Slicing-Based Coupling Measurements

Wenjun Meng

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

August 2003
© Wenjun Meng, 2003

National Library Bibliotheque nationale

of Canada du Canada

Acquisitions and Acquisisitons et
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Canada

Your file Votre référence
ISBN: 0-612-83916-8
Our file Notre référence
ISBN: 0-612-83916-8

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la these ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

Abstract

Slicing-Based Coupling Measurements

Wenjun Meng

The market forces affecting today’s software development have placed a greater
emphasis on software quality. A variety of design measurements have been proposed to
control the development of software systems and to evaluate the final software products
after delivery. In this thesis, we propose a slicing-based coupling measurement
framework to assess the complexity of different granularities in a slice. The proposed
framework combines well-known and proven coupling measurements, namely CBO,
RFC, and MPC, with program slicing-based source code analysis techniques. These
slicing-based coupling measurements are further extended for different abstraction levels
and application domains. The proposed measurements are implemented as part of the
CONCEPT project to provide an aid for programmers comprehending and assessing
source code and to give some objective heuristics for software engineers in selecting and

prioritizing maintenance tasks.

it

Acknowledgements
I would like expressing my sincere gratitude to my supervisor Dr. Juergen Rilling for his
support, guidance, patience, and valuable insight, which have made the completion of my

thesis possible.

I am also grateful to Yonggang Zhang and other colleagues in CONCEPT project for

sharing measurement issues and associated data.

Finally, I would like to thank my parents, husband and little daughter. Without their love

and support, I could not accomplish this thesis.

v

Contents

LIST OF FIGURES ..euuivuitttirunereesrensessterstesesuiersimmsseiaietitemiesnorsnstniersisstersssniesnessassessssssassassanes VII
LIST OF TABLES «tueittiiteiiiiiiiesetseesenesrstasesssssesssesenentosetoresssstssssersnssnssesersesasssssssaseasasosasaracss VIII
1 INTRODUCTION ...ctuiuiiirtieieieerireerarsssssrseisierasessisrstssssssrersessasesssssseonsssssssssassssisassrnssorases 1
1.1 SOFTWARE MEASUREMENT ...vuuituniinsiensieniiiniiiiereisiaitrtsemsnersssrersesanssaasesssenesmsssssssssassnsnes 2
1.2 PROGRAM SLICING ..uvvvvveeeusessessssneesssssesesemsssessssssneessessnetesosssastsssssieneessossstsssssssssssssesns 3
1.3 GGOALS turerveeeereierersusrenteeseessonunsrneeasasiosasntnnanaseessersssssssestassessanaissmenenetosssssesmssentensteseeees 3
1.4 THESIS OUTLINE . euvvrrvreresesseronssarnenesssasasssesnesteessssansnssesnessossssssssissmasessesssssssesssmnsssrsnsees 4

2 BACKGROUND ...c.itiiiitieiiniierueiriersaenstsieisraseitietersteseittetststsissesseiotorststassssssnsesesorstasssassnses 5
2.1 PROGRAM SLICING ...vvvvreeeuuveeeasaunresesasssresesasseesessmansessonsnesssossssessssssasssesssnssssisssesssessnnns 6
2.1.1 Static slicing and dynamic SHCIME ...veeeerieierrrvrrrereeerieiiiereeerrereessesisinererstoseneiesssossans 7

2.1.2 Forward and backward SHCING........ccvreierereisreeeiireeesnenesseeraeeessenessunsesssessssesessnnens 9

2.1.3 Executable and non-executable SHCINZ ... vvreerreeeeieerrrierrrererseesioninrerecerseesessassiannnnee 11

2.1.4 Union and intersection of Program SHCES.......vreererereeeeeraerererereessiereressireesssonsreresesonas 12

2.2 SOFTWARE MEASUREMENT ...ccccuvveeeeisrerersnrnnesessssessessnsssesssssssenessssssasssssnssssesonsmensnessns 14
2.2.1 Low Coupling and high cOhesion........ccccevuiiiiniiiiniiiiiniiiiniciin i 14

2.2.2 Coupling in OO PrOZIAM «e..vveerureerrureerouerrreresireresirresenresesmreesorenessineessnsessssseesne 15

2.2.3 Measuring OO program COUPHNEZ......ocveeeerrrereeerernrererrenrerersesseneressinessssssonssesssssns 19

2.2.4 MEASUIEINEIIE t001S..uuvveeeereeisreirrrrerereeererinserseesersserassssssnreessesssssaasonnsensnsaesssessssesanas 24

2.3 CONCEPT FRAMEWORKuvvvreeeiureeesenseesessnsessssssseessssseeesessosssesssssosseresssssacesssssonsnens 29

3 SLICING BASED COUPLING MEASUREMENTcccvtveiieierieertniiiirereeerernsmneressesrenennsesaens 31
3.1 SLICING BASED MEASUREMENT LITERATUREcvuiuuiiniiniiniencinininrisresiuseasrenensriosernsresninnes 31
3.2 MOTIVATION FOR THE MEASUREMENT FRAMEWORK .tveueverecreorenreeracnsrnrecssssenseronssassrnssnsonen 32
3.2.1 IAEntify ANd fOCUS ..vvveereerrrreeerrirersivereeesierereresreeeeessereeessassreresesssnnesessoresenensensnnne 33

3.2.2 Direct versus indirect coupling measurementeeeuereeieriiiimrniniiesieniemrieieneeaeneees 33

3.2.3 Measuring eXport COUPIINEeouvrrererreeererrererersrreessainreresesssmereessonsesessosssanesssssses 35

3.3 GENERIC SLICING BASED COUPLING MEASUREMENT ...cuutiuiiiiiiieiiieiiiriiiiiineiiiiiciaesienaeenaes 36
3.3.1 Slicing based coupling MEASUTEMETIT . vuevuiurenreerrertrrnrenrenerreeeeenerneensenetnseresaeeensenees 37

3.3.2 Views on the slice based Measurement. vvereurrerreeirrenrenereneressrsressrassnsressnorssennse 40

3.3.3 Measure eXport COUPLNGccvvrirrrerreeierrurnrreesessesissrmrrrereeeesseessnssnnsnreeeeessasessessenns 42

3.4 VALIDATION OF THE MEASUREMENTS ...veeuureeesrecossreeessnerssnseeroreeesnsesesssesssnseseesnessnseseses 44

4 ABSTRACTION DRIVEN SLICING BASED MEASUREMENTS.......ccoiiiiiiiiiiiinerinineereeeennn, 46
4.1 SLICING HIERARCHY «..vetttteeseeseauuureeetesaeasaamuesantesssesasasseetmeseesssesesannsmseseneareesssessnssassanns 46

4.2 ABSTRACTION ORIENTED SLICING BASE COUPLING MEASUREMENT ... cvtuvtrenrrerararantonaiosenssenns 48

5 SLICING BASED COUPLING MEASUREMENT FOR CHANGE IMPACT ANALYSIS 50
6 IMPLEMENTATION ..ottt iesierussteenstissatsissssisssranssnssssanensssassssassns 52
6.1 GOAL t.uvvreureeererreeueennseenseeassassessseeaseessbeesaeesanesbs e basesbsesrs s s sbassabee st s eetbesbesoran e sanaens 52
6.2 BASIC WORKFLOW ..c.uveeuteenreenreetienssenaresstassstassssssssssasssntsssassssesessnsinssessssnssassssssnssas 53
0.2.1 PATSINE +vvvvvererreerernrurerrerersaenusaeeeesssesesanraeseeeeessonansienmenererssssnsiosinmssasssesssssssssrores 54

6.2.2 POStGIESQL Database ...ccoevuvrrrreeereriesrnrrreresesiesosssrsrenesessaseserssssssanneesesssessasnsnnnnne 54

6.2.3 Coupling analysis and measurement derivationcveveerriiirerniiieerininerereiinseenninenenens 56

6.3 DESIGN DETAILS..c.e0eutereierrereisiesrersessesenestnestoesssssesuessssssssssssssssssssnsessessassssssnesssansnses 57
6.3.1 Reference identificationveeerureesiuererreeniureresineesinessorenesorueesssresssssesesassesossnesssonees 57

6.3.2 Cl1ass DIAZTAM c.vveevveeeeriiereriierereesrersressaeasasessaesssessssesssaasssnsssnssssnsssrassnaesarnesssesas 64

6.3.3 Deriving traditional CBO, RFC and MPCccocivieiireiereeeennirireessiseeeessesseneessennane 64

6.3.4 Deriving slicing based SCBO, SRFC, and SMPCccccoviiiiiiiiiiiiiiniiiiicvinciennniaaees 74

6.3.5 Comparison and analysSiS.......c.eieuuireruiieiiiiieinitiiciinrieireie et erae et e senesenesenaes 76

6.3.6 FULITE WOTK.1eeereurreeeeenerreerensieeeninresssoinrneeeasssureeesssssssessenossseesessssesssssrsssnensaesnnns 79

7 CONCLUSION ...ttt ettt st s eb st et rabestaabbssbesabeaissaresanssnosssorasonses 81
BIBLIOGRAPHY ..cciiiiiiiiiiiiiiiiiii ittt ittt et st st e as s et st san s aut s s s tbesbt s snesanesaanensse 82
APPENDIX A ELEVATOR PROGRAM ...ccuuiiiiiiiiiiiiiiicc ettt et sencsi s s enanae 86
APPENDIX B MEASUREMENT RESULT .. ocuiriiiiiiiiiriiiiiennreiseennennrennrencsenserssensssnssnnsssssannes 94

vi

List of Figures

Figure 1 Theoretical basis for the development of Object-Oriented

measurements| Emad9].........oooveviiiiiniienicceerteeit i 14
Figure 2 Method overloading in ClassDef............cccocoviviiiiniininiiini 18
Figure 3 CONCEPT framewWorkcccceevvivieioierierinienieienre ittt esiesneseessesnesenseans 30
Figure 4 Direct and indirect coupling in a message chain..........cccceccevvivicivvvinicninnieiinenns 34
Figure 5 Example for indirect COUPING......c.cocverernieiiiinieiiiiniicicciniciccrce e 35
Figure 6 Impact analysis through program slicingcecceceeveviniinicnniinnenineneenes 50
Figure 7 Workflow for measurement derivationcccceevercienieceenveneeenienneenennieennnns 53
Figure 8 Static source code analysis [Zha03]cceoveerverriiricnriinieeiienineceeneereeseesneenrenes 54
Figure 9 An AST example [Zha03]cccoceeiiririiiniiiiererinencceeeeenteee e sreenene 55
Figure 10 Class Diagram for measurement derivationc.coeevveeeecreneneeneerieseneeneennens 65

vii

List of Tables

Table 1 OO program Hierarchyccocecvieiiiieniivenienieieneniceecse e 16
Table 2 Properties of the proposed measurementseeveeeererreerieneesicrsresieeneenevennees 39
Table 3 SIHCING MIETarChYcoeiviviirieiieieeiieeetccte ettt s e 46
Table 4 Declaration reference..........ooivvirernienierenieneeeeeee ettt 58
Table 5 Creation reference.coovvvivieiireeientecert sttt sttt en e eas 60
Table 6 Method invocation TEfErenCecevvvieriiriinieriiieiieiereee et eve et 61
Table 7 Field accessing referencCe........oooieiiieeiieeiieiieiicieee ettt re e e 62
Table 8 Other referenCes........cccceviiriiieiecee ettt ene 63
Table 9 CBO from elevator Programcccevcueeciererreisiieeieceesee e eeee e eere v ereeene e 66
Table 10 MPC from elevator program...........c.cceecveeeeriieveeeieeireenreereeeeereeseeseseesesseesseeenns 69
Table 11 RFC from €levator Program...........cccceeveuierieriesresesreeeeiesiesse e ereeeessreeneereeesenns 72
Table 12 SCBO for S<current_floor, Elevator L59>ccccocevivevieineiiieeeeceiee e 75
Table 13 SRFC for S<current floor, Elevator L59>cccccovveeieieciiiceeiceeecreeee e, 75
Table 14 SMPC for S<current_floor, Elevator L59>ccccocooieiiievviiiiceerecee 76
Table 15 CBO, RFC and MPC in OUI SYStEIM......cc.coveeirieerieeeiecieecieceeceieesee e eeeeee e 77
Table 16 CBO, RFC and MPC in Sun ONE Measurement Toolcoceeevveevvvreeennenne. 78
Table 17 SCBO, SRFC and SMPC for S<current_floor, Elevator L59>............c.c......... 78

viil

1 INTRODUCTION

Any useful computer program is likely to require changes during its life in order to
correct errors, to support new peripherals, and to adapt to changes in the domain served
by the program [Bas95, Bas96, Bri93]. In fact, maintenance of existing source code is
responsible for a substantial portion of a computer program’s lifetime cost. Poor design,
unstructured programming methods, and crisis-driven maintenance may lead to the poor
code quality, which in turn affects program evolution costs. As software has become
more pervasive and its life expectancy has increased, it has been subject to greater
pressures to integrate and interact with other software and to evolve and adapt to uses in
all manner of new and unanticipated contexts, both technological and sociological.
Software systems have to be flexible in order to cope with evolving requirements [Bie95,
Bri93]. Although good software engineering practice encourages programmers to plan for
future modifications, not every future design change can be predicted. User requests for
changes are often a consequence of using the system after delivery. With respect to
quality control, well-designed modules should exhibit a high degree of cohesion and a
low degree of coupling, such that each module addresses a specific, well-defined sub-
function from a system structure view [Abr95, Bri93, Ede94], which might be one of the
important ways to ensure the quality of the software during its evolution. Nowadays, the
market forces affecting today’s software development have placed a larger emphasis on
software quality, which in turn has lead to an increasingly large body of work being
performed in the area of software measurements, particularly for understanding and

evaluating the quality of the existing software.

1.1 Software measurement

From the earliest days of the software engineering discipline there has been wide
agreement on the need to measure software processes and products as a pre-condition for
establishing control of the software quality during software evolution activities [Lit99].
Software measurement is “a quantitative measure of the degree to which a system,
component, or process possesses a given attribute” [IEE93]. One informal definition is
that software measurement is a process of quantifying the attributes of software in order
to characterize it according to clearly defined rules [Fen97, Orm03]. Some attributes such
as size of the program, coupling of the program can be directly quantified, while the
attributes such as maintainability, testability and fault-proneness cannot be directly
accessed. To date, no measurement suite has claimed that it is complete for software
quality assessment. Therefore, the emphasis of this thesis is to derive traditional CBO
(coupling between object classes), RFC (response for a class) and MPC (message passing
coupling) in our CONCEPT reverse engineering environment, and to further combine
them with slicing techniques to create slicing based measurements to see how these
measurements could benefit the software design and quality assessment as well as guide
programmers’ activities during software evolution. To our knowledge, little research
work has been done so far in this field, combining good traditional measurements and

various slicing techniques. Our current research is at an early stage especially with

respect to the validation of usability and applicability of these measurements.

1.2 Program slicing

One of the key challenges in the process of understanding software is to have some aid
for rapidly building a conceptual model of the system. It often suffices to obtain only a
partial understanding that is sufficient to build a conceptual model one can trust when
performing a particular assessment/change, or to develop a model for locating places
where such an assessment/change should be applied. It is generally accepted that some
effective automatic tools could speed up the creation of conceptual models and that these
tools could help improve the quality of the programs being maintained {Mul00]. Slicing
is one proposed automated technique for that purpose [Wei81, Wei82], which reduces the
size of programs or decomposes a larger program into smaller components so that the
total cognitive loads can be reduced. Program slicing isolates the other large code
components that are not related to the particular computation. Variant slicing techniques
such as forward and backward slicing, static and dynamic slicing, etc are proposed for

different application purposes.

1.3 Goals

Since program slicing reduce the cognitive burden during software maintenance by
identifying a particular computation associated part of the original source code and
coupling measurements provide an aid in analyzing the inherent couplings in the source
code, a natural combination of program slicing and measurement comes out to identify
the interested part of the original program and further quantify the coupling complexity

of the part from the original program. In this thesis, we combine useful measurements

[Li93, Chi94] with different slicing techniques to focus these measurements on particular
program aspects rather than the whole system. This focused context is created through
program slicing [Wei81], a program reduction technique that guarantees the same
behavior with respect to the slicing criterion as the original program. Additionally, we
propose a slicing hierarchy to further refine these measurements. These new slicing based
coupling measures are implemented in our CONCEPT (Comprehension Of Net-CEntered
Programs and Techniques) prototype [Ril01] that was developed as a light-weight
framework to guide programmers during the task of understanding large Object-Oriented
programs and their executions. Therefore, the “hotspots” within the current design and
the overall dependencies among the different program granularities will be automated to

guide programmers in selecting and prioritizing maintenance tasks.

1.4 Thesis outline

The remainder of this thesis is organized as follows: Chapter 2 discusses some
background concepts related to software measurement and program slicing. Chapter 3
introduces our program slicing based coupling measurements, their definitions and
justifications. Chapter 4 introduces a slicing hierarchy on which the measurements are
applied. Chapter 5 discusses one possible application of the slicing based coupling
measurements: change impact analysis. Chapter 6 discusses the implementation issues
and experimental results. Finally, Chapter 7 presents the conclusion and outlines future

work.

2 BACKGROUND

Software maintenance may degrade the structure of software, ultimately making
maintenance more costly. The longer software systems are in use, the more likely it is
that these systems have to be maintained. They have to be changed to reflect new features
(perfective maintenance), fix identified defects (corrective maintenance), and adjusted for
a changing environment (adaptive maintenance). Enhancing the maintainability requires
software developers and designers to enhance the quality, and therefore the design of
existing systems. The quality assessment of software systems can be conducted by
interviewing the architects and designers of a product and reviewing the analysis and
requirement documents. However, these approaches might only be feasible if the
software architects are still available and the existing documentation reflects the real
source code. The approach presented in this paper is to conduct a software design
assessment based on source code analysis [Har97, Ott89, and Ott93] and software
measurement computation. These design measurements can be applied to identify “hot
spots” which are locations in the design that represent good candidates for potential
redesign and enhancement, as well as to help to prioritize comprehension and

maintenance activities.

In what follows, the background knowledge about program slicing and software

measurement associated to this research is discussed.

