Achieving Usability via Design Architecture and Patterns:

The Things We Implement that Affect Usability

Ashutosh Paul

A Thesis in the

Department of Computer Science

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Computer Science at
Concordia University

Montreal, Quebec, Canada

June 2003

© Ashutosh Paul, 2003



National Library Bibliotheque nationale

of Canada du Canada

Acquisitions and Acquisisitons et
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Canada

Your file Votre référence
ISBN: 0-612-83918-4
Our file  Notre référence
ISBN: 0-612-83918-4

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la these ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.



Abstract

Achieving Usability via Design Architecture and Patterns: The things we

implement that affect usability

Ashutosh Paul

Current, software architectures for interactive systems assumed that usability is
only important when designing the user interface component including the
presentation and dialogs. Therefore, most of the architectural models such as
MVC and PAC de-coupled the application semantic and the user interface, which
was essential for achieving usability. However, this fallacious dichotomy does not
address all the usability concerns. For example, semantic feedback leads tight
coupling between the application and the user interface, because it has to be
analyzed at both the application and the presentation levels. There are two
approaches to cope with semantic feedback. We can either place semantic
feedback in the presentation or in the application. The two approaches result in
much communication between the model and the views. This thesis proposes a
new architectural model, called MVCforUsability, for incorporating usability
concerns in software architecture. In particular, we discuss the cause/effect
relationships that exist between the internal attributes that we generally use to
assess the software quality and the usability factors that we use to quantify the
usability of the software system. Our investigations propose the following

methodological approach:

iii



. ldentify the internal software attributes that affect software usability, such as
modularity, functionality, etc.

. Define the relationship between these internal attributes and external usability
factors in terms of typical scenarios.

. Describe design patterns or improve existing ones for each typical scenario.

. Discuss how these patterns can be used to improve the MVC model.



Acknowledgements

It is with great pleasure that | acknowledge the efforts of the number of people

who have contributed to this thesis. First and foremost, | thank my supervisor Dr.
Ahmed Seffah who has given many ideas and advice. | also wish to thank my
younger brother Prakash Paul for many useful suggestions. Finally, I gratefully
acknowledge the help | received during the preparation of this Thesis from my

friends.



Table of Contents

1 INTRODUCTION 1
1.1 THE PROBLEM ...ouoiiieiniereenrenseeiesessesessesesssstsssesssssessessessnosssssssssssssssesssssssasssssasssestesssesssssesessesssssstrssosessras sosssssssnones 1
1.2 USABILITY OF VISIBLE VERSUS INVISIBLE COMPONENTS....cccceteemrereuresereesesaceseronsessesenseseetesesacseseeseessmsessssacas 2
1.3 SOFTWARE ARCHITECTURE ........oeitititierenterssserertesssesaesessessassssassssessasessossssesasssssessessessesersssessessessesessassassessessesassens 6
1.4 INTERACTIVE SYSTEM ARCHITECTURES........ccoveeerrerenrnnens rereetieseantes e n s s rar s st r s e st e s e s s bR R s s s nbnee 7
1.5 SOFTWARE ARCHITECTURE VERSUS DESIGNS.....corvuerererersenreeerrsasensesssesressesstesseressesessesssesesesmssmessensesesassessassens 10
1.6 NON-FUNCTIONAL QUALITIES AND ARCHITECTURE ...coveutrueiesireniereeniesssssessasssesssesentsssseseneseessasssesesessessnansasns 11
1.7 DESIGN DECISIONS MADE BY DEVELOPERS THAT AFFECT USABILITY ....coeeuineneeereeeeeeesenensesseeseesaeseesenes 15
1.8 OBJECTIVES OF THIS RESEARCH.......ccorieieriererteeeserestessesessessessessssssesasssssastessssassarasssssessessssensessosassersassasssarernons 16

2 BACKGROUND AND RELATED WORK 18
2.1 SEEHEIM MODEL.....ooueeiiienrerecrerireeseseseraecsesessesassassssersesesssssenes rreeeterstse s aat s se b s bsss st b e ssae s bs s e sasaenes 18
2.2 MV EC MODEL ..cvecrcerereerererresensnsasesessssesestosssssrsnsssessssessassesessssssenssssssssssesestassesssessasssesesssscosstsonsesmsesesenesentoasesessssas 20
2.3 COMPARISON BETWEEN SEEHEIM AND MV MODEL .....covevueceternieescensesssesssessesssesssssssssssssossrsssssssnessessenssens 21
24 PAC MODEL .cvereecmreerereneseesessasesssesesessasesesessssssaesessisestossssssssssssestotsesetssstssasssssssessacseseasantasssssssesenesess sesssessscns 23
2.5 COMPARISON BETWEEN MVC AND PAC MODEL.....ovecieeeeeiereereeseieserseessssssssssassssssssesesssnssssssessssesssssssassans 24
2.6 WEAKNESSES OF EXISTING ARCHITECTURES. resresisssashbrererbrosorssesiai bbb s bbb bR a bR RS RS s be s se e neneessrene 25

2.6.1 LACK Of USABIIILY ..ottt es s st s s st es s s arsssn st nss sestsesenns 25
2.6.2 Fallacious dichotomy between views and MOdel................occooeveervreeeeeeee e 26
2.7 PROMISING RELATED WORK UNDER INVESTIGATIONS ....ccocersuerceunrsierisnsiesmessesnsensssseessssssessssssansesesassssssensons 26
2.7.1 Let BASS FFAMEWOFK ...ttt ettt esssssis e sba st st sasbs s asn s s s bsnsa e s e sasassanans 26
2.7.2 User Interface Patterns — DOFIR SANAU............uoeeereeeeeerieeeirreeerr e eiseerevesssese e ssasss s sas s ssssanns 27
2.7.3 Commonly used patterns in interactive SYStem design ... .o weeooooreeeeeeesoeeeeeseoeeseeeeeereereeee 30
2.8 DIFFERENCE AND ORIGINALITY OF QUR OBJECTIVES TO EXISTING IDEAS.......cccovereerereerereressersesasseessesseseeses 31

3 PROPOSED METHODOLOGICAL FRAMEWORK 33

3.1 IDENTIFY INTERNAL ATTRIBUTES THAT AFFECT SOFTWARE USABILITY....ccovetceetrirrereeniecesssasssessemessssaseses 33

vi



3.2 EXTERNAL SOFTWARE ATTRIBUTE ....ccoemmiimininccrmeemraercnenceesrsnsesssescsensasasescssssentassencasssssenssessasssenssesenessasese 36

3.3 CAUSE/EFFECT RELATIONSHIP SCENARIOS.......cocervrevrvenns e nere bt e sasan e s e s nrans 37
3.3.1 Create Metaphor = R (Ul component familiarity mechanism, Learnability).............occcouvveuneee. 41
3.3.2 Comparability = R (Natural Mapping, Learnability)..............weeevivirernnieeereessesesesessessseosesssnses 41

3.3.3 Decrease user error and Increase performance = R (Data and commands aggregation,

CIFICTERICY )ttt e e ettt a et b ettt e bbb b 42

3.3.4 Operating consistently across views = R (Distinct views with same functionality mechanism,

EIfICICRICY ) vttt et s s s i ettt en s 43
3.3.5 Errov Recovery = R (Undo/cancel mechanism, error minimization) ..............eeeeveveeeevveeenncn. 43
3.3.6 Checking for correctness = R (Recognize user error mechanism, error minimization)................ 45
3.3.7 Providing user choices = R (Customization mechanism, adaptability) ...........ccoooeovmveovnenniie. 45
3.3.8 Providing device independent = R (Robustness mechanism, adaptability)................c.cevvuvvvenennne. 46
3.3.9 Provide user confidence = R (Display system status (feedback), comfortability) .......................... 47

3.3.10 Working Data Visualization = R (Support multiple visualization mechanism, comfortability). 47

4 MVCFORUSABILITY — FROM SCENARIOS TO PATTERNS 48
4.1 CREATES METAPHOR ......... Eeneeeeresbesesesareesetab b et e e e b e e e S eSS e bt S e S e e R ba e S b b e b e s S s e b s ma e br b b anaesen serasnrarars 48
4.1.1 Usage of such pattern within the MVC frameWOrK .........ccevcrvevrecvreneesinrseressesesesssessessesessassnsssns 51
4.2 COMPARABILITY ....ccooveevereererennenen OOt 51
4.2.1 Usage of such patterns within the MVC frameWOrK............cvvvvveeeceorseresieisssessceiessesssessessessssssns 53
4.3 DECREASE USER ERROR AND INCREASE PERFORMANCE ........ccoeveeerenererenennee. reeneeseesnranr e e s rsasessen 53
4.3.1 Usage of such patterns within the MVC fFrQmEWOFK...........ecveveveeeecreeresrereeeeeseeererssssssisssessessens 56
4.4 OPERATING CONSISTENTLY ACROSS VIEWS....cvetrireerreerenrreeesssessissesessssessssssasessssssessesesssassesassssesessneres .56
4.4.1 Usage of such patterns within the MVC frameWOFK..........uceeecveeeesiieieceeienieeseeverereesserenssessssesenns 58
4.5 ERROR RECOVERY . reeerernrrneses e bt b e e bR e bbb e s SRR s RS RS RS SR e e RO RO R e SRS e st s et e e bs b s eub s 58
4.5.1 Usage of such patterns within the MVC frameWOrK...........ceeeeeeeeeeivieeceeeeeeeeeceieeessseeseneseenes 62
4.6 CHECKING FOR CORRECTNESS............ TSP 63
4.6.1 Usage of such patterns within the MVC fFrameWOrK............coeeeeeeeeeeceeveeeerereeceeeieeeieieevee s 64
4.7 PROVIDE USER CHOICES.... ererereriereere i be Lo bt e i bR e st e bbb RS Se RS ee R e e s hob R b eSS S s e b eb b bnsse e ean 65

vil



4.7.1 Usage of such patterns within the MVC frameWork...........cvvevevceccenmnneeenneecereieneneseneresecnenes 66

4.8 PROVIDE DEVICE INDEPENDENT ......eecveurveterteraeserasesessesetssesssssssnsseesentesesssnsssesassssssntssasarstssesseensntesssscensesesssons 66
4.8.1 Usage of such patterns within the MVC frameWork...........cccvveoeorreeeeieeeee e 68

4.9 PROVIDE USER CONFIDENCE .. eereiieienesse e s e b et s e b e s bbbt e s s bbb n b e s et st b s e meseensanned 68
4.9.1 Usage of such patterns within the MVC frameWorE...........cooeeeereoresireieeieeeeeeeessesieeese e 70

