SPEED AND ACCURACY: LARGE-SCALE MACHINE
LEARNING ALGORITHMS AND THEIR APPLICATIONS

JIANXIONG DONG

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
For THE DEGREE OF DOCTOR OF PHILOSOPHY
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

OCTOBER 2003
© JianxionGg Dong, 2003

Jational Lib Bibliothdque nationale

of Canada du Canada

Acquisitions and Acquisitions el ,

Bﬁiogmphic Services gsrvices bibliographiques

elingion Strest 385, rus Welingion
?&:zm KiA ONe Otizen ON K1A ON4
Canada Your B Vobre rthirews
Our B2 Mowe nildepen

The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the ~ L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou antrement reproduits sans son
permission. autorisation.

Canada

0-612-85269-5

Abstract

Speed and Accuracy: Large-scale Machine Learning Algorithms and
their Applications

Jianxiong Dong, Ph.D.
Concordia University, 2003

Over the past few years, considerable progress has been made in the area of machine
learning. However, when these learning machines, including support vector machines
(SVMs) and neural networks, are applied to massive sets of high-dimensional data,
many challenging problems emerge, such as high computational cost and the way to
adapt the structure of a learning system. Therefore, it is important to develop some
new methods with computational efficiency and high accuracy such that learning al-
gorithms can be applied more widely to areas such as data mining, Optical Character
Recognition (OCR) and bio-informatics. |

In this thesis, we mainly focus on three problems: methodologies to adapt the
structure of a neural network learning system, speeding up SVM’s training and fa-
cilitating test on huge data sets. For the first problem, a local learning framework
is proposed to automatically construct the ensemble of neural networks, which are
trained on local subsets so that the complexity and training time of the learning
system can be reduced and its generalization performance can be enhanced. With
respect to SVM’s training on a very large data set with thousands of classes and
high-dimensional input vectors, block diagonal matrices are used to approximate the
original kernel matrix such that the original SVM optimization process can be di-
vided into hundreds of sub-problems, which can be solved efficiently. Theoretically,
the run-time complexity of the proposed algorithm linearly scales to the size of the
data set, the dimension of input vectors and the number of classes. For the last prob-
lem, a fast iteration algorithm is proposed to approximate the reduced set vectors
simultaneously based on the general kernel type so that the number of vectors in the

decision function of each class can be reduced considerably and the testing speed is
increased significantly.

it

The main contributions of this thesis are to propose effective solutions to the above
three problems. It is especially worth mentioning that the methods which are used
to solve the last two problems are crucial in making support vector machines more
competitive in tasks where both high accuracy and classification speed are required.
The proposed SVM algorithm runs at a much higher training speed than the existing
ones such as svm-light and libsvm when applied to a huge data set with thousands
of classes. The total training time of SVM with the radial basis function kernel on
Hanwang’s handwritten Chinese database (2,144,489 training samples, 542,122 test-
ing samples, 3755 classes and 392-dimensional input vectors) is 19 hours on P4. In
addition, the proposed testing algorithm has also achieved a promising classification
speed, 16,000 patterns per second, on MNIST database. Besides the efficient com-
putation, the state-of-the-art generalization performances have also been achieved on
several well-known public and commercial databases. Particularly, very low error
rates of 0.38%, 0.5% and 1.0% have been reached on MNIST, Hanwang handwritten
digit databases and ETLIB handwritten Chinese database.

v

Acknowledgments

I would like to express my extreme gratitude to Prof. Ching Y. Suen and Prof. A.
Krzyzak for their supervision. I have benefited greatly from their expertise, vision
and clarity of thought in conducting this research. Their constant supports, numerous
suggestions and careful reading of technical reports and papers have played a crucial
role in the development of this thesis. I am indebted to them for helping me through
the most difficult time during my Ph.D. period. Both advisors provide me financial
support and give me free research atmosphere and always encourage me to conduct
the research which I am interested in. Without their guidance and advice the present
work would have not been possible.

The work for my thesis is done at Centre for Pattern Recognition and Machine
Intelligence (CENPARMI), which provides excellent facilities and stimulating re-
search environment. [really enjoy discussing some research problems with some
friends at CENPARMI, such as Javad Sadri and Karim Abou-Moustafa. Dr. Qizhi
Xu, one of my good friends, helps me a lot during my Ph.D. period. I also enjoy
the friendship of Yun Li, Wu Ding, Nenghong Fu and Yan Zhang at CENPARMI.
These friends have made my life at CENPARMI an enriching experience.

I am also indebted to Abramovitz Beverley for her kindness and help in proof-
reading the papers. I am grateful for support from NSERC and FCAR and thank Dr.
Changping Liu in Hanwang company for providing us with Hanwang handwritten
digit and Chinese character databases for research.

Finally, I thank my parents for their love and support. Without them I even can
not start the work in the first place.

Contents

List of Figures ix
List of Tables xi

1 Introduction

-
[\-)
o
c
=
e
—
=
]
o
=
3
=
<
[¢2]
8
w
g Ut =

2 Main classification methods and computational techniques 8
2.1 Main classification methods

2.1.1 Linear and quadratic discriminant functions 8

2.1.2 Prototypemethods 10

2.1.3 Feed-Forward Neural Networks, 11

2.1.4 Ensemble methods 11

2.1.5 Kernel-based methods 12

2.2 Computational techniques 14

221 BLAS . .. 14

2.2.2 Optimization techniques for processor architecture 15

2.2.3 Parallel algorithm on multi-processors 21

23 Summary ..o 22

3 Local Learning Framework 23

3.1 Imtroduction 23

3.2 Formulation of learning framework| 24

3.2.1 Vector quantization 25

vi

3.3
3.4

3.5

3.2.2 Construction of ensembleso
Model selectiono
Experimental resultso oo
3.4.1 Handwritten digit databases
3.4.2 NIST lowercase database
3.4.3 CENPARMI lowercase database

Conclusions v v e

Support Vector Machines

4.1
4.2
4.3
4.4
4.5

Maximal margin classifier 0000
Soft margin classifier o oo
Nonlinear support vector machine
Theroleof marginin SVM

Sequential minimal optimization L.

Fast SVM Training Algorithm

5.1
9.2
9.3
5.4

9.5

5.6

Introduction
Support Vector Machine
A fast algorithm for training SVM
Strategies of implementation

5.4.1 Kernel caching

5.4.2 Optimization on the working set

5.4.3 Selection of a new working set

5.4.4 Calculation of kernel matrix

5.4.5 Reduction of cache and TLB misses

5.4.6 Insert positive samples into the working set

..........

5.4.7 Stopping conditions

Analysis of space and runtime complexity

5.5.1 Space complexity

5.5.2 Analysis of runtime complexity

Experimental results

5.6.1 Algorithm properties and comparisons of training performance

5.6.2 Performance on a large artificial data set

vit

39
40
43
44

47

53
03
96
27
60
60
60
61
62
63
64
65
65
66
66
69
71

5.6.3 SVM’s generalization performance for handwritten character

recognition L. L Lo e 78

5.6.4 Rejection performance of SVM00 80

5.7 Conclusions e 81

6 Handwritten Chinese character recognition using SVM 85
6.1 Introduction L 85
6.2 Improved nonlinear normalization 86
6.3 Feature Extraction 90
6.4 Parameter selection for support vector machine 92
6.5 Experiments o 94
6.5.1 Nonlinear Normalization 94

6.5.2 Coarse classification, .. 95

6.5.3 Performance of support vector machine 97

6.6 Conclusion 99

7 Fast SVM Testing Algorithms 100
7.1 Introduction 100
7.2 Simultancous approximation of reduced set vectors 101
7.3 Fast algorithm for simultaneous approximation 105
7.3.1 Analysis of run-time complexity 108

7.4 Block algorithm in the test phase 110
7.5 Experimental vesults L. 111
7.5.1 Convergence speed 112

7.5.2 Accuracy vs number of reduced vectors L. 113

7.5.3 Block algorithm L. 114

7.5.4 Large handwritten digit database 114

7.5.5 Polynomial kernel 114

76 Conclusions 115

8 Conclusions 116
8.1 Summary 116
82 Faturework 117
Bibliography 119

viii

List of Figures

10

11
12

13

14
15
16
17

Cache structure of the Pentium 4 processor
Typical SIMD operations
A general local learning framework. Here local learning machines de-
note classifiers that are designed in local regions.
Error rates of different methods on the test set of MNIST database.
Each bar represents a classifier.
Confusing patterns in NIST lowercase database.
Error rates of different methods on the test set of NIST lowercase
database, each bar represents a classifier.
Samples in CENPARMI lowercase database.
Error rates of different methods on the test set of CENPARMI lower-
case database, each bar represents a classifier.
Relationship between GLV(Q) performance and the number of reference

vectors per class.

Function curves of MSE, the empirical loss and training error rate

versus the number of iterations.

A hyperplane for separating data for two classes.
Scale w and b such that the points x; and x_ closest to the hyperplane
satisfy < w,x; > 4+b=1and < w,x_ > +b = —1, respectively.

The picture of VO bound. For a family of functions f(x, a), we choose
[+« that gives the lowest upper bound in the expected risk.

Parallel optimization diagram

Copy upper-triangle elements into lower-triangle via a workspace.
Some samples from Hanwang digit database

Some samples from Hanwang handwritten Chinese database

ix

37

38

39
41

18

19

20

21

22

23
24
25
26

27
28

29

Training time and average number of support vectors with the size of
working set. L L
The 26 errors (1.3% error rate) for the CENPARMI test set. The
number in the upper-left corner of each image indicates the test sample
number. The first digit on the bottom specifies the true label. The
second digit on the bottom is the recognized digit label.
The 47 errors (2.34% error rate) for the USPS test set. The number in
the upper-left corner of each image indicates the test sample number.
The first digit on the bottom specifies the true label. The second digit
on the bottom is the recognized digit label. From the above figure, it
can be seen that there are obviously four errors in the original labelling
(234,971,994, 1978).
Some misclassified patterns on the test set of NIST database for hand-
written lowercase characters. The first character on the left at the
bottom specifies the true label. The character on the right is the rec-
ognized character label. L0000
The 38 errors (0.38% error rate) for MNIST test set. The number in
the upper-left corner of each image indicates the test sample number.
The first digit on the bottom specifies the true label. The second digit
on the bottom is the recognized digit label.|
Diagram of nonlinear normalization

Backward mapping

16 x 16 sub-area.

(A) Original images, (B) Normalized images using Yamada et al’s, (C)

Normalized images using the proposed method.

Comparisons of cumulative recognition rates
A part of misclassified patterns on ETL test set. The first character

on the bottom specifies the original label. The second character is the
recognized label.

74

81

82

83

85
89
90
92

96
97

List of Tables

~I O Ot e W N e

10

11

12
13
14
15
16

P4 processor cache parameters 18
P4 processor TLB parameters 18
Comparisons of different methods on CENPARMI database(%) . .. 33
Cumulative recognition rate of the proposed method (%) 35

Performance measures for ATLAS on Hanwang handwritten digit database 73
Performance comparisons of three methods for kernel computation . . 73
Comparisons of total training time of three methods(hours). A: one-

against-others training strategy for multi-classes; B: one-against-one

for multi-classes. L 76
Error rates of different methods on CENPARMI database (%). 79
Performance comparison of some methods on the USPS database. USPS+,
one variant of USPS database, contains some machine-printed digit
samples. 80
Error rates of different methods on the test set of NIST lowercase
database. 80

Comparisons of generalization performances of different methods on
MNIST database. 84

Rejection performances for VSVM® under different € 84
Recognition accuracy of different methods on ETLOB 98
Number of support vectors of the original SVM 113
Classification accuracy vs. number of reduced vectors 114
Classification speed (patterns per second) vs. number of group patterns

P 115

xi

Chapter 1

Introduction

1.1 Motivation

Efforts to understand the nature of learning and intelligence, and realization of these
capabilities in human minds, are among the most fundamental activities, which have
brought growing interests to research communities in a wide variety of disciplines
including education, cognition science, computer science, neuro-science, engineering,
social science and physical science. Learning from data is one of the basic ways
humans perceive the world and acquire knowledge. Nowadays, there are huge amounts
of online data available at an astonishingly increasing pace on the worldwide internet
and a fast searching engine is expected to find user-specific information efficiently.
Medical institutions expect to create data-driven tools based on patients’ historical
data for diagnostic purpose; financial companies require computer-automated tools
to analyze large amounts of data from customers so that they can make a good
prediction of marketing behaviors and process financial transactions; the governments
fund universities and companies to develop robust learning-based intelligent systems
to discover the national threat and detect illegal activities. Therefore, large-scale
learning algorithms and related tools must be developed to help us better understand
the nature of learning and solve these industrial problems.

In this thesis, we focus on a specific problem in this domain by dealing with su-
pervised learning algorithms for pattern classification on extremely large data sets
with high dimensional real-valued feature vectors and thousands of classes. In real

world applications, many problems are related to this subject. For example, it is a

challenging task to recognize handwritten Chinese characters efficiently and precisely
because they have large shape variations and more than 6,000 categories; many gro-
cery stores collect data from transactions, often generating gigabytes of data every
day. The existing algorithms have difficulty in analyzing these data and categorizing
them for further processing; on the internet, text-based web documents are very large,
dynamic, and they have high dimensions. A large-scale adaptive learning algorithm
is required to classify these documents for the development of a fast and accurate
searching engine. Unfortunately, many existing algorithms exhibit poor scaling ca-
pabilities when dealing with huge high-dimensional data [115]. In order to tackle the
problem, the following theoretical and computational issues have to be taken into

account:
e Theoretical issues.

1. Adapting the data-driven classifier structure. In most cases, little reli-
able prior information about the statistical law underlying the problem is
available. Fitting a known function to data and estimating its finite num-
ber of parameters by means of the maximal likelihood method are usually

insufficient. It is necessary to infer a function from the data.

2. The curse of dimensionality [3]. For classification problems, we expect
that a larger number of features may hold better discriminant power and
lead to an improvement in performance. In practice, however, it has been
frequently observed that adding more features degrades the classification
accuracy. Bellman (3] called it “the curse of dimensionality” and found
that increasing the number of factors requires an exponential increase in

the number of computational resources such as training samples.

3. Controlling the generalization performance on a finite data set. Before
statistical learning theory was proposed by Vapnik [119]{121], methods
such as nearest neighbor classifier that have a good asymptotical solution
often fail in a finite sample set and they often only minimize the empirical
risk on the training set without taking into account the complexity of
classifiers that have a significant effect on generalization performance. The

classifiers based on structure risk minimization [121] lead to a trade-off

between both factors.

e Algorithm issues.

1. Develop a learning algorithm with low time/space computational complex-
ity. For example, most learning algorithms minimize (or maximize) a cost
function under constrained conditions. We expect that these algorithms
converge quickly and their time complexities linearly depend on the num-

ber of training samples and the dimension of a feature vector.

