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ABSTRACT
Automatic Design Pattern Recovery

Yonggang Zhang

An approach for recovering design patterns from source code is presented. The
approach addresses software comprehension issue in reverse engineering
domain, by providing a design pattern based representation of the system to
facilitate software understanding.

Design patterns are formalized by a simplified version of the LePUS language,
which eliminates some higher-order concepts to reduce the complexity and at the
same time, incorporates some extensions on entity and relation. Source code is
semantically parsed and is further interpreted by a language analysis framework.
Entities and relations are extracted and are used to generate a high level
abstraction of the program — program model. A multi-stage searching algorithm is
adopted to match the design pattern specifications with the program model to

identify design patterns implemented in the source code.

The approach has been implemented and can be used to identify several design
patterns listed in GoF book. Three initial experiments are conducted on some
open source software to demonstrate its suitability for recovering the specified
design patterns. The results are discussed in terms of the performance and the

precision of pattern recovery.
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l. Introduction

Software maintenance of existing legacy systems is the modification of a software
product after delivery to correct faults, to improve performance or other attributes,
or to adapt the product to a modified environment [I[EEE1219-98]. Referring to
some publications, maintenance of existing systems is estimated to consume
between 50% and 80% of the resources in the total software budget [Bo81, Mc92].
And within the maintenance process, software comprehension requires 47% and
62% of the total time for Improvement and correction tasks, respectively [FH83].
Therefore, software comprehension, including the process and methodology, has

significant effect on software maintenance, and the whole software development.

One of the common ways of understanding software is to develop a global picture
on the system, sub-system, e.g. UML class diagram, ER diagram, which reflects
the physical and logical structure of the components and communications.
However, this is still insufficient for a developer to fully comprehend the purpose of
a given piece [Bi89] of code. One of the possible reasons, as Beck and Johnson
said, is that “existing design notations focus on communication the what of the

designs, but almost completely ignore the why”. [BJ94] [KSRP99]

The design pattern, as a high-level design element, describes a



commonly-recurring structure of communication components that solves a
general design problem within a particular context [GHJV94]. The descriptions of
patterns contain not only the knowledge about the components and the
inter-relationships, but also the alternatives and design decisions behind the
design and implementation. Knowing the patterns existing in the legacy system
will give a lot of extra information to the reader, and thus considerably improve the
efficiency of software understanding. From this point of view, we consider that
recovering design patterns in legacy system is an important step in the software
comprehension process, which is, partially answering the question — “why is the
software designed like that”. The benefits of identifying design patterns can be

highlighted as the following:

® Comprehension — recovering design patterns in legacy systems, and
building a pattern-level representation of the system to facilitate the software
understanding. Furthermore, incorporating with domain knowledge and other
software artifacts to provide guidahce in rediscovering the design and
understanding the design decisions and rationales beyond the raw source

code.

® Documentation — using a pattern language [GHJV94] to document the

design of the legacy system will significantly improve the precision and



concision of the documents

® Refactoring[FBBOR99] — both identified design patterns in an existing
system and their relationships may improve the quality of source code, by

allowing for refactoring of parts of the source that were not well designed.

® \Validation — the recovery of the implemented patterns can provide some
additional insights of the problems the software is trying to address or solve.
We can use pattern recovering tools to validate whether the current
design/solution fully satisfies the requirement of the pattern implementation

by verifying if a certain pattern can be identified.

In this thesis, we introduce an approach that can identify design patterns from
Java language source code. The presented approach is designed to extract
information from the source code to build a language independent program
model. This model is then used to match the specifications of design pattern and
identify existing design patterns implemented in the program. Since the program
model is designed to represent the program in a high level abstraction on a
language independent layer, we consider that the presented approach is not
limited to the Java language, but can be easily extended to C++, C#, and most of

the other object oriented languages.



Il. Background

Many research directions have been proposed within the pattern community,
which range from investigating new patterns in specific domains, pattern
classifications, to pattern-based methodologies and tools. However, in the context
of reverse engineering, most of the ongoing researches on design patterns focus
on formal specification of design patterns and pattern-based reverse engineering

tools, e.g. [Ed01], [Mi98], [KP96], [AFC98], and [FGMPO1].

2.1 Design Patterns

Design patterns are high-level design elements that address recurring problems in
object oriented design. A design pattern describes “the problem, the solution,
when to apply the solution, and its consequence” [GHJV94]. To a concrete
problem, software designers analyze it and its context by referring to some
existing design patterns to decide how to apply the solution provided by the
pattern; thus, like algorithm or data structure, design pattern also plays a role as

design element in software design.

While the usefulness of design patterns in forward engineering is well proven, the

usages of design patterns in reverse engineering area is also an important



application area. A design pattern not only provides a proven solution to a
recurring problem, but also conveys the rationales behind the solution, i.e., not
only “what’, but also “why” [BJ94]. Therefore, design patterns may help us
understand the design decisions, which are usually not plainly described in the
software documents or source code. For that reason, we consider that design
pattern plays an important role in reverse engineering, and using design patterns
identified from source code can help us comprehend, maintain, and even

refactory software in the large.

A few researches (mainly described in section 2.3) have addressed the issue of
using design patterns in reverse engineering, especially in software
comprehension. Our research addresses the same direction, but we focus our
efforts on: firstly, to provide a precise definition to each pattern, and then secondly
to provide a language independent framework for a pattern-based reverse

engineering tools that may facilitate the understanding of existing software.

While in [BMRSS96], the five authors provided a more general perspective for
patterns used in software: Architectural Pattern, Design Pattern, and Language
Idioms, in this thesis, we adopt the notion that a “pattern” or “design pattern” refers

to design pattern, which can be defined as the following:



A design pattern provides a scheme for refining the subsystems or components of
a software system, or the relationships between them. It describes a commonly
recurring structure of communicating components that solves a general design

problem within a particular context. [GHJV94].

2.2 Formal specifications of design pattern

The success of automatic design pattern recovery absolutely depends on how
well we understand design patterns. Formal specification is the most precise
description of our knowledge, in our case, design patterns. Thus as part of this
research we regard that providing a formal specification of design patterns is vital
to our research. We have studied several approaches in formalizing design
patterns. The following is a literature review of formal design pattern

representations.

2.2.1 LePUS

LanguagE for Pattern’s Uniform Specification, in short, LePUS [Ed01], is a formal
notation of OO design and architecture. As the author concluded, LePUS is
defined as “a visual language for the specification of OO software architecture”
[Ed02], and it defines “a symbolic equivalent for each well-defined diagram” [Ed02]

as well.



In order to formalize the participants of a design pattern, LePUS defines Class
and Method as its ground entities, and further, Uniform Sets and higher order sets
as a set of participants like Creators, Products, etc. Clan and Hierarchies are also
introduced in order to represent the dynamic binding and inheritance mechanisms

of OO programming respectively.

In order to formalize the collaborations of participants, LePUS firstly identifies a
small set of relations between ground entities, like Definedin: F x C (where F is
the domain of methods and C is the domain of classes), as ground relations.
Bijection relation, which is mainly used to formalize the one-to-one

correspondences between two uniform sets, is also defined.

Based on the above “building blocks” [Ed02], a pattern is specified as its

participants and the collaborations of them. For example, Abstract Factory pattern

[GHJV94], in LePUS, can be specified as the following:

Factories: H
Products: P(H)
FMs: P(S)

Create <> (FMs ® Factories, Products)
ReturnType <> (FMs ® Factories, Products)

Figure 2.2-1 Abstract Factory Pattern in LePUS
The upper section represents the participants of the pattern, where H is the

.



domain of hierarchies, and S is the domain of signatures. P(H) and P(S) indicate
the power sets of H and S respectively. Then, Factories is a hierarchy, Products is
a set of hierarchies, and FMs (Factory Methods) is a set of signatures. The next
section represents the collaborations of these entities, where selection operator
® in FMs ® Factories will yield all methods defined in Factories whose signature
is in FMs, namely, the set of factor-method clans, and <« indicates a bijection of

two sets. [Ed02]

“LePUS is a highly concise language” [Ed02], which implies that it stands on a
very high level of abstraction. We consider LePUS is ideal for architectural level
specification, but it lacks some details in class design level specification. For
instance, the implementation of the Singleton pattern, which “ensures a class only
has one instance” [GHJV94], requires a private construction method and a static
instance of itself. The specification of the Singleton pattern is impossible in LePUS
because L.ePUS does not provide facilities for describing the properties of class
attributes. Another example is that some patterns like the Composite [GHJV94]
and the Iterator [GHJV94] require some participants to access their attributes to
maintain a list of elements, which also cannot be described by LePUS. In addition,
because of its high abstraction, from a reverse engineering perspective, mapping

source code to LePUS expressions is very difficult.



2.2.2 Disco

DisCo (Distributed Co-operation) [Mi98] is a formal specification method for
reactive systems. The formal basis of DisCo is temporal logic of actions [La94],
which is logic for specifying and reasoning about concurrent and reactive
systems. Consequently, DisCo specification of Design Pattern focuses on the
interactions among participant objects, and as the authors said, DisCo

emphasizes on collective behavior, rather than on behavior of individual objects.