4.10 WORKING DATA VISUALIZATION ....ccoererrrrerreeeserereseesrsesesessesssosseesesesessenssssssseseesessasssssssentonsessessssasenssessessses 70
4.10.1 Usage of such patterns within the MVC frameWork ...........oueecoeinnnenrniseeeeeenereseesseceneanes 71

5 CONCLUSION AND FUTURE WORK 72
6 REFERENCES 74

viii



List of Figures

Figure 1. Seeheim conceptual model............ocooooiiiiinini e 19
Figure 2. A pictorial representation of MVC architecture...............ccocooeenencnn 21
Figure 3. PAC architeClure ............oooeeeeiieeeeeee et 23
Figure 4: Conceptual (Logical) Pattern for Metaphor ... 50

Figure 5: Comparability Pattern — creates natural mapping between users and

ODJECES ... e 52
Figure 6: Data aggregation pattern...........cocoooeninnnnie e 55
Figure 7: Command aggregation.............cccoeerreennircne et 56
Figure 8: Make consistency Pattern..............ooo i 58
Figure 9: UnNdo Pattern..... ... e 61
Figure 10: Cancel Pattern...........cooooi oo 62
Figure 11: Checking Pattern...........ccoooi e 64
Figure 12: Modifying interface pattern.............cco e 66

Figure 13: A logical representation of software components in the machine

(Providing device independent pattern) ... 68
Figure 14: Provide user confidence pattern...........ccccovevevinecceneveee e, 70
Figure 15: Working data representation in differentways ............cccooeveeeeee. 71

X



List of Tables

Table 1: Some internal and external attributes with their definitions ........................ 5
Table 2: Difference table of software architecture and design...........ccccoeeeeennin. 11
Table 3: Comparison between MVC and Seeheim model..............ccoovveeenennnen. 22
Table 4. Comparison between MVC and PAC models ...........cccccoiiieiecienennens 24
Table 5: Some patterns used in Dorin’s framework.............c.ccocrriniiiincines 29
Table 6: Potential relationship between internal and external attributes................ 40
Table 7: Logical differences between Undo and Cancel actions...............ccoc......... 59



1 Introduction

In the usability engineering community, little has been done on how to integrate
usability analysis into the software architectures. The goal of usability analysis is
to ensure a usable product. The earlier in the design process the usability
analysis are carried out and integrated into design process, the more likely is that
the product is usable in the end of the product development life cycle. In this
work we have tried to integrate usability attributes early in the development
process by considering cause/effect relationship between the internal attributes
of the software system as ‘causes’ and usability attributes as ‘effect’. The
perspective of this work is to emphasize the problems and to find solutions for

integrating usability in Human-Computer Interface architecture and design phase.

1.1 The Problem

Software architectures have long been a key research topic in human-computer
interaction. Humans play an active and essential role in the operation of
interactive software and user interface (Ul) has become an essential part of

many software systems.

According to the survey on user interface programming - almost half of the code
is devoted to the user interface part of software system, during design and
implementation about half of the time is spent on the user interface, and during
maintenance about one third of the time is spent on the user interface [Myers,

Rosson, 1992].



For this reason, most interactive system architectures are based on the
assumption of separation between the functionality and the user interface. The
functionality is what the software actually does and what information it processes.
The user interface defines how this functionality is represented to end-users and

how user input is pressed.

The interactive system architectures have been proven useful, but they also
introduce problems with respect to the usability. These problems occurs in
particular in ‘highly’ interactive systems, where user interface and application
model are semantically dependent on each other: the more a software system is
interactive, the more coupling between its functionality and user interface. So,
only by changing Ul we cannot increase usability of the system, which was
thought in 1980s and early 1990s that usability was primarily a property of the
presentation of information. So, if we don't integrate the usability attributes in

design process the system will not be usable only by changing Ul.

1.2 Usability of visible versus invisible components

Usability of software has two aspects: the Ul usability, which we called visible
usability, and interactive system functional usability, which we called invisible
usability. Most of the research on Human-Computer Interaction has focused on
the visible usability aspect such as look and feel, colors, error messages clarity,

device behaviors, language, etc.



In this thesis, we will demonstrate that there are many invisible elements of an
interactive system, which are not either seen by the user or user concerns, but
they can affect usability of the software. We will also explain how these aspects
can be incorporated in the software architecture at the design phase. The
following examples explain how invisible elements affect usability of the software

system.

(A) Response time affects the performance of the system

If user wants to download a file form the server; the downloading depends on
many internal parameters such as network bandwidth, computer speed, system’s
API, etc. If there is any problem with any related internal parameters it will either
take longer time and simply does not download the file from the server. Generally
user is not aware about those problems, because those problems are simply

related with internal mechanism of the system.

(B) Exceptional handling can affect the user satisfaction

Users may put wrong inputs and system should tolerate them. The system can
crash due to exceptional inputs. We can say system is crushed because it does
not have proper exception handling mechanism. Why the system is crushed, it is
fully beyond user to understand because exception handling is the internal
mechanism of the system. So, we should make the system more robust by

providing an internal mechanism to handle the exceptional inputs. This will result

in more user satisfaction.



(C) Data validation can affect the appropriateness of user feedback

Sometimes users are not getting expected outputs in their TEXT FIELD when
they are pressing corresponding BUTTON. This is caused due to improper
validation of the inputs and outputs of the pressed BUTTON which is not either
visible to the users or users’ concerns. It is the designer concerns to build the
proper validation mechanism behind the BUTTON to get the proper outputs in

term of given inputs.

Intuitively, any invisible component can affect the usability. For example, let us
consider a TEXT FIELD, which is used to display a piece of information. When
users press a button, TEXT FIELD will be filled out with the output of the button
pressed. If designers/developers don’t implement validation mechanism (e.g., IF-
THEN statement) for validating the inputs and outputs, the TEXT FIELD can be
filled out with garbage that will not be readable or difficult to understand. So, we

can say the validation mechanism is an invisible component that affects usability.

So, we can say cause/effect relationship establishes a relation between internal
attributes such as data validation and one or more external attributes such as
efficiency, helpfulness, etc. It creates a situation, which we will call a scenario

where invisible components can affect the usability of software system.

In this thesis, we define internal and external attributes as follows:
1- Internal attributes are invisible software components that are used to measure

the quality of the software system and its behaviors. Some internal attributes



like size, effort, and cost is easier to measure. Others are more difficult like
code complexity. Furthermore, internal attributes are functionality, modularity,
reuse, redundancy, structuredness, module coupling and cohesiveness.

2- External attributes refer to the quality factors that we generally use to
measure the usability. Examples of usability factors include efficiency, user
satisfaction, and effectiveness. ISO 9126 provides an exhaustive list of

usability factors.

The following table (Table 1) summarized the list of internal and external

attributes that we considered in this thesis.

Table 1: Some internal and external attributes with their definitions

Attributes Definition
Internal
Familiarity mechanism Creates metaphor in user mind and leverage human
knowledge.
Natural Mapping Creates a clear relationship between what the user wants

to do and the mechanism for doing it.

Data and commands aggregation Aggregation is a process to gather information into an

object.
Distinct views with same Same functionality for different view of the same data.
functionality mechanism
Undo/cancel mechanism Ability of recovery.

Recognize user error mechanism | Ability of prediction human error through perceptual and

(spell checking) cognitive analysis.




Attribute Definition

Internal

Customizability mechanism Ability of adaptation of user interface with user habits and

environment.

Robustness mechanism  (fault | Ability of tolerance with exceptional inputs.

tolerant):

Display system status mechanism | Ability to display system dialogs.

(feedback):
Support multiple-visualization Ability to see objects in different shape and structure.
mechanism

External
Learnability Allows users to begin work quickly.
Efficiency Enables a high degree of productivity.
Error Minimization Mistakes are infrequent, but easy to recover from.
Adapt the system (Adaptability) Personalization of the system with user environment.
Comfortability Enjoyable to work with.

1.3 Software Architecture

Software architecture represents a common vehicle for communication among a
system's stakeholders, and is the arena in which conflicting goals and
requirements are mediated. Architecture is the organizational structure of a
system. Architecture is the first artifact in the software design process that can be
analyzed to determine how well its non-functional quality attributes (architecture
quality requirements) are being achieved, and it also serves as the project
blueprint. Architecture is also a description of the relationships among

components and connectors. Components are identified and assigned



responsibilities that client components interact with connector interface.
Connector interface specifies communication, controls mechanisms, and

supports all component interactions needed to accomplish system behavior.

The following are some of the definitions that have been proposed:
e |EEE Std. 610.12-1990: A system is a collection of components organized to

accomplish a specific function or set of functions.

e Garlan and Perry, guest editorial to the IEEE Transactions on Software
Engineering, April 1995: Software architecture is "the structure of the
components of a program/system, their interrelationships, and principles and

guidelines governing their design and evolution over time."

¢ Bass, Clements, and Kazman - Software Architecture in Practice, Addison-
Wesley 1997: 'The software architecture of a program or computing system is
the structure or structures of the system, which comprise software
components, the externally visible properties of those components, and the

relationships among them.

1.4 Interactive System Architectures

We define an interactive system as a system, which provides the user interface
and the support for human activity. The user interface has two sides - inputs and
outputs. In input side user inputs information indicated by various conventions
and controls; and in output side machine provides feedback and other assistance

to the user in command specification, and provides various forms of information



portrayal. Human have many motors and other capabilities that could be the
basis for input and command specifications; similarly user has full range of

senses that could be targets for system outputs.

According to William M. Newman and Michael G. Lamming: An interactive
system supports communication in both directions, from user to computer and
back. It does this in a way that enables it to follow the pace and direction of the
user’s activity. The user takes actions such as pressing buttons, pointing with a
‘mouse’ or typing in the text. The system reacts accordingly, perhaps by
displaying information, perhaps by activating machinery or performing some
other useful service, perhaps just by waiting for the user’s next action. All of this

takes place via the system’s user interface, the part of the system that provides

access to the computer’s internal resources.

The main characteristics of interactive systems are:
1. Input events are triggered by user through input devices.

2. Action by users must trigger an output provided by the system.

3. Input and output are interleaved.

Following three fundamental things occur regarding event in interactive system:
- An event occurs — for example: the phone rings; users press button to open

up a file.



- The event is detected by the system — for example: Apu hears the phone;
system’s ‘A’ drive gets light.
- The system reacts to the event — for example: Apu answers the phone;

system brings up the file structure of the ‘A’ drive.

Four fundamental issues in interactive system design has to be addressed:

Identify the human activity that the proposed interactive system will support.

Identify the users who will perform the activity.

Set the levels of support that the system will provide.

Select the basic form of solution to the design problem.