2.1 Program slicing

Basically, a program slice is those parts of a program that directly or indirectly affect the
values of the variable computed at some point of interest, referred to as a slicing criterion.
Program slicing is a low level source code based program transformation. Essentially, the
automation of program slicing is based on some particular slicing criterion and program
dependence analysis. A slicing criterion typically has two important parts<i, v>, where i
is some interest point as a statement number in the source code and v is the variable of
interest. Mark Weiser[Wei81] first proposed program slicing based on the observation
that program slicing relates closely to the mental process used by humans during
debugging software systems. Program slicing removes those parts of the program that
are not relevant to a certain computation in the form of slicing criterion, which speed up
the process of identifying relevant source and of building mental models of the program.
According to the Mark Weiser’s slicing definition, two key properties of a slice are
intuitively desirable. First, the slice must be derived from the original program by
deleting statements. Second, the behavior of the slice must correspond to the behavior of
the original program as observed through the window of the slicing criterion. However,
many extensions of the original program slicing notion are not strictly abiding by these

two constraints due to the requests from different application domains.

Program slicing have many applications in debugging [Wei82, Tip95], software
comprehension [Har01], testing [Hart95, Gup92, Gop91], and reuse etc. Various notions
of program slices and slicing algorithms have been proposed for different application

purposes. The diversity of slicing techniques results from the understanding of the

concept of “slicing”, or the transformation rules of the program slicing. For example,
amorphous program slicing of Harman and Danicic[Har95] is computed based on any
program transformation which simplifies the program and which preserves the effect of
the program with respect to the slicing criterion. Thus, the obtained slice might not be a
subset of the original source code since the transformation is only consistent to the

semantics of the original source code.

2.1.1 Static slicing and dynamic slicing

The notion of program slicing was originally proposed by Mark Weiser in 1981 [Wei81],
which is also referred to as “static backward” slicing. Based on the original definition of a
static program slice, a slice S consists of these parts of a program P that potentially could
affect the value of a variable v or a set of variables vs at a point of interest i. This slice is
obtained from P by deleting zero or more statements. Whenever P halts on an input /
with state trajectory 7, then slice S halts on input / with state trajectory 7, and
PROJ(T)=PROJ(T’), where PROJ is the projection function associated with criterion
C[Wei82]. Weiser’s static slicing is derived by computing consecutive sets of relevant
statements according to the data flow and control flow dependence within the source

code P.

Korel and Laski [Kor88] first introduced the notion of dynamic slicing that can be seen as
a refinement of the static approach by utilizing additional information derived from
program executions on some specific program input. A dynamic slicing criterion of

program P executed on input x is a tuple C=<x, y?> where)? is a variable y at execution

position g. An executable dynamic slice of program P on slicing criterion C is any
syntactically correct and executable program P’ that is obtained from P by deleting zero
or more statements, and when executed on program input x produces an execution trace

T’x for which there exists the corresponding execution position ¢’ such that the value of
! in T, equals the value of y¥’in T’,. A dynamic slice P’ preserves the value of y for a
given program input x. In dynamic program slicing, only the dependences that occur in a
specific execution of the program are taken into account. Ideally, a dynamic slice is an
executable part of a program P whose behavior is identical, for the same program input
with fixed values, to that of the original program with respect to a variable v at some
execution position. Only the subsets of the source codes that occur in a specific execution

of the program are taken into account.

Mark Weiser’s original “static backward” slicing is based on the assumption that any
statement, which is deleted can have no effect upon the slicing criterion when the
program is executed in any initial state, without considering the execution related input
details. That is, one major difference between dynamic slicing and static slicing.
Dynamic slicing relies on a particular program execution, which considers only a certain
set of inputs whereas a static slice preserves the program behavior for all set of inputs.
Hence, static slices will be relatively larger and more conservative than dynamic slices.
However, the computation of dynamic slices is in general more expensive and precise
since it monitors the execution trace of a particular input. Dynamic slicing is good for
testing and debugging, while static slicing is good for identifying the part of the source

code for reuse.

Some existing coupling measurements can be applied on dynamic slice or static slice. In
order to study the program behavior, dynamic slicing based coupling measurements are
provided to quantify the some behavioral aspects of the program; for a more generally
analysis of the program structure or other static aspects, static slicing-based coupling
measurements can be used. The details of slicing based coupling measurements will be

discussed in Chapter 3.

2.1.2 Forward and backward slicing

The sense of “backward” and “forward” is due to the process of constructing the slice.
“Backward” or “forward” slice relies on whether the dependence flow of the program is
in reverse or forward way to ascertain the statements and predicates which can affect the
slicing criterion. Mark Weiser’s original slicing falls as mentioned earlier into the

category of “static backward” slicing.

In general, a backward slice is a set that consists of all statements and control predicates,
which have some affect on the slicing criterion, whereas a forward slice [Hor90, Har01]
is a set that consists of all statements and control predicates, which are affected by the
slicing criterion. This definition of forward slice is widely used in slicing literature
[Hor90, Har01, and Wan96]. Backward slicing and forward slicing are first distinguished

in [Hor90] while the dependence graph of the program is analyzed.

In addition to the popular definition of forward slicing, there is yet another kind of
forward slicing [Kor88] proposed for performing dynamic slicing. In dynamic slicing,
two major algorithms have been identified such as backward algorithm and forward
algorithm. Backward algorithms trace backwards [Hit96] a recorded execution trace to
derive data and control dependencies that are then used for the computation of the
dynamic slice. In contrast, forward algorithms [Luc0l] aim to overcome a major
weakness of the backward approach - the necessity of recording the execution trace
during program execution. Forward slicing starts the computation at the beginning of the
program and it analyze all the related variables in the computation, so it keeps the state of
each variable in the program instead of preserving the execution trace. However, the
slices with a same criterion derived by the above two dynamic slicing algorithms

respectively should be same.

In this thesis, the popular forward slicing is taken into account since it produces a
different slice with respect to the backward slicing. However, the forward slicing might
not be executable so it is difficult to ensure the correctness of the slice. One conservative
way to make forward slice executable is to backward slice all associated variables of the
forward slice. Thus, the final slice is obtained by one forward slicing and several
backward slicing, which ensures the final slice can be executable, but the resulting slice
might be too conservative and too large. Therefore, the tradeoff to get executable or non-
executable program slicing is based on the application purpose. For example, for impact

analysis, it may be not necessary to derive executable forward slicing.

10

Traditional coupling measurements can be applied on the forward and backward slice.
Backward slicing based coupling measurements are applicable for understanding the slice
associated coupling during testing and debugging tasks. The goal is to completely
understand how the program reaches a particular point of interest. Forward slicing based
coupling measurements on the other hand have advantage of being able to measure issues
related to change impact analysis, indicating the change complexity and effort involved

to perform a modification.

2.1.3 Executable and non-executable slicing

Considering the notion of a slice in general, an important property of a slice is, whether
the slice is executable or non-executable. “Executable” means in this context that the
obtained slice itself is again an executable program. It preserves the syntactical property
of the original program, and produces same output with the same input as the original
program. There are many obvious benefits of the executable slices. Above all, an
executable slice is a precise miniature of the original executable program with respect to
the particular slicing criteria. It facilitates the understanding process of software
engineers. In addition, an executable slice provides an effective way to validate whether
the slicing algorithm is correct or not [Ril93]. No matter if the resulting executable slice
was computed statically or dynamically, the slice should reflect a behavior that is

identical to the original program execution.

However, many applications may not strictly require the slice to be executable. For

example, the forward slicing as we discussed previously, may not be executable since a

11

forward slice [Hor90] is a set that consists of all statements and control predicates which
are affected by the slicing criterion. For the forward slice to be executable, each statement
in the forward slice needs to be further backward sliced. Thus, the final slice might be
very large and less precise. A non-executable slice only retains the semantic feature of
the original software. Compared with executable slices, non-executable slices might be
significantly smaller and simpler and good for programmers to locate some faulty points
during debugging [Ril93], or for general program understanding. But, its side effects
[Ri193] may create some problems for software engineers to ensure and verify the

correctness of the computed slice.

2.1.4 Union and intersection of program slices

One informal way to look at a slice might be that a slice is a set of a particular
computation associated statement numbers. Thus, most set operations are still applicable
to slices. In order to derive different abstraction slicing-based coupling measurements,

union and intersection operations are used to identify some hot spots for analysis.

Definition 1: Union
C=AUB = {x|xisastatement in either A or B} [Wan96]

C denotes the union of the statement sets in slice A and slice B

The union of two slices is the set of the statements in either A or B. Lucia et al. [Luc03]
discussed that in static slicing, the union of two dependence-preserving slices constructed
for different criteria can only argment the slice of either. That is, the union of the two

slices is still a valid slice except that it might be an unnecessarily large slice of each of

12

the contributing slicing criteria. Horwitz et al. [Ede94] pointed out that unifying two non-
interfering versions of the program slices would safely result in another valid program
slice, where two non-interfering versions of the program refer to those slices achieved by
graph-based program dependence. Suppose A and B are two program slices of a program
P. The statement union C might not be a valid slice since the operations on slice A and
slice B might break up the slice properties such as “executable” and “behavior identical”.
However, in the case of the slicing hierarchy or slicing based coupling measurement
derivations(discuss in chapter 3), the union operation is meaningful since it reduces the
redundant slicing processes and conservatively gives all the possible statement sets for

further analysis.

Definition 2: Intersection
C = AN B = {x]| xisastatement in both A and B } [Wan96]

C denotes the intersection of the statement sets in slice A and slice B

The intersection of two slices is the set of the common statement in both two slices. The
statement set resulting from this intersection operation is not an executable slice in most
cases. However, it is useful for obtaining the “crude measure of cohesion’’ [Har95] by
identifying common statements in the two slices, which has originated from the data
token based cohesion measurements in [Ott93]. It also can be used to identify some hot

spots for further inspection regarding its potential for reuse.

13

2.2 Software Measurement

Fenton [Fen97] described software engineering as a “collection of techniques that apply
an engineering approach to the construction and support of software products.” Software
measurement is one of the engineering approaches introduced to support the most critical
issues in software development and provide support for planning, predicting, monitoring,
controlling, and evaluating the quality of software products [Fen97]. It has been shown
that software measurement can provide software engineers and maintainers with guidance
in analyzing the quality of their code/design such as maintainability [Bas96, Bri96,
Hen96, and Li93]. Software measurements ““are used to make numerical measurements of
particular aspects of a target software system. Measurements can be applied to support
the identification of complex parts of the software that need restructuring. They also
reveal tightly coupled parts of the software. Such parts are inflexible for modifications
and reuse. They also may represent potential subsystems. Identification of subsystems, in

turn, supports program comprehension” [Sys99] and evolution.

2.2.1 Low Coupling and high cohesion

affect
- External Atrributes

f (e.g.fault-proneness,
(e.g., coupling) Complexity indicate maintainability)

Structural Class Properties j Cognitive

Figure 1 Theoretical basis for the development of Object-Oriented measurements [Ema99]

It is in general accepted that low coupling and high cohesion in a software design lead to

better quality products, e.g., in terms of reliability and maintainability [Sys99].

14

Especially, coupling is recognized for its contribution to software design and its influence
on system integration and maintenance cost. Coupling, as defined by Stevens et al.
[Ste74], is “the measure of the strength of association established by a connection of one
module to another.” Constantine and Yourdon [You79] defined coupling based on the
relationship of subroutines as measurements for procedural systems. In the context of OO
program, minimizes connections between classes or methods also minimizes the paths
along which changes and errors can propagate into other parts of the system, thus
eliminating disastrous “ripple” effects, where changes in one part causes errors in
another, necessitating additional changes elsewhere, giving rise to new errors, etc
[Ste74]. Strong coupling complicates a system, since a module is harder to understand,
change, or correct by itself if it is highly interrelated to other modules. Hence, to reduce
the complexity of a system, it is necessary to keep the weakest possible coupling between
classes. Page-Jones [Pag80] gave three principle reasons why low coupling between
modules is desirable: (1) it reduces the chance that a fault in one module will cause a
failure in other modules, (2) it reduces the chance that changes in one module cause
problems in other modules, and (3) it reduces programmer time to understand the details
of other modules. Figure 1 summarizes the relation between coupling measurements and
software quality aspects. In this research, the start point is identifying and deriving

different types of coupling based on source code analysis in Java program.

2.2.2 Coupling in OO program

2.2.2.1 OO Hierarchy

15

In this section, the details of OO concept are not discussed since most software engineers
are familiar with the popular OO concept. However, coupling relations in the Java source
code are extensively studied in order to compute the coupling measurements based on
source code analysis. So some OO concepts, which are closely related to our slicing

based coupling measurements discussed later, are briefly presented.

Table 1 OO program Hierarchy

Abstraction Granularity \ - Coupling
Package Import
High sub-package
class related coupling
+ R Class/Interface Extends
Implements

Intra-coupling:
Inner class coupling
Method invoking coupling
Inter-coupling:
Attribute usage coupling
Method related coupling
Method/Constructor/Initializer | Method-invoking-coupling
Field-accessing-coupling
Argument-type-coupling
Return-type-coupling
Low -- Exception-throw-coupling
Local Variable/attribute Type-coupling
Creation-coupling
Usage-coupling

The hierarchy of the Java program and main coupling relations are summarized in the
Table 1. The key granularities in Java are: variable, attribute, method / constructor /

initialize, class / interface, and package. The major coupling for each granularity is given

in Table 1.

In the CONCEPT project, all these dependencies have been identified based on the

source code analysis for Java programs. The identified references are classified into three

16

major categories as declaration coupling, creation coupling, and usage coupling. The

details of these identified coupling/references will be discussed in section 6.3.1.
2.2.2.2 OO0 features affecting coupling

There are many factors in OO program which may complicate the coupling measures.
Abstraction, polymorphism, inheritance, and encapsulation are some of the most
importance features in OO design, which are advocated to support reuse, improve
maintainability, and reduce coupling, etc. However, they also introduce challenges to

quantifying the coupling of OO program.

Encapsulation is the inclusion within a program object of all the resources needed by the
object to function - basically, the methods and the data. Kung et al [Kun95] pinpointed
that “The understanding problem is introduced by the encapsulation and information-
hiding features. These feétures result in the delocalized plan, in which several member
functions from possibly several object classes are invoked to achieve an intended
functionality. Often, a member function of a class in turn invokes other member

functions, resulting in the so-called invocation chain of member functions.”

Polymorphism means “having multiple forms”, in other words, a variable, a function or
an object can have more than one form (implementation). For example, methods in Java
can easily be overloaded such that the same method name can be used for several
different implementations. The only requirement for method overloading is that each

version of the method takes a different set of parameters as arguments (or "different

17

signature") such as the example below in figure 2 (taken from our current project

CONCEPT).

S ——

public class Environment implements Constants

{

public ClassDef getClassDef l) throws Exception
{

Type type = Type.tType(name);

return getClassDef{(type);

}
public ClassDef getClassDef throws Exception
if(!t.isClass())
{
throw new Exception("Get ClassDef for a none class type!");
}

String className = t.getTypeString();
ClassDef clazz = (ClassDef)classhash.get(className);

Figure 2 Method overloading in ClassDef

Inheritance is the capability of a class to use the properties of classes above it (super
classes). A subclass Y inherits all of the attributes and operations associated with its
super class, x. This means that all data structures and algorithms originally designed and
implemented for x are immediately available for Y. New attributes and methods can be
added to the sub class. A sub class overrides the super class’ method only when the

derived class needs to be modified to support new features.

Abstraction is a mechanism of removing characteristics from something in order to
reduce it to a set of essential characteristics. Abstraction introduces different level of

granularities such as package level, class level, method level, etc.

18

2.2.3 Measuring OO program coupling

A large number of coupling measurements for OO program have been introduced and
discussed. The most widely used and criticized measurement suite is from Chidamber
and Kemerer [Chi91, Chi94], where they identified 6 Object-Oriented measurements:
Weight Methods Per Class (WMC), Depth of Inheritance Tree (DIT), Number of children
(NOC), Coupling Between Objects (CBO), Response For a Class (RFC), Lack of
Cohesion in Methods (LCOM), which are proposed with the intention to be independent
of OO language implementation details. Li and Henry[Li93] assessed Chidamber and
Kemerer[Chi91] measurement suite, and introduced message passing coupling(MPC),
data abstraction coupling(DAC), and the number of local methods(NOM). Briand et al.
describe coupling as the degree of interdependence among the components of a software
system and they presented a unified framework for coupling measurement in OO system
[Bri97, Bri98]. In our research, coupling between objects (CBO), response for a class
(RFC) and message passing coupling (MPC) are.: selected as the candidate measurements

since they are the most widely examined measurements both in theory and in experiment.

» Coupling between object classes (CBO)[Chi94]

Coupling between object classes (CBO) is first proposed in [Chi91], where Coupling
between objects for a class is a count of the number of non-inheritance related couples
with other classes. CBO relates to the notion that an object is coupled to another object if
two objects act upon each other, i.e., methods of one use methods or instance variables of
another. In order to improve modularity and promote encapsulation, inter-object couples

should be kept to a minimum. However, in 1994, Chidamber and Kemerer refined the

19

definition of CBO by including the coupling associated to inheritance. The following

quotation discussing CBO in details is from [Chi94].

Definition

CBO for a class is a count of the number of other classes to which it is coupled.

Theoretical basis

CBO relates to the notion that an object is coupled to another object if one of them acts

on the other, i.e., methods of one use methods or instance variables of another. Since

objects of the same class have the same properties, two classes are coupled when
methods declared in one class use methods or instance variables defined by the other
class.

Viewpoints

» Excessive coupling between object classes is detrimental to modular design and
prevents reuse. The more independent a class is, the easier it is to reuse it in another
application.

* In order to improve modularity and promote encapsulation, inter-object class couples
should be kept to a minimum. The larger the number of couples, the higher the
sensitivity to changes in other parts of the design, and therefore maintenance is more
difficult.

