Enhancement of the CINDI System

YANHONG LI

A THESIS
IN
THE DEPARTMENT
OF

COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE AT
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

AUGUST 2003

© YANHONG LI, 2003

National Library Bibliotheque nationale

of Canada du Canada

Acquisitions and Acquisisitons et
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Canada

Your file Votre référence
ISBN: 0-612-83910-9
Our file Notre référence
ISBN: 0-612-83910-9

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la these ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

ABSTRACT

Enhancement of the CINDI System

Li, Yanhong

Development of computer and Internet technology provides the necessary tools to
develop digital libraries that could provide a cost-effective access to information for users
on a global area. To address the problems, the CINDI (Concordia INdexing and
Discovery) system proposes the semantic header for bibliographic index and the graphic
interface for cataloging, searching as well as access, and provides feedback and
annotation. In this project, our aim is to provide a high availability of the CINDI system,
and improve the functionality of the system. A high availability solution presented herein
is to use the file-based and database replication methods. In addition, we propose a
scheme to integrate the CONFSYS (conference support system) with the CINDI system.

We also address the issues of optimizing the database design and query processing.

iii

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to Prof. Dr. Bipin C. Desai for his
invaluable help, patience, guidance and support. Special thanks go to my friends for their
help, companionship, and support, especially to Mr. Zhan Zhang, who was a member of
the CINDI project and helped me solve the problems with the ASHG.

I would like to express my deepest gratitude to my parents, my husband as well as
my brother. Without their love, encouragement and support, I would never have

accomplished my study and reached this level.

v

Contents

LSt Of FAGUIES ..c.eveeiiieiieienerttttt sttt e s viii
List Of TADIES c.uveueeiiiiieiieiecceceeerc e xi
Chapter 1 INtroduCtioncociviiiiiiiiiiiic e 1
1.1. Problem Statement.........coocverieroerriiireciiciiiiee e e 1
1.2. Proposed SOIULION.ccouiiiiiiiiiiiiiiirin s 5
1.3. Organization of the thesiscccoveviiriiiininienerc e 6
Chapter 2 The CINDI SyStem.......cccccoviiiiiininiiiiiiiiiiii s 8
2.1. The proposal of CINDIccccoieviiiiriiniiniiiiiiiiicie et 10
2.2. The solution of CINDIcocooiiiiiiiiiiiiiireec et s 11
2.3. The architecture of CINDIcoccciiiiiiiree e 12
2.4. SemanticC header.........ccooviviiiiiiiiiiiiiiii e e 17
2.5. The index registering SUbSYSIEM.......ccouieiiiririiiriirrinieiiene et s 18
2.6. The semantic header distributed database SyStemc.ccceevvvvcviereincveniviencveeennn. 23
2.7. The search and annotation SUDSYSEM........c.ccoueriiniririrncrieiirrere e e 25
2.8. CONFSYS: the conference SUPpOIt SYStEM........ceeeerveivreriieeienernienieareeseeeeeenanns 27
2.9. The administration SUDSYSIEIM.c..cocouiiriiiriiriiecie ettt 29
Chapter 3 High Availability.........ccccoviiiiiniininiiiiiieiiirecceen e e 31
3.1. Introduction to high availability.........c..coceviriiniiiniiiiniiic e 31
3.2. Methods of data repliCationSceeioiiiiiiieiiieeeeiie et e e 32
3.2.1. File-based 1epliCatiON......c.c.cociiiiiriicieeiiee ettt 32
3.2.2. Disk mirroring acroSs NOAESc..cceeuveerureruernieriieenteriteeceteseeerresreesaeaesereas 33
3.2.3. Database repliCation........ccccceviieiierieriieiiieee ettt re et s 34

3.3. Solution for the CINDI SYStEIMcoceriirrieeierecreiieniineirenresrstecre e 35

3.3.1. Transaction data........ccceeeereerieniieeeeinieni ettt s 35
3.3.2. Distributed and replicated SCENATioscocervvereeriieiiieriiienniienecieercrreseneenne 36
3.3.3. Replication in MySQL databasecccoceverererrennenenenirenrenieiceeeeneecnenes 38
Chapter 4 QUEry ProCessing.......ccovevuiiiiviieiiniiiniiiiiniiiiienreiienne s 44
4.1. Database design of the CINDI SyStemcocccvvuiiiiiiniiniiiniiiiiiecieieceeceieene 44
4.2, Search fUNCHONociereiiiicieieeicer ettt e s sr s s 50
4.2.1. Search function fOr USETScc.eeverieriieiiieiriiiiientiecre et 51
4.2.2. Search function for adminiStrators............ccecoerieerrernieeierer e 65
4.2.3. FUZZY SCATCh...coiiiiiiiiiicittrc e 67
4.2.4. Application Of iNdEXEScccecuiriiniiriiniiiiiiiiiri s 69
4.3. Backup and retrieve the CONFSYS SyStemcccocvvciiiiviiniiniininicnicninnnnnnes 74
4.4. Solution for integrating the CONFSYS with the CINDI.........cccoccoeviiniiiinninnnn. 76
4.5. Temporary tables ... e 79
Chapter 5 Security of the CINDI SYStEmoovviiieiiiiieiiriiereerresree e ees e enne 81
5.1. Authentication MEthOSccceeviiiiiiiiiieiieeeee e 82
5.1.1. Username and PaSSWOIAccovrueeuirieriinierinirinreneesieeresteeesessessessesseeseeseas 82
5.1.2. Cookies and SESSIOMNS.c.cueeeririreriiereiieeirereeriteeereeeee et e et e saeesvr et e ssnassenens 82
5.1.3. HTTP authentiCationccccuiirieiiirieieneeteioiieenieeesieeeenereseninesesvnesssvnessnsveens 85
5.2. Solution for the CINDI SYStEMceeviirreeieieinreesiesieesieesresreeereessneessesssnseenses 87
5.2.1. Apache server With SSL......ccccovciiiiiiiiiiriiinieeniecrcccie e sve e e 87
5.2.2. Application Of PHPc..ccooviiiviiniiiniriiiercsescete ettt s 89
5.2.3. Cryptography ..cooceeeuieiiieiiiiteert ettt 92

vi

5.2.4. USer REGISIIALIONocuieeieieiiiiriiiiniciieniienire sttt eaees 94

Chapter 6 Implementation, Test and Resultsc.cccceeveriviiiiiiniiiiiiiis 96
6.1, SYStEM BACKUD ...ceeiiiiiiiiieret et 96
6.2. SEATCHING PIOCESS. .. .eirurerrierireeieeetee ettt sse e st sar s ssn e sbs e sane s rasesanes 98

6.2.1. Implementation of fuzzy Search.........c.ccccceevivviiniiiicniininiiicenen 98
6.2.2. Implementation of full-text searching........c...ccceeerviiiininninniiiininninicnne, 100
6.3, TESE TESULILS 1ueveeeeniieiieieeie ettt sr b e e e st sa e sa et s et esaesbeesbesenees 101

Chapter 7 Conclusion and Future WOrkccooceiiiiiiniiii e, 104
T 1. CONCIUSION ...ttt ettt st re e s sare e e san s eseneseaneeesane 104
7.2. Contribution to the CINDI SYStEM.......ccoeiriiniiniiiniiniiniiiiicicnccrcreeie e 106
7.3, FULUTE WOTK ..o.eieiiiieiiiiiiere ettt ettt et smee s esbeesreens 107

RETETENCES ..ottt e sres e e s rae e sane 111

Appendix A: Application for foreign key cOnStraings..........ccceeeeeeeeriveenieeneensennicne e 116

Appendix B: Application for temporary tables........c.ccecveviivinciiniiniininieineneneene 118

Appendix C: A shell script for dumping the database for backup........c.cccoveervvieniennnnen. 119

Appendix D: The queries regarding the SUDJECES.cccceverreriiieriireniinreeee e 120

Vil

List of Figures

Figure 1.1(a) 1995-2001 TeSt trends.......cccovvieiiirerniinieniiiiiienicnrcrenne e 4
Figure 1.1(b) 1995-2001 TeSt treNdScceoereieereiieririerireccerereeresneeerese s e 4
Figure 2.1 The structure of SOftWare........c.cccoeoeeviieiminiiiiiiiicii e 12
Figure 2.2 The logical view of the 2-tier SyStEmMS.......ccoevuiiiciiiiiiiiiiniin e 13
Figure 2.3 The logical view of the 3-tier SYStemc.ccvirvuiriiciiniiiiiiiicicrcicnccrereeas 14
Figure 2.4 The logical view of the CINDI system architecture..........ccccoevevvervvereeneecnnens 14
Figure 2.5 The structure of the CINDI SyStemc..cocevieiiiiiiniininiiniiiniinicnccieceens 16
Figure 2.6 The structure of semantic header [DESAIIS]cc.cooviiiriiiniineeieneneeiienens 18
Figure 2.7 The interface of registering a reSOUICEocevvuiriiciiniiiieniieienieiceeeereeeeens 19
Figure 2.8 The logical structure of the index registering subsystemc.cccoeenvenuverenns 20
Figure 2.9 An example of semantic header and its interface..........ccccoceerveveereencnnncnnens 23
Figure 2.10 The view of the horizontally partitioned database systemccceceevevernens 24
Figure 2.11 The logical structure of the search and annotation subsystemc.c.c..... 27
Figure 2.12 The structure of the CONFSY S ..ot ciestrere s eeneeens 28
Figure 2.13 The logical structure of the administration subsystem...........cccccoevereevirernans 29
Figure 3.1 The failover situation with tWo SYStEMSc.ccevveereerieierieenienenierresnesire s 32
Figure 4.1(a) The ER model of the CINDI SYStemccccovuerieernieiniiniieniiniienreenieesreens 46
Figure 4.1(b) The ER model of the CINDI system including the CONFSYS.................. 47

Figure 4.1(c) The improved ER model of the CINDI system including the CONFSYS.. 48
Figure 4.2 The interface of simple search..........coccocevieiiniiniinininiiinnesee e 51
Figure 4.3 The interface of intermediate searchc..ocooeevevinnininiiininecen 53

Figure 4.4 The interface of advanced search

viii

Figure 4.5 (a) An example of resource simple searchcccccoviiiniin 58

Figure 4.5 (b) An example of simple search..........cccccoeeeoiiinininencienciiceceeee, 59
Figure 4.6 (a) An example of intermediate S€arch...........ccoceevverieniiinrceiniienieneeceneneees 60
Figure 4.6 (b) An example of intermediate searchcccooceeiiiiiinniiineee 61
Figure 4.7 (a) An example of advanced search...............ccooiiin 62
Figure 4.7 (b) An example of advanced search ..o 63
Figure 4.8 The logical view of temporary table TEMPresource_authorname............ 64
Figure 4.9 The interface of user managementccccceeveeriiiiiiinienreenee e 66
Figure 4.10 The interface of resource management...........coecueeeveeeieereenneenneecvesseeeeneenne 66
Figure 4.11 The workflow of the fuzzy searchccccccceverinininiinninicecens 68
Figure 4.12 An example of the fuzzy searchcccccocevivieiininncnincnc e, 69
Figure 4.13 The logical flowchart for Full-text searching..........c.cccccevevvniinnrnnvenninnenne. 73
Figure 4.14 The workflow of uploading a paper in original version.............cccocvveeurrennnen. 74
Figure 4.15 Improvement version of the CONFSYS with distributed structure 75
Figure 4.16 (a) Interface for integration of the CONFSYS with the CINDI.................... 77
Figure 4.16 (b) Interface for integration of the CONFSYS with the CINDI.................... 77
Figure 4.16 (c) Interface for integration of the CONFSYS with the CINDI.................... 78
Figure 5.1 The logical view Of COOKI@S......c..eririirirniriiinieniesieee et esre e erees 84
Figure 5.2 An instance of HTTP authenticationc.cccoceevveeiiinnieniienieeniescesne e 85
Figure 5.3 The window browsing an Apache-SSL web system.........ccccoecveveeveeerveenneennnns &9
Figure 5.4 A warning message for invalid USETS........ccoecireieiieriiiiecieseeeeee e 92
Figure 5.5 The interface for uSer re@istrationcccecvevcererieenienereseeeeeeeree e 94
Figure 5.6 The interface for forgetting passwords.........cceveeeecveriecieicieeeeeeecie e 95

X

Figure 5.7 The interface for verifying users’ security

Figure 6.1 The workflow of the application of Aspell

QUESLIONS ...veverireniiereieerceie e

..

List of Tables

Table 1. Test results [DESAIOZ2]......ooe oottt eerctree e e eeree e seesereeeessenreae s sennneneeesennes 3
Table 2. Test results [DESAIOZ2].....civioieeeeieiieeeciiie et eeeciree e s seare e e eerveneeesnnnaeesesennnens 3
Table 3. Test results [DESAIOZ2]......cooiieieiiei ettt e e e sseae e e s tre e e e e ree s sevbaees 3
Table 4. MARC to Dublin Core Crosswalk [MARCO1]ccocoviveieeiiiieeerieee e crereee e 10
Table 5. Replication cONfigUIationccccueiiiiiiiiiiiiniiiiiii e 37
Table 6. An instance of the table resource_authorccevivcierieniinnccnicneeecene 65
Table 7. An instance of the table authorooeiiiiiiiiiii e 65
Table 8. The join result of the above tables: the table TEMPresource_authorname... 65
Table 9. Test scenarios and results of the original CINDI system [WANGO2] 102
Table 10. Test scenarios and results of the enhanced CINDI system.........ccooccevvviveieenns 103

Xi

Chapter 1 Introduction

1.1. Problem statement

With the tremendous growth of World Wide Web (WWW), the Internet with enormous
amounts of information has become the principal repository of knowledge. Billions of
people have access via web browsers to this wealth of information interconnected by
millions of hyper-links. In order to make efficient and effective use of the large amount
of digital information on the Internet, many institutes and business organizations have
made substantial progress in Information Retrieval (IR) over the last decade and
produced a number of popular search engines, such as Google, AltaVista, Yahoo, as well
as Lycos.

A series of tests [DESAIO2] on the effectiveness of the contemporary search
systems were conducted in 1995, 1997, and 2001, respectively, in which the same search
item Bipin (AND) Desai was used. Here, the Boolean (AND) was used only when it was
required by the search engine to represent conjunction. For the tests, the following terms
are defined:

e Number of Hits: A URL is a hit if the corresponding document contains the search
string, and it pertains to the intent of the search, namely a document about or by the
search items.

e Number of Duplicates: If the same document is served from more than one server,
then it is considered as a duplicate. Here, the URLSs are different, but the contents are
the same. This is one of the problems that have plagued search engines from the start;

some search engines have addressed this problem better as the experiments illustrate.

e Number of Miss-hits: A URL is considered as a miss-hit if the document is not
relevant for the search. Here, even though the search terms may exist in the document
they occur out of context. Search engines again have difficulty with the context of
words in documents.

e Number Missed: The number of relevant documents not found even though they
existed on the Web. Since we started with a list known URLs being served long
before the tests, this was easy to determine for these experiments.

Based on the test results (Table 1, Table 2, and Table3), precision (P) and recall

(R), which are two of the measures used to express the effectiveness of an information

search operation, were calculated as follows [DESAI02]:

_ number of relevant retrieved

P
number of retrived

R= number of relevant retrieved
number of existing retrieved

Table 1. Test results [DESAI102]

Table 2. Test results [DESAI02]

Search Number of | Number of | Number of | Number Precision (P) | Recall (R)
System Hits Duplicates | Miss-hits Missed % %
Aliweb 0 0 0 24 0 0
DA-CLOD 0 0 0 24 0 0
EINET 6 0 4 22 7 8
GNA Meta Lib. | 0 0 0 24 0 0
Harvest 0 0 0 24 0 0
InfoSeek 7 0 0 24 29 29
Lycos 7 2 222 17 3 29
Nikos 0 0 0 24 0 0
RBSE 0 0 8 24 0 0
W3 Catalog 0 0 0 24 0 0
WebCrawler 4 3 0 24 15 17
WWwWw 2 0 0 22 8 8
Yahoo None 0 0 24 0 0
NOTE: In 1995, the number of known URLs with the search string was 24.

Result average: P average:- 48%, Raverage= 7%

Search Numberof | Number of | Number of | Number Precision (P) | Recall (R)
System Hits Duplicates Miss-hits Missed % %

Alta 97 9 23 264 25 27
Vista/Yahoo

Excite 114 10 29 247 29 32
Infoseek 8 1 319 2 2

Lycos 57 7 15 297 15 16

Hotbot 247 28 58 155 51 61
OpenText 19 - 7 318 6 6

NOTE: In 1997, the number of known URLs with the search string was 325.
Result average: Paverage= 21.3%, Raverage= 24%

Table 3. Test results [DESAI02]

Search Number of | Number of | Number of | Number Precision (P) | Recall (R)
System Hits Duplicates | Miss-hits Missed % %

Alta 99 24 67 230 24 30
Vista/Yahoo

Google 155 10 403 174 21 47

Hotbot 62 21 121 267 13 19

Lycos 239 27 711 90 22 73

NOTE: In 2001, the number of known URLs with the search string was 329,
Result average: P average= 20%, Raveragez 423%

Search test results over the years

60

50 ‘///’//////’//i4’x\\\\\\\\\\\\
__40
9
@ 30 ¢
8 \»
= 20 e a

/ I Y
10 J— ——
. r/— ___________ k _
1995 1997 2001
year
’——O—best ~g-average — -A— worst 1
Figure 1.1(a) 1995-2001 Test trends
Search test results over the years

80

. ///.
— 50
é /
= 40 |

1997 2001

‘+ best —&@— average — - — worst |

Figure 1.1(b) 1995-2001 Test trends

Figure 1.1 (a)-(b) show that while the recall has gone up to a very respectable
percent, the precision has actually been reduced from the tests in 1997 and the best value
for the tests in 2001 is less than 25%. Although search engines have improved over the
years, there are still some problems faced by users that are not solved. For example, by
using the links provided by the WWW, users can easily access the pages or sites that they
are familiar with. However, if users look for a specific page or a particular subject with
these links, it is neither precise nor efficient. The problem is that they may get
information that may be useless or lose sight of their original purposes in the web.

In order to make effective use of the information and services of the Internet,
some popular search engines are classifying the information in hierarchal catalogs or
indexes to help users in their search, such as Google and Yahoo. Although cataloguing
and indexing information is good for general topics, it may be time-consuming for users
who are interested in a particular topic, which may not fit in one of the categories offered
by the public catalog. Since most people, in fact, just need one or at most a few relevant
items, they do not need to learn the technology to get the appropriate search results. That

is the developing trend of search engines. [DESAI02]

1.2. Proposed solution

In practice, the books and other materials a library acquires are well organized by using
indexing, classifying, and descriptive as well as subjective cataloging. Users, who are
interested in a particular topic or a special subject, without the specialized knowledge of
library cataloging, may acquire the appropriate search results easily. With the help of an

experienced librarian, users are able to find the required material quickly as well.