A large number of architectures for Interactive Software have been described,
e.g., Seeheim model, Model-View-Controller (MVC), Arch/Slinky, Presentation
Abstraction Control (PAC), PAC-Amodeus, Model-View-Presenter (MVP). Most
of these architectures are based on the traditional view is separated form the
application model. The application part contains the functionality of the software
and the view (user interface) part contains the representation of this functionality
to the user(s) of the system. The motivation behind these architectures is to
improve, among others, portability, reusability, multiple interfaces, customization,

adaptability, usability, complexity handling, and separation of concerns of

interactive software.



1.5 Software architecture versus designs

Software Architecture provides a view of the whole system. This distinguishes
architecture from other design models, which focus on parts of a system. There
are mainly two kinds of architecture — Monolithic and Reference. Monolithic
Architecture is an architecture where all system functions (presentation,
application and dialog) are tangled together in a single module. Reference
architecture is a division of functionality plus data flows between the pieces and
provides a common basis for communication about the domain (a common

reference).

Within the envelope of the architecture, and in order to implement the
architecture itself, we implement the design, which cares decomposition into
components/modules/objects, specification of interfaces and design of protocols
and formats. The outputs of the design process are typically expressed in UML
diagrams, IDL specifications and XML DTDs. Software architecture is different

from (Table 2) design model in several ways.

10



Table 2: Difference table of software architecture and design

Software Architecture Software design
Architecture is just preliminary design where the Software design is to take design
primary structures of a software system are decisions that are strategic in nature —
elaborated. those that define the primary system

properties and provide a context for more

detailed design decisions.

Architecture provides a view of the whole system. | Design focuses on parts of a system.

Architecture focuses on three aspects of software | Design focuses to decomposition into
design: Partitioning — the functional partitioning of | components/modules/objects,

software modules, Interfaces — the software specification of interfaces, and design of
interfaces between modules and connection — the | protocols and formats.

selection and characteristics of the technology
used to implement the interface connections

between software modules.

Architect is responsible for managing complexity. | Software design can formulate design
rules that indicate good and bad
combinations of choices. Such rules can
be used to select an appropriate system

design based on functional requirements.

1.6 Non-functional Qualities and Architecture

Now, we explore the relationship between the software architecture of a system
and the non-functional qualities to be achieved by that system. We argue that
there is an intimate connection between a system’s architecture and the
achievability of particular non-functional qualities within that system. The non-

functional qualities of the system are orthogonal to the functionality of the

11



system. We view the functionality as the mapping of input to output generated by
the system. This (admittedly narrow) view of functionality throws into the non-
functional realm any discussion of performance, modifiability, portability,

scalability, and so on.

Unit operations are a standard collection of structure-modifying techniques —
separation, abstraction, compression, decomposition (part-whole and is-a),
resource sharing and replication. Unit operations are applied on Software
Architecture to achieve desired non-functional quality attributes. Unit operations
are different form design patterns — they are more primitive. Design patterns are
composed of unit operations. Unit operations are also more abstract than design

patterns.

In order to construct complete software architecture we take the following steps:

e Determine the set of quality attributes and understand the ramifications of
each quality of interest.

e Determine the functionality, which the architecture must compute to achieve
each quality attribute.

o Make the architecture to compute each functions.

e Applying unit operations to the functions according to non-functional

requirements.

12



Architecture serves both technical and organizational purposes. From the

organizational perspective, the architecture helps to:

Understand the high-level design view A number of stakeholders need to
understand the system at a fairly gross level. Modeling the system at a high
level facilitates communication of the high-level system design. The reduction
in detail makes it easier to grasp the assignment of significant system
responsibilities to high-level structures.

Give idea about the system context. The developers and future maintainers
also need to understand the system at a gross level. In large systems,
developers cannot efficiently understand the details of the entire system.
Sometime, they need a detailed understanding of the more narrowly scoped
portions of the system that they work on.

Allocate tasks: Where architectures decompose the system into subsystems
that are relatively independent, have clear responsibilities, and communicate
with each other through a limited number of well-defined interfaces; the
development work can be partitioned effectively. This allows parallel
development work to proceed in relative independence between integration

points.

At the technical level, architecture allows us to design better systems to:

Get system requirements and objectives: Both functional and non-functional
requirements can be prioritized as ““'must have" vs. “high want” vs. ““want",

where “"must have" identifies properties that the system must have in order to

13



be acceptable. Architecture allows us to evaluate and make tradeoffs among
requirements of differing priority. Though system qualities (also known as
non-functional requirements) can be compromised later in the development
process, many will not be met if not explicitly taken into account at the
architectural level.

Enable flexible distribution/partitioning of the system: A good architecture
enables flexible distribution of the system by allowing the system and its
constituent applications to be partitioned among processors in many different
ways without having to redesign the distributable component parts. This
requires careful attention to the distribution potential of components early in
the architectural design process.

Reduce cost of maintenance and evolution. Architecture can help minimize
the costs of maintaining and evolving a given system over its entire lifetime by
anticipating the main kinds of changes that will occur in the system, ensuring
that the system's overall design will facilitate such changes, and localizing as
far as possible the effects of such changes on design documents, code, and
other system work products. This can be achieved by the minimization and
control of subsystem interdependencies.

Increase reuse and integrate with legacy and third party software: An
architecture may be designed to enable and facilitate the (re)use of certain
existing components, frameworks, class libraries, legacy or third-party

applications, etc.

14



1.7 Design decisions made by developers that affect usability

Every software system has two aspects: physical and cognitive Bevan, 1999).
Others called them differently such as interaction and presentation. Physical
aspect means providing right interface between user and system — user interface
(Ul). Cognitive aspect means matching the functionality, terminology, information
and interface to the needs of the individual user. In 1980s and early 1990s the
system design has traditionally been on building systems that meet specific
functional requirements, without a sufficiently detailed understanding of the
cognitive and physical capabilities and expectation of the individual users, or
clear view of the context in which the system will be used. That is why most of
the system has lack of Usability. On the other hand, architectures of the 1980s
and 1990s assumed that usability was primarily a property of the presentation of
the information. Therefore, simply separating the presentation from the dialog
and application made it easy to modify that presentation after user testing.
However, that assumption proved insufficient to achieve usable systems. A more
popular belief in the 1990s was that usability concerns greatly affected system
functionality (application) as well as the presentation (Len Bass, 2001). So

achieving the correct functionality for a given system become paramount.
Len Bass and his team observed that if the presentation and the functionality of a

system are designed extremely well, the usability of a system could be greatly

compromised if the underlying architecture does not support user concerns. On

15



the other hand, if many modifications come to the fore after an initial design and

implementation make the system unusable.

1.8 Objectives of this research

It is well know in software life cycle — the later a problem is detected; the more
expensive it is to fix. Therefore, we will show in our thesis that the cause/effect
relationship between internal and external attributes is a logical consequence of
the Cartesian separation between the Ul and application. The communication
between application developers and interaction designers is the ideal place
where cause/effect relationship occurs. The lack of communication between
application developers and Ul designers leads to low-level cause/effect
relationships that affect the usability of the software. On the other hand, high-
level cause/effect relationships between user requirements and the design

decisions lead to a better usability of the software system.

This work aims to solve the problems of cause/effect relationship through an
extension of the MVC model called MVCforUsability and in general through
software architecture. Our goal is to define methods for usability engineering that
can be integrated to an incremental and iterative software design process. A
commitment to usability problems of a software system needs to put an
emphasis on how and why the usability has to be improved. The answer to the
why — is to increase the acceptance of the software system to the end-user and
the answer to the how — is to integrate the user requirements in design process

through the cause/effect relationship model between internal and external

16



attributes of software system. Here we have considered usability attributes -
Learnability, memorability, speed of performance, error rate, satisfaction, and
task completion as external attributes, and for each external attribute there are at

least one invisible force which creates cause, we treat them as internal attributes.

17



2 Background and Related work

Our work has its foundation in interactive system architectures where several
models have been proposed such as Seeheim, MVC, PAC, etc. Most of these
architectures are based on the traditional view of interactive software can be
separated form the core-functionality of the system. The motivation behind these
architectures is to improve, among others, adaptability, portability, usability,
complexity handling, and separation of concerns of interactive software as we
discuss in this chapter. The principle of separating interactive software in
application and user interface parts has its merits, but it can however lead to
serious adaptability and usability problems in software that provides fast,
frequent and intensive semantic feedback. Most of these models do not provide
explicit solution for the cause/effect relationship between internal and external

attributes of the software system to increase the usability of the software.

2.1 Seeheim Model

The Seeheim Model (Figure 1) has been established by X/Open Technology as a
framework for a User Interface Management System (UIMS). It separated the

whole software system into three layers. The layers are as follows:
Presentation Layer: Lexical aspect of the interaction. It is static, visible part of the

interface built upon the X Window System and X toolkits, such as Xt Intrinsics

and OSF/Motif.

18



Dialog Layer: Syntactic aspects of the interaction. It is responsible for the
dynamics of the application. The dynamic portion that handles events (callbacks)

and interfaces between the static screens and the application.

Application Layer: Semantic aspects of the interaction. It is the underlying
application "functionality" that the GUI controls or communicates with. The
application can be written in programming languages such as C, C++, Java or

Ada or can even be an SQL-driven database.

Presentation |---————- > Dialog < —— =2 = Interface
Application (API)
/N /N
v :
AV

% Application

Figure 1. Seeheim conceptual model

Some weaknesses of Seeheim model are as follows:

- Many modifications affect all three functions — presentation, dialogue and
application.

- Performance problems with sophisticated semantic feedback (e.g. input
validation).

- Cumbersome to maintain separate notions for dialog, presentation and

application layers.

19



2.2 MVC Model

One of the contributions of Xerox PARC to the art of programming is the multi-
windowed highly interactive Smalltalk-80 interface. This type of interface has
since been borrowed by the developers of the Apple Lisa and Macintosh and, in
turn, by the Macintosh's many imitators. The central concept behind the

Smalltalk-80 user interface is the Model-View-Controller (MVC) triad.

The Model-View-Controller (MVC) architecture (Figure 2) has three main
components: the model, the view, and the controller. The model represents the
underlying information of a specific user interface element. The view displays this
information in a certain way, while the controller knows how the user interactions

with the view will affect the information in the model.

In the MVC model the user input, the modeling of the external world, and the
visual feedback to the user are explicitly separated and handled by three types of
object. The viewmanages the graphical and/or textual output to the portion of the
bitmapped display that is allocated to its application. The controller interprets the
mouse and keyboard inputs from the user, commanding the model and/or the
view to change as appropriate. Finally, the model manages the behavior and
data of the application domain, responds to requests for information about its
state (usually from the view), and responds to instructions to change state
(usually from the controller). The separation of these three components is an

important notion that is particularly suited to Smalltalk-80 where the basic

20



behavior can be embodied in abstract objects: View, Controller, Model and
Object. The MVC behavior is then inherited, added to, and modified as

necessary to provide a flexible and powerful system.