* A measure of coupling is useful to determine how complex the testing of various parts
of a design is likely to be. The higher the inter-object class coupling, the more

rigorous the testing needs to be. [Chi94]

20

Discussion

Hitz and Montazeri [Hit 95] studied the Chidamber and Kemerer measurements [Chi91]
and presented three critics. The first critic is that it does not differentiate between the
strength of couples, assuming that all couples are of equal strength. They differentiated
and made a hierarchy of coupling strength. The worst coupling that has been identified is
the direct access of foreign instance variables. Also the coupling realized by sending
messages to a component of one of the object’s components was considered stronger
(worse) than sending messages to the object itself. Access to instance variables of foreign
classes constitutes stronger coupling than access to instance variables of super-classes. In
addition, passing a message with a wide parameter interface yields a stronger coupling
compared with a message with a slim interface. The second critic found in [Hit 96]
concerns the fact that it is not clear whether messages sent to a part of self - i.e. to an
instance variable of class type - contribute to CBO or not. The third deficiency of the
CBO metric is that it neglects inheritance related connections which excluded the couples
realized by immediate access to instance variables inherited from super classes, a kind of

coupling considered to be among the worst types of coupling. [Bar99]

*= Response For a Class (RFC)

Response for a class (RFC) measure captures the size of the response set of a class
[Fen97]. The response set of a class consists of the set M of methods of the class, and the
set of methods invoked by methods in M. In other words, the response set is the set of
methods that can potentially be executed in response to a message received by an object

of that class [Chi91, Bri00]. RFC measures the communication object among classes

21

through message passing. A message can cause an object to “behave” in a particular
manner by invoking a particular method or set of methods. Methods can be viewed as
definitions of responses to possible messages. It is reasonable, therefore, to define a
response set for an object in the following manner: Response set of an object = {methods
that can be invoked in response to a message to the object}. Note that this set will include
methods outside the object as well, since methods within the object may call methods
from other objects.

The following quotation is from the original paper of Chidamber and Kemerer[Chi94].

Definition
RFC =| RS | where RS is the response set for the class.
Theoretical basis:
The response set for the class can be expressed as:

RS ={M} Ualli {Ri}

where { Ri } = set of methods called by method i

and { M } = set of all methods in the class
The response set of a class is a set of methods that can potentially be executed in
response to a message received by an object of that class. The cardinality of this set is a
measure of the attributes of objects in the class. Since it specifically includes methods
called from outside the class, it is also a measure of the potential communication between
the class and the use of other classes.
Viewpoints
» If a large number of methods can be invoked in response to a message, the testing and
debugging of the class becomes more complicated since it requires a greater level of

understanding required on the part of the tester.

22

* The larger the number of methods that can be invoked from a class, the greater the
complexity of the class.

* A worst case value for possible responses will assist in appropriate allocation of testing
time. [Chi94]

Discussion

By measuring the total communication potential, this measure is not only a measure of
the complexity of the class but also related to coupling which looks not independent of
the CBO metric [Bar99]. According to the definition of RFC, all coupling with external
methods are of equal strength. However, calling a method of a super class cannot be seen
as harmful as calling methods of other classes. For example, the default constructor of the
super class is called automatically form the constructor of subclasses in Java.
Furthermore, overloading a method in a subclass typically contains a call to the

overloaded method of the super class. [Sys99]

» MPC

Li and Henry [Li93, Li95] examined the original measurement suite of Chidamber and
Kemerer and proposed a new measurement Message Passing Coupling (MPC), which is
used to measure the complexity of message passing among classes. Message passing is
one of the typical types of communication between the objects in the Object-Oriented
paradigm. When an object needs some service that another object provides, messages are
sent from one object to the other object. A message is usually composed of the object-ID,
the service (method) requested, and the parameter list for that method. MPC is the

number of send statements defined in a class, where a send statement is a message sent

23

out from a method of class A to class B. Although messages are passed among objects,
the types of messages passed are defined in classes. Therefore message passing is

calculated at the class level instead of the object level [Li93].

Definition

Message Passing Coupling (MPC) is the number of method invocations in a class. [Li93]
MPC = number of send-statements defined in a class

Viewpoints

The number of messages sent out from a class may indicate how dependent the
implementation of the local methods is upon the methods in other classes [Bar99].
Discussion

This may not be indicative of the number of messages received by the class. That means
that in defining this metric as a coupling measure the authors did not take into account the

dependencies of other classes on the class being analyzed. [Bar99]

2.2.4 Measurement tools

Coupling measurements are computed based on source code analysis of software
systems. Many enhanced reverse engineering tools have automated the derivation of
design measurements to exhibit the inherent design issues and related quality aspects of
software systems. In our CONCEPT environment, CBO, RFC, and MPC are automated
for quantifying the original source code and the subset of the source in the form of a slice.

In what follows, some tools are reviewed to see how these measurements are computed.

24

* Rigi

Rigi [Won98] is a framework under development at the University of Victoria for
program understanding, software analysis, reverse engineering, and programming-in-the-
large. One major goal is to extract abstractions from software representations and transfer
this information into the minds of software engineers for software evolution purposes.
The focus is on summarizing, querying, representing, visualizing, and evaluating the
structure of large, evolving software systems. In Rigi, seven measurements are
categorized into inheritance measurements, complexity measurements and
communication measurements [Sys99]. CBO and RFC are selected as coupling

measurements, while MPC is not in the consideration.

In Rigi, CBO measures coupling between classes that are not related through inheritance.
For calculating CBO, both constructors and methods are taken into account. The
following relationships between two classes that are not in a super class-subclass relation
are considered to cause coupling: method calls, constructor calls, instance variable
assignments, or other kind of instance variable access (usage). Static blocks are not

examined.

In Rigi, RFC looks at the combination of the complexity of a class through the number of
the methods and the amount of communication with other classes. When calculating
RFC, calls between methods, constructors, and static blocks are taken into account. For a

class C, let Mi be a set of all methods, constructors and static blocks in C. Let Mo be a set

25

of methods, constructors, and static blocks belonging to any other classes that are called

by the members of Mi. The RFC for class C is calculated as the size of a set Mi U Mo.

= FaMoos

FaMoos is a European project investigating the Object-Oriented Reengineering
techniques for dealing with Object-Oriented legacy systems [Bar99]. The key techniques
evolved in FaMoos project are software measurement, program visualization, source code
abstracting and refactoring. In FaMoos, CBO, RFC, MPC and some other that have

proven to be particularly useful measurements have been intensively discussed.

However, in FaMoos, only RFC was implemented as part of their system, and CBO and
MPC are only theoretically discussed. RFC here measures complexity and coupling
properties of a class by evaluating the size of the response set of the class, i.e. how many
methods (local to the class and methods from other classes) can be potentially invoked by
invoking methods from the class. RFC for a class C is defined as RFC = |RS|, where the
response set RS is given by

RS=M lU URm
meM

M is the set of methods defined in C and Rm is the set of methods called by method

meM

= From Briand et al.
Briand et al performed an empirical study of design measurement by using a

development project which was performed at the University of Maryland. In their study,

26

they tried to do a comprehensive empirical validation of all the Object-Oriented design

measures found in the literature.

They computed CBO, RFC and MPC as well as many other Object-Oriented
measurements. In their study, two kind of CBO are derived such as CBO and CBO’. A
class is coupled to another, if methods of one class use methods or attributes of the other,
or vice versa. CBO for a class is then defined as the number of other classes to which it is
coupled. This includes inheritance based coupling (coupling between classes related via
inheritance). CBO’ for a class is defined similar to CBO except that inheritance-based

coupling is not counted.

Similarly to CBO and CBO’, RFC and RFC; are also distinguished in their study. The
response set for a class consists of the set M of methods of the class, and the set of
methods directly or indirectly invoked by methods in M. In other words, the response set
is the set of methods that can potentially be executed in response to a message received
by an object or that class. RFCwis the number of methods in the response set of the class.
RFC, is same as RFC except that methods indirectly invoked by methods in M are not
included in the response set this time. For example, if a class C has one method c, ¢ calls
another class B’ method b, and b also calls other Class A’s method a. In this case, RFCx
according to the definition provided in [Chi91] is 3, whereas RFC, in this case is 2
because only direct method invocations are considered.

As to MPC, they compute the number of method invocations in a class.

27

= CONCEPT

Based on the above reviews of the computation of MPC, RFC and CBO, we derive MPC,
RFC and CBO according to the following definitions. MPC corresponds to all the direct
method invocations (including constructor invocations) to other classes with respect to a
particular class. RFC is the direct and indirect method invocation couplings to other
classes and the entirc member functions in a particular class: RFC = the number of
directly and indirectly invoked methods + number of the class methods (including
constructor). CBO provides the number of classes to which a given class is coupled by
method invocations and attribute usages. CBO = MPC + Attribute Usage Coupling. In
fact, inspecting the definition of CBO reveals that the CBO for a class is a count of the
number of other classes to which it is coupled. Therefore, CBO should include all types
of causes that lead to the interactions among classes. However, the further explanation is
limited to the causes in method invocations and attributes access. Seeing this contradict,
we inspect Rigi and FaMoos and other studies, and discovered all these experiments are
computing the CBO according to the later explanation. Therefore, we adopt in our
CONCEPT project the following CBO measure: CBO is computed based on method
invocations and attribute access, and take methods, constructors and initializers into

account.

Since our goal is to measure design and code qualities of the subject system, we do not
take Java System classes such as in java.lang.*, java.util.* libraries into account. If we

were to include these Java System classes, it would skew our results towards the quality

28

of the Java System classes rather than focusing on the classes of the project under

investigation.

2.3 CONCEPT framework

The CONCEPT (Comprehension Of Net-CEntered Programs and Techniques) is a
lightweight reverse engineering environment, which we utilize to investigate novel
program comprehension techniques and approaches to assist programmers during the
creation of mental models while comprehending software systems. Within our
CONCERPT project we are exploring new program slicing algorithms and investigate their
application in different software engineering sub-domain, e.g. software measurement,
design pattern recovery, software visualization, feature analysis and architectural

recovery, etc. Figure 3 shows an architectural overview of the CONCEPT project.

The CONCEPT framework is built as a layered architecture with our CONCEPT
repository meta-model being the integrating part of the framework. The meta-model
stores both static and dynamic source code information derived from the parsing and
monitoring layer. The database API layer decouples the analysis (slicing, measurement
and feature extraction) layer from the repository. The visualization and application layer

are created on top of the analysis layer.

The measurement framework introduced in this paper was designed as a separate plug-in

into the analysis layer, making these measurements easily accessible to be integrated in

29

other parts of the framework (e.g. clustering techniques for software visualization, testing

and design evaluation).

Extractor

?&\?’(=3

-

Repository

Figure 3 CONCEPT framework

30

3 SLICING BASED COUPLING MEASUREMENT

In this chapter, we introduce our slicing based measurement framework by combining
traditional slicing approaches with traditional coupling measurements to utilize the
strengths of both. The framework provides users with an “as needed” approach in
analyzing and evaluating Object-Oriented program design. The measurements can be
applied at different levels of abstraction, depending on the particular needs and the

context of a comprehension task.

3.1 Slicing based measurement literature

Most of the existing research in the area of slicing based measurement focuses on
identifying and analyzing class or functional cohesion. Weiser presented in [Wei81]
several slicing based measurements, such as coverage, clustering, parallelism, and
tightness. These slicing based measurements are mainly concerned with the cohesiveness
of the program with respect to the slice. Longworth [Lon85] hypothesized that a coverage
measurement could be used to differentiate between different types of cohesion. Thuss
[Ott93] introduced a metric slice that was further refined by Ott and Bieman, called the
metric data slice. Their study showed that there exists an association between cohesion
and the metric slice, and that measures the function cohesion. Harman et al. introduced in
[Har97] several new measurements for evaluating the complexity of an expression and
applied them on some standard measurements introduced earlier by Ott [Ott93]. Harman

et al. [Har97] also introduced an expression metric to calculate the significance of the

31

intersection of program slices. As a result of their study, they raised concerns about the
computability of a cohesion metric based on program slicing. Ott and Bieman extended
their work in [Ott98] to provide a more generic approach to their slicing based metric. So
far, most of the research in slicing based design measurement is limited to cohesion
measurement. To our knowledge, the only research conducted in the area of program
slicing based coupling measures is by Harman et al [Har97] and Li [Li01]. Harman and et
al., are applying static program slicing as code-level based measurements for assessing
coupling, and they outline the use of the measurements as components of predication
systems. Their slice-based information flow measurements use both static backward and
forward slicing techniques to measure function coupling. Binxin Li [Li01] introduced a
slice-based framework for OO coupling measurement. The measurements discussed are
based on both Harman and Ott’s earlier work by identifying many OO slicing based
coupling definitions at different abstraction level, and by extending the information-flow

coupling to OO program structures.

3.2 Motivation for the measurement framework

The motivation for our slicing based measurement framework is to take the strengths of
both existing slicing algorithms and promising coupling measurements. Program slicing
is a program reduction technique, which has been put in the applications of testing,
debugging, measurement, and maintenance and comprehension [HarO1l]. Moreover,
program measurement is used for quantifying some aspects of the source code with the
purpose to aid understanding, controlling and monitoring software products [Fen97].

Hence, slicing and coupling measurement can be combined to provide an aid in reducing

32

cognitive burdens, predicating maintenance efforts and prioritizing maintenance tasks to

ensure software evolution.

3.2.1 Identify and focus

Typically, a program performs a large set of functions/outputs. Program slicing allows a
programmer to decompose a program based on different slicing criteria. Rather than
trying to comprehend, measure and evaluate all of a system's functionalities,
programmers tend to focus on some selected function and those parts of a program that
are directly related to that function. The application of slicing based measurements at
different abstraction levels provides additional focus on the application context in which
these measurements are applied. This focused approach for applying software
measurement provides the ability to evaluate different slices with each other, based on the

applied software metric.

3.2.2 Direct versus indirect coupling measurement

The traditional CBO, MPC and RFC for a class are derived by only considering all direct
coupling interactions and neglecting other indirect coupled connections. The limitation of
these measurements is based on the fact that without further data and control dependency
analysis, the source code within a class can only provide the direct coupling information.
However, indirect coupling has to be carefully treated during maintenance because it is

responsible for ripple effects and change propagation to other parts of the program.

33

Figure 4 shows the direct and indirect coupling in the message chain that originated from

the method a.

Direct coupling+-- - - -»Indirect coupling

R

T
“M«?ﬂl"}\

—

Methoig)—-ﬁr* Me 2,

i e

Depthi=1 L Deptn=2 —

Solid line indicates the call relation
Figure 4 Direct and indirect coupling in a message chain
Indirect coupling can be described as all these relationships that are affected by an
existing direct coupling relationship. In order to identify indirect coupling, one has to

trace the “invoke” methods and/or classes in the “uses” chain.

As the example in Figure 5 illustrates, two message chains that can be identified are
Elevator prompt() — Panel pressButton() — Button press() and Elevator prompt() —
Panel howmany() — Button pressed(). Class Elevator and class Panel have two direct
coupling occurrences (indicated by the solid lines), and class Elevator and class Button
are coupled through two indirect coupling relationships (dashed lines). If the coupling

depth is large, e.g. method a—> method bl—> mc 3— ... (see Figure 4), the identification

34

of the involved methods in a complete message chain becomes more complex because
the involved methods are encapsulated in different classes and each involved method
might invoke a set of other methods. However, within the context of program slicing,
identifying the indirect coupling information is very straightforward by identifying the
relevant control flow in the slice. For the generic slicing based coupling measurements,

both direct and indirect coupling for the class/method are considered and measured.

Class Panel
Class Elevator f';\'xbl.ic void pressButtan(int num)
{
...... buttonfnum-1].press();
void Elevator: :prompt(void) / ? t Ir 0
{
ini num=0, .)
Int Panel: howmany(voi
while(l cin.eof() / FCvoidy
{ \ . int count=0,
coute< Entet floor: ; for(int i=0;i<=number_df buttons-1;
cin>>num; i+

if (num == current_floos) {

sendmessage(" We are al the current floor'n"), if (pir [i]->pressed())
zise count++;
if (utm == 13)//according the requirement that i floor available, g,i),m count,

sendmessage(" Sorry,this floor is not av:
Q1
@ /

before closing the door\n\n");
else if(num > 0 && num <= top_floot)

{

}) Clabs Buttor}
) @ Ll }
if (oum == . uw--u—"" public boolean pfessed({
L ., if(state.toString() == "1it")
{ . L% . retumn true;
if (panel.howmany() == 0) AT " else //if{state toString() =="hot_1it")
14.sendmessage("Please press a button before closing the door'n\n"); retum false,

public void Button::press(voi

State=lit;
}

Figure 5 Example for indirect coupling

3.2.3 Measuring export coupling

Import and export coupling are used to distinguish the direction of coupling by assigning
client and server roles to a coupling interaction. These coupling types capture the impact

of changes performed in external granularity on a given granularity, or the impact on

35

external granularity when changes are performed in a given granularity. At “locus of
impact”, a client granularity uses services (in other words, imports some codes or
changes from servers), whereas a server provides services (in other words, exports codes
or changes to clients) [Bri96]. For example, with respect to a class C, invoking other
class’s methods introduces import coupling whereas one method in class C invoked by

other classes corresponds to export coupling.

Import coupling to a class can easily be determined by analyzing the source code of a
class. However, for the identification of export coupling, some source code analysis has
to be applied to identify the different files or packages that might be involved. Similar to
the direct and indirect coupling, program slicing can aid in identifying the existing export
coupling within the slice. This property of program slices allows us to include import and

export coupling measurements within our measurement framework.

3.3 Generic slicing based coupling measurement

As part of our slicing-based measurement framework, we adopt traditional source code
measurements for program slices. We refer to these measurements as generic slicing
based coupling measurements, because it is based on traditional measurements that are
re-applied in the more focused context of program slicing. The presented measurements
are not limited to a specific slicing algorithm and can be combined with most traditional
slicing algorithms, such as dynamic slicing, conditional slicing [Luc01], and predicate
slicing [Ril02]. Each of these slicing algorithms has its own properties and application

domain, but they share the common goal of identifying all statements relevant to the

36

behavior of a particular slicing criterion. The already well accepted and validated
coupling measurements [Gla00, Ema01, Bri96] such as CBO, RFC and MPC are selected
as the start point for deriving generic slicing based coupling measurements. These
measurements emphasize measuring coupling characteristics of classes and their
interactions. The basic idea of these slicing based generic measurement is to consider
only the parts of the source code that are included in the slice, which can provide
programmers with the ability to rank, compare, and evaluate the design that implements a

particular slicing criterion.