In order to enable individuals to make efficient and effective use of the wealth of
electronic resources of various types on the Internet, an indexing system is to be built to
provide a system that will have users to retrieve electronic resources distributed
geographically over nodes interconnected by wide area networks (WAN). The system
should be an open library system that allows an integration of data from multiple
information sources. Meanwhile, with the purpose of avoiding the above problems, a
standard index structure should be constructed, and a bibliographic system must be built
by using standardized control definitions. Furthermore, with the aim of allowing users to
have easy access to the original materials, indexing and cataloging must be accurate, easy
to use, properly classified, up-to-date and complete for its area of coverage. Moreover,

the system should provide an ease-to-use graphical interface for users.

1.3. Organization of the thesis

The rest of the thesis is organized as follows:

Chapter 2 introduces the concept and development of a digital library, and
highlights the solution of the CINDI to the current problems of information retrieval and
discovery. It attempts to give an overview of the earlier work this thesis is based upon as
well as emphasis of the direct relationship between the CONFSYS system and the CINDI
system, from the physical architecture to the functional structure.

Chapter 3 describes the general approaches for high availability, including file-
based methods and database replication provided by database management systems. In
the current version of the CINDI system, we provide a high availability solution by

combining a file-based approach with database replication.

Chapter 4 presents the query processing methods applied to the CINDI system.
Here, we report on how to protect the ACID properties of the transactions, and how to
speed up the searching. The fuzzy search is introduced to provide wider latitude in
searching. In addition, we provide the details of the integration of the CONEFSYS with the
CINDI system.

Chapter 5 gives the methods used to cope with the security problems in the
CINDI system. Several approaches for security are introduced, such as cookies and
sessions, HTTP authentication, as well as cryptography. By using a judicious integration
of these approaches, the CINDI system provides adequate security.

Chapter 6 gives the results of some tests used and the feedback of the uses of the
CINDI system.

Chapter 7 concludes the thesis by highlighting the significant contributions of the
current work, discussing various possibilities of improving the CINDI system, and

pointing out the directions for future development.

Chapter 2 The CINDI System

A digital library [ARMSO02] is informationally defined as a managed collection of
information in digital formats that is accessible over a network with associated services.
The information stored in the library should be partitioned based on the topics that are
common to the relevant data. For example, a digital library can be designed and built for
computer science; another one can be for mathematics. These separate libraries although
distributed could be integrated with a common interface, while the information contained
within each library remains separate. The purpose of a digital library is to provide a
central location for accessing information on a particular topic. A digital library should
also have an easy-to-use user interface for users to search and browse the contents.

To use a traditional library, a reader must take time to go there. Since many
people do not have a library nearby, they have poor access to the relevant information. In
contrast to a traditional library, a digital library brings the information to the users’ desks
by using computer and network. Unlike the paper documents contained in a library
uniquely, the digital information is always available on a network although it is
maintained at a single site. Moreover, to keep the information up-to-date is much easier
in a digital library than in a traditional library. With the technical developments, more
and more universities and organizations are working on digital libraries for information
retrieval and discovery [UCRO0].

Catalogs are used by almost all libraries as the core technology to help users
search the materials in a library. Most such catalogs can provide comprehensive
bibliographic information, such as title, authors, as well as administrative information

(e.g. where items are stored). Currently, some cataloging rules adopted by some digital

libraries are created by professionals for some specific subjects. For instance, the
Machine-Readable Cataloging (MARC), initially developed and used for conventional
materials on magnetic tape in the Library of Congress, was extended and utilized by the
Online Computer Library Center (OCLC). The MARC uses numbers and special
characters to present the items of a bibliographic index (Table 4), and is hard to be
understood. Another example is the Medical Subject Headings (MeSH) developed by the
National Library of Medicine (NLM). Because it adopts the controlled-vocabulary
approach [ARMSO02] that requires professional training to apply effectively, its users and
reference librarians must understand medicines and are familiar with the cataloging
indexes.

A wide variety of materials in digital forms are stored in a digital library,
including textual and non-textual; however, the library catalogs developed for the
traditional materials are not suitable for electronic information. The Dublin Core
[ARMSO02] with only fifteen descriptive items, developed by a workgroup in 1995, was
initially created as a simple and single set of metadata for the untrained people who
would like to publish their electronic works. The following table shows that the Dublin
Core (DC) is simpler for maintenance and easier to be understood than the MARC, which
is more precise due to its complexity in description. Although simplicity results in
imprecision in information retrieval, it is so extensible as to be internationally [NP02]

[MILLER96] [AD02] [OKKO01] applied for resource description.

Table 4. MARC to Dublin Core Crosswalk [MARC01]

DC Elements MARC fields Notes
Title 245
Creator 100, 110, 111, 700, 710, 711 Name fields in MARC are mapped to
720 DC Creator rather than Contributor.
Subject 600, 610, 611, 630, 650, 653
Description 500-599, except 506, 530, 540, 546
Contributor Contributor is not used in conversion.
Publisher 260%a$b "$" is used to represent the control
Date 260%¢c character subfield delimiter.
Type Leader06 a,c,dt text
e,f,a.k image
ij sound
m,o,p,r no type provided
Leader07 C,S.p collection
655 Field 655 may be used more specific
type information.
Format 85639
Identifier 856%u
Source 786%0%t
Language 008/35-37
546
Relation 530, 760-787%0$t
Coverage 651
752
Rights 506, 540

2.1. The proposal of CINDI

The Concordia INdexing and DIscovery System (CINDI), which was proposed by Desai
et al. in 1994 [DESAI94], is to build a digital library system with user-friendly interface
with which resource providers or contributors can “publish” their resources. Combined
with the basic human knowledgebase of cataloging, the system will provide a number of
features of expert system for subject classification that can be used to scan the
information resources to be submitted to the system and assign appropriate subjects for
each resource. Furthermore, an alternate interface system allows the contributors to

prepare and enter the bibliographic information about each resource manually using the

10

standardized index scheme. By using this system, any users of the system can search for a

special topic or subject with typical search items, such as author, title, subjects, and so on.

2.2. The solution of CINDI

The heart of any bibliography or indexing system is the record that is kept for each item
that is being indexed. Standardization of a bibliographic entry allows libraries to
exchange information about their collections. A number of projects in the Library domain
have addressed the problem of cataloging and in particular cataloging of information in
electronic and multi-media format, such as the MeSH and MARC systems. However,
such systems are designed for professional catalogers, and many of the items include in
them, though useful, are beyond the comprehension of most ordinary users. In addition,
the sciences and other technical fields rely on abstracting and indexing services to
determine the relevance of a document rather than catalogs. As a result, the Dublin Core
with the fifteen elements is too simple to provide such helpful information about a
resource.

In order to address these problems, the CINDI uses index entry called Semantic
Header [DESAI95] and provides a semi-automatic mechanism to register, manage as well
as search the bibliography. Although currently the system requires the provider or
contributor of information to register the resource by entering an index for the resource,
there are plans to automate this operation. Considering the function requirement of users
of the CINDI system, there are three general categories of users defined as follows:

e Provider or contributor: who adds an information resource to the CINDI collection.

e User: who searches the CINDI index for a resource and downloads it.

11

e Reader: who, registering the CINDI system as a user, has downloaded a resource and

wants to register some comments or annotations on the corresponding semantic

header.

The overall system uses knowledge bases and expert subsystems to help the users

during the register and search processes. One such need for an expert system is in

avoiding chaos introduced by differences in perception of different indexers.

2.3. The architecture of CINDI

Most contemporary software systems are organized as described in Figure 2.1, with three

main components: information presentation (i.e. graphic user interface or GUI),

information processing and information storage. For database application, based on the

general software architecture, the implementation structure is made up of a two-tier

client/server, a three-tier or an n-tier system that could, in addition, be a distributed

system. The structures define a relationship between information presentation, processing

and storage within a database system.

Information
Presentation
(or GUI)

emmesmm——— require.—-.-—-—»
Information
Processing

o — rESPONSE mmmessssssat

require -

.‘.——-—. FESPONSE memsmsmmanent

Inforamtion
Storage

Figure 2.1 The structure of software

Two-tier systems are the traditional approach to database architectures. This

architecture creates two layers: the client layer, which performs information presentation,

and the server layer, which takes care of information storage. Processing management is

split between the client and the server. (Figure 2.2)

12

Tier 1 Tier 2

< > Database

Presentation Processing

Processing

Database Management

Figure 2.2 The logical view of the 2-tier systems

Because all technologies can be provided by one vendor with the same formats
and protocols in the two-tier system, it is feasible for the small-scale application on a
local area network (LAN). However, its scalability problem limits its application as a
web application because of the session management. Furthermore, a server must maintain
a connection via “Keep-alive” messages with each client even when no work is being
done. This results in less scalability in the two-tier system. To solve the above problem, a
middle tier is introduced to reduce the number of sessions.

The three-tier systems separate the processing management from the user system
interface client environment and the database management server environment to be a
middle tier. That is, the client layer performs presentation only; the middie tier provides
processing management, which is implemented in a variety of ways, such as transaction
processing monitors, message servers, or application servers. For the web application, the
middle tier is viewed as the web server. (Figure 2.3)

Although the three-tier system development environment is reportedly more
difficult to be used than the visually oriented development of two-tier systems, the
advantages of a three-tier approach outweigh its complexity. First, as mentioned

previously, the middle tier can help reduce the number of sessions by providing functions

13

such as queuing, application execution, and database staging so as to enlarge the capacity
of the three-tier systems. Furthermore, with the low cost of ownership for the client, it
hides the complexity of distributed processing from the users and improves its
performance and flexibility. Moreover, easier upgradeability and maintenance can be
achieved. These benefits make the three-tier more flexible, and it has become more

prevalent in web-based applications.

Presentation Layer Business Layer Data Layer Q

Processing
HTML Form Services Database
N including session B » Management P Database
service, entity
service efc.
v

Figure 2.3 The logical view of the 3-tier system

As a web-based application, the CINDI system adopts the three-tier architecture,
which supports the multi-user, multi-thread environment. In order to optimize data usage,
the distributed approach is applied through the distribution of the server backend. The

logical view of the CINDI architecture is depicted in Figure 2.4.

Presentation Layer Business Layer Data Layer Database
HTTP Sever
HTML Form |«g > P Database Database
Management
PHP

Database

(0

Figure 2.4 The logical view of the CINDI system architecture

Based on the architecture, the CINDI system functionally comprises five principal

subsystems (Figure 2.5) as follows:

14

1. The register system, which allows contributors to provide resources and create
bibliographic data records describing electronic resource by using automatic
generator or by filling in and submitting HTML (Hypertext Markup Language)
form.

2. A distributed and replicated system, which stores these records describing
electronic information resources.

3. A search and annotation system, which allows the database to be searched for
records corresponding to electronic resources of interest, and also allows users to
make their comments on the resources of their interest.

4. The conference support system (CONFSYS) [GUO2] [JINO3], which collects the
papers submitted for a specified conference and allows the program committee
members (reviewers) to evaluate those papers that are assigned by the program
chair based on the reviewers’ experience and interest. The papers would be
included in the CINDI database thus improving its collection of the latest
development.

5. The administrator system, which allows the system administrators to manage the
information of the users as well as electronic resources, and to integrate the
information of resources coming from the specified conference with the CINDI.
The CINDI system is built from standard Web components, including Apache

server with the Secure Sockets Layer (SSL). The following sections will discuss the

major subsystems in detail.

15

Register

Register HTTFD Server Search \ Administration
Systenf with SSL
Search
&Annotation .
. System Admin
Semantic Header System
Generator to build HTTPD Server HTTPD Server
bibliographic records with SSL with SSL
(ASHG)
Database <: Database
Preprocessing Preprocessing
-
Backup DB
Distributed Database System
_—

HTTPD Server
with SSL

Database

CONFSYS Preprocessing

* CONFSYS DB

Confsys\§ystem

Figure 2.5 The structure of the CINDI system

16

2.4. Semantic header

The CINDI system provides a semi-automatic mechanism for generating a standardized
index called “semantic header” [DESAI95]. The semantic header is designed to ensure
homogeneity of syntax and semantics of such an index. It is the heart of the system that
records the characteristics of a resource being indexed and provides the succinct
information regarding the resource contents. The semantic header is intended to include
those items (see Figure 2.6) that are most often used in the search of an information
resource such as a title, name of one of the authors and subject as well as sub-subject;
these items are used in the majority of search with 70% and 50% [DESAI95] for authors
and subjects as well as sub-subjects, respectively. Meanwhile, the abstracts and
annotations are included since they are useful for users to make decisions on the
relevance of the resource.

<semhdr>

<title> required </title>
<alt-title> OPTIONAL </alt-title>

<Subject> required: a list each of which 1includes fields for
subject and up to two levels of sub-subject: at least one entry
is required </Subject>

<language> OPTIONAL: language of the information resource
</language>
<char-set> OPTIONAL: character set used </char-set>

<author> required: a list each of which includes role, name,
organization, address, etc. of each person/institute responsible
for the information resource: at least the name or the
organization and address is required </author>

<Keyword> required: a list of keywords </Keyword>
<Dates>
<Created> required: </Created>

<Expiry> OPTIONAL: </Expiry>
<Updated> system generated </Updated>

17

</Dates>

<Version> OPTIONAL: version of the resource </Version>
<Supersedes> OPTIONAL: which version is being replaced
</Supersedes>

<Coverage> OPTIONAL: audience, spatial, temporal </Coverage>

<Clasgification> OPTIONAL: nature (legal, security level etc.) of
the resource </Classification>

<Identifier> A 1list of domains for identifiers and the
corresponding values: typical identifiers could be one of more

Unique Resource Locator(URL), Call No. for the resource, unique
name of the resource (URN), site where the item 1s to be
archived: at least one required

</Identifier>

<Abstract> required: of the resource </Abstract>
<Annotation> OPTIONAL: </Annotation>

<SysReg> OPTIONAL: list of system reguirements for example

hardware and software: the component and the corresponding
requirements are given
</SysReqg>

<Source> OPTIONAL: gives the source or related list of resources
for each such resource it indicates a relationship and gives an
identifier which includes the domain and the corresponding value
</Source>

<gize> size of the resource in appropriate units (e.g., bytes)
</size>

<Cost> OPTIONAL: cost of accessing the resource </Cost>

< /semhdr>
Figure 2.6 The structure of semantic header [DESAI95]

2.5. The index registering subsystem

The index registering sub-system provides a graphic interface (see Figure 2.7) to
facilitate the provider of a resource to register the bibliographic information for the
resource. The interface allows the provider to enter the corresponding information with

the restriction on the indexing standard by providing the pop-up selection windows.

18

Figure 2.7 The interface of registering a resource

Figure 2.8 shows the function processing of the registration subsystem based on
the logical structure of the CINDI system, in which S1, S2, S3, S4, and S5 are symbols of
the PHP scripts that process the users’ requests and servers’ responses. In order to help
the providers catalogue a resource with controlled terms, the subsystem offers a
knowledge based expert system, which models the expertise of a reference librarian, to
the resource providers with the context-sensitive help on the subject entry. In addition,
for files in a number of formats, such as HTML, TEXT, LATEX, RTF, and PDFI, an

automated mechanism called Automatic Semantic Header Generator (ASHG)

" This work is in progress at the time of writing this thesis.

19

[HADDAD98] [ZHANGO02], is used to generate a draft version of the semantic header
for the new resource being uploaded to the system (see Figure 2.9). Once this draft
semantic header is verified by the resource provider, the information entry can be
registered into the database described in Section 2.6. Here, the project for this thesis

integrated the ASHG for the PDF files with the previous work.

HTML
Upload File Display File Form Bmlgiﬁgg'g&‘;ﬁmrd Authors’ Form
Submit / / Submit /\submit /\Submit
PHP
Script 52 S4
submit the S5
S1 (generate S3 { .
(upload files to semantic header (process semantic semeil:tttl)ctngader in(f;)er(r:r?;(tji;zeof
server) for the uploaded header) bibliographic authors)

files)

Data
File
Data File .] : . :
(File Type) Semantic Header File || Temporary Data File Data File Data File
Figure 2.8 The logical structure of the index registering subsystem
<semhdrB>

<useridB> <useridE>
<passwordB> <passwordE>

<titleB> High Availability Solutions for Transactional Database
Systems <titleE>
<alttitleB> <alttitleE>

<subjectB>

<generalB> Computer Science <generalE>

<sublevellB> Software <sublevellE>

<sublevel2B> computer programs and softwares <sublevel2E>

<generalB> Computer Science <generalE>

<sublevel1B> Database management <sublevellE>
<sublevel2B> transaction processing systems <sublevel2E>

20

<generalB> Computer Science <generalE>

<sublevellB> Performance of computer systems <sublevellE>
<sublevel2B> reliability, availability, and serviceability
<gublevel2E>

<subjectE>

<languageB> English <languageE>
<char-setB> <char-setE>

<authorB>

<aroleB> Author <aroleE>

<anameB> <anameE>

<aorgB> <aorgE>

<aaddressB> <aaddressE>

<aphoneB> <aphoneE>

<afaxB> <afaxE>

<aemailB> Budrean@sita.int <aemailE>

<authorE>

<keywordB> transact , solution , high, avail , use , paper ,
express , approach , database <keywordE>

<identifierB>

<domain3B> FTP <domain3E>
<value3B> <value3E>
<identifierE>

<datesB>.

<createdB> 2003/6/14 <createdE>
<expiryB> <expiryE>

<datesE>

<versionB> <versionE>
<spversionB> <spversionE>

<classificationB>
<domaindB> <domaindE>
<valuedB> <valuedE>
<classificationE>

<coverageB>
<domain5B> <domainS5E>
<valueb5B> <valueSE>
<coverageE>

<system-requirementsB>
<componentB> <componentE>
<exiganceB> <exiganceE>
<system-requirementsE>

<genreB>

21

<formB> <formE>
<sizeB> 34193 <sgizeE>
<genreE>

<source-referenceB>

<relationB> <relationE>
<domain-identifierB> <domain-identifierE>
<gsource-referenceE>

<costB> <costE>

<abstractB>

In our increasingly wired world, there is a stringent need for
the IT community to provide uninterrupted services of networks,
servers and databases. Considerable efforts, both by the
industrial [1-13] and academic [14-17] community have been
directed to this end. In this paper, we examine the regquirements
for high availability, the measures used to express it and the
approaches used to implement this for databases.

We present a high availability solution, using off the Shelf
hardware and software components, for transactions based
applications and give our experience with this system.
<abstractE>

<annotationB> <annotationE>

<gemhdrE>

22

+JHigh
%

2003
selact a day *}} Select a month ¥§| 2003

3 s
In our increasingly wired world,

Uithere is a stringent need for the IT
comnunity to provide uninterrupted
servi tworks, ser

. Considersble efforts, both by the
1ndustrial {1-13] and academic [14-
17} community have been directed to
this end. In this paper, we examine

Figure 2.9 An example of semantic header and its interface

2.6. The semantic header distributed database system

The bibliographic records registered by resource providers are stored in a semantic
header distributed database system (SHDDBS). For the CINDI system users, the
underlying semantic header database may be considered to be a unified centralized
system. In fact, it would be distributed and replicated database system that supports
reliable and failure-tolerant operations. This distribution is based on subject areas so that

the database can be viewed to be horizontally partitioned.

23

Server

Database /.