MVC uses other design patterns, such as Factory Method to specify the default
controller for a view, Decorator to add scrolling to a view and Observer to support

multiple views.

Update
Model [~~~ - View
A Query/Register  /\
§ 4
é View Selectioni Event
! |
: i
E_ Event notification Controller

Figure 2. A pictorial representation of MVC architecture

Some of the major weaknesses of MVC Model are:

- Dependency mechanism may lead to a spaghetti of links— difficult to debug.

- Model is not well-developed— no notion of interface- application separation.

- the ‘application’ consists of one or more model objects; these are linked

directly (tightly coupled) to the interface components (view and controller).

2.3 Comparison between Seeheim and MVC Model

Seeheim and MVC presented two fundamentally different approaches to dealing
with modifiability. The following table (Table 3) presents major differences

between MVVC and PAC models.

21



Table 3: Comparison between MVC and Seeheim model

Seeheim

MvC

It presents three components: presentation,
dialog and application to represent the
interaction styles, some control knowledge of

synchronization and the data.

It provides three low-level: model, view and
controller to represent functional-core,

presentation and control.

Seeheim presentation layer cannot be

expressed in hierarchical order.

MVC view component can be expressed in

hierarchical order.

Guard against changes is layering — placing
distinct classes of functionality into distinct

layers.

Guard against changes is part-whole
decomposition — placing different pieces of
system functionality, along with their input,

output and dialogue, into distinct components.

Seeheim model offers a monolithic functional-

core (Application) component.

MVC model usually distributes the functional-

core (Model) into objects.

Seeheim allows either externally or internally

controlled user interfaces.

MVC allows only externally controlled user
interfaces, because each component is independent
of each other. MVC uses a dependency manager to

allow also limited internal control.

User Interface design is often based on
components and structures provided for user
interaction and task processing. Seeheim
model does not support abstraction

hierarchies.

MVC framework has rich possibilities for
defining structural concepts by means of

abstraction hierarchies.

22




2.4 PAC Model

PAC (Figure 3), for Presentation-Abstraction-Control, defines a structure for
interactive software systems in the form of a hierarchy of cooperating agents.
PAC is a multi-agent model, it structures an interactive system as a collection of
specialized computational units called agents. An agent has a state, possesses
an expertise, and is capable of initiating and reacting to specific events. Every
agent is responsible for a specific aspect of the application’s functionality. It
consists of three components: presentation, abstraction, and control. This
subdivision separates the human-computer interface aspects of the agent from

its functional core and its communication with other agents.

D

ST
P R

R G &

Figure 3. PAC architecture

PAC organizes an application as a tree-like hierarchy of PAC agents. There
should be one top-level agent, several intermediate-level agents, and even more
bottom-level agents. The whole hierarchy reflects transitive dependencies
between agents. Each agent depends on all higher-level agents up the hierarchy

to the top-level agent. The agent’s presentation component provides the visible

23



behavior of the PAC agent. Its abstraction component maintains the data model
that underlies the agent, and provides functionality that operates on this data. Its
control component connects the presentation and abstraction components, and
provides functionality that allows the agent to communicate with other PAC
agents. The top-level PAC agent provides the functional core of the system.
Bottom-level PAC agents represent self-contained semantic concepts on which
users of the system can act, such as spreadsheets. Intermediate-level PAC
agents represent either combinations of, or relationships between, lower-level

agents.

Major Weakness of PAC Model:

A hierarchical PAC component makes a complicated composite PAC model.

2.5 Comparison between MVC and PAC model

The following table (Table 4) presents major differences between MVC and PAC
models.

Table 4: Comparison between MVC and PAC models

MvC PAC

In MVC the presentation (view) component | In PAC the presentation component is
corresponds to the low-level combination of | termed presentation. It provides better de-
view and control. Lack of de-coupling between | coupling between components.

components.

MVC model is a part-whole decomposition. The hierarchical order of PAC models

supports composite PAC model.

24



MvC

PAC

In MVC model the dialog control component is
embedded in the controller and controller
manager components. There is no explicit
component for ensuring consistency between

model and view.

In PAC, the dialog control component is
called control. it provides consistency for
abstraction (application model) and

presentation components.

MVC allows only externally controlled user
interfaces, because each component is
independent of each other. MVC uses a

dependency manager to allow also limited

PAC allows external or internal control within
a single interactive object because it
distributes functional-core (Abstraction) in

different objects.

internal control.

2.6 Weaknesses of existing architectures

Most of the architectures are based on the separation between view and
application model. The communication between view and application model
makes the software system highly coupled as it becomes complex. These
architectures also did not think how to integrate the usability concerns in design

process.

2.6.1 Lack of usability

Simply separating the view from core functionality (Model) of the application and
modify the view after user testing to increase the usability of the software proved
insufficient to achieve usable systems. Recent research demonstrated that
usability concerns are greatly affected by system functionality (application model)

as well as the views (Bass, 2001).

25



2.6.2 Fallacious dichotomy between views and model

The principle of separation of interactive software into application and IU parts
has its merits. It can however lead to serious usability problems (e.g., semantic
feedback, adaptability, and portability). For example - semantic feedback
(continuous feedback) makes application and Ul to be highly coupled. Today,
different people build the model and views. Example: multi-device user

interfaces.

2.7 Promising Related Work under Investigations

Now we will investigate what researchers are thinking about usability, how they

are integrating usability in interactive system architectures.

2.7.1 Len Bass Framework

Len Bass and his team presented (Len Bass and et al., 2001) an approach to
improving the usability of software systems by means of software architectural
decisions. They have identified specific connections between aspects of usability,
such as the ability to “undo” and software architecture. They also formulated
each aspect of usability as a scenario with a characteristic stimulus (event) and
response (process by event-handler). Their framework, Achieving Usability
through Software Architecture, has the following steps:

Step 1. Identified architecturally sensitive usability scenarios.

26



Step 2. Determined usability benefit hierarchy.

Step 3. Categorized usability scenarios into usability benefit hierarchy.

Step 4. Determined a Software engineering hierarchy.

Step 5. Architectural patters for each usability scenarios and categorizes into
engineering hierarchy.

Step 6. Determined a matrix with Benefit Hierarchy in one axis and Engineering
Hierarchy in the other. Each cell contains the general usability scenarios that

correspond to the mechanism and benefit hierarchies.

The matrix provides many benefits. The software design team can decide which
usability benefits are most valued in a particular project, uses the matrix to focus
on the general scenarios that can provide those benefits to see which are
applicable to that project and then reads off the architectural mechanisms

necessary to implement those scenarios.

2.7.2 User Interface Patterns — Dorin Sandu

An interactive system is a system, which provides the user interface and the
support for human activity. In interactive system users can interact with the Ul to
get their job done easily, so the demand of Ul become paramount. Dorin Sandu
found, after building user interface more details are required to have application
interact with its user interface in a consistent way. Dorin Sandu introduced new

patterns such as Event Handler, Complete Update, and Multiple Update to build

27



flexible user interface and along with a set of patterns (Subforms Patterns) that

promotes user interface reuse.

According to Dorin, if developers use MVC (or any similar models) to implement
user interface, and the visual components in user interface are already
implemented on MVC model, then developers need to set dependencies, via
observer pattern, between the user interface model and the visual components.
In other words, each visual component needs to observe some aspect of the
user interface model, and update itself when that model aspect changed. Then
developers will find the resulting dependency graph is hard to understand and

maintain.

To solve these problems, Dorin suggested some higher-level design decisions
that developers can apply along with these patterns (MVVC or similar patterns) to
improve user interface design and implementation. Dorin incorporated these
decisions into the patterns, mainly Event Handler, Complete Update, Multiple

Update and a set of Subforms. We can describe them (Table 5) as follows:

28



Table 5: Some patterns used in Dorin’s framework

Pattern

Problem

Solution

MVvC

Architecture of Interactive system.

Divide into three components:

model, view and controller

Event Handler

How should a view (observer visual
component) handle an event notification
message from its observable visual

components?

Create and resister a handler
method for each event from

observable visual components.

Complete

Update

How to implement behavior in the user
interface to update the (observer) visual

component from the model?

Assume all (observer) visual
components are out-of-date

and update everything.

Multiple Update

How to implement changes in the modei
of sub-form reflect to parent of sub-form,

child of sub-form, siblings of sub-form?

Each sub-form should notify its
parent when it changes the
model. The parent should
react to changes in the sub-
form via Event Handler and
update its children

components via Complete

Update.

Subfrom

How to design parts of user interfaces to

operate on some model aspect?

Groups the components that
operate on the same model

aspect into subforms.

Event Handler, Complete Update, and Multiple Update can be applied in two

phases. The first phase changes the states of the user interface models in

response to end user events generated by the visual components, and second

phase updates the visual components to reflect the changes in the user interface

29




model. Since the update phase immediately follows the handle phase, the user

interface always reflects the latest changes.

2.7.3 Commonly used patterns in interactive system design

Observer

The observer pattern defines a one to many dependencies between objects so
that when one object changes state, all its dependents are notified and updated
automatically. The Observer pattern manages the notification and updating
between dependent objects called observers and subjects (observable objects).
It describes how to notify observer objects when a subject changes its state,
without forcing the subject to know the specific classes of the observers. MVC
uses Observer to de-couple the model from the view, when the model changes, it
notifies all its views to update. In this way, there can be many views operating on
the same model at the same time, without the model explicitly knowing about all

of them.

Command Action

It encapsulates requests for service from an object inside other objects, thereby

letting us manipulate the requests in various ways.

We can use the Command pattern when:

- We want to implement a callback function capability. A callback function is a
function that is made known (registered) to the system to be called at a later
time when certain events occur.

- We wan to specify, queue, and execute requests at different times.

30



- We need to support undo and change log operations.

For example - toolkit objects provide a mechanism for invoking an operation, but
the toolkit has no knowledge of the operation. In window buttons and menus: the
toolkit provides the mechanism for activating an operation, but the application

must supply the actual operation.

Abstract Factory

Abstract Factory provides an interface for creating families of related or
dependent objects without specifying their concrete classes (e.g. The Toolkit
class). If we are given a set of related abstract classes, the Abstract Factory
pattern provides a way to create instances of those abstract classes from a
matched set of concrete subclasses. The Abstract Factory pattern is useful for
allowing a program to work with a variety of complex external entities such as

different windowing systems with similar functionality.

2.8 Difference and originality of our objectives to existing ideas

In Len Bass framework, they have generated the list of usability scenarios by
surveying the literature, by personal experience and by asking colleagues [Gram
1996, Newman 1995, and Nielsen 1993]. They did not establish the mechanism
of getting usability scenarios. So, there is no clear indication how these scenarios
are achieved. On the other hand, we have showed in our research how each

usability scenario is achieved through the relationship between internal and

31



external attributes of the software system and we have tried to solve each

scenario on the concept of separation as other framework did.