In the following section, we use the notation “#” and

“I”

which is consistent with [Har97],
where “|” denotes a constraint condition and ‘“#” corresponds to a set cardinality. Set
cardinality “#” refers to the number of entities in a particular set. S is the entire set of
statements in the slice with respect to a given slicing criterion. C corresponds to a class
and M to a method scope, where C or M refers to the set of statements in the slice which

have direct or indirect control dependence on the particular C or M.

3.3.1 Slicing based coupling measurement

One of the commonalities of MPC, RFC and CBO is that they all measure the coupling at
the class level. Therefore, a natural extension to these traditional SMPC, SRFC and
SCBO measurement is to apply them on a class. The main difference between MPC, RFC
and CBO and their slice equivalents (denoted by the S preceding respectively) SMPC,

SRFC and SCBO are:

37

» The slicing based version of these coupling measures only consider those parts of
a class that are included in a computed slice rather than the entire class.

» The slicing based coupling measures capture both direct and indirect coupling
within' the system rather than only direct coupling of traditional coupling
measurements.

» The slicing based coupling can compute both import and export coupling within

the slice rather than only import coupling in a class

Based on these differences, we present the notion of slicing based SMPC, SRFC and

SCBO as follows:

Slicing based message passing coupling (SMPC) calculates the number of send statements that
are included in a class, where a send statement corresponds to a message send from one
method in a class to a method in another class in the slice. SMPC measures therefore the
complexity of message passing among classes and the import coupling. The larger the

SMPC for a particular class the more likely it will depend on other classes.

SMPC | C =# U (ST(M)eCAM¢C)
ST(M)e S

ST (M) is the send statement in class C and M is the invoked method of another class
Slicing based Response for a Class (SRFC) computes the number of methods in the slice that
potentially can be executed in response to a message received by an object of that class.
SRFC includes both member functions (included in the slice) within the class, as well as
member functions external to the class that can be invoked by the member functions of a

selected class. If a large number of methods can be invoked as a response to a message,

38

indicating a higher comprehension complexity and therefore complicating also the testing

and debugging of that class.

SRFC |C:#{ U M'eC]
M'eS

+#{ U (ST(M)eC/\MeC)]
ST M)eS

ST(M) is the sent statement in class C; M is the invoked method of another class, M’ is the member function in C
Slicing based Coupling between Objects (SCBO) computes the number of classes to which a
given class is coupled by using methods or instant variables of other classes in the slice.
Excessive coupling between classes is detrimental to modular design and prevents reuse.
The more independent a class is, the easier it is to reuse it in another application.
SCBO |C =SMPC | C+SIVC | C

= SMPC |C+ # U IV(V)eCaVegC
IV(V)es

IV(V) is the statement including instance variable in class C, where V is the instance variable of another class type

SMPC, SRFC, and SCBO characterize the coupling relations of the classes within the

slice. The following table 1 summarizes the properties of the above refined slicing based

coupling measurements.

Table 2 Properties of the proposed measurements

- Import \ . s
Type of SRR Rt Direct/indirect
Measure ypeC Strength - |.. . /export SR
coupling R Y coupling
- coupling -
SMPC Method invocation . #meth_o d Tmport Direct & indirect
mvocations
SRFC Method invocation #_methods Tmport Direct & indirect
invoked
-Method invocation #coupled . .
SCBO -Attribute reference classes Import Direct & indirect

39

3.3.2 Views on the slice based measurement

The slicing based coupling measurements introduced above provide a class level view of
the coupling within a given slice. In fact, a more fine level view of the slice coupling can
be obtained on the method level, and a more coarse view of the slice coupling can be
obtained by applying these measurements on the entire slice. Besides the previous class
level coupling measurements, programmers have the flexibility to look into the interior
coupling of the slice at three granularity levels: method, class and entire slice. Thus, they
can selectively choose a particular granularity coupling analysis as needed for future
maintenance. The following gives the refined definitions for measuring the fine method

level coupling and coarse slice level coupling.

SMPC | M (SMPC for a particular method) computes all send statements within a given
method, which invoke methods of other classes. SMPC | M provides a more fine level
view of the total number of method invocation statements of the given method in the
slice, allowing for a message passing ranking of the different methods with respect to the

slicing criterion.

SMPC |[M=# |J (ST(M)eMAM'eCAMgC
ST (M"eS

ST (M’) is the sent statement in method M, where M’ is the invoked method of another class
SMPC | S (SMPC for the complete slice) is the sum of all the SMPC | C. SMPC | S provides a
coarse view of the total number of method invocation statements in the slice. It can be

used to compute the overall coupling complexity of different slices.

SMPC | S= ¥ SMPC |C
CeS

40

SRFC | M (Slice based response set for a particular method) counts the number of methods that
can be potentially executed within the context of the given method in response to a
message received by an object of that class (containing the given method) in the slice.
SRFCM is the 1 plus sent statement to other classes (SMPC[M), where 1 is the method
itself. SMPCM are the number of the methods might be invoked to acknowledge an
incoming message.

SRFC |M = 1+SMPC |M

SRFC | S (SRFC for the complete slice) is the sum of all the SRFC|C in the given slice.
SRFC|S provides a coarse view of the total number of potential methods that can be
invoked in respond to some incoming message from other classes. This measurement
provides the option to compare different slices with each other or to generally evaluate

the slice with respect to its internal interaction.

SRFC |S= ¥ SRFC |C
CeS

SCBO | M (Slicing based coupling between objects for a given method) computes the number of
send statements to invoke the methods of other classes and the number of using instance
variables of other classes.

SCBO |M =SMPC | M +SIVC | M
= SMPC | M+ # U IV(V)eMAVeCaMeC
IV(V)eS$
SCBO | S (SCBO for the complete slice) corresponds to the sum of all the SCBOI|C in the
particular slice. SCBO|S provides a coarse view of the total number of message passing

coupling and instance variables usage coupling in the given slice. It allows for a direct

comparison of the different SCBO among program slices.

41

SCBO |S= > SMPC | C +SIVC | C
CeS

3.3.3 Measure export coupling

Another important factor that should be considered during the computation of coupling
measurement is their coupling direction. The previously presented slice based coupling
measurements are based only on import coupling, capturing how the client class uses
other parts of the system or import some codes or changes from server classes. Export
coupling, on the other hand, captures the impact on other parts. In other words, server
class export source codes or changes or provide service to client classes. Within this
given context a class might export the change to other classes by method invoked or
instance variables being accessed by exterior classes. The overall export coupling within
a slice is the sum of all instance variable type coupling and method invoked statements in
the slice. Based on these observations, we extend the previous definition of SMPC and
SCBO at the different view levels to include the export coupling. The SRFC measures
already regard the response set of potential methods that are invoked and consider the
calling message as an import coupling to the object and at the same time it is an export

coupling to the classes who receive the calling messages.

ESMPC | M (Slicing based message passing export coupling at the method level)
computes the number of send statements belonging to other classes who invoke the given

method in the slice.

ESMPC | M = # U STM)eCaMeCeS
ST(M)eS

42

ESMPC | C (Slicing based message passing coupling for export direction at class level)
corresponds to the number of send statements of other classes who invoke the methods of
a given class in the slice.

ESMPC | C= ¥ ESMPC|M

MeC

ESMPC | S (Slicing based message passing coupling for export direction at slice
level) is the sum of all the ESMPC|C in the slice, allowing for a ranking and comparison
of the total ESMPC among different slices.

ESMPC | S= ¥ ESMPC|C
CeS

ESCBO | M (Slicing based coupling between Objects for export direction at the
method level) counts the number of send statements of an exterior class that uses the
given method. This method level coupling is the same as ESMPC|M. Since methods are

not a data type, it is not necessary to consider the instance variables coupling.

ESCBO| M = ESMPC| M

ESCBO | C (Slicing based coupling between Objects for export direction at the
method level) counts the number of send statements of other classes who use the

methods of a given class and use the instance variables whose type is the given class

ESCBO |C=EMPC |C+EIVC |C
=EMPC [C+ |J ([IV(V)eCAVeCAVgC)
V(V)eS
C’ corresponds to an external class
ESCBO | S (Slicing based coupling between Objects for export direction at the
method level) is the sum of all ESCBO|C in the slice. It provides an overview of the slice

interior classes coupling and therefore allows for a comparison of slices based on their

overall export coupling

43

ESCBO |S = YESCBO |C
CeS

3.4 Validation of the measurements

Validating a software evaluation measure is a process of ensuring that it is a proper
numerical characterization of the claimed attribute [Fen97]. There are two types of
software measurement validation: theoretical and empirical. The theoretical validation is
a process of ensuring that the fundamental measure is satisfying the representation
condition of measurement theory [Org02]. The empirical validation is a process of
establishing the accuracy of the software measurement by empirical means [Org02]. In
the context of assessment and comparison, the empirical validation identifies the extent to

which a measure characterizes a stated attribute by some test cases against reality.

The presented CBO, MPC and RFC measurements are based on existing design
measurements introduced by Chidamber and Kemerer [Chi91, Chi94] and Li and Henry
[Li93]. These measurements have already been evaluated both in theory [Bri96, Chi94,
Hit96] and by experiment [Bas95, Bas96, Bri96], showing their usefulness during typical
testing and maintenance activities for Object-Oriented systems. In our approach, CBO,
RFC and MPC belong to ordinal scale, which preserve the ordering or ranking of the
classes. High number of CBO, RFC or MPC indicates the high coupling complexity of
the class, which in turn indicates the cognitive complexity and maintainability. The basis
for the empirical relation systems in CBO and RFC is the set of “ontological principles”

proposed by Bunge [Fen97], which was validated by Chidamber and Kemerer [Chi94]

44

and Hitz et al[Hit96]. The empirical study of Li and Henry{1i93] concluded that there “is
a strong relationship between measurements and maintenance effort in Object-Oriented
systems” and that “maintenance effort can be predicted from combinations of
measurements collected from source code”. The results from Victor R. Basili et al
[Bas96] and El-Eman [Ema99] also claimed that coupling measurements are associated

with fault-proneness.

In our research, we applied program slicing, a program reduction technique which has its
application roots in software maintenance and software design evaluation [Har97,
Wei81], to refine the original CBO, RFC, and MPC measurements. Program slicing, as
defined by Weiser [Wei81], is a source code to source code transformation that
guarantees the same behavior of the slice (with respect to a slicing criterion) as the
original program. We extended the CBO, RFC and MPC measurements to be applied on
a program slice, rather than the whole program. Therefore, our proposed coupling
measures can be seen as a refinement that contains a subset of the original program
design that reflects the same behavior as the original design. The basic advantages of the
traditional measurements and their application domains still hold for our measurements.
Currently, we are in short of real slicing information, so some interesting empirical study
can not be performed. However, the validation of how the slicing based coupling

measurements benefit our design elevation and maintenance will be the next focus of our

research.

45

4 ABSTRACTION DRIVEN SLICING BASED
MEASUREMENTS

Harman et al. proposed in [Har02] an algorithm that unifies concept assignment and

slicing for program comprehension. An executable concept slice is obtained by first

identifying a set of related statements by the plausible reasoning system and then slicing

all these statements to gain an executable slice for the concept of interest. Li [Li01]

computed statement-level slice, method-variable slice, class-level slice and module-level

slice to compose a slicing framework to represent the abstraction levels by both utilizing

forward and backward slicing.

4.1 Slicing hierarchy

Table 3 Slicing hierarchy

Granularit . . e .
.. v Slicing criterion| Definition
slicing ‘ \
Statement level <M, s, V> A Statement-level slice consists of all statements and

control predicates affecting (or affected by) the variable sets
V in statement s

Method level

<C,m, V>

A Method-level slice consists of all statements and
control predicates affecting (or affected by) the variable sets
V in method m

Class level

<P,fc,v>

Class-level slice consists of all statements and control
predicates affecting (or affected by) the variable sets V in
class ¢

Package level

<S,p,V>

Package-level slice consists of all statements and
control predicates affecting (or affected by) the variable sets
V in package p

Concept level

<8,concept,V>

A concept-level slice consists of all statements and
control predicates affecting (or affected by) the variable sets
V in the concept

46

Based on the above work, we propose a slicing hierarchy (see Table 3) that can extend
our previously defined slicing based measurements. In essence, the slicing hierarchy only
reapplies existing slicing algorithms to compute slices at different abstraction levels. A
stepwise approach is proposed for deriving the whole slice abstraction hierarchy. The
initial abstraction is at statement level slice that corresponds to a slice at a particular
statement. The method level slicing corresponds to a union of all statement level slices
within that method, and similarly, the same union principles apply for
class/package/concept level slicing. The resulting slices can then be used as the source for
our slicing based coupling measurements. The limitation of abstraction based slicing is
the cost associated with computing slices within the abstraction hierarchy. The number of
required slice computations grows rapidly with the abstraction level. However, these slice
computations can be performed as part of a batch processing, with the resulting slices
being stored in the repository. The goal of deriving these different abstraction levels is to
provide programmers with some additional insights during future comprehension and
maintenance tasks. The slice based measurements at the different level will provide users
with the ability to gain detailed insights of the structural relationships and existing

problems, by evaluating the system from specific view points (slicing criteria).

In chapter 3, we introduced the framework of generic SCBO, SMPC and SRFC
measurements and their refinement on different view levels as well as by including
export céupling. All these slicing based coupling measurements can be re-applied on our
slicing abstraction hierarchy. Programmers can selectively choose the metric abstraction

level that provides the required additional insights and guidance to complete the task.

47

4.2 Abstraction oriented slicing base coupling measurement

Hypothesis 1: Different levels of granularity and detail can be added to coupling
measurements to refine these measurements for specific maintenance tasks.

It is possible to derive coupling measures for different levels of granularity in OO
program. Coupling measures on the package or concept support a more general analysis
and restructuring of the system, compared to the more fine grained measures on the

method/statement/class level slice that focuses on more class specific design aspects.

Our generic slice based coupling measurements can be re-applied to measure the
coupling of the different granularity level within the slice abstraction hierarchy. This easy
extension provides the user with the ability to select not only the desired slice granularity,

but also the metric that might provide additional insights.

Application of the framework in theory

The ability to reverse engineer Object-Oriented legacy systems has become a vital matter
in today’s software industry. Hence, maintenance programmers need to comprehend the
inner workings of legacy systems and to identify potential design anomalies. Typical
application domains for the presented slicing based coupling measurements include re-
engineering which is the renovation of the source code as well as the business process. It
is performed via a reverse engineering step by first creating a higher level of abstraction,
and then a transformation on the design level is applied, followed by a forward
engineering step based on the improved design. For the re-engineering, it is essential to

identify places of low design quality. In this particular case, our proposed slicing

48

measurements can be applied at different abstraction levels, and also provide additional
insights into the relationship among the software artifacts at each specific level. Other
comprehension and maintenance applications for the abstraction hierarchy level based
slicing measurements can be found in software transformation or during software
renovation. The measurements can guide programmers during these proactive software
maintenance tasks by identifying problem areas and allowing for a zoom in/zoom out
capability on the measurement level. In the following chapter, we have a closer look at
the applicability of our slicing based coupling as part of predicting change efforts during

change impact analysis.

49

5 SLICING BASED COUPLING MEASUREMENT FOR
CHANGE IMPACT ANALYSIS

Impact analysis 1s a long established application domain in software maintenance which
attempts to identify the impacts or “ripple effects” of a change in one part of a program
on the remaining parts of the program. Change impact analysis is essential to ensure the
quality of the software during its evolution [Lee98].Program slicing provides a good
foundation for code level change impact analysis since both program slicing and impact
analysis are based on low level source code extractions and analysis. Within the context
of impact analysis, forward slicing can be used to identify those statements that might be
affected by the change in the statement; moreover, backward slicing is also applied to
check whether the introduced value of the change is valid in the new context [Wan96].
Forward slicing traces data and control paths originating at the locus of change, while

backward slicing traces the paths in the reverse direction.

Backward slicing: import change
impact from other statements to V

Statement i

Statement k

variabie setV
afinterest

Statement k

~Statement

(- vanables

I

Backward slicing

Statement j

Statement n"/
Forward slicing: export change
impact from V to other statements

R Backward slicing
Variables .

Figure 6 Impact analysis through program slicing

50

Figure 6 illustrates the combined approach of backward slicing and forward slicing to
perform impact analysis for a change at statement K. It has to be noted that a simple
unification of forward and backward slices will not result in an “executable” and
behavior preserving slice. In order to compute a behavior preserving and executable slice,
an additional step is required. A backward slice for every statement in the obtained
forward slice has to be computed. The resulting slice however, might be very large and

expensive to obtain.

Hypothesis 2: Different slicing algorithms can be added to the generic slice based
coupling measurements to refine these measurements for different application domains.

As we addressed earlier, the generic slicing based coupling measures are applicable to
different types of slicing algorithms. For the code level change impact analysis, both
forward and backward slicing are required to identify the source code impact cause by a
change request [Wan96]. All the generic slicing based coupling measures are applicable
for change impact associated slices. By applying the generic slicing based coupling
measurements on both the forward and backward slicing, the import changes and export
changes to that point of the code change can be clearly presented. Thus, the impact slice
(both forward and backward slices) based coupling measurements provide a good
potential for improving the predication of the change effort. Depending on the abstraction
level of change (variable, statement, method, etc.), the user can select the appropriate

coupling measurement level.

51

6 IMPLEMENTATION

6.1 Goal

The CONCEPT project is a reverse engineering environment having a number of
capabilities for analyzing source code, including different slicing algorithms, analysis of
static and dynamic dependencies, Object-Oriented measurement, design pattern recovery,
and software exploration and visualization. As section 2.3 introduced, our software
measurement is a separate plug-in into the analysis layer, making the measurements
easily accessible to be integrated in other parts of the framework, e.g. clustering

techniques for software visualization, testing and design evaluation.

The major goal of design measurement in CONCEPT is to analyze and extract
fundamental coupling information (discussed in section 6.3.1) from source code or
program slices and then to quantify this information with the goal to compute
CBO/SCBO, RFC/SRFC, MPC/SMPC to guide programmers during program
comprehending and design evaluation. Our design measurement implementation was
performed in two phases: The first phase is the basic data collection and transformation.
During this phase, the focus was on source code analysis and data collection. The whole
OO hierarchy is built at this phase, including the information of packages, classes,
methods (including constructor, initializer), attribute, local variables. Moreover, the basic
coupling information is collected based on the identified reference analysis. This

information includes client and server class information, coupling location, type etc.