Management
9 3
Database m
Management
Transaction
Processing
\ Database <>
Management W

Local DBMS Horizontally
Partitioned

Figure 2.10 The view of the horizontally partitioned database system

It is possible that the semantic header database on different subjects will be
maintained at the different nodes of the Internet as shown in Figure 2.10. The locations of
such nodes need only to be known by the appropriate subsystem. A database catalog
would be used to distribute the information. However, this catalog itself could be
distributed and replicated as is done for a distributed database system [DESAI95] as
described in Chapter 3.

Database catalogs will also be used to store information regarding subject areas
maintained in the SHDDBS so that the users can select items for indexing and retrieving
semantic headers. Thus, each node will contain a catalog consisting of all subjects as well

as information relating to the locations of semantic headers, pertaining to a subject, in the

distributed system.
The semantic header information entered by a contributor of a resource using a

graphic interface is relayed from the user’s workstation by a client process to the database

24

server process at one of the nodes of the SHDDBS. The node is chosen based on its
proximity to the workstation or on the subject of the index record. On receipt of the
information, the server verifies the correctness and authenticity of the information and
after finding everything in order, sends an acknowledgement to the client.

The server node is responsible for locating the partitions of SHDDBS where the
entry should be stored and forwarding the replicated information to the appropriate
nodes. In addition, the database server process is in charge of providing the catalog
information for the search subsystem. In this way, the various sites of the database work
in a cooperating mode to maintain consistency of the replicated portion, the replicated
nature of database also ensures distribution of load and ensures continued access to the

bibliography when one or more sites are temporarily nonfunctional.

2.7. The search and annotation subsystem

When making a search request, the client process communicates with the nearest catalog
to determine the appropriate site of the SHDDBS. Subsequently, the client process
communicates with the database and retrieves one or more semantic headers. The results
of the query could then be collected and sent to the user’s workstation. The contents of
these headers are displayed, on demand, to the user who may decide to access one or
more of the actual resources. In such a case, the best source is chosen based on optimum
costs. The client process would attempt to use the appropriate hardware/software to
retrieve the desired resources.

In traditional libraries, there are experienced reference librarians to help users
locate the information of their interest. In the CINDI system, we use a graphical user

interface and an expert system to model a human reference librarian in the search

25

subsystem. By providing controlled items for a bibliographic record, the interface guides
the CINDI users in entering the various search terms. The search subsystem generates the
response to a search query by using the query manager, the error handler, the subject
look-up manager, and the file manager. The query manager is responsible for interacting
with the SHDDBS by sending queries and receiving search results. The subject look-up
manager communicates with the catalog database by conducting standard subject term
look-up. The error handler ensures that the query entered is valid otherwise presents the
user with the relevant message. The file manager plays a role in managing the uploaded
and downloaded files for the users who need them.

Since the scientific world depends on peer review of documents submitted for
publication, the annotation sub-system encourages the users to make annotations on the
existing resources; these serve the role of reviews and are stored along with the semantic
header in the SHDDBS such that annotations could help the future users who are seeking
for the resource to make a better decision on the relevance of the selected resource.

Based on the logical view of the CINDI system, the search and annotation
subsystem is depicted as follows. Here, S1, S2, S3, and S4 represent the middle tier PHP

scripts to process the requests of users.

26

HTML

Search Form Display Form Annotation Form
Submit Submit . Submit
Submit
S3
PHP S1 82 (acquire the S4
Script (access information (achieve information comments on files (record the comments
required by the user) of files) and read/write into the data file)
them)
Data
File Data File File Data File

Figure 2.11 The logical structure of the search and annotation subsystem

2.8. CONFSYS: the conference support system

Since a conference is a major vehicle to report new research and development in human

endeavors, the conference support system (CONFSYS) has been integrated as a

subsystem of the CINDI. It thus provides a facility to collect the documents submitted to

a conference supported by the CONFSYS and help in the evaluation process.

Authors of a conference are able to submit their papers and register their personal

information via the Internet. The program chair can allocate the submitted papers to the

program committee members (i.e. reviewers) manually or automatically on the Internet;

the latter can review the assigned papers and make comments through the web. Not only

the speed but also the accuracy of the evaluation process would be improved

significantly.

27

Based on the previous work [GUO02] [JINO3], which employs Apache and Tomcat

with SSL as its web server to manage the requests from users and the responses from the

relational database management system (RDBMS), we imported the ASHG into the

CONFSYS whose structure is re-designed as follows:

Authors

Program Chair Reviewers

Upload form
HTML

Decision Evaluation

g 7

—_——_———

| Local Server

L | HTTPD server
with SSL

HTTPD Server with
SSL

HTTPD Server
with SSL

Semantic Header
Generator to build
bibliographic records

Database
Preprocessing

Allocate Algorithm Aggregate Scores

Database
Preprocessing

CONFSYS DB

~—

l—F{ te S K
Lemoe erver |

e

Backup DB

Figure 2.12 The structure of the CONFSYS

Here, the local server represents the server set up for a specific conference, and the

remote server is used to backup the data for the conference in case the local server fails.

28

Meanwhile, it acts as a bibliographic subsystem of CINDI to be merged with it after the

conference submission date.

2.9. The administration subsystem

This subsystem provides a graphical user interface for the system administrators to
manage the registered resources, and the information about the providers and users of the
CINDI system. The objective of the web interface is to provide a convenient way for an
administrator to manage and monitor the bibliographic indexes and the subsystem for
conferences, without actually selecting, and editing records directly from the database.

Figure 2.13 shows the logical structure of the function.

HTML Information Display Display Information Search Form

\ Submit / Submit Submit

PHP S1 (S? .
Script (access information S3 S4 access information
required by the user) (process operations (confirmation of based on a search
on the data) operation) request)
Data
File

Data File Data File Data File

Figure 2.13 The logical structure of the administration subsystem

29

In order to make this subsystem flexible, it offers a search function for the
administrators for the personal information of users and the bibliographic information of
resources, such as user name, email, author’s name, and title of the resource and so on.

Since the CONFSYS is a subsystem of the CINDI, the information collected by a
conference managed by the CONFSYS system should be integrated with the
bibliographic database of the CINDI when the conference program is finalized. This
helps enrich the digital library with the most recent development in the area covered by

the conference. As for the details of integration, it will be discussed in Section 4.4.

30

Chapter 3 High Availability

3.1. Introduction to high availability

Rapid growth in the use of the Internet and other communication technologies has forced
network service providers to offer server systems with high availability (HA) features.
The goal of HA is to increase the availability of an application from the users’
perspective. Improvements in availability are realized by providing more reliable
components (including software) and by providing redundant components in parallel such
that no single feature can cause a failure of the entire system. HA relies on the absence of
single points of failure (SPOF) [DELANYO0O], so clusters are used to address the
expectations of HA. Clustering ties several servers together so that they work as one,
adding both redundancy and failover capacity to the system.

A central feature of a cluster is the ability for failover of its components and
applications. Applications that were running on the failed node are restarted on its backup
node(s). In order to support this failover mechanism, it is important that data, including
text, is current on the backup node(s).

In the simplest failover situation (Figure 3.1), two systems are participating: it
consists of the active primary or production server and the secondary or standby server,
which will take over the processing tasks when the primary server fails. If the secondary
server is sitting idle while waiting to take over, it is considered passive. If the secondary
server is occupied with server tasks of its own while also waiting to take over, it is

considered to be active as well.

31

workstation wgpKstation

workstg' n worgtation

\ /
. Production Databases fails and New
oatacs % Standby Standby Database becomes Pmdupmn Production
Database Database Production Database Da‘ bas\e Database

<L N <L I L T £y 23
HEE HE

Figure 3.1 The failover situation with two systems

The CINDI system applies this primary/standby structure to achieve its high

availability because it is the safest while being the simplest and cost-effective.

3.2. Methods of data replications

There are several methods used to replicate data. The common forms of replication
include file-based replication, database data-file replication, and disk block replication.
File-based replication is similar in function to a remote copy (i.e. using rcp or scp). The
copy objects are at the file level. Database data-file replication is at the file level.
However, the major difference between a standard file and a data-file is the state of file.
The disk block copy method uses the disk block as the copy object. The replication

approach chosen depends on the nature of the data to be replicated.

3.2.1. File-based replication
Under Linux, file-based replication can be provided by rcp, scp, and other remote user
commands. Since this method is file-based, user permissions are very important to be

considered when replication is set up. If a file or directory is not readable, it will be

skipped over.

Because rsh and rcp are clear text protocols with passwords authentication only

and without any encryption or shared secret between two connected computers, it is easy

32

to be attacked by a cracker. Secure shell (ssh and scp) provides strong authentication
and secure communication over insure channel, it is, therefore, ideal as a replacement for
the clear text protocols, such as rsh and rcp. The significant advantages of ssh and
scp are that they encrypt data not only before transmission but also all the way from the
client to the destination server, and the session is not vulnerable to any of the security
problems of telnet and rlogin, which belong to clear text protocols. Moreover, it
allows users to log on to a server without ever being prompted for a password but with an
encrypted pair of keys in form of a long text string, that is, a public key and a private key.
The public key of username@hostname is required to be copied to the file
$HOME/ .ssh/authorized_keys of the system to be connected to, while the private
key is stored on the system requesting the connection. This can be used for multiple
connected systems since users can have multiple public keys for these systems in the file
SHOME/ .ssh/authorized_keys. Thus, ssh and scp on the host can be used to
execute commands on and copy files to and from the remote host just as rsh and rcp,
but without their vulnerability of passing passwords in clear text and with added

encryption of all transmission.

3.2.2. Disk mirroring across nodes

Distributed disk block device (DRBD) copies disk blocks updated on the primary system
to the backup system by sending a “heartbeat” to mirror whole disk blocks. No periodic
replication is required since updates are made as they occur. Prior to failover, the active
primary node is the master. After failover, the active backup node will become the
master. Because both nodes are kept consistent, automatic failover can occur without the

loss of data.

33

Each device has a state, which can be “primary” or “secondary”. The application
is supposed to run and to access the node with the device in the “primary” state. Every
update is sent to the local “lower level block device” and to the node with the device in
“secondary” state. The secondary device simply writes the data to its lower level block
device. Reads are always carried out locally. If the primary node fails, the secondary
device is switched into the “primary” state by heartbeat and starts the application. If the
failed node comes up again, it becomes a new secondary node, and its content has to be
synchronized to the primary one. In case the heartbeat fails, the secondary node will
assume that the primary node failed, and take over services that were running on a

primary machine.

3.2.3. Database replication

Databases are the most critical component of the Web and corporate systems, and they
contain the most valuable information, without which IT-based activities could not be
performed. Techniques used to replicate standard files do not work when replicating
databases. Thus, database systems pose the toughest challenge for high availability and
performance.

In general, two major approaches for database replication are available:
asynchronous replication and synchronous replication. The asynchronous replication
usually is a built-in database feature and makes use of the transaction logs that are sent to
the backup nodes and applied online. Another method used for asynchronous replication
is via triggers and/or snapshots, which are able to update objects in different databases.

The synchronous replication takes advantage of the two-phase commit (2PC) protocol

34

that can be a built-in feature of database, or a middle tier can be used to ensure that the

transactions are committed or rolled back at all sites.

3.3. Solution for the CINDI system

In the course of operation, the CINDI produces and makes use of different types of data,
which are the principle factors of the replication solution. It includes application text and
uploaded/downloaded files, which must be the same on the backup node as those on the
primary node, as well as transaction data with the ACID properties; this is the biggest

challenge for the database replication.

3.3.1. Transaction data
Transaction data is derived from the operations of business. These data can reside in a
relational database, file or other database formats, such as hierarchical repositories,
object-oriented repositories, and flat files. Transaction data can be stored as a regular text
or be controlled by a Relational Database Management System (RDBMS) where strict
rules are applied. Transactions must adhere to the ACID properties depicted below,
which must be maintained in case of a failure, as well as during normal operations.
Atomicity: Transactions are atomic (all or nothing). That is, all transactions must be
complete. Once a transaction is completed, a “commit” is issued. This places
the data permanently in the database. If an incomplete transaction is

interrupted or cannot be completed, then the entire transaction is aborted.

Thus, it has no effect at all.
Consistency: Data must be consistent within the database at all times. That is, a

transaction takes the system from a consistent state to another consistent state.

35

For example, in an accounting or banking application where debits and credits
must balance, the database remains consistent because all transactions are
atomic. If a debit and its corresponding credit are included in the same atomic
transaction, the database will remain consistent.

Isolation: Transactions must be isolated from one another. That is, even though there are
many transactions running concurrently, any given transaction updates are
invisible from the rest. Isolation provides consistent results irrespective of
timing issues. Another way of saying this is that transactions are serial. Even
though processing may occur in parallel, transaction effect is as if they had
run one at a time. One example is the calculation of interest in a banking
application. Processing timing should not result in a different balance of an
account.

Durability: Finally, transactions must be durable. Durability ensures that the database
remains consistent even during a failure of the system. Any data entered into
the database prior to a failure must be removed after a failure if it would cause
the database to be inconsistent. In other words, transactions in progress during

the failure must be rolled back to restore the database to a consistent state.

3.3.2. Distributed and replicated scenarios

The CINDI database system adopts the master/slave structure for distribution and
replication. The master/slave architecture is a means to create and maintain a remote copy
of a production database so that critical data is protected from loss in case some harm
befalls the production server or it requires planned maintenance that takes it offline. In

that event, the standby database can take over processing from the primary production

36

database, providing near continuous database availability. For the web-based applications
needing high availability failover capacities, using master/slave databases is
recommended because this architecture is the simplest-to-setup, lowest cost option for
full high availability database failover.

In the CINDI system, since there are several file-based types of data produced by
the operations of the system as mentioned previously, file-based replication should be
considered; it is designed for replicating application text, including web pages and
images referenced by the web pages. As for uploaded/downloaded files, they can be
treated as application text except for privileges. Since application text as well as
uploaded/downloaded files are less dynamic and resides in the directories accessible to all
users, user/group permission is set to nobody/nogroup, which is the privilege of the web

users. Also, replication frequency can be set as once per day (Table 5).

Table 5. ReBlication configration

Directory Contents Replication Frequency | Permissions
methods
~www Application web pages SCP 24 hours User: nobody
Application scripts* Group: nogroup

Application images
Application C/C++ files*

~lpapers Uploaded/downloaded files SCP 24 hours User: nobody
Group: nogroup

mysq| MySQL database MySQL Time User: nobody
Replication configured Group: nogroup

NOTE: * excutable

The replication work will be done by a cron job, which is a pretty standard feature
of all Unix operating systems. It is simply a set of commands that are normally run using
a shell and can be periodically run at times specified by users. Using the "crontab"

command from the shell, a cron job can be created.

37

e crontab -1 will show the currently set up cron jobs on the server.
e crontab -r will delete the current cron jobs.
e crontab -e will allow shell users to add or edit the current cron jobs by using the
default text editor to edit the "crontab file".
For example, in the CINDI system, the time is set in the early morning everyday. Thus, a
cron job will be set up with the command “crontab —e” as follows:
02 * * * ghell_script
Here, “shell_script” refers to a shell command or a shell script to be executed for the
replication; the first five numbers represent the specified time as described below:

o The first number is the minute of the hour for the command to run on.

The second number is the hour of the day for the command to run on.

The third number is the day of the month for the command to run on.

The fourth number is the month of the year for the command to run on.

The fifth number is the day of the week for the command to run on.

Since the replication is required to be done everyday, the last three numbers are replaced

by “*’,.

3.3.3. Replication in MySQL database

Replication is the process of copying and maintaining database objects in multiple
databases that make up a distributed database system [ORACLE99]. Basically, the main
idea behind replication is that an update operation is performed first locally, and then,
propagated to other remote replica databases belonging to a single whole system;
therefore, the entire system becomes distributed. Theoretically, supposing there are no

delays due to synchronization and no update transactions conflicts, this system would

38

assure the end user a fast and consistent way of information retrieval with high

availability because of alternate data access. Couloris and Dollimore [GJ88] summarize

motivations for replication in the following way:

Performance enhancement: Replication can reduce communication traffic in a
distributed system and improve response time by providing clients with multiple
destinations and switching their requests to a certain distributed database server
depending on the origin of clients;

Enhanced availability and robustness: Replication can increase system availability
by making it possible to access the same file from more than one server so as to
enable several clients’ requests to be serviced by another server when one of the
servers is not reachable, thereby reducing the effect of server and communication
failures;

Consistency: In a distributed database system, replication enables different replica
databases to give the same results using the same logical set of data for the same
request from the client at the same time. This concept has to deal with a trade-off
when translated to a real system; when data are updated on a local database, replicas
have to be synchronized. This propagation process can be done synchronously or
asynchronously as mentioned above. The synchronous model is capable of
maintaining the consistency of the system through an ordered processing of the
requests where subsequent requests are "locked" until existent ones are done in order
that all replicas are updated as consistent transactions; however, performance is
reduced by locks. In contrast to synchronization, the asynchronous model does the

data propagation process after updates, which will take place, instead of immediately,

39

with a delay that can vary from architecture to architecture. Therefore, it is possible
that a client could access a data from a replica, which was not yet updated.
Consistency is therefore not guaranteed, whereas performance is.

¢ Replication transparency: In a distributed database system, transparency is the
property of hiding the structure and mechanisms of a system to the clients in order to
make them view the system as a single rather than a collection of different
components.

Since replication in MySQL is a pretty recent addition still under development,
only the master/slave structure has been adopted as the replication model by MySQL.
Basically, in a distributed system, a MySQL database server acts as the primary server
(i.e. master) whereas other replica servers act as slaves, and updates propagation goes
one-way only, from the master to the slave servers by using and saving information and
timestamps in a binary log on the primary system. The master server keeps a binary log
of updates; the slave, upon connecting, informs the master where it had left off since the
last successfully propagated update, catches up on the updates, and then blocks and waits
for the master to notify it of new updates. There are three threads that are involved in
replication: one named Binlog_dump on the master, which is created on the master and
required by the slave, and two on the slave [MYSQLO3]; these are the I/O thread and the
SQL thread. The former is issued on the slave when the slave starts, and connects to the
master and asks it to send its binlogs. After the thread Binlog_dump sends the binlogs,
the I/O thread reads it and simply copies it to some local files in the slave's data directory

called relay logs. The latter one, i.e. the SQL thread, reads the relay logs and executes the

queries it contains.

40

Basically, to the end users, replica offers a large benefit in terms of availability
and robustness due to its capacity of failover. Another advantage of replica is the
possibility of performance enhancement achieved by sending a part of the non-updating
queries (i.e. read queries) to the replica server. Unfortunately, replication transparency is
not granted by MySQL itself, and also consistency of data can be really compromised if
privileges on tables and databases are not correctly set. That is why the configuration of
the privileges becomes crucial in the system. The following steps are for configuring
replication in MySQL [MYSQLO3] for the CINDI system.

e Step one: Configure the master
1. Set up the replication user
Assuming two servers, A (10.1.1.1), the primary server as the master, and B
(10.1.1.2), the standby server as the slave. MySQL's replication is done by having
the slave server (B) connect to the master (A) and read the binary update log, and
incorporating those changes into its own databases. The slave needs a user account
to connect to the master; therefore, an account with only the FILE privilege on the
master (A) requires creating with the following command:

GRANT FILE ON * L x TO replicate@"3%" IDENTIFIED BY

'<password>"';
For example,

GRANT FILE ON *.* TO vreplicate@10.1.1.2 IDENTIFIED BY

'‘password’;
2. Shutdown the MySQL server
mysgladmin -u root -p <password> shutdown

3. Create a snapshot

41

tar -cvf /tmp/mysgl snapshot.tar /path/to/mysgldata-dir
4. Edit the “my.cnf” file to enable the binary update log by inserting the following
lines:

[mysqgld]

log-bin

server-id = 1 (uniquely, similar to IP address)

5. Restart MySQL on the master

Step two: Configure the slave

1. Stop the MySQL server on the slave.

2. Copy the database files of the snapshot into the data directory on the slave server

using the following command:

tar xzf snapshot.tar
Then, change the file mode and the directory to 660, which means that it is readable
and writeable for owners and group only.