2. Trade-off between limited computational resources and speed. Most work-
stations and PCs have limited computational resources such as memory,
bus bandwidth and fast hardware cache although their CPUs (Central
Processor Units) are usually fast due to recent advances in technology.
When a learning algorithm runs on a large data set, which is too big to
be completely loaded into the memory, a huge amount of data may have
to be exchanged between the harddisk and the memory. As a result, the
usage rate of CPU is low. Even when a huge amount of data is loaded into
the memory, frequent page operations due to high Translation Look-aside
Buffers (TLBs) miss ratio will lead to a high cost [90]. This issue is related

to the computer architecture and its operating system.

3. Good algorithm structure for parallel implementation. The low price and
high performance of micro-processors such as Intel Pentium IV provide
us a chance to develop an algorithm with a parallel structure, which can
be easily implemented on a multi-processor platform. This is a potential
trend for a large-scale learning algorithm because the computational costs
are distributed to different processors and each processor does not require
a large number of computational resources to finish its sub-tasks. It can

substantially alleviate the above problem.

4. Online learning. In order to reduce the error rate of a classifier, a set of
new training samples will be appended to the historical training set, on
which the classifier has been trained before. Is it possible to adjust the
parameters of this classifier based on increased training samples, rather

than to re-train the classifier again on the whole set?

Among the above theoretical issues, how to control the generalization performance

on a finite set is well formulated in statistical learning theory (also called Vapnik-
Chervonenkis (VC) theory). Numerous experiments [98][57][24][33] have shown that
kernel-based support vector machines (SVM) [121][100][104] have solved the second
theoretical problem because SVM performs well in a huge dimensional feature space.
For the first theoretical issue, unfortunately, we can not find a classifier that is inher-
ently superior to any other methods on any distribution, which has been indicated
by No Free Lunch Theorem [41]. It is the type of problem, prior distribution and
other information that determine which type of classifier should be used to get the
best performance. Therefore, it is important to design the best possible classifier for
the specified problem under the guidance of some general principles such as divide
and conquer, structure risk minimization.

The above algorithmic issues are rarely addressed in the literature of pattern
recognition and machine learning, especially on a large data set, where many difficult
problems exist. In general, large-scale computational issues are discussed in the do-
mains of numerical analysis, computer architecture, algorithm analysis and operating
system. In order to design an efficient and robust learning algorithm that can be ap-
plied to solve some real-world problems, it is necessary to know them well, including
not only theories but also many practical issues.

In this thesis, we mainly focus on algorithmic issues on a large data set and provide

faithful answers to the following three questions:

¢ How to adapt the structure of a neural network to yield a good generalization

performance for classification on a large data set?

e How to design an efficient training algorithm for support vector machines on a
data set of huge size with millions of high-dimensional samples and thousands
of classes such that the run-time complexity of the algorithm linearly scales to

the size of data set, the dimension of input vectors and the number of classes?

e How to design an algorithm for support vector machines so that they can achieve

both high accuracy and classification speed in the test phase?

In addition, the methods which provide the solutions to the above problems will be
applied to solve real world classification problems, including handwritten digit recog-
nition, handwritten lowercase letters of the English alphabet and Chinese character

recognition. The algorithm efficiency and the state-of-the-art performance on large

4

data sets are our goals. At the same time, more practical principles are provided to
help industrial developers and academic researchers to design an eflicient and robust

classifier.

1.2 Qutline of Thesis

The thesis is organized in eight chapters. The main parts are Chapters 3, 5, 6 and
7, which are intended to be reasonably self-contained so that experienced readers can

Jjump right to these chapters quickly.

e In Chapter 2, we review some main classification techniques and learning algo-
rithms in terms of speed, accuracy and memory requirements on extremely large
data sets and discuss why they do not satisfy the desirable goal. In addition,
some basic optimization techniques and key issues from other disciplines such as
numerical analysis, computer architecture, operating system and parallel com-
putation are described briefly to help researchers implement a high performance

learning algorithm. These techniques are also useful for industrial developers.

e In Chapter 3, we propose a general local learning framework to effectively al-
leviate the complexities of classifier design by means of “divide and conquer”
principle and ensemble method. The learning framework consists of a quan-
tization layer which uses generalized learning vector quantization (GLVQ)[95]
and an ensemble layer which uses multi-layer perceptrons (MLP). The pro-
posed method is tested on public handwritten character data sets, and it has
obtained promising results consistently. In contrast to other methods, the pro-
posed method has been shown to be especially suitable for large-scale real-world
classification problems. Nevertheless, this method sets some parameters man-
ually such as the number of prototypes for GLVQ and number of hidden units
for MLP. How to set these parameters optimally still requires more heuristic
knowledge. In the next chapter, support vector machine will have a capability

to determine automatically the structure once the kernel has been selected.

e In Chapter 4, we introduce some basic concepts and ideas of support vector
machines and its connection to statistical learning theory. The main goal is

to help the readers get some background and understand the details of the

optimization problems in the next chapter. The expert reader may skip this
chapter and move on to the next chapter where we start to describe our new
fast SVM algorithm.

In Chapter 5, training a support vector machine on a huge size of data set
with thousands of classes is a challenging problem. This chapter proposes an
efficient algorithm to solve this problem. The key idea is to introduce a parallel
optimization step to quickly remove most non-support vectors, where block
diagonal matrices are used to approximate the original kernel matrix so that
the original problem can be decomposed into hundreds of sub-problems which
can be solved more efficiently. In addition, some effective strategies such as
kernel caching and efficient computation of kernel matrix are integrated to speed
up the training process. Our analyses of the space and time complexity of
the proposed algorithm show that its time complexity grows linearly with the
number of classes and size of the data set. In the experiments, many appealing
properties of the proposed algorithm have been investigated and the results
show that the proposed algorithm has a much better scaling capability than
Libsvm and SVM'%" Moreover, the state-of-the-art performances on several
large databases have been achieved. Particularly, on MNIST and Hanwang
handwritten digit databases, very low error rates of 0.38% and 0.5% have been

reached, respectively.

In Chapter 6, the fast SVM algorithm developed in Chapter 5 is applied to solve
the recognition problem of handwritten Chinese characters, which have more
than three thousand categories and large shape variations. Feature extraction
is one of the most important and difficult elements of learning and it plays a key
role in obtaining a high accuracy. We propose a new feature extraction method
based on the gradient map of gray-scale images and improve the nonlinear
normalization method proposed by Yamada et al.[127]. The experiments have
been done on ETLYB, handwritten Chinese character database and a state-of-
the-art performance has been achieved at a raw error rate of 1.0%. Moreover,

we have designed an effective method to tune the parameters for support, vector
machines.

e In Chapter 7, a fast iteration algorithm is proposed to approximate the reduced
set vectors shared by each binary SVM solution for multi-class classification
simultaneously. The iteration algorithm can be applied to the general kernel
types such as k(|| x — x' ||?) and k(xTx’). In addition, we present a fast block
algorithm in the test phase to speed up the classification further. Experimental
results have shown that the classification speeds on MNIST and Hanwang hand-
written digit databases on P4 1.7 Ghz were about 16,000 and 10,895 patterns
per second without sacrificing the classification accuracy of the original SVM

system. The speed-up factor of 110 on MNIST database has been achieved.

e Finally, we summarize this thesis in Chapter 8 with some concluding remarks.

1.3 Name conventions

In order to make notations internally consistent, we adopt some general principles
as follows. Lower-case bold letters, for example, x, are used to denote vectors, while
upper-case bold letters, such as A, denote matrices. Vectors are considered to be
column vectors, with the corresponding row vector denoted by a superscript T indi-
cating the transpose. The notation A = (A;;) is used to denote that the matrix A
consists of elements A;;. (A);; is used to denote the ij element of the matrix A. k is

used to denote an index or kernel.

The following symbols are used frequently in the thesis and they are listed below:

d-dimensional real space
column vector

transpose

kth class

element in set

norm of a vector

set inclusion

mean vector for class Ci,
vector of ones (1,1,...,1)7
probability

probability density function
covariance matrix

normal vector to a hyperplane

gradient operator

Chapter 2

Main classification methods and

computational techniques

In this chapter we first review some main classification methods to show their ad-
vantages and shortcomings in terms of accuracy and computational costs when these
existing methods are applied to a large data set. These methods include not only
traditional ones such as discriminant functions, nearest neighbor-based method, but
also modern advanced classifiers such as ensemble methods (Bagging [8] and Ad-
aBoost [45]) and support vector machines. The survey of these methods can provide
us some important clues about classifier selection and design. Then some computa-

tional tools and techniques are introduced to design an efficient and robust learning

algorithm.

2.1 Main classification methods

Many classification methods can be found in the literature. We do not attempt
to provide a complete review of existing methods, but rather to describe some of

the most important and popular techniques such as discriminant functions, neural
networks and kernel-based methods.

2.1.1 Linear and quadratic discriminant functions

Linear discriminant function [40] is a simple and basic classification method. Lin-

ear discriminant function performs well when data from different classes are linearly

separable or the covariance matrices of all the classes are identical [40]. The linear

function (or hyperplane) is generally written as
g (x) = Wix + by, (1)

where wy is called the weight vector for class Cy and b; the threshold. When data
is linearly separable, the weight vector and threshold can be obtained by percep-
tron learning rules [93]. For non-separable cases, these parameters can be obtained
by assuming that data distribution is gaussian-like or minimizing the mean square
error [40]. For a two-class problem, weight vector can be determined by Fisher crite-
rion [42]. Although linear discriminant function can not achieve a high accuracy in
most real cases, its appealing property is low computational cost, only n multiplica-
tions and one addition where n is the dimension of input vector. The expression of dot
product can be easily implemented in vector processors and a single processor with
stream instruction and multiple data (SIMD) technology that is widely used in Intel
Pentium series. Therefore, for a large-scale classification problem with thousands of
classes, linear discriminant function is a good choice for pre-classification.

Quadratic discriminant function is one of the popular parametric methods when
multivariate normal distribution is used as the class density function. It can be given

as
ge(x) = (x =) 'S (x — i) + log [Tk| — 2log P (2)

for class Cy where py and Zj denote the mean vector and covariance matrix for x
in class Cy, respectively and P, is the a priori probability for class C;. Since it
employs the covariance matrix, the required computational time and storage is O(n?)
for n-component feature vectors. The performance of the quadratic discriminant
function is largely sensitive to the estimation errors of a covariance matrix. Kimura
et al. [66] proposed a modified quadratic discriminant function (MQDF), where a
pseudo-Bayesian estimate ' of the form A%y + (1 —)X, [40] is employed where 3,
is a diagonal matrix and the data is projected onto d-dimensional low-rank eigen
subspace which is spanned by principal components. As a result, the performance
of MQDF is less sensitive to the estimation error of covariance matrix than that of
QDF and the computation cost and storage is much less than QDF’s, just O(nd)

where d is usually much smaller than n. MQDF performs very well in handwritten

Lalso called regularized estimate of covariance matrix

10

character recognition [67][68][27]. The possible reason of its success is that the data
can support a simple decision boundary such as quadratic and estimates via Gaussian
models are stable [52]. The problem of curse of dimensionality can be alleviated to
some extent by controlling the dimension d of eigen subspace. Nevertheless, when
a large number of training samples are available and problems involve multimodal
(multi local maxima) densities, non-parametric methods such as nearest neighbor

and support vector machine usually perform better than MQDF.

2.1.2 Prototype methods

Let the prototype consist of N pairs {(x;,%:)}, ¢ = 1,...,0 and y; is the label of
sample x;. In most cases, x; associated with the prototype is typically an example
from the training set. The classification of an unseen pattern x is to assign its class
to the label of the closest prototype by a distance measure?.

l-nearest neighbor is one of the simple and popular prototype methods, where
prototypes are all training samples. The good property is that classification do not
need to take into account the form of data density function and its asymptotic prob-
ability of error is never greater than twice the Bayesian error [20]. In order to achieve
a high accuracy, a huge number of training samples are required. Consequently its
computational cost is prohibitively high.

In learning vector quantization (LVQ) due to Kohonen [69], prototypes are placed
with respect to the decision boundary to reduce the classification error by attracting
the prototypes of the correct class and repelling prototypes of incorrect class. The
decision boundary of LVQ is piece-wise hyperplane. ILVQ is defined in the form of
algorithm, rather than optimization of a cost function, which makes it difficult to
analyze its property. Generalized learning vector quantization (GLVQ) [95] adjusts
the prototypes based on minimization of classification errors (MCE) [60] and the
classification performance is improved. The performance of both methods largely
depends on initial prototypes, which are usually set by some clustering methods such
as k-means, self-organizing mapping [70]. Compared with 1-nearest neighbor, LVQ

usually achieves a better performance and much lower computation cost.

*For example, Euclidean distance.

11

2.1.3 Feed-Forward Neural Networks

Multi-layer feed-forward neural network is widely applied in pattern recognition. Its
success is most likely attributed to the efficiency of gradient-based back-propagation
learning algorithm [94] and powerful nonlinear approximation capability. Networks
with sigmoidal nonlinearities and two layers of weights can approximate any decision
boundary to an arbitrary accuracy [49]. Thus it can be used to model the posterior
probabilities of class membership. For multi-layer proceptron (MLP) trained by min-
imizing a sum-of-square cost function, the network output can be interpreted as the
conditional average of the target data when training data is sufficiently large [4].
Nevertheless, many problems such as overfitting and local minima associated with
MLP have not been solved yet. One of the most important problems is how to de-
termine the network structure such as connection method and number of layers to
achieve a good generalization performance on a large database. Network pruning, a
process of deleting the irrelevant weights of a network before invoking inference, can
be used to optimize the size of the network. Some methods eliminate the weights
with the smallest magnitude [53]. Optimal brain damage [77] and optimal brain sur-
geon [51] use the information of all second order derivatives of the error function for
network pruning. Although these methods can improve the generalization perfor-
mance, the computational cost of pruning an initial large fully connected network is
high. For other methods such as LeNet1 [76] and LeNet5 [79], the network structure
is customized manually for the specific application. LeNetl, a small network, is built
for USPS handwritten digit database while LeNet5 for MNIST digit database. Both
networks contain feature extraction layers, where network weights are locally con-
nected and shared so that the number of free weights are greatly reduced. However,

to build such networks requires good prior knowledge.

2.1.4 Ensemble methods

The ensemble method is one way of combining classifiers which are constructed based
on data re-sampling. When the outputs of a classifier are interpreted in terms of
bias-and-variance decomposition, the ensemble methods mainly reduce the variance
of these single classifiers. Bagging [8] and AdaBoost [45] are popular ensemble meth-

ods. Bagging employs the bootstrap sampling method to generate training subsets

12

while the creation of each subset of AdaBoost depends on previous classification re-
sults. For two methods, the final decision is made by the majority vote. Numerous
experiments [8][2][107][86] have shown that Bagging and AdaBoost are just effective
for weak classifiers such as classification tree, neural networks and perform well in a
small dataset.