The main objective of Dorin’s User Interface Patterns is to provide a mechanism
to build, modify and maintain Ul easily. Dorin showed how to handle events
generated from the Ul components, how to get changed object itself when Ul
model aspect has been changed and how to reuse the user interface. So, we can
say these patterns are Ul centric. Dorin did not think about the usability of the

user interface at all.

32



3 Proposed Methodological Framework

The framework (MVCforUsability) we are proposing is based on Len Bass work

[2001]. It has four different steps for solving cause/effect relationship problems

between internal and external attributes of the software system and to integrate

usability in design process.

1. ldentify the internal software attributes that affect software usability, such as
modaularity, functionality, etc.

2. Define the relationship between these internal attributes and external usability
factors in terms of typical scenarios.

3. Describe design patterns or improve existing ones for each typical scenario.

4. Discuss the usage of such patterns within the MVC framework.

Now we will explain different steps in detail in the following chapters.

3.1 Identify internal attributes that affect software usability

As we know internal attributes of an entity are those that can be measured in
terms of the entity itself, generally they are not either visible to the users or users’
concern. It is the designers and developers concern what kind of internal
attributes they would account to integrate user requirements in their proposed
software system. It is very important to get the correct form of internal attributes

to implement user requirements.

33



The following are some examples of high-level internal attributes to implement

user primary requirements and to achieve user goals.

1. Ul component familiarity mechanism (Leverage Human Knowledge): Users
use what they already know when they are approaching a new situation. If the
‘look and feel' of new software components/objects are similar to what user
has already seen or used then user can create metaphor in his/her mind

about the functionality of the specific component and take initiative to use it.

2. Natural Mapping: Creates a clear relationship between what the user wants to
do and the mechanism for doing it. Example - to perform my task, | need to

select this option, enter that information, and then press this button.

3. Data and commands Aggregation: When users want to perform action on
more then one object then system aggregate data into one object and
perform the action on new object for short cut. In the same way, when it takes
several commands to achieve one goal then system aggregate commands

into new object for short cut.

4. Distinct views with same functionality mechanism: User would be confused by

functional deviations among different views of the same data. So commands

should be available for all views of the same data. Example: UNIX windows.

34



5. Undo/cancel mechanism: Undo is an action, which is used when user no
longer wants the effect of the operations. For example, a user accidentally
deletes a file and wishes to restore it. Cancel is an action, which is used when
user invokes an operation, but no longer wants the operation to be performed.
For example, a user selects an unintended menu item due to slip of mouse,

but no longer wants the operation to be performed.

6. Recognize user error mechanism (spell checking): A user could make an
error that he or she does not notice. Sometime human error is predictable

through perceptual and cognitive analysis.

7. Customizability mechanism: Customization is the ability to change the user
interface (Ul) to adapt with the user habits and environment. The degree to
which users can customize software system to suit their own environment is a

critical factor.

8. Robustness mechanism (fault tolerant): Robustness has many meanings in
many contexts. Robustness is the ability of a system with a fixed structure to
perform multiple functional tasks as needed in a changing environment.
Robust software will be able to better accommodate evolutionary change by
anticipating and isolating concerns in the original design and implementation.
For example — user wants to install a new device; the device may conflict with

other devices already present in the system.

35



9. Display system status mechanism (feedback): System status is the situation
what system is doing when user invokes command. User may not be
presented with system state data necessary to execute the command, but
system should let the user know how much work has been done to

accomplish the goal.

10. Support multiple-visualization mechanism: Multiple visualization means to see
objects in different shape and structure. Sometimes user needs to see data in

different shape and structure to understand and analyze them.

3.2 External software attribute

External attributes of an entity are those that can be measured only with respect
to how the entity relates to its environment, i.e., by observing its behavior in its
environment (e.g. execution time of a program on a particular machine). External
attributes are often measured in terms of internal attributes. There are many
external attributes like usability, reliability, efficiency, testability, reusability,
portability, interoperability, and understandability just to mention some. Here we
will consider only usability attributes as external attributes because our goal is to

integrate usability in design process.

Usability means how easily the end users reach their targets and how satisfied

they are with using the product (ISO/FDIS 13407, 1999). A set of attributes of

36



software which bears on the effort needed for use and on the individual
assessment of such use by a stated or implied set of users (ISO/IEC 9126:
1991). Usability is measuring how well a system supports user’s activity. The
following are some common usability attributes we called them external attributes
of the system:

1. Learn system features (Learnability).

2. Use system efficiently (Efficiency).

3. Minimize the impact of errors (Error Minimization).

4. Adapt the system (Adaptability).

5. Feel comfortable (Comfortability).

Many other attributes are also suggested in the literature (Donyaee, 2000).

3.3 Cause/Effect Relationship Scenarios

Formally speaking, the cause (Internal attributes) and effect (External attributes)
relationship can be expressed as follow:

Relation R (Unit operation, quality attribute) = R (Internal attributes, External

attributes) = R (X1, X2) = Typical scenario

We use the concept of scenario to describe a cause/effect relationship. A
scenario is story that describes a typical situation where a specific cause/effect
relationship occurs. We use the following examples to explain typical scenario.
Example 1:
If user wants to bold a paragraph, first he/she needs to select the paragraph

(Data aggregation) which to be bolded and passes this aggregated data through

37



the BoldFunction(aggregatedData) function as parameter to get bolded
paragraph. In this way, user can bold as much text as he/she wants at one shot,
so that user can expedite workflow and minimize the error. Here we can treat
‘data aggregation’ as internal attribute, which creates ‘cause’ and ‘work
efficiency’ as external attribute, which is ‘effect’ of the cause. It creates a
scenario, which needs to be implemented through the internal attribute to

increase efficiency and decrease user errors.

Example 2:

A user may make an error that he/she does not notice. However, human error
can frequently be circumscribed by predictable perceptual, cognitive analysis and
the nature of the task at hand. Users often type ‘hte’ and ‘fo’ instead of ‘the’ and
‘of in word processors. The frequency of the word ‘the’ and ‘of in English and the
fact that ‘hte’ and fo’ is not a English word, combined with the frequency of
typing errors that involve switching letters typed by alternate hands, make
automatically correcting to ‘the’ and ‘of almost always appropriate. Computer-
aided correction mechanism (module) can be used to detect user error and can
provide help to correct them. Computer-aided correction can be either enforced
directly for automatic text replacement or suggested through system prompts
(feedback). This mechanism decreases the user error and increases the
individual satisfaction and performance. Here we can treat ‘computer-aided
correction mechanism or feedback’ as internal attribute, which creates ‘cause’

and ‘satisfaction and performance’as external attribute, which is ‘effect’ of the

38



cause. It creates a scenario, which needs to be implemented to increase user

satisfaction and performance, and decrease user errors.

Example 3:

The user always wants to know whether or not the operation is still being
performed as well as how much longer the user will need to wait. When user
invokes an operation, the system provides feedback that the application is still
working and gives an indication to the progress to keep the user informed. These
mechanisms indicate the system performance and give user satisfaction. Here
we can treat ‘Feedback and progress bar mechanism’ as internal attribute, which
is ‘cause’ and ‘performance and satisfaction’as external attribute, which is ‘effect’
of the cause. It creates a scenario, which needs to be implemented to increase

user satisfaction.

The scenario gives more details on how the internal attributes affect the usability
factors (external attributes). External attributes are prevailing on the user
environment; stakeholders need to express them in term of scenarios, which is
called cause/effect relationship between internal and external attributes. On the
other hand, to get any external attribute (usability attribute), designers need to
design for related scenario and developers need to implement internal attributes
related with the design. The following table (Table 6) shows some potential

relationships between internal and external attributes.

39



Table 6: Potential relationship between internal and external attributes

External Performance | Robustness | Customization | Reusability | Adaptability
Internal
Controliability 0 1 1
Immediate 1 0
Feedback
Fault tolerance 0 1 0
mechanism
Recovery 0 0 0
mechanism
Modularity 0 1

1 Strong relationship, very common

0 Potential relationship to be validated

As part of our thesis, we identified the following 10 scenarios:

e Create Metaphor = R (Ul component familiarity mechanism, Learnability).

e Comparability = R (Natural Mapping, Learnability).

e Decrease user error and increase performance = R (Data and commands
aggregation, efficiency).

e Operating consistently across views = R (Distinct views with same
functionality mechanism, efficiency).

e Error Recovery = R (Undo/cancel mechanism, error minimization).

e Checking for correctness = R (Recognize user error mechanism, error

minimization).

40



e Providing user choices = R (Customization mechanism, adaptability).

¢ Providing device independent = R (Robustness mechanism, adaptability).

e Provide user confidence R (Display system status (feedback),
comfortability).
e Working Data Visualization = R (Support multiple visualization mechanism,

comfortability).

3.3.1 Create Metaphor = R (Ul component familiarity mechanism, Learnability)

Here we consider ‘Ul components/objects familiarity’ as internal attribute and
‘Learnability’ as external attribute. This relation creates a scenario that needs to
be implemented so that users can have ability to figure out how to use something
just by looking at it and can perceive the properties of the components of Ul
Example: If we see a handle, we are tempted to pull it or if we see a switch, we
are tempted to set it in the opposite direction. Create metaphor of an object is the

action it intuitively tells us to perform on it.

3.3.2 Comparability = R (Natural Mapping, Learnability)

Here we consider ‘Natural mapping’ as internal attribute and Learnability’ as
external attribute. This relation creates a scenario that needs to be implemented
so that users can have ability to figure out how to achieve a goal. Example:
Mapping is the technical term for associating one thing with another. In the sense

of Usability, this is mostly seen as the result of an action. One of the most

41



common mappings is the one of the steering wheel in a car. When we turn the
steering wheel to the left, our car turns left. Steering to the right causes us to
move right. This mapping, however, does not hold if we drive a car with a trailer
in reverse. We have to steer the opposite way, to get the trailer moving the way
we want it to.

The first mapping mentioned is a natural mapping and the other is arbitrary. A
natural mapping takes advantage of some physical analogy or a cultural
standard. When designing objects, we should use natural mapping as much as
possible. Natural mapping aid the user tremendously in learning the application.
Furthermore, through natural mapping the object or tool seems to work and

behave intuitively.

3.3.3 Decrease user error and Increase performance = R (Data and commands
aggregation, efficiency)

Here we consider ‘Data and commands aggregation’ as internal attribute and
‘use system efficiently’ as external attribute. This relation creates a scenario,
which needs to be implemented so that users can have ability to figure out how

to increase performance and decrease his/her errors.

