (based on a similar concept to our key man-
agement module) using a combination of mechanical inductive proofs (for non-
probabilistic properties) and finite state checks (probabilistic properties) plus one
high-level manual proof. Our approach too, takes advantage of the easiness and

performance of different techniques to prove the overall Enclaves protocol.
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Timed automata were also used to model the fault-tolerant protocols such as
PAXOS [89] and Ensemble {50]. The authors assume a partially synchronous network
and support only benign failures. This bears some similarities with verifying the
Enclaves protocol in the sense that we assume some bounds on timing, but unlike
the work in [50,‘89], we are dealing with the more subtle Byzantine kind of failure.

In [7], Archer presented the formal verification of the TESLA (Timed Efficient
Stream Loss-tolerant Authentication) broadcast authentication protocol [87] using
the Timed Automata Modeling Environment (TAME). TAME provides a set of the-
ory templates to specify and prove general I/O automata. Our work can be used,

for instance, to extend the TAME package.

1.5 Outline of the Thesis

The rest of the thesis is organized as follows. In Chapter 2, we give an overview
of the Enclaves protocol architecture, and describe in detail each of the modules
and the services they offer. In Chapter 3, we present the model checking of the
authentication module in Murphi, with views on some of the reduction techniques
provided by the tool. Chapter 4 discusses the verification of the Byzantine leader
agreement module in PVS. It presents how we model the elementary components of
the module and how we build the final protocol model out of these ingredients. Fi-

nally, we show how we formulate and prove the correctness theorems. In Chapter 5,

16



we briefly explain the concepts behind cryptographic reduction and sketch a math-
ematical proof for the robustness and unpredictability properties of the group-key
management module. Chapter 6 draws major conclusions and lessons learned from
this work. It also highlights some future research directions with focus on ideas to

improve the automation and generalization of our work.
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Chapter 2

Intrusion-Tolerant Enclaves

2.1 Introduction

Intrusion tolerance is the application of fault-tolerance methods to security. It as-
sumes that system vulnerabilities cannot be totally eliminated, and that external
attackers or malicious insiders will identify and exploit these vulnerabilities and gain
illicit access to the system. The objective of intrusion tolerance is to maintain ac-
ceptable, though possibly degraded, service despite intrusions in parts of the system.
In this chapter we discuss the intrusion-tolerant version of Enclaves, a lightweight
platform for building secure group applications!. To support such applications, En-
claves provides a secure group communication service and associated group-management
and key-distribution functions. The original Enclaves system [44] and its successor

[34] have a centralized architecture. An application consists of a set of group members

I This chapter is based in part on some of the material in {33, 34, 44]

18



who cooperate and communicate via a single group leader. This leader is responsi-
ble for all group-management activities, including authenticating and accepting new
members, distributing cryptographic keys, and distributing group-membership infor-
mation. Since the leader plays a critical role, it is an attractive target for attackers.
Breaking into the leader can immediately lead to loss of confidentiality, interrupted
communication, or other forms of denial of service.

The intrusion-tolerant Enclaves architecture removes this single point of failure
by distributing the group management functions among n leaders. The system uses
a Byzantine fault-tolerant protocol for leader coordination and a verifiable secret
sharing scheme for generating and distributing cryptographic keys to group members.
This new architecture is intended to tolerate the compromise of up to f leaders, where
3f +1 < n. Compromised leaders are assumed to be under the full control of an
attacker and to have Byzantine behavior, but it is also assumed that the attacker
cannot break the cryptographic algorithms used. Under these assumptions, Enclaves
ensures the confidentiality and integrity of group communication, as well as proper
group-management services. The remainder of this chapter describes the intrusion
tolerant Enclaves in greater detail. Section 2.2 gives an overview of the architecture
and design goals of Enclaves, while in Section 2.3, we present the underlying protocols

and secret sharing schemes used.
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2.2 Overview on Enclaves

2.2.1 Enclaves Services

A group-oriented application enables users to share information and collaborate via
a communication network such as the Internet. Enclaves is a lightweight software
infrastructure that provides security services for such applications [44]. Enclaves
provides services for creating and managing groups of users of small to medium size,
and enables the group members to communicate securely. Access to an active group is
restricted to a set of users who must be pre-registered, but the group can be dynamic:
authorized users can freely join, leave, and later rejoin an active application.

The communication service implements a secure multicast channel that ensures
integrity and confidentiality of group communication. All messages originating from
a group member are encrypted and delivered to all other members of the group. For
efficiency reasons, Enclaves provides best-effort multicast and does not guarantee
that messages will be received, or received in the same order, by all members. This
is consistent with the goal of supporting collaboration between human users, which
does not require the same reliability guarantees as distributing data between servers
or computers [44].

The group-management services perform user authentication, access control,
and related functions such as key generation and distribution. All group members

receive a common group key that is used for encrypting group communication. A new
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group key is generated and distributed every time the group composition changes,
that is, whenever a user enters or leaves the group. Optionally, the group key can
also be refreshed on a periodic basis. Enclaves also communicates membership in-
formation to all group members. On joining the group, a member is notified of
the current group composition. Once in the group, each member is notified when a
new user enters or a member leaves the group. Thus, all members know who is in
possession of the current group key.

In summary, Enclaves enables users to be authenticated and to join a groupware
application. Once in a group, a user A is presented with a group view, that is, the list
of all other group members. The system is intended to satisfy the following security

requirements:

e Proper authentication and access control: Only authorized users can join the
application and an authorized user cannot be prevented from joining the ap-

plication.

e Confidentiality of group communication: Messages from a member U can be
read only by the users who were in U’s view of the group at the time the

message was sent.

e Integrity of group communication: A group message received by U was sent
by a member of U’s current view, was not corrupted in transit, and is not a

duplicate.



2.2.2 Centralized Architecture

The original version of Enclaves [44] and a more recent version with improved pro-

tocols [34] rely on the centralized architecture shown in Figure 2.1.

Group Leader

\F
Member

Figure 2.1: Centralized Architecture

In this architecture, a single group leader is responsible for all group-management
activities. The leader is in charge of authenticating and accepting new group mem-
bers, generating group keys and distributing them to members, and distributing
group membership information. With such an architecture, the security require-
ments are satisfied if the leader and all group members are trustworthy, but the
system is not intrusion tolerant. Proper service requires that the leader be trusted
and never compromised. A single intrusion on the leader can easily lead to denial
of service. For example, a compromised leader can interrupt group communication
or prevent authorized users from joining the group. Since the leader is always in

possession of the latest group key, an attacker breaking into the leader’s computer
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can also gain access to all group communication. Increasing the resilience of the En-
claves infrastructure requires removing this single point of failure, to guarantee that
group communication will remain secure even after some components of the system

have been compromised.

2.2.3 Intrusion-Tolerant Architecture

The architecture of the intrusion-tolerant version of Enclaves is shown in Figure 2.2.

The group and key management functions are distributed across n leaders.

Group Management Leadership

Leader; [ Leadergl e | Leaderg } Leader,

Group Multicast Channel

Figure 2.2: Intrusion-Tolerant Architecture

The leaders communicate with each other and with users via a synchronous
network. Messages sent on this network are assumed to be eventually received, but
no assumptions are made on the transmission delays and on the order of reception
of messages. The architecture is designed to tolerate up to f compromised leaders,

where 3f + 1 < n. Compromised leaders are assumed to be under the full control of

23



an attacker; They have Byzantine behavior and can collude with each other.

The security requirements are the same as previously, and we make the as-
sumption that a fixed list of authorized participants is specified before an application
starts. The new objective is now to ensure that these requirements are satisfied even
if up to f leaders are compromised.

For proper group management, any modification of the group composition re-
quires agreement between the non-faulty leaders. These leaders must agree before
accepting a new member or determining that an existing member has left. Ideally,
one would like all non-faulty leaders to maintain agreement on the group composi-
tion. Unfortunately, this requires solving a consensus problem, in an asynchronous
network, under the Byzantine failure model. Achieving Byzantine agreement under
asynchrony assumptions is a well known problem, and it has been proven that there
are no deterministic algorithms to solve it [39]. Randomized algorithms (e.g., [17]) as
well as algorithms relying on failure detectors (e.g., [21, 90]) are also being applied,
but they tend to be complex and expensive. Instead, a weaker form of consistency
property is sufficient for satisfying Enclaves’s security requirements. The algorithm
used in Enclaves is similar to consistent broadcast protocols such as Bracha and
Toueg’s protocol [13]. Combined with an appropriate authentication procedure, this
algorithm ensures that any authorized user who requests to join the group will even-
tually be accepted. Unlike Byzantine agreement, this algorithm does not guarantee

that users are accepted in the same order by all leaders. However, this does not lead

24



to a violation of the confidentiality or integrity properties. If the group becomes
stable, all non-faulty leaders eventually reach a consistent view of the group.