However, on the large data set, two issues for the ensemble methods need to be
taken into account. If an ensemble method generate N classifiers and their outputs
are combined, the cost is about N times as high as a single base classifier. In addition,
if the training data set is too large to be stored in memory, the cost of re-sampling
can not be ignored. The other issue is that the base classifiers for ensemble method
learn the sampling subset, rather than the total set. As a result, if the number of
constructed classifiers is not large enough, many training samples will not be learned.

As a result, the ensemble method may not perform better than a single base classi-
fier [28].

2.1.5 Kernel-based methods

Kernel method is usually used to estimate the data density function. Suppose we

have samples xi, xg, ..., x; that are generated from a probability density function
f(x). The smooth Parzen estimate [89] is given by

X — X5

Ax) = 1 SR, ©

where k is kernel function and integrable on R? and Jk=1,x € R and h (> 0)
denotes the bandwidth of the kernel. Under some general conditions f; can prove
to consistently converge ® to f(x) [89]. That is, with enough samples, the kernel
method can be used to estimate an arbitrarily complicated unknown density, whatever
unimodal and mixture of multi-modals. On the other hand, a large number of samples
are required to grow exponentially with the dimensionality of feature space in order
to get a good estimate. Once we get non-parametric density estimate for each class,
Bayes’s theorem can be applied to classification directly.

If our purpose is classification, the estimation of each class density function sep-

arately may be unnecessary and even misleading. For classification, the posteriori

3

converge in mean square

13

probabilities are sufﬁcient [40]. An estimate of the class density function will increase
the extra learning complexity which is more likely to degrade the performance in
terms of Occam’s razor principle. From the geometric viewpoint, we only need to
care about the decision boundary which is relevant to classification. For example, in
neural network literature, the center of RBF network is determined by some density
estimation method such as clustering. The strategy does not perform best in terms
of the above argument.

In recent years support vector machine, one of the kernel methods, plays a key
role in pattern classification and has achieved promising performances in many ap-
plications such as handwritten digit recognition [24], classification of web pages [57]
and face detection [87]. SVM holds many good properties in both theoretical and
practical aspects. It maps the original data by means of a Mercer kernel [85] to a
high dimensional feature space, where a linear hyperplane with the minimal empir-
ical risk and maximal margin in this feature space is found. Its non-asymptotical
error which depends on empirical risk and margin can be bounded using Vapnik-
Chervonenkis (VC) theory [121] while the performance of most previous methods can
be analyzed only asymptotically. Many problems in pattern recognition such as curse
of dimensionality and over-fitting often occur in a finite data set. However, when
the suitable kernel and its parameter is selected, these problems seldom happen for
SVM even in an infinite dimensional space. The other appealing property of SVM
is that its classifier structure is data-driven and automatically determined by solving
a constrained convex quadratic programming problem. This avoids customizing the
structure manually to achieve a high performance in contrast to a neural network
classifier. For example, LeNet5 [79], a variant of convolution network, is highly cus-
tomized to character recognition and has shown much better performance than fully
connected multi-layer perceptron (MLP). Moreover, Training a SVM can achieve a
unique global minimum while many local minima exist during the training of a usual
neural network.

However, there are two important problems for SVM, which limit its wide appli-
cations. One is that the computational cost of existing SVM training algorithms is
prohibitively high on a very large data set with thousands of classes. The other is
that many support vectors are generated after the optimization process. As a result,

its testing speed is very low. Therefore, it is necessary to develop fast algorithms for

14

SVM’s training and testing.

2.2 Computational techniques

The computational cost of a classifier depends on not only its own structure but
also to a large extent on the implementation issues related to other research areas
such as numerical analysis, computer architecture and operating systems. When
we design a classifier for a very large data set, usually there is a large amount of
data movement between the CPU and memory, memory and hard disk. Without
good design, paging operations and cache misses will occur frequently, which possibly
dominates the overall cost. In the communities of machine learning and pattern
recognition, these issues are rarely mentioned in the literature. It is important for
designers to know some techniques or issues about high performance computation
and design their classification algorithm to suit the current processor architecture
and operating system in order to make full use of the advanced properties of current
processors and operating systems and reduce or avoid data traffic caused by a large
amount of data movement. In the following, several techniques or strategies are

presented to design a classifier efficiently.

2.2.1 BLAS

In statistical pattern recognition, vector or matrix operations are basic. Basic Linear
Algebra Subprogram (BLAS) [74][75][37][38] is a package with the aims of provid-
ing an efficient and portable implementation of these operations on high-performance
computers, especially those with hierarchical memory and parallel processing capa-
bility. The BLAS is divided into three levels: Level 1 BLAS provides a standard
interface for vector-vector operations [74], Level 2 BLAS deals with matrix-vector
operations, and Level 3 BLAS supports matrix-matrix operations. The performance
gain from the optimized implementation strongly depends on the level of the BLAS.
In the above three levels, the performance gain of Level 3 BLAS is the most obvious
and its optimized implementation usually shows orders of magnitude of speed-ups,
compared with naive code generated by compilers. Among the Level 3 routines, the
most important one is matrix-matrix multiplication. It is often preferable to partition

the matrices into blocks and to perform the operations on these blocks in order to

15

make full reuse of data which can be stored in cache or local memory. If the involved
matrix is of order n, the efficient memory blocking can make naive O(n?®) fetch cost
become O(n?) due to the reuse of operands[124].

BLAS has been implemented on different platforms by hardware vendors such as
IBM’s ESSL*, Intel's MKL®, SGI's SCSL®. More information about BLAS can be
found in BLAS FAQ'. These hand-tuned BLAS provides a much higher performance
gain than the naive code. Among the optimized BLAS, ATLAS[124](Automatically
Tuned Linear Algebra Software) is an approach for automatic generation and op-
timization of numerical software across different hardware platforms by generating
many versions for the same routine and finding the best to perform the operation
using sophisticated search techniques and robust timing mechanisms. ATLAS has
been tested on different platforms and its performance is very competitive with that

of vendor-supplied BLAS[124]. The software is available in public from the website®.

2.2.2 Optimization techniques for processor architecture

In the past decade the exponential growth of computer power in close relation to
Moore's law has made large-scale computing feasible at lower cost. The current
processor provides new features and enables software developers to deliver a higher
level of performance than previous ones in multi-medial applications ranging from
3-D graphics, video encoding/decoding to intelligent computing (speech recognition,
bioinformetric computation et al.). For these applications, a large amount of data
have to be processed. One way to increase the performance is to execute several com-
putations in parallel so that multiple computations are done with a single instruction.
The single-instruction, multiple-data (SIMD) is a technique to achieve this type of
parallel computation. The other way is to optimize the data memory accesses to
reduce cache miss and avoid performance penalties due to a large number of paging
operations. In order to understand these techniques, it is necessary to know some ba-
sic characteristics of modern microprocessor. We use Intel’s P4 processor to illustrate

these characteristics due to its cutting-edge performance and popularity. Figure 1

*http:/ /www.rs6000.ibm.com/software/ Apps /essl.html
®http://developer.intel.com /software/products/mkl/index.htm
®http://www.sgi.com/software /seslhtml
"http://www.netlib.org/blas/faq.html
*http://www.netlib.org/atlas/

16

Physical Memory

Data cache
B
System Bus Unit (L.1)
L2 Cache
Instruction
TLBs

Bus Interface Unit

™1 Data TLBs

Store Buffer

Instruction decoder & execution

Figure 1: Cache structure of the Pentium 4 processor

shows the cache structure of the Pentium 4[54].

Pipeline and execution units

In P4, instructions are fetched and decoded into a sequence of 4 ops which are stored
in trace cache [55]. This helps to build a long pipeline. For example, the unit
that performs the multiplication can start a new multiplication as soon as the old
one finishes the first stage. Although it does not make one multiplication operation
finish faster, it helps to execute several multiplications simultaneously. In addition,
P4 has more execution units, including two arithmetic logical units (ALU) and one
float execute units, load/store units. That is, integer addition and floating point

multiplication can execute simultaneously per clock cycle. The above mechanisms
enhance parallelism.

Cache and TLBs

Cache is a set of small, high-speed buffer memories that temporarily store the contents

of main memories which are currently used. Accessing the data in cache takes much

17

less time than in main memory. The processor with a cache memory can spend far
less time waiting for instructions and data to be fetched or stored. That is, cache
memory can alleviate the mis-match between CPU’s and main memory’s speed. Data
is fetched from the main memory to the cache line that is the smallest data transfer
unit. For example, the line size of L1 (the first level cache) in P4 is 64 bytes. So when
you only read one byte from the main memory, you will actually get 64 bytes. From
Figure 1 it can be observed that P4 contains separate data and instruction caches.
L2 (the second level cache) is shared by data and instructions. All caches use LRU
(least recently used) replacement algorithm to update the cache. Table 1 provides
the parameters for L1 and L2 caches in P4 [55].

Table 1: P4 processor cache parameters

Level | Capacity Associativity | Line Size(bytes) | Write Update Policy
L1 8 KB 4 64 write through
L2 256 KB or 512 KB | 8 64 write back

In Table 1, the concepts of some cache parameters are referred to [90][108].

TLBs (Translation Look-aside Buffers) store the most recently used page-directory
and page-table entries. They speed up memory accesses when paging is enabled by
reducing the number of memory accesses that are required to read the page tables
in system memory. When TLBs do not contain the translation information for a
requested page, extra bus cycles to page directory and page tables in memory are
performed. As a result, the cost will be increased. The TLBs are usually active in
protected mode with paging enabled. Table 2 shows the parameters for data and
instruction TLBs in P4 processor [55].

Table 2: P4 processor TLB parameters

Category Entries | Associativity
Instruction TLB (4-KByte Page) | 128 4
Data TLB (4-KByte Page) 64 Fully set

18

X4 X3 X2 X1

Y4 Y3 Y2 Yi
op opP opP oP
X4o0p Y4 X30p Y3 X2o0p Y2 XlopYl

Figure 2: Typical SIMD operations

SIMD technology

SIMD (Single instruction and multi-data) is a technology to execute several compu-
tations in parallel. Figure 2 shows a typical SIMD computation [55]. where four
packed data elements (X1, X2, X3, X4, and Y1, Y2, Y3, Y4) are operated in parallel.
The same operation (OP) is applied to the corresponding pair of data elements (X1
and Y1, X2 and Y2, X3 and Y3, and X4 and Y4). The results of the four parallel
computations are stored as a set of four packed data elements. For example, op is
multiplication and data type is single-precision float point. That is to say, a single
instruction can simultaneously perform four float-point multiplications. Therefore,
this is a useful technique for processing vector data. Nevertheless, SIMD technology
has a high demand of data caching. If an SIMD instruction starts, data is still in the
main memory, instead in L1 cache. The operation stalls and waits for fetching data
from the main memory. It will take more CPU cycles. In the following subsection,

some empirical rules are recommended for a better data caching.

Rules for data caching

Cache blocking is an important technique that reduces the bus traffic and makes
maximal reuse of L1 and L2 caches and reduces the cache miss rate and thereby

improves the memory utilization performance. This technique has been successfully

19

applied to high performance computation in memory-hierarchy computers [125]. The
basic idea is that if an application uses a large data set that can be reused multi-times
the performance gain can be obtained by dividing the large data set into groups which
are small enough to fit in the cache. Although many techniques in the P4 processor
can be used to improve memory utilization, we just focus on some general rules that

can be suitable for different platforms. The main points are summarized as follows:

e Alignment of data. Data are aligned on their nature size address boundary. For
example, the base address of 32-bit data is a multiple of four. In P4, the size of
a cache line is 64 bytes. Therefore, a 64-byte or greater data structure or array
should be aligned so that its base address is a multiple of 64. Accesses across

the cache line boundary will incur a significant performance penalty.

e Data are contiguous. When data is contiguous, the space locality is increased.
As a result, the cache hit ratio will be increased when these data are sequentially

accessed since most processors support automatic local data prefetch.

e Re-organize the data and enable vectorization. The purpose is to make use of
SIMD technology to speed up computation. For example, we calculate the dot

product of an array of 2-D vector and a fixed vector. In general, we can define

the following data structure:

struct vector {
float x;
float y;

} VecArray[256];

vector a;

float dotProduct[256];

Initialize a and VecArray;
for (int i = 0; i < 256; i++)

dotProduct[i] = a.x * VecArray[il.x + a.y * VecArray[il.y;

In order to make efficient use of SIMD operations, data are re-organized as

follows:

20

float xVecArray[256];

float yVecArray[256];

float aX[4];

float aY[4];

float dotProduct[256];

Initialize xVecArray, yVecArray, aX and aY, where x component of
the fixed vector is duplicated into the four slots, the same for
y component of the fixed vector.

float *pl, *p2, *p3;

pl = xVecArray;

p2 = yVecArray,

p3 = dotProduct;

for (int i = 0; i < 64; i++)
{

movaps xmm0, pi;
movaps xmml, p2;
mulps xmm0, aX;
mulps xmml, aY;
addps xmmO, xmmi;

movaps p3, xmmO0;

pl += 4;
p2 += 4;
p3 += 4;

}

In the implementation of SIMD, xVecArray, yVecArray, aX, aY and dotProduct
are aligned to a 16-byte boundary and the four dot products in the inner loop
are calculated, compared with one dot product in the traditional X87 FPU im-

plementation. This computation is more efficient due to the intrinsic parallelism
of SIMD operations.

Block a large data set that will be re-used many times. The large data set is
divided into several groups, each of which can fit into an L2 cache. An aligned
contiguous workspace is allocated. These group data sets are copied to the

workspace and operations are performed in the workspace. The benefit is to

21

increase the cache hit rate. At the same time, TLB misses will be reduced.
The technique is very useful for a large-scale learning algorithm since the data
set is usually passed many times and is large so that it can not be fit into the
memory. Sometimes even though data can be stored in the memory, the finite

TLBs can not contain all page numbers of these data set.