A DisCo specification of a software system includes three parts: classes, relations,
and actions. In [Mi98], the author demonstrates DisCo on the Observer pattern
[GHJV94] as the following:

class Subject = { Data },

class Observer = { Data },

relation (0..1) " Attached " (*): Subject X Observer,
relation (0..1) " Updated * (*): Subject X Observer.

The first two formulas represent that there two classes Subject and Observer that

involved in this péttern, and the next two formulas indicate that there are

one-to-many relations, called Attached and Updated, between Subject and Observer.

In order to formalize the interactions of Subject and Observer, the following actions

are used:



Attach(s : Subject;o : Observer) .
—s - Attached - o
— s Attached o,

Detach(s : Subject;o : Observer) .
s - Attached - o

— s - Attached'-o

A —s -Updated'-o

Notify(s : Subject,d) :
— =8 - Update'-class Observer
As.Data'=d

Update(s : Subject;o” : Observer;d):
s - Attached - o

s -Updated - o

rd = s.Data

— s-Updated'o

No.Data'=d

Figure 2.3-1 Observer Pattern in DisCo

Above formulas represent the four interactions: Attach, Detach, Notify, and
Update respectively. Each action consists of a list of participants and parameters

incorporated with pre- and post-conditions of the execution of the action.

DisCo also provides facilities for class inheritance and pattern combination, and

thus for specifying more complex patterns.

Since DisCo mainly addresses the dynamic aspects of design patterns, it is very

—-10 -



difficult to apply DisCo in static source code analysis.

2.3 Pattern-based reverse engineering tools

Reverse engineering focuses on creating “representations of a system in another
form at a higher level of abstraction” [CC90]. Design patterns, as a kind of design
elements, capture “the rationale behind recurring proven design solutions and
illuminate the trade-offs that are inherent in almost any solution to a non-trivial
design problem” [KSRP99]. Introducing design patterns to facilitate reverse
engineering tools will significantly improve the expressiveness of the created
representations, and thus help people to understand the design decisions behind

the source code.

Several pattern-based reverse engineering tools have been introduced to
facilitate software comprehension within the last few years. Most of these tools
are based on pattern detecting techniques. However, only a very few of these
tools have a solid theoretical basis. The following sections give a brief introduction
and review of each of the tool and discuss the approach used, the system

structure, and the results and experiences from applying these tools.
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2.3.1 Pat

The Pat [KP96] system is a Reverse Engineering tool that searches for design
pattern instances in existing software. Within Pat, design information is “extracted
directly from C++ header files and stored in a repository” [KP96]; “the patterns are
expressed as PROLOG rules and the design information is then used to search
for all patterns” [KP96]. Since the Pat system is designed to collect information
just from C++ header files without semantic analysis in the method body, the
authors limit the considered patterns to five structural patterns introduced in GoF

book [GHJV94]: Adapter, Bridge, Composite, Decorator, and Proxy.

The approach of the Pat system is simple: representing both patterns and designs
in PROLOG and let PROLOG engine do the matching job. The recovering
process starts from representing each pattern as a static OMT diagram, and
converting the diagram to a PROLOG representation, which means one rule for
each pattern. Another reverse engineering tool, 0oCASE, is used to analyze C++
header files and store the information in the repository in OMT form, which is then
translated into to a PROLOG representation. Finally, a PROLOG query will detect

all instances of design patterns from the two repositories. [KP96]

In order to evaluate the quality of the design pattern recognition of the Pat system,

-12-



the author used precision and recall [FB97], which is the most commonly used
measure of retrieval effectiveness. Precision can be defined in this context as: the
ratio of the number of true patterns found by Pat over the number of all candidates
found by Pat. Recall is the ratio of the number of true patterns found by Pat over
the number of all true patterns that exist in the software. The authors of the Pat
system state that in the 4 benchmark applications, the precision ranges from 14 to
50 percent, and will be “much higher if Pat could also check for correct method

call delegations” [KP96].

2.3.2A0L

In [AFC98], Antoniol et al present a conservative approach to recover design
patterns from design and source code, which is mainly based on “a multi-stage
reduction strategy using software metrics and structural properties to extract
structural patterns for OO design or code” [AFC98]. The reason why the authors
call this approach conservative is because any patterns in the code will be surely
reported in the result. Similar to the Pat system, this approach also focuses on the
same five structural patterns mentioned in [KP96]. However, in addition to Pat,
method delegation, which means a method delegates its responsibilities by calling

another method of associated class, is used as a design pattern constraint to

reduce the reported false candidates.

13—



The process of this approach consists of four activities. The first is AOL (Abstract
Object Language [Pe97], a general purpose design description language)
representation extraction, which represents the C++ source code or design in
AOL, and the second step is to analyze the AOL representation to generate an
AOL abstract syntax tree. In the next step, relevant class metrics are extracted.
Finally, pattern constraints like metrics constraints, structural constraints, and
delegation constraint are applied to the AOL abstract syntax tree and class
metrics obtained in the previous steps and a set of pattern candidates are
conducted. The authors claim that the constraints are all necessary conditions,
and thus the output does not contain false negatives but it may contain false

positives, which must be manually inspected by the user. [AFC98]

By recovering design patterns from more than 14 codes of public and industrial
systems, the authors provide a comprehensive experimental result analysis. In
addition to measuring the results in terms of recall and precision, the reduction of
candidates through the stage filters is also provided, with respect to Initial stage,
metrics based filter stage, structural filter stage, and delegation filter stage. The
authors conclude that, in public domain code case studies, the average precision
is 55 %, and there is “an increase of about 35% using also the delegation

constraint with respect to the use of structural constraints alone” [AFC98].

—14 -



2.3.3 Columbus and Maisa

Columbus [FMBMTGO0] is a versatile reverse engineering system that transforms
C++ programs into a number of abstract representations, including UML class
diagrams. Maisa [NGPV0O] is a metrics tool that analyzes the quality of a software
architecture given as a set of UML diagrams. In [FGMPO01], Ferenc et al present a
technique for automatically recognizing design patterns form object-oriented (C++)
source code by integrating Columbus and Maisa. The authors state that
Columbus and Maisa pairs can be used to document and analyze software
implemented in C++, and to verify the architectural design decisions during the

software implementation phase as well.

The tools are applied by combing both the Columbus and the Maisa. The process
of this tools can be described as two major steps: The Columbus system firstly
transforms the C++ source code into UML class diagrams; and these diagrams
are then traversed and matched against a set of predefined design patterns by the
Maisa, which consists of a set of CSP (Constraint Satisfaction Problem) formulas
to describe each UML class diagram incorporated with additional information
obtained from different types of UML diagrams. The authors are “studying the
possibility of using dynamic information (such as sequence diagrams) for defining

patterns more accurately” [FGMPO01].

—-15—



At last, the authors conclude that some patterns, like Iterator and Observer,
cannot be recognized with the current method because the definitions of these
patterns contain generated facts, i.e., “structural facts that are dynamically pushed
to the input by Maisa when it recognizes a particular kind of pattern or a special
kind of a common class relation”. As well as this limitation, they also report that

the performance degrades with large software systems [FGMPO01].

-16 —



lll. An Approach to Design Pattern Recovery

3.1 Objective setting

In the recent decade, design patterns have been extensively investigated in
different domains. Howevér, the 23 patterns introduced in [GHJV94] are still the
most common design patterns implemented in current object-oriented software.
Our approach therefore focuses on these patterns, that is, trying to recovery the
23 GoF patterns listed in [GHJV94] from source code. However, since the
theoretical background of our pattern formalization is based on LePUS, which is
declared as a formal specification language dedicated to the general OO design
and architecture [Ed02], our approach is not restricted only to the GoF patterns.
Theoretically, any Object-Oriented pattern that can be formalized in LePUS can

also be recovered by our approach.

In order to reduce the complexity, the recovering work is performed on Java
[GJS96] source code rather than C++. One of the major reasons why we choose
the Java language is that we consider the Java language, in most cases, is
simpler and cleaner than C++, but still, contains most of the Object-Oriented

programming language concepts.

-17 -



For the pattern recovery process to be usable for large software system, the
recovery work performed on the source code should be fully automatic, which
means there will be no human interaction required during the identification of the
patterns. We are aware and have also stated in the conclusions fhat without
humans participating with their domain knowledge, it will be impossible to achieve
a 100% precision in identifying all design patterns correctly. Our presented work

will help to illustrate the possibilities of automatic design pattern recovery.

In addition, in order to analyze the source code written in Java, it is inevitable that
one has to study in detail the syntax and semantics of the Java language. The
CONCEPT(Comprehension Of Net-CEntered Programs and Techniques)
[http://www.cs.concordia.ca/CONCEPT/] project, which addresses current and
future challenges in the comprehension of large and distributed systems by
providing programmers with novel comprehension techniques, also focuses at
present on the analysis and comprehension of Java programs. One of our main
objectives is to integrate the pattern recovery techniques into CONCEPT, as well
as to provide a reference implementation for a Java source code analysis
framework that can be reused by other developers within the CONCEPT project.
Such a code analysis framework has two major functions: 1. it uses source code
files as input, analyzes them, and stores the result (normalized abstract syntax
tree) into repositories; 2. it provides an interface to developers to access the

-18 -



repository, extracts and manipulates various source elements of the Java

language.