As in earlier implementations of Enclaves [34, 44], a common group key is
shared by the group members. A new key is generated by the leaders whenever the
group changes. The difficulty is to generate and distribute this key in an intrusion-
tolerant fashion. All group members must obtain the same valid group key, despite
the presence of faulty leaders. The attacker must not be able to obtain the group key
even with the help of f faulty leaders. These two requirements are satisfied by using
a secret sharing scheme proposed by Cachin et al. [17]. In the Enclaves framework,
this scheme is used by leaders to independently generate and send individual shares
of the group key to group members. The protocol is configured so that f + 1 shares
are necessary for reconstructing the key. A share is accompanied with a description
of the group to which it relates and a “proof of correctness”, that is computationally
hard to counterfeit. This allows group members to obtain strong evidence that a
share is valid, and prevents faulty leaders from disrupting group communication by

sending invalid shares.

2.2.4 Protocol Execution

Figure 2.3 shows the different phases of the protocol execution. Initially at time £,

user [/ sends requests to join the group to a set of 2f + 1 leaders. These leaders
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locally authenticate U within time interval [¢;,¢2]. When done, the agreement pro-
cedure starts and terminates at time ¢4 by reaching a consensus as whether or not to
accept user U. Once in the group, U remains connected to the above 2f + 1 leaders
and receives key and group update messages from them. While in the group, each
member is notified each time a new user joins or a member leaves the group in such
a way that all members remain in possession of a consistent image of the current

group-key holders.

04
Join Requests
tlg
2¢
e
Byzantine Agreement
Y Group Management and Key Distribution
time

Figure 2.3: Protocol Execution

The intrusion tolerant capabilities of Enclaves rely on the combination of a
cryptographic authentication protocol, a Byzantine fault-tolerant leader-coordination
algorithm, and a secret sharing scheme. These protocols are presented in greater de-

tail in next section.
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2.3 Enclaves Protocols

2.3.1 Authentication

To join the group, a user U must first initiate an authentication protocol with 2f +1
distinct leaders. U is accepted as a new group member if it is correctly authenticated
by at least f+1 leaders. This ensures that f faulty leaders cannot prevent an honest
user from joining the group, and conversely that f faulty leaders cannot allow an
unauthorized user to join the group.

For authentication purposes, all users registered as authorized participants in
an application share a long-term secret key with each leader. If L; is one of the
leaders, U has a long-term key Py, that is known by L; and U. The following

protocol is used by U to authenticate with L;.

i. U - L;: AuthinitReq,U, L;, {U, L;, N1 } p,,

i. Li — U: AuthKeyDist, L;, U, {L;, U, N1, No, Ky} py,

iii. U — L;: AuthAckKey,U, L;, {U, Li, N3, N3} k.,
As a result of this exchange, U is in possession of a session key Ky ; that has been
generated by L;. All group-management messages from L; to U are encrypted with
Ky ;. Thus, a secure channel is set up between U and L, that ensures confidentiality
and integrity of all group-management messages from L, to U. Nonces and acknowl-
edgments protect against replay attacks as discussed in [34]. The key Ky; is in use

until U leaves the group. A fresh session key will be generated if U later rejoins the
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group.

2.3.2 Leader Coordination

If a non-faulty leader L; successfully authenticates U, L; does not immediately add
U as a new group member. Instead, the leader coordination algorithm is executed

(a similar algorithm is used to coordinate leaders when a member leaves the group).

Leader L; runs the following protocol:

After successful authentication of U,

L; sends (Propose, i, U, n; ),, to all leaders.

After receiving f +1 valid (Propose, i, U, n; ),
from different leaders, L; sends (Propose, i, U, n; ),

to all leaders if it has not been already done so.

When L; receives n — f valid (Propose, i, U, n; ),, from

n — f distinct leaders, L; accepts U as a new member.

Here the notation { ),, denotes a message digitally signed by L; and o, denotes that
signature. The constant n; is used to protect against replay attacks. Each leader
maintains a local integer variable n; and its local view M; of the current group
members. M; is updated and n; is incremented every time L; accepts a new member

or removes an existing member. The message (Propose, i, U, n; ),, is considered
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valid by L; if the signature checks, n; > n;, and U is not already a member of
M;. The pair (n;, M;) is L;’s current view of the group. L; must include its own
(Propose...) message among the n — f messages necessary before accepting U.

This algorithm is a variant of existing consistent broadcast algorithms first
presented in [13, 65]. It satisfies the following properties as long as no more than f

leaders are faulty.

e (Consistency: If one non-faulty leader accepts U then all non-faulty leaders

eventually accept U.

e Liveness: If f+1 non-faulty leaders announce U, then U is eventually accepted

by all non-faulty leaders.

e Valid Authentication: If one non-faulty leader accepts U then U has been

announced, and thus authenticated, by at least one non-faulty leader.

The last property prevents the attacker from introducing unauthorized users
into the group. Conversely, if U is an authorized user and correctly executes the
authentication protocol, U will be announced by f + 1 non-faulty leaders, and thus
will eventually be accepted as a new member by all non-faulty leaders.

The protocol works in an asynchronous network model where transmission
delays are unbounded. It does not ensure that all non-faulty leaders always have a
consistent group view. Two leaders L; and L; may have different sets M; and M;

for the same view number n; = n;. This happens if several users join or leave the
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group concurrently, and their requests and the associated (Propose...) messages are
received in different orders by L; and L;. If the group becomes stable, that is, no
requests for join or leave are generated in a long interval, then all non-faulty leaders
eventually converge to a consistent view. They communicate this view and the
associated group-key shares to all their clients who also eventually have a consistent
view of the group and the same group key. Temporary disagreement on the group
view may cause non-faulty leaders to send valid but inconsistent group-key shares
to some members. This does not compromise the security requirements of Enclaves

but may delay the distribution of a new group key.

2.3.3 Group-Key Management

The group-key management protocol relies on secure secret sharing. Each of the n
leaders knows only a share of the group key, and at least f -+ 1 shares are required to
reconstruct the key. Any set of no more than f shares is insufficient. This ensures
that a compromise of at most f leaders does not reveal the group key to the attacker.
In most secret sharing schemes, n shares sy, ..., 5, are computed from a secret s and
distributed to n shareholders. The shares are computed by a trusted dealer who needs
to know s. In Enclaves, a new secret s and new shares must be generated whenever
the group changes. This must be done online and without a dealer, to avoid a single
point of failure. A further difficulty is that some of the parties involved in the share

renewal process may be compromised. A solution to these problems was devised by
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Cachin et al. in [17]. In their protocol, the n shareholders can individually compute
their share of a common secret s without knowing or learning s. One can compute
s from any set of f -+ 1 or more such shares, but f shares or fewer are not sufficient.
The shares are all computed from a common value ¢ that all shareholders know. In
our context, the shareholders are the group leaders and g is derived from the group
view using a one-way hash function. Leader L; computes its share s; using a share-
generation function S, the value §, and a secret z; tﬁat only L; knows: s; = 5(§, ;).
Leader L; also gives a proof that s; is a valid share for §. This proof does not reveal
information about z; but enables group members to check that s; is valid. The
protocol proposed by Cachin et al. [17] requires a trusted dealer to set up a number
of public and private keys in an initialization phase. This can be performed off-line,
and the dealer is not involved in any of the subsequent computations. The share
computations are performed individually by the leaders. The share validity checks
and group key construction are performed individually by group members. This
protocol is related to verifiable secret sharing (e.g., [24, 38, 86]) and, more closely,
to threshold signature schemes (e.g., [29, 40, 96]).

The secrecy properties of the protocol rely on the hardness of computing dis-
crete logarithms in a group of large prime order. Such a group G can be constructed
by selecting two large prime numbers p and ¢ such that p = 2¢+ 1 and defining G as

the unique subgroup? of order ¢ in Z,*. The dealer chooses a generator g of G and

>The group Z," is a cyclic group of order p — 1, i.e,, 2¢. It is a standard fact in the elementary
theory of groups that : if R is a cyclic group of order m, then for every divisor d of m there exists
a unique subgroup of R of order d.