3. Start the MySQL server on the slave to ensure the data snapshot taken in the
previous step successfully by running some selection queries. If the selection
queries are successful, the MySQL server can be shutdown.

4. Edit the “my.cnf” file on the slave by adding the following lines:

[mysqgld]

master-host = <the hostname of the master> e.g. 10.1.1.1
master-user = replicate

master-password = password

master-port = <IP port for the master>

server-id = 2

42

default-character~-set = <as for the master>

5. Start the slave server.

The slave server keeps track of what updates it has received from its master in the
“master.info” file. The status of the slave thread can be seen through the SQL
command “SHOW SLAVE STATUS”. Any errors in processing the binary logs on
the slave will cause the slave thread to exit, and generate a message in the *.err log.
The errors can then be corrected, and the SQL statement 'SLAVE START' can be
used to restart the slave thread, where it will pick up where it left off in the binary
log of the master.

For the CINDI system, the database replication by using MySQL’s built-in
replication is under consideration. Here, we propose the details of replication for the
future work. In order to make the CINDI system highly available, in this thesis, we made
use of the MySQL command mysqldump to create the data snapshot and then take
advantage of the file-based approach to implement the database backup (see Appendix
C). For the synchronous approach required by the CONFSYS system, we utilized the
PHP functions mysqgl_connect () and mysqgl_select_db() to switch the access
directions into the different data server so as to make the CINDI system intelligently

manage the users’ requests. Its implementation will be discussed in the following chapter.

43

Chapter 4 Query Processing

Since MySQL has a well-deserved reputation for being a very fast database server that is
also quite easy to be set up and used, the CINDI system employs MySQL to build its
distributed and replicated database system. MySQL, a client/server system, supports
multiple platforms, such as Apple Macintosh OSX, IBM OS/2, Linux, Microsoft
Windows, as well as countless flavors of Unix (for example, AIX, BSDI, DEC Unix,
FreeBSD, HP-UX, Open BSD, Net BSD, SGI Iris, Sun Solars, SunOS4, SCO Unix). For
the development of MySQL applications, there is also a host of APIs (i.e. Application
Programming Interfaces) and libraries, for the languages including C, C++, Java, Perl,
PHP, Python, as well as Tcl.

Compared to commercial relational databases, such as Oracle and DB2, MySQL
does not support views, triggers and stored procedures. However, MySQL is conspicuous
for its countless extensions. Depending on users’ demand, MySQL can recognize some
different types of tables, such as TSAM, MyISAM (default), BDB, InnoDB, Gemini, MERGE
and HEAP. [KOFLERO1] Moreover, temporary tables can be created by MySQL in order

to assist in execution of SELECT queries, although they are not a separate table type.

4.1. Database design of the CINDI system

Based on the functional requirement and by optimizing the previous work [WANGO2]
[GUO2] [JINO3], the entity-relationship (ER) data model is re-designed for the CINDI
system in this thesis as shown in Figure 4.1(a)-(c). Each object namely an entity is
presented as a rectangle, which is distinguishable from other objects. For example, the

object resource is used to represent the uploaded documents, as an entity in the real

44

world. Each entity has some attributes to be distinguished from the other entities. These

attributes are called the keys of a table in the database design. Take resource as an

example; the attributes title, keyword, abstract and so on are used to describe the
resource, and are parts of the key fields represented using ellipses in the ER diagram. In

Figure 4.1(b), the tables or entities on the left side of the line are stored on the CINDI

system server, while the rest are applied on the conference local site server.

In light of the database normalization of SNF, which requires reducing redundant
data, the current database design of the CONFSYS subsystem needs improving in the
near future. As shown in Figure 4.1(c), we give the improved design for the management
of the authors’ information.

To be useful, each entity must have at least an association with other entities; this
association is called a relationship and represented by a diamond. Examples include the
following: a resource is written by one or more authors; an author wrote one or more
resource. Relationships are modeled as tables in the relational model. There are three
possible types of relationships below between two entities:

e one-to-one (1:1), exists when the primary record in Table A will have only one
related record in its associated Table B. Another distinguishing factor of a one-to-one
relationship is both attributes used for the relationship are primary keys. In other
words, the related data values in both tables must be unique; there can only be one
matching record, in a one-to-one relationship. For example, an administrator has a

unique authenticated record in the table admin_authen;

45

Coverage_domain

T8SOUrce_i resource_id

BT system_req_domain

identifier_value identifier_domain
system_req_value

8SQ =) d
status_name
coverage

resource_id

clasf_domain

clasf_value

Classifica
_tion

identifier ‘ System_req

1

Language_name
i @
1
1

language

language_id
@ = resource & resource_f@
publisher
m resource_id

created_date
load_dat
Casouros B> 1 Compiy_date> ¢ sz

last_update

e .
1
a

B

-

phone
sub_sub_subjec] ‘ use_id >
—_— relate
annotation

m
. subject
subject_name - m lastname

organization
address

Quesian

o (Ui
:

99\0
Al

address

Cpasona > Ceomniy >
@ security_ques
Ciname > outor |

Cntutor >

province

m contributor [«
Ciname >

organization department

|

-4}

Admin_authen

Figure 4.1(a) The ER model of the CINDI system

46

paperTitle

resource coauthor

lastname

IR

subject author authorid

lastname

@ address

Figure 4.1(b) The ER model of the CINDI system including the CONFSYS

department

@
i,

¢ one-to-many (1:m), the most common type of relationship, exists when the primary
record in Table A can have many related records in its associated Table B. As an
example, one resource is associated with several authors. many-to-one (m:1) is the
same as one-to-many (1:m) only in the different direction;

e many-to-many (m:n), exists when a primary record in Table A has more than one
matching record in its associated Table B; meanwhile, when a primary record in

Table B has more than one matching record in its associated Table A. For example,

47

one user has several security questions to be answered, and a security question may

be selected by several different users.

[CIND! Database I
-

I_CONFSYS Database l

Weighted_score

C adent >

paper ! 6 m subject
&
Cubjid > paid >

lastname

CGrsmeme>

orrespond
_to

resource

filename
Resource_format

author

department

Cog >

@@

province

Ceounty >
Comai >
opartmend

Contact_
author

Figure 4.1(c) The improved ER model of the CINDI system including the CONFSYS

coauthor

From the object-oriented point of view, some of the associations between entities
can be viewed as virtual entities since these associations have descriptive attributes.
Examples in the CINDI system consist of the relationship between the uploaded

resources and their authors, as well as the association of the resource and subjects. In

48

order to distinguish the relationships clearly, a concept of key constraints is introduced in
database design. In general, the key constraint on an entity set in a relationship set is
indicated with an arrow from the entity to the relationship. For example, the key
constraint on Has in the ER diagram tells that a resource has at least one subject.

The key fields are involved in the associations, mainly via primary keys and
foreign keys. Serving as a primary key, the combination of the values of one or more
attributes must be unique such that no null values are accepted. Primary keys are used to
locate a particular data record in a table as fast as possible. Foreign keys, being the
primary keys of other tables, are used to enforce referential integrity on the relationship
by referring to records in the referenced table. In order to keep the ACID properties, the
primary keys in the referenced table must match the foreign keys of the referencing table.
For example, resource_id, the primary key in the table resource, is a foreign key in the
table resource_author, which is used to represent the relationship between the
resource and its authors.

In the CINDI database, the tables with foreign key constraints are defined as type
INNODB because INNODB provides MySQL with a transaction-safe (namely ACID
compliant) table handler with commit, rollback, and crash recovery capabilities. In
INNODB with its locking mechanism, all user activities take place within transactions. If
the auto-commit mode is applied, each SQL statement will organize as a single
transaction. If the auto-commit mode is switched-off by setting autocommit to zero,
then a user always has a transaction open until it is either committed or rolled back. After
the SQL. COMMIT or ROLLBACK statement, the current open transaction will end and a

new one will start. Both statements will release all INNODB locks that are set while the

49

current transaction is processing. A COMMIT means that the changes made in the current
transaction are made permanent and become visible to other users. In contrast, a
ROLLBACK cancels all modifications made by the current transaction.

Because of the lack of triggers and saved procedures in MySQL, it is necessary
that application implementation follow the foreign key restriction. That is, for insertion
activity, a new record must be inserted into the referenced table first. Then, its
corresponding information regarding the relationship between the others will be done in
the referencing table(s). For deletion activity, the operations must be done in reverse as
mentioned for the insert operation. For example, when a resource is registered, the
transactions on insertion will be processed from one table to another in the following
order: language, (resource, author, subject) and the other related tables (i.e.
referencing tables), such as resource_author, resource_subject,
classification, system_req, identifier, and coverage. Here, the tables
resource, author, and subject are referenced tables. In contrast to insertion, the
deletion activity for a specified record of a resource must occur in the following order:
the referencing tables (e.g. resource_author, resource_subject,
classification, system_req, identifier, and coverage), and then the

referenced tables (e.g. resource, author). The details are given in Appendix A.

4.2. Search function

There are two search subsystems in the CINDI system. One is designed for users to locate
digital resources of interest; the other one is embedded in the administration to assist

system administrators in managing users’ information and the bibliographic system.

50

4.2.1. Search function for users
The search subsystem for users of the CINDI system provides three levels of search for
users depending on the users’ search criteria: simple search, intermediate search, and

advanced search.

Fle Bdt. Yiew Favorkes Yools

.| Plaase sslect one of the followin subjects
N . N 4 . g o\ s

1] Please select one of the following sub-subjects

Please select one of the following sub-sub-subjects

Figure 4.2 The interface of simple search
Simple search allows users who do not know exactly the resource being looked
for to enter at least one of the fields, namely title, author, keyword, subject, or a date

period as shown in Figure 4.2. In order to make the system convenient, the system date is

set as the default value of Created_date To, and the beginning of the current year will

51

be the default value of Created_date From. For the users who do not know the exact
title, author, and keyword of a resource, they can select “Substring” when they are
looking for its related information; otherwise, “Exact” should be selected for the
specified values of the fields. In the SQL statement for this type of entries, the Boolean
expression for the SQL WHERE clause, these fields would be conjuncts. For the fields of
Title and Author, depending on the use of “Exact” or “Substring”, the corresponding
match operator would be either “=" or “LIKE”. For the field of Keyword, the selection of
“Substring” will apply the operator “LIKE” for matching the keyword; the selection of
“Exact” for keywords will require Full-Text searching; this would involve creating a
temporary table of type MyISAM rather than using the table resource itself of INNODB,
which does not support Full-Text searching.

Intermediate search enhances simple search facility for users who are familiar
with the information they are looking for or would like to narrow the search results.
Herein, users can provide more than one value of the fields for authors and keywords,
which require to be separated by commas for a conjunction. Boolean search is a search
that allows users to narrow their results through the use of Boolean operators. Boolean
operators include AND, OR, XOR, and other operators; a user can narrow results by
using them appropriately. In the search subsystem, the relationship among two or more
comma separated values is considered to be the Boolean operation AND. For the
relationship between two separate fields, it can be chosen as conjunct or disjunct by

choosing the Boolean operator AND or OR.

52

e
@D A Do Ciarsiertss@uisde: [ih-

htt, concordia.cafcindifsearch.php :_] Ga lﬂ@

Please select one of the following subjects

Please select one of the following sub-subjects

Figure 4.3 The interface of intermediate search

Advanced search requires users to be more familiar with what they are interested
in so as to enter more details of the resource by filling in the form and choosing the
appropriate Boolean operators not only between the entered values but also among the
fields. Compared with intermediate search that only a single Boolean operation can be
done between the values of the fields for authors and keywords, advanced search makes it
more flexible by allowing users to define the association among three or more values of

these fields as the combination of conjunct and disjunct as shown in Figure 4.4.

53

%‘ g{g Qs@m ﬁgm«i

{bp. concardia.ca/cindifcomplex_search.php?cpauthor _num=3&cpke:

Figure 4.4 The interface of advanced search

Based on the previous work [SHAYAN97] [WANGO02], we rewrote the overall

search query grammar in BNF for the three levels of search as follows:

<simple search> ::= <operand> [<op> <operand> [<op> <operand>
[<op> <operand> [<op> <operand>]]] 1

<intermediate search> ::= <operand> [<op> <operand> [<op> <operand>
[<op> <operand> [<op> <operand>]] 1 1

<advanced search> 1 1= <operand> <op> <operand> <op> <operand>
<op> <operand> <op> <operand>

<operand> ::= <title> | <subject> | <author_unit> |
<keyword_unit> | <date>

<op> ::= <AND> | <OR>
<title> ::= <exacttitle> | <substringtitle>
<exacttitle> ::= <string>

54

<substringtitle>
<author_unit>
<author>
<exactauthor>
<substringauthor>
<keyword_unit>
<keyword>
<exactkeyword>
<substringkeyword>

<subject>

<general>
<sub_subject>
<sub_sub_subject>

<date>

<from_date>
<to_date>
<string>
<character>
<day>
<month>

<year>

<string>

<author> | <AND | OR> <author_unit>
<exactauthor> | <substringauthor>
<string>

<string>

<keyword> | <AND | OR> <keyword_unit>
<exactkeyword> | <substringkeyword>
<string>

<string>

<general> | <general> <AND> <sub_subject> |
<general> <AND> <sub_subject>
<AND> <sub_sub_subject>

<string>
<string>
<string>

<from_date> | <to_date> |
<from_date> AND <to_date>

<year> - <month> - <day>
<year> - <month> - <day>

<character> | <character> <string>

ala|b|Blc|c| . |x|X|y|Y|z|z|o|1]2| .. |7]8]9
1]2]3/4] .. |28|29]30]31
01]02]03] .. |10]11]12

current year - 10|current year - 9|
current year - 8| .. |current year - 2|

current year - llcurrent year

where the meta-symbols of BNF are:

::= meaning "is defined as"

| meaning "or"

< > angle brackets used to surround category names.
Considering the search scenario, we correct some grammar representations in the
previous work [WANGO2], such as the description of year that was defined as a fixed

value and will be changed based on the current date.

55

To process a selection operation with a general selection condition, we first
express the condition in conjunctive normal form (CNF); that is, as a collection of
conjuncts that are connected through the use of the A operator (i.e. AND). Each conjunct
consists of one or more terms connected by v (i.e. OR). Conjuncts that contain v are said
to be disjunctive, or to contain disjunction.

Simple search has a selection of the form below where op is the conjunction

operator (A):

[title = 'string' | title like '%string%']

op l[author_name = 'string' | author_name like '%string%']
op [keyword = ' string ' | keyword like '%string%']

op [subject = 'subject']

op [sub-subject = 'sub-subject']

op [sub-sub-subject = 'sub-sub-subject']

op [created_date_from >= 'from date']

op [created_date_to <= 'to date']

Intermediate search has a selection with the following condition where op is

either conjunction (A) or disjunction (v):

op ::= A | V

[title = 'string' | title like '$%string%']

op [author_name = 'string' | author_name like '%string%']

op [keyword = 'string' | keyword like '%string$%']

op [subject = 'subject' A [sub-subject = 'sub-subject' A [sub-
sub-subject = 'sub-sub-subject']]]

op created_date_from >= 'from date' A created_date_to <= 'to
date'

56

Advanced search has a selection with the following condition where op is either

conjunction (A) or disjunction (v):

op ::= A | Vv

(title = 'string' | title like '%string%')

op (author_name = 'stringl' [author_name 1like '$%stringl%') op
(author_name = 'string2' | author_name like '%string2%') op

op (author_name = 'stringn' | author_name like '%stringn%')

op ((keyword = 'stringl' | keyword like '$%stringl%') op (keyword
= ‘'string2' | keyword like '%string2%') op ... op (keyword =
'stringn' | keyword like '%stringn%'))

op (subject = 'subject' A sub-subject = 'sub-subject' A sub-sub-
subject = 'sub-sub-subject')

op {(created_date_from >= 'from date' A created_date_to <= 'to
date')

For simple search, the users are allowed to enter more than one value of keywords
separated with commas (see Figure 4.5 (a)-(b)). For instance, Figure 4.5(a) indicates that
the query is based on the “motion” AND “transform” as keywords, and the created period
by default from “Jan. 1, 2003” to “Jul. 7, 2003”.

For intermediate and advanced search, in addition to keywords, one or more
author names are accepted by using commas and by clicking button to separate them, as
shown in Figure 4.6 (a)-(b) and Figure 4.7 (a)-(b), respectively. For example, Figure
4.6(a) shows that the substring title is “fast”, the substring of author names is “Tu,
Wang”, the keyword is “motion, transform”, the subject is “Electrical Engineering”, and
the created period from “Jan. 1, 2003 to “Jul. 7, 2003”. Figure 4.7(a) gives an example
of advanced search to search for the resources by “Tu” and “Wang” created from “Jan. 1,

2003” to “Jul. 7, 2003” with the substring title “fast” and the keywords “motion” or

57

“transform”, as well as the subject “Computer Science” and the sub-subject “Numerical
analysis in mathematics of computing” and the sub-sub-subject “Fast fourier transforms
(fft) approximation”. For advanced search, if the Boolean operator is OR, then the
selection with the condition on authors' names follows the above CNF. However, when
the AND Boolean operator is chosen, it adds the complexity of the selection. Here, two

solutions are considered and applied to the system for searching function.

ZJ simple Search - Microsoft Internet Explorer

8 of the ﬂ:llqwing sub-subjects

Please select one of the following sub-sub-subjects

Figure 4.5 (a) An example of resource simple search

58

ok v - @ 1) (8 | Qoenth Ciibavorkes Pliedy:
Adress @ https:{fbp.concordia.cajcindifsimple_result.php
3 % : o

Figure 4.5 (b) An example of simple search

59

2§ Intermediate Search - Microsoft Internet Explorer

Eledncal Engmasnng

Please selecl one ot the followmg sub—sub]ects

v onth *iiDay

Figure 4.6 (a) An example of intermediate search

60

wnidk < - B G| Oyseath Ggrovetes Greda B

+{{bp.concordia.cafcindijresult. php

g i

T| A [irkoret -

Figure 4.6 (b) An example of intermediate search

61

ndvanced Search - Mlcrosoft lnternet Ekplorer

B - edm Wiew. Favoekas - rmts

Figure 4.7 (a) An example of advanced search

62

Figure 4.7 (b) An example of advanced search

Solution 1: use logical condition to process the data

IF (author != NULL)
count the number of commas

IF (the number of commas > 1)

Token commas to separate the authors' name and keep them
into an array author/[]

FOR (i = 0; i < the number of commas; i++)

{ query to get the distinct IDs of resource by author[i]

keep them into an array resource resource_id[]

63

FOR (i = 0; i < the number of commas; i++)
FOR (j = the number of commas - 1; j > i; j--)
{ IF (resource_id[i] is equal to resource_id{j])
Record it into an array resourceID[i]
}
IF (array resourceID is empty)

Message "No resource meets the search condition"

ELSE

Query and output the search results

Solution 2: create a temporary table for the join of resource and author.
CREATE TEMPORARY TABLE IF NOT EXISTS TEMPresource_authorname (
resource_id int (10) unsigned not null,

author_name varchar (255) not null,

primary key (resource_id));

— resource_id author_id <
v
author_ | firstname | lastname | organization | address | phone | city | province | country | email | p_
id code

L |

> resource_id author_name

Figure 4.8 The logical view of temporary table TEMPresource_authorname
The following are instances of creating a temporary table TEMPresource_authorname
for the join of the table resource and the table author. Details of temporary tables in

MySQL will be discussed in Section 4.5.