3.2 Research method

Many researchers have presented their efforts on automatic design pattern
recovery, e.g. [KSRP99], [AFC98], [KP96], [FGMP0O1], etc. Reviewing the
approaches they have used, we conclude that the quality of recovering work relies

on how well we answer the following two research questions:

What are we looking for?

Design patterns are always specified by natural languages, which contain a lot of
ambiguity and informality in their descriptiveness. In order to recover design
patterns automatically, a more formal specification of design patterns is absolutely

necessary to remove the ambiguity of the natural language.

Formal specification of design patterns focuses on giving a precise and
unambiguous description of design patterns. This is achieved by only
representing the essence of the pattern without any irrelevant details and
variations in the implementation. Formal specification languages used to describe
patterns should be based on higher-level abstraction of general object oriented

—-19-



paradigms that not only can be used to describe that existing patterns, but also
can describe any patterns that have not been investigated. Besides, a good
pattern specification language should give us some reasoning facilities to analyze
the relationships among the patterns. For instance, whether a pattern is a
refinement of another pattern, or whether a pattern is a combination of several

other patterns.

In this thesis, we use a simplified version of LePUS to formalize design patterns,
which eliminates some high-order concepts to reduce the complexity of the
formalism. At the same time we introduce additional relations to extend the
expressiveness of the language. As a result, each pattern is formalized in several

formulas that can be easily implemented in programming languages.

What is the recovery work performed on?

Obviously, to perform the recovery work, source code should be analyzed and
represented/translated into its semantic level, which is usually represented as
abstract syntax tree (AST). This allows the system to identify and analyze the
entities and corresponding relations of the program. However, since the
generalization of the formal languages as well as the variations of pattern

implementations, matching the pattern specification on the AST level is extremely

-20 -



difficult. A higher-level of abstraction is required to reduce the complexity of the
programming language, which ideally, should be a language independent

abstraction.

In terms of pattern identification, the specification of a design pattern not only
offers knowledge about what represents a pattern, but also implies important
information on what should be extracted from the source code for better efficiency
of matching the abstract formulas to the concrete source code. In our approach,
following the ideas of pattern specification languages, we represent the source
code in a high level abstraction — the program model, and perform the recovery

work on this intermediate representation.

As the following diagram shows, the fundamental idea of our research is
representing both the design patterns and source code in the same level of
abstraction, and performing the matching work on this level to recover design

patterns.



A

Abstraction

Matching

<

Formal

Program Model Specification

Source Code

Design Pattern

Figure 3.2-1 Research Method

3.3 Simplified LePUS

In this section, we present the theoretical basis of our approach — a simplified
version of LePUS[EdO1]. The simplified version eliminates some higher-order
concepts to reduce the complexity of the formalism. At the same time it

incorporates some extensions on entity, property of entity, and relations.

3.3.1 Ground Entities

Class, method, and attribute are three major language elements in

Object-Oriented languages. All programs in OOP are defined by a set of classes,
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and all classes are defined by a set of methods and attributes. The behavior of a
program is defined by the operation of the three kinds of entities, e.g. object
creation and method invocation. For compatibility issues, some languages (e.g.
C++) may define instance variables outside classes. In LePUS, those language
elements are ignored. In our approach, we consider class, attribute, and method
to be ground entities of a program, which are represented as ¢;, c;, ..., a;, a3, ...,

or my, my,..., respectively, or ¢, e, ..., in general.

Let C be the set of all classes in a program, 4 be the set of all attributes, and M be

the set of all methods, we have the set of all ground entitiesE=CUAUM .

3.3.2 Properties of ground entities

A ground entity has its own properties. For examples, a class is abstract, or a
method is declared as protected. The properties of a ground entity are
represented as p(c), p(a) or p(m), where, ¢, a, or m is the ground entity and p is the
name of the property. In our approach, we introduce access modifiers to LePUS
as the properties of ground entities to formalize the encapsulate mechanism of
Object Oriented Programming. For example, Private(m;) represents method m; is
a private method. We summarize the properties of ground entities that are

currently used in our approach in table 3.3-1.
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Table 3.3-1 Properties of ground entities

Name Apply to Description
A class or method is abstract. An Interface in Java is
Abstract CM .
considered as an abstract class.
Public C, A, M | Aclass, method, or attribute is declared as public.
Protected C, A, M | Aclass, method, or attribute is declared as protected.
Private C, A, M | Aclass, method, or attribute is declared as private.
Static A M A class or attribute is declared as static

3.3.3 Ground relations

In our approach, we identify a set of ground relations to specify the relationship
between entities, which are mainly based on LePUS, but introduced some new

relations to specify the attribute, and to enhance expressiveness.

Definition I: ground relation — the ground relation is the relation whose domain
and range are ground entities. Ground relation is represented asr: Dx R, where,
D and R are the set of ground entities or a subset of ground entities, and r is the

name of relation.

For example, DefinedIn: M xC is a relation whose domain is the method set

and range is class set, which represents that a method is defined in a class:

Invoke : M x M is a relation whose domain and range are method set, which

—24 ~




represents that a method may invoke another method, independently whether the

invoking statement is executed by the given input.

The relations currently used in our approach are summarized in the following

table. More relations can be adopted when necessary.

Table 3.3-2 Ground relations

Name Apply to | Description
DefineAttribute AXC | Attribute a is defined in class ¢
DefineMethod M X C | Method m is defined in class ¢
HasAttribute AXc |Class c has an attribute a, which maybe defined in
class ¢, or inherited from the superclass of ¢
HasMethod MXc |Class ¢ has an method m, which maybe defined in
class ¢, or inherited from the superclass of ¢
Inherit CXCC | Class ¢ is inherited from class c;
Reference C X C | Class ¢, defines an attribute whose type is ¢,
ReturnType M X C | The declared return type of method m is class ¢
AttributeType A X C | The declared type of attribute a is class ¢
Argument MXc |Method m has a formal argument whose type is
class ¢
SameSignature | M XM | Method m; and m; has same signature. i.e. same
method name and same formal arguments
Construct M X C | Method m is a constructor of class ¢
DeclareLocal M X c |In the definition of method m, a local variable is
declared whose type is class ¢
Create M X c |In the definition of method m, an instance of ¢ is
created
InvokeOwn M XM | Method m; may invoke method m,, and m; is defined

in the same class defined m;

25—




InvokeSuper M XM | Method m; may invoke method m,, and m; is defined
in the super class of class defined m,

InvokeOther MXMm |Method m; may invoke method m; and
InvokeOwn(m;, mj) and InvokeSuper(m; m;) don't
hold.

Forward MXMm | Method m; may invoke method m;,, and transfer all
its argument to m;
ReadOwn MXAa | Method m may read the atiribute 4, and «a is defined
in the same class defined m
ReadSuper MXA |Method m may read the attribute @, and a is defined
in the super class of class defined m
ReadOther M X4 |Method m may read the attribute a, and ReadOwn(m,
a) and ReadSuper(m, a) don't hold
WriteOwn MXA4 | Method m may write the attribute a, and a4 is defined
in the same class defined m
WriteSuper MXA | Method m may write the attribute o, and a is defined
in the super class of class defined m
WriteOther MXA | Method m may write the attribute a, and WriteOwn(m,
a) and WriteSuper(m, a) don't hold
Return M X C | Method m may return a object whose type is class ¢

3.3.4 Higher order entities

We observed that in [GHJVO7], the structure of a pattern is usually described by

the participants and their collaborations. In order to map the entities to participants

more precisely and concisely, higher order entities are introduced into LePUS. In

our approach, only parts of these higher-order concepts are adopted to reduce the

complexity.

Definition II: Hierarchy — a hierarchy # is a set of classes, which contains a class ¢

such that any other class that belongs to # is inherited from c.
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For example, in Abstract Factory pattern, Factory is a hierarchy, where class
AbstractFactory is the root class of this hierarchy and any other members of the

hierarchy are ConcreteFactory.

Definition IlI: Clan — a clan /* is a set of methods on a hierarchy %, where all the
methods share the same signature, and each method is defined in a class

belongs to A, respectively.

For example, in Bridge pattern, the set of Operationimp methods is a clan defined

on hierarchy Implementor.
3.3.5 Formula

Aformula in LePUS language is a statement intended to express the fundamental
truth of a program. Each formula is a conjunction on sequence of clauses, which

consists of a combination of variables, predicates, and operators [Ed01].
Variables

In our approach, variables range over entities, including classes, attributes,

methods, hierarchies, and clans.
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Predicates

Predicates include connectives, quantifiers, and functions. In the simplified
version of LePUS, most of the connectives and quantifiers used in predicate

calculus can be applied in the formulas, e.g. —,A,v,3,V . Two important functions,

used to define the properties of relations, are employed: total function and

isomorphic function

Total function is a function whose domain is equal to the set from which the first
element of its pairs is taken. In our approach, total function is denoted as

r:D— R. For example, Create: M, — C, indicates that each method in M, will

create an instance of class in C;.