31



performs the following operations:

e Select randomly f + 1 elements ag,...,ay of Z,;. These coefficients define a

polynomial of degree f in Z/[X]:

F=a0+a1X+...+a,fo.

e Compute x4, ..., z, of Z4 and gy, ..., g, of G as follows:
z; = F(i)
g9 = g%
The numbers x4, ...,r, must then be distributed secretly to the n leaders
Ly, ..., Ly, respectively. The generator g and the elements ¢y, ..., g, are made

public. They must be known by all users and leaders.

As in Shamir’s secret sharing scheme [95], any subset of f +1 values among 1, ..., Z,
allows one to reconstruct F' by interpolation, and then to compute the value a0 =

F(0). For example, given 1, ..., 41, one has

f+1

Ay = Z biz;,
i=1
where b; is obtained from j =1,..., f+ 1 by

Hj;éij
H#i(j — 1)

By this interpolation method, one can compute §* for any g € GG given any subset

bi"———‘

of f + 1 values among §*, ..., ¢°. For example, from g§*!, ..., §*/+!, one gets
g
f+1
go=1]g" (2.1)
=1
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As discussed previously, leader L; maintains a local group view (n;, M;). L;’s
share s; is a function of the group view, the generator g, and L;’s secret value z;. L;

first computes § € G using a one-way hash function H;:

§ = Hi(n;, M;).

The share s; is then defined as

S; = gzi.

The group key for the view (n;, M;) is defined as

Using Equation (2.1), a group member can compute §% given any subset of f + 1
or more shares for the same group view. The security of this approach has been
originally proved in [17]. Under a standard intractability assumption, it is computa-
tionally infeasible to compute K knowing fewer than f+1 shares. It is also infeasible
for an adversary to predict the values of future group keys K even if the adversary
corrupts f leaders and has access to f secret values among xy, ..., Zp.

Equation (2.1) allows a group member to compute the key g% from f -+ 1 valid
shares of the form s; = §®. However, a compromised leader L; could make the
computation fail by sending an invalid share s; # ¢*. L; could also cause different
members to compute different group keys by sending different shares to each. To

protect against such attacks, the share s; is accompanied with a proof of validity.
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This extra information enables a member to check that s; is equal to §* with very
high probability. The verification uses the public value g; that is known to be equal
to g™ (since the dealer is trusted). To prove validity without revealing z;, leader L;

generates evidence that

log; s; = log, g:-

This uses a technique proposed by Chaum and Pedersen [23]. To generate the evi-
dence, L; randomly chooses a number y in Z, and computes
u = g¥
v o= g
Then L, uses a second hash function H, from G® to Z4 to compute
¢ = Hy(g,9i,v4,5,v)
z = y+zc.
The proof that s; is a valid share for g is the tuple (n;, M;, u, v, z)). The information
sent by L; to a group member U is then the tuple (s;,n;, M;, u, v, z). This message
is sent via the secure channel established between U and L; after authentication.
This prevents an attacker in control of f leaders from obtaining extra shares by
eavesdropping on communications between leaders and clients.

On receiving the above message, a group member U evaluates g = Hy(n;, M;)

and accepts the share as valid only if the following equations hold:

? Y
g° = ug;

? !

C
vs; .

o
Il



where ¢’ (supposed to be equal to ¢) is given by:

/

Cc = H?(gvgia u, g’ Siy U)‘

If this check fails, s; is not a valid share and U ignores it. Once U receives f+1 valid
shares corresponding to the same group view, U can construct the group key. Since
U maintains a connection with at least f + 1 honest leaders, U eventually receives
at least f + 1 valid shares for the same view, once the group becomes stable.
Cachin et al. [17] proved that it is computationally infeasible, in the random
oracle model, for a compromised leader L; to produce an invalid share s] and two

values ¢ and z that pass the share-verification check.
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Chapter 3

Proving Authentication by Model

Checking in Murphi

Murphi [31] is a verification tool that has been successfully applied to several indus-
trial protocols, especially in the area of multiprocessor cache coherence protocols,
multiprocessor memory models and also authentication protocols {31, 51, 57, 74, 82].

To use Murphi for verification, one has to model the protocol in question in
the Murphi language and then augment the model with a specification of the desired
properties. Murphi has a language that supports scalable models. In a scalable model
one typically starts with a small protocol configuration and gradually increases the
protocol size until the verification does not terminate anymore. In many cases, errors
in the general protocol (possibly with an infinite number of states) will also show up

in down-scaled (finite state) versions of the protocol. The Murphi verification tool is
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based on explicit state enumeration and supports a number of reduction techniques
such as symmetry and data independency [56, 58, 59]. The desired properties of a
protocol can be specified in Murphi by means of invariants. If a state is reached where
some invariant is violated, Murphi prints an error trace exhibiting the problem.
Our verification has been conducted as follows!. First, we formulate the pro-
tocol by identifying the protocol participants, the state variable and messages, and
the key actions to be taken. Then we add an intruder to the system. In our model,
the intruder is able to eavesdrop messages on the network, decrypt cipher-text when
it has the appropriate keys, and generate messages using any combination of the
previously gained knowledge. Finally, we state the desired correctness conditions

and run the protocol for some specific size parameters.

3.1 Protocol Specification in Murphi

The Murphi language is a simple high-level language for describing and specifying
protocols or, more generally, non-deterministic finite-state machines. In the following
we briefly outline Murphi’s main features for describing protocols and formulating

properties about them.

'Details about the Muphi models and specification codes can be found at
http://hvg.ece.concordia.ca/Research/CRYPTO/Enclaves.html

37



3.1.1 Modeling Protocols

Protocols in Murphi are described as sets of states. The state of a protocol model
consists of the values of all global variables. In a startstate statement, initial values
are assigned to global variables. The transition from one state to another is performed
by rules. Each rule has a Boolean condition and an action, which is a program
segment that is executed atomically. The action may be executed if the condition
is true (i.e., the rule is enabled) and typically changes global variables, yielding a
new state. Most protocol models are non-deterministic since states typically allow
execution of more than one rule. For instance, in a model of a cryptographic protocol,
the intruder usually has the non-deterministic choice of several messages to replay.
Non-determinism is among the features that make Murphi a good candidate for

reasoning about security protocols.

3.1.2 Specifying Properties

Desired properties of a protocol are specified in Murphi as state invariants, which
are Boolean conditions that have to be true in every reachable state. If a state is
reached in which some invariant is violated, Murphi prints an error trace consisting

of a sequence of states from the start state to the state exhibiting the problem.
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3.2 Local Authentication in Enclaves: System Model

The local authentication module (as shown in Figure 2.3) aims at mutual authen-
tication between users looking to join an active or a newly created group and the
group leaders. Group leaders want to be assured about the users identity in order
to convince the other leaders to let them in the group, and the users in turn want to
have a guarantee that they are not being fooled by some imposter (e.g., a “man in
the middle” that pretends a false identity, or title, for the purpose of deception).

This module was designed to work in a malicious environment, in which mes-
sages can be overheard, replayed and created by a so-called intruder. The protocol
is, however, based on the “perfect” cryptography assumption, i.e., when a message
m is encrypted with some participant’s public key K, then only this participant will
be able to decrypt the encrypted message {m}g.

We study the following version of the protocol:

i. U— L;: AuthinitReq, U, L;, {U, L;, N1} py,

it. L; — U : AuthKeyDist, L;, U, {L;, U, N1, Ny, Ky i} py,;

tii. U —> L;: AuthAckKey, U, L;, {U, L;, Na, N3}, ,
The user U sends a nonce N; (i.e., a newly generated random number) along with
its identifier to Leader L;, both encrypted with the long term key Py ; shared by L,
and U. Leader L; decrypts the message and obtains knowledge of N;. It checks U’s
identity in a predefined database, and then generates a nonce N; and a session key
Ky and sends the whole encrypted with the shared key Py;. User U decrypts the
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message and concludes that it is indeed talking to L;, since only L; was able to decrypt
U’s initial message containing nonce N; (L; is hence authenticated). Similarly U is
authenticated, in the third step of the protocol, after sending an acknowledgment

including Ny and using Ky;.