2.2.3 Parallel algorithm on multi-processors

The performance of uniprocessor, driven by the microprocessor, has been considerably
enhanced. But its power is still limited when a large-scale computation is required.
Parallel machines may play an increasingly important role in the future. The way
to improve the performance of a uniprocessor is to construct a distributed-memory
parallel machine which consists of many off-the-shelf microprocessors and pieces of
network equipment which are in charge of communications between MICTOProcessors.
In the literature of pattern recognition and machine learning, less work has been done
to design a learning algorithm to run on parallel machine although parallel computing
is a high demand for a large-scale learning. Aberdeen et al. [1] designed a cluster of 196
Pentium IIT processors to train a neural network which consists of about two million
adjustable parameters for Japanese Optical Character Recognition. The cluster runs
with an average performance of 163 GFlops per second and a price/performance ratio
of 92.4 cents/MFlops/s has been achieved, which is very attractive. But Aberdeen et
al. did not design a parallel training algorithm which is better fit into the cluster.
In the parallel machines which consist of multi-processors, insufficient parallelism
and long latency network communication are the two biggest challenges [90]. The
problem of an inadequate parallism can be alleviated primarily in software with an
algorithm that has a better parallel performance. The latter can be dealt with by
the architecture and network hardware, communication software. When a, single mi-
croprocessor becomes more powerful and network communication is a bottleneck,
designing a better parallel learning algorithm becomes more important. Several em-

pirical rules are recommended to design a good parallel learning algorithm:

¢ Block the original problem into sub-problems. Full attention must be paid to

reduce the dependency among these sub-problems for maximal parallelism.

e The data for each sub-problem are stored locally as much as possible in order

22

to reduce the communication cost of the network.

e The algorithm for solving sub-problems is optimized to fit the memory-hierarchy

MiCroprocessor.

2.3 Summary

In this chapter we review some main classification techniques in the literature and
point out their advantages and shortcomings in terms of accuracy and computational
cost when they are applied for the classification of a large dataset. Then some useful
optimization techniques related to computer architecture are presented and general
optimized principles are suggested to help design a fast, robust and industry-strength
classifier. These techniques may be useful for readers who are interested in an efficient

implementation of a classifier to solve real-world classification problems.

23

Chapter 3

Local Learning Framework

3.1 Introduction

Over the last decade, neural networks have been widely applied to solve very complex
classification problems in the real world. There is a growing realization that these
problems can be facilitated by the development of multi-net systems [105]. Multi-net
systems can provide feasible solutions to some difficult tasks that could not be solved
by a single net. A single neural net often exhibits the overfitting behavior which
results in a weak generalization performance when trained on a limited set of data.
Some theoretical and experimental results [72][118] have shown that an ensemble of
neural networks can effectively reduce the variance that is directly related to the
classification error.

A number of studies have addressed the problem of the construction of a multi-net
system to achieve a better performance. The ensemble (“committee”) and modular
combination are two basic methods used to construct multi-net systems. The two
popular ensemble methods are Bagging [8] and AdaBoost [45]. Bagging employs
the bootstrap sampling method to generate training subsets while the creation of
each subset in AdaBoost depends on previous classification results. Unlike Bagging,
AdaBoost obviously attempts to capture classification information of “hard” patterns.
However, the flaw is that it can also easily fit the noise in the training data. In
modular combination, the task or problem is decomposed into a number of subtasks,
and a complete task solution requires the fusion of outputs of all the modules [105].

Jocobs [59] proposed a mixture-of-experts model that consists of expert networks and

24

a gating network. The training goal is to have the gating network learn an appropriate
decomposition of the input space into different regions and switch the most suitable
expert network to generate the outputs of input vectors falling within each region.
In the model, it is assumed that data in local regions has a gaussian distribution,
which is usually not true for a complex data distribution. Further, the model only
selects the most suitable expert network to make a decision, rather than combining
the decisions of different expert networks. Most experiments show that an ensemble
method in a local region is more effective than the individual best neural network.

In this chapter, we present a method to construct a hierarchical local learning
framework for pattern classification to systematically address the above problems.
The framework consists of two layers. In the first layer, the Learning Vector Quantiza-
tion (LVQ) approach is used to partition the pattern space into clusters or subspaces.
In the second layer, different ensembles of local learning machines that are trained in
local neighborhood regions are combined to make the final decision. LVQ which mini-
mizes the average expected misclassification error, builds piecewise linear hyperplanes
between neighboring codebook vectors to approximate Bayes decision boundary [71].
Due to the complex shape of decision boundary in real-world classification problems,
approximation by piecewise linear hyperplanes results in approximation error. We
have to use more powerful neural network ensembles in order to improve and fine-
tune the approximation of the Bayes decision boundary.

The remainder of the chapter is organized as follows. F irst, the learning framework
is presented, followed next by a discussion on how to choose the right models. In
Section 4 we provide experimental results on several public databases of handwritten

characters to illustrate the advantage of the proposed method. The conclusions are
given in Section 5.

3.2 Formulation of learning framework

We start with formally defining each part of the proposed learning framework. Fig. 3

shows a basic structure of the system that consists of a vector quantization layer and
an ensemble layer.

25

E L.
2
o el R I~
o P E g
0o % 080l £ LD L,
@e® e e Q \‘.\‘.;,’: ee g | Decision
® g]
8 ~-N B
B z >
g P
@ = 8 = e, L
ee ® 8 ee 9
] £ e~ []
S N
@ a N S 2
® e _
e &¢@ eee | i
@ [:] @ ~ I o
B B
k4 &
g
Pattern Space &
[
%
Local Leaming Machine

Figure 3: A general local learning framework. Here local learning machines denote
classifiers that are designed in local regions.

3.2.1 Vector quantization

Vector quantization can be viewed as low cost signal compression method where most
information is stored in a number of codebook vectors. The classical mean square er-
ror (MSE) criterion is often assumed as a design criterion. It has been shown that for
labelled patterns an increase of the codebook size resulting in increased MSE accuracy
does not necessary lead to an accurate reproduction of the Bayes rule [26]. Following
Bayes decision philosophy Kohonen intuitively introduced LVQ1, which utilizes infor-
mation about the class to which a pattern belongs [70]. It has been shown [25] that
Kohonen’s LVQ1 which does not minimize some explicitly risk function also does not
minimize the Bayes risk. Juang & Katagiri [60] proposed an effective discriminant
learning scheme called Minimum Classification Error (MCE) approach that minimizes
the expected loss in Bayes decision theory by a gradient descent procedure. Several
generalized LVQs schemes based on the MCE [61][95][96] have been proposed. In
this paper we adopt the generalized learning vector quantization (GLVQ) approach
[95][96] due to the fact that convergence of reference vectors is guaranteed [97].

Let my, be the r-th reference vector in class C;. Let A, = {my,|r =1,--- N},
k =1,--- ¢ where ¢ is the number of classes, and A = J;_, A is the collection of

all reference vectors. The feature space region for class Cy is Ry. Suppose that input

26

vector x € Ry is presented to the system. Define discriminant function gi(x;A) of

class Ci, as follows:

g(x; A) = —dj
~ —min | x - my | (1
= —[lx—my |,
where || . || denotes the Euclidean norm. The misclassification measure yu(x; A), is

defined as follows:
—gr(x; A) + gi(x; A)

x;A) =
t36;) 9k (x5 A) + g A)
di — d;
=) 5
dy + d; ()
where g;(x; A) = maxiz, (x5 A) = —d; = — || x — my; [|% If pe(x; A) > 0 then x is

misclassified, and p(x; A) < 0 corresponds to the correct decision.

In Bayes decision theory, we often minimize a risk function to obtain the optimal
decision. In order to make loss function differentiable, we use a “soft” nonlinear
sigmoid function instead of a “hard” zero-one threshold.

h(xA) = Le(pe(x; A))

1

T Trep(E@mecay &0 (©)

Our cost function is an empirical loss given by

LAY = 5 D7 S ot M ey (7

i=1 k=1
where N is the number of training samples and 1(, is an indicator function. The cost

function can be minimized by a gradient descent procedure
Mgy = Ay — e()VL(A,) | (8)

where A, denotes the parameters set at the ¢-th iteration and € is the learning rate.

Then according to equation (8) the learning rules for the reference vectors can be
written

e AR (L~) e)
mj«-Mrwmmmwmrdwmaﬁ%yw—mm. ©)

27

3.2.2 Construction of ensembles

After performing vector quantization, each reference vector can be regarded as a
cluster center. Although we can collect training subsets for each cluster by the nearest
neighboring rule and train local learning machines on these subsets, we face the

following limitations:

1. The numbers of training samples in some of these subsets are not large enough;
as a result, classifiers designed from these subsets will exhibit weak generaliza-

tion ability.

2. This method ignores information contained in the “boundary patterns” between
neighboring clusters while most misclassification errors occur near these bound-

aries.

In order to overcome the above problems, we add neighboring samples into the

training subsets. The procedure can be summarized as follows:

Collect training subsets

Input: A series of training samples xy, Xy, - - - , Xy, reference vectors m;, { =
C . .

Lo Y i Nes S =1, 251 N, where N is the number of samples, ¢

and N, denote the number of classes and the number of reference vectors for

class Cy, respectively.
Output: training subsets Sj, j =1, -, Y iy Nk
Initialize: Set sets S; to be empty.

forp=1to N

1. For sample x, find L nearest neighboring reference vectors, i.e.

?
i = argmin || x, — my ||
)

"= argiﬁ{il,g{%gik—l} ” o T H

where || . || denotes the Euclidean norm and k =1, - - - , L.

2. Inject sample x, into L training subsets
Si= {8 i€ {in,in, - in)

28

end for

From the above procedure, we can observe that the obtained sets S; are partially
overlapping. Next, we build the ensemble of networks following the Bayesian frame-
work. We employ neural networks to model the postertori probability by a mixture

of the neighboring expert nets, i.e.,

L
P(Clx) =Y P(e)P(Cilx,e) k=1,...,c. (10)
i=1
Here we assume that all expert nets e;, ¢ = 1,..., L are independent. P(e;) denotes

a priori probability of expert net e; and P(Ck|x,e;) means posteriori probability for
expert net e;.

Finally, the classification procedure for a new pattern can be summarized as fol-

lows:

1. Calculate Euclidean distances between a new pattern x and reference vectors.

2. Find L closest reference vectors to x.

3. Feed new pattern x into the expert nets located at L reference vectors and

calculate their outputs.

4. Calculate posteriori probability P(Cy|x) of the class label according to Eq. (10).

5. The final decision is the label maximizing P(Ci|x), k=1,...,c.

3.3 Model selection

The framework introduced in section 2 can be applied to different learning models.
Thus model selection plays an important role in the overall performance of the de-
signed system. Although some clustering models such as self-organizing maps {71]
are available for vector quantization, these models have a common flaw due to the
fact that they use the MSE criterion, which is not directly related to the Bayes risk
minimization. To avoid this problem we select GLVQ vector quantization scheme.
GLVQ assumes that initial positions and number of reference vectors of each

class are known while in practice this information is usually not available. It is well

29

known that initial positions of reference vectors have a great impact on the final
performance of some clustering algorithms such as self-organizing maps, LVQ and
neural gas. LVQ typically employs k-means algorithm on the training data of each
class to obtain initial positions of the reference vectors. However, the classical k-means
algorithm often converges to a “bad” local minimum. Further, high computation cost
often renders k-means algorithm unfeasible for large-scale clustering. Here we use an
algorithm proposed by[7], which uses k-means algorithm and “smoothing” procedure
to refine the initial points. That is, multiple sub-samples J are drawn and clustered
independently with K centers via the k-means method. Then each of J solutions
is refined among K x J centers using k-means and one of the solutions having the
minimal distortion over K % J centers is chosen. This algorithm is especially suitable
for large-scale clustering tasks since clustering occurs only on sub-samples and the
solution is not easily corrupted by “outliers”.

In the ensemble layer, multi-layer perceptron (MLP) [94] is used as a local learning
machine due to two reasons: first, powerful nonlinear decision capability of the MLP
can be used to discriminate “hard” patterns; second, combination of the component
experts decisions can be motivated by the posteriori probabilistic interpretation of
the outputs.

Finally, we use a simple averaging method to combine component expert nets

because the priori probability of each expert net is unknown.

3.4 Experimental results

In this section, we present test results for our learning framework applied to several
public data sets of handwritten characters. We thoroughly discuss the results of
experiments, describe some related design parameters and discuss some practical
implementation issues. In addition, we provide an extensive performance comparison
with other popular classifiers.

In our experiment, linear normalization and feature extraction based on the stroke
edge are applied. All character images are size-normalized to fit the 32 x 32 box while
their aspect ratios are preserved. Also, a directional feature from the gradient of
gray scale image [46] is extracted by using the Robert edge operator. That is, we

first use the mean 3 x 3 filter to smooth the image. Subsequently the smoothed

30

image is divided into 9 x 9 blocks. In each block, the strengths of the gradients with
each of 32 quantized gradient directions are accumulated, so that the 81 gradient
directional spectra of the original image are generated. The spatial resolution is
reduced from 9 x 9 to 5 x 5 by down sampling with a 5 x 5 gaussian filter. Similarly
the directional resolution is reduced from 32 to 16 by down-sampling with a 1 x 5
one-dimensional gaussian filter. Finally a feature vector of size 400 (5 horizontal, 5
vertical and 16 directional resolutions) is produced. Since most components of the
feature vector are zero, principal component analysis can be employed to compress
the highly dimensional feature vector to a 160-dimensional vector, which is then used
in all subsequent experiments.

Before we present the results of experiments, we discuss some related design pa-
rameters. For GLVQ, we first use Bradley’s algorithm [7] to determine the initial
positions of twelve reference vectors within the training data set of each class. In
equation (6), £(t) is set to (t/T + &) rather than ¢ as recommended by Sato [96],
where ¢ denotes the number of epochs in which all training samples are involved, T
denotes the number of training samples, and & is set to 0.05. The reason for that is
already high (> 90%) classification rate on the training set after the initialization of
GLVQ, and thus too small a value of & will result in a large penalty, which causes ref-
erence vectors to be adjusted dramatically. The principle used here is consistent with
that of setting initial temperature in the deterministic annealing [23]. The learning
step size decreases linearly with the number of steps ¢, i.e, a(t) = g x (1.0 — t/tmax)
with ag = 0.01, where .y is equal to the number of epochs times the number of train-
ing samples. The number of epochs is set to 200. The ensemble layer of local learning
machines consists of multi-layered perceptrons (MLP) with single hidden layers of 40
units each. The networks employ sigmoid activation functions 1.0/(1.0 + exp(—a)).
All MLP’s are trained with the gradient method using momentum factor. The mo-

mentum factor and initial learning step size are set to 0.9 and 0.25, respectively. The

number of component expert nets (L) is set to 15.

3.4.1 Handwritten digit databases

The first two experiments were performed on two well-known MNIST and CEN-
PARMI databases of handwritten digits. MNIST database consists of 60,000 training

samples and 10,000 test samples. All digits have been size-normalized and centered in

31

a 28x28 box. CENPARMI database consists of 6000 samples. We use 4000 samples

for training and 2000 samples for testing.

Comparison of performances of differenct methods on MNIST
20 T

T T T T T T T

18

GLVQ
HONG network[20] 18
Multiply similarity[20]
MQDF{20] 16
Soft Margin[18]
Tangent Distance[18] 14
K-NN Euclidean[18]
Boosted LeNet4[18] 12
LeNet5[19]
Proposed method 108

LeNetd4/k-NN{18]
LeNetd/Local[18] 8

LeNet4[18]
LeNet1[18] 6
400-300-10 MLP[18]
RBF network{18] 4
PCA-+Polynomial{18]
Pairwise linear{18] 2

3.1
14

2 24

E 0.95

=099 4
11

1.1 7

1.7 -

(76 N

Baseline linear{18] .84

0 1 i)
0 1 2 3 4 5 6 7 8 9

Substitution (%)

Figure 4: Error rates of different methods on the test set of MNIST database. Each
bar represents a classifier.