Isomorphic function is a bijective function. In our approach isomorphic function is

denoted as r:D <« R . For example, Return:M, <> C, indicates that each

method in M; may return an object whose type is a class in C;, and each class in

C; may be returned by a method in M,
Operators

Operators used in our approach include unary operators, binary operators, and

relational operators.
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Only one unary operator is employed: root, which yields the root class of a

hierarchy, or the root method of a clan. For example root(#), root(f").

Select operator®, as a binary operator, yields a set of methods from a given set
of classes. For example, m®hwill yield all methods defined in a class that

belongs to hierarchy # and the signatures of these methods are same as m.

Relational operators are used to yield a set of relations from the given sets. For
example, given a hierarchy h;, Inherit” : h x b will yield all the inherit relations over

h;, direct and indirect.
3.3.6 Formalizing design pattern

Definition 1V: Design pattern is a formulag(x,, x,,......,x,), where x,, x,,

free variables in ¢. We say x,, x,,......, x, are the participants, and the relations in ¢

are the collaborations. [Ed02]

As the effort of the creator of LePUS, variables in LePUS formula map to entities
very well; the ground relations described in section 3.3.3 so far can specify the
collaboration sufficiently. In our approach, we formalize the structure of a design
pattern in Z language schema [In88] style, in which that signature part specifies

the participants and the predicate part specifies the collaborations of participants.
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For example, the Factory Method [GHJV94] pattern describes a solution for
deferring the instantiation of a set of products to subclasses of an abstract

interface. The structure of this pattern is shown as the following:

Creator

Product

FactoryMathody) N
AnOperation() ~ O - - ===~ !J:oducl = FactoryMethod()

?

ConcretoProduct [W---------—1 ConcreleCreator

FactoryMethod{} O-f---—--1 retumn new Goncreteproductﬁ

Figure 3.3-1 Factory Method Pattern [GHJV94]

The participants of the Factory Method pattern include:

Product — defines the interface of objects the factory method creates.

ConcreteProduct — implements the Product interface

Creator — declares the factory method, which returns an object of type Product.

The collaborations are: Creator relies on its subclasses to define the factory

method so that it returns an instance of the appropriate ConcreteProduct

[GHJV94].

We use the following formula to formalize the Factory Method pattern:
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[~ Factory Method
Creator: H
Product: H
FactoryMethod: FE*"

Return: FactoryMethod <> Product

Figure 3.3-2 Specification of Factory Method

The participants include: Creator — a hierarchy range over H (the set of all
hierarchies); Product — a hierarchy as well; FactoryMethod — a clan on Creator
(FC" refers to all the clans on Creator). The collaborations described in the
lower part means that a one to one Return relation on FactoryMethod and Product

must hold.

Please refer to Appendix | for more formal specifications of GoF patterns.

3.4 Source code analysis

As mentioned earlier, the objective of source code analysis is to build a high level
representation that: 1. represents the semantic information of a program; 2.
contains the entities and relations that may map to our specifications of design
patterns straightforwardly. In our approach, we use “program model” to provide

this level of abstraction.
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Definition V. Program model — given a program p, the program model M(p) is {E,

R}, where E is the set of all ground entities, and R is the set all ground relations.

The program model contains all the ground entities and ground relations in the
program, and thus represents the program in a high level abstraction. Since the
ground entities and ground relations are the basic elements of our design pattern

formalization, we can match the program model to LePUS formulas directly.

3.4.1 Architecture view

The following figure shows the general procedure of the source code analysis:

| Program
Model

i BB HITTRHT

Figure 3.4-1 Architecture view of source code parsing

A semantic level AST structure has been defined. It contains all the information of

semantic analysis, like identifier references, expression types, etc. The source
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code is parsed into the semantic level AST and stored into database; later, the
AST will be analyzed and a normalized memory representation (please refer to
section 3.4.3) will be created; next we identify the ground relations based on this
memory structure and generate the program model. In the next three sections, we
describe the three major steps to create the program model — parsing,

normalization, and model generating.

3.4.2 Parsing

A typical compiler includes lexical analysis, syntactic analysis, semantic analysis,
optimization, and code generation etc. In order to identify the relations of entities,
the source code must be parsed on the semantic level, i.e. all identifiers must be
solved and all implicit information must be extracted. Due to the limited time of this
research, we had to adopt an existing compiler for this purpose — in our approach,

javac was chosen.

There exist many free Java language parsers and parser generators, however,
most of them only provide syntactic level analysis, which is not sufficient to
identify the ground relations. We consider that javac, which is a fully implemented
java language compiler included in JDK, has the ability to perform semantic

analysis, and most importantly, the source code of javac can be obtained from
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SUN Micro’s website. For these reasons, we selected javac as the parser of our
choice and made some modifications to adjust it to the particular need of our

research.

The structure of the source code parsing part is shown in the following figure.

PostgreSQL E
_ Database

Figure 3.4-2 Structure of parser

In the context of our research, the javac acts like a normal compiler that accepts
java source code files as input and conducts some routine processes to generate
class files. After the compiler resolves the symbol table, our program will be
invoked and accepts the symbol table as input to generate predefined AST

structures for all the compiled classes. In the meantime, the ASTs will be partially
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normalized and these partially normalized ASTs will be stored into the

corresponding tables of the database.

We carefully designed the structure of the AST, so that it will be very compact, but
still it contains necessary information from the semantic analysis. Each identifier
node in the AST is associated with the type of that identifier and each reference is

associated the exact place the referred variable, field, of method is defined.

3.4.3 Normalizing

The semantic level ASTs contains sufficient information about a program.
However, from a program manipulation point, it is difficult to perform an analysis
on such a structure, because any analysis will require a large number of
operations to traverse the tree and to search the reference. Additionally, may
recursive procedure calls will be required to provide an adequate navigation and
search through the AST. In our approach, we further parse the AST and represent
it into an OO structure that significantly reduces the complexity in extracting
information. In addition, this normalization will also serve as a framework for other

users within the CONCEPT project to access the semantic analysis results.
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JavaFile

\.

PackageDef ImportDef ClassDef

MemberDef

ExtendDef ImplementDef

ThrowDef

BodyElement LocalVariable

/N A\

Figure 3.4-3 Structure of Source code analysis framework

As figure 3.4-3 shows, each element of Java language is represented as a type of
SourceElement class or its subclass. JavaFile represents the .java file, which
contains its PackageDef, ImportDef, and ClassDef. A ClassDef represents the
class defined in source code, and contains its ExtendDef, ImplementDef, and
MemberDef. The MemberDef refers to the attribute, constructor, method, or inner

class of a class, in which statements and expressions may be defined.

The semantics of statements and expressions is the most important part of our
framework. Most of the relations are identified at this level. As to statements, we

use 21 subclasses of Statement to represent all of the Java statements, e.g.
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IfStatement, DoStatement, WhileStatement, ForStatement, DeclarationStatement,
SwitchStatement, TryStatement, CatchStatement, ReturnStatement, etc. 83 types
of expressions are used to represent the expressions in Java language, including
UnaryExpression, BinaryExpression, ConstantExpression, etc. For detail
information please refer to the specification of concept.java and concept.java.tree

package.

As a result of this step, an OO representation of AST is created; users may

enquire any information related to the source code by the provided interface.

3.4.4 Program model generating

Based on the result of source code analysis, we identify the entities and relations

in this step to create the program model.

Entity

Naturally, all ClassDef and MemberDef objects directly map to LePUS entities.
Higher order entities are created during the matching process when necessary.
Primary types in Java language, e.g. int, boolean etc. are ignored; array type is

ignored as well, but the type of element of a array type is considered.
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Relations

In the following, we discuss the consideration and limitation of the relation

identification.

‘Definedttribute If an attribute is explicitly defined in a class, then a

DefineAttribute relation holds.

DefineMethod  If a method/constructor is explicitly defined in a class, then a

DefineMethod relation holds.

HasAttribute If an attribute is explicitly defined in a class, or inherited from a

superclass of the class, then a HasAttribute relation holds.

HasMethod If a method/constructor is explicitly defined in a class, or a
method is inherited from a superclass of the class, then a

HasMethod relation holds.
Note: In Java language, constructors cannot be inherited.

Inherit If a class extends a class, or implements an interface, then the

inherit relation holds.
Note: We consider an interface as an abstract class.

Reference If a HasAttribute relation holds, then a Reference relation holds
between the type of the attribute and the class in HasAttribute
relation.

ReturnType The ReturnType relation holds between a method and its return
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AttributeType

Argument

SameSignaturé

Construct

DeclareLocal

Create

InvokeOwn

InvokeSuper

type, if the return type is an entity.

The AttributeType relation holds between an attribute and its

declared type, if the type is an entity.