Data Aggregation

Data aggregation is any process in which information is gathered to pass as a
parameter to the functions to do some manipulation with aggregated data.

Example: If user wants some portion of text in a Text Editor to bold, user needs

42



to select the data to be bold and to pass the selected data as parameter to the

BoldFunction(selectedData) to get the selected (aggregated) data bolded.

Command aggregation

Aggregation allows a command to be played and then absorbed by the command
at the top of the command stack. Example: Replace all - a replace all command
is first created, then a series of replace commands are executed against the
document and each of these commands is aggregated into the replace all

command.

3.3.4 Operating consistently across views = R (Distinct views with same

functionality mechanism, efficiency)

Here we consider ‘Distinct views with same functionality mechanism’ as internal
attribute and ‘use system efficiently’ as external attribute. This relation creates a
scenario which needs to be implemented so that users will have same
functionality for different view of the same data. Example: In UNIX user can
open up as many windows as he/she wishes and from each windows user can
apply same commands on same data. There are no functional deviations

between different views of the same data.

3.3.5 Error Recovery = R (Undo/cancel mechanism, error minimization)

Here we consider ‘Undo/cancel mechanism’ as internal attribute and ‘error

minimization’ as external attribute. This relation creates a scenario which needs

43



to be implemented so that users can try to figure out how to accomplish a task
without any fear and hesitation; and can have flexibility to change his/her mind
according to the situation. Example: Dix, Finlay, Abowd, & Beale (Dix, et al,,
1993) make a distinction between backward and forward error recovery. This

distinction is now commonly used in interactive system development.

Backward error recovery

Backward error recovery is an attempt to restore the System State after an error

has been occurred. Backward recovery can be considered as the only real

“recovery” function, since the unexpected effects of error are totally removed.

Backward error recovery function is to go back in time. According to Yang (Yang,

1992) — in (Lenman & Robert, 1994a) — there are three kinds of backward error

recovery commands: undo, cancel, and stop.

e The undo function is the most famous one, and most editors implement an
undo function. Designers need to think with the presentation, the granularity,
the scope, and the range of the undo function.

e The stop function is used to terminate the process under execution. For
example, a user can make the choice to stop a long printing command when
he realizes that many users are waiting for the printer.

e The cancel function is used to abandon commands under context. For
example, a user can cancel the typing of an e-mail message if the addressee
has just entered the user’s office. The cancel function needs to deal with its

scope.



Forward error recovery
In forward error recovery, the user has to execute unexpected tasks to recover
the fault. For example, if you break a dish plate, you have to use glue to recover

your error. Of course, the final dish plate is not as nice as the unbroken one.

3.3.6 Checking for correctness = R (Recognize user error mechanism, error

minimization)

Here we consider ‘Recognize user error mechanism’ as internal attribute and
‘error minimization’ as external attribute. This relation creates a scenario which
needs to be implemented so that if users make any mistake system will let the
user know what he/she has done wrong and what they need to do to achieve the
goals by providing some possible ways. Example: There are two kinds of
correctness —well-formedness and validity. Well-formedness checks spelling and
meaning of the sentence (spell checking). Validity checks the inputs against Pre-

defined Data Type (PDT)

3.3.7 Providing user choices = R (Customization mechanism, adaptability)

Here we consider ‘Customizability mechanism’ as internal attribute and
‘adaptability’ as external attribute. This relation creates a scenario, which needs
to be implemented so that users can have ability to change the look and feel of
the system, especially Ul. Example: Customization is the ability to maximize the

use of what software already has to meet the user needs. In other words,

45



customization is the way to enhance user profile; using a 'user profile' the system
constructs a relevant, dynamic, seasonally adjusted portal for user. There are
four kinds of customization.

Adaptive Customization: No change in either product or representation, user can
filter out most of the possibilities using pop-up menus, search functions and
preference settings.

Cosmetic Customisation: A different presentation of a standard product.
Transparent Customisation: Change in product, but not in representation.

Collaborative Customisation: Change in both product and representation.

3.3.8 Providing device independent = R (Robustness mechanism, adaptability)

Here we consider ‘Robustness mechanism’ as internal attribute and ‘adaptability’
as external attribute. This relation creates a scenario which needs to be
implemented so that software system will have the adaptability in different
platforms and environments. Example: Robustness is the degree to which a
software component functions correctly in the presence of exceptional inputs or
stressful environmental conditions. In the other words we can say - robustness is
the degree to which a system or component can function correctly in the

presence of invalid or conflicting inputs.

Programs fail mainly for two reasons: logic errors in the code, and exception
failures. Exception failures can account for up to 2/3 of system crashes, hence

are worthy of serious attention.



3.3.9 Provide user confidence = R (Display system status (feedback),

comfortability)

Here we consider ‘Display system status (feedback)’ as internal attribute and
‘comfortability’ as external attribute. This relation creates a scenario that needs to
be implemented so that users will have ability to know what system is doing and
what they can do next. Example: The system prompts to the user indicate that a

task is being done or the task is being doing on progress.

3.3.10 Working Data Visualization = R (Support multiple visualization

mechanism, comfortability)

Here we consider ‘Support multiple visualization mechanism’ as internal attribute
and ‘comfortability’ as external attribute. This relation creates a scenario which
needs to be implemented so that data or content can be visualized in a
meaningful ways. Example: Sometimes user wishes to see data from different
point of views. In Microsoft PowerPoint user can see or show his/her working
data in different ways to make his/her presentation more understandable to the

audiences.

47



4 MVCforUsability — From Scenarios to Patterns

A pattern is a solution to a recurrent problem with set of forces (set of goals) in a
context. Patterns were first used to describe shapes of structural elements in
buildings and towns. For example, the "half-hidden garden" pattern considers
how to frame a view of a garden so that onlookers have a sense of well-being

and positive anticipation [Alexander 79].

Different "standards" have emerged to describe Software Patterns. The simplest

description requires the following items:

o Context refers to a recurring set of situations in which the pattern applies.

e fForce refers to a set of goals to be achieved by pattern.

e Problem refers to a set constraint and limitation that need to be overcome by
pattern solutions.

e Solution refers to a canonical design form or design rule that someone can

apply to resolve these forces.

Example: Name: Window Place; context. Design of a residential room; forces:
People want to sit and also be in daylight; problems: If all seating is away form

window people will be dissatisfied and solution: Build seating near window.

4.1 Creates metaphor

Name of Pattern: Create Metaphor

48



Context: The user always wants to understand the system with minimal affords

and experiences. That means Ul components or objects need to have two things:

Visibility - to give the user the ability to figure out how to use something just by

looking at it and Affordance — to make an idea about objects properties and how

the objects are to be used.

Forces:

- Users need to predict about the meaning and functionality of the objects.

- Users need to see many objects but want to see them in a clear organized
way.

- Each object creates non-overleaping idea, which maps with object actual
functionality.

- Users want to minimize the time takes to scan/read/view objects on the
screen.

- Users want objects are often to be related and can be grouped conceptually.

- Users want the presentation of the objects needs to be compact, but still
clear, pleasant and readable.

Problems: If user interface does not fit with the histories in user mind user will not

be able to create Mental Model about the functionality of the system.

Solution: Metaphor (Figure 4) is the structure-mapping from a source onto a

target. Such mapping can exploit existing common schematic structure or new

structure from the source onto the target. The work on the ‘Conceptual

integration’ has shown that in addition to such mappings there are dynamic

integration processes which build up new ‘mental spaces’. Such spaces develop

49



emergent structure, which is elaborated in the on-line construction of meaning

and serves as an important locus of cognitive activity.

Common or new structures

Source -2 Mapping —->)

\:/ Conceptual integration

Mental Space

Figure 4: Conceptual (Logical) Pattern for Metaphor

The cross-space mapping between the inputs (from the source and the target) is
metaphoric. But the blend (Conceptual integration) has causal and event shape
structure that do not come from the source, indeed are contrary to the source
and in some cases impossible for the source, and the central inference of the

metaphor cannot be projected from the source.

Concrete Example: Open a file

Source: User intention (from user mind) is to get a file from a folder

Target: Icon of ‘open folder’ (a button or icon with a picture of ‘open folder’)
Mapping: Compare both structures conceptually — Map (Source structure, Target
structure, Mental space structure) = Mental space structure

Mental Space: Task analysis is done how to achieve the goal. If user likes to
open a new file, first user needs to find out the location of the file, and then user
opens the desired file.

Mapping result: The Idea how to open a file.

50



4.1.1 Usage of such pattern within the MVC framework

To create metaphor in user mind about different objects’ functionality of Ul is
depend on above conceptual Pattern. It would be best idea to separate Ul
components or objects from its functionality, and then we will be able to arrange
or manipulate different object to create metaphor in user mind without affecting
the functionality of the object. That means Ul components have to treat as View,

the functionality as Model and communication as Controller.

4.2 Comparability

Name of Pattern — Comparability (Keep user thinking logically)

Context: User wants a clear relationship between what user wants to do and the

mechanism for doing it, which is called the Natural Mapping. On the other hand,

user wants solutions for any circumstances where user needs to think what to do

next or what would be the next steps.

Forces:

- The user wants to achieve the goal but may not be familiar or interested in the
steps that need to be followed.

- The subtask should be ordered but are not always independent of each other
i.e. a certain task may need to be finished before the next task can be done.

- To reach the goal, sometimes several steps need to be taken but the exact

steps required may vary because of decisions made in previous steps.

51



Problems: If the tasks are not conceptually subdivided in step by step according
to user conception, users will not be able to achieve their goals and will be
frustrated.

Solution: Pattern matching (Figure 5) always involves an attempt to link two
patterns where one is a theoretical pattern and the other is an operational one.
The top part of the figure (Figure 5) is User General Ideas to perform a task. The
Task Model creates general Conceptual Pattern how to achieve user Goal. The

bottom part of the figure indicates the realm of Operational Pattern.

User Ideas

v

Task Model
Conceptual Model

v

Conceptual
Pattern

Mapping

Operational
Pattern

f

Data
Organization

Figure 5: Comparability Pattern — creates natural mapping between users and

objects

52



4.2.1 Usage of such patterns within the MVC framework

Comparability pattern links user conceptual ideas and the system operational
mechanism through natural mapping. User conceptual ideas fully related with the
Ul components, on the other hand operational mechanism fully related with core-
functionality of the system. So, we can capture conceptual ideas into Ul objects

(View) and operational mechanism into core-functionality (Model) of the system.

4.3 Decrease user error and increase performance

Name of Pattern: Decrease user error and increase performance

Context: Users may want to perform one or more actions on more than one

object (data aggregation — user selects a paragraph of text to bold it up) at a

time. On the other hand, user may want to complete multi-step procedure

consisting of several commands at one shot (command aggregation — a batch of

commands).