64

Table 6. An instance of the table resource_author

resource_id | author_id
2195 570
2195 571

Table 7. An instance of the table author

author | first | last organi_ add_ | phone | city province | country | e_ p_code

_id name | name | zation ress mail

570 | John | Smith | University | N/A | NULL | NULL | QC Canada | John H3H
@u.edu | 1M8

571 Jean | Chin | University | NA [NULL | NULL | QC Canada | Jean H3H
@u.edu | 1M8

Table 8. The join result of the above tables: the table TEMPresource_authorname

resource_id | author_name |

2195 | John Smith, Jean Chin

4.2.2. Search function for administrators

The administration search subsystem of CINDI allows the system administrators to enter

a value of a specified field, which varies from interface to interface. For users’ and

contributors’ information management as shown in Figure 4.9, the administrators can

look for the related information based on the values of user ID, first name, last

name and email. For the bibliographic system administration including resource

management and annotation management, some key fields are provided by the system to

let the administrators search the information based on their values (Figure 4.10).

search for the administrators:

Based on the different search criteria, the system provides the following types of

e Exact Search, which takes the administrators’ inputs as the precise condition and

makes use of the equivalent operator “=" in the WHERE clause of SQL. For example,

SELECT * FROM table WHERE field =

65

‘input’ ;

Administrator Page

User Admin | Contnbutor Admin | Resource Admin | Annotation Admin | Confsys Admin | Help | Logout

Search: |

¢ ID € First Name " Last Name ¢ Email

. ExactSearch -|

-Sting Search | [

[User Management

Total: 27 Display. 1to 10

| Ediy Balsia] Repod
I8 UseriD Name Email
™ aaaa aa aa vanho li@cs concordia
™ abc abc abc c@cs.concordia.ca
1 bcd Bipin C. DESAI bedesai@cs.concordia ca
" bcda B D edesai@des concordia ca
i BCD4 B CD bedesaigdes concordiaca
in czhou cong zhou d@cs.concordiaca -
1D fyang Fenglei Yang fvana@cs.concordiaca
Lt gordon gordon Buchan gordon@lalaweb com
L haha hong haha vanho_lig@cs concordia ca
™ jhongkong hong kong vanho I@Pcs concordiaca

Previous 1.2 3 Next

| B Daisie] Raped

(Copyright® 2002-2003 by CINDI

@ 3

I a—

sl

2§ Administrator Interface ~ Microsoft Tnternet Explorer

Figure 4.9 The interface of user management

| 6o |tk
Administrator Page
User Admin | Dontigutor Admin | Resource Adaun | Annotation Admin | Confsys Admin | Help | Logout
k;;:;ﬁ ’ N‘“ 5ﬂf Author's Last Name ¢~ Title € Abstract ¢ File Name f" Annotation
Fultext Saorch | Sulsekdog Semren |
e Management B
Pt | Rapen ;
1D Title [File Name \Abstract \IAnnotation
™ 11853 title filename Annotation |
T~ 11854 title filename Annotation
I~ 1855 title fitename iAnnotation
™ 11856 title filename iAnnotauon
11857 title filename Annotation
185s8 title fitename
™ 11859 title filename
I~ 11860 title filename
11862 Etitle filename
Total 1131 Display. 891 to 1000
] Previous 12345678910203040 5060 708090 100 110 Next
Edid| Moy | Dalete] Hepcnt
Copyright© 2002-2003 by CINDI

&

{

ENE T]

Figure 4.10 The interface of resource management

66

e Substring Search, which considers the search items input by the administrators as
part of the value of the specified field that is used for the queries. Here, with the
WHERE clause of SQL, the match operator LIKE is used as follows:

SELECT * FROM table WHERE field LIKE ‘%input%’;
e Fuzzy Search, which supports the search for the text fields of title, abstract and

annotation, will be described in the following section.

4.2.3. Fuzzy search

It is well known that people easily mistype a word due to human “optical character
recognition” (OCR) errors. Fuzzy search, therefore, is provided by the administration
sub-system of the CINDI to help the administrators find documents even if the words
entered are mistyped or misspelled. For example, a document containing the phrase
“United states of America” could be found even though “United” might have been
OCR’ed as “unlted”, “Vnlted”, or “Vnited”, and “America” might have been entered as
“america” or “Amereca”. Here, GNU Aspell, a Free and Open Source spell checker
designed to eventually replaced Ispell [ATKINSONO2], is applied in the CINDI system
as a spell checker because it does a much better job of coming up with possible
suggestions than just about any other spell checker for the English language, including
Ispell and Microsoft Word. [ATKINSONO2] Furthermore, it has many technical
enhancements over Ispell, such as intelligently handling personal dictionaries when more
than one Aspell process is opened at once. Users can customize the personal dictionaries
based on their requirements. For instance, some of words in database such as MySQL and
Informix can be built into the personal dictionaries while being checked by Aspell so that

these words will not be treated as OCR errors by the Aspell spell checker.

67

/

Client Fill in search items Search results

Server
Aspell spell checker
Produce finputs are in the
suggetion dictionaries

Database
Management

4

=

Figure 4.11 The workflow of the fuzzy search

Figure 4.11 shows the system workflow of the fuzzy search. For example, the
search item “High Availability” for substring of the title field is OCR’ed as “high
availibiliy” or “High Avalability”. By providing the suggestion from the Aspell spell

checker, the search result will come out based on the closest suggestion as Figure 4.12.

68

~ : |- € Saereh - g Paveries 18 B S
Add’ass 1&3 https:{{bp.concordia.ca/cindijsearch_resource.php d '2)@9 i Links |

Administrator Page

User Admin | Centrituter Admin | Resnures Adimen | Annotziion Adrein | Confsys Admin | Help | Logous

18Search: (High Avalability CID ¢ Author's Last Name ¢ Title ¢ Abstract ¢ File Name ¢ Annotation
" Fullted Seach | . Bubsting Search. |

Resource Management
Eidd | Delste | Repodd

Search Results: 1 Record(s)

[~ Resource Information

D 2142

Title: High Availability Solutions for Transactional Database Systems

File Name: 1002142_HA_Tr_DB pdf

Author(s): N/A

Abstract: In our increasingly wired world, there is a stringent need for the [T community to provide uninterrupted
servicesofnetworks serversanddatabases. Considerable efforts, both by the industrial [1-13] and academic [14-17]
community have been directed to this end. In this paper, we examine the requirements for high availability, the
measures used to express it and the approaches used to implement this for databases. VWe present a high

availability solution, using off the shelfhardwareandsoftwarecomponents for transactions based applications and
give our experience with this system.

Top Bottom

Search Results: 1 Record(s)
_Total: 1 Display. 1101

Previous 1 Next

Bdd| Delss | Baport

|Copyright® 2002-2003 by CINDI

B S S T T T T T i | A T

Figure 4.12 An example of the fuzzy search
4.2.4. Application of indexes
Computing joins with fast response times is extremely difficult to achieve for very large
relations. One approach to this problem is to create an index that is designed to speed up
specific join queries. An index is an auxiliary structure designed to speed up operations
on search. All indexes can be viewed as a collection of data entries with an efficient way
to locate all data entries with a given search value. [RG00] Indexing terms consist of the

following types:

e Single-column index: which considers the values in just one column.

69

¢ Multiple-column index: which considers the values in more than one column.
e The leftmost prefix: which is the leftmost set of columns acting as an index.

The first two are self-explanatory; the third one is more complex. A multiple-
column index has the potential to serve as several prefixes because any contiguous set of
columns, starting with the leftmost column in the index can be used to match values. For
instance, assuming a three-column index based on the following columns of table
resource: title, keyword, and abstract. Besides the original three-column index,
the two more potential candidates for indexes are:

e title, keyword
e title
There are two basic rules, given below when defining a prefix:

e The index must include the leftmost column; therefore, there is no index on:
keyword
abstract

keyword, abstract
e The index can not skip columns; hence, there is no index on:

title, abstract
As a result, it is important to use the leftmost prefix if possible when a WHERE clause
extends across a multiple-column index. Otherwise, the query optimizer will not make
use of an index at all; thus, performance will suffer.

In order to improve the performance, single-column index and multiple-column

index are considered in the CINDI system. In order to accelerate the join in resource

searching, simple-column index on fields of resource_id, author_id,

subject_id, wuser_id, and language_id, are used for joining between the

70

corresponding tables, such as resource, author, subject, users, and language.
Moreover, multiple-column index on fields, such as lastname and firstname in the
author table, is created to facilitate the query based on author name criteria.

As of version 3.23.23, MySQL supports full-text index, a built in functionality
that allows users to search through certain tables for a string matching. Substring search
as mentioned above, using the LIKE operator in the WHERE clause of SQL statements,
works slowly and inefficiently when searching text fields; especially as the database
grows the system will become downright ineffective. The solution to this problem is full-
text searching. According to the MySQL document [MYSQLO3], full-text search is a
"natural language search"; it indexes words that appear to represent a row, made up of the
specified columns. MATCH () AGAINST() is used as the condition of the WHERE
clause of SQL statement as illustrated below:

SELECT *

FROM table

WHERE MATCH(columnl, column2) AGAINST ('text');

In general, when most people use a search box, they type in a number of words
they consider as likely keywords rather than only one word. To deal with it, MySQL
takes all the words, splits them up, and then matches by using a natural language search.
As of version 4.0.1, MySQL can also perform Boolean full-text searches using the IN
BOOLEAN MODE modifier. Since the CINDI system utilizes Version 3.23.56 that
provides the simple full-text searching, the Boolean mode will not be discussed here but

hopefully will be applied in the future.

71

It is important to note that there are several limitations on full-text searching as
follows:

e The data set should be large enough; otherwise, the search accuracy will be lower
because of the 50% threshold. For example, if there is only one record in the table, no
matter what is being searched for, it is in 50% or more of the row in the table, thus
disregarded.

e The words of less than three characters will be omitted since MySQL views them as
the noise words.

e Full-text index only supports the table type of MyISaM; the other types of table,
hopefully, will be implemented in the near future [MYSQLO3].

Since the data stored in the CINDI system is large, the accuracy caused by a small
data set is not a problem. In order to cope with the limitation on the table type, some
revisions need to be made on the tables. In the original database of the CINDI system, the
data type for the field of abstract in the relation resource was defined as BL.OB, which are
meant primarily for binary data. Because MySQL does not support indexing BL.OB data
types for full-text searching, the definition must be changed by switching data type from

BLOB to TEXT as follows so as to make the abstract column useful for searching:

ALTER TABLE resource MODIFY abstract TEXT;

Since the table type of resource is defined as INNODB adhering to the properties of
ACID, it is impossible to build a full-text index for the table resource due to the
limitation. There are two solutions to be considered according to the system architecture:

e For the system configuration with only one database server as well as the one with

master and slave, the solution is to create a temporary table for resources with the

72

type MyISaM that supports full-text searching. To follow the ACID properties, all
write queries will be run against the table resource of type INNODB, while search
queries will be run against the temporary table. For the system configuration with
master and slave, updates will be copied from the master to the slave as a backup
through binary log files to keep consistent.

e The other solution is designed for the distributed database system where queries will
be distributed into different servers based on the privilege of these queries. That is, all
write queries, such as inserting data and deleting data, will visit the production server;
all read queries will be forced to access the backup server on which the table type will
be transformed into MyISAM for searching because only MyISAM tables support full-
text indexes as mentioned before. In this case, it requires that both servers are active.
Meanwhile, the middle tier, being workflow controller, will be responsible for
switching the queries with PHP scripts based on the privileges granted for users. For
example, a contributor of the CINDI system can access the production server while a
user who is searching for some resource is able to approach the backup server.

So far, the first solution is adopted by the CINDI in the thesis due to its architecture. With

the development of the CINDI system, the second one has been considered for the future.

input a
string

full-text search using
MATCH() AGAINST

()

length of
string > 3

—— output

queries with the
No _ |condition of the
WHERE clause
column = 'string'

Figure 4.13 The logical flowchart for Full-text searching

73

To address the limitation on the length of a string, checking the length of a string

is taken into account before processing queries as shown in Figure 4.13.

4.3. Backup and retrieve the CONFSYS system

As mentioned previously, the CONFSYS is a sub-system of the CINDI system. That is,
all the information collected in the CONFSYS will be automatically merged into the
bibliographic system of the CINDI in order to provide the latest information for users.
Another benefit is that a remote backup is built for a specified conference in case the
local server fails.

In the original version [GUO2] [JINO3] of the CONFSYS, the workflow of

uploading a paper to a conference is depicted below:

\J

HTML fill in form for the
paper to be upload file

submitted

Javaservlet

Figure 4.14 The workflow of uploading a paper in original version

In the thesis, we introduced the ASHG into the CONFSYS and improved the

functional performance for authors, such as re-upload file and check status. In addition, in

74

case of the failure of the CONFSYS server, its backup was built in this project.
Moreover, being a subsystem of the CINDI, the CONFSYS was integrated into the
CINDI system, whose workflow is shown in Figure 4.15 below. In the CINDI system, the
submitted papers will be processed by the semantic header generator for the CONFSYS
and the bibliographic system of the CINDI. It makes the CONFSYS more convenient for
authors because they will just need to check the corresponding information and make
required correction rather than to fill in an entire form for the paper to be submitted.
Meanwhile, the information regarding the uploaded paper and its authors are written into
the local server and the remote server concurrently. The local server is the system at the

site of the organizers of the conference; the remote server is the CINDI server.

Upload a paper if the uploaded paper After uploading

i needs correcting a paper

Step 1 Step 2 Step 3 Step 4 \ \

display fill in form for -
upload file bibliographic authors' Confirmation 'e—‘f’i‘l’fa" °he;‘;tzzpe' C"_’t‘ig;ma
index information
submit submit submit i
HTML / / submit /
Javaserviet
& php &

perl

Generate
semantic
header

Data process Data process Data process

3
Data
(local)

At the
conference
site

CINDI

Figure 4.15 Improvement version of the CONFSYS with distributed structure

75

For each conference to be integrated into the CINDI system, a corresponding
backup database will be set up on the remote CINDI server in advance. A new user
account will be created for the conference to access the remote CINDI server for
transferring the uploaded files as well. Using the user's account and password, a pair of
encrypted public key and private key will be generated so as to access the remote server
without presenting password. These keys are useful for programming the file-based
backup between servers because no passwords are required while the pair of encrypted
keys guarantees the transmission security.

In order to ensure users of the CONFSYS to connect to both the local server and
the remote CINDI server in parallel, the function mysqgl_connection () provided by
PHP helps to create the links between the two servers at the same time. With the links,
each query run against the two servers will be processed by the database management
systems on both servers concurrently. As for the file-based backup, scp provided by the

secure shell is used.

4.4. Solution for integrating the CONFSYS with the CINDI

Being a backup for a conference on the remote server, different backup databases must be
created for each conference. As a result, these databases must be merged into the CINDI
database system after each conference program is finalized, as shown Figure 4.16 (a).
This work will be performed by the system administrators when the status of a special
conference is “finalized”. After the integration shown in Figure 4.16 (b) is done, this

status will be changed as “integrated” shown in red font color (see Figure 4.16 (c)).

76

2 Admistralor Interface - Microsaft Internet Explorer] i 1 mdellsl
Pl (B Vida > Favolites Tooks Mgt v : A : N ‘

L b v it NIV A SR S ' ! : ;
bk v b~ () 4 Qsouth [GRovortes “fimedn (| Y : @

Addmx i@ https:§{bp.concordia.cajcindifadmin_confsys.php _‘3 oo, !Lfﬂi@

Administrator Page

User Admin | Contributor Admin | Resource Admin | Annotation Admin | Senfeys Admmn | Help | Logout

User Management

1~ D Confsys Name Subject Deadline Memo Status |Action

él““ §1 IDEAS03 gComputer Science 2003-03-01 Database Aplication, Hongkong SAR }finalized Intagrale |
'Total: 1 Display: 1to 1 Previous 1 Next

Copyright® 2002-2003 by CINDI

1] . i . C R T R CE T

Figure 4.16 (a) Interface for integration of the CONFSYS with the CINDI

Administrator Interface - Migmsoft Iq{{é{pg}: Enplorey

Administrator Page

| Name | Deadline | Datahase
[DEASOS 0030301 | cindics1
{Paper 19 is processed...

: Paper 18 is processed...
Paper 17 is processed...
Paper 16 is processed...
Paper 15 is processed...
Paper 14 is processed...
Paper 13 is processed...
Paper 12 is processed...
{Paper 11 is processed...
‘ Paper 10 is processed...

{Paper 9 is processed...

=t

Figure 4.16 (b) Interface for integration of the CONFSYS with the CINDI

77

andmmnstratnr Intetface - Mlcromfttn!emetfxplnrer" L
Pl Bt View Favorlies' !

“ioak < = - 0 [0 2| Qsemch lravortos @m ;3 %g»@g Ha T TR T
- Sddrass I@ https:/{bp.concordia,cajcindifadmin_confsys.php _‘J @W ilm

Administrator Page

[User Admin | Contributer Admin | Resource Admin | Annotation Admin | Gonfsys Astmin | Help | Logaut

1User Management
Edit] Dalala | 2

r jID Confsys Name Subject Deadline Memo {Status Actlon
Hr 11 IDEASO03 Computer Scuence 2003-03-01 Database Aplication, HongKong SAR]mteqrated Intergrate {
4 Total: 1 Display. 110 1 Previous] Next

SR SR SRR

Copyright© 2002-2003 by CINDI

Eoone © T .) S S) [L

Figure 4.16 (c) Interface for integration of the CONFSYS with the CINDI

In order to handle concurrency of multiple conferences, a unique identifier is
required by the bibliographic system. Since the same identifiers for different conferences
would be used if they were opened at the same time and it would be difficult to manage
the data. In order to trace the linkage between an uploaded paper and its bibliographic
index, a table called resource_paper is created to represent this relationship for each
conference in its backup database. Based on the relationship, all the submitted papers will
be processed one by one (Figure 4.16 (b)) as if they were contributed by the contributors
who are the authors of the papers, although the integration is batched from the point of
the view of users. The authors will be automatically registered as contributors, and then
they will receive an email from the CINDI system to notify them of the semantic header

registration information by accessing the CINDI system.