If the type of a formal argument of a method is an entity, then an

Argument relation holds

In the current implementation, two methods have SameSignature
relation, if and only if they have same name and same formal
arguments, besides, the two methods should override a same

method declared in the superclass.

If a method is a constructor, then a Construct relation holds

between the method and the class that this method defined.

In the definition of a method, if a local variable is declared whose

type is an entity, then a DeclareLocal relation holds.

If in the definition of a method, there is a new instance
expression, in which an entity is created, and then a Create

relation holds.

If in the definition of a method m;, there is a method invocation
expression that invokes a method m;, and m; is defined in the
same class as method m; defined in, then the two methods, m,

and m,, have InvokeOwn relation.

If in the definition of a method my, there is a method invocation
expression that invokes a method m,, and m; is defined in the

superclass of the class in which method m; is defined, then the
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InvokeOther

Forward

ReadOwn

ReadSuper

two methods, m, and m, have InvokeSuper relation.

If in the definition of a method m;, there is a method invocation
expression that invokes a method m,, and m;is defined in neither
the class in which method m, is defined, nor the superclass of
the class in which method m; is defined, then the two methods,

m; and m;, have InvokeOther relation.

if in the definition of a method, there is a method invocation
expression, method m; invokes method m; and method m;
sends all its arguments to method m, as parameters, then a

Forward relation holds.

In the current implementation, only a part of the arguments is
considered, i.e. if method m; sends some of its arguments, we
still create Forward relation. In addition, the arguments of
method m; may be modified in the definition of m;, we ignore

such modification.

In the current implementation, if in the definition of a method,
there is an identifier that refers to an attribute, and the identifier
appears in the right hand side (RHS) of an expression, and the
attribute is defined in the same class as the method defined in,

then a ReadOwn relation holds.

In the current implementation, if in the definition of a method,

there is an identifier that refers to an attribute, and the identifier
appears in the right hand side (RHS) of an expression, and the

attribute is defined in the super class of the class in which the
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ReadOther

WriteOwn

WriteSuper

WriteOther

method is defined, then a ReadSuper relation holds.

In the current implementation, if in the definition of a method,
there is an identifier that refers to an attribute, and the identifier
appears in the right hand side (RHS) of an expression, and the
attribute is defined in neither the class in which the method is
defined, nor the super class of the class in which the method is

defined, then a ReadOther relation holds.

In the current implementation, if in the definition of a method,
there is an identifier that refers to an attribute, and the identifier
is the left hand side (LHS) of an assignment expression or
increment/decrement expression, and the attribute is defined in
the same class as the method defined in, then a WriteOwn

relation holds.

In the current implementation, if in the definition of a method,
there is an identifier that refers to an attribute, and the identifier
is the left hand side (LHS) of an assignment expression or
increment/ decrement expression, and the attribute is defined
the super class of the class in which the method is defined, then

a WriteSuper relation holds.

In the current implementation, if in the definition of a method,
there is an identifier that referes to an attribute, and the identifier
is the left hand side (LHS) of an assignment expression or
increment/decrement expression, and the attribute is defined in
neither the class in which the method is defined, nor the super

class of the class in which the method is defined, the a
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WriteOther relation holds

Return If, in the definition of a method, there is a return statement, and
the type of that returned expression is an entity, then a Return

relation holds.

The Return relation is different with ReturnType relation, because
a method may return a sub-class instance of the return type it
declared.

All the entities, properties of entities, and relations we identified will be stored into

the database and will be restored into memory to construct the program model.

The following diagram shows the classes that we use to represent the program

model:
Model
Entity Relation
JAN
Class Attribute Method Clan Hierarchy

Figure 3.4-4 Structure of Program model

The Model class contains references to a list of Entity objects and a list of Relation
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objects. In addition, it also provides a large number of methods to access the
entities and their relations. Since the Model class carries too much functionality
compared to other classes, we consider a further refinement of the

implementation of the program model.

3.5 Design pattern recovery

In the proceeding sections, we presented our effort in formalizing design patterns
and analyzing the source code. In the following step, the formal specification of
design patterns and the program model of the source will be matched to recover

instances of design patterns in the program.

Definition VI: Instance of pattern — let p be a program, M(p) be the program model
of p, and ¢(x,,...x») be a pattern, if there is a assignment {a,, ..., a,,} that satisfies
all the constraints in ¢, and a,, ..., a, are all entities taken from M(p), we say,

there is a instance of pattern ¢ implemented in program Pp-[EAO2]

Following this definition, the matching work is reduced to give assignments to the
formulas in the pattern specification. If the result is true, then a pattern is identified.
For example, let ¢x,, ...x,,) be the pattern we want to identify, let {ai, ..., a,} be the
set of all entities in the program, then there will be n™ kinds of assignments to the

pattern, i.e. the complexity of this algorithm is O(n™).

—43—



To reduce the complexity of the matching process, we adopt a multi-stage filtering
algorithm. First, we simplify the pattern specification by weakening the constraints,
and apply the simplified specification to the program model to conduct a set of
candidate patterns. Next, some weakened constraints are applied to these
potential candidates to improve the matching precision. Finally, after all constrains

are applied, the specific instances of patterns are identified.

For a given assignment, we need to confirm whether it satisfies all the constraints.
Since the knowledge about the pattern is well defined within the LePUS formula, a
rule-based algorithm is ideal in this situation. A rule-based system accepts a set of
rules, in our case the LePUS formulas, and facts, in our case the program model,
as input, and performs identification and comparison of the facts by applying
these rules (usually a bunch of IF... THEN statements) to compute the results.
The user of such a rule-based system may create or modify rules without having

to modify the algorithm.

It should be noted that because of the time and complexity constraints, the LePUS

formulas and the matching algorithm are hard coded in the current

implementation, which makes our system difficult to maintain.

At present, seven patterns listed in [GHJV94] are implemented, including one
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creational pattern — Singleton, five structural patterns — Class Adapter, Object
Adapter, Bridge, Composite, and Decorator, and one behavioral pattern —
Template Method. We have identified these patterns from several software

systems and present the experimental results in the next chapter.
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IV. Experimental Results

4.1 Implementation

We have implemented the approach introduced in chapter 3 in Java language
version 1.4. This system can automatically analyze Java source code to identify
six design patterns. The user may control the system through a console based
interface using some predefined commands, including parse source code, create
program model, and perform design pattern searching. When a pattern is found in
the program model, the system will print out all relative classes and methods
participating in this pattern, which provides the user with some guidance in
comprehending that particular design structure from a design pattern based

perspective.

As an example, the Statement hierarchy of our system implemented a Composite
pattern [GHJV94]. The Statement class provides an abstract interface and each
concrete subclass that inherits from Statement class maps to each Java language
statement, including If statement, For statement, etc. The output of the pattern

recovery contains the following information:
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Composite Pattern
Component: concept.java.tree.Statement
Leaves:
concept.java.tree.CaseStatement
concept.java.tree.ExpressionStatement
concept.java.tree.ReturnStatement
concept.java.tree.VarDeclarationStatement
concept.java.tree.ThrowStatement
concept.java.tree.LabelStatement
concept.java.tree.DeclarationStatement
concept.java.tree.DefaultStatement
Composites:
concept.java.tree.CatchStatement
concept.java.tree.SwitchStatement
concept.java.tree.BreakStatement
concept.java.tree.ForStatement
concept.java.tree.WhileStatement
concept.java.tree. TryStatement
concept.java.tree.DoStatement
concept.java.tree.ContinueStatement
concept.java.tree.lfStatement
concept.java.tree.CompoundStatement
concept.java.tree.SynchronizedStatement
concept.java.tree.FinallyStatement

Figure 4.1-1 Output of an identified Composite pattern

concept.java.tree.Statement class is the root class of this Composite pattern. The
leaf nodes include the statements that don’t contain statements, for example, the
return statement only has an expression, Declaration statement only has variable
declarations, etc. The composites refer to the statements that may contains other
statements, for example, If statement contains true case and false case, Do
statement has a set of statements as the loop body, and etc.
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If the user of our design pattern recovery tools is familiar with the Composite
pattern, he/she may easily understand the design of that piece of code, and may
redocument the design in pattern language, in which the corresponding
relationships of these classes are clearly conveyed. Furthermore, during the
maintenance, having the patiern in mind, the discussions about the
implementation of Composite pattern introduced in [GHJV94] will give great help
to the designers; at least they will not arbitrarily modify one of these classes
without considering the others. In general, the recovered design patterns will
provide the maintainer with additional insights with respect to reusability,

extendibility, and maintainability of the current system design.

4.2 Experiment setting

In order to evaluate the quality of our pattern recovery process, we perform some
initial experiments to study issues like memory usage, execution performance,
and the precision [FB97] of the pattern recovery. For the experimental setting, we
used three different systems: one system was the implementation of our design
pattern recovery environment itself, and the other two systems were open source

software.

The experiments are performed on a Dell workstation with Pentium IV 2.4G CPU,

—48 —



1G memory, and 100G Ultra IDE hard disk. The operation system is Windows
2000 SP3. The database system, PostgreSQL 7.3, is installed on another same
level computer running Redhat Linux 9 operation system. The two computers are

connected by 100M Ethernet switcher.