Figure 4 compares the performances of different algorithms tested on the MNIST
database. The proposed method is used on the original MNIST database and achieves
a good performance with 0.99% substitution error, which is comparable to 0.95%
error rate of LeNet5 [78][79], one of the best classifiers on the market. Boosted
LeNet4 [78] is the state-of-art result classifier, but it was trained on a perturbed
MNIST database, where the training set was augmented with artificially altered ver-
sions of the original training samples. Further, the method proposed by us clearly
outperforms the best discriminant method called the Modified Quadratic Discrimi-
nant Functions (MQDF) [27]. It can be deduced from the Table 3 that the proposed

method scales well to a small database of handwritten digits.

32

Table 3: Comparisons of different methods on CENPARMI database(%)

Methods Recognized Substituted Rejected
Suen et al. [110] 93.05 0.00 6.95
Cho [17] 96.05 3.95 0.00
S.W LEE [81] 97.80 2.20 0.00
400-20-10 MLP [28] 96.20 3.80 0.00
400-20-10 MLP+AdaBoost [28] 97.20 2.80 0.00
MQDF [27] 98.00 2.00 0.00
GLVQ 96.30 3.70 0.00
proposed method 98.10 1.90 0.00

3.4.2 NIST lowercase database

NIST database of handwritten lowercase characters consists of 26,000 training samples
and 12,000 test samples. In the training set, each category contains 1000 samples.
‘The database contains some uppercase and noisy garbage patterns that do not belong
to any of the 26 categories. About 6% of these patterns are highly confusing patterns
such as “q” and “g”, “i” and “I”,which can barely be identified by humans (refer to
Fig. 5 for typical examples). We thus cleaned the database and discarded test samples
of three categories including “q”,“” and “g”. Consequently, we obtained a training
set with 23,937 samples and a test set with 10,688 samples.

Automatic recognition of handwritten lowercase characters without context infor-
mation is a challenging task. In the past ten years, a great progress has been made in
the handwritten character recognition field, especially in the on-line and off-line digit
recognition. A quick scan of the table of contents of IEEE Transactions on Pattern
Analysis and Machine Intelligence, IEEE Transactions on Neural Networks, IEEE
Transactions on Systems, Man, and Cybernetics, Pattern Recognition, International
Journal of Pattern Recognition and Artificial Intelligence, Pattern Recognition Let-
ters, The International Workshop on Frontiers in Handwriting Recognition and The
International Conference on Document Analysis and Recognition since 1990’s reveals
that little work has been done on the recognition of handwritten lowercase characters.
There is no benchmark to compare different algorithms on the same database.

Srihari [109] extracted some structural features such as 4-directional concaves,

33

VAN
7q?qqﬁ

Uvv vvy

u u u v v ! v
f t y h k
Figure 5: Confusing patterns in NIST lowercase database.

strokes (horizontal,vertical and diagonal), end-points, cross-points using morphologi-
cal operators and three moment features and implemented a neural network classifier
trained on NIST lowercase training subset with 10,134 samples using the above fea-
tures. The recognition rate on the modified NIST lowercase test set with 877 samples
was 85%. Toshihiro [84] extracted and combined three different stroke/background
and contour-direction features. The proposed classifier is a three-layer MLP network
trained on a NIST training subset with 10,968 samples. The recognition rate for low-
ercase characters on the modified NIST test subset with 8,284 samples was 89.64%.
Obviously, the above researchers discarded some samples of the original test set. In
summary, the above experimental results indicate that techniques of recognizing hand-
written characters are far away from maturity. They differ from techniques applied
in handwritten digit recognition in that there exists a greater overlap among class
patterns. Similar patterns are distributed as clusters. This also motivates the usage
of local ensembles to capture the discrimitive information of “boundary” patterns.
In the experiment, we pick up confusing patterns from the categories “g” and “q”
and put them into a new category. Twenty-two classes are assigned to eight prototype

vectors and five classes with a small quantity of data to four prototype vectors. The

34

Performance comparisons of different classifiers on NIST lowercase database

T T T T

10.17 R

10.49

1

MOQDF 3 10.37 -‘

160-100-27 MLP 2 84 1

Proposed method 1

Az,
0 2 4 6 8 10 12
Substitution (%)

Figure 6: Error rates of different methods on the test set of NIST lowercase database,
each bar represents a classifier.

Table 4: Cumulative recognition rate of the proposed method (%)

Candidate top rank 2 ranks 3 ranks 4 ranks 5 ranks

recognition rate 92.34% 96.9% 98.09% 98.46% 98.85%

MLP in the ensemble layer contains 40 hidden units. The experimental results are
illustrated in Fig. 6.

In practical handwriting recognition that integrates segmentation and classifica-
tion or makes use of postprocessing, the classifier does not necessarily output a unique
class. The cumulative accuracy of top ranks is also of practical importance. Table 4

shows the cumulative recognition rate of the proposed method.

3.4.3 CENPARMI lowercase database

Due to some problems with the NIST lowercase database, we collected samples from

university students and built a lowercase database. All samples are clean and preserve

35

a complete stroke structure. Patterns within the same category have a large variety of
shapes. The lowercase samples are stored in binary format with a scanning resolution
of 300 DPI. The database contains samples from 195 writers. We divide the samples
into training set and test set according to writer identities. The samples of randomly
selected 120 writers are used as training set and the rest as test set. As a result, the
training set consists of 14,810 samples and test set contains 8,580 samples. Fig. 7

shows some samples in the database.

bl 219
Les~D3

Figure 7: Samples in CENPARMI lowercase database.

In this experiment, we do not only evaluate the performance of the proposed
method but also investigate several factors that have an effect on the overall perfor-
mance. First, we outline the designed parameter setting. The number of reference
vectors of each class is set to 8 and MLP in the ensemble layer has 40 hidden units.
Other parameters are the same as those in the first experiment. In order to better
evaluate the performance, several other classifiers including boosted MLP are used for
a comparison with the proposed method. The results of the experiments are depicted
in Fig. 8.

It can be observed that the proposed method outperforms the boosted MLP.
AdaBoost is not as powerful as one might expect. It almost does not boost the
MLP classifier although training error is reduced to zero by combining 15-component

MLPs.
Second, we investigate the effect of the number of prototype vectors on the GLVQ

36

Performance comparison of different classifiers on CENPARMI lowercase database

Proposed method 67

160-80-26 MLP
plus AdaBoost

160-80-26 MLP 4
3-NN 16.63-
MQDF 2

GLvQ 1|

. s L . . L I s
[2 4 6 8 10 12 14 16 18
Substitution (%)

Figure 8: Error rates of different methods on the test set of CENPARMI lowercase
database, each bar represents a classifier.

performance. Too many prototype vectors will result in overfitting the data while too
few cannot capture the distribution of the samples within each class. Fig. 9 shows the
relationship between GLVQ performance and the number of prototype vectors within
each class.

Finally, we verify the claim that minimizing the MSE error does not directly result

in a reduction in the error rate. Here the mean squared error is defined as
1N
MSE = — i ; — 2. 11
¥ ;mrgggA I — my || (11)

- We plot function curves of MSE, the empirical loss (see eq. (7)) and training error
rate versus the number of iterations in Fig. 10.

In Fig. 10 MSE is monotonically increasing and the empirical loss and training
error rate are monotonically decreasing. Thus minimization of the empirical loss and
that of the training error rate are consistent. However, minimization of MSE is not
necessarily linked to a reduction of the training error rate. This also indicates that

most clustering algorithms such as SOM that minimize the mean square error are not
suitable for classification [71].

37

15.8

15.6¢

- —
- oo
a n £
T T
4
AN
\
\
N
\
\

Error Rate(%)

—
b
o
.,
~

14.61 AN e

14.4} N

14'203 7 8 9 10 i1 12
Number of prototype veciors per class

Figure 9: Relationship between GLVQ performance and the number of reference
vectors per class.

3.5 Conclusions

In this work, we proposed a general local learning framework to alleviate the com-
plexity problem of classifier design. Our method is based on a general “divide and
conquer” principle and ensemble. According to this principle, a complex real-world
classification problem can be divided into many sub-problems that can be easily
solved. Ensemble method is used to reduce the variance and to improve the general-
ization ability of the neural network.

We also designed an effective method to construct a good ensemble on the varied
training subset. Ensembles trained on subsets can effectively capture the information
of “boundary patterns” that play an important role in classification. Our method
was extensively tested on several public handwritten character databases, including
databases of handwritten digits and lowercase characters. It consistently achieved a
high performance. |

The proposed method can be easily scaled to a small training set while still pre-
serving a good performance. But it is especially suitable for a large-scale real-world
classification tasks such as Chinese and Korean character recognition. The results are

very encouraging and strongly suggest to apply the proposed method to data, mining

38

0.7 ¥ Y T T T T T T T

06 .= -~ .- Empirical loss §
L - ~— Error rate(0-1.0)
- ~ - MSE
ost -~ ’
.
\
0.4+ 7
\
\v
o3f 1

0 5 10 15 20 25 30 35 40 45 50
iterations

Figure 10: Function curves of MSE, the empirical loss and training error rate versus
the number of iterations.

of real-world data.

39

Chapter 4
Support Vector Machines

This chapter gives a brief introduction to support vector machines and provides read-
ers with a basic background for understanding the fast SVM training and testing
algorithms described in Chapters 5 and 7. We try to keep the presentation in a self-
contained way to ensure that these materials are easily understood and suitable for
the interested readers who may not work directly in the machine learning domain
and like to apply SVM to solve problems in their own domains. The maximal mar-
gin classifier on the data which are linearly separable is first presented to introduce
some important concepts for SVM such as margin and dual representation. From
this simple model the readers can gain some geometric intuitions on how SVM works.
Then soft margin classifier is introduced to handle non-separable cases in the original
space. The limited power of linear SVM in the original space motivates the introduc-
tion of nonlinear SVM which applies a kernel to implicitly map the data into a high
dimensional feature space so that the separable capability is enhanced while keeping
the computational efficiency. After that, the generalization theory is used to explain
why SVM usually exhibits a good generalization performance. Finally, a detailed de-
scription of Sequential Minimal Optimization (SMO)[91][63] is given since it is used
in a fast algorithm presented in Chapter 5. More information about SVM and kernel
methods can be found in books [121][21][104]. Readers who have a good background
in SVM can skip this chapter and go to the next one.

40

4.1 Maximal margin classifier

A hyperplane in R can be written as

{x e R < w,x>+b=0). (12)

where x € R? and < . > denotes inner product. The w is a vector orthogonal to
the hyperplane. The hyperplane splits the input space R* into two half spaces which
correspond to the inputs of two classes. Fig. 11 illustrates a hyperplane for separating

data set for two classes.

wx <wW,x>+b>0

<w,x>+b<0 <W,x>+4+b=0

Figure 11: A hyperplane for separating data for two classes.

Then we give the definition of linear separable data set.

Definition 4.1. (Linearly separable data) Given that training samples {(x;,y;)} C
X xY,where XCRY Y ={~1,1}and i = 1,...,I. The data is linearly separable
if there exists a hyperplane such that y;(< w,x > +b) > 0.

The linearly separable hyperplane equation < W, X > +b = 0 is represented by w
and b. By multiplying both w and b by the same non-zero factor, we can obtain the
same hyperplane equation. In order to remove the scaling freedom, a unique scaling
factor will be determined. First, we find two hyperplanes which are parallel: one
H, is the closest to positive samples; the other H_ to negative samples. Let subset

§2, which corresponds to positive inputs; €_ which corresponds to negative inputs.
Then we can obtain

—b = in < >, i3
© = min <wx (13)

41

—b_ = max < w,x >, (14)
xXEN-

Then Hy : <w,x>+b; =0and H_: <w,x>+b_=0. Let b= (b, +5_)/2 and
§ = (b~ —by)/2. Since two-class data are linearly separable, d is non-zero. Therefore,

Hy and H_ can be rewritten as

W b
. - =1 15
He: <=x> s , (15)
w b
. - = 1. 16
H_.<5,X>+6 ()

Then the scaled separating hyperplane becomes < ¥ x > +§ = (. Therefore, we

can define a canonical form of a hyperplane which removes the scaling freedom.

Definition 4.2. (Canonical hyperplane [104]) The pair (w, b) is called a canon-
ical form of the hyperplane with respect to x|, X, ..., x;, if it is scaled such that

.minl{ <w,x; > +bl =1, (17)

i=1,...,

which indicates that the points closest to hyperplane have a distance of 1 /llwll.

In Fig. 12, the margin, defined as the distance from the closest point to the
hyperplane < w,x > +b =0, is 1/||w||. In order to enable the separating hyperplane
generalize well, the maximal margin should be sought in terms of the geometric
intuition now. The reason why the hyperplane with a maximal margin performs well
will be explained using the generalization theory in a later section.

Now we need to find the optimal hyperplane with the maximal margin. The

problem can be formulated as a linearly constrained quadratic programming problem
as follows:

1
mi§1§HWHZ subject to y(< w,x; > +b) > 1, i=1,... 1 (18)

This is a convex quadratic programming problem since the objective function is
convex and these points which satisfy the linear constraints define a convex set. By
introducing positive Lagrange multipliers o;, ¢ = 1,...,[, one for each inequality

constraints, we define the Lagrangian function

Lo(w,b,0) = %HWHQ =5 i< wyx; > +8) — 1), (19)

i=1

42

1/llw]l

<w,x>+b=1
<w,x>+b=0

1]lwll

<wW, x> +b= -1

Figure 12: Scale w and b such that the points x; and x_ closest to the hyperplane
satisfy < w,x; > +b=1and < w,x_ > +b = —1, respectively.

We can solve the equivalent Wolf dual problem [44]: maximize Lp subject to
the constraints that the gradients of Lp with respect to w and b vanish, and to the

constraints that «; > 0.

oLy

oLy

5 =9 (21)
a > 0, (22)

From equations (20) and (21), we have
!
W= Zyiaixz‘, (23)

l
Y iy = 0. (24)

Substitute equality constraints in Eqs. (20) and (21) into Eq. (19) to give the
dual formulation together with the constraints of «

maximize Lp(a) =3 a; — %Z” Q05YiY; < X, X5 >
subject to « >0 (25)
2 0y = 0.

43

After we solve « in the dual problem, the decision function can be written as

f(x) = sgn(< w,x > +b)

1
= sgn(z oy < X, X > +b). (26)
where
1 ifu>0
sgn(u) = . . (27)
—1 otherwise

It can be observed in the dual problem (25) and the decision function (26) that

training vectors x; only occur in the form of dot product.