3.2.1 Modeling Users and Leaders

First, we consider the users component, referred to as clients in our model. In

Murphi the data structure for the clients is as follows:

const
NumClients: 3; -—- For example
type
ClientId: scalarset (NumClients);
ClientStates : enum {

C_SLEEP, -— Initial state
C_WAIT, -- Waiting for response from leader
C_ACK -- Acknowledging the session key

};

Client : record
state: ClientStates;
leader: Agentld; -- Leader with whom the client starts the
end; -- protocol
var
clnt: array([ClientId] of Client;

The number of clients is scalable and is defined by the constant NumClients. The
type Clientld is a scalarset of size NumClients, i.e., a Murphi construct used
to denote a subrange like 1... NumClients, and to enable automatic symmetry
reduction on instances of that type. The state of each client is stored in the array

cint. In the initialization statement of the model, the local state (stored in field
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state) of each client is set to C_SLEEP, indicating that no client has started the
protocol yet.

The behavior of a client is modeled with two Murphi rules. The first rule is
used to start the protocol by sending the initial message to some agent (supposedly
a leader), and then changes its local state from C_ SLEEP to C_W AIT. The second
rule models the reception and checking of the reply from an agent, the commitment
and the sending of the final message. The Murphi model for the first rule is as

follows:

ruleset i: ClientId do
ruleset j: AgentId do
rule "client starts protocol (step 1)*
clnt{i] .state = C_SLEEP &

tismember(j,ClientId) & -- only leaders and intruders
multisetcount (l:net, true) < NetworkSize

==>

var
outM: Message; -- outgoing message

begin

undefine outM;
outM.psource
outM.pdest
outM.mType

it

i;
3
M_AuthInitReq;

multisetadd (outM,net);

clnt{i] .state := C_WAIT;
clnt{i].leader := j;
end;
end;

end;

The condition of the rule is that client ¢ is in the local state C_SLEFEP, that

agent j is not trivially a client (and hence should be either a leader or an intruder),
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and that there is space in the network for an additional message. The network is
modeled by the shared variable net. Once the rule is enabled, the outgoing message
is constructed and added to the network. In addition, the local state is updated and

the identifier of the intended destination is stored in state variable cint[i].leader.

The second rule of the client is modelled in Murphi as follows:

ruleset i: ClientId do
choose j: net do
rule "client reacts to nonce received (steps 2/3)"
clnt{il].state = C_WAIT &
net[jl.pdest = i &
ismember(net[j].psource,Intruderid)

var
outM: Message; -— outgoing message
inM: Message; -- incoming message
begin
inM := net[jl;

multisetremove (j,net);

if inM.key=i then -- message is encrypted with i’s key
if inM.mType= M_AuthKeyDist then  -- correct message type
if (inM.noncel=i & -~ correct nonce and source

inM.csource=clnt[i].leader) then
undefine outM;

outM.psource := i;

outM.csource := i;

outM.pdest = clnt[i].leader;
outM.cdest = clnt{i].leader;
outM.key = inM.sessionKey;
outM.mType = M_AuthAckKey;

outM.noncel inM.nonce?2;

multisetadd (outM,net);

clnt[i].state := C_ACK;
else

--grror "Client received incorrect nonce"
end;

......
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The condition of the rule is that client ¢ is in the local state C_W AIT and that the
destination of the message in network cell net(j] is actually this client. Once enabled,
the rule recovers the message and frees the network. The client then checks if it can
decrypt the message, if the message type is correct, and if the message contains the
correct nonce. If all three conditions hold, an outgoing acknowledgment message
M _AuthAckKey is constructed and added to the network. The client then changes
its local state to C_ACK.

In this model, we do not consider possible interferences that may occur between
sessions (e.g., when a client U concurrently sends several authentication requests to
different leaders). Instead, we assimilate the protocol to a sequence of independently
running parallel sessions, and focus, rather, on the mutual authentication between
each single leader L; and client U.

The leader part of the model is quite similar to the client part. For instance,
the leaders also maintain a local state and store the identifier of the agent initiating
the protocol in their state variable lead[s].client. In addition, the behavior of the
leaders is also ‘'modeled with two rules: one that handles the initial authentication
request of the client and another which commits to the session after receipt of the

final message of the protocol.
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3.2.2 Modeling Intruders

The intruder maintains a set of overheard messages and an array representing all the
nonces it knows. The behavior of the intruder is modeled with three rules: one for
eavesdropping and intercepting messages, one for replaying messages, and one for
generating messages using the learned nonces and injecting them into the network.

The model for the first rule is given in the following.

ruleset i: Intruderld do
choose j: net do
rule "intruder overhearing messages”
lismember (net[j].psource, IntruderId) -- not for intruder’ msgs
var
temp: Message;

begin
alias msg: net[j] do -- message to intercept
alias intruderknowledge: int[i].messages do
if multisetcount (f:intruderknowledge, true) < MaxKnowledge then

if msg.key=i then ~- message is encrypted with i’s key
int [i] .nonces[msg.noncel] := true; -- learn nonces
if msg.mType= M_AuthKeyDist then
int[i] .nonces[msg.nonce2] := true;
end;
else -- learn message
alias messages: int[i].messages do
temp := msg;
undefine temp.psource; -- delete useless information
undefine temp.pdest;
if multisetcount (1l:messages, -- add only if not there

messages[1] .mType = temp.mType &
(messages([1] .mType = M_AuthKeyDist ->
messages[1] .sessionKey = temp.sessionKey ) ) = O then
multisetadd (temp, int[i] .messages);
end;

........
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The enabling condition of the intruder’ message overhearing rule is that the net-
work cell in question, net[j], does not contain a message sent by the intruder itself

(otherwise nothing will be learned). We distinguish then two cases:

e The intercepted message is intended for the intruder (encrypted with a key
known to the intruder msg.key = i), then the action is simply to learn the

nonces (c.f. murphi model above).

e The intruder intercepts a message that is intended to another participating
agent and then learns all useful message fields. The intruder can also be mod-

eled to block and remove messages from the network.

3.2.3 Properties Specification

The main property we are interested in is mutual authentication between a given
pair of leader and client, L; should be able to assert that it has been talking, indeed,
to client U, and vice-versa. The verification is done by means of invariant checking
under the aforementioned assumptions. The client proper authentication invariant is

given below.

invariant “client proper authentication™
forall i: Leaderld do
lead{i] .state = L_COMMIT &
ismember (lead[i].client, ClientId)
->
clnt[lead(i].client].leader = i &
clnt[lead[i].client].state = C_ACK
end;
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It basically states that for each leader 7, if it committed to a session with a client,
then this client (whose identifier is stored in lead[i].client), must have started the
protocol with leader ¢, i.e., have stored ¢ in its field leader and be awaiting for
acknowledgment (i.e., in state C_ACK).

In addition to the above invariant, we have checked a similar one for leaders
proper authentication. The leaders proper authentication invariant asserts that for
each client, if it commits to a session with a leader L;, then L; is, in reality, the same

leader with whom the client started the session.

invariant “leaders proper authentication”
forall i: Clientid do
clnt[i].state = C_ACK &
ismember (¢int{i}.leader, LeaderId)
->
lead{clnt{i].leader] .client = i &
{ lead[clnt[i].leader].state = L_WAIT |
lead{clnt[i].leader].state = L_COMMIT )
end;

I

3.3 Experimental Results

In the previous sections, we have discussed the formalization in Murphi of Enclaves
local authentication module. We have presented our model assumptions, defined the
rules that will be used by the protocol agents, and specified two security properties
as invariants of the protocol. In the following, we present the experimental results

obtained from the model checking of the first invariant: clients proper authentication.
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Table 3.1: Model Checking Experimental Results

| # Clients # Leaders # Intruders | Network size | States | CPU time

2 2 1 1 274753 516s

3 2 1 1 - -

2 3 1 1 1240550 3408 s
2 4 1 1 3723157 | 18383 s
2 ) 1 1 - -

3 2 1 1 - -

3 1 1 1 1858746 3161 s
2 2 2 1 - -

2 2 1 2 - -

3 1 1 2 - -

3 1 2 1 - -

4 6 1 1 - -

4 2 3 6 - -

Table 3.1 shows the number of reached states and CPU run times taken on
a six-440-MHz-processor Sun Enterprise Server with 6 GB of memory, for different
sizes of the protocol. The instances of the protocol that we have considered, were
chosen in a way that emphasizes the weight of each size parameter. Our approach
is as follows. We start with an instance of the protocol for which the model check—
ing terminates (e.g., the first row in the table), and from there we explore several
instances, following a certain pattern, where we vary only one size parameter and
keep all others unchanged. The results roughly show that the number of leaders is

less significant, in terms of complexity, then other parameters such as the number of
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clients, intruders or the network size (maximum number of messages allowed on the
network at the same time). This can be explained by the fact that the average load
for each individual leader is reduced when we increase their total number. Another
parameter, of most importance, is the intruder’s maximum knowledge (or memory
size). For the purpose of this experiment, we have kept it equal to “3” messages
(enough for the three steps required in a single session of the protocol).