We monitored the memory usage through the windows task manager, including

the memory usage before and after loading the program model.

The execution time for the pattern identification process is provided by an internal
system time recorder. We embed a time consumption recorder in our system that
displays the starting time and ending time for most of the major processes

involved in the design pattern recovery.

Since the specifications of design patterns only describe the structural part of the
patterns, the language dependent features and many implementation variations of
design patterns may not be considered thoroughly in our implementation.
Therefore, some positive false pattern recognition will occur, referring to a
situation when a source code artifact looks similar to the structure of a pattern.
However, a human with the necessary design pattern domain knowledge might be
able to recognize that this particular design was not intended to be a design

pattern in that particular context. Same as the method mentioned in [AFC98], we
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use the factor precision to measure the accuracy of our pattern recovery
processes. The ratio precision is the number of true cases retrieved patterns over

the number of all patterns in our system’s output.

One of the advantages of Java is that javadoc, which is a part of Java language,
provides a standard documentation format based on the source code, and it can
usually be obtained. In addition to recovering design patterns in the source code,
we also searched some frequent keywords related to patterns in existing javadocs
to measure how well the documentation is written in terms of documenting design

patterns and how consistent the document is with the corresponding source code.

Programs used in the experimental setting.

e concept.java package 1.0

The concept.java package is part of CONCEPT project implementing the
design pattern recovering. The concept.java package includes several sub
packages, the language parser, storage, language analysis, program
model representation, matching, and a Java de-compiler. This package
contains 196 files, 14,768 lines of code (LOC), and 11,658 lines of code

without comments.
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o java.util package 1.4.1

The java.util package is one of the core packages of Java Development Kit.
It contains the collections framework, legacy collection classes, event
model, date and time facilities, internationalization, and miscellaneous
utility classes. This package contains 120 files, 51,993 lines of code (LOC),

and 23,567 lines of code without comments.

o jEdit4.1

The jEdit is a text editor oriented to programmers. The source code of jEdit
4.1 contains 300 files, 92,266 lines of code (LOC), and 65,872 lines of code

without comment.

4.3 Results analysis

4.3.1 Memory usage

The following table shows the statistical information concerning memory usage of

the pattern recovering process.
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Table 4.3-1 Memory usage of pattern recovering process

concept.java java.util jEdit
Lines Of Code (LOC) 14,768 51,993 92,266
LOC without comment 11,658 23,567 65,872
Number of Classes 201 299 686
Number of Methods 2,621 3,831 6,555
Number of Attributes 384 329 783
Number of Relations 12,480 19,554 40,777
Memory Usage 3495K 6715K 9253K

Note: memory usage is the average of three times program model loading.

From the table it is evident that there exist a direct relationship between program

size and the memory consumption of the program model. In particular the

relationship between LOC and the memory consumptions are directly related.

4.3.2 Execution time

The following table shows the execution time of the pattern recovering process.

Table 4.3-2 Execution time of pattern recovering process

concept.java java.util JEdit
Lines Of Code (LOC) 14,768 51,993 92,266
Loading program model 2.526sec 2.963sec 4.000sec
Identifying Singleton 0.609sec 1.797sec 8.062sec
Identifying Class Adapter 0.688sec 0.859sec 2.718sec
Identifying Object Adapter 4.688sec 6.750sec 50.344sec
Identifying Bridge 23.469sec 9.313sec 148.218sec
Identifying Composite 0.688sec 1.063sec 2.782sec
Identifying Decorator 2.594sec 5.500sec 7.687sec
Identifying Template Method 0.859sec 2.797sec 4.125sec

The time used to load program model from database depends on the size of the
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program, and in most of cases, as the size of the program increased, the time

consumption for searching and identifying design pattern increases accordingly.

From the table it can be observed that the recovery processes for some of the

patterns takes more time than for other patterns. This observation is not surprising,

because some patterns are more complex than others in terms of their structure

and therefore requires additional analysis.

The execution time of searching design pattern for programs between 10K and

100K LOC ranges from 0.6sec to 149sec. The observed time complexity is

deemed as acceptable, in particular because users usually only analyze partial or

sub-systems.

4.3.3 Precision

The following seven tables show the precision of the pattern recovering process.

Table 4.3-3 Precision of recovering Singleton pattern

concept.java java.util jEdit
Number of identified patterns 3 5 3
Number of Positive false cases 0 0 0
Precision 100% 100% 100%
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The Singleton pattern, which is a single class pattern, with a specific initiation of
its constructors and attributes, is a much simpler pattern than most of the other
patterns. The specification of Singleton pattern is well defined and as a result, the
precision of recovering singleton pattern is general very high. In our experimental
study we were able to recovery, for all three sample programs, 100% of Singleton

patterns.

It should be noted that some of the identified pattern are variations of the original
Singleton pattern. For example, a class may maintain a list of self instances rather
than only one instance. The client may access these instances by the provided
parameterized method(s) but cannot create instances of such a class. In these

cases, we still consider them as Singleton patterns in term of their intentions.

Table 4.3-4 Precision of recovering Class Adapter pattern

concept.java java.util jEdit
Number of identified patterns 0 1 0
Number of Positive false case 0 0 0
Precision N/A 100% N/A

The Class Adapter pattern uses mulitiple-inheritance as its design principle. Since
multiple-inheritance is not supported very well in Java (we consider interface

implementation in Java is a type of multiple-inheritance), Class Adapter patterns
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are not widely used in Java. The only case we found in the java.util package is

structured like the Class Adapter, and was correctly identified as class adapter

after verification through a domain expert.

Table 4.3-5 Recovery of the Object Adapter pattern

concept.java java.util jEdit
Number of identified patterns 17 107 71
Table 4.3-6 Recovery of the Bridge pattern
concept.java java.util jEdit
Number of identified patterns 51 119 265

The Object Adapter and Bridge patterns both use some very general object

oriented design mechanism as their basic structure. In particular, both of them rely

on object composition, which is a very common structure of object oriented design.

Therefore, we consider, even incorporate with the knowledge of a domain expert,

the identification and recovery of Object Adapter and Bridge pattern is very

difficult.

Although we identified a number of cases of Object Adapter and Bridge patterns,

and all of them conform to the structures of the two patterns, we are not able to

determine the number of positive false cases. This would require very detailed
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domain knowledge of the application domain, the design requirements and of the

implementation itself.

Based on the experiences of analyzing concept.java package, which is familiar to

us, we found most of the identified patterns are positive false. Thus the precision

of identifying Object Adapter and Bridge patterns is relatively low.

Table 4.3-7 Precision of recovering Composite pattern

concept.java java.util jEdit
Number of identified patterns 5 17 6
Number of Positive false case 1 14 0
Precision 80% 18% 100%

Composite patterns are usually used to represented part-whole structures in the

system. The composite class in this pattern should hold a list of child objects.

However, the ways of storing such a list of objects varies from implementation to

implementation. Some implementations use arrays to achieve this goal, while

some others may use user defined container classes.

In our current

implementation, only arrays or single object references are considered. As to the

user defined container class, more complex techniques are required to identify

this kind of object composition relation. As a result, Composite pattern recovery is

in a “it depends” situation, i.e. it depends on the implementation of the design —

whether programmer used an array or a user defined container class.
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In addition, Composite pattern relies on recursive composition to organize an
open-ended number of objects [GHJV94]. The java.util package, as a utility
package, provides a reference implementation for a variety of data structures.
Accordingly, there are many self references in this package, e.g. a class may hold
an instance of its super class to carry out its responsibility. This kind of relation is a
use relation rather than object composition, and the distinction cannot be easily
determined by computers. That is the reason why so many positive false cases
are identified within the java.util package. Therefore, we consider the precision of

Composite pattern recovery also depends on the application domain.

Table 4.3-8 Recovery of the Decorator pattern

concept.java java.util jEdit

Number of identified patterns 2 55 30

The Decorator pattern has a similar structure to the Composite pattern. A
decorator class inherits from a component class to provide a consistent interface;
at same time, it also holds a reference to the component to add additional
responsibilities. For the Decorator pattern recovery, we cannot provide the
precision data, because the structure of a Decorator pattern uses object
composition, which usually depends on the intents of the designer and the context
of the problem domain. The number of positive false case is not determinable

even by a human domain expert.
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Table 4.3-9 Precision of recovering Template Method pattern

concept.java java.util jEdit
Number of identified patterns 0 9 6
Number of Positive false case 0 1 2
Precision N/A 89% 67%

The Template Method pattern is relatively simple in its structure. The template
method in this pattern imblements a skeleton of an algorithm, in which the
implementations of some primitive operations are deferred into the subclasses. All
the identified patterns confirm this kind of structure. The commonality of the
positive false cases is that all the template methods in these cases are so simple
that they cannot be considered as algorithms. Therefore, the precision of
Template Method pattern recovery can be improved by applying constrains in

measuring the complexity of the template method.
4.3.4 Consistency of design pattern document

For this particular experimental setting, we searched the source code (including
the source code itself and the embedded javadocs) of these three systems for
keywords related to the patterns. The motivation was twofold: firstly we wanted to
see if design patterns are documented in the source; the second motivation was
to identify possible inconsistencies between documentation and the source code

implementation. The following table provides a summary of the experimental
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results.