Forces:

- System should allow users to select and act upon arbitrary combinations of
data and commands.

- The specific aggregations of actions or data that user wishes to perform
cannot be predicted.

- System should provide a batch or macro capability to allow users to
aggregate data and commands.

Problems: If the user cannot select arbitrary combination of data and commands

it will be tedious to do one by one.

53



Solution:

Data aggregation pattern (Figure 6) has the following components:

Command Receiver - This component manages the commands that the user
generates. A command has an action and one or more subjects that either
provides input or accept output form the command. Command is passed to the
Grouping Manager for creation a group, adding data to a group, removing data
from a group.

Grouping Manager - This component manages the definition of groups and
addition and deletion of data items from a group. Grouping Manager controls the
iteration of commands through the Command Processor. It accesses the User
Data to present group.

User Data - This component provides access to the application data that is
visible to the user. These data are available both to those components that
control data presentation and to those components that manipulate the data.
There are two options for applying a command to a group; these are iteration and
embedded ways. In iteration way particular command operates on single
argument and grouping manager repeatedly invokes the correct command
processor on each item in the group. In embedded way Command Processor

understands groups and can directly operate on the grouped data.

54



Command Grouping User Data
Receiver S P Manager <--->)
A N 7
~w - - : - ” - -
~ ! -
e : -
Command
Processor

Figure 6. Data aggregation pattern

Command Aggregation pattern (Figure 7) has the following components:
Command Receiver - It receives user requests (commands) that are desired
synchronously. It must communicate the commands both to the command
processor for execution and to the authoring editor for inclusion in the aggregate.
The authoring editor and the command processor may communicate if additional
information about parameters or data must be saved in the aggregated
command.

Authoring Editor - The authoring editor monitors commands that are received by
the Command receiver and saves them as an aggregated set that can be
subsequently invoked. These aggregated commands are usually edited prior to
final saving for execution.

Execution - User invokes the aggregated command. The command receiver must
communicate with the authoring editor to retrieve the aggregated command. This
necessity for communication is the source of the data flow from the authoring
editor to the command manager. The command receiver then sends the

commands one at a time to the command processor. The command manager

55



must be informed of the source of any required synchronous user input and the

destination of any generated error messages.

Authoring
Editor

€

Command
__________ > Receiver
/N

1
|
AV
Command
Processor

Figure 7: Command aggregation

4.3.1 Usage of such patterns within the MVC framework

Data aggregation: In data aggregation user aggregates the data from his/her
editor and pass it as a parameter to the command invoked. So we can think ‘user
selected data’ as View and the command implementation as the Model.
Command aggregation. Commands are aggregated in ‘Authoring Editor
according to the user selection. So we can think ‘Authoring Editor’ of commands

as View but each command implementation as Model.

4.4 Operating consistently across views

Name of Pattern: Operating consistently across views
Context: User wants operation consistency between views or presentations. If

there are any functional deviations between different views for the same data

56



then user will be confused. So, system should make commands available based

on the type and content of user’s data, rather than the current view of that data.

Forces:

- Users like to have same functionality between different views or presentations
for the same data.

- Users like to have same resources to execute their operations for different
views.

- System should make commands available based on the type and content of
user’s data, rather than the current presentation (view) of that data, as long as
those operations make sense in the current presentation.

Problems: If commands that have been available in one view may become

unavailable in another or may require different access methods for the same data

then user would be frustrated.

Solution: The ‘Data Model’ (Figure 8) is being viewed should be separated from

the ‘View descriptor’ so that ‘View’ is independent from ‘Data Model'.

‘View’ maps the data through ‘View Descriptor’.

‘Command controller is separated from ‘Data Model’ so that user commands

operate on ‘Data Model’ without knowing ‘View’.

57



Change Notification Data Model

Fmmm— e m e
1

Y AN
View i
Descriptor |
i ! Invocation
: |
l ]
' I
I I
\V t
View Command
User event Controller
Data flow - ———___ >

Figure 8: Make consistency Pattern

4.4.1 Usage of such patterns within the MVC framework
Here Data, View, Command and view descriptions are separated form each
other. So, we can implement and change any component without affecting others

like MVC model.

4.5 Error Recovery

In window-based GUI applications, it is standard to have a Cancel button that
closes any dialog box and discards any changes the user may have made within
that dialog box. It is a great way to support exploratory learning compare with
older systems where we were trapped if we ever activated the wrong command.
In editing systems it is usual to have an Undo command that makes the
document revert to the state before the user's most recent changes. Sometimes,
multi-level undo and redo is supported: this can be very useful but confusing. The
following table (Table 7) summarizes the common differences between Undo and

Cancel.

58



Table 7: Logical differences between Undo and Cancel actions

Undo Cancel Comment

Undo is being done on a | Cancel is being done on an| The time to use

performed operation. ongoing operation.

The system allows the user | The system stops invoking | Consequences
to return to the state before | operation to be performed.
the operation was

performed.

The granularity of the undo | The granularity of the Cancel | Action boundary
(e.g. are keystrokes undone | is a system-wide decision.
or commands) is dependent
on the component rather
than on some system-wide

decision.

Undo

Name of Pattern: Undo

Context: To err is human - user can make a mistake. There should be a way to
undo the mistaken operation, so that user won't loose anything for his/her
accidental mistaken. So, software system needs to have a mechanism to return
to the state before the operation is performed.

Forces:

- User wants to have choice to perform an operation and change his or her

mind about wanting the effect of that operation.

59



- A user may accidentally delete some lines in a document and wish to restore
it without lose of generality.

- Users are curious, they want to try something without knowing anything about
the functionality of the objects if there is a way to get back.

Problems:. User won't try if there is no way to get back. If user invokes Undo

operation user might loose previous operation execution data, so user might not

get prior state and will be frustrated.

Solution:

Undo Component (Figure 9):

- Each component sends relevant data to Undo Manager.

- Data are viewed as a transaction.

- Each transaction is stored as atomic unit.

Undo Manager:

- Stores each transaction in a stack as atomic unit.

- Using a global transaction manager rather than relying on each component to
perform its own undo has the advantage that the number of steps that can be
undone is arbitrary (multi-level undo).

- The granularity of the undo is dependent on the component rather than on
system wide. Suppose the current granularity of the undo is at the command
level and there is a decision made to change it to the keystroke level. Then all
that is necessary is to enter the keystrokes into the Undo Manager and the

commands do not need to be modified.

60



Undo Undo Undo
Component1 Component2 Component3

!
Kk
\
\
\

Undo Manager

Data flow __ >

Figure 9: Undo Pattern

Cancel

Name of Pattern: Cancel

Context: When user is working in a computer and get a call to be rushed to an

unexpected place, then user no longer wants the invoked operation to be

performed. The user now wants to stop the operation rather than wait for it to

complete. User could have clicked or selected one for another, system should

allow user to cancel operations.

Forces:

- User invokes an operation, but no longer wants the operation to be
performed.

- The user wants to stop the operation and go back to the prior state without
loosing anything.

- User want to have prevention for accidental ‘slip of click’ or ‘slip of select’.

Problems: If the user wishes to stop current operation to get back to prior state

but system lost prior data then user will be frustrated.

Solution: Active Component (Figure 10): These components perform the

activities that may be cancelled. They provide the information about the used

61



resources by them to the Controller. They keep sufficient information about the
prior system state. They provide resources to Cancellation controller to cancel
the command.

Cancel Listener: This component listens to the user request for canceling the
active components passes it to the Cancellation Controller. It informs the user

that it has received the cancellation request.

Cancellation Controller: This component terminates the active thread, and
returns the persistent resources to their state prior invoking the active
components, release non-preemptable resources, provide feedback to the user
about progress and the result of the cancellation, and inform collaborating
components of the termination of the active thread.

Collaborators: This component takes the information about terminated

components.

Cancellation Canceliation Active
<----- > Listener — Controller <--> Component
N /N

Vi Vi
Collaborators

Figure 10: Cancel Pattern

4.5.1 Usage of such patterns within the MVC framework
Undo: ‘Undo Manager’ is separated form undoable functions, so this component

is modifiable without affecting other components.

62



Cancel: Components are separated from each other, so that they can be

modified independently.

4.6 Checking for correctness

Name of the Pattern: Checking for correctness

Context: Human error can be detected by nature of the task at hand. For

example, users often type ‘hte’ instead of ‘the’ in word editor. These error

corrections can be done in two ways — automatic replacement and suggestion

through system prompts.

Forces:

- User wants his/her errors will be detected by the system and take action
through either automatic replacement or suggested by system prompts.

- System prompts should be clear with possible answers so that user will not
be confused.

Problems: If user error is not detected by the system then user need to take

initiative to figure out what is the cause of the error and if fails he/she will be

frustrated.

Solution:

User Input (Figure 11): We can think it as Application Data. It should be

separated from Checker so that application data can be accessible by the

checker.

63



Checker: It has different models in its mind — Task Model, User Model and
System Model — so that it can determine when a potential error occurs and what
will be the possible corrections.

Presentation: It only shows the corrected output. Here user data will be replaced
by corrected output.

Task Model: This model determines what user is attempting to do to accomplish
his/her task so Checker can take initiatives.

User Model: This model determines knowledge of the user so Checker can take
initiatives.

System Model: This model determines expected behavior of the Application

(System) so that system can provide dialogues to the user.

User Input Checker Presentation
N > s >
e
&L--""" \V2 TTeey
Task Model User Model System Model

Figure 11: Checking Pattern

4.6.1 Usage of such patterns within the MVC framework
User inputs is separated form the presentations and checker, so presentations

and checker can be modified without affecting each other.



4.7 Provide user choices

Name of Pattern: Provide user choices (Modifying Interface)

Context: Interactive system is the lifeblood to the users. So, uses should have

the ability to modify the Ul according the users choices because different users

have different choices.

Forces:

- Different individuals have different style and choices. Each individual likes to
work in his/her own ways.

- Some users have some disability problems so they like to adapt their system
in own ways.

- Changing the look and feel; and functionality should be easy to understand
and modify.

Problems: If users cannot modify Ul according to their wishes they will be

frustrated.

Solution: To support the modifiability we need to follow the following steps:

- Enumerate a list of likely change scenarios.

- Decide the functionality of the scenarios.

- Encapsulate each functionality.

- Indirection of both data and control.

Encapsulation (Figure 12): Encapsulate all user interface functionality away from

the core of the system allows designers to modify the user interface more easily.

65



Indirection (function): The use of an intermediary such as the dialogue manager
in the Seeheim Model or the Controller in the PAC model is indirection of
function.

Indirection (data): Indirection of data refers to the separation of application data
from the view of that data. It occurs in virtually.