Besides, many of the rows in Table 3.1, show non conclusive results, where
Murphi ends up running out of memory before reaching all possible states. This
is a very known problem of model checking in general. One way to improve this,
is by deploying more computational resources, but doing so will not bring a major
change to the picture, as the number of states grows exponentially with respect to
the size parameters. Another successful way is to adopt powerful model abstraction
and reduction techniques [27], which in our case would have to be done manually as

Murphi does not support such algorithms.

3.4 Concluding Remarks

In this chapter, we have verified the correctness of Enclaves authentication protocol
using the Murphi model checker. Our model, assumes a powerful intruder, capable of
intercepting messages, modifying and generating new messages out of the previously
gained knowledge. We also assume perfect cryptography and, therefore, limit the

intruder power by cryptographic constraints.
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In this verification, we are uniquely concerned with the mutual authentication
property between any given pair of client and leader. In the case of a client con-
currently running several authentication requests with different leaders, we consider
each session (with a given leader) as independent. In other words, we assume that
the correctness of the concurrently running sessions results from the correctness of
each session running independently.

Besides, our specification is very intuitive; we simply list the rules of each action
the participants can perform in the protocol. Unlike belief-based logics, we do not
need to interpret the beliefs that each message would convey to protocol agents. Also
Murphi offers a lot of freedom, compared to other tools (e.g., SMV [60]), especially
when it comes to the definition of the intruder model, often at the center of all
security analysis.

On the other hand, efficiency was our biggest concern. In fact, only for a few
number of small instances of the protocol, the Murphi tool terminated the model
checking in a reasonable amount of time, but it was not the case for most instances.
Although we performed our experiments on a relatively powerful machine, and de-
spite the fact that Murphi was equipped with a few techniques to help reduce the
state space, the execution time increased dramatically as we started increasing the
protocol size, and the model checker was unable to terminate any more. This is due
to the exponential complexity of the protocol in the number of participants, the net-

work size and the maximum knowledge participants are allowed to remember. One
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possible way to improve this, is by using rank functions with theorem proving [94].
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Chapter 4

Proving Byzantine Agreement by

Theorem Proving in PVS

PVS [81] is a formal specification and verification system. It is mainly intended for
the formalization and verification of design specifications in hiher-order logic, and
for the analysis of difficult problems. It has been chiefly applied to algorithms and
architectures for fault-tolerant flight control systems, and to problems in hardware
and real-time system design (e.g., [6, 62]).

PVS consists of a specification language, a number of predefined theories, and
a theorem prover. The specification language of PVS is based on a classical, typed
higher-order logic. The PVS theorem prover provides a collection of powerful prim-
itive inference procedures that are applied interactively under user guidance within

a sequent calculus framework. The primitive inferences include propositional and
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quantifier rules, induction, rewriting, and decision procedures for linear arithmetic.
To use PVS, one needs first to model the considered system in the specification lan-
guage of PVS, and then apply the right axioms and inference procedures to derive
the proofs.

In our verification of Enclaves, we model the protocol as an automaton whose
initial state is modified by the participants’ actions as the group mutates (new mem-
bers join). Moreover, because Enclaves depends also on time (participants timeout,
timestamp group views, etc.), we found it convenient to model it as a timed au-
tomaton. In the current specification, timing is used only to ensure actions progress.
Timing, however, is essential to prove upper bounds on agreement delays (e.g., a
maximum join delay), but this is beyond the scope of this thesis. Participants in a
typical run of Enclaves consist of a set of n leaders (f of which are faulty), a group
of members, and one or more users requiring to join the group.

In this chapter!, we first explain our general PVS theory about timed automata.
The parameters of this theory are used here to formalize Enclaves by defining the
actions, the states, and the precondition and effect of each action. Thereafter, we

describe the resulting executions of the protocol and fault assumptions.

Details about the PVS theories and proof scripts can be found at
http:/ /hvg.ece.concordia.ca/Research/CRYPTO /Enclaves.htm!
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4.1 Modeling Byzantine Agreement in PVS

4.1.1 Timed Automata

We have developed a general, protocol-independent, PVS theory called Timed Automata.
Given a number of parameters, it defines all possible executions of the protocol as a
set of Runs. A run is a sequence of the form sg =% s; — Sg —% S3 — ... where the
s; are states, representing a snapshot of the system during execution and the a; are
the executed actions. A particular protocol (an instance of the timed automaton) is
characterized by sets of possible States and Actions, a condition Init on the initial
state, the precondition Pre of each action, expressing in which states that action can
be executed, the effect Effect of each action, expressing the possible state changes
by the action, and a function now which gives the current time in each state.

In a typical application, there is a special delay action which models the passage of
time and increases the value of now. All other actions do not change time. In PVS,

the theory and its parameters are defined as follows.

TimedAutomata [ States, Actions: TYPE+,
Init : pred[States],
Pre : [Actions -> pred[States]] ,
Effect : pred[[States, Actions, States]],
now : [States -> nonneg_real]
1 : THEORY

To define Runs, let PreRuns be a record with two fields, states and events.

PreRuns : TYPE = [# states : sequence[States],
events : sequencefActions] #]
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A Run is a PreRun where the first state satisfies Init, the precondition and effect
predicates of all actions are satisfied, the current time never decreases and increases
above any arbitrary bound (avoiding Zeno-behaviour [49]). In PVS, this is formalized

as follows.

PreEffectOK(pr) : bool = FORALL i :
Pre(events(pr)(i)) (states(pr)(i)) AND
Effect(states(pr) (i), events(pr) (i), states(pr)(i + 1))

NoTimeDecrease(pr) : bool =
FORALL i : now(states(pr)(i)) <= now(states(pr)(i + 1))

NonZeno(pr): bool =
FORALL t : EXISTS i : t < now(states(pr)(i))

Runs : TYPE =
{ pr: PreRuns | Init(states(pr)(0)) AND PreEffectOK(pr) AND
NoTimeDecrease(pr) AND NonZeno(pr) }

4.1.2 Modeling Leaders Actions

To define the actions of the leaders, we first state a few preliminary definitions. Let
n be the number of leaders and let f be such that 3f +1 < n (the maximum number

of faulty leaders).

n : posnat
f :{k:nat | 3*xk+1<=n}

For simplicity, leaders are identified by an element of {0,1,... ,n — 1}. Users are
represented by some uninterpreted non-empty type, and time is modeled by the

set of non-negative real numbers. Besides, we define three time constants for the
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maximum delay of messages in the network, and the maximum delays between some

leader actions.

LeaderIds : TYPE = below[n]

Userlds : TYPE+

Time : TYPE+ = nonneg_real

i : VAR LeaderlIds

user : VAR Userlds

t : VAR Time

MaxMessageDelay, MaxTryPropagate, MaxTryAccept : Time

We define the following actions of the protocol:

e A general delay action, which occurs in all our timed models; it increases the
current time (now), and all other clocks that may be defined in the system,

with the amount specified by a delay parameter del.

e An announce action used to send announcement messages of new locally au-

thenticated users to the other leaders of the protocol.

e A trypropagate action allowing a user announcement to be further spread
among leaders. This action is executed periodically, but it only changes the
state of the system if enough announcements (f + 1) have been received for
the considered user and it has not already been announced or propagated by

the leader in question before.

e An action Tryaccept used to let leaders periodically check whether they have
received enough announcements and/or propagation messages for a given user.
Once this condition is satisfied, the user is accepted to join the group.
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e A receiwve action allowing a leader to receive messages; it removes a received
message from the network and adds corresponding data to the local buffer of

the leader.

e A crash action modeling the failure of a leader. After a crash, a leader may
still perform all the actions mentioned above, but in addition it may perform

a misbehave action.

e An action misbehave, which models the Byzantine mode of failure and can only

be performed by a faulty (crashed) leader.

These actions are represented in PVS as a data type, which ensures, e.g., that

all actions are syntactically different.