52

During the second phase, measurements are computed based on the achieved coupling

information and OO hierarchy information from the first phase. Traditional CBO, RFC,

MPC and slicing based SCBO, SRFC and SMPC are derived and in turn are utilized for

program visualization. With the aid of the objective measurement data, some design

issues can also be comparatively or statistically derived.

6.2 Basic workflow

The following work flow illustrates the general steps to derive the design measurement

(see figure 7).

e
P PRSP s

PostGres SQL
Database

Parsing
Source Code

A

Slicing
l\su;‘

Slicing based Metrics
Computation

y

Slicing based coupling metrics
(SCBO,SRFC,SMPC)

Coupling
Analysis

CouplingInfo and OO
hierachy

Traditional Metrics
Computation

A 4

Traditional coupling metrics
(CBO, RFC, MPC)

IR HB DR BRI T HHH B BT U HHHIHHU B H D

Figure 7 Workflow for measurement derivation

53

6.2.1 Parsing

The start point of the CONCEPT project is to analyze the source code of the target
project. This project uses the JavaC compiler (see Figure 8) to extract the parsed
information and represents the information as an AST (Abstract Syntax Tree). An
example is given in figure 9 (this work was implemented by Yonggang Zhang [Zha03],
another member of the CONCEPT research group, as part of the design pattern recovery

implementation).

javac compiler |

e S A 06

Unchecked

PR S s

Checked

Tokens /£ .

: : mRO Is “\7| .class
Lexical }- | Syntactic [: Code |
Analyzer {7 | Analyzer 1 | Analyzer [~ Generator [~

AST ”" AS? ““ E‘“ﬁ | PostgreSQL °"
Generator [- Analyzer | Database |-

Figure 8 Static source code analysis [Zha03]

6.2.2 PostGreSQL Database

At the beginning of our design, we choose MySQL as the candidate database; however,
MySQL does not support multiple queries, which causes many inconvenience when we

need some complex queries. Thus, PostGreSQL as a more powerful database becomes

54

the current data base management system to construct the database of the CONCEPT
project. PostgreSQL is an open source data base management system which supports
multiple queries and views. Many DBI classes were created by Yonggang Zhang
[Zha03], so programmers do not need to know the database design details and can get the

interested information by accessing functions in different classes.

avacislovatoribansl. java [200] (1ine:
? 3 class [230] (line:11, offset151)
-] elevator.Panel [231] (line:11, offset:151)
© [modifier [180] (line:0, offset.0)
®-] type [160] (line:0, offset.0)
Lo class used [236] (line:0, offset:0)
© [extends [232] (line:0, offset.0)
@ (] java.util.Vector [233] (line:11, offset:165)
& (] implements [234] (line:0, offset:0)
@ [member [240] (line:0, offset.0)
@[] field [250] (line:0, offset0)
& [constructor {241] (line:0, offset0
@ (3 method [240] (line:0, offset.0)
@[int elevator.Panel.getGeter) [241] (line:48, offset:848)
® (] void elevator.Panel.setGeter(int) (241] (line:67, offset:1136)
@] modifier [180] {line:0, offset.0) -
© [type [160] line:0, offset0)
®- (] parameter [262] (line:0, offset.0)
[throws (263] (ine:0, offset.0)
@ body [270] (line:0, offset.0)
@ 1 [105] (line:67, offset.1156)
4 expression statement [106] (line:68, offset1161)
$ =[] (line:68, offset1167)
@ type [160] {line:0, offset.0)
-4 1 left [582] (line:0, offset.0)
®~ (=7 geter [60] (line:68, offset:1161)
[} right [560] (line:0, offset:0)
& aGeter [60] (line:68, offset1169)

RN T

ﬂ:ﬂ‘.?/ T T T BT

Figure 9 An AST example [Zha03]

In the AST tree, the information above method level are analyzed and stored into the
table, and the body of a method, the most complex parts of a java program, is stored into
the database as a complex AST node or a sub AST tree. In this way, the analysis result of
the method body after parsing will be preserved, which is more flexible for future use

since further analysis of the AST tree may lose some information without notice.

55

6.2.3 Coupling analysis and measurement derivation

Having stored the result of the static source code analysis in the PostGreSQL, it is much
straightforward to derive design measurements. The following illustrates the scenario of

measurement derivation:

Step 1:
Analyze and collect all references associated information from database
Since the reference information might occur both inside method and outside of
the method to a class, we not only need to analyze the information above method
level from the database table, we also need to read the AST node object from
database and further explore the method body AST to gather the associated
reference information.

Step 2:
Build complete coupling information based on the identified references
Coupling information between classes of Java System (such as java.lang.*,
java.util.*, etc.) are excluded in our analysis since we focus on the evaluation of
the user project. With respect to each identified reference, the source, destination
class/package information, and the reference location, reference type, etc. are
analyzed for measurement computation.

Step 3:
Compute traditional CBO, MPC and RFC

Step 4:

Compute slicing based SCBO, SMPC and SRFC

56

Step 5:

Compare and analyze the measurement

6.3 Design details

6.3.1 Reference identification

Identifying all reference information from the source code of the target project is
essential for design measurement computation. So far, three major reference types have
been identified such as declaration reference, creation reference and usage reference with
respect to the life of the object creation. Declaration references refer to the potential
references existing in class declaration, method declaration and variable or attribute
declaration statements, which include “declare extends”, “declare implements”, “declare
field”, “declare return type”, and “declare argument”, “declare throw”, “declare local
variable”. Creation references refer to the reference associated to some object creation,
which include “new object”, “new array” and “direct array create”. Usage references are
the key cause for coupling, which mainly includes method invocation references and field
access references. Method invocation references include “call own method”, “call super
method”, “call other method”, “call outer class method”, and field access references
include “read/write other field”, “read/write own field”, “read/write super field”,
“read/write interface field”, “read/write outer class field”, “read field array length”. In

addition to usage references, some other references such as “read/write local”, read “local

array length” are also identified for slicing application.

57

6.3.1.1Declaration reference

Table 4 Declaration reference

Reference The Corresponding Source entities Destination
Name Constant/Value entities
declare extends public static final int Class/ Class / interface
DECL_REF_EXTEND =0 Interface/
Inner class
declare public static final int Class/ Interface
implements DECL_REF IMPLEMENT =1 InnerClass
declare field public static final int Attribute Class
DECL _REF FIELD =2
declare return public static final int Method Class
type DECL_REF METHOD RETURN =
3
declare argument | public static final int Method / Constructor | Class
DECL_REF METHOD ARGUME
NT =4
declare throws public static final int Method/ Class
DECL_REF_METHOD THROW = | Constructor
5
declare local public static final int Local variable Class

variable

DECL_REF_LOCALVAR =6

Note: In later class model, Class ClassDef might be class, inner class and interface; Class MemberDef
might be method, constructor, initializer, attribute, local variable, and inner class

= declare extends

public class UsageReference Reference

{

SourceElement src;

MemberDef des;

= declare implements

import java.util. Hashtable;

import java.io.*;

58

public final class Type Constants

{
private static final Hashtable typeHash = new Hashtable(231);
protected int type_id; // this
declare field

public class UsageReference extends Reference

{

|SourceElement srcI;

[MemberDef des);

declare return type

public getClassDef(String name)
{

return(ClassDef)classhash.get(name);

declare argument

public ClassDef getClassDef(
{

return(ClassDef)classhash.get(name);

declare local variable

public static void main(String[] args) throws IOException {
= new Panel(3);

pp.AAF();//read local pp ref;call other mehtod elevator.Panel. AAF()

59

declare throws

protected synchronized void load() Exception
{

Connection con = null;

java.sql.Statement stmt = null;

try{

6.3.1.2 Creation reference

Table 5 Creation reference

Reference The Corresponding Constant/Value Source Destination
Name entities entities

New object public static final int Local variable/ Class
CREATE REF NEW_OBJECT =10 Attribute

New array public static final int Local array/ Class
CREATE REF NEW ARRAY =11 Attribute array

Direct array public static final int Local array/ Class

create CREATE REF ARRAY =12 Attribute array

new object //new Object();

public static void main(String[] args) throws IOException {

Panel pp = ;

pp.-AAF();//read local pp refcall other mehtod elevator.Panel. AAF()

new array //Object[] objs = new Object[2];

number of buttons = num;

private Button[] pbutt0n=|new Button[number of buttonsll ;

for (int i = 0; i < pbutton.length; i++) {
pbutton[i] = new Button(),

60

= direct array create

bject objs|] = {"abc", "def", "ghi"}];
)

6.3.1.3 Usage reference

» Method invocation

Table 6 Method invocation reference

Reference Name The Corresponding Source Destination
Constant/Value entities entities
call other method public static final int Method/ Method/
USE _REF CALL OTHER =20 Constructor/ Constructor
Initializer
call own method public static final int Method/ Method/
USE _REF CALL CURRENT =21 | Constructor/ Constructor
Initializer
call super method public static final int Method/ Method/
USE_REF CALIL SUPER =22 Constructor/ Constructor
Initializer
call outer class method public static final int Method/ Method/
USE_REF CALL OUTER =23 Constructor/ Constructor
Initializer

¢ call other method: invoked method defined outside the current class

% call own method: invoked class is defined inside the current class

+¢ call super method: invoked method is defined in the super class/interface

= TField accessing reference

61

< call outer class method: invoked method is defined in outer class

Table 7 Field accessing reference

Reference The Corresponding Source Destination

Name Constant/Value entities entities

read other field public static final int Local variable/ Attribute of
USE_REF_FIELD READ OTH | Attribute another class

ER =30

write other field

public static final int
USE_REF_FIELD WRITE_OTH
ER =31

Local variable/
Attribute

Attribute of
another class

read own field public static final int Local variable/ Attribute of
USE_REF_FIELD READ CUR | Attribute own class
RENT =32

write own field public static final int Local variable/ Attribute of
USE_REF_FIELD WRITE CUR | Attribute own class
RENT = 33

read super field public static final int Local variable/ Attribute of

USE_REF FIELD READ SUPE
R=34

Attribute

super class

write super field

public static final int
USE REF FIELD WRITE SUP
ER =35

Local variable/
Attribute

Attribute of
super class

read interface field public static final int Local variable/ Attribute of
USE_REF_FIELD READ SUPE | Attribute interface
R _INTERFACE = 36 Method

write interface public static final int Local variable/ Attribute of

field USE_REF_FIELD WRITE SUP | Attribute interface
ER_INTERFACE = 37

read outer class public static final int Local variable/ Attribute of

filed

USE_REF_FIELD READ OUT
ER =38

Attribute

outer class

write outer class
filed

public static final int
USE_REF FIELD WRITE OUT
ER =39

Local variable/
Attribute

Attribute of
outer class

field array length

public static final int
USE_REF FIELD ARRAY LE
NGTH =40

Local variable/
Attribute

Attribute
array

«» Read/write own field: read/write the own attribute

* Read/write other field: read/write the attribute of another class

% read super field: read/write the attribute of super class
* read interface field: read/write the attribute of interface
% read outer class filed: read/write the attribute of out class with respect to an

inner class

62

s field array length : read the attribute array’s length

= QOther references

Table 8 Other references

Reference The Corresponding Source Destination
Name Constant/Value entities entities
Read local public static final int Local variable/ Local
USE_REF LOCALVAR_ | Attribute variable
READ =42
Write local public static final int Local variable/ Local
USE_REF_LOCALVAR_ | Attribute variable
WRITE =43
Local array public static final int Local variable/ Local array
length USE_REF LOCALVAR | Attribute
ARRAY LENGTH =44

¢ read/write local: read/write the local variable such as the variable inside
constructor, initializer, and constructor of the class
% local array length: read local array length
This set usage references are mainly for slicing application. In measurement computation,
these are not in our consideration. However, the coupling information associated to this

reference is collected for future new measurement derivation.

6.3.1.4 Coupling information derivation

The coupling information for measurement computation is analyzed based on the
identified references. The following are the key points that should be considered for the
identification of coupling information.

* Identify the source entity and destination entity associated to a reference. Analyzing

the AST sub tree of a method body is essential to derive all the high level information

63

such as method level, class level or package level related to the source entity and
destination entity.

* Distinguish whether the client and server classes are part of the current project
implementation or belong to the Java System respectively

= Consider whether the server is a class or an array when deriving the coupled server
class. If the server is an array, the real coupling exists in the component type of the
array.

= Distinguish whether the client class or server class belong to a same class

¢ inter coupling: coupling occurs between two classes

% intro coupling: coupling occurs within one class

6.3.2 Class Diagram

The main classes used for deriving design measurements are illustrated in Figure 10. In
the class diagram, CouplingDef and MetricsCompute are two of the most important
classes for design measurement computation. All the coupling information is analyzed in
the CouplingDef class; traditional measurements and slicing based measurements are

computed in the MetricsCompute class.

6.3.3 Deriving traditional CBO, RFC and MPC

In what follows, we use a simple elevator program to illustrate implementation issues of
the design measurements. The elevator project includes 4 main classes and 4 inner classes

as well. Many other features of Java source code are added into the source code for

64

testing though it might not be relevant to the elevator simulator. The complete source

code of the sample program is available in appendix A.

Project "
drom [asp JavaFile FileClassLoader -
Tid - int rom [ach drom [Environment
3 ﬁid sint Package Def grom |2
Project N ghom |aEh FileClass Loaden() .
goaéo 0 @JavaFile() Ta m QgetClassLoaderO ﬁ;vg‘oqmemom
FHoadhemberBody() |project Peaddimport Def(pckagede? SaddLibrary() - vironmentQ
FaddJavaFile) PaddClassDefQ T -] $PackageDef) SgaCiassDerg || YoadPrlect)
Fprim() PprinmQ) Bgetld) %findClassDef0 glzcsioadet ¢ CAdFroject])
getld) Hgetid) SgetName() %indinJarFileQ WgetProject()
%getDBConnection) RgetName(et hvafile) %findinDirectory() :getCIassDefo
Yoreatenodel(SomemProject | gesContentd getSoopelumbert) | |WloadClassData)
Sgethame() Sgetl §¥indClass(®
Wget Dascription() $getFackage DefQ oadFrom.JarFile) ny
LW % PMoad FromDirectory(}
Wget Class Def() Fo——
Class Def Wget ClassType() oupiingUe
ctom [ae) sl fom metiosy
%d it =0 MemberDef
“Dymodifier :int = 0 oM [20E) ASTHode “CouplingDef()
ToouterClassid :int = 0 Didint=0 (rom |ah NgetPackages()
“ThendLocation : long = § JomemberType : int oy WgetFiles)
innerlflass odifier : int Rogwhere : long ’gelCIzssesO
P ClassDef() [~ | pinnerClassid : int = 0 Wgethiethods()
.. yvar_serial_no :int = 0 %4STNode() 4 Sgetttibutes()
il QgetHierarchyEnfo()
Wget ChidAD
! - [P¥emberDef() s WgerChildo SandyzeReference()
soutet fassp el StvemberDef() HAST WgetChildByType(%getDedCouplings ()
tvns) esethemberDeciareR...gence() Wget Child Count() WgetUs ageCou plingsQ
v$ ii::dmhrwsnefo QgetFarent) ::goFiIe()
UsageFet ype / ddThrows DetQ etindax etCreate CouplingsQ)
ona qom g Hyp %addAgument Def() Eamwsocm,d,mt WgetTradtionMetric 50
Retype_id : int. PaddArgument DefQ) ®isLeaf() Wmetric sTradition Compute()
%Usage Reference() Bgtype Code : int .. Whildren() #mainQ
%108tring0) Fedimension : int = 0 - ft ..
¥
$get Source) ng T
Sget Destination() ﬁ:;l’ypec Jes CreationReference -
TypeQ Couplingftem MetricsCompute
Yoo emis o e
L das *I::reafinn Reference() *Couplingtemo Wetrics Compute()
o String() 3 Ny diti .
+coffponeid... Byt Wget SreProject(omputeTraditionhetrics(
et SourceQ) Wget SroFackage) Wcompute Slicinghetrics()
Wyet Destination() Mget SroFile0) WoFile0)
T}fﬁ:: SgetByhember) . Wmaing

$DECL REF EXTEND :int=0

z——-———————-gEgt ::E :-‘hl‘:t g"‘ 'i:”; '2""' 1 DeclarationReference c:r:i?n::mg
GDECL REF METHOD RETURN :jnt = 3 qon 125 po It =0
SDECL REF METHOD ARGUMENT ; int =4 - o it =0
DECL REF METHOD THROW: i =5 |- VDeslz 0 bo : int = 0
SDECL REF_LOC AVAR irt = 8 $toString0

SCREATE REF NBIV OBJECT: it =10 SgetSource() *ClassCoupling)
@CREATE REF_NBW ARRAY int = 11 Sget Destination) WoFring)

HCREATE REF ARRAY : int = 12
[.

Figure 10 Class Diagram for measurement derivation

To facilitate the validation of the measurements, the coupling details associated to each
metric computation are kept. Therefore, the measurement result is identified by the
number of the measurements and the associated coupling information, especially the
location of the each contributed reference. In this way, the real meaning of measurements

are kept, which can help the programmer rapidly locate the interested locus.

65

» Coupling Between Object Classes(CBO)

CBO relates to the notion that an object is coupled with another object if two objects act
upon each other, i.e., methods of one use methods or instance variables of another
[Chi94]. Method invocation reference such as “call other/super/out class/ method” and
“new object” and “new array” reference are taken into account; moreover, instance
variables usage reference such as “read/write other/super/interface/out class field” are
taken into account. Table 9 is the result of our MetricsCompute program for CBO

computation.