Table 4.3-10 Keywords related to patterns

Patterns Keywords
Singleton Singleton, one instance, sole, solely
Class Adapter Adapter, Class Adapter, Adaptee, wrapper
Object Adapter Adapter, Object Adapter, Adaptee, wrapper
Bridge Bridge, Body, Imp, Implementor
Composite Composite, part whole, composition, hierarchy, child, parent,
leaf,
Decorator Decorator, wrapper, attach, dynamically
Template Method | Template Method, template, skeleton
Table 4.3-11 Document consistency of java.util
Number of Number of No. of Keyword/

Pattern Found Keyword Found No. of Patterns
Singleton 5 33 6.6
Class Adapter 1 19 19
Object Adapter 107 19 0.18
Bridge 119 74 0.62
Composite 17 588 34.59
Decorator 55 23 0.42
Template Method 9 1 0.11

Table 4.3-12 Document consistency of jEdit

Number of Number of No. of Keyword/

Pattern Found Keyword Found No. of Patterns
Singleton 3 6 2
Class Adapter 0 94 N/A
Object Adapter 71 94 1.32
Bridge 265 49 0.18
Composite 6 900 150
Decorator 30 58 1.93
Template Method 6 1 0.17
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The keywords were carefully chosen to avoid terms that are too general. However,
some keywords, e.g. “child” and “parent” that correspond to terms used in the
Composite pattern, are not only used to describe these types of patterns, but also
used in some other situations. In these cases, the noise created by these terms,
when they are used in another context, makes the result of our findings
meaningless. Nonetheless, we still consider these keywords may give many clues
to the readers of the source code in terms of searching design pattern, and the
frequency of using these keywords may also indicate how well the patterns are

documented.

These keywords were searched from the javadocs and the identifier names of the
source code. For a more meaningful analysis of the documentation quality, a more
thorough experimental analysis would have to be conducted. In particular all
occurrences of the keywords not related to any pattern documentation would have
to be filtered out, therefore reducing the noise associated with the non-relevant
occurrences. A more detailed and thorough study has to be conducted to validate
the possible application of the design pattern recovery techniques in combination
with documentation quality assessment. One of the observations, made during
this initial experimental setting, was that the precision of pattern recovery may be
improved by incorporating some of these keywords in the pattern recovery
process.
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V. Conclusions and Future Works

In this thesis an approach for the automatic identification of design patterns from
the source code was presented. The presented approach translates both design
patterns and source code to the same level of abstraction. In a next step both the
design pattern specification is matched with the abstract program model that was

created from the source code to recover instances of design pattern.

In this research we formalize design patterns using a simplified version of the
LePUS language. This version of LePUS eliminates some higher-order concepts
to reduce the complexity of the formalism. At the same time it incorporates some
extensions on entity, property of entity, and relations. As a result of the pattern
formalization, each pattern is specified by a well defined formula that contains

entities and the corresponding relations.

The source code is semantically parsed and is further interpreted by either a
language analysis framework. Entities and relations are extracted from this level
of language analysis and used to create a program model, which contains
information concerning pattern recovery, as well as general structural and

semantic information about the source code.
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The language analysis framework also served as a core part of the CONCEPT
project, which addresses more general application purposes within the reverse

engineering domain.

The approach presented in the thesis has been implemented in the Java
language, and can be applied to identify and recover several design patterns
listed in [GHJV94] from Java source code. Three experiments were conducted to

demonstrate the performance and precision of the current implementation.

As to the major objective of our research — the recovery of the 23 design patterns
described in [GHJV94], we come to the following conclusions based on the

development of the approach and the conducted experiments.

o Most of the creational patterns and structural patterns can be

identified.

Currently, we have implemented the Singleton, Adapter, Bridge, Composite,
Decorator patterns. Our experiments on three mid-size programs (LOC

10K to 100K) showed that the precision of pattern recovery ranges from

18% to 100%.

Some patterns, e.g. Singleton, can be identified with a very high precision,
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because the structures of these patterns are relatively simple and thus they

can be well specified by our formal representation.

Some patterns, e.g. Composite, may have various implementations. The
accuracy of recovery of these patterns depends mostly on implementation
issues. We also observed that the precision of Composite pattern recovery

even depends on the application domain.

Some patterns, e.g. Object Adapter, Bridge, and Decorator, use very
general object oriented mechanism in their basic structure, for example,
object composition, thus many positive false cases are identified. All the
identified patterns confirm the structure of these patterns, but need to be

further examined in terms of the intents of the designer.

We are confident that some of the creational and behavioral patterns in the
GoF book, e.g. the Abstract Factory, Factory Method, Flyweight, and Proxy
pattern, can be identified in a similar fashion. On the other hand some of
the other patterns, e.g. the Builder, Prototype, and Facade pattern, are very
difficult to recover without domain knowledge. In particular, the Builder
pattern separates the construction of a complex object into smaller

operations. However, the design of the separation always depends on the
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particular problem domain. The implementation of a Prototype pattern
needs a clone method to clone an object according to the structure of the
object. The Fagade pattern provides a general idea about the design of a
subsystem, but the structure of the subsystem also depends on the

particular problem or application domain.

Behavioral pattern recovery is feasible.

Although behavioral patterns focus on the behaviors of objects, they still
have clear structural descriptions specified in OMT diagrams. Despite the
precision, we consider our approach can identify most of them in terms of
static structure. Within the CONCEPT project, since some dynamic
information can be obtained, e.g. execution trace and dynamic slicing,
future work will address to incorporate the dynamic information with the
static structure to improve the accuracy of our approach for the recovery of

behavioral patterns.

Design patterns widely exist in current software systems.

We observed that many patterns are implemented in current software
systems, according to the results of our initial experiments. By studying the

documentation and the naming convention of the program, we also
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observed that not all these instances of design patterns are indented to be,
i.e. the designers are not aware they used some kinds of patterns, but
indeed, their design, whose structure is similar to some patterns, gains
much flexibilities and reusability. We consider this conclusion confirms the
motifs of design pattern — capturing the proven solutions to recurring
problems [GHJV94] and conveying the experiences of software design

community.

Future work will address the following issues:

¢ Extending the expressiveness of the formal specification language.

¢ Incorporate some dynamic information to improve the precision of pattern

recovery, and to identify behavioral patterns.

¢ [mplement a rule based pattern recovery algorithm.

¢ Implement more language parsers to analyze programs written in some

other programming languages, e.g. C++.

o Study the visualized representation of design patterns to facilitate software

comprehension.
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Appendix Specifications of Design Patterns

1. Abstract Factory [GHJV94, p87]

Abstract Factory pattern intends to provide an interface for creating families of

related or dependent objects without specifying their concrete classes.

AbstractFactory P | Client
CrosleProductal)
CresteProduct) | AbstractProductA  |————
l ;--w] ProductA2 | | ProductAl je--
ConcreteFactoryl -1 ConcreteFactory2 Lo oooo- : g
CraateProductA() i CreateProductAf) : '
CreateProductB() E CreateProductty) ; ! AbstractProducts }‘—:—
E i--w productB2 | | Productpt fe--i
Participants
o AbstractFactory
o declares an interface for operations that create abstract product
objects.
e« ConcreteFactory
o implements the operations to create concrete product objects.
o AbstractProduct
o declares an interface for a type of product object.
e ConcreteProduct
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o defines a product object to be created by the corresponding
concrete factory.
o implements the AbstractProduct interface.
« Client
o uses only interfaces declared by AbstractFactory and
AbstractProduct classes.

Collaborations

« Normally a single instance of a ConcreteFactory class is created at
run-time. This concrete factory creates product objects having a particular
implementation. To create different product objects, clients should use a
different concrete factory.

« AbstractFactory defers creation of product objects to its ConcreteFactory
subclass.

Specification

[~ Abstract Factory |
AbstractFactory: H

Products: P (H)

FactoryMethods: P (FCAbstractFaciory)

Return: FactoryMethod <> Products

2. Factory Method [GHJV94, p107]

Factory Method pattern intends to define an interface for creating an object, but let
subclasses decide which class to instantiate. Factory Method lets a class defer

instantiation to subclasses.
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Product

ConcreteProduct

Participants

¢ Product

Creator

FactoryMethod)
AnOparation)  O-F--———-1

product = FactoryMathod(} 1

;

ConereleCreator

FactoryMethod(} O} ------1

retum new OoncreteProductH

o defines the interface of objects the factory method creates.
+ ConcreteProduct
o implements the Product interface.

e Creator

o declares the factory method, which returns an object of type Product.
Creator may also define a default implementation of the factory
method that returns a default ConcreteProduct object.

o may call the factory method to create a Product object.

o ConcreteCreator

o overrides the factory method to return an instance of a
ConcreteProduct.