LeaderActions [LeaderlIds, UserIds, Time : TYPE] : DATATYPE
BEGIN
delay(del : Time) : delay?
announce(id : Leaderlds, user : Userlds) : announce?
trypropagate(id : LeaderIds) : trypropagate?
tryaccept(id : LeaderIds) : tryaccept?
receive(id : LeaderIds) : receive?
crash(id : LeaderIds) : crash?
misbehave(id : LeaderIds) : misbehave?
END LeaderActions

4.1.3 Modeling States

In order to properly capture the distributed nature of the network, it is suitable to

model two kinds of states: a local state for each leader, accessible only to the par-

ticular leader, and a globai state to represent global system behavior which includes
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the local state of each leader, the representation of the network and a global notion
of time.

An important part of the local state is the group view, which is a set of users
in the current group. In fact, the ultimate goal of Enclaves is to assure consistency of
the group views. Moreover, we use a Boolean flag (faulty) marking the leader status
as faulty or not, some local timers (clockp and clocka) to enforce upper bounds on
the occurrence of trypropagate and tryaccept actions, and finally a list (received) of

the leaders from which the local leader received proposals for a given user.

Views : TYPE = setof[Userlds]

LeaderStates : TYPE =

{# view : Views,
faulty : bool,
clockp : Time, % clock for the trypropagate action
clocka : Time, % clock for the tryaccept action
received : [Userlds -> list{LeaderIds]] #]

We model Messages as quadruples containing a source, a destination, a pro-
posed user and a timestamp indicating an upper bound on the delivery time, i.e.,

the message must be received before the tmout value.

Messages : TYPE = [# src : LeaderlIds,
tmout : Time,
proposal : Userlds,
dest : Leaderlds #]

In the global states, the network is modeled as a set of messages. Messages
that are broadcast by leaders are added to this set, with a particular time-out value,

and they are eventually received, possibly with different delays and at a different
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order at recipient ends. The global state also contains the local state of each leader

and a global notion of time, represented by now.

GlobalStates : TYPE = [# 1s : [LeaderIds -> LeaderStates],
now : Time,
network : setof [Messages] #]

s, s0, si : VAR GlobalStates

Furthermore, we define a predicate I'nit, that expresses conditions on the initial
state, requiring that all views, received sets and the network are empty, and all clocks

and now are set to zero.

4.1.4 Preconditions and Effects

For each action A, we define its precondition, expressing when the action is enabled,

and its effect.

Pre(A)(s) : bool =

CASES A OF
delay(t) : prenetwork(s,t) AND preclock(s,t),
announce(i,u) 1 true,
trypropagate(i) : true,
tryaccept (i) : true,
receive(i) : MessageExists(s,1),
crash(i) : NOT faulty(ls(s)(i)),
misbehave (i) : faulty(1s(s)(i))

ENDCASES

An announce action may always occur and hence has precondition true. Similarly
for trypropagate and tryaccept, which should occur periodically. Action receive(s)

is only allowed when there exists a message in the network with destination ¢. For
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simplicity, a crash action is only allowed if the leader is not faulty (but we could also

take a precondition true). A misbehave action may only occur for faulty leaders.
Most interesting is the precondition of the delay(t) action. This action in-
creases now and all timers (clockp and clocka) by ¢. To ensure that messages are
delivered before their time-out value, we require that the condition prenetwork, de-
fined below, holds in the state before any delay(t) action is taken, which fits our

informal assumptions about network reliability.

prenetwork(s, t) : bool = FORALL msg :
member (msg, network(s)) IMPLIES now(s) + t <= tmout(msg)

Similarly, there is a condition preclock which requires that all timers (clockp
and clocka) are not larger than MazTryPropagate and MaxzTryAccept, respec-
tively. Since the trypropagate and tryaccept actions reset their local timers to zero,
this may enforce the occurrence of such an action before a time delay is possible.

Next, we define the effect of each action, relating a state sy immediately before

the action and a state s; immediately afterwards.

e delay(t) increments now and all local timers by ¢, as defined by sg + ¢.

e announce(i, U) adds, for each leader j a message to the network, with source

i, time-out now(sg) + MaxMessageDelay, proposal U, and destination j.

e trypropagate(i) resets clockp to zero and adds to the network messages, to all
leaders, containing proposals for each user for which at least f + 1 messages
have been received.
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e iryaccept(i) resets clocka to zero and adds to its local view all users for which

at least (n — f) messages have been received.

e receive(i) removes a message with destination ¢ from the network, say with
source j and proposal U, and adds j to the list of received leaders for U,

provided it is not in this list already.
e crash(i) sets the flag faulty of ¢ to true.

e misbehave(i) may just reset the local timers clockp and clocka of i to zero, as
expressed by ResetClock(sg,i,s;) below, or it may add randomly as well as
maliciously chosen messages to the network (provided that timeouts are not
violated). A misbehaving leader, however, cannot impersonate other protocol
participants, i.e., any message sent on the network has the identifier of its

actual sender.

This leads to a predicate of the form:

Effect(s0,A,s1) : bool =
CASES A OF
delay(t) : 81 =80 + t,
announce (i,u) : AnnounceEffect(s0,1,u,sl),
misbehave (i) : ResetClock(s0,i,sl) OR SendMessage(s0,i,sl)
ENDCASES

4.1.5 Protocol Runs and Fault Assumptions

Runs of this timed automata model of Enclaves are obtained by importing the general
timed automata theory. This leads to type Runs, with typical variable r. Let
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Faulty(r, i) be a predicate expressing that leader ¢ has a state in which it is faulty.
It is easy to check in PVS that once a leader becomes faulty, it remains faulty forever.
Let FaultyNumber(r) be the number of faulty leaders in run r (it can be defined
recursively in PVS). Then we postulate by an axiom that the maximum number of

faults is f (MazFaults : AXIOM FaultyNumber(r) < f).

4.2 Correctness Proofs

One of the most important requirements Enclaves is supposed to guarantee, is proper
authentication and access control. This requirement ensures that only authorized
users can join the group and that an authorized user cannot be prevented from
joining the group. In this chapter, we are interested in verifying this requirement,

formalized hereafter by the three following properties:

e Termination: if user U wants to join an active group and has been announced
by enough non-faulty leaders, then eventually user U will be accepted by all

non-faulty leaders and become a member of the group.

e Integrity: a user that has been accepted in the group should have been an-

nounced by a non-faulty leader earlier during the protocol execution.

e Proper Agreement: if a non-faulty leader decides to accept user U, then all

non-faulty leaders accept user U too.
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The above properties do only reflect the author’s perception and understanding of the
proper authentication and access control requirement. To the best of our knowledge,
there is no method available in the literature that allows to rigorously and “losslessly”
formalize an informal assertion. In the remainder of this section, we assume the above
properties to convey the full meaning of the requirement in question, and we briefly

outline each of the properties and their respective proofs.

Theorem 1 (Termination)

For all v and U, announced_by_many(r,U) implies accepted by _all(r,U)
where

e announced_by_many(r,U) expresses that at least (f + 1) non-faulty leaders

announced user U during run r;

e accepted by.all(r,U) asserts that eventually all non-faulty leaders have user U

in their view during run 7.

Proof

Assume announced_by_many(r,U), which implies that at least (f + 1) non-faulty
leaders broadcast a proposal for U. Because of the reliability of the network, even-
tually these messages will be delivered to their destination, and in particular to the
(n — f) non-faulty leaders of the network. They all receive (f + 1) announcement
messages for user U, which is enough to trigger the propagation procedure (for U)
for all non-faulty leaders who did not participate in the announcement phase. Now
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because of the network reliability, we conclude that eventually all non-faulty leaders
will receive at least (n — f) approvals for user U, enough to make a majority, since

(n— f) > f follows from n > 3f. O

Theorem 2 (Integrity)

For all v and U, accepted_by_one(r,U) implies announced_by_one(r,U)
where

e accepted_by_one(r,U) holds if at least one leader eventually included U in its

view during run 7.

e announced_by_one(r,U) expresses that at least one non-faulty leader announced

user U during run r;

Proof

We proceed by contrapositive and use the non-impersonation property. We assume
that for all non-faulty leaders no announcement for user U has been done during
run 7. Now because of non-impersonation, faulty leaders cannot send more than f
different announcements. This implies that the leaders would receive no more than f
announcements for user U, which is not enough to trigger propagation actions. This
yields that U will never be proposed by any of the non-faulty leaders, and hence
none of them will receive as much as (n — f) messages for U (recall (n — f) > f).