Table 9 CBO from elevator program

Class Name CBO

elevator.Button 1
elevator.Panel

invoked functions:
int elevator.Panel.howmany(int)
at X:\Wenjun\ElevatorComplex\elevator\Button.java
L:53,0:1062

void elevator.Panel.<init>(int)
at X:\Wenjun\ElevatorComplex\elevator\Button.java
1:58,0:1122

elevator.Panel$alnner 1
elevator.Panel$bInner

new array at X:\Wenjun\ElevatorComplex\elevator\Panel.java
1:236,0:4932

elevator.Panel1Local 0

elevator.Panel$bInner 0

elevator.Panel 3
elevator.Panel1AnotherLocal

invoked functions:
void elevator.Panel$ 1$ AnotherLocal.<init>()
at X:\Wenjun\ElevatorComplex\elevator\Panel.java
1:167,0:3629

66

elevator.Panel$bInner

invoked functions:
void elevator.Panel$bInner.<init>(elevator.Panel)
at X:\Wenjun\ElevatorComplex\elevator\Panel java
1.:228,0:4798

elevator.Button

invoked functions:
void elevator.Button.press()
at X:\Wenjun\ElevatorComplex\elevator\Panel.java
L:121,0:2441

boolean elevator.Button.pressed()
at X:\Wenjun\ElevatorComplex\elevator\Panel.java
1:96,0:1983

boolean elevator.Button.pressed()
at X:\Wenjun\ElevatorComplex\elevator\Panel.java
L:114,0:2287

boolean elevator.Button.pressed()
at X:\Wenjun\ElevatorComplex\elevator\Panel.java
L:145,0:3158

void elevator.Button.turnoff()
at X:\Wenjun\ElevatorComplex\elevator\Panel.java
L:75,0:1405

boolean elevator.Button.pressed()
at X:\Wenjun\ElevatorComplex\elevator\Panel.java
L:129,0:2689

boolean elevator.Button.pressed()
at X:\Wenjun\ElevatorComplex\elevator\Panel.java
L:137,0:2914

void elevator.Button.<init>()
at X:\Wenjun\ElevatorComplex\elevator\Panel.java
L:70,0:1300

new array at X:\Wenjun\ElevatorComplex\elevator\Panel.java
L:68,0:1191

elevator.Panel$ 1$ AnotherLocal 0
elevator.DoNothing 0
elevator.Elevator 1

67

elevator.Panel

invoked functions:
void elevator.Panel. AAF()
at X:\Wenjun\ElevatorComplex\elevator\Elevator.java
L:114,0:3849

void elevator.Panel.pressButton(int)
at X:\Wenjun\ElevatorComplex\elevator\Elevator.java
L:90,0:2832

int elevator.Panel.howmany()
at X:\Wenjun\ElevatorComplex\elevator\Elevator.java
L:93,0:2959

boolean elevator.Panel.demandedInThisDirection(int, int)
at X:\Wenjun\ElevatorComplex\elevator\Elevator.java
L:38,0:954

boolean elevator.Panel.demandedInThisDirection(int, int)
at X:\Wenjun\ElevatorComplex\elevator\Elevator.java
1:46,0:1207

int elevator.Panel.findMiniumFloor(int, int)
at X:\Wenjun\ElevatorComplex\elevator\Elevator.java
L:52,0:1394

int elevator.Panel. findMaxiumFloor(int, int)
at X:\Wenjun\ElevatorComplex\elevator\Elevator.java
1:54,0:1488

void elevator.Panel.buttonOff(int)
at X:\Wenjun\ElevatorComplex\elevator\Elevator.java
1.:59,0:1673

void elevator.Panel.<init>(int)
at X:\Wenjun\ElevatorComplex\elevator\Elevator.java
L:113,0:3820

void elevator.Panel. <init>(int)
at X:\Wenjun\ElevatorComplex\elevator\Elevator.java
L:21,0:507

= Message Passing Coupling(MPC)

Message Passing Coupling is the number of sent statements (or method invocations) in
the program. “Call other/super/outer class/ method” and “new object/array” are selected
for MPC computation. Table 10 is the running result of our MetricsCompute program for

MPC computation:

68

Table 10 MPC from elevator program

Class Name MPC

elevator.Button 2

int elevator.Panel.howmany(int) of elevator.Panel at
X:\Wenjun\ElevatorComplex\elevator\Button.java L.:53,0:1062

void elevator.Panel.<init>(int) of elevator.Panel at
X:\Wenjun\ElevatorComplex\elevator\Button.java L:58,0:1122

elevator.Panel$alnner 1

new array of elevator.Panel$blInner at
X:\Wenjun\ElevatorComplex\elevator\Panel.java 1.:236,0:4932

elevator.Panel1Local 0
elevator.Panel$bInner 0
elevator.Panel 12

void elevator.Button.press() of elevator.Button at
X:\Wenjun\ElevatorComplex\elevator\Panel.java L:121,0:2441

boolean elevator.Button.pressed() of elevator.Button at
X:\Wenjun\ElevatorComplex\elevator\Panel.java 1.:96,0:1983

boolean elevator.Button.pressed() of elevator.Button at
X:\Wenjun\ElevatorComplex\elevator\Panel java L:114,0:2287

boolean elevator.Button.pressed() of elevator.Button at
X:\Wenjun\ElevatorComplex\elevator\Panel.java L:145,0:3158

void elevator.Panel$ 1$ AnotherLocal.bar() of elevator.Panel at
X:\Wenjun\ElevatorComplex\elevator\Panel.java L:168,0:3666

void elevator.Button.turnoff() of elevator.Button at
X:\Wenjun\ElevatorComplex\elevator\Panel java L:75,0:1405

boolean elevator.Button.pressed() of elevator.Button at
X:\Wenjun\ElevatorComplex\elevator\Panel.java L:129,0:2689

boolean elevator.Button.pressed() of elevator.Button at
X:\Wenjun\ElevatorComplex\elevator\Panel.java L:137,0:2914

void elevator.Button.<init>() of elevator.Button at
X:\Wenjun\ElevatorComplex\elevator\Panel.java L:70,0:1300

new array of elevator.Button at
X:\Wenjun\ElevatorComplex\elevator\Panel.java 1.:68,0:1191

void elevator.Panel$ 1$ AnotherLocal.<init>() of
elevator.Panel$ 1$ Anotherlocal at
X:\Wenjun\ElevatorComplex\elevator\Panel.java L:167,0:3629

void elevator.Panel$bInner.<init>(elevator.Panel) of
elevator.Panel$blnner at
X:\Wenjun\ElevatorComplex\elevator\Panel.java 1:228,0:4798

69

elevator.Panel$ 1$ AnotherL 0
ocal

elevator.DoNothing 0
elevator.Elevator 10

void elevator.Panel. AAF() of elevator.Panel at
X:\Wenjun\ElevatorComplex\elevator\Elevator.java L:114,0:3849

void elevator.Panel pressButton(int) of elevator.Panel at
X:\Wenjun\ElevatorComplex\elevator\Elevator.java 1.:90,0:2832

int elevator.Panel. howmany() of elevator.Panel at
X:\Wenjun\ElevatorComplex\elevator\Elevator.java L:93,0:2959

boolean elevator.Panel. demandedInThisDirection(int, int) of
elevator.Panel at X:\Wenjun\ElevatorComplex\elevator\Elevator. java
L:38,0:954

boolean elevator.Panel. demandedInThisDirection(int, int) of

elevator.Panel at X:\Wenjun\ElevatorComplex\elevator\Elevator.java
L:46,0:1207

int elevator.Panel.findMiniumFloor(int, int) of elevator.Panel at
X:\Wenjun\ElevatorComplex\elevator\Elevator java L:52,0:1394

int elevator.Panel.findMaxiumFloor(int, int) of elevator.Panel at
X:\Wenjun\ElevatorComplex\elevator\Elevator.java L:54,0:1488

void elevator.Panel.buttonOff(int) of elevator.Panel at
X:\Wenjun\ElevatorComplex\elevator\Elevator.java L:59,0:1673

void elevator.Panel.<init>(int) of elevator.Panel at
X:\Wenjun\ElevatorComplex\elevator\Elevator.java L:113,0:3820

void elevator.Panel.<init>(int) of elevator.Panel at
X:\Wenjun\ElevatorComplex\elevator\Elevator.java L:21,0:507

Note: As to the “new array and direct create array” reference, only the memory is allocated.

= Response For a Class (RFC)

The Response For a Class measure captures the size of the response set of a class
[Fen97]. The response set of a class consists of the set M of methods of the class, and the
set of methods invoked by methods in M. According to this definition, “call other
method/super/outer class/ method” and “new object/array” as well as member methods
such as constructor, method and initializers should be the candidate references for the

RFC derivation. Especially, in order to derive all potential method invocations, some

70

indirect method invocations have also to be included in the measurement computation.
However, in our design, the components in the response set are unique. That is, if some
method of other classes is called several times, we only add the method to the response
set one time.

For example,

public void move() {

if (direction == UP) {
if (current_floor == top_floor)
direction = DOWN;
else
if (panel.demandedInThisDirection(top_floor, current_floor))
direction = DOWN;
}

if (direction == DOWN) {
if (current floor == 1)
direction = UP;
else
if (!panel.demandedInThisDirection(current_floor, 1))
direction = UP;

In the above “move()” method of the class “Elevator’, method of Panel
“panel.demandedInThisDirection(...)” has been called twice; however, we only count
one time for the RFC response set computation.

Table 11 is the running result of the MetricsCompute program for RFC metrics

computation of the sample “elevator” program.

71

Table 11 RFC from elevator program

Class Name

RFC

elevator.Panel

30

methods:

void elevator.Panel.pressButton(int)

void elevator.Panel.setGeter(int)

int elevator.Panel. howmany(int)

int elevator.Panel.howmany()

boolean elevator.Panel.on(int)

void elevator.Panel. AAC()

boolean elevator.Panel.demandedInThisDirection(int, int)
void elevator.Panel. AAA()

void elevator.Panel buttonOff(int)

void elevator.Panel. AAD(int, int, int, int, int, int, int, int, int, int,
int)

int elevator.Panel.findMiniumFloor(int, int)

int elevator.Panel.findMaxiumFloor(int, int)

int elevator.Panel.getGeter()

void elevator.Panel. AAF()

void elevator.Panel. AAB()

Constructor: void elevator.Panel.<init>(int)

Initializer: void elevator.Panel.<clinit1>()
void elevator.Panel.<clinit1 1>()
void elevator.Panel.<clinit4>()
void elevator.Panel.<clinit2>()
void elevator.Panel.<clinit3>()

Invoked methods:

void elevator.Button.press() of elevator.Button

boolean elevator.Button.pressed() of elevator.Button

void elevator.Panel1 AnotherLocal.bar() of elevator.Panel
void elevator.Button.turnoff() of elevator.Button

void elevator.Button.<init>() of elevator.Button

void elevator.Panel1 AnotherLocal.<init>() of
elevator.Panel1 AnotherLocal

void elevator.Panel$bInner.<init>(elevator.Panel) of
elevator.Panel$blnner

void elevator.Button.press(java.lang.Object) of elevator.Button
void elevator.Button.press(int) of elevator.Button
elevator.Panel elevator. Button. Test(int) of elevator.Button
int elevator.Panel.howmany(int) of elevator.Panel

void elevator.Panel.<init>(int) of elevator.Panel

elevator.Panel$alnner

2

methods: void elevator.Panel$alnner.kk()
Constructor: void elevator.Panel$alnner.<init>(elevator.Panel)

elevator.Panel$ 1$Local

1

72

Constructor:void elevator.Panel1Local. <init>()

elevator.Panel$bInner

1

Constructor:void elevator.Panel$bInner.<init>(elevator.Panel)

elevator.Elevator

25

Methods:

void elevator.Elevator.main(java.lang.String[])
void elevator.Elevator.prompt()

void elevator.Elevator.openDoor()

void elevator.Elevator.move()

void elevator.Elevator.closedoor()

Constructor:
void elevator.Elevator.<init>(int)

Invoked functions:

void elevator.Panel. AAF() of elevator.Panel

void elevator.Panel.pressButton(int) of elevator.Panel

int elevator.Panel.howmany() of elevator.Panel

boolean elevator.Panel.demandedInThisDirection(int, int) of
elevator.Panel

int elevator.Panel.findMiniumFloor(int, int) of elevator.Panel
int elevator.Panel.findMaxiumFloor(int, int) of elevator.Panel
void elevator.Panel.buttonOff(int) of elevator.Panel

void elevator.Panel.<init>(int) of elevator.Panel

void elevator.Panel$bInner.<init>(elevator.Panel) of
elevator.Panel$bInner

void elevator.Button.press() of elevator.Button

boolean elevator.Button.pressed() of elevator.Button

void elevator.Panel1 AnotherLocal.bar() of elevator.Panel
void elevator.Panel$ 1 $ AnotherLocal.<init>() of
elevator.Panel$ 1 $ AnotherLocal

void elevator.Button.turnoff() of elevator.Button

void elevator.Button.<init>() of elevator.Button

void elevator.Button.press(java.lang.Object) of elevator.Button
void elevator.Button.press(int) of elevator.Button
elevator.Panel elevator.Button. Test(int) of elevator.Button
int elevator.Panel.howmany(int) of elevator.Panel

elevator.Button

9

methods: boolean elevator.Button.pressed()
void elevator.Button.press()
elevator.Panel elevator.Button. Test(int)
void elevator.Button.turnoff{)
void elevator.Button.press(int)
void elevator.Button.press(java.lang.Object)
Constructor: void elevator.Button.<init>()
Invoked methods:
int elevator.Panel.howmany(int) at elevator.Panel
void elevator.Panel.<init>(int) at elevator.Panel
void elevator.Button.<init>() at elevator.Button

elevator.Panel1 AnotherLocal

2

73

Method:
void elevator.Panel$ 1$ AnotherLocal.bar()

Constructor:
void elevator.Panel$ 1$ AnotherLocal.<init>()

Initializer:
void elevator.Panel1 AnotherLocal.<clinit1>()
void elevator.Panel$ 1$ AnotherLocal.<clinit2>()

elevator.DoNothing

1

Constructor:
void elevator.DoNothing.<init>()

6.3.4 Deriving slicing based SCBO, SRFC, and SMPC

In order to compute SCBO, SRFC and SMPC for a given slice, we will emphasize the

following aspects that are different from the traditional CBO, RFC and MPC

computation.

= The coupling analysis is limited to source code in the slice. Methods, classes and

packages involved in the slice will be identified and considered.

* All direct and indirect coupling will be included in the SCBO, SRFC and SMPC
computation.

* Both import and export coupling within the slice will be computed.

The given slice S<current_floor, Elevator L59> of our sample elevator project is as follows:

{Elevator L59, Elevator L54, Elevator L53, Elevator L52, Elevator L51, Elevator L24, Elevator L20,
Elevator L10, Elevator L9, Elevator L117, Elevator L116, Panel 1163, Panel L135, Panel L132, Panel

Li31, Panel L130, Panel L129, Panel 128, Panel 127, Button L17, Button L16, Button L11, Button LIO}.

Table 12, Table 13 and Table 14 are the running result of the SCBO, SRFC and SMPC

measurements for the given slice S<current_floor, Elevator 1.59>.

» Slicing based Coupling between Object Classes (SCBO)

74

Table 12 SCBO for S<current_floor, Elevator 1.59>

Classes in the slice

SCBO

elevator.Elevator

1

elevator.Panel
void elevator.Panel.buttonOff(int)
at X:\Wenjun\ElevatorComplex\elevator\Elevator.java L:59, O:1673

int elevator.Panel.findMaxiumFloor(int, int)
at X:\Wenjun\ElevatorComplex\elevator\Elevator.java L:54, O:1488

int elevator.Panel.findMiniumFloor(int, int)
at X:\Wenjun\ElevatorComplex\elevator\Elevator.java L:52, O:1394

elevator.Panel

1

elevator.Button
boolean elevator.Button.pressed()
at X:\Wenjun\ElevatorComplex\elevator\Panel.java L:137, 0:2914

boolean elevator.Button.pressed()
at X:\Wenjun\ElevatorComplex\elevator\Panel.java L:129, 0:2689

elevator.Button

0

= Slicing based Response for a Class (SRFC)

Table 13 SRFC for S<current_floor, Elevator L59>

Classes in the slice

SRFC

elevator.Elevator

6

member functions:
void elevator.Elevator.move()
void elevator.Elevator.<init>(int)
void elevator.Elevator.main(java.lang.String[])

invoked methods:
void elevator.Panel.buttonOff(int) of elevator.Panel
int elevator.Panel.findMaxiumFloor(int, int) of elevator.Panel
int elevator.Panel.findMiniumFloor(int, int) of elevator.Panel

elevator.Panel

3

member functions:
int elevator.Panel.findMaxiumFloor(int, int)
int elevator.Panel.findMiniumFloor(int, int)

invoked method:
boolean elevator.Button.pressed() of elevator.Button

elevator.Button

1

member functions:
void elevator.Button.<init>()

75

» Slicing based Message Passing Coupling (SMPC)

Table 14 SMPC for S<current_floor, Elevator L59>

Classes in the slice

SMPC

elevator.Elevator

3

void elevator.Panel.buttonOff(int)
at X:\Wenjun\ElevatorComplex\elevator\Elevator.java 1.:59,0:1673

int elevator.Panel.findMaxiumFloor(int, int)
at X:\Wenjun\ElevatorComplex\elevator\Elevator.java L:54,0:1488

int elevator.Panel.findMiniumFloor(int, int)
at X:\Wenjun\ElevatorComplex\elevator\Elevator.java L:52,0:1394

elevator.Panel

2

boolean elevator.Button.pressed()
at X:\Wenjun\ElevatorComplex\elevator\Panel.java 1.:137,0:2914

boolean elevator.Button.pressed()
at X:\Wenjun\ElevatorComplex\elevator\Panel.java L:129,0:2689

elevator.Button

0

6.3.5 Comparison and analysis

In order to validate whether the presented measurements are correctly computed, all the
relevant coupling information of CBO, RFC and MPC are kept in vector vCBO, vRFC
and vMPC respectively. Comparing the derived data in Table 15 with in Table 16, the
results of Sun ONE measurement tool are different to the result from our design. For
example, CBO of elevator.Panel is 3 in our system, but 9 in Sun ONE measurement tool.
There are two reasons that cause the difference in the measure. (1) In Sun ONE, all the
Java system classes are taken into account; however, in our system, only the classes in
the project are in consideration. (2) Moreover, in Sun ONE, both import coupling and
export coupling are taken into account, but in our system, only the import coupling is

considered, strictly according to the original definition of CBO [Chi94]. The classes that

76

elevator.Panel refers to are: elevator.Button, java.lang.String, java.lang. System,
Jjava.util. Vector, elevator.Panel.1.AnotherLocal, elevator.Panel.bInner and
Jjava.io.Serializable, and the classes refer elevator.Panel are elevator.Elevator and
elevator.Panel.alnner. In our system, the classes that elevator.Panel refers to are:
elevator.Button, elevator.Panel$138AnotherLocal, elevator.Panel$bInner. Excluding
the 5 java system classes and 2 export coupling classes in Sun ONE measurement tool,

the value 9-5-2=3, which is same as our measurement CBO for elevator.Panel.