Collaborations

« Creator relies on its subclasses to define the factory method so that it
returns an instance of the appropriate ConcreteProduct.
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Specification

Creator: H
Product: H

— Factory Method

FactoryMethod: F"

Return: FactoryMethod <> Product

3. Singleton [GHJV94, p127]

Singleton pattern intends to ensure a class only has one instance, and provide a

global point of access to it.

Singleton

SingletonDperation()
GetSingletonData(}

slatic Instance() O---1

static uniquealnstance
singlatonDala

Participants

o Singleton

retum uniquelnstance %

o defines an Instance operation that lets clients access its unique
instance. Instance is a class operation (that is, a class method in
Smalitalk and a static member function in C++).

o may be responsible for creating its own unique instance.
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Collaborations

« Clients access a Singleton instance solely through Singleton's Instance
operation.

Specification

— Singleton ]
Singleton: C

getinstance: M

constructors: P (M)

DefineMethod (getlInstance, Singleton)
ReturnType (getinstance, Singleton)

! Private (getlnstance)

Static (getInstance)

Construct (constructors, Singleton)
Private (constructors)

4. Adapter [GHJV94, p139]

Adapter pattern intends to convert the interface of a class into another interface
clients expect. Adapter lets classes work together that couldn't otherwise because

of incompatible interfaces.
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Class Adapter

Client ————™ Target Adaptee
Request(} SpecificRequest(}
(implementation}
Adapter
Request{) O-F-------—1
Object Adapter
Client ———®= Target —i= Adaptee
Request() SpecificRequest()
ZF adaptee
Adapter
Request() O----——--~---
Participants
« Target
o defines the domain-specific interface that Client uses.
e Client
o collaborates with objects conforming to the Target interface.
o Adaptee
o defines an existing interface that needs adapting.
« Adapter

e}
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SpeciticRequest() g

adaptee->SpecificRequest() %

adapts the interface of Adaptee to the Target interface.




Collaborations

« Clients call operations on an Adapter instance. In turn, the adapter calls
Adaptee operations that carry out the request.

Specification

— Class Adapter ]
Target: C

Adaptee: C

Adapter: C

Request: M

Requestimp: M

SpecificRequest: M

DefineMethod (Request, Target)
DefineMethod (RequestImp, Adapter)
DefineMethod (SpecificRequest, Adaptee)
SameSignature(Request, Requestimp)
Inherit (Adapter, Target)

Inherit (Adapter, Adaptee)

InvokeSuper (Requestlmp, SpecificatRequest)
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— Object Adapter |
Target: C

Adaptee: C

Adapter: C

Request: M

Requestimp: M

SpecificRequest: M

adaptee : A

DefineMethod (Request, Target)
DefineMethod (RequestImp, Adapter)
DefineMethod (SpecificRequest, Adaptee)
DefineAttribute (adaptee, Adapter)
SameSignature(Request, Requestlmp)
Inherit(Adapter, Target)

AttributeType (adaptee, Adaptee)
InvokeOther(RequestImp, SpecificatRequest)
ReadOwn (RequestImp, adaptee)

5. Bridge [GHJV94, p151]

Bridge pattern intends to decouple an abstraction from its implementation so that

the two can vary independently
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:
i imp

~~~~~ - Abstraction > = implementor
QOperstion{) @ Qperationimp()
L Emp—>()parationfmpﬁ *
[ I
ConcretelmplementorA ConcretelmplementarB
RefinedAbstraction ple il or
Operationimp() Ogperationtmp()
Participants

Abstraction
o defines the abstraction's interface.
o maintains a reference to an object of type Implementor.
RefinedAbstraction
o Extends the interface defined by Abstraction.
Implementor
o defines the interface for implementation classes. This interface
doesn't have to correspond exactly to Abstraction's interface; in fact
the two interfaces can be quite different. Typically the Implementor
interface provides only primitive operations, and Abstraction defines
higher-level operations based on these primitives.
Concretelmplementor
o implements the Implementor interface and defines its concrete
implementation.

Collaborations

« Abstraction forwards client requests to its Implementor object.
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Specification

Bridge 1
Abstraction: H

Implementor: H

operation: Jibstraction

. I
operationImp: F™P'ementer

Reference (root (Abstraction), root (Implementor))
InvokeOther (root (operation), root (operationlmp))

6. Composite [GHJV94, p163]

Composite pattern intends to compose objects into tree structures to represent
part-whole hierarchies. Composite lets clients treat individual objects and

compositions of objects uniformly.

Client |— wel Component l.q

Opgration()
Adg{Component)
Remova{Componant}
GelChild(inl)

A

I l

Leaf Composite

children

Operation() Operation() @-—--==-f-—----==== 'mgf' p‘;‘,gg'c‘,'ﬁg*;" ﬁ
Add{Component)

Remove{Componant)
GetChild{ing)
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Participants

Component
o declares the interface for objects in the composition.
o implements default behavior for the interface common to all classes,
as appropriate.
o declares an interface for accessing and managing its child
components.
o (optional) defines an interface for accessing a component's parent in
the recursive structure, and implements it if that's appropriate.
Leaf
o represents leaf objects in the composition. A leaf has no children.
o defines behavior for primitive objects in the composition.
Composite
o defines behavior for components having children.
o stores child components.
o implements child-related operations in the Component interface.
Client
o manipulates objects in the composition through the Component
interface.

Collaborations

« Clients use the Component class interface to interact with objects in the
composite structure. If the recipient is a Leaf, then the request is handled
directly. If the recipient is a Composite, then it usually forwards requests to
its child components, possibly performing additional operations before
and/or after forwarding.
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Specification

Composite |
Component: H

operation: FEme"

Composite: C

children: A

compositeOperation: M

Inherit (Composite, root (Component))
DefineAttribute (children, Composite)

AttributeType (children, root (Component))
DefineMethod (compositeOperation, Composite)
SameSingature (compositeOperation, root (operation))
InvokeSuper(compositeOperation, root(operation))
ReadOwn(compositeOperation, children)

7. Decorator [GHJV94, p175]

Decorator pattern intends to attach additional responsibilities to an object
dynamically. Decorators provide a flexible alternative to subclassing for extending

functionality.
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component->0Operation() ‘

Deacorator::Operation();
AddedBehavior();

i

Component -
Operationy)
[ | camponent
ConcreteComponent Dacgrator
Operation() Operation{}) O-—--~——-—~-——--=-=====~~=—7
l I
ConcreteDacoratorA ConcreteDecoratorB
Operation{} Operation{) O------1
AddedBehavior(}
addedState
Participants
« Component

o}

o

o}

o}

defines the interface for objects that can have responsibilities added
to them dynamically.

ConcreteComponent

defines an object to which additional responsibilities can be

attached.

Decorator

maintains a reference to a Component object and defines an
interface that conforms to Component's interface.

ConcreteDecorator

adds responsibilities to the component.

Collaborations

« Decorator forwards requests to its Component object. It may optionally
perform additional operations before and after forwarding the request.
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Specification

Decorator
Component: H
Decorator: H
operation: FComPore
component: A
decoratorOperation: M

Inherit (root (Decorator), root (Component))
DefineAttribute (component, root(Decorator))
DefineMethod (decoratorOperation, root(Decorator))
AttributeType (component, root (Component))
SameSignature (decoratorOperation, root (operation))
InvokeSuper (decoratorOperation, root (operation))
ReadOwn (decoratorOperation, component)

8. Template Method [GHJV94, p325]

Template Method pattern intends to define the skeleton of an algorithm in an
operation, deferring some steps to subclasses. Template Method lets subclasses

redefine certain steps of an algorithm without changing the algorithm's structure.
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AbstractCiass

TemplateMethod() O--f-----—---—--= PrimitiveOperation1()
PrimitiveOpertation1() o ‘
PrimitiveOperation2() PrimitiveQperation2()

;

ConcreteClass

PrimitiveOperation1{)
PrimitiveOperation2()

Participants

« AbstractClass
o defines abstract primitive operations that concrete subclasses
define to implement steps of an algorithm.
o implements a template method defining the skeleton of an algorithm.
The template method calls primitive operations as well as
operations defined in AbstractClass or those of other objects.
« ConcreteClass
o implements the primitive operations to carry out subclass-specific
steps of the algorithm.

Collaborations

« ConcreteClass relies on AbstractClass to implement the invariant steps of
the algorithm.
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Specification

—  Template Method
AbstractClass: C
ConcreteClass: C
templateMethod: M
abstractPrimitiveOperation: M
concretePrimitiveOperation: M

Inherit (ConcreteClass, AbstractClass)

Abstract (AbstractClass)

Abstract (abstractPrimitiveOperation)

DefineMethod(templateMethod, AbstractClass)
DefineMethod(abstractPrimitiveOperation, AbstractClass)
DefineMethod(concretePrimitiveOperation, ConcreteClass)

! Abstract (templateMethod)

SameSingature (abstractPrimitiveOperation, concretePrimitiveOperation)
InvokeOwn(templateMethod, abstractPrimitiveOperation)
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