78

Since the comments on the uploaded papers given by their authors are useful, in
this project we give an opportunity to authors to make comments on their works when
they upload their papers. To record the annotations by authors, a relation should be
created to store them for users. However, the table annotation is created to record the
comments made by readers. To keep the ACID properties, this table is referencing the
table users by using the foreign key user_id, which is the primary key of the table
users. Consequently, a new table named annotation_confsys is built for authors'
comments, with the same structure as that of the table annotation but referencing the

table author. The details will be discussed in the following section.

4.5. Temporary tables

As mentioned in Section 4.4, two tables to register the annotations of the digital
resources, are created separately based on the roles of the annotators, contributors (i.e.
authors) or users (i.e. readers). However, accessing the annotations on a specified
resource, by authors themselves or by the readers of interest, creates a problem. To
resolve this, a temporary table is introduced in the CINDI system. Temporary tables in
MySQL are used to supply the functionalities similar to views in the other commercial
RDBMS. One of the advantages is to speed up the search. Another one is to save the disk
space because MySQL will remove the temporary tables automatically and free up the
space that the table used when the database is disconnected. Moreover, if the type of a
temporary table is defined as HEAP, queries run against the table may be much faster than
on-disk temporary tables. However, it does not support the data types of text and BLOB.
Therefore, a temporary table for searching for resources will be created as the type of

MyIsSAaM as the default in the CINDI system. Another temporary table created for

79

searching for the relationship resource and its authors’ names can be created as the type
of HEAP. To make the management of annotations convenient, a temporary table called
TEMPannotation is built when a CINDI user searches for annotations; this table is used
to merge the table annotation with the table confsys_annotation associated with
the resources. Thus, when the information of annotations is required, regardless of the
roles of annotators, either authors or readers, the information will be retrieved from the
same table. With this approach, the search speed is accelerated and the users of the
CINDI system can get all comments. (See Appendix B)

Since full-text searching is used in the CINDI system as discussed in the previous
sections, and because only the table type MyISaM supports full-text searching, and since
the table type of the table resource is defined as INNODB for protecting the ACID
properties, a temporary table of type MyISAM is built for speeding up search involving the

table resource. The implementations are given in Section 6.2.

80

Chapter 5 Security of the CINDI System

With the development of the Internet, an increasingly common problem for an
organization is to make sensitive, internal information securely available on a WWW
server that is accessible over the Internet. The comparatively simple technicalities
including firewall and constant security patches etc. are applied to protect the WWW
servers. Meanwhile, users are required to authenticate with secure registration to the
SErvers.

Users can be authenticated by a server in a number of ways; the most common
one being a username/password scheme where a user supplies a user name and the
corresponding password; other schemes include the use of a smart card with encrypted
authenticated information, and biometrics such as affordable finger scanners and
expensive retinal scanners. With these logically simple and cost effective measures,
users will be able to access servers without having to re-authenticate. For instance, once
users access the authenticated location with privilege granted by the server, then, the
subsequent server pages are available to them without re-authentication. Therefore, it
requires that each transaction should be authenticated or some form of semi-permanent
tokens should be passed so that they can be shown to the server as needed. Secondary
considerations consist of the ability to generate an audit trail, track usage in real time, and
timeout check to force users log out of the system after a period of inactivity.
[SEIFRIEDO1] There are some existing authentication protocols that can be taken

advantage of for the secure web servers.

81

5.1. Authentication methods

5.1.1. Username and password

This is the most common and one of the cheapest approaches for authentication by taking
advantage of people’s memory as the storage mechanism. It is so easy to manage and to
deploy that most systems use it. However, the weakness is that it is relatively insecure not
only because users may choose bad passwords but also passwords get stored in forms’
fields, which are easy to be cracked by the invalidated crackers on the Internet.

On Unix, username and password are typically kept in flat text files, namely
letc/passwd and /etc/shadow, in the form username:hashed_password, where the
password is hashed so that it is not possible to simply read and use it. Typical hashes used
are crypt and MD35 [MDS5]; these are much more reliable than checksum and many other
commonly used methods. When a username and password need to be checked, the
system goes down the list until it finds a matching user name; and then, it hashes the
password that was supplied and compares it to the listed value, if they match, then, that
means the username and password supplied were correct.

For the web application, it is recommended to use a database file so as to increase
the speed of access. It is quite workable for a single server but not easy for the distributed
database system unless the data files are kept replicated and up-to-date synchronously

across multiple servers.

5.1.2. Cookies and sessions
Cookies are small amount of information in the form of plain text files, which are created
and sent to the web browser by the server along with an HTML page when clients access

a particular site. Cookies can be stored on the users hard drive and could be kept

82

persistently; this function can be disabled or the stored cookies may be deleted by users.
Also, cookies can be stored in memory for the length of session, and will be lost when the
browser is closed. The latter form is safer than the former, and it can be easily set as a
timeout checker by issuing a time limit on accessing the server. As shown in Figure 5.1,
once cookies are saved on the client machine when they arrive, some of them will be
returned to the web server in each subsequent request from the clients by passing the
following six parameters:

1. The name of the cookie,

2. The value of the cookie,

3. The expiration date of the cookie,

4. The path the cookie is valid for,

5. The domain the cookie is valid for, and

6. The need for a secure connection to exist to use the cookie

Among them, the first two parameters are mandatory; the other four can be set

manually or automatically. These parameters are separated by semicolons when they are
set explicitly. With these parameters, users do not need to re-authenticate after logging
into a system. However, cookies are not the answer to the security of web application’s
state management not only because cookies are easy to be copied off the system and put
on another system to gain access but also because cookies hold a small amount of data

that most web browsers allow; typically around 300 bytes including only 20 bytes per

domain. [AHO2]

83

1. Send requests (HTML pages)

2. Return an object, set cookies

3. New requests, plus existing cookies
information

Client Web Server

Figure 5.1 The logical view of cookies

To solve the above limitations on cookies, the better way is to store the state
information on the server side rather than the client side. That is what sessions are about.
Sessions, or session objects, are server-side collections of variables that make up the
state. To associate each set of data with the correct client, a unique session-id identifies
one session object on the server side and is transmitted on each request by the client. The
most convenient way to send the session-id on each request from the client is to store it in
a cookie once the session is initiated. In general, many web sites use a session based on
the user login. Once a user logs in the system with valid username and password, a
session is initiated by using username and password. Unfortunately, this session-id is
easy to be stolen by an attacker who will use the session-id as a short time password to
access the web server successfully. Therefore, it is highly recommended that session-id

must be encrypted or be a random number that could not be easily duplicated.

84

5.1.3. HTTP authentication

The basic authentication scheme provided by HTTP (Hypertext Transfer Protocol) is
based on the model that the client must authenticate itself with a username and a
password for each realm. Realms are referred to be a set of protection spaces into which
protected server resources can be partitioned, each with its own authentication scheme
and/or authorization database. The realm value should be considered an opaque string
passed in an HTTP request during basic authentication that can only be compared for
equality with other realms on that server (Figure 5.2). The server will service the request
only if it can validate the username and password for the protection space of the Request-
URI without any other optional authentication parameters. As the username and password
are transmitted over the Internet as the plain text, it is not a secure approach for user

authentication unless it is combined with other secure system such as SSL. [FRANKS99]

Enter Network Password

Figure 5.2 An instance of HT'TP authentication

The digest authentication is a new feature that is similar to the basic
authentication except that the authentication credentials pass through a hashing

algorithm. As a result, the encrypted message will be sent to the server instead of the

85

plain text that the basic authentication uses. Therefore, it is much safer than the basic
authentication. However, since it still belongs to the password-based systems, it cannot
get rid of the drawbacks of this approach, namely being easy to be attacked by using
programming tools. Also, some web browsers limit the use of the digest authentication.
HTTP header fields [W3C92] are used to specify the information of an object (i.e.
an HTML page) to be transmitted between clients and servers. Using HTTP header based
authentication can easily pass through multiple servers since HTTP header authentication
data is cached in the browser session without the need to constantly re-authenticate users.
However, this means that it is easy for someone else to go back to the sites if the user
leaves the browser running and get authenticated with the credentials that are stored in
browser memory. On the other hand, since HTTP is stateless, the servers do not know the
information about the users and the web sites they visit. It is especially dangerous
because the transmitted data including the clients’ usernames and passwords would be
automatically sent even if the clients had logged off the web sites several days ago. Also,
because the authentication happens at the web server, it is hard to track what is going on.
In order to maintain the state information on HTTP servers, the following
methods are generally applied:
e Storing the state information in a cookie, which passes the six parameters as
mentioned in Section 5.1.2.
e Encoding the state information in URL links, which appends a unique string of data
to the URL, or uses the Domain Name System (DNS) and BIND [ALO1] to secure the

server name. For example, once a user clicks the “Webmail” link on the home page

86

of Department of Computer Science at Concordia University, s’he goes to it and gets
a URL ended with an encoded string as follows:

https://mailhost.cs.concordia.ca/horde/imp/login.php?Horde=cf4

44fbbda2f506cb234ecffbceed739

e Sending it in hidden form variables, which is universally supported by web browsers
and is similar to using the cookies in concept. However, because it is easy to be
accessed by viewing the source of the web pages in the web browsers, it is a bad idea

for sensitive data.

5.2. Solution for the CINDI system

5.2.1. Apache server with SSL

There are many different web servers that support the basic functionality to transfer
information via HTTP. Apache is one of the most popular web servers with 62.53%
[NETCRAFTO3] of the market in the non-secure web serving and a good chunk of the
secure market so far. Apache has a large number of features to help handle user sessions

and otherwise track them using Perl, PHP, Java servlets and other methods.

The SSL protocol developed by Netscape Communications Corporation is a
security protocol that provides privacy between two communicating applications (i.e. a
client and a server) over the Internet through a private, authenticated and reliable
communication channel with digital certificates. First, the SSL relies on a reliable
transport protocol such as TCP for data transmission and reception. Furthermore, the SSL
protocol is application independent, allowing higher level application protocols such as
HTTP, FTP (File Transfer Protocol), and Telnet to be layered on top of it transparently.

Moreover, the SSL protocol is able to negotiate an encryption algorithm and session key

87

as well as to authenticate the server before the application protocol transmits or receives
its first byte of data. The SSL protocol maintains the security and integrity of the
transmission channel by using encryption, authentication and message authentication
codes. [HICKMAN95]

Apache-SSL is a secure Web server, based on Apache and SSLeay/OpenSSL
[LLO3]. The SSL can be adapted as an add-on module, which can be added to the Apache
server to improve the security without changing a single line of code. The SSL uses an
encryption technique called the Rivest-Shamir-Adleman (RSA) public key cryptography
[RSA] during the handshaking process, which offers a pair of asymmetric keys for
encryption and decryption. Each pair of keys consists of a public key and a private key,
of which the latter is always linked mathematically to the former. The private key is
uniquely derived from the public key with a large number factor that is infeasible to be
computed by an attacker. The information to be sent is encrypted with the public key of
the receivers while the encrypted data received can be decrypted only with the private
key of the intended receivers. Meanwhile, data encrypted with the private key as a digital
signature must be decrypted only with the associated public key and be verified
according to a simple, prescribed mathematical relation. Consequently, it is practically
impossible to derive the clear text information between the connected parties. In view of
the above, more and more web applications use secure Apache server with the SSL to

prevent the information from being intercepted and to keep secure communication

between servers and clients.

From the viewpoint of users, having a secure web server Apache with the SSL,

the URL is expressed using a protocol https (Figure 5.3) instead of http. A lock icon

88

in the web browser as shown in Figure 5.3 is used to indicate the use of secure
interaction. Considering the security of the entire system, the CINDI system takes
advantage of this feature of the Apache and the SSL protocol to build a secure web server

for its users.

*3 CINDI S¥STEM - Microsoft Interniet Erplorer

Figure 5.3 The window browsing an Apache-SSL web system

5.2.2. Application of PHP
PHP (PHP Hypertext Preprocessor) is a server-side scripting language that facilitates the

creation of dynamic Web pages by embedding PHP-coded logic in HTML documents. It

89

combines many of the finest features of Perl, C, and Java, and adds its own elements to
the concoction to give Web programmers great flexibility and power in designing and
implementing dynamic, content-directed Web pages.

Web applications have become a popular way to provide global access to data,
services, and products. While this global access is one of the Web's underlying
advantages, any security holes in these applications are also globally exposed and
frequently exploited. It is extremely easy to write applications that contain unintentional
security holes. To implement a secure web application by using PHP in this thesis, we
use the secure configuration of the PHP installation that turns register_globals
[PHPO3] off in the CINDI system. By turning off the ability for any user-submitted
variable to be injected into PHP code, the amount of variables poisoning a potential
attacker may inflict will be reduced because the internal variables are effectively isolated
from user submitted data.

As stated previously, the basic HTTP authentication uses a simple challenge-and-
response mechanism to obtain credentials from users. In order to have more control over
user authentication in the form of whether usernames and passwords are stored and how
they are looked up, a PHP-based solution is utilized in the CINDI system. Here, session
cookies are used to store the state information. Also, with the header () function
provided by PHP, the HTTP response header is specified as follows so that no state
information will be stored in the local machine and thus disable the “Back” function of
the web browser. Consequently, by using session control, it prevents subsequent users on

the same computer from viewing the sensitive information of the users of the CINDI

90

system. Furthermore, the “stale” page will be logged out off the system automatically by

setting a cookie with 20 minutes of the lifetime.

Sexpiry = 60*20; // 20 mins

header ("Expires: Mon, 26 Jul 1997 05:00:00 GMT"); // Date in
the past
header ("Last-Modified: " . gmdate("D, d M Y H:i:s") . " GMT");

header ("Cache-Control: no-cache, must-revalidate");

header ("Pragma: no-cache");

session_start();

setcookie(session_name (), session_id(), time()+Sexpiry, "/");

To transmit some variables across requests, the CINDI system either relies on
registering them in sessions with session handling functions or hides them in the HTML
form. For each user, the CINDI system will register the username and password with
login sessions so that each one will have a unique identifier. Since the session module
cannot guarantee that the information stored in a session is only viewed by the user who
created the session, more protection is applied to the sensitive data, especially the
authenticated usernames and passwords. In order to keep the user information secure,
some important data carried by sessions, such as passwords, will be encrypted with the
MD?5 hashing function. With the session control in the PHP programs, even if someone
knows the URL that the authenticated user requests, s/he cannot access it. For example,
without logging into the CINDI system, if a wuser just inputs the URL
https://bp.concordia.ca/cindi/search.php, then a warning message will be

displayed as follows:

91

Adﬂl’!w jéj https:{fbp.concordia.cafcindifsearch.php

¥ PR

Figure 5.4 A warning message for invalid users
5.2.3. Cryptography
Cryptography is the art and science of keeping message secure, which at its best facilities
the following: [HORVATHO2]
e Confidentiality: the sender of a message should be able to limit access to a message.
e Authentication: the receiver of a message should be able to ascertain the origin of the
message.
e Integrity: the receiver of a message should be able to make certain whether a message
has been modified in transmission.
Encryption plays a key role in providing confidentiality. Encryption disguises the
contents of a message by applying a mathematical algorithm to it. Not only is encryption
valuable in ensuring the confidentiality of a message, but also it is useful in maintaining
the privacy of any data, either stored in files or recorded in databases.
There are many encryption algorithms providing varying degrees of security, such

as DES (Data Encryption Standard) and RSA. DES is a U.S. and international standard,

92

being a symmetric key algorithm using the same key (i.e. the secret key) to encrypt a
message and to decrypt it. In contrast, RSA, as stated above, is an asymmetric
cryptosystem using one key (i.e. the public key) to encrypt a message and a different key
(namely, the private key) to decrypt it. The security of the encrypted string depends on
maintaining the secrecy of the private key.

A one-way hash function, also known as a message digest, fingerprint or
compression function, is a mathematical function that takes a variable-length string as the
input and converts it into a fixed-length binary value as the output. Furthermore, a one-
way hash function is designed in such a way that it is technically infeasible to reverse the
conversion, that is, to find a string that hashes to a given value, hence the name one-way.
It should also be hard to find two arbitrary strings that would produce the same hash
value. Therefore, the one-way hash function is important in securing information as well
as in providing some measure of data integrity.

Since the CINDI system applies usernames and passwords as the authentication
identifiers transmitted over the Internet, using a clear text is not a safe way as stated
previously. In this project, the MD5 hash function is used in the CINDI system; the MD5
converts a variable-length string to a fixed-length string of 32 bytes and is used for
passwords, thus creating a “fingerprint” of the passwords that can be stored in a database.
Because no one can reverse the conversion, storing a password in this fashion is very

secure.

93

5.2.4. User Registration

g https:/ /hp.concardia.ca/cindifuser_pegister.php < Micinsnlt Tnterank Euplorer
e 5t Vew Fevokes Took .

2.4

Choose a question

;IChuos‘ a

Figure 5.5 The interface for user registration

The CINDI system supports two classes of users: the users who are able to search for the
information of their interest and to make comments, and the contributors who provide the
resources along with the semantic header information of the resources to be maintained
by the CINDI. Both classes of users are required to input their personal information in
order to register with the system by using the graphical interface as shown in Figure 5.5.
The required fields for users’ personal information include username (i.e. User ID), first
name, last name, address, country and email. The email is used to send the user a
randomly generated password. In case the user gave an invalid faked email addresses, the
password would not be received by the user. The email addresses registered by the users

will also be used for their personal information management as identifiers in case users

94

forgot their passwords (Figure 5.6). Based on the previous registration [WANGO2], we
added the security questions in this project for users during registration. Then the
questions and their corresponding answers will be used to validate a user if s/he forgets

her/his password and wants to obtain a new one. (Figure 5.7)

) Forget Password - Microsoft Internet Explorer
SN S
Search GgFavortes SFMedia B

is your rfavorite color?

is your pet name?

is your mother's middle name?
Y P — »

2 [rkernet

Figure 5.7 The interface for verifying users’ security questions

95

Chapter 6 Implementation, Test and Results

The results of the work done for this thesis are presented in this chapter. Since the work
involved many fields, such as system backup, the CONFSYS integration with PHP,
searching process, testing and debugging, we provide the implementation and results for

these subtasks under separate categories.

6.1. System backup

As discussed in Chapter 3, there are several approaches for system backup, including file-
based replication and database replication. These approaches are utilized by the CINDI
system depending on the data types and the functional requirement.

In order to keep a backup of the current CINDI system, a backup server is set up,
and the data and files are replicated automatically everyday by using the cron job.
However, for the data stored in MySQL on the CINDI server, a snapshot is required if the
replication is implemented asynchronously. This snapshot is done by using the shell
script that embeds mysgldump [MYSQLO3], which is a command-line script to dump a
database or a collection of database for backup or for transferring the data to another SQL
server (not necessarily a MySQL server). The details are listed in Appendix C. The data
file that is dumped from the MySQL database is replicated to the backup server with the
file-based method by using scp.