Similar as CBO, the difference of RFC of Sun ONE measurement tool and our system are
due to (1) as discussed previously, and indirect coupling as well. In Sun ONE, only the
direct coupling is computed, without considering the indirect coupling. However, in our
approach we consider both direct and indirect coupling according to the original FRC
definition in [Chi94]. MPC are also different since they compute MPC for both inter

coupling and intra coupling; however, in our system, we only compute the inter coupling.

Table 15 CBO, RFC and MPC in our system

Class Name - CBO 'RFC MPC
elevator.Panel.1.Local 0 1 0
elevator.Panel.alnner 1 2 1
elevator.Panel 3 30 12
elevator.Panel.1.AnotherLocal | O 2 0
elevator.Button 1 9
elevator.Elevator 1 25 10
Elevator.Panel.bInner 0 1 0
Elevator.DoNothing 0 1 0

77

Table 16 CBO, RFC and MPC in Sun ONE Measurement Tool

Clagg ldame CCBO | RFC | MPC
slevatorParelilocal LDHoLEy L
slevator Parel akiner 2 3 1
‘slevator Pans| 9 4 -
slevetor Panel1 AnotherLocal R WU -
;@W@f-&!ﬂﬂ"\ IR SO d DOV RO
islevator Elevatar 7 25 50
%52!9\%8!9(?@!&!&&%%% I 20 2

levator Dohlctting T ‘ T L

Within our knowledge, refining existing measurements (CBO, RFC and MPC) through
slicing based information are a novel approach to refine and enhance the measurements.
We do not have any existing slicing based coupling s tool to compare our result with. At
the current stage of the CONCEPT project, due to the lack of slice information, many
interesting test and validation can not be performed. However, the ideas to implement the
whole slicing based coupling measurements are feasible since all the traditional
measurements are correctly computed. Further work is required to use the slicing based

information as input to identify all the relevant references with respect to a particular

slice.

Table 17 SCBO, SRFC and SMPC for S<current_floor, Elevator L59>

Class Name

“SCBO.

- SRFC SMPC

elevator.Panel.1.Local

elevator.Panel.alnner

elevator.Panel

elevator.Panel.1.AnotherLocal

elevator.Button

elevator.Elevator

Flevator.Panel.bInner

X | = O X =] X | X

X |\ | X |W]| X} X

Elevator.DoNothing

X

X

XX WO XN X| X

Note: “x” means “not included in the slice”

Table 17 illustrates the results of refining traditional measurements based on a slice

S<current_floor,Elevator L59 >, which is manually constructed by backward slicing the

78

elevator program. As the results indicate, only three classes are involved in this slice.
SCBO for elevator.Panel is 1 while CBO for elevator.Panel is 3. SCBO . of elevator.Panel
associated coupling is with class elevator.Button by boolean elevator.Button.pressed() at
X:\Wenjun\ElevatorComplex\elevator\Panel java L:137 and by boolean
elevator.Button.pressed() at X:\Wenjun\ElevatorComplex\elevator\Panel.java L:129,
CBO of elevator.Panel related coupling is with class elevator.Button,
elevator.Panel1 AnotherLocal, elevator.Panel$blnner. It refers to elevator.Button by 9
references (see table 9), elevator.Panel1 AnotherLocal by void
elevator.Panel1AnotherLocal <init>() at X:\Wenjun\ElevatorComplex\elevator\Panel.java L:167,
and elevator.Panel$blnner by void elevator.Panel$blnner.<init>(elevator.Panel) at

X:\Wenjun\ElevatorComplex\elevator\Panel.java L:228.

6.3.6 Future work

So far, we have finished the implementation of CBO, RFC and MPC, and SCBO, SRFC
and SMPC based on the static source code analysis and some manually created slices.
The implementation of design measurement is closely related to static source code
analysis and program slicing. If source code analysis and program slicing algorithm are
not ready, it is impossible to completely derive the measurements of interest. Currently,
the source code analysis is very successful since it provides all the details that we need
for coupling analysis. However, the slicing algorithms developed such as backward,
forward, and hybrid slicing algorithms are just in the process integrating into our

PostGreSQL database. By far, we lack slice information to test and validate the slicing

79

based coupling measurement framework. However, we are confident in applying the
measurement framework since traditional coupling measurements have been tested in
some real systems such as java.util package and concept.java package 1.0(see appendix
B). The java.util package is one of the core package of Java Development Kit, which
contains 120 files, 51,993 lines of code, and 23,567 lines of code without comments
[Zha03]. The concept.java package contains 196 files, 14,768 lines of code, and 11,658
lines of code without comments [Zha03]. The presented slicing based coupling
framework can be seen as a refinement of the traditional CBO, RFC and MPC, which
only requires analyzing the slice associated source code. Therefore, once the slicing
algorithms can connect to PostGreSQL database and provide real slice information, a
meaningful empirical study will be performed, and the usability of the measurements can

be validated.

Future work will focus on comparing and analyzing the obtained measurements for large
systems, and validating and refining the existing measurements to indicate design quality.
Moreover, another direction might apply the current slicing based measurements on
dynamic execution or dynamic slices. Thus, the real behavior of the program will be
analyzed and quantified. In fact, more work can be put on software measurement
associated information visualization, since a good visualization technique to reflect these

measurements can identify the “hot spots” and speed up the comprehending and

maintaining process.

80

7 CONCLUSION

The presented research has introduced a slicing-based coupling measurement of OO
program. These measurements are extensions of already well-known and proven coupling
measures, namely CBO, RFC, and MPC. In the context of this research, we refine these
measurements by combining them with program slicing which resulted in our slicing
based SCBO, SRFC and SMPC measures. These measurements provide more focused
views on different slices and additional insights on the coupling. Especially, the inclusion
of direct and indirect coupling, as well as import and export coupling, explore a new
perspective on coupling. In addition, a slicing hierarchy is introduced that provides
different slicing granularities on which these measurements can be applied. Some
applications of these measurements in theory were discussed, namely in testing,
debugging, preventive maintenance and change impact analysis. The presented
measurements are partially implemented within our CONCEPT prototype framework,
which is currently being used to conduct a first set of preliminary experimental analysis.
Future research efforts will focus on a detailed empirical research to validate the
applicability or usability of these measurements. It is anticipated that as part of the
empirical studies, some additional useful slicing based measurements can be derived and

the existing generic coupling measurements will be refined.

81

BIBLIOGRAPHY

[Abr95] F. Abreu, M. Gouldo, R. Esteves, “Toward the Design Quality Evaluation of Object-Oriented
Software Systems”, 5th International Conference on Software Quality, Austin, Texas, USA, October 1995.

[Bas95] V. Basili, L. Briand, W. Melo, “Measuring the Impact of Reuse on Quality and Productivity in
Object-Oriented systems”, Technical Report, University of Maryland, Department of Computer Science,
CS-TR-3395, 1995

[Bas96] V.R. Basili, L.C. Briand, W.L. Melow, “A Validation of Object-Oriented Design Metrics as
Quality Indicators” , IEEE Transactions on Software Engineering, 22 (10), pp.751-761, 1996.

[Bie95] M. Bieman and B. Kang, “Cohesion and reuse in an Object-Oriented paradigm”, Proc. ACM
Symposium on Software Reusability (SSR-95), pp. 259-262, 1995

[Bri97] L. Briand, P. Devanbu, W. Melo, “An Investigation into Coupling Measures for C++”, Technical
Report ISERN 96-08, IEEE ICSE ‘97, Boston, USA, May 1997.

[Bri93] L. Briand, S. Morasca, V. Basili, “Measuring and Assessing Maintainability at the End of High-
Level Design”, IEEE Conference on Software Maintenance, Montreal, Canada, September 1993.

[Chi91] S.R.Chidamber, and C.F. Kemerer, “Toward a Metric Suite for Object-Oriented Design”,
Proceedings of 6™ ACM Conference on Object-Oriented Programming, Systems, Languages and
Applications(OOPLSLA), phoenix, AZ, pp.197-211, 1991

[Chi94] S.R.Chindamber, and C.F. Kemerer, “A Metrics Suite for Object-Oriented Design,” IEEE
Transactions on Software Engineering, 20(6), pp.476-98

[Agr93] H. Agrawal, R. DeMillo, and E. Spafford, “Debugging with dynamic slicing and backtracking”,
Software — Practice and Experience, 23(6), pp. 589-616, 1993

[Lon85] H.D. Longworth, “Slice-based program metrics”, Master’s thesis, Michigan Technological
University, 1985

[Ede94] J. Eder, G. Kappel, and M. Schrefl, “Coupling and Cohesion in OO Systems”, Tech. Report, Univ.
of Klagenfurt, 1994

[Lyl86] J. Lyle, and M. Weiser, “Experiments on slicing-based debugging tools”, Proceedings of the 1st
Conference on Empirical Studies of Programming, pp. 187-197, 1986.

[Fen97] E. Fenton, S. L. Pfleeger, “Software Metrics - A rigorous & Practical Approach”, International
Thomson Computer Press, London, 1997

[Hart95]J.M. Hart, “Experinece with Logical code analysis in software reuse and reengineering”, In ATAA
computing in Aeorspace, 10, pp.1243-1262, San Antonio, Tx, 1995

[Har97] M. Harman, M. Okulawon, and B. Sivagurunathan, S. Danicic, “Slice-Based Measurement of

Coupling”, IEEE/ACM ICSE workshop on Process Modelling and Empirical Studies of Software Evolution
(PMESSE'97), Boston, Massachusetts, pp.28-32., 1997

82

[Hen96] B. Henderson-Sellers, “Software Metrics”, Prentice Hall, Hemel Hempstead, 1996

[Hit95] M. Hitz, and B. Montazeri, “Measuring Coupling and Cohesion in Object-Oriented Systems”,
Proc. Of the International Symposium of Applied Corporate Computing (SACC 95), 1995

[Hit96] M. Hitz, B. Montazeri, “Chidamber & Kemerer’s Metrics Suite: A Measurement Theory
Perspective”, IEEE Transactions on Software Engineering, 22 (4), 276-270, 1996

[Kor88] B. Korel and J. Laski, “Dynamic program slicing”, In. Proc. Letters, 29(3), pp. 155-163, Oct. 1988

[Wei82] M. Weiser, “Programmers use slices when debugging”, Communications of the ACM, 25, pp.446-
452, 1982

[Li93] W. Li and S. Henry, “Object-Oriented metrics that predict maintainability”, Journal of systems
and software, 23(2), pp. 111-122, 1993

[Tip95] F. Tip, “A survey of program slicing techniques”, Journal of Program Languages, 3(3), pp. 121-
189, 9/1995

[Ott89] L. Ott and J. Thuss, “The relationship between slices and module cohesion”, Proc. 11th
International Conference on Software Engineering, pp. 192-204, 1989

[Ott93] L. Ott and J. Thuss, “Slice based metrics for estimating cohesion”, Proc. IEEE-CS International
Software Metrics Symposium, pp. 71-81, 1993

[Pag80] M. Page-Jones, “Practical Guide to Structured System Design”. Prentice Hall, 1980

[SysO1] T. Systa, K. Koskimies, and H. Miiller, "Shimba - An Environment for Reverse Engineering Java
Software Systems," Software Practice & Experience, Vol 31, No 4, pp. 371-394, April 2001

[RilO1] J. Rilling, “Maximizing Functional Cohesion of Comprehension Environments by Integrating
User and Task Knowledge”, 8th IEEE Working Conference on Reverse Eng., Stuttgart, Germany, pp. 157-
165, 2001

[Ste74] W. Stevens, G.J. Myers, and L.L. Constantine, “Structured design”, IBM Systems Journal 13(2),
pp.115-- 139, 1974

[You79] E. Yourdon and L.L. Constantine, “Structured Design”, Prentice-Hall, Englewood, New Jersey,
1979

[WeiB1] M. Weiser, “Program Slicing”, Proceedings of the 5th international conference on Software
engineering, pp.439-449, March 1981

[Ril02] J. Rilling, H. F. Li, and D. Goswami, “Predicate-Based Dynamic slicing of Message Passing
Programs”, Second IEEE International Workshop on Source Code Analysis and Manipulation (SCAM'02),
Montreal, Canada, 2002

[Luc01] A. D. Lucia, “Program slicing: Methods and applications”, 1st IEEE International Workshop on
Source Code Analysis and Manipulation, IEEE Computer Society Press, USA, pp. 142-149,2001

[Kor98]B. Korel and J. Rilling, “Program Slicing in Understanding of Large Programs”, IEEE
Proceedings of the 6th IWPC ‘98, pp. 145-152, Ischia, Italy, June 1998

83

[G1a00] D. Glasberg, K. El Emam, W. Melo, and N. Madhavji, "Validating Object-Oriented Design
Metrics on a Commercial Java Application", Technical Report, National Research Council of Canada,
NRC/ERB-1080, 2000

[Ema01]K. E. Emam, “Object-Oriented Metrics: A Review of Theory and Practice”, Technical Report,
National Research Council of Canada, NRC/ERB-10835, 2001

[Li01] B. Li, “A Hierarchical Slice-Based Framework for Object-Oriented Coupling Measurement”, TUCS
Technical Reports, Turku Centre for Computer Science, NO415, 2001

[Ott98] L. Ott and J. Bieman, “Program slices as an abstraction for cohesion measurement”, Journal of
Information and Software technology, 40(1112), pp.691-699, November 1998

[Bri%6] L. Briand, W.Daly John, and J. Wust, “A unified Framework for coupling measurement in Object-
Oriented systems”, Fraunhofer Institue for Experimental software engineering, Kaiserslautern Germany,
Isern-96-14,1996

[Wan96] Y. Wang, W-T. Tsai, X. Chen, S. Rayadurgen, “The Role of Program Slicing in Ripple Effect
Analysis”, SEKE, pp369-376, 1996

[Mul0O] H. A. Muller, J. H. Jahnke, D. B. Smith, M-A. Storey, S. R. Tilley, and K. Wong, “Reverse
Engineering: A Roadmap”, The Future of Software Engineering, Anthony Finkelstein, ACM Press, 2000

[Har02] M. Harman, N. Gold, R. Hierons and D. Binkley, “Code Extraction Algorithms Which Unify
Slicing and Concept Assignment”, 9th Working Conference on Reverse Engineering (WCRE'02), 2002

[Gup92]R. Gupta, M. Harrold, and M. Soffa, “An approach to regression testing using slicing”, In
Proceedings of the Conf. on Software Maintenance, pp. 299-306, 1992

[Gop91]R. Gopal, “Dynamic program slicing based on dependence relations”, In Proceedings of the
Conference on Software Maintenance, pp. 191-200, 1991

[Kor94] B. Korel and S. Yalamanchili, “Forward Derivation of Dynamic Slices”, Proceedings of the
Intern. Symposium on Software Testing and Analysis, pp. 66-79, Seattle, 1994

[Har95] M. Harman, S. Danicic, and Y. Sivagurunathan, “Program comprehension assisted by slicing and
transformation”, Procedding of Ist UK Program Comprehension Workshop, Durham, UK, 1995

[Hor90] S. Horwitz, T. Reps, and D. Binkley, "Interprocedural slicing using dependence graphs”, ACM
Transactions on Progr. Languages and Systems, 12(1), pp.26--60, January 1990

[Luc03] A. D. Lucia, M. Harman, R. Hierons, and J. Krinke, “Unions of Slices are not Slices”, the
proceedings of the 7" European Conference on Software Maintenance and Reengineering, 2003 in
Benevento, Italy, 2003

[Sys99] T. Systa, and P. Yu, “Using OO Metrics and Rigi to Evaluate Java Software”, Report of
Department of Computer Science University of Tampere, 1999
citeseer.nj.nec.com/391880.html

[Bar99] H. Bar, M. Bauer, O. Ciupke, and S. Demeyer, “The FAMOOS Object-Oriented Reengineering
Handbook”, 1999
http://www.iam.unibe.ch/_famoos/handbook/

[Won98] K. Wong, “The Rigi User's Manual - Version 5.4.4”, June 30, 1998
http://www.rigi.csc.uvic.ca/Pages/publications.html

84

[HarO1] M. Harman, and R. M. Hierons, “An overview of program slicing”, Software Focus 2, 3 (2001),
pp85-92, 2001

[Lit99]T. Littlefair, “An investigation into the use of software code metrics in the industrial software
development environment”, PhD thesis, Edith Cowan University, 1999
http://www.fste.ac.cowan.edu.aw/~tlittlef/LittlefairPhDThesis.pdf

[IEES3] “IEEE Software Engineering Standards”, Standard 610.12-1990, pp.47-48, 1993

[Pre01] R. S. Pressman, “Software Engineering: A Practitioner’s Approach”, Fifth Edition, McGraw Hill,
2001

[Zha03] Y. Zhang, “Automatic design pattern recovery”, Master thesis, Concordia University, 2003

[Mey98] B. Meyer, “The role of Object-Oriented metrics”, in Computer (IEEE), vol. 31, no. 11, pages 123-
125, November 1998

[Har95] M.Harman, S.Danicic, B.Sivagurunathan, B.Jones and Y.Sivagurunathan, “Cohesion Metrics”, 8th
International Software Quality Week (QW'95), San Francisco CA, May 30th - June 2nd. 1995, paper 4-T-4.
S, 1995

[Ott93] L. M.Ott and J. J. Thuss, “Slice based metrics for estimating cohesion”, In Proceedings of the
IEEE-CS-International Metrics Symposium, page 71-81, Baltimore, Maryland, USA, May 1993, IEEE
Computer Press Society Press, Los Alamitos, California, USA, 1993