As a result, user U will never be accepted by any of the non-faulty leaders. 0
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Theorem 3 (Proper Agreement)

For all v and U, accepted_by_one(r,U) implies accepted_by_all(r,U)

Proof

accepted_by_one(r,U) implies that there exists a non-faulty leader that received at
least (n — f) approvals (i.e., announcements or propagation messages) for user U.
Among these approvals, at least (n — 2f) come from non-faulty leaders (by non-
impersonation). Now because these leaders are non-faulty, they broadcast the same
approval to all the other leaders. In addition, because of the network reliability, these
messages are eventually delivered to destination. This implies that all (n — f) non-
faulty leaders receive eventually the above (n—2f) approvals. Since (n—2f) > (f+1),
all (n— f) non-faulty leaders have received at least (f +1) messages for U. Similar to
the proof of Termination, the latter implies the start of the propagation procedure,
then the reception of at least (n — f) approvals for user U, and finally the acceptance

of U by all non-faulty leaders. |

4.3 Concluding Remarks

In this chapter, we have verified the correctness of the Byzantine Agreement module
of Enclaves using the the PVS theorem prover. Thanks to the high level of expres-
siveness of the Timed-Automata formalism, as well as the rich datatype package of

PVS, we have succeeded to formalize the module for any number of leaders, in a way
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that thoroughly captures the many subtleties on which the correctness arguments of
Enclaves rely.

Also, the PVS theorem prover provides a collection of powerful primitive in-
ference procedures to help derive theorems. These primitive procedures can also be
combined to yield higher-level proof strategies, while proofs may produce scripts that
can be edited, attached to additional formulas, and rerun. This allows many similar
theorems to be proved efficiently, permits proofs to be adjusted economically to fol-
low changes in requirements or design, and encourages the development of readable
proofs.

Using all these features, we have proved the protocol to satisfy its require-
ments of Termination, Integrity and Proper Agreement. The proofs required over 60
intermediate lemmas. The Integrity and Termination theorems were the most chal-
lenging to prove and they helped, by reusing some the proof scripts, deduce Proper

Agreement.
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Chapter 5

Proving Group-Key Management

by Mathematical Analysis

In the previous chapters we discussed authentication and leaders agreement. We saw
also that once the leaders agree on accepting a client U, they proceed with providing
it with a group key. We direct our focus here to Enclaves group key management
module [33]. This module, based on a secret sharing scheme, ensures that (1) the
f dishonest leaders cannot obtain the group key even if they conspire altogether
(at least (f + 1) shares are needed to reconstruct the secret); (2) the group key is
renewed every time the group changes (new join or leave); and (3) the clients are
able to discern valid key shares from fake ones (possibly issued by malicious leaders).

The group key management protocol of Enclaves is based on a previous work

of Cachin et al. [17], where the authors make use of threshold signatures [96] and
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coin-tossing [14] schemes in order to achieve Byzantine agreement in a completely
asynchronous network.

The security properties of the group key management protocol of Enclaves rely
on the hardness of computing discrete logarithms in a group of large prime order.
Such a group G can be constructed by selecting two large prime numbers p and ¢
such that p = 2¢ + 1 and defining G as the unique subgroup of order ¢ in Z,".

The remainder of this chapter is organized as follows. We start by a brief
outline of the secret sharing scheme used in the Group-Key Management module
of Enclaves. Then, after a quick survey of the state-of-the-art main models used in
security analysis, we discuss our adopted model and argue for our choice. Finally, we
prove the Confidentiality of group communication requirement via a mathematical
analysis of the robustness and unpredictability properties of the group key manage-

ment module of Enclaves.

5.1 Enclaves Group-Key Management: A Verifi-

able Secret Sharing Scheme

As discussed in Chapter 2, in order to preserve the integrity and the confidentiality
of communications, the group encryption key is split into n shares s;, ..., s,. These
shares are computed from a secret s and distributed to the n leaders (share holders).

The shares are computed, at the initialization phase, by a trusted dealer who needs
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to know s. Each of the n leaders knows only a share of the group key, and at least
(f +1) shares are required to reconstruct the key. Any set of no more than f shares
is insufficient. This ensures that compromise of at most f leaders does not reveal
the group key to the attacker. The shares are all computed from a common value
g that all share holders know. The value of § is derived from the group view using
a one-way hash function. Leader L; computes its share s; using a share-generation
function S, the value g, and a secret z; that only L; knows: s; = S(g, ;). Leader L;
also gives a proof that s; is a valid share for g. This proof does not reveal information
about z; but enables group members to check that s; is valid.

Initially, the dealer chooses a generator g of G and performs the following

operations:

e Select randomly (f + 1) elements ay, ...,af of Z,. These coefficients define a

polynomial of degree f in Z,[X]:

F:ao+a1X+...+anf.

e Compute zy,...,z, of Z, and gy, ..., g, of G as follows:

z; = F(@3)

g9 = g
The numbers zq,...,z, must then be distributed secretly to the n leaders
Ly, ..., L, respectively. The generator g and the elements gy, ..., g, are made

public. They must be known by all users and leaders.
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In addition, leader L; maintains a local group view (n;, M;). L;’s share s; is
a function of the group view, the generator g, and L;’s secret value z;. L; first

computes § € G using a one-way hash function H; with domain in G:
g = Hy(n;, M;).

Then the share s; is obtained by exponentiation:

si = g™.

Finally, the group key for the view (n;, M;) is defined as
K=",

Now given any subset of (f + 1) values among §**, ..., §**, one can compute

f+1

g =]]a" (5.1)

3=1

where b; is obtained from j = 1,...,(f + 1) by

Hj;eij

b =

[Lu(i 1)

It can be seen from Equation (5.1), that a compromised leader L; can make the
computation fail just by sending an invalid share s; # ¢* to some client. L; could
also cause different members to compute different group keys by sending different
shares to each participant. In order to protect against such attacks, the share s;
should be accompanied by a proof of validity. This extra information enables a
member to check that s; is equal to g% with very high probability. The verification
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uses the public value g; that is known to be equal to ¢g* (since the dealer is trusted).
To prove validity without revealing z;, leader L; generates evidence that
log; s; = log, ;.
To produce the evidence:

1. Leader L; picks up randomly y € Z, and computes
u = g¥
v = gY.
2. Leader L;, then uses a second public hash function Hs : G® — Z, to compute

C = Hg(gy gi, U, ga Siy U)'

3. Now leader L; computes z = (y+z;c) and sends each client the tuple (n;, M;, s;, u, v, 2),

that is the share s; and the proof of validity (n;, M;, u,v, 2).

4. On receiving the above message, a group member U evaluates g = H(n;, M;)
and computes ¢ = Hy(g, gi,u, §, i, v) (supposed to be equal to ¢) and accepts

the share s; only if the following equations hold:

7
g =ug; (5.2)

? /

7 =v s (5.3)

If this check fails, s; is not a valid share and U ignores it. Once U receives

(f + 1) valid shares corresponding to the same group view, U can construct the
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group key. Since U maintains a connection with at least (f + 1) honest leaders, U
eventually receives at least (f + 1) valid shares for the same view, once the group

becomes stable.

5.2 Provable Security : Approaches and Models

5.2.1 Concrete vs. Asymptotic Approaches

Approaches to provable security are mainly of two flavors: concrete (or exact) secu-
rity and asymptotic security. The latter adopts a more general way in considering
security: objects of interest are always families of functions. Asymptotic security
is well-suited for understanding the basic theoretical relationships between crypto-
graphic primitives. For example, asymptotic security has been used to reason about
results like “if a one-way function exists, then we can build a pseudo-random gen-
erator” via some complex reductions. So similar assertions about the existence of
reductions are well-captured in the asymptotic approach.

In contrast, the exact approach does not involve reasoning about families of
functions, and instead, it directly models the underlying primitives of cryptographic
protocols. This offers a finer assessment of security and allows to know exactly how
much security is maintained by the reduction. In practice, to quantify the reduction
one would define the advantage Adv(I) that computationally bounded adversary I

will defeat some security goal of the scheme in question. The advantage is then
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Adv(I) = Pr [I defeating the scheme] - 3

where % is the probability, in a uniform model, of I defeating the scheme.

5.2.2 Random Oracle vs. Standard Models

In general, to show a cryptosystem is secure, cryptographers choose a model for
analyzing the security of the cryptosystem. Models used by cryptographers fall into

three main classes: ad hoc, random oracle, and standard models.

Ad hoc Models

As their name suggests, these models are very much of a hack. One could build
an ad hoc model only by assembling some hash functions along with some random
generators, etc. and then see if it captures few obvious attacks. If so, the system
is deployed. Once broken, some hash functions along with some random generators
are added and the cycle repeats.