Separate all functionality which will be modified by the user from unmodifiable
functionality of the system. Then separate the data (Figure 12), controlier and

functionality of the modifiable functions to facilitate user-modifying talks.

Functions

/N

AV
% __________ > Controller
N\

Figure 12: Modifying interface pattern

4.7.1 Usage of such patterns within the MVC framework
Function controller is fully separated form the implementation of the function and
data. User can modify the controller of the function without affection

implementation of the function and data.

4.8 Provide device independent

Name of Pattern: Provide device independent

66



Context: Any application should be device and platform independent, so that
users don’t need to think about the required environments. The more the system
is robust, the more the system is conflict free with other existing software.
Application should be designed to reduce the severity and frequency of device
conflicts.

Forces:

- User wants his/her application supports all devices including to be installed in
his/her machine. That means application will not conflict with any other
software components exist in his/her machine.

-  When there are any device conflicts occur, the system should provide the
information necessary to either solve the problem or seek assistance.

Problems: If there are any device conflicts with new software component

installation then the user will be frustrated.

Solution:

Application Layer (Figure 13): This is our proposed application

Virtual Layer: It acts like a mediator. It is an API. Application accesses Physical

Devices through Virtual Layer, it defines and abstracts how the devices should

be controlled. It accesses the Physical Devices through the physical device

drivers that do the actual control. The function of the Virtual Layer is to translate
the Virtual Layer into the various Physical Devices.

Physical Layer: A class of device drivers. For each class of devices there is an

abstract Virtual Layer by which Application get contact with Physical devices.

67



Application

Application Layer

____________________ e
!

AV
API
Components Virtual Layer
___________ = ‘/:::"‘——--——\—\5<———-—————‘—-—"---
e “~y\Physical Layer
Physical Physical
Device1 Device2

Figure 13: A logical representation of software components in the machine

(Providing device independent pattern)

4.8.1 Usage of such patterns within the MVC framework

APl is treated as a separate component, which is shared by both software
system and device drivers and provides necessary resources to software system.
API and software systems are fully independent components, so they are

modifiable independently without affecting each other.

4.9 Provide user confidence

Name of Pattern: Provide user confidence (feedback)

Context: When a task is being completed the system gets different mode or state
in different situations. User needs to be informed about what is going on to get
user confidence.

Forces:

- The user cannot always control the performance of the operation, because it

may rely on external system, which may fail, block or have low performance.

68



But user can express his/her own opinion with respect to status (feedback) of
the system.

- The user wants clear feedback on the estimated time and progress of
completion.

- The user may not be familiar with the complexity of the task.

- During the operation the user might decide to interrupt the operation because
it might take too long for compietion.

- The system should account for human needs and capabilities when deciding
what aspects of System State to display and how to present them.

- The System State should be presented in a clear fashion, such that it does
not confuse the user.

Problems: If the user does not know what is being done by the system, then the

user will be frustrated.

Solution: To show to the user what application is doing and give a clear indication

of the progression of the task being completed we need two things — collection of

system state data and take initiative to present them in an informative ways.

Event component (Figure 14) gets the events from the user or the other systems.

After getting events form the Event component, Decision about Initiative (DAI)

consults with different models and take initiative to show the results in an

informative way in the Presentation component.

69



System
Data

Repository

Event
Task Model »
\\\ ;
AN Decision
User Model < about
~ _:,_ Initiative
v ;
System Model - S
AV
Presentation

Figure 14: Provide user confidence pattern

4.9.1 Usage of such patterns within the MVC framework

All models and DIA will be the part of the core-functionality of the system. So,

DAI can be changed without affecting Presentation and Data Repository

components.

4.10 Working Data Visualization

Name of Pattern: Working Data Visualization (Presentation)
Context: Sometime users want to see data in different point of views to get

insight idea about the data, so that they will have idea what they are doing and

what they need to edit to improve their documents.

Forces:

- Users like to gain additional insight about working data while solving

problems.

- Users like to see what they are doing in different viewpoint, so that they can

edit in order to improve their document.

70




- Different user likes different viewpoint (mode).

- Each viewpoint (mode) should have related commands to manipulate data.

Problems: If user cannot see working data in different view mode to get better
idea and if switching between views does not change related command of
manipulation then user will be frustrated.

Solution: Data that is being viewed should be separated form the data view
description (Figure 15), so that same data can be viewed in different ways
according to the different view descriptions. Presentation gets the data and

commands according to user selected view description.

Presentation

_________ A
1
I
[}
N |
1 ]
[} ]

Vi Vi

Commands View Data
-—=-=> <<--> Description K-> Repository

Figure 15: Working data representation in different ways

4.10.1 Usage of such patterns within the MVC framework
View description can be thought as core-functionality is separated for the Data
and Presentation, so that each component can be modified without affecting

each other.

71



5 Conclusion and future work

In this thesis, we presented an approach to improve the usability of software

systems by means of software architecture. We first identified specific
cause/effect relation between usability factors and internal attributes of software.
We also formulated each cause/effect relationship as a scenario with
characteristics of external attributes. For every scenario, we provided several

architectural patterns that provide a solution to cause/effect relationship

scenarios. We then showed how our patterns could be enhanced to MVC model

(MVCforUnability).

This research effort can benefit software architecture designers and developers.

They can use our MVCforUsability framework in three fashions:

1. The scenarios can serve as a checklist to show whether important usability
features (external attributes) have been considered in the requirements by

incorporating related external attributes of the software system.

2. The architecture patterns can help the designer to implement cause/effect
relationship scenarios through MVCforUsability model to incorporate the

usability in the system.

3. The relationship scenario enables a designer to determine what additional

aspects of usability can be supported for minimal cost by analyzing internal

and external attributes of the software.

This work is by no means complete. The following issues have to be explored:

72



- Validating and extending the list of cause/effect scenarios. The cause/effect
relationship scenarios we proposed need to be validated in real world
applications.

- Identifying the other internal attributes that can affect usability.

An Approach of validating the list of patterns:
Since our patterns are based on scenarios and each scenario is based on the
relationship of internal and external attributes of the software system, so each
scenario has specific set of requirements to be achieved through software
pattern. Every pattern has a set of problems to be solved and a set of goals to be
achieved. Designers and developers can use the use-case and scenarios as
functional prototypes (simulations of the system) of the pattern and let users
manipulate, critique, configure, annotate and enhance those prototypes. To
validate each pattern designers and developers could follow the following steps:

1. ldentify set of internal attributes and set of user requirements.

2. Apply use-case to the set of user requirements and analyze to find the ways
to achieve goals.

3. Compare the ways of achieving goals with the design pattern and if
necessary redistribute the internal attributes or components within the design
pattern.

4. Since every pattern are proposed in a way that each functionality is separated
from one another, so developer can built them separately and connect them

through the use-case defined connection interface.

73



6 References

[1] Len Bass, Bonnnie E. John and Jesse Kates, Achieving Usability Through
Software Architecture, March 2001, SEI, Carnegie Mellon University,
Pittsburgh, PA 15213-3890.

[2] Roger S. Pressman, A Manager’s Guide to Software Engineering, McGraw-

Hill, Inc., New York, NY, 1993.

[3] Len Bass, Paul Clements, Rick Kazman, Software Architecture in Practice,
Addison-Wesley, Reading, MA, 1998.

[4] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern
Oriented Software Architecture: A System of Patterns, John Wiley & Sons Ltd.,
West Sussex, England, 1996.

[5] Steve Burbeck, Applications Programming in Smalltalk-80(TM): How to use
Model-View-Controller (MVC), ParcPlace Systems, Inc., 999 E. Arques Ave.,
Sunnyvale, California 94086-4593, UAS, 1992.

[6] Jeff Raskin, The Humane Interface: New Directions for Designing Interactive
Systems, Addison-Wesley, 2000.

[7] William M. Newman, Michael G. Lamming, Interactive System Design,
Addison Wesley, 1995.

[8] Rick Kazman, S. Jeromy Carroere, Steven G. Woods, Toward a Discipline of
Scenario-Based Architectural Engineering, SEI, Carnegie Mellon University,

Pittsburgh, USA, 2000.

74



[9] Chris Stary, Nikos Vidakis, User Interface Design as Knowledge
Management, University of Linz, Department for Business Computing
Communications Engineering, Linz, Austria.

[10] Laurence Nigay, Daniel salber, Simon Buckinghan Shum and Joelle Coutaz,
Teaching Trainee and Professional Designers to use the PAC-AMODEUS
Software Architecture Modelling Technique, Universite Joseph Fourier,
France.

[11] Francis Jambon, Error Recovery Representations in Interactive System
Development, LIS | ENSMA, BP 109 F-86960, Futuroscope cedex, France.

[12] Jiantao Pan, Philip Koopman and Daniel Siewiorek, A Dimensionality Model
Approach to Testing and Improving Software Robustness, SEl, Carnegie
Mellon Uhiversity, Pittsburgh, USA, 1999.

[13] IEEE Standard Glossary of Software Engineering Terminology (IEEE Std
610.12-1990), IEEE Computer Soc., Dec. 10, 1990.

[14] William M. K. Trochim, Pattern Matching for construct validity, Cornell

University, hitp://trochim.human.cornell.edu/kb/pmconval.htm, USA, 2000.

[15] Len Bass, Mark Klein, and Felix Bachmann, Quality Attribute Design
Primitives and the Attribute Driven Design Method, SEI, Carnegie Mellon
University, Pittsburgh, USA, 2001.

[16] Terry Winograd, Architectures for Context, Computer Science Department,

Stanford University, 2001.

75



[17] Roy A. Maxion, Robert T. Olszewski, Improving Software Robustness with
Dependability Cases, School of Computer Science, SEI, Carnegie Mellon
University, Pittsburgh, USA, 1998.

[18] Len Bass, Mark Klein, Felix Bachmann, Quality Attribute Design Primitives,
SEl, Carnegie Mellon University, Pittsburgh, USA, 2000.

[19] Len Bass, Mark Klein, Gabriel Moreno, Applicability of General Scenarios to
the Architecture Tradeoff Analysis Method, SEI, Carnegie Mellon University,
Pittsburgh, USA, 2001.

[20] Marc Evers, A Case Study on Adaptability Problems of the Separation of
User Interface and Application Semantics, University of Twente, Dept. of
Computer Science, Software Engineering Group, P.o. Box 217, 7500 AE
Enschede, The Netherlands.

[21] Mohammad Donyaee, Thesis: QUIM — A Model for Specifying and
Measuring Quality in Use, Dept. of Computer Science, Concordia
University, Montreal, 2000.

[22] Dorin Sandu, User Interface Patterns, School of Computer Science, Carleton

University, Ottawa, Ontario, Canada.

76