The data in the CONFSYS database on the conference site is replicated
synchronously by using PHP functions mysql_connect () and mysgl_select_db()
to the remote server CINDI. As stated below, the function mysqgl_connect ()is used to

build two separate links to the local database server (i.e. the conference server called

96

“localhost”) and the remote database server (the CINDI server namely
bp.cocnordia.ca), respectively. Based on the links with the corresponding servers,
the associated databases, namely cindi and confsys, will be selected by using
mysql_select_db():
sdb = mysgl_connect ("bp.cocnordia.ca", "cindidatabase™,
"password")

or die("unable to connect to mysgl server");
mysgl_select_db("cindi", $db)

or die("unable to select database 'cindi': ".mysqgl_error());

Sdb_confsys = mysqgl_connect ("localhost", "confsysdatabase",

"password")
or die("unable to connect to mysqgl server");

mysqgl_select_db("confsys", $db_confsys)

or die("unable to select database 'confsys': ".mysqgl_error());
With the two links, the queries against the two databases are run separately and
concurrently. For example, the author’s information is recorded into the two databases
when the author registers the personal information for the submitted paper.
Sresult_confsys = mysqgl_query{("insert into author values
(NULL, 'Sauthor_fname', 'Sauthor_lname',

'Sorganization', 'Saddress', 'Sphone', 'Semail’',null, null, null,

null)", $db_confsys);

Sresult_cindi = mysgl_gquery("insert into author values

(NULL, '$Sauthor_fname', 'Sauthor_lname',

'Sorganization', 'Saddress', '$phone', 'Semail', null, null, null,

null)", sdb);

97

With this method, the CINDI database is a remote backup of the local conference
database. Meanwhile, it makes the integration of the CONFSYS into the CINDI

convenient.

6.2. Searching process

6.2.1. Implementation of fuzzy search

In the administration sub-system, fuzzy search is utilized for the text search items
including title, abstract, and annotation in order to address the human recognition
problem and to provide suggestions. As introduced previously, the Aspell spell checker is
adopted in the searching system, which is able to give ten suggested words, as shown in
the following example: if “united states of America” is mistyped as “vnited states of

America”. By using the spelling checker, we get the suggestion below:

1) united 6) wonted

2) vented 7) noted

3) vaunted 8) voted

4) vined 9) vended

5) vomited 0) dinted

i) Ignore I) Ignore all
r) Replace R) Replace all
a) Add x) Exit

In this case, it requires that users interact during the processing of spell check. For
the searching function, in order to avoid this interaction from users, we consider the first

word given by the spell checker as the best and closest choice. With the corrected words,

98

the queries will be run against the tables. The details are shown in the following

workflow chart.

garch for title, or abstract, ©
annotation

Go to another
flow

Yes

Create a temporary file

A

Token the input search items and
store them into the temporary file

-l
-

the file

Run the spell checker to check the
word

If there is returned suggestion

Change the misspelled word with the
first word of the suggestion given by
the spell checker

L

Query with the correct items

¢

Figure 6.1 The workflow of the application of Aspell

99

6.2.2. Implementation of full-text searching

As mentioned in Section 4.2.4, to keep the ACID properties and to speed up the

searching, a temporary table is created based on the table resource in the searching

subsystem. In general, people can provide several keywords when looking for a relevant

resource, and these keywords may exist in the abstract and keyword separately. In this

case, the simple match operators “=" and “LIKE” are not used in the simple Boolean

condition to search for these keywords. The full-text searching is the right answer to this

problem.

First of all, a temporary table called TEMPresource is created with the default

table type MyISAM that supports full-text indexes. Based on the temporary table, a full-

text index is added for the abstract and keyword fields as follows:

include_once ("dbConnect.php") ;

Ssgl_temp = "CREATE TEMPORARY TABLE IF NOT EXISTS TEMPresource

$sqgl_temp .= "select * from resource";
Ssqgl_temp_query = mysqgl_query(Ssgl_temp, $db);
if (!S$sqgl_temp_query)
error_message (mysqgl_error());
Ssgl_temp_index = "ALTER TABLE TEMPresource
FULLTEXT (abstract, keyword)";
Ssqgl_temp_index_guery = mysql_query($Ssgl_temp_index, $db);
if (!$sqgl_temp_index_guery)

error_message (mysqgl_error());

100

no.,
7

ADD

Afterwards, the queries run against keywords can be implemented by using the
full-text match operator match () against () for the SQL WHERE condition as shown
below.

Skword .= T"match(abstract,keyword) against ('";
for($i = 0; S$i < Scount_comma; S$i++)
{
Skword .= S$keyword_array[$i];
if ($1 < $count_comma - 1)
Skword .= " *;

}

Skword .= "') ";

Here, $count_comma is a variable to count the number of commas that are used to
separate the entered keywords. With the above method, the SQL WHERE condition is
written as match(abstract, keyword) against (*Skeyword_array[0]
Skeyword_array[l] $keyword_array([2]’) if there are three keywords input by

users.

6.3. Test results

In order to test the functions of the CINDI system, we implemented and tested it by using
a number of different scenarios. The goal is to improve the system performance and to fix
the existing problems. The following tables show some key scenarios and the results
obtained by testing. As shown in Table 9, there were several problems that needed
debugging in the previous CINDI system. Through our analysis and improvement, we

fixed these problems and obtained the test results shown in Table 10.

101

Table 9. Test scenarios and results of the original CINDI sxstem [WANGO02]

Test Contents

Scenatio Descriptions

Results

Security

The system provides a warning
message for a user who wants to
enter the system without login by
entering one of the URLs of the
system.

Passed.
(See Figure 5.4)

With “Back” button in the web
browser to enter the system after
a user logs out the system. In this
case, there is a wamning message
for invalid access.

Failed.

Because the session cookies store in the local
machine, a user can access the system by using
the “Back” button after logging out

A stale page is logged out of the
system automatically after a
period.

Failed.
Without any timeout control, a web page can
keep alive even though it is keeping “stale”.

Database design

Database design follows the
basic normalization to reduce
data redundancy.

Failed.
There is a redundant table called
resource_authorname.

Query processing

A resource is not registered in the
system if the registration is not
finished when the contributor log
out.

Failed.

Since the insertion begins at the beginning of
the registration without monitoring the
registration process, when the registration of a
resource is not finished, there is no action to
process the inserted record so as to make some
redundant data in the database.

By using the searching interface,
users can select the subjects
stored in the database.

Failed.

Because of the wrong queries run against the
table subject, for the sub-sub-subject, users can
only get a subset of the subjects. For example,
the number of the sub-sub-subjects that belong
to the sub-subject with the code of 1022 should
be 97 instead of 10 given by the current query.
(See Appendix D)

File operation

L ——————————— ———————

On the command line, the
semantic header is generated
automatically and stored in the
directory.

Passed.

Via the web, the semantic header
is generated automatically and
stored in the directory.

102

Failed.

Since the web users belong to nobody/nogroup,
the lowest permission, they are illegible to
access the directory with the higher privilege
cindifusers. Thus, the semantic header
generator cannot create correctly the same file
as on the command line.

Table 10, Test scenarios and results of the enhanced CINDI szstem

after a user log out the
system. In this case, there is a
warning message.

Test Scenario Descriptions Approaches to fixing the problems | Results
Contents
Security With “Back” button in the web | By using the PHP function | Passed.
browser to enter the system | header () and session | A warning message

cookies, as discussed in Section
52.2.

is shown as Figure
54.

A stale page is logged out of
the system automatically.

By setting the timeout with the
session cookies

Passed.
The system will log
out after 20 minutes.

automatically and stored in
the directory.

Database Database design follows the | As stated in Section 4.2.1, we | Passed.
design basic normalization to reduce | created a temporary table to play
data redundancy. the same role of the redundant
table to reduce the redundant data
and to free up the space so that
the design meets the database
normalized forms.
Query A resource is not registered in | By creating a table that records the | Passed.
processing | the system if the registration | process status of a resource, the
is not finished when the | related data will be deleted
contributor logs out. automatically when the contributor
logs out the system, before the
registration is not finished.
By using the searching | By modifying the query against the | Passed.
interface, users can select the | subject.
subjects stored in the | (See Appendix D)
database.
File Via the web, the semantic | By correcting the privilege of the | Passed.
operation header is generated | directory as nobody/nogroup. The semantic header

generator can create
correctly the same
fle as on the
command line.

The overall test results bring us the conclusion that some key issues, such as

security, database design and query processing, are solved in this thesis. However, a real

life scenario with large amount data, such as a number of concurrent users, should extend

the test in order to assess the performance of the system.

103

Chapter 7 Conclusion and Future Work

7.1. Conclusion

The web-based CINDI system is being developed to launch a searchable distributed
database system of material documenting scholarly works for users who are looking for
some specific topics over the Internet. Its goal is to build an efficient and effective virtual
library containing a wide range of digital document collection described by a data
structure to record the bibliographic information of the resources, i.e. the Semantic
Header. It aims to help users without any cataloging knowledge to search for this up-to-

date information through the Internet.

Making use of the Semantic Header meta-data entry, contributors of resources are
able to register the resources on the web either by themselves manually or by invoking
the ASHG automatically. The former method would be more accurate and support any
format of the resources, while the latter is much faster and can process some standard
styles of files. With the ASHG, the CONFSYS, a subsystem of the CINDI, provides the
authors who submit their papers to a specific conference with the semantic header
generated automatically for the uploaded papers. As a result, it not only improves the
submission of papers but also enriches the collection of the CINDI system. With the
presence of abstracts and annotations in the semantic header, not only does the CINDI
system provide a summary of documents but also it can aid to making better decision
regarding the relevance of the resource without actually downloading the enlisted

resource.

104

Nowadays, keywords are the most popular search criterion utilized by most of the
existing search engines to retrieve the online information. As stated and tested previously,
this scheme results in lower search precision as well as recall because the context of the
meaning of a word is lost. To address this context problem in the search engines, the
CINDI system provides the user with several different search criteria: title, author
name(s), keyword(s), subject and the period of created date, which are offered in three
levels of search depending on the users’ knowledge of the resources. Since users may
make mistakes in typing and spelling caused by human OCR, fuzzy search is

implemented using the Aspell spell checker to improve the usability of the system.

In order to facilitate the system administrators to manage the information of the
CINDI system, the administration subsystem has been designed and implemented. It
assists the administrators in editing and managing the user/contributor personal
information for registration as well as the bibliographic index of the registered resources.
Moreover, to provide the up-to-date information for users, the administrators can take
advantage of the administration subsystem to merge the latest conference information

regarding the submitted papers into the CINDI system easily and quickly.

Considering the usability of the CINDI system, the graphical user interfaces for
its five subsystems are designed based on the knowledge and experience of users. Since
users generally have no knowledge of cataloging in a library, the registration subsystem
provides a standard semantic header metadata entry for contributors to help them index
the contribution. Furthermore, to help users to find the needed documents efficiently from
the CINDI virtual library, the system offers the style of searching interface from users to

users based on the users’ knowledge about the documents they need. Moreover, based on

105

the Window’s interface style, online help is offered for users by the CINDI system, which

can guide users’ operations on the associated subsystems.

7.2. Contribution to the CINDI system

The contribution of the thesis to the CINDI system falls into the following categories:

Refine the database design for the CINDI system to make the system more effective
and efficient.

Introduce the replication of MySQL to the CINDI system to supply high availability
for the system, and backup the CONFSYS in the remote server so as to implement the
distributed database system for the CINDI.

Improve the security of the CINDI system by upgrading the PHP to turn the
register_global variables off, improving the security of the PHP programming with
session and cookies controls, and introducing MDS5, the one-way encryption
algorithm for passwords.

Design and implement the administration subsystem in order to make the system
management convenient and efficient.

Take advantage of temporary tables of MySQL to speed up searching and to free up
disk space as well as to reduce the redundant tables from the system.

Introduce the Aspell spell checker to the CINDI system to support fuzzy search in
case of users’ mistyping.

Implement the personal information management for the users and contributors.
Integrate the CONFSYS to be a subsystem of the CINDI so that the CINDI system

can include the latest information in a rapid manner for users.

106

e Improve the registration subsystem by developing the registration function with
security questions.

e Integrate the semantic header generator for PDF files with the CONFSYS to improve
its performance.

e Enhance the functionalities of the CINDI system by processing the compressed files
and by integrating the semantic header generator for PDF files.

e Improve the performance of the CINDI system by revising the interfaces of the
system, testing the system with black-box and white-box methods as well as

debugging.

7.3. Future work

In order to improve the performance of the CINDI system further and to provide an

efficient and effective digital library for the users on the Internet, the following are some

suggestion that will be helpful for the future work:

¢ Uniform and improve the interfaces of the CINDI system
A good interface enables users to quickly and effortlessly access any place of the web
site by providing a well-defined, clearly-named entry point. This requires that the
interfaces have a distinctive fashion, including the background, the icons, and the text
fields etc., which are used in the same way to identify the major function sections. In
the current CINDI system, the backgrounds and text colors need improving since the
five subsystems have different colors and backgrounds, although each subsystem has

its own unified colors and background.

107

In order to make the use of the CINDI system efficiently and effectively, the
CINDI system provides an online help on each accessible page. However, with the
future development of the CINDI, more details would be required.

Improve the accuracy and functional performance of the semantic header generator
So far, the semantic header generator can support the standard styles of files, such as
HTML, RTF, PDF, LATEX and TXT. Since the document files PostScript and
Windows DOC are also used for documents, the semantic header generator should be
enhanced so as to be able to generate the bibliographic indexed for these files. During
the implementation of this thesis, a project to generate PDF files from RTF and DOC
is underway.

By testing the semantic header generator, we find that authors’ information
and subject fields are key points in measuring the accuracy of the bibliographic
indexes. To improve its performance, while enlarging the subject data set, a
controlled word dictionary of the exactly associated subjects should be built such that
the most possible keywords can be linked with the related subjects based on their
context. In addition, the efficiency of the semantic header generator should be
improved by optimizing the C++ and C programs in its implementation.

Improve fuzzy search

By utilizing the open source Aspell spell checker, the CINDI system provides the
simple fuzzy search based on the word list provided by the Aspell, which is a
common English dictionary. However, for a user-oriented system, the common
dictionary is limited to looking up the specific words that may be considered

misspelling. In order to improve this function, a dictionary based on the information

108

of existing resources in the CINDI system should be set up by taking advantage of the
customization of the Aspell. Also, fuzzy logics should be considered in the future.
Add the intermediate steps for search

After the users click the button for search in Figure 4.2, 4.3 and 4.4, we should give
the short introduction to the search results along with the corresponding URLs. The
users would browse the information on the current screen to decide which of the
entries best fit their needs. Then, using the relevant URL, the semantic header of the
resource would be displayed.

Tune the MySQL databases

Basically, from the viewpoint of functionality, the CONFSYS subsystem can be
smoothly applied to a conference. However, from the position of efficiency and
performance, it requires improving the relationships between the tables or relations.
For example, the linkage between the submitted papers and their authors should be
represented by creating a distinctive table, instead of by using the table containing the
information of the papers, as shown in Figure 4.1(c).

Improve and implement the distributed database system

The current CINDI system supplies the replication of the MySQL databases to
improve the performance and protect the availability of applications because alternate
data access option exists; therefore, if the production server failed, the replica can be
used as the production system to ensure high availability. With a larger number of
users, a “bottle-neck” problem will be caused by the increased traffic. Therefore, load
balancing should be considered. One of the solutions is to horizontally partition the

database system based on subject areas. That is, one site will accept the requests on a

109

subject such as Computer Science; another one will process the visits on another
subject, for example, Electrical Engineering. One more solution is to switch the users’
requests based on their goals. That means, the contributors who will upload some
resources can access one server while the users who are going to search for some
resources can visit another one. In order to keep all sites synchronized, it is better to

distribute the write queries to all the servers.

110

References

[ADO2] Allen, Susan and Davis, Eric, A Practical Application of Dublin Core:
Worthington Memory, COASIS&T, September 2002

http://www.worthingtonmemory.org/PDFfiles/CO-

ASIST DublinCore Presentation files/frame.htm

Archive copy: http://www.cs.concordia.ca/~faculty/bcdesai/grads/yanho_li/frame.htm.zip

[AHO2] Allen, Jeremy and Hornberger, Charles, Mastering PHP 4.1, pp333-356, SYBEX
Inc., 2002

[ALO1] Albitz, Paul and Liu, Cricket, DNS and BIND, chapter 11, 4th Edition,
O’REILLY, 2001

[ARMSO02] William Y. Arms, Digital Libraries, pp40-48, The MIT Press, 2000
[ATKINSONO2] Atkinson, Kevin, GNU Aspell, 2002

http://aspell.net

Archive copy: http://www.cs.concordia.ca/~faculty/bcdesai/grads/yanho_li/aspell.zip

[DELANYO0O0] Delany, Doug, Implementing Highly Available Commercial Applications
under Linux using Data Replication, PolyServer, Inc., December 2000
[DESAI94] Desai, Bipin C., A System for Seamless Search of Distributed Information

Sources, May 1994.

http://www.cs.concordia.ca/~faculty/bcdesai/web-publ/w3-paper.html

[DESAI9S] Desai, Bipin C., The Semantic Header and Indexing and Searching on the

Internet, 1995

http://www.cs.concordia.ca/~faculty/bcdesai/web-publ/cindi-system-1.1.html

[DESAIO2] Desai, Bipin C., Search and Discovery on the Web, 2002

111

http://www.ssgrr.it/en/sserr20025/papers/74.pdf

Archive copy:

hitp://www.cs.concordia.ca/~faculty/bcdesai/grads/yanho li/searchDiscoveryonWeb.pdf

[FRANKS99] Franks, J. et al., HTTP Authentication: Basic and Digest Access
Authentication, The Internet Society, 1999

http://www detf.org/rfc/rfc2617.1xt

Archive copy: http://www.cs.concordia.ca/~faculty/bcdesai/grads/yanho_li/rfc2617.txt

[GI88] George, Coulouris and Jean, Dollimore, Distributed Systems: Concepts and
design, AddisonWesley, 1988

[GUO02] Gu, Zhengwei, CONFSYS: The Cindi Conference Support System, Department of
Computer Science, Concordia University, 2002

http://www.cs.concordia.ca/~faculty/bcdesai/grads/zgureport.pdf

[HADDAD98] Haddad, Sami, Automatic Semantic Header Generator, Department of
Computer Science, Concordia University, September, 1998

http://www.cs.concordia.ca/~faculty/bcdesai/erads/haddad-thesis.pdf

[HICKMAN95] Hickman, Kipp E.B., SSL 2.0 PROTOCOL SPECIFICATION, Netscape

Communications Corp. 1995

http://wp.netscape.com/eng/security/SSL 2 html

Archive copy: http://www.cs.concordia.ca/~faculty/bcdesai/grads/yanho_1i/SSL.zip

[HORVATHO2] Horvath, Mary, Understanding Encrypt, ToBase64, and Hash, Allaire

Documentation Group, Allaire Corporation, 2000

http://www.macromedia.com/devnet/server_archive/articles/understanding encrypt.html

112

Archive copy:

http://www.cs.concordia.ca/~faculty/bedesai/grads/vanho_li/understanding_encrypt.zip

[JINO3] Jin, Xin, CONFSYS:The Cindi Conference Support System, Department of
Computer Science, Concordia University, 2003