Obviously, this approach has serious limitations (in fact, it leads nowhere).
Even if the cryptosystem is built out of perfect components, these components may

interact in some hard-to-predict ways that allow attackers to break into the system.
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Random Oracle Model

To analyze a protocol using the Random Oracle Model (ROM), one replaces a real-
world cryptographic hash function by a black-box that when queried outputs a ran-
dom bit-string, subject to the restriction that it always outputs the same value on
the same input. Having made this replacement, one then gives a reductionist security
argument. The right way to view a proof of security in ROM is as a proof of security
against a restricted class of adversaries that do not care if the hash function really

is a black-box. This limitation has been pointed out by Canetti [19].

Standard Models

This is the preferred approach of modern, mathematical cryptography. Here, one
shows with mathematical rigor that any attacker who can break the cryptosystem
can be transformed into an efficient algorithm to solve the underlying well-studied
problem that is widely believed to be very hard. In other words, if the “hardness
assumption” is correct as presumed, the cryptosystem is secure.

This approach is about the best cryptographers can do. If security can be
proved in this way, then we essentially rule out all possible attacks, even those “we

have not yet imagined”.
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5.3 Security Analysis of the Group-Key Manage-

ment Module

In this section, we adopt the Random Oracle Model and sketch proofs of two key
properties of the Group-Key Management module, namely, robustness and unpre-

dictability of the secret sharing scheme of Enclaves.

Theorem 4 (Robustness) In the random oracle model, a dishonest leader cannot

forge, with a non negligible probability, a valid proof for a non valid share.

Proof sketch: Let s; be the share provided by leader L; and (n;, M;,u,v, z) be
the corresponding correctness proof. s;,u,v and z should then satisfy the following

equations:

9 = ug’ (5.4)

i = vsf (5.5)

where ¢ = Hy(g, g;, 4, §, s;,v). Equation (5.4) yields u € G, since ¢;° and ¢* are both
in G (closure of G under multiplication). The latter implies that it exists vy € Z,
such that u = ¢”. Equation (5.4) gives: g* = ¢”¢“i, which implies: z = v + cz;.

Now Equation (5.5) becomes:

g =v85° = §(7+Czi) = 9 8¢
= §TuTt = (57 s
This yields two possible cases:
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1. s; = g*. In this case, the share is correct. v = §” and for all ¢ € Z, the verifier

equations trivially hold.

2. s; # g™. In this case we must have
¢ =log-=: ;3(3" v7). (5.6)

From equation 5.6, one can see that, if s; is not a valid share, once the triplet (s;, u, v)
is chosen, then there exists a unique ¢ € Z, that satisfies the verifier equations. In
the random oracle model, the hash function Hs is assumed to be perfectly random.
Therefore, the probability that Hy(g, g;,u, g, s, v) equals ¢, once (s;, 4, v) fixed, is %.
On the other hand, if the attacker performs an adaptively chosen message attack by
querying an oracle A times, the probability for the attacker to find a triplet (s;, u, v),
such that ¢ = Ha(g, ¢s, 4, §, $i, V), 1S Psyeeess = 1 — (1 — %)N ~ % for large ¢ and NV.
Now if k is the number of bits in the binary representation of g, then Pgyccess < %

Since a computationally bounded leader can only try a polynomial number of triplets,

then when % is large, the probability of success is negligible (Psyccess = 5’\% < 1).
Theorem 5 (Unpredictability) An attacker that corrupts up to f leaders cannot,
with a non negligible probability, learn the secret group key g°.

This has been proved by Cachin, Kursawe, and Shoup [17] and relies on both:

e The perfect cryptography assumption:

S(Sif+1 | 51:1782'2" o 78ij> = S(Sif+1) v.] S f
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where S denotes the information entropy function.

o The Computational Diffie-Hellman assumption [30], which states that there is
no polynomial time probabilistic algorithm that computes s; = §% given g, g,

and g; = g™, with a non-negligible probability of error.

In a nutshell, the knowledge of up to f shares does not give the attacker any statis-
tical privilege to predict extra valid shares. Therefore, the data a computationally
bounded attacker might have access to, is not sufficient to reconstruct the group key
in polynomial time and with a non-negligible probability of error. A more accurate

proof of a similar theorem has been devised by Cachin et al. in [18].

5.4 Concluding Remarks

In this chapter, we have studied the architecture and correctness of the Group-Key
Management module of Enclaves. We have also reviewed some of the state-of-the-art
approaches and models used in the verification of similar provably secure schemes.
The main purpose of our verification was to obtain as much precise results
as possible about the security of the Group-Key Management module, rather then
asymptotic results about families of cryptographic functions. Therefore, we have
chosen the concrete approach, where we “quantify” the statistical advantage of an
Intruder defeating a scheme. Also, and in line with our perfect cryptography as-

sumption, we have considered cryptographic functions as black-box constructs by
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adopting the Random Oracle Model.

Given these assumptions, we proved the robustness property of the Group-Key
Management module. We have also pointed out for a way to prove the unpredictabil-
ity property, already derived in a similar context by Cachin et al. [18].

This work could be, however, improved by using the standard model, instead of

the Random Oracle Model, thereby covering a much wider range of possible attacks.
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Chapter 6

Conclusion and Future Work

In this thesis, we have presented the formal modeling and verification of the Intrusion-
Tolerant Enclaves protocol. We experiment with an adaptive combination of tech-
niques namely model checking, theorem proving and mathematical analysis. Our
choices of the used techniques and tools were based on the nature of the correctness
arguments in each module of the protocol, on the environment assumptions and the
easiness of performing the verification.

We have specified the Authentication module of Enclaves in Murphi and checked
two invariants of the module reachable states, namely clients and leaders proper au-
thentication. We have presented the experimental results of the invariants checking
for different sizes of the protocol. Murphi passed the check for small instances, but
as we started increasing the size parameters, the tool was unable to terminate the

model checking procedure.

73



We have used the PVS theorem prover to specify and prove the Byzantine
Agreement module of Enclaves. For instance, we have proved the protocol to satisfy
its requirements of Termination, Integrity and Proper Agreement. Given the high
level of expressiveness of the Timed-Automata formalism, as well as the rich datatype
package of PVS, we succeeded to formalize the Byzantine agreement module for any
number of leaders, in a way that reasonably captures the many subtleties on which
the correctness arguments of Enclaves rely.

Finally, we sketched a manual proof of the robustness and unpredictability prop-
erties of the secret sharing scheme of Enclaves using the Random Oracle Model
(ROM). In this model, real-world cryptographic hash functions are idealistically as-
similated to black-box constructs that when queried, output random bit strings. This
idealization allows only proofs of security against a restricted class of attacks, ones
that do not exploit whether a hash function has a particular structure or not.

We believe to have achieved a promising success in verifying a complex pro-
tocol such as Enclaves. Our results could be improved though. For instance, the
feasibility of model checking, is always limited to instances with a finite number of
states, which may, in some cases, prevent from discovering security flaws in realistic
implementations of the protocols. To improve this, one could use rank functions with
theorem proving [94]. We believe that using rank functions is a very efficient way to
mechanically prove authentication properties for any generic size of protocols. We

are considering this approach among our future work plans.
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Aside from that, we have proved the consistency of group membership only
when prospective clients ask to join the group. We still have not yet considered the
case where members leave the group, for instance. This is also among our future
work.

Furthermore, we have used the Random Oracle Model in our analysis of the
secret sharing scheme of Enclaves. The Random Oracle Model allows only for rea-
soning about a limited class of attacks. The standard model is an alternative. This
latter comprehends all possible cryptographic primitives and adversarial models. If
we can prove security in the standard model, then we essentially rule out all possible
attacks, even those “not imagined yet”. It would be interesting then, to consider
this avenue in future research. Also, another attractive research direction would be
to conduct mathematics related proofs mechanically in a theorem prover, thereby
allowing us to prove all three parts of Enclaves in PVS for instance. This will require
the elaboration of a set of specialized theories (e.g., probabilities), already explored
in HOL [52], but not yet in PVS.

The current specification can be extended even further by widening the Byzan-
tine faults capabilities and by introducing the joint cryptographic layers that have
been abstracted away. Also results about an upper bound on Agreement establish-
ment delays can be further investigated.

The complete Murphi and PVS source codes for our work can be found at

http://hvg.ece.concordia.ca/Research/CRYPTO/Enclaves.html.
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