4.2 Soft margin classifier

When data is not perfectly separable due to noises and outliers, we introduce slack
variables to allow the margin inequality constraints [19] in the primal problem (19)
to be violated.

subject to yi(<w,x; > +b) > 1§, i=1,...,1
£>0i=1.. 1

When an error occurs, &; is greater than 1. So > .. & can be regarded as the upper
bound of training errors. It is expected to maximize the margin and minimize the

training errors. The primal problem (19) can be re-defined as

minimizey p, ¢ %“W“2 +C Y&
subject to Yi(<w,x; >4+b) > 1 &, i=1,...,1, (28)
&2>0,i=1,...,1L

This is still a convex quadratic programming problem and the positive parameter

C is chosen by the user. A larger C assigns a higher penalty to training errors. The
corresponding Lagrangian of (28) is

11
Lp(w,b,6,0,0) = %tlwn%czgi

— Zaz i< w,x; > +b) — 1+ &] — Zﬁz& (29)

=1

44

with ; > 0 and 3; > 0. The Karush-Kuhn-Tucker (KKT) optimality conditions [73]

are given by

dLp :
T W—;yla,xz—O, (30)
%Ig’ = C-a;—f; =0, Vi (31)

dLp l

= —;yiai-o, (32)
yi(< X, w > +b) — 1+ 0, Vi (33)
ailyi(< w,x; > +b) + &~ 1] = 0, Vi (34)
Gi& = 0, Vi (35)
@ > 0, Vi (36)
pi = 0, Vi (37)
& > 0. Vi (38)

where Eqgs. (34) and (35) are called KKT “complementary” conditions. Substitute
Egs. (30),(31) and (32) into Eq. (29) and obtain dual objective function:

! !
1
Lp(a) = Zai ~3 Z Vil oy < X;, X5 > . (39)
i=1 ij=1
which is the same as that in the maximal margin case. The difference is that from

the constraint (47) we obtain o; < C since B; > 0. Therefore, the dual formulation

in soft margin case is given by

maximize, Lp(a)= Zizl -3 Zﬁ,jr_l Yiyjo0g < Xi, X5 >,
subject to 0<; <C, i=1,...,1, (40)

S v = 0.
4.3 Nonlinear support vector machine

The decision function Eq. (26) is a linear function of the data. Its power is limited
and needs to be generalized to the nonlinear case. It can be observed that the data
in the training problem Eq. (40) and decision function Eq. (26) is in the form of

a dot product. A nonlinear function ® [5] is introduced to map the data to a high

45

dimensional inner product space H ! by
®: R — H. (41)

The mapping @ is implemented by a kernel function K that satisfies Mercer’s con-
ditions [85] such that K(x;,x;) = ®(x;) - P(x;). The kernel trick is that we never
need to explicitly represent the nonlinear mapping ® and just replace < x;,x; > by

K (x;,x;) in the training algorithm.

4.4 The role of margin in SVM

In the design of SVM training algorithm, we expect to find a hyperplane with a large
margin to separate the data. Intuitively the hyperplane with a large margin has a
good generalization performance. It is necessary to know why the margin plays a
crucial role in SVM from a technical viewpoint. Let us start to explain it by means
of Vapnik’s statistical learning theory [121].

Let data (x1,91),...,(x;, %) € X x Y, be generated i.i.d. (independently drawn
and identically distributed) from cumulative probability distribution P(z,y), where
X € R* and Y = {1,~1}. Learning is to find one from a set of functions f(x,)%
X+ {1, —1} such that the expected misclassification error on the test set, also drawn
from P(x,y),

Rie) = [5110x,) = ylaPlx,y). (12)

is minimal. Eq. (42) is called the expected risk (or actual risk). But since P(x,y)

is usually unknown, we use the errors over the training samples to replace it, defined
by

Ronp() = 5231 xt0) ~ i (43)

The Renp is called “empirical risk”. The empirical risk can be connected with the

expected risk by a probability bound [120]. That is, for any f (x,a) and | > h, with
a probability of at least 1 — 5,

Rlo) < Runia) + \/ tlog +1) —logln/4) »

'The completion of this space can be constructed so that we can obtain Hilbert space.
*a are adjustable parameters

46

holds, where h is a non-negative integer called the Vapnik Chervonenkis (VC) dimen-
sion?, and is a measure of the capacity of the function class f(x,). The second term
in Eq. (44) is called “confidence (capacity) term”, which is an increasing function
of h for the fixed n. Although the above bound can be very loose, it provides us a
guideline for designing the learning algorithm: in order to reduce the expected risk,
we can minimize the right side by taking into account the training errors and capacity

of learning function classes together. Fig. (13) illustrates the meaning of the above
bound.

~

Confidence term

Remp

Figure 13: The picture of VC bound. For a family of functions f(x, @), we choose f,
that gives the lowest upper bound in the expected risk.

Now we need to find a good function class with a small capacity such that a
function from them, chosen by the training set, can lead to a small actual risk. It
is known that separating hyperplanes in R has a VC dimension of d +1 [14]. So
separating hyperplanes in a high dimensional feature space will produce an extremely
high VC dimension, and may not generalize well (or obtain a lower actual risk). For
example, in the nonlinear SVM, the dimension of feature space H is infinity when the

radial basis function kernel is used [14]. The VC dimension of separating hyperplanes
is infinity.

$The simple definition for VC dimension is referred to Burges’s tutorial[14].

47

How does SVM solve this problem since SVM finds a hyperplane in the feature
space of possibly infinite dimension? The key point is that SVMs correspond to
large margin hyperplanes, which can still have a small VC dimension in terms of the

following theorem:

Theorem 4.4.1. (Vapnik[121]) Consider hyperplanes < w,x > +b = 0 where
w is normalized such that they are in canonical form, w.r.t. a set of points X* =
{x1,...,%x}, le, mingy | < w,x; > +b| = 1. The set of decision functions
fws(x) = sgn(< w,x > +b) defined on X* and satisfying the constraint ||w| < A
has a VC dimension satisfying

h < R*A%. (45)

where R is the radius of the smallest sphere around the origin containing X*.

From the above theorem, we can make the following remarks:

e The VC dimension of separating hyperplanes can be small and independent of
the dimension of the feature space by bounding the length of weight vector ||w/||.

Here the bound is chosen by a priori information. In the SVM training, ||w]| is

minimized.

e The above theorem can be used to select the parameters of an SVM kernel. For
example, when training errors are very small, we minimize R?||w||%, an upper

bound of VC dimension, and expect to obtain a lower testing error.

More technical results are referred to [21], where the margin directly appears on the
error bound.

4.5 Sequential minimal optimization

There are many methods of solving SVM optimizations. Sequential Minimal Opti-
mization (SMO), introduced by Platt [91] and improved by Keerthi et al. [63], is one
of the most easily implementable algorithms and derived by optimizing the subsets
of two points at each iteration. The power of SMO exists in fact that no extra op-
timization package is required and an analytical solution for two-point optimization

problem can be explicitly provided. In the next chapter, since we will present a fast

48

SVM training algorithm which will use SMQO, it is necessary to give a sketch of SMO
here.

In this section, we will consider the general case in SVM optimization, where x
is replaced by ®(x), < x;,x; > by K(x;,x;) in the soft margin classifier. In order to

understand SMO algorithm, we need to answer the following three questions:
e What are the optimal conditions for stopping the algorithm?

e How are two parameters chosen to be optimized such that a significant progress

on the objective function can be made?

e How are the two chosen parameters jointly optimized given that all the others

are fixed?

Since SVM optimization is a convex quadratic programming problem, KKT conditions
are necessary and sufficient for w,b,a to be a solution [44]. In the general case, KKT

conditions for the primal problem are given by

OLp :
ow v Zyi@iq)(xi) =0, (46)
i=1
oL
8; = C—o;— (=0, Vi (47)
oL ‘
“%Ii = - Zyiai =0, (48)
i=1
(< w, ®(x;) > +b) —1+& > 0, Vi (49)
ai[yi(< W, @(Xz) > +b) + fz — 1] = 0, Vi (50)
Bi& = 0, Vi (51)
a; > 0, Vi (52)
B = 0, Vi (53)
& > 0. Vi (54)

The above conditions can be simplified by taking into account three cases of o;:

1. Case 1: a; = 0. From Eq. (47), 8; = C — a; = C. Then we can get & = 0 from
Eq. (51). The following inequality holds from Eq. (49)

yi(< W, B(x;) > +b) — 1> 0. (55)

49

2. Case 2: 0 < oy < C. From Eq. (47), 8; = C — «; > 0. Then & = 0 according
to Eq. (51). So we have from Eq. (50)

yi(< W, D(x;) > +b) — 1= 0. (56)
3. Case 3: a; = C. From Eq. (47), §; = 0. Then we have from Eq. (50) since

& >0
yi(< w, ®(x;) > +b) — 1 <0. (57)

Then we simplify KKT conditions without checking the threshold b due to Keerthi
et al. [63]. Let F; =< w, ®(x;) > —y; = Zi‘:l yio; K (x5, %;) — y;. Since
(< W, B(x;) > +b) — 1 = yi(< w, ®(x;) > +b) — y°
= yi(< w,®(x;) > —y; +b)
= ui(Fi+b)
Egs. (55), (56) and (57) can be rewritten as

yi(F;+b6) > 0ifa; =0 (58)
yi(Fi+b) = 0if0<oy <C (59)
yi(Fi+0) < 0ifg=C (60)

The above KKT conditions can continue to be simplified when the following indexed

sets at a given « are defined:
Iy = {i:0<q <C},
I = {i:yi=1, o; =0},
I = {ityi=-1, a; =C},
I = {i:y,=1, oy =C},

The conditions in Eqgs. (58) through (60) can be rewritten as
—biE \V/’I;El()UIIUIQ; —-bZE VZ€[0U[3U[4 (61)

The optimal conditions hold if and only if there exists ¥ = —b satisfying Eq. (61).
Let us define by, = min{F;:i e [,UI, U L} and by = max{F;:i e [,Ul; U I}
Then optimal conditions hold at some « iff

E_low = blow < E_up = bup- (62)

30

In numerical solution it is not easy to achieve the exact optimal conditions. We

approximate it by
EJOW - blow < E_up - bup + 27 (63)

Eq. (63) gives the approximated KKT conditions and provides an answer to the first
question mentioned above.

With respect to question 2 we need to find a pair (i1,42) which violates KKT
conditions. We use either of the following conditions to check whether a particular ¢

violates KK'T optimality.

i611U[2 and ESE_}OW—zT (64)
i€LUl, and Fy > F+ 27 (65)
bup _<_ blow - 27 (66)

If Eq. (64) holds, the violating pair is (¢,ilow). Similarly, the violating pairs in Eqgs.
(65) and (66) are (i,iup) and (iJow, i_up), respectively. More details on choosing the
violating pairs are referred to Keerthi et al.’s paper [63].

After we have determined the violating pair, we need to find a method to update
their corresponding a values. Without loss of generality, we assume that two param-
eters that are chosen are «; and oy given that other parameters are fixed. The linear

. ! . .
constraint » ., y;o; = 0 implies

Y10y + Yalug = yla(fld + y2agld- (67)

We first compute a3°". Then a}®¥ can be obtained from Eq. (67)

" =y (y109 + yead) — yyya08eY
= o+ yy,(afd — o). (68)

Due to the box constraint 0 < a1, 0y < C, we can compute a new box constraint for

oz according to Eq. (67), given by

L <™ < H, (69)
where if y; # ¥y
L = max(0,a3¢ - o),

H = min(C,C + ad¥ — af'9).

o1

or if y; =y,
L = max(0,0%% + a3 -),

H = max(C,a" +ad").

Before we start to compute an updating formula for ay, the following notations
[21] are defined

Kij = K(Xi, Xj)

l 2
Vi = Z%’%‘K(Xi, x;) = Fiom +Yi — Zyla?ldKijy t=1,2,
=3

- =1
s = Ny
o +sag = a4 sadd =y

where -y is constant. The objective as a function of a5 and a5 in the dual formulation

1s given by
1 o 1 2
LD(C\!l,ag) = Q3 + Qo — §K110‘1 — —Q"KQQCZQ
— Y2 K1p0100 — Y1001 — YaaUy + constant, (70)

Substitute @ = v — say into Eq. (70) and remove the variable a;. The objective
function can be simplified by
1

2
_SKIZ(’Y - 5062)@2 - y1(7 - Saz)U1 — Yo Vg -+ constant

1
= ——2-(K11 + K‘ZQ - 2K12)Of%
+{y2(F101d — 20ld) + Odgld(Ku + Kzz - 2K12)]O£2 -+ constant.

1
Lp(as) = v —s0ay+ag— §K11(7 — s0rg)? Kol

Let n be Ky + Ko —2Ky3. Then n = [|®(x1) — B(x2)]|2 > 0. If p > 0, the stationary
point satisfies

20 o n(EP — F) + 0y = 0 (7
We can get
agew,unclipped _ agld + Y2 (FY ldn‘) (72)
Then we clip o etipped according to Eq. (69). If n = 0, the objective function is
Lp(az) = ya(F7 = F5'%)a (73)

92

We evaluate Lp(as) at the two endpoints L and H and set o™V to be the one with

the larger objective function value. Finally, we summarize the above results:

1. case 1: n >0

. i
L if agew,unc ipped < L,
new,clipped i . i
@y pped agew,unchpped it L S a;ew,unchpped S H, (74)
H if agew,unclipped > H.

2. case 2: n =10

qreviioned _ { L if (P~ F) <o, 75)

H otherwise.

53

Chapter 5

Fast SVM Training Algorithm

5.1 Introduction

Support vector machine (SVM) [121][21][104] has emerged as the state-of-the-art clas-
sification technique and has achieved excellent generalization performance in a wide
variety of applications, such as handwritten digit recognition [98][24][33], categoriza-
tion of web pages [57] and face detection [87]. Some basic problems, such as multi-local
minima and curse of dimensionality in the neural network literature [4], do not oc-
cur in SVM. In addition, the structure of support vector classifier is data-driven and
automatically determined for a chosen kernel while the structure of neural network
classifier is usually customized heuristically in order to achieve a good generalization
performance. However, since the training complexity grows with the size of the data
set, training support vector machines on a large data set is very slow and has be-
come a bottle-neck of SVM’s application. Therefore, it is important to develop fast
algorithms for training SVM for large-scale classification problems.