[Ema99] K. EI Emam, S. Beniarbi, N. Goel, and S. Rai, “A Validation of Object-Oriented Metrics”,
Technical Report, National Research Council of Canada, NRC/ERB-1063, October 1999

[Lee98] M. L. Lee, “Change Impact Analysis of Object-Oriented Software”, PhD thesis, George Mason
University, 1998

[Orm02] O. Ormandjieva, “Deriving new measurements for real-time reactive systems”, PhD thesis,
Concordia University, 2002

85

APPENDIX A ELEVATOR PROGRAM

[k ek s ckode ok ke ok ok ok

//Belevator Class
”**************

package elevator;

/fimport javax.swing.*;
import java.io.*;

public class Elevator {
//data member
private boolean OPEN = true, CLOSED = false; //Door
private int current_floor, next _floor;
final int top_floor;
Panel panel;
public String EEEEEEEEEEEEEEEEEEEEEEEEEEEEE;

private final boolean UP = true, DOWN = false; //Direction
private boolean door, direction;

//constructor

public Elevator(int num) §{
top_floor = num;
panel = new Panel(num);
door = OPEN;
direction = UP,
current_floor = 1;

}

public void closedoor(} {
door = CLOSED;
System.out.println("Closing the door!");

}

public void move() {
//find Direction
if (direction == UP) {
if (current_floor == top_floor)
direction = DOWN;
else
if (!panel.demandedInThisDirection(top_floor, current floor))
direction = DOWN;
}

if (direction == DOWN) {
if (current_floor == 1)
direction = UP;
else
if (!panel. demandedInThisDirection(current_floor, 1))

86

direction = UP;

}

//find The outgoing floor
if (direction == UP) {

current_floor = panel.findMiniumFloor(top_floor, current floor);
} else

current_floor = panel.findMaxiumFloor(current_floor, 1);

System.out.println("Now moving to floor: " + current_floor);
System.out.println("Arrived at floor: " + current floor);

panel.buttonOff{current_floor);
openDoor();
}

public void openDoor() {
door = OPEN;
System.out.println("Door is open!");
System.out.println();

}

//this elevator simulates one use case :
//only when elevator stops, the pressed buttons are to be responded
//by equiped button panel.
public void prompt() throws IOException {
int num = 0;
String strnum;

BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
System.out.println(

"Enter the floor you want to go: (between 1 and " + top_floor + ")");
while ((strnum = in.readLine()) !=null) {

num = Integer.parselnt(strnum);

if (num == current_floor)
System.out.println("We are at the current floor!");
else
if (num == 13) //there is no 13 floor
System.out.println{
"Sorry, this floor is not existed. Please press a button again!");
else
if (num > 0 && num <= top_{floor) {
panel.pressButton(num);
} else
if (num == 0) { //go
if (panel.howmany() == 0)
System.out.println(
"Nobody demande, evelator is stopping, please press a button before closing the

door!");
else {
closedoor();
move();
3
1 else
if (num == -1)

87

break;
else
System.out.println("Invalid input, repeat again!");
System.out.println(
"Enter the floor you want to go: (between 1 and " + top_floor +")");
} //end of while

System.out.println("Good-bye!");
}

public static void main(String[] args) throws IOException {
Panel pp = new Panel(3);
pp-AAF();//read local pp ref;call other mehtod elevator.Panel. AAF()

final int number = 15; //constant
Elevator Otis = new Elevator(number);

System.out.println("This is a simulator of an elevator.");
System.out.println("0: close the door and go -1: terminate the program");
System.out.println("Start the program now!");
System.out.println();
Otis.prompt();
}
}

[R K

//Panel Class

//**************

package elevator;
import java.util. Vector;
import java.io.*;

public class Panel extends Vector implements java.io.Serializable {

public String PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP;
String s[][][][] = new String[2][2][2][2];

static {
//let us do sth. static
}
{
String s = "a";
inti=0;
i=2;
// what can I do here?
}
{
inti=4;
i=5;
}
static {

//can i have two static init?

88

}

private int number of buttons;
private Button[] pbutton;
Vector v =new Vector();

private int geter = 0;

/**
*
* @return the int value of geter.
*/
public int getGeter(){
String s = null;
s = null;
intk=0;
return k;

[%
*

* @param aGeter - the new value for geter
*/
public void setGeter(int aGeter){
geter = aGeter;
String s ="";
System.out.println(Integer.toString(geter).toString().toUpperCase());
}

public Panel(int num) {
number_of buttons = num;
pbutton = new Button[number_of buttons];
for (int i = 0; i < pbutton.length; i++) {
pbutton[i] = new Button();
}
}

public void buttonOff{int num) {
pbutton[num - 1].turnoff);
this.v.size();
Strmg[] aa = {"1","3","5"};
String b = null;
b = llaH + "b";
b=aa[l];
final int %, v;
int k = aa.length;
k = aa.length;
PrintStream o = null;
o = System.out;
Vector c;
c=v;
b = new String("s");
b = (String)v.elementAt(0);

89

if((String)b instanceof String){};

public int howmany() {
int count = 0;
for (int i =0, 1=4; i <=number of buttons - 1; i++) {
if (pbutton[i].pressed()) {
count++;
}
}

return number_of buttons;

¥

public int howmany(int i) {

final int a;

int b;

a=3;

b=0;
return 2;

}

public boolean on(int num) {
if (pbutton[num - 1].pressed())
return true;
else
return false;
i

public void pressButton(int num) {
pbutton[num - 1].press();

return;
//System.out.println("the NO."+num+" is pressed!");

}

public int findMiniumFloor(int upFloor, int downFloor) {
for (int i = downFloor; i <= upFloor; i++) {
if (pbutton[i - 1].pressed())
return i;
}

return O;

}

public int findMaxiumFloor(int upFloor, int downFloor) {
for (int i = upFloor; i >= downFloor; i--) {
if (pbutton[i - 1].pressed())
return i;
}

return O;

}

public boolean demandedInThisDirection(int upFloor, int downFloor) {
for (int i = downFloor, j = 0; i <= upFloor; i++) {
if (pbutton(i - 1].pressed()){
inta=0;

90

class AnotherLocal {
void bar() {
class Local {}; // ok
}
{
/finitializer1
}
{
//nitializer2

}
}

AnotherLocal b = new AnotherLocal();;
b.bar();
}

switch(upFloor){
case 1:
System.out.println(1);
break;
case 2:
return true;
default:
System.out.println("unknow");
}

try{
int k;
k=0;
tcatch(java.lang. Exception e){
e.printStackTrace();
}
finally{
intk=1;
}
return false;

}

public void AAA(){
inti=0;
int j = 0;
super.clear();

}

public void AAB(){
inti=0;
intj=0;

91

}

public void AAC(){
inti=0;
intk=1;
{
boolean j = true;

}
{

boolean j = true;
if(G) {}
java.lang.String s = Integer.toString(1);

}

boolean j = false;
ifG) {}
AAB();

}

public void AAD(int a, int b, int ¢, int d, int e, int f, int g, int h, int i, int k, int 1){

}
public void AAF(){

bInner mm = new blnner();
}

class alnner{
public alnner(){

}
public void kk(){
bInner[] b = new blnner{2];

}

class bInner{
public bInner(){

}
}

static {

}
}

ﬁ**************

//Button Class
//**************

package elevator;
public class Button{

private final boolean NOT_LIT=false;

private final boolean LIT=true;

private boolean state;

public java.lang.Integer i;

private String BBBBBBBBBBBBBBBBBBBBBBBBB;

//methods

public Button() {
state = NOT _LIT;

92

}

public void press() {
state = LIT;
i=new Integer(3);
press(i);

public void press(int i) {
inta=1;
boolean b = true;
byte c =1;
long d =1;
float e = 1.0f;
double £=1.0d;
String g = "1";
shorth=1;
charj="1"
String kg = null;

public void press(java.lang.Object 0){

}
public boolean pressed() {
if (state == LIT)
return true;
else //if(state.toString() =="not_lit")
return false;
}

public void turnoff() {
state = NOT LIT;
press(3);
inti=0;
Test(1).howmany(i);

}

public Panel Test(int 1){
return new Panel(i);
}

J R ok ok

//DoNothing Class

//**************

package elevator;
public class DoNothing {
public DoNothing() {

}

93

APPENDIX B MEASUREMENT RESULT

CBO, RFC and MPC for concept.java package 1.0

file number=196

Package number =9 Class number =201

Class Name

concept.java.tree.VarDeclarationStatement

concept.java.tree. LengthExpression

concept.java.tree.UnaryExpression

concept.javad.attr.codeAttr

\O

12

concept.javad.attr.codeAttr$exceptinfo

concept.javad.jconst.constUtf8

|
W

concept.java.tree. AndExpression

concept.java.tree.Statement

concept.java.tree.LabelStatement

concept.javad.attr.innerClassAttr

concept.javad.attr.innerClassAttr§innerClassInfo

concept.java.tree. BodyElement

concept.idp.CompositePattern

—IRNINO [N

N

concept.java.tree. BreakStatement

concept.java. ThrowsDef

— |
(=]

concept.java.tree. TryStatement

concept.java.tree. AssignAddExpression

concept.java.tree. ForStatement

concept.java.tree.BinaryBitExpression

concept.java.tree.StringExpression

concept.idp.SingletonPattern

— |0 |\ 8|00 n

FaN

3

concept.javad.util.errorMessage

o_‘H»——Ab—woo—-m»—A\oAH»-b—aO\O\

concept.idp.ClassAdapterPattern

—_| W
[N

concept.idp.Pattern

concept.java.tree.SynchronizedStatement

concept.javad.methodInfo

w|Pw
w

concept.javad. methodInfo$method Types

concept.java.tree.CharExpression

concept.java.tree. MultiplyExpression

concept.java.tree.ContinueStatement

concept.java.tree.CaseStatement

concept.java.tree.DivideExpression

concept.java.tree. DivRemExpression

concept.java.ASTNode

concept.java.tree. NegativeExpression

concept.javad.attr.synthAttr

concept.java.Strings

concept.java.tree. UnsignedShiftRightExpression

concept.java.tree.LessOrEqualExpression

concept.java.tree. AssignMultiplyExpression

concept.idp.Relation

HOO\]\INU-’UI&\]OOJ}A\]\]—‘

concept.javad.classFile

o]
o]

concept.java.tree.IncDecExpression

()]

94

concept.java.tree. LongExpression

concept.java.tree. BinaryCompareExpression

concept.java.ClassPath

N

concept.java.tree.InlineNewlInstanceExpression

concept.java.tree. EqualExpression

concept.java.UsageReference

concept.java.tree.BinaryAssignExpression

concept.java.tree.BooleanExpression

concept.java.tree.ShiftRightExpression

concept.javad.attr.localVarTabAttr$localVarEnt

<o

concept.javad.attr.localVarTabAtir

concept.java.ExtendsDef

concept.java.Modifier

concept.java.tree. BinaryEqualityExpression

concept.java.tree.LessExpression

concept.java.tree. AssignUnsignedShiftiRightExpression

concept.java.tree.ReturnStatement

concept.java.tree.NaryExpression

concept.java.tree.ConditionalExpression

concept.idp.IdpMethod

concept.util. Command

concept.java.tree.IfStatement

concept.idp.ObjectAdapterPattern

—
(=
'_p—lowv—w»—du—-r—-v—-ooom__r—av—-rd_h»—ly—lwv—kv—a

e B IR (= N A KA N |

N
[\S]

concept.java.tree.FloatExpression

concept.idp.IdpHierarchy

concept.java.tree.SwitchStatement

concept.javad.attr.srcFileAttr

s | N | ~J | OO

N

concept.java.tree.PostDecExpression

concept.java.tree.IntegerExpression

concept.java.tree.NullExpression

concept.java.tree.LocalVariable

WO

concept.java.tree.AssignBitXorExpression

concept.javad.util.accString

concept.java.tree. NewArrayExpression

concept.java.tree. ArrayAccessExpression

concept.javad.jconst.constDouble

concept.javad.Main

Q= |nioN|W oo

O IN
(=]

concept.java.tree.BitNotExpression

(=]
»—A._Nhar—-ko»—mv—nv—lr—lc\wl\)b—l

concept.javad.fieldInfo

N
(%]
N
(=)}

concept.java.tree.DoStatement

concept.javad.attr.attrInfo

concept.java.tree. AssignExpression

concept.javad.attr.constValueAttr

=3

concept.java.tree. CompoundStatement

concept.javad.classFileHeader

concept.javad.attr.deprecAttr

concept.javad.util.accData

~

concept.java.tree.FieldExpression

concept.java.tree.PositiveExpression

concept.idp.demos.Bridge.Implementor

concept.java.tree. ConstantExpression

NN lw N =D
»—do»—av—-or—-.hwu‘r—av—n.—a

concept.java.tree. ASTParser

03

256 654

concept.java.tree. MethodExpression

N= NN N === [NN [N = [N W [= NN [= [N [N = [[N =W BN O = N NN N N[= B[N BN W= RN [N [AW

6 1

95

concept.javad.util.typeDesc

concept.idp.IdpClan

concept.java.tree.AssignOpExpression

concept.java.tree. PreDecExpression

concept.java.tree.ConvertExpression

concept.java.tree.BinaryShiftExpression

concept.java.Reference

£ AN

concept.javad.classFieldSec

b
S

concept.idp.FactoryMethodPattern

=)}

concept.javad.jconst.constLongConvert

~

l).)b—luov—li—i)—lb—l[\)h—l

concept.idp.Model

et DN et [N O = [N DD o | bt |

o
[a—
—

165

concept.java.tree.GreaterOrEqualExpression

concept.java.tree.FinallyStatement

concept.javad.util.objNameFormat

concept.java.tree.DeclarationStatement

concept.java.tree. BitXorExpression

concept.java.tree. CommaExpression

concept.idp.demos.Bridge. Abstraction

concept.java.tree.GreaterExpression

bt [[pomt | et { U [D et | et

concept.idp.BridgePattern

—
—

concept.java.tree.AssignShiftLeftExpression

concept.java.PackageDef

oo =R RN[Q| |V

concept.idp.Main

~)
N

concept.javad.jconst.constFloat

\O

concept.java.tree. AddExpression

~]

»—Al\)#l\)r—a

concept.javad.attr.attrFactory

=N =WIN[RINNINNWIO|IN (N

N

N
w

-
wn

concept.javad.classDeclSec

[y
w

—
~

concept.java.tree.NotExpression

W

—

concept.java.tree.DefaultStatement

S

—

concept.java.tree. AssignBitAndExpression

o[

[o°]

—

concept.javad.classMethodSec

W

concept.java.tree. AssignShiftRightExpression

concept.java.ImportDef

concept.java.tree.IntExpression

concept.javad.jconst.constName and Type info

s

concept.javad.util.access_and_modifier flags

concept.javad.classAttrSec

concept.java.tree.AssignBitOrExpression

concept.java.tree.AssignRemainderExpression

concept.java.Constants

concept.idp.IdpClass

concept.java.tree. NotEqualExpression

concept.idp.demos.Bridge.ConcreteImplementorA

concept.java.DeclarationReference

[3]

concept.java.tree.CastExpression

concept.java. Type

F-S

O

concept.java.tree.IdentifierExpression

NI= OV [W[| O[00]|00j00 (O = |C\|~1|00]|—

n—t'_‘n—-uo»—-r—no—lr—‘moo\r—nmr—n\]

concept.idp.Console

[=)}

—
W
o

117

concept.java.tree. ThrowStatement

concept.idp.IdpAttribute

concept.javad.attr.exceptAttr

concept.java.CreationReference

concept.java.Project

N BRI =N INRIW[O|IN =[O WO AW W NN

IAERENLNIES

O | W

PN el o

=)}

96

concept.java.Project$13relation

[==]

concept.java.MemberDef

N

o |
(=

(=)
(=)}

concept.javad.jconst.constPoolTags

concept.java.tree.BinaryArithmeticExpression

concept.java.tree. TypeExpression

concept.java.tree.CatchStatement

concept.java.tree. WhileStatement

concept.java.tree.ShiftLeftExpression

concept.java.tree.SuperExpression

concept.javad.util.dataRead

concept.javad.attr.lineNumTabAttr

concept.javad.attr.lineNumTabAttr$lineEntry

concept.javad.jconst.constint

[(SYE ST RV FErl s S I I Il e

concept.java. Environment

Lol I R B =Y NN A R T SN S KR K §)

w
(=

concept.java.tree.PostIncExpression

concept.java.FileClassLoader

concept.java.JavaFile

N3N
O\ | —

concept.java.tree. ExprExpression

concept.java.tree. ByteExpression

concept.java.tree.BitAndExpression

concept.java.tree. Expression

concept.javad.jconst.constRef

lord B =2 B T A

w

concept.java.tree. BinaryExpression

concept.java.tree. BitOrExpression

concept.java.ImplementsDef

=~ ON
(=]

o0

concept.java.tree.ShortExpression

concept.java.tree. ExpressionStatement

concept.java.tree.SubtractExpression

concept.javad.jconst.constBase

concept.java.tree. AssignSubtractExpression

i |t | [t | =

concept.javad.jconst.constPool

(==

I IR

[

15

concept.java.SourceElement

(=]

concept.java.tree.RemainderExpression

concept.javad.jconst.constClass_or String

~

concept.java.tree. AssignDivideExpression

concept.java.tree. ArrayExpression

concept.java.tree.InstanceOfExpression

concept.java.tree.CreationalReference

—t | = | = —

concept.java.ClassDef

w

62

concept.java.tree. NewInstanceExpression

concept.idp.DecoratorPattern

w

15

concept.idp.IdpProgram

=g

concept.javad.jconst.constLong

—

[\

concept.java.tree.OrExpression

concept.idp.Entity

concept.java.tree.InlineMethodExpression

concept.idp.demos.Bridge.ConcretelmplementorB

concept.java.tree. PreIncExpression

concept.java.tree.BinaryLogicalExpression

concept.java.tree.DoubleExpression

concept.java.tree. ThisExpression

concept.java.tree.InlineReturnStatement

NN W[=|NROIN|OIN—= ||| RN [N BN = [=2 [N =N WA =R = [NW IR AN N = NI N = O =IO

Hln || WISV |0 =00 | —

el 1 el el el E= N e K=

97