[KOFLERO1] Kofler, Michael, MySQL, Spinger-Verlag GmbH&Co. KG, 2001

[LLO3] Laurie, Ben and Laurie, Adam, Apache-SSL, 2003

http://www.apache-ssl.org/

Archive copy: http://www.cs.concordia.ca/~faculty/bcdesai/grads/yanho li/Apache-

ssl.zip
[MARCO1] Network Development and MARC Standards Office, MARC to Dublin Core
Crosswalk, Library of Congress, February, 2001

http://www.loc.gov/marc/marc2dc.html

Archive copy: http://www.cs.concordia.ca/~faculty/bcdesai/grads/yanho_li/marc2dc.zip

[MD5] MDS5 Homepage (unofficial)

http://userpages.umbc.edu/~mabzugl/cs/mdS/mdS.html

Archive copy: http://www.cs.concordia.ca/~faculty/bcdesai/grads/yanho_li/mdS.html

[MILLER96] Miller, Paul, An application of Dublin Core from the Archaeology Data
Service (draft), July 1996

http://intarch.ac.uk/ahds/project/metadata/dublin.html

Archive copy: http://www.cs.concordia.ca/~faculty/bcdesai/grads/yanho_li/dublin.zip

[MYSQLO3] MySQL Document, MySQL AB, 1995-2003

http://www.mysgl.com/documentation/index.html

[NETCRAFTO03] Web Server Survey, Netcraft Ltd., 2003

113

http://news.netcraft.com/

Archive copy: http://www.cs.concordia.ca/~faculty/bcdesai/grads/yanho_li/netcraft.zip

[NP02] Nagarkar, Shubhada and Parekh, Harsha, Development and Application of Dublin
Core Metadata Standards in Marathi, Proc. Int. Conf. on Dublin Core and Metadata for
e-Communities 2002: 235-236

http://www.bncf.net/dc2002/program/ft/posterl 1. pdf

Archive copy: http://www.cs.concordia.ca/~faculty/bcdesai/grads/yanho_li/poster]1.pdf

[OKKO1] Onyancha, Irene and Keizer, Johannes and Katz, Stephen, A Dublin Core
Application Profile in the Agricultural Domain, International Conference on Dublin Core
and Metadata Applications, October 2001

http://www.fao.org/agris/MagazineArchive/MetaData/DC2001_Japan.doc

Archive copy:

http://www.cs.concordia.ca/~faculty/bcdesai/grads/vanho 1i/DC2001 Japan.doc

[ORACLE9Y9] Oracle8i Concepts, Release 8.1.5: Chapter 33, Distributed Databases —

ORACLE, 1999

http://home.fms.indiana.edu/users/cshelton/oracle/server.815/a6778 1/toc.htm

Archive copy: http://www.cs.concordia.ca/~faculty/bcdesai/grads/yanho li/toc.zip

[PHPO3] PHP Manual, The PHP Group, 2001-2003

http://php.Jamphost.net/manual/en/

[RGOO] Ramakrishnan, Raghu and Gehrke, Johannes, Database Management Systems,
pp237-243, Mcgraw-Hill Higher Education, ot edition, 2000

[RSA] RSA

http://searchsecurity.techtarget.com/sDefinition/0,,sid14 oc¢i214273.00.html

114

Archive copy: http://www.cs.concordia.ca/~faculty/bcdesai/grads/yanho_li/RSA.zip

[SEIFRIEDO1] Seifried, Kurt, WWW Authentication, 2001

http://www .seifried.org/security/www-auth/index.html

Archive copy:

http://www.cs.concordia.ca/~faculty/bcdesai/grads/vanho _li/www-auth.html

[SHAYANY97] Shayan, Rajabihan Nader, Cindi: The Database System for Subject
Headings and Semantic Headers, Department of Computer Science, Concordia
University, May, 1997

http://www.cs.concordia.ca/~faculty/bcdesai/grads/nader-thesis.pdf

[UCRO0] The University of California Regents, Digital Library Research &
Development, 2000

http://sunsite.berkeley.edu/R+D/

Archive copy:

http://www.cs.concordia.ca/~faculty/bcdesai/erads/vanho_li/digital library.zip

[WANGO2] Wang, Yuhui, Enhanced Web Based Cindi System, Department of Computer
Science, Concordia University, 2002
[W3C92] Object Metalnformation, W3C, 1992

http://www.w3.org/Protocols/HTTP/Object Headers.htinl

Archive copy:

http://www.cs.concordia.ca/~faculty/bcdesai/grads/yvanho_li/Object Headers.zip

[ZHANGO2] Zhang, Zhan, Cindi's ASHG, Department of Computer Science, Concordia

University, 2002

115

Appendix A: Application for foreign key constraints

In order to adhere to the ACID properties of the relational database, we make use of the
foreign keys to keep the referenced tables (e.g. resource and author) and the
referencing tables (e.g. coverage and resource_author) consistent. Thus, the
insertion should begin from the referenced tables to the referencing tables while the
deletion should be in the reverse order, from the referencing tables to the referenced
tables. Based on the foreign key constraints, we give an example below of moving the
resource records of the older version to the backup database, including deletion and
insertion. Here, the primary key resource_id of the table resource is referenced by
the referencing tables such as identifier, coverage and so on.

//get the resource records of the older version from the relevant
tables

if (stremp($Sauthor, S$Solder_author) =
ones

0) { //delete the older

Squery2 = mysgl_qguery("SELECT * FROM identifier WHERE
resource_id = Srequired([0]") or die ("There is no older
version!") ;

$old_identifier = mysqgl_fetch_row(Squery2) ;

Squery3 = mysqgl_query("SELECT * FROM coverage WHERE
resource_1id = Srequired[0]") or die ("There is no older
version!");

$old_coverage = mysqgl_fetch_row($query3);

Squeryv4d = mysqgl_query ("SELECT * FROM classification WHERE
resource_id = Srequired[0]") or die ("There is no older
version!");

$old_classifier = mysqgl_fetch_row($query4d) ;

Squery5 = mysqgl_qguery ("SELECT * FROM system_req WHERE
resource_id = Srequired[0]") or die ("There is no older
version!");

$old_sys_req = mysqgl_fetch_row(Squeryb) ;

Squery6 = mysqgl_qguery ("SELECT * FROM annotation WHERE
resource_id = S$required[0]") or die ("There is no older
version!") ;

$old_annotation = mysql_fetch row(Squeryé) ;

Squery7 = mysql_query("SELECT * FROM resource_subject
WHERE resource_id = Srequired[0]") or die ("There is no older
version!") ;

116

$old_re_subject = mysqgl_fetch_row(Squery7);

Squery8 = mysqgl_query ("SELECT * FROM resource_author
WHERE resource_id = Srequired{0]") or die ("There is no older
version!");

$old_re_author = mysqgl_fetch_row(Squery8) ;

mysqgl_select_db("cindiold", $db)
or die("unable to select database 'cindi‘':
".mysgl_errox());

//insert related records of a resource, begin from the table

resource

$ins_versionl = mysgl_query ("insert into resource
values (null, SmyArrayl[0], 'SmyArrayl([l]', 'S$myArrayl[2]',
SmyArrayl [3], 'SmyArrayl[4]', ‘'SmyArrayl[5]', 'SmyArrayl([6]’',
"SmyArrayl{[7]', 'SmyArrayl([8]', 'SmyArrayl[9]', 'SmyArrayl[10]‘',
‘SmyArrayl[11}', SmyArrayl[12], 'SmyArrayl[13]', 'SmyArrayl[14]',
"‘SmyArrayl[15] ', SmyArrayl[16], SmyArrayl[l17])");

$id = mysqgl_insert_id(sdb) ;

$ins_version2 = mysqgl_guery ("insert into identifier
values (SmyArrayl[0], 'Sold_identifier[1]',
'$old_identifier{2]')");

$ins_version3 = mysgl_qguery ("insert into coverage

values (SmyArrayl[0], 'Sold_coverage[l]', 'Sold_coveragel[2]')"};
Sins_versiond4d = mysgl_guery ("insert into classification
values ($o0ld_classifier[0], 'Sold_classifier[1]',

'$old_classifier([2]')");
S$ins_version5 = mysqgl_guery {("insert into system_reqg

values ($Sold_sys_req[0], 'Sold_sys_reqgl[l]', '$old_sys_req[2]')");
$ins_version6 = mysgl_guery ("insert into annotation
values ($old_annotation[l], 'Sold_annotation([2]',

‘Sold_annotation[3]')");

Sins_version7 = mysgl_guery ("insert into
resource_subject values (Sold_re_subject[0],
Sold_re_subject[1l],$0ld_re_subject[2],$%0ld_re_subject[3])");

$ins_version8 = mysqgl_dguery ("insert into resource_author
values ($old_re_author[0], $old_re_author[1],
'Sold_re_author[2]')");

Sins_version9 = mysgl_query ("insert into
resource_authorname values ($author_old[0], 'Sauthor_old[1l]')");

}

mysqgl_select_db("cindi", $db)
or die("unable to select database 'cindi':
".mysqgl_error());

//delete the releted records of a resource, the last one table
must be the table resource

if (Srequired[0] != S$paperid) {

Sdel_version9 = mysgl_query ("delete from resource_authorname
where resource_id = Srequired[0]");

117

S$del_version8 = mysqgl_query ("delete from resource_author
where resource_id = S$required[0]");

Sdel_version7 = mysgl_query ("delete from resource_subject
where resource_id = Srequired[0]");

Sdel_version6 = mysqgl_query ("delete from annotation WHERE
resource_id = Srequired[0]");

$del_version5 = mysqgl_qguery ("delete from system req WHERE
resource_id = Srequired([0]");

Sdel_versiond = mysgl_query ("delete from classification WHERE
resource_id = Srequired[0]™");

$del_version3 = mysqgl_query ("delete from coverage WHERE
resource_id = $required[0]");

Sdel_version2 = mysgl_query ("delete from identifier WHERE
resource_id = Srequired[0]");

Sdel_versionl = mysgl_query ("delete from resource WHERE
resource_id = Srequired[0]");

}

Appendix B: Application for temporary tables

Build a temporary table to merge the two tables regarding annotations given by authors
and readers. (Section 4.5)

include_once ("dbConnect.php");
Stemp_sqgl = "CREATE TEMPORARY TABLE tempAnnotation ";
Stemp_sqgl .= "select * from annotation ";
Stemp_query = mysgl_guery(Stemp_sgl, $db);
if (!Stemp_guery)
error_message (mysql_error());
if (Stemp_query)
{
StempSgl = "select * from annotation_confsys";
StempSgl_query = mysgl_guery(StempSqgl, $db);
while (Stemp_row = mysqgl_fetch_row($tempSql_query))
{

Stemp_Sqgl = "insert into tempAnnotation wvalues (":

Stemp_Sgl .= "Stemp_row[0], $temp_row[l],
Stemp_row([2],";

Stemp_Sgl .= " 'Stemp_row[3]')";

Stemp_Sqgl_gquery = mysqgl_query(Stemp_Sqgl, $4db);
if (!Stemp_Sqgl_dguery)
error_message (mysql_error()) ;
}
}
Sresult = mysqgl_qguery("SELECT * FROM tempAnnotation
GROUP BY resource_id");

118

Appendix C: A shell script for dumping the database for

backup

#!/bin/sh

List all of the MySQL databases that will be backup here,
each seperated by a space
databases="cindi"

Directory where the backup files to be placed
backupdir=/home/cindi/cindi_dbbackup

MySQL dump command
nmysgldumpcmd=/usr/local/apachel327-mysqgl32352-php423-
openssl96g/mysqgl3.23.52/bin/mysgldump

MySQL Username and password
userpassword=" --user=username --password=password"

MySQL dump options
dumpoptions=" --quick --no-create-db --no-create-info --add-
locks --extended-insert --lock-tables"

Unix Commands
gzip=/bin/gzip
uuencode=/usr/bin/uuencode
mail=/bin/mail

Create our backup directory if not already there
mkdir -p ${backupdir}
if [! -d ${backupdir}]
then
echo "Not a directory: ${backupdir}™
exit 1
fi

Dump all the listed databases
echo "Dumping MySQL Databases"
for database in $databases
do
$Smysgldumpemd Suserpassword Sdumpoptions $database >
S{backupdir}/s${database}.sql
done

Compress all of our backup files
echo "Compressing Dump Files"

for database in S$databases

do

119

rm -f ${backupdir}/s{database}.sql.gz
Sgzip ${backupdir}/${database}.sql
done

List what are done
ls -1 ${backupdir}
echo "Dump Complete!™
exit

Appendix D: The queries regarding the subjects.

In the original version, the following query was used to achieve the records about sub-
sub-subject.

Sresult_subject=mysqgl_query("select * from subject where
subject_id>=(Scp_sub_subjectChoicel*1000) and
subject_id< (Scp_sub_subjectChoicel*1000+1000) order by
subject_name", $db) ;

Here, $cp_sub_subjectChoicel is the code of the sub-subject that is selected by
users from the interfaces as shown in Figure 4.2, Figure 4.3 and Figure 4.4. For example,
if the users selected the subject “Numerical analysis in mathematics of computing” with
the code 1022, that is, $cp_sub_subjectChoicel is 1022, the query result was that
only ten records were selected as follows:

select * from subject where subject_id>=1022*1000 and

subject_1d<1022*1000+1000;

T e T LT T T T ———
| subject_id | subject_name
fmm - -
1022000 | -—-===-——m=mommm
1022001 General
1022002 Computer arithmetic
1022003 Numerical analysis conditioning (and 111-
onditioning

—— e e O —_—

I
|
|
)
1022004 | Numerical error analysis
|
|
|
|

1022005 Numerical analysis interval arithmetic
1022006 Multiple precision arithmetic
1022007 Numerical analysis algorithms
1022008 Parallel numerical analysis algorithms

120

| 1022009 | Numerical analysis stability (and instability)
Fommm e m T
10 rows in set (0.00 sec)

In fact, since the left four digitals of a sub-sub-subject code is set to be the same
as the sub-subject code, the query run against the table subject is modified as follows,

which can achieve all the sub-sub-subjects with the same second level sub-subject.

Sresult_subject=mysqgl_qguery("select * from subject where
left (subject_id,4) = Scp_sub_subjectChoicel and subject_id !=
Scp_sub_subjectChoicel order by subject_name", $db) ;

Let $cp_sub_subjectChoicel be 1022, the query and its results can meet
the requirement correctly.

select * from subject where Ileft(subject_id,4)=1022 and

subject_id !'= 1022;

Fom o e e
| subject_id | subject_name

Fommmmm e -
| 1022000 | ====—-m=mmmmmmmo

| 1022001 | General

| 1022002 | Computer arithmetic

| 1022003 | Numerical analysis conditioning (and i1l-
conditioning)

| 1022004 | Numerical error analysis

| 1022005 | Numerical analysis interval arithmetic

| 1022006 | Multiple precision arithmetic

| 1022007 | Numerical analysis algorithms

| 1022008 | Parallel numerical analysis algorithms

| 1022009 | Numerical analysis stability (and instability)
| 10220010 | Interpolation

| 10220011 | Extrapolation

| 10220012 | Interpolation formulas

| 10220013 | Smoothing interpolation

| 10220014 | Spline and piecewise polynomial interpolation
| 10220015 | Approximation

| 10220016 | Approximation of surfaces and contours

| 10220017 | Chebyshev approximation and theory

| 10220018 | Elementary function approximation

I 10220019 | Fast fourier transforms (fft) approximation

[10220020 | Least squares approximation

| 10220021 | Linear approximation

| 10220022 | Minimax approximation and algorithms

| 10220023 | Nonlinear approximation

121

| |

| 10220025 | Special function approximations

| 10220026 | Spline and piecewise polynomial approximation
| 10220027 | Wavelets and fractals approximation

| 10220028 | Numerical linear algebra

| 10220029 | Numerical linear algebra conditioning

| 10220030 | Numerical linear algebra eigenvalues and
eigenvectors

| 10220031 | Numerical linear algebra error analysis

[10220032 | Numerical linear algebra systems (direct and
iterative methods)

| 10220033 | Numerical linear algebra matrix inversion

| 10220034 | Numerical linear algebra singular value
decomposition

I 10220035 | Numerical linear algebra sparse systems

| 10220036 | Numerical linear algebra structured systems
| 10220037 | Numerical linear algebra very large systems
| 10220038 | Quadrature and numerical differentiation

| 10220039 | Adaptive and iterative quadrature

| 10220040 | Automatic numerical differentiation

| 10220041 | Quadrature and numerical differentiation error
analysis

| 10220042 | Quadrature and numerical finite difference
methods

| 10220043 | Gaussian quadrature

[10220044 | Quadrature and numerical differentiation
iterative methods

| 10220045 | Multidimensional (multiple) quadrature

| 10220046 | Roots of nonlinear equations

| 10220047 | Roots of nonlinear continuation (homotopy)
methods

| 10220048 | Roots of nonlinear convergence equations

| 10220049 | Roots of nonlinear error analysis

| 10220050 | Roots of nonlinear iterative methods

| 10220051 | Roots of nonlinear polynomials, methods for
| 10220052 | Systems of roots of nonlinear equations

| 10220053 | Optimization

| 10220054 | Constrained optimization

| 10220055 | Convex optimization programming

| 10220056 | Global optimization

| 10220057 | Gradient optimization methods

| 10220058 | Integer optimization programming

| 10220059 | Least squares optimization methods

| 10220060 | Linear optimization programming

| 10220061 | Nonlinear optimization programming

| 10220062 | Quadratic optimization programming methods
| 10220063 | Simulated optimization annealing

| 10220064 | Stochastic optimization programming

| 10220065 | Unconstrained optimization

| 10220066 | Ordinary differential equations

| 10220067 | Ordinary differential boundary value problems
| 10220068 | Ordinary differential chaotic systems

10220024

Rational approximation

122

differential convergence and stability
differential-algebraic equations
differential error analysis

finite difference methods

differential initial value problems
differential multistep and multivalue

differential one-step (single step)

differential stiff equations

equations

equations: domain

elliptic equations

equations: finite
equations: finite element
equations: finite volume
hyperbolic equations
equations: inverse
equations: iterative
equations: method of lines
equations: multigrid and
parabolic equationsg
equations: spectral

| 10220069 | Ordinary

| 10220070 | Ordinary

| 10220071 | Ordinary

| 10220072 | Ordinary

| 10220073 | Ordinary

| 10220074 | Ordinary

methods

| 10220075 | Ordinary

methods

| 10220076 | Ordinary

| 10220077 | Partial differential

| 10220078 | Partial differential
decomposition methods

| 10220079 | Partial differential

| 10220080 | Partial differential
difference methods

| 10220081 | Partial differential
methods

| 10220082 | Partial differential
methods

| 10220083 | Partial differential

| 10220084 | Partial differential
problems

| 10220085 | Partial differential
solution techniques

| 10220086 | Partial differential

| 10220087 | Partial differential
multilevel methods

| 10220088 | Partial differential

| 10220089 | Partial differential
methods

| 10220090 | Integral equations

| 10220091 | Integral delay equations
| 10220092 | Fredholm integral equations
| 10220093 | Integro-differential equations
| 10220094 | Volterra integral equations
| 10220095 | Applications

| 10220096 | Miscellaneous
Fmmmmm +

97 rows in set (0.00 sec)

123