Although many methods for solving the optimization problem of support vector
machines are available [104], we list here only the prominent ones which can be used
to train SVMs on a large data set, such as Chunking [121][87], Sequential Minimal
Optimization (SMO)(see [91][63]) and SVM"9"* [58]. The chunking algorithm starts
with an arbitrary subset (chunk of data, working set) which can fit in the memory,
and solves the optimization problem on it by the general optimizer. Support vectors
(SVs) remain in the chunk while other points are discarded and replaced by a new

working set with large violations of KKT (Karush-Kuhn-Tucker) conditions [73]. The

o4

rationale of this operation is that only support vectors contribute to the final form
of a decision function. In addition, the chunking algorithm is based on the sparsity
of SVM’s solution. That is, support vectors actually take up a small fraction of the
whole data set. But one of the problems associated with the chunking algorithm is
that there may be many active candidate support vectors during the optimization
process than the final ones so that their size can go beyond the chunking space. The
method of selecting a new working set by evaluating KK T conditions without efficient
kernel caching may lead to a high computational cost [87].

SMO, introduced by Platt [91] and improved by Keerthi et al. [63], further takes
the decomposition idea to an extreme and optimizes the subsets of two points at each
iteration. The power of SMO reveals itself in the fact that no extra optimization
package is required and an analytical solution for a two-point optimization problem
can be explicitly given. Several heuristics have been suggested to select the working
set. Keerthi et al. [63] further enhanced the performance of SMO by pointing out the
inefficiency of updating one-thresholded parameters in Platt’s algorithm and replac-
ing it with two-thresholded parameters. The important contribution of Keerthi et
al’s modification is that the pair of patterns chosen for optimization is theoretically
determined by two-thresholded parameters and the optimization on this subset leads
to a considerable progress in the objective function. In practice, when the size of a
data set grows bigger, it is still a problem to determine the optimal pair at low cost.

SVM"9" [58] is a general decomposition algorithm, where a good working set is
selected by finding the steepest feasible direction of descent with g nonzero elements.
The ¢ variables that correspond to these elements compose the working set. When
g 1s set to 2, Lin et al. [15] pointed out that the selected working set corresponds to
the optimal pair in Keerthi el al.’s modification of SMO. SVM“"* caches g rows of
kernel matrix (row caching) to avoid kernel re-evaluations and LRU (Least Recently
Used) is applied to update the rows in the cache'. When the size of the training set
is very large, the number of cached rows becomes small due to the limited memory.
As a result, the number of active variables is not large enough to achieve a fast
optimization.

By reviewing the behaviors of the above algorithms, we have concluded that they

arc inefficient on large data sets due to three key factors. The computational cost

'Here cache means a part of memory, not hardware cache

a5

of training SVM primarily depends on kernel evaluations. Efficient kernel caching
can reduce or avoid kernel re-evaluations. The LRU caching policy may fail because
elements of kernel matrix are usually accessed irregularly [43]. In addition, evaluating
kernel elements on the fly is not efficient at all because data access is not temporally
local. Massive evaluation of kernel elements via blocking algorithm will reduce hard-
ware cache misses and speed up the computation. The second problem originates from
frequent access of portions of non-contiguous memories, which potentially can lead
to high cache misses. Training SVM on a large data set usually requires the access of
a large size of memory. In a virtual memory system, accessing this memory irregu-
larly will cause high Translation Look-aside Buffer (TLB) misses [90]. Consequently
memory access will take more time. Finally, although the existing algorithms can be
used to train SVMs on a large data set with multi-classes, the computational cost is
high. For example, with respect to one-against-the-others training strategy (98] for
multi-classes, the training cost for m classes is about m times as high as that for two
classes.

The main contribution of this chapter is to present efficient solutions to the above
problems. Two steps have been designed to train support vector machines. The
first step is called parallel optimization, in which the kernel matrix of support vector
machine is approximated by block diagonal matrices so that the original optimization
problem can be decomposed into hundreds of sub-problems, which can be easily
and efficiently solved. The great advantage of this step is to remove most non-
support vectors quickly and collect training sets for the next step called sequential
working set algorithm. Associated with these two steps, some effective strategies such
as kernel caching and good selection of working set are integrated to speed up the
training process. In addition, Block Linear Algebra Subprogram (BLAS) [38][125],
which is optimized on Intel P4, can be used to efficiently calculate the kernel matrix.
Experiments on the large MNIST handwritten digit database have shown that the
proposed method has achieved one magnitude of order speed-up, compared with
existing algorithms such as SVM""* and LIBSVM [15]. Moreover, the state-of-the-
art generalization performance has been obtained on other well-known public and
commercial character databases.

This chapter is organized as follows. Support vector machines are first introduced.

Then in Section 5.3, a fast training algorithm for SVM is presented. A discussion of

06

efficient implementation strategies is given in Section 5.4. In Section 5.5, we analyze
the space and runtime complexity of the proposed algorithm. Extensive experiments
in Section 5.6 have been conducted to investigate the properties of the proposed
algorithm on very large databases and its generalization performance on several public
handwritten character databases. Finally, we summarize this chapter with some

concluding remarks.

5.2 Support Vector Machine

Let {x;,ui}, ¢ = 1,...,{, yi € {~1,1} and x; € R* be the training samples where
x; is the training vector and y; is its corresponding desired output. Here we use
bold font to denote a column vector. Boser et al. [5] showed that training support
vector machine for a pattern recognition problem can be formalized as the following

quadratic optimization problem:

maximize: S - 1aTQa
subject to: 0<o; <C, i=1,...,1 (76)
!

where « is a vector of length [and its component o corresponds to a training sample
{x:,:}, Q is an | x [semi-definite kernel matrix and C is a parameter chosen by the
user. A larger C assigns a higher penalty to the training errors. The training vector x;
whose corresponding «; is non-zero is called support vector. Support vector machine
maps training vector x; into high dimensional feature space by the function ®(x)
such that (Q);; = yy;(K),; = viysk(x:,x;) and k(x;, x;) = ®7(x;)®(x,). When the
above optimization problem is solved, we can obtain an optimal hyperplane in high

dimensional feature space to separate the two-class samples. The decision function is
given by

!
Fx) = sen(d " yiouk(xi, x) — b), (77)
i=1
where
I ifu>0,
sgn(u) = 78
() {—1 otherwise. (78)

a7

In the latter algorithm, we resort to a technique proposed by Keerthi et al. [63][64]
to select two variables for optimization and determine the stopping conditions. Train-
ing patterns can be split into five sets first: [y = {i : 0 < oy < C}, I} = {i :
vi=1 o =0 L={i:y=-1, a=C}, 1 ={i : 4 = l,a4 = C} and
Iy ={i:y; = =1, a; = 0}. Then we define

bup = Fi_up = mm{E ve Zulu .[2}, (79)
bow = Fiijow = max{Fi e lyul;u 14} (80)

where F; = 22:1 y;aik(x;,%;) —y;. Keerthi et al. [63] showed that optimal conditions
for a solution to (76) hold at some « if and only if bigw < byp. Moreover, the worst
violating pair of patterns (i_up, i_low) are chosen for optimization, which can lead to

a large increase in the objective function [104].

5.3 A fast algorithm for training SVM

For the optimization described in (76), the key problem is that the dense kernel
matrix () can not be stored into the memory when the number of training samples
[is very large. We can observe the fact that the optimal solution to (76) still holds
if any non-support vector is removed. Moreover, numerous experiments [98][33] have
shown that support vectors actually constitute only a small fraction of the training
samples. If most non-support vectors can be removed quickly in the first step, SVM
training can be accelerated dramatically. Divide-and-conquer? is a general principle
for solving complex problems. That is, we can divide the original problem (76) into
small sub-problems which can be solved easily. Since kernel matrix @ is symmetric

and semi-positive definite, its block diagonal matrices are semi-positive definite, and
can be written as

= o

Qll

Q
Qdiag = . (81)

Qkk i

where ; x [; square matrices Q, 1 = 1,... kK, Zle l; = [, are called block diagonal.

Then we replace the kernel matrix with Q;; in (76) so that we obtain k optimization

2A good example in computer science is quick-sort.

28

sub-problems as follows:

maximize: Z?ﬂ agi) — %amTQiiam
subject to: 0<al? <C, j=1,...,1 (82)
S0 =0

where i = 1,...,k and oV is a vector of length /;. Optimization of each subproblem
in (82) is equivalent to that in (76) with the constraints that [; components of «
are free and the rest are set to zero. Optimization of k subproblems can be used to
remove non-support vectors quickly in (76) based on the assumption that non-support
vectors in (82) is a subset of those in (76). Further, we extend it to train support
vector machines with multi-classes, where the one-against-the-others classification

strategy is used. The computational diagram is depicted in Fig. 14.

Horizontal Computation

Calculate ¥y, Calculate ¥ oy Calculate K Lk
Optimization for class 1 Optimization for class 1 eee Optimization for class 1
<
(o]
=8
[¢]
B Optimization for class 2 Optimization for class 2 eee Optimization for class 2
g
=4
el
g
8 ® ® ®
o e e ®
=] @ @ ®
Optimization for class m Optimization for class m e e Optimization for class m

Figure 14: Parallel optimization diagram.

The computation in Fig. 14 is efficient due to three aspects. Firstly, kernel matrix
can be effectively divided into block diagonal matrices such that each of them can fit
into the memory. Many off-the-shelf algorithms can be used to solve this problem.

Secondly, for vertical computation, all classes share the same block kernel matrix,

a9

which needs to be calculated once. Finally, after the calculation of the block matrices
in the first row, optimizations from the second class to the mth class are independent.
Also, computations on different columns are independent. The computation frame-
work is suitable for parallel optimization on the architecture of multi-processors since
optimization independence and data locality can maximize parallelism and reduce
the cost of long latency remote communication in using multi-processors [90].

After the above parallel optimization, most non-support vectors for each class
will be removed from the training set. Then a new training set for each class can
be obtained by collecting support vectors from the optimization sub-problems in the
same row as shown in Fig. 14. Although the size of the new training set is much
smaller than that of the original one, the memory may not be large enough to store
the kernel matrix, especially when dealing with a large data set. Therefore, a fast

sequential working set algorithm for training SVM is proposed and summarized as

follows:

Fast Sequential Optimization for Training SVM

Input: Training set is S, and the fixed size of the working set is d, where d < [
and ! is the size of the training set. Also, square kernel caching matrix with the

dimension d is provided.
Output: o;,1=1,...,1.

Initialization: Shuffle the training set; set o; to zero and select a working set
B such that B C §.

Optimization:
Repeat

1. Apply modified SMO to optimize a sub-problem in working set B,
in combination with some effective techniques such as kernel caching,

efficient computation of kernel matrix, then update o;.

2. Select a new working set with a queue technique.

Until the specified stopping conditions are satisfied.

60

The above algorithm can also be used as the optimizer for parallel optimization in
Fig. 14, where the size of working set is the same as that of training subset since each

block diagonal matrix can be stored into the memory, and step 2 is skipped.

5.4 Strategies of implementation

Section 5.3 provides a general computational framework for training support vector
machines. For eflicient computation, one needs to take into account some issues such
as kernel caching, the computation of kernel matrix, selection of a new working set

and stopping conditions.

5.4.1 Kernel caching

Kernel cache in this paper is defined as a part of contiguous memory that stores the
d X d square kernel matrix on the working set. The size of the working set d should
be large enough to contain all support vectors in the whole training set and small
enough to satisfy the memory constraint. Since kernel matrix on the working set
is completely cached, each element of the kernel matrix needs to be evaluated only
once and must be calculated via a fast method presented later before starting the

optimization so that during the optimization all kernel elements are available.

5.4.2 Optimization on the working set

In our optimizer, a worst violating pair of patterns (i-up,ilow) are always updated
according to Eqgs. (79)(80) , instead of choosing them just from Iy, the previous -up
and 7_low in Keerthi et al. SMO [63]. The strategy of choosing the worst violating pair
for optimization is also used in SVMTorch [18]. Since kernel elements are completely

cached, evaluation of F; in Egs. (79)(80) has low computational cost. Updating F;
can be done efficiently as follows: '

AF = yiapAoy_ypk(xi, Xi_yp) + Yi2ow A 10wk (X, X 1ow)- (83)
where i = 1,...,d, Aojiee = o290, — o and Aa,, = oy — ol L Fy s

also cached. We use the following pseudocode to illustrate the simple optimization
procedure.

61

Optimization on the working set

1 Imitialization: F; = —y;, i1 =1,...,d.
2 Loop

2.1 Select worst violating pair (i_up,¢low) and calculate by, and by
2.2 If bow < byp + 27, then goto 3.

2.3 Update o;_yp, o 1ow-

2.4 Update Fj in terms of Eq. (83) where i =1,...,d.

2.5 Update Iy, Iy, I, I3, I.

3 Load a new working set, update F; and kernel matrix.

4 If global stopping conditions are satisfied, the algorithm terminates; otherwise

goto 2.

Here 7 is a positive tolerance parameter. In the above loop, multiplication operations
for updating F; contribute to cost O(d) in each iteration; comparison operations for

selecting the worst violating pair contribute to O(d).

5.4.3 Selection of a new working set

After optimization on the current working set is finished, a new data set will be loaded

to replace non-support vectors by queue operations. Two operations associated with
a queue data structure are defined by

1. Enqueue(Qg,1d(x)): Append the index® of a sample x at the rear of the queue
Qs.

2. Dequeue(Rs): Remove the index of a sample from the front of the queue §
and return it.

Operation 4d(.) returns the index of a sample in set S. Each operation above takes
O(1) time. The queue initially stores the indices of all training samples S. An

important step prior to that is to shuffle the training set randomly before starting

*Here the index denotes the sequential number of a sample in the total training set S.

62

parallel optimization such that distribution of training samples from different classes

is balanced. Suppose that the working set is stored in an array B[1,...,4,...,d],i =
1,...,d, where each array element is an n—dimensional vector. The index set of non-
support vectors is a sub-sequence {i1,%,...,,...,insv}, K = 1,...,nsv, where nsv

is the number of non-support vectors of the current working set. Then the algorithm

of selecting a new working set is summarized as follows:

Algorithm for selecting a new working set

Initialization: B[i] + S[Dequeue(Qs)],i=1,...,d.
Selection:

k«+ 0.

Repeat
1. Enqueue(Qs, id(B[i])).
2. Bli;] < S[Dequeue(Qs)].

Until £ = nsv.

After a new working set is loaded, the kernel matrix on the new working set must
be updated via the method in subsection 5.4.4. In addition, only F; for these new
training samples need to be calculated. Moreover, for a large data set, only the
working set is required to be in the memory. One of the good properties of the above
method is that 10 (Input/output) access is efficient since training samples in the data

file are accessed sequentially when a new working set is loaded.

95.4.4 Calculation of kernel matrix

When a kernel can be represented as a function of dot product, matrix multiplication
can be used to calculate kernel elements efficiently. Obviously, three kernels such as
linear, polynomial kernel and radial basic function (RBF) belong to this type. Here
we describe the details of computing RBF kernel matrix, which can be easily extended

to other types of kernel. RBF kernel can be written as

k(xi, %) = exp(— || xi — x; |? /(20%)) (84)

63

where || . || is the Euclidean norm and
I x: —x; ||*= xIx; + x]Tx]- — 2x7'x; (85)

i, =1,...,d. Terms x! x; can be calculated by calling CBLAS function cblas_sdot.
Let array A consist of vectors (xy, Xa,...,Xq). X, X;, 4, J = 1,...,d can be rewritten
as ATA (Gram matrix), which can be easily calculated by calling CBLAS function
cblas_ssyrk. Due to symmetry of the kernel matrix, only elements in the upper
triangle are calculated for the implementation of ¢blas_ssyrk.

The kernel matrices in Fig. 14 can be calculated via the above method, where d = I;
in (81). To update the kernel matrix when a new working set is loaded, we do not
need to compute the total kernel matrix since some elements can be re-used. Let the
new working set be split into two sets: support vector set represented by the array By,
and non-support vector set B,g,. Updating the total kernel matrix requires BY B,
BL B and BY B,,. Since kernel elements k(xi,x;), where x; € By, and x; € By,
can be re-used, BL B, does not need to be re-calculated. BZ B, and BI B, can
be evaluated by calling CBLAS function cblas_ssyrk and cblas_sgemm.

The rationale of the usage of BLAS package is its computation efficiency, porta-
bility and maintenance. The key computational kernel of BLAS package such as ma-
trix multiplication is implemented by hardware vendors in assembly language, which
makes efficient use of cache, memory and instructions such as single instruction and
multi-data (SIMD) [56] on Intel Pentium series or vector instructions in vector pro-
cessors [90]. Moreover, BLAS has been efficiently implemented on different platforms,
which enables the proposed SVM algorithm to perform well across platforms. Further-
more, the performance of the proposed method grows with the computational power

of a processor in the future when a new BLAS package is plugged in. Consequently

the cost of software maintenance is reduced.

9.4.5 Reduction of cache and TLB misses

In Fig. 14, CBLAS function cblas ssyrk is used to calculate kernel matrices Q.
cblas_ssyrk stores results into the upper triangle of the symmetric kernel matrix.
Thus we need to copy the elements in the upper triangle into the lower triangle so
that SMO can access contiguous memory during the optimization process. Crude

copy operations will result in high TLB misses and cache thrashing, which will lead

64

to a high cost. The reason is that kernel matrix takes a large portion of paged memory
and the limited TLB does not contain all memory page numbers for the kernel matrix.
In order to solve this problem, the upper-triangle of the kernel matrix is broken up
into contiguous blocks of a fixed size dg and a workspace with the size of dgd is

allocated®. Fig. 15 shows how to copy elements into the lower-triangle.

workspace \

Uy ds

iy

Figure 15: Copy upper-triangle elements into lower-triangle via a workspace.

The workspace is used to copy blocks of the upper-triangle into the symmetric
blocks of lower-triangle. dg can be determined by the size of the second-level cache
(L2) if available. Similarly, the method can be used to copy elements of B, B, and

B;‘.FVanv into the kernel matrix during the sequential working set optimization.

9.4.6 Insert positive samples into the working set

In Fig. 14, it is possible that there is no positive sample® on some working set since the
size of negative samples is much larger than that of positive samples for one-against-
the-other multi-class training strategy. As a result, SMO will lead to an incorrect
solution. In order to tackle this problem, we first randomly collect one sample from
each class. During the training, if no positive sample on a working set is found, we

replace the first negative sample using the positive sample from the collected set.

4 Align the starting address so that it begins at a cache-line boundary.
SIts corresponding desired output is 1.0.

65

5.4.7 Stopping conditions

With respect to the stopping conditions, most algorithms evaluate KKT conditions
of each training sample. If none violates KKT, the algorithm stops. On a large
data set the computational cost for this step is high. Instead, heuristic stopping
rules are suggested. We track the variations of by, biow and the number of support
vectors on the two successive working sets. If all these variations are small and a
sufficient number of training samples have been learned, the algorithm terminates.

The heuristic stopping rules are given by

(|Asv] <20 and |Abyy| < 27 and [Abpy| < 27

86)
and Number of learned samples > 1) or (sv > d) (

where | . | computes the absolute value and [is the size of training set. Adding the
constraint on the number of learned samples is necessary. Otherwise, in an extreme
case, if the loaded samples are all non-support vectors, the algorithm is likely to
terminate too early. As a result, the optimization is incomplete and SVM will suffer
the risk of bad generalization performance. Furthermore, although the above stopping
conditions and parallel optimization may lead to a ‘not-too-precise’ optimal solution,

they are essential to control the computational cost within a reasonable bound.

9.5 Analysis of space and runtime complexity

Before analyzing the space and runtime complexity® of the proposed algorithm, some

notations are defined below:

e [: size of original training set

d: size of the working set
e n: dimension of the feature vector

e m: number of classes

k: number of working sets in Fig 14

hij, t =1,...,m; 5 =1,...,k number of support vectors on the working set
at the ith row, jth column in Fig. 14

% Analysis is based on a single processor

66

where k = [[/d]. For the sake of simplicity, the size of working set d is used in both
parallel and sequential optimizations. In addition, we assume that the final number
of support vectors of SVM for each class is not larger than d and the dominant
computational cost comes from multiplication operations without considering the

cost of memory access.

5.5.1 Space complexity

The requirements of storage space in the two steps are different. In both steps, only
a working set is loaded into the memory, rather than the total training set. Usually
n is much smaller than d. The dominant storage comes from the kernel matrix. In
Fig. 14, its size is estimated as 4d® bytes’. In the second algorithm, since some kernel
elements are re-used, we can not totally overwrite the kernel matrix and require a
new matrix with the same size to calculate BL, B,,, and BZ:,B,ISV. Its total storage

nsv

space for sequential working set optimization is estimated as 842 bytes.

5.5.2 Analysis of runtime complexity

¢

It is difficult to precisely analyze the runtime complexity of the algorithm. Therefore
we just estimate dominant computational cost under some assumptions. In Fig. 14,
computation of kernel matrices has time complexity of gl((g = O(3knd?) = O(3lnd).
The factor 1/2 appears because cblas_ssyrk only updates the upper-triangle of the
kernel matrix. Now we estimate the cost of optimization on the working set. For
each iteration, updating F; in Eq. (83) contributes to a main cost, which is O(d).
In order to estimate the number of iterations on the working set, an ideal model is
assumed: at least one support vector at each iteration is added. So the nuraber of
iterations is not larger than the number of support vectors. Then the time complexity
of optimization can be approximated by

m

95 =00 hyd) (87)

=1 j=1

Therefore, the total time complexity for parallel optimization is estimated by

m k
1
o) + g8 = O(5ind + >N hya). (88)

i=1 j=1

"Data type of a kernel element is float. The size of a float data type is 4 bytes.

67

After the parallel optimization step, the size of training set for class ¢ is given by

M-

hij, (89)
j=1

where ¢t = 1,...,m. Let r;; (r;; > 0),4=1,...,m, j = 1,...,T; be the number

of support vectors on the jth working set of class ¢ where T; denotes the number of

optimized working sets of class ¢ when the optimization is terminated. For the sake

B, on the jth working

nsv

of analysis 79 = 0. The costs of computing BL By, and BL
set of class ¢ are O(rij_1)(d — ri(j—1))n) and O(§(d — ri(j—1))’n), respectively. Thus

the total cost of updating kernel matrices can be approximated by

m T;—1
1
Gr = O D (ry(d —ri)n + 5(d = ;) "m)). (90)
i=1 j=0

Expression (90) can be simplified to

m T;—1

62 =000 Y (d—rgint L) (91)

i=1 j=0

It can be observed that Zf;gl(d — 1;) is the number of learned samples for class .
Let Zji_l(d —1i;5) = (i P;. According to the stopping conditions in (86), 3; is greater
than 1.0. Since d/2 < (d+ry;)/2 < d, gker is bounded as follows

1 m m

(2)

O(5dn ;@B) < Gar < 0<dn;mﬂ>- (92)
The cost for optimization on the working sets is
m T
@) _

96 = Z Z risd) (93)

i=1 j=1

Substituting ZJ Zo Tij = dT; — B;P; into (93), we can yield

98 = O(d? Z@+w%@2@ (94)
=1
By adding (88),(90) and (94) together the total cost 91(«133 + g(%) + 91({2 + ggp) is approx-
imated by
1 m m T;—1 1 m
- . : 2
O(2lnd+d2Pl+Zl:Zozn)+ dY (T + i) dZﬁl (95)
1= 1=1 g= =1

68

When inequality (92) is applied to (95), the total cost is bounded above by

OW(bin+n Y 8P~ 3 (6.~ P+ dY (T4) (96)

=1

and bounded below by

m m m

0(d<-21-m + %n;ﬁia - ;(ﬂi — 1P, + di;(n +7imy))). (97)
Since P;, §; and T; are decreasing functions of d, there exists an optimal value of d
such that the minimum of total cost is reached. From Egs. (96)(97), the bound on
the total cost is split into two terms: one for kernel computation and the other for
SMO optimization. The term O(d® 37 (T +rip;) ~d Y, (8; — 1) P;) can be used to
approximate the cost for SMO optimization. Based on the assumption that at least
one support vector on each working set is added with the progress of optimization,
we get T; < d 8. When [is large, kernel computation will dominate the cost. Let

Fi = p;l. Then the upper bound of kernel computation is given by
Ot + 37 ms)). (98
k 2 i1l
Now we list the properties of (98).

e When most non-support vectors are removed at, the parallel optimization step,

both g; and ; become small. Thus the computation cost becomes low.

e If 4y < 0.1 and B; < 2.0 the cost becomes O(4(3 + 2)ni?). If the number
of classes m is large, the cost is O(z+mni?). With respect to the one-against-
the-others training strategy for multi-classes, assume that training SVMs for
different classes does not share the computation of kernel matrix since a large
kernel matrix can not fit into the memory. The cost of kernel computation is
about O(3mnl?), which is much higher than O(5mni?), especially on a large
training set where & is much larger than 1. Moreover, since O(:zmni?) =
O(-é—dmnl), for a fixed working size d, m and n, the cost linearly scales with the
size of training set .

8Tn practice, T is usually much smaller than d.
%In practice, this has been frequently observed in experiments.

69

5.6 Experimental results

This section is divided into two subsections. In Subsection 5.6.1, we investigate the
various properties of the proposed algorithm and compare it with the existing algo-
rithms on large data sets. Subsection 5.6.3 focuses on its generalization performance
on handwritten character data sets. The state-of-the-art results will be reported on
three well-known handwritten digit databases CENPARMI, USPS, MNIST and on
NIST handwritten database for lowercase characters. Excellent performances on two
very large commercial data sets (Hanwang handwritten digit, Hanwang handwritten
Chinese) will also be reported.

The code was compiled by Microsoft visual C++6.0. All experiments were per-
formed on a PC with single Intel P4 1.7Ghz processor with 256K L2 (second-level)
cache, SDRAM 1 of 1.5 Gigabytes and 200 G hard disk (7200 RPM). The operating
system was Windows 2000 Professional.

There are several character databases used in our experiments. CENPARMI
handwritten digit database [110][111] consists of 6,000 unconstrained handwritten
numerals originally collected from dead letter envelopes by the U.S. postal service at
different locations. The numerals in this database are stored in binary format with
a resolution of approximately 166 PPL. We use 4000 numerals ''. USPS 2 database
contains 9298 handwritten digits (7291 for training, 2007 for testing) [123].

MNIST [78] handwritten digit database consists of 60,000 training samples and
10,000 testing samples '*, which originate from NIST database. The preprocessing
was done by LeCun’s research group and a linear transform was performed such that
all patterns were centered into 28 x 28 while keeping the aspect ratio. The pixel
values of resulting gray-scale images were scaled to fall in the range from -1.0 to 1.0.

Hanwang handwritten digit database is a large commercial database from Han-
wang, an OCR company in China. It consists of 1,321,718 training samples and
300,000 testing samples. The samples are in binary format. Some samples in this

database are illustrated in Fig. 16.

NIST database of handwritten lowercase characters originally consists of 26,000

¥Single Data Rate Memory

""CENPARMI digit database consists of three subsets A, B and C. The subsets A and B are used
for training and C for testing.

*?Available from www.kernel-machines.org/data.htrl.

*This database is available from http://yann.lecun.com /exdb/mnist/.

70

4
e
fr4

e Y

|1
2y
4
61
Al

Figure 16: Some samples from Hanwang digit database.

G

=

3 = A
s

SO 3| M Py
.

] P il

o inw
NSNEREL
"R

f
=
112
F

training samples and 12,000 testing samples. In the training set, each category con-
tains 1000 samples. This database includes some uppercase and noisy garbage pat-
terns that do not belong to any of the 26 categories. About 6% of these patterns are
highly confusing patterns such as “q” and “g”, “” and “I”, which can scarcely be
identified by human. So we clean the database and remove testing samples of three
categories including “q”, “i” and “g”. Finally, we obtain a training set of 24,092
samples and a testing set of 10,688 samples.

Hanwang handwritten Chinese database is a large commercial database from Han-
wang company. It consists of four subsets A, B, C, and D with different qualities.
There are 3755 categories, each of which has about 800 samples. In our experiment,
we randomly split the data set into two parts: 2,144 489 for training and 542,122 for
testing. Some samples in this database are shown in Fig. 17.

For character recognition, discriminative feature extraction is an important step to
enhance the generalization performance of a learning algorithm. In our experiments,
features for handwritten digit, lowercase characters and handwritten Chinese are
extracted based on the gradients of an image. For handwritten digit and lowercase
characters, a 576 dimensional feature vector [33] is obtained from the normalized
‘patterns of size 22 x 22 and a 400 dimensional feature vector on those of size 18 x 18.
On Hanwang handwritten digit database, a 576 dimensional feature vector is first
extracted. Then its dimension is reduced to 120 by principal component analysis [48].
For handwritten Chinese characters, a feature vector of size 1296 is generated [35].

Then its dimension is reduced to 392 by multiple discriminant analysis [41].

71

l:-w%

=
(3

{:‘_ P
fm o
N

e

o] o
M

gl

Figure 17: Some samples from Hanwang handwritten Chinese database.

The parameters C' in (76) and 7 are set to 10.0 and 0.01, respectively. AT-
LAS [124](Automatically Tuned Linear Algebra Software) 4 optimized on P4 is the
default BLAS package for computing the kernel matrix. The value of o2 in (84) is

set to 0.3, unless mentioned otherwise. This value is chosen using a cross-validation
method on a subset [35].

9.6.1 Algorithm properties and comparisons of training per-

formance

Computation of kernel matrix

Three methods for computing kernel matrix are tested on Hanwang handwritten digit
database. One is simple C implementation of cblas_sgemm and cblas_ssyrk; the
other two methods are BLAS packages optimized on P4: ATLAS and MKLG.0 5. The

RBF kernel is used. The size of working set d is set to 8000. Training performance

4 Available from http:// math-atlas.sourceforge.net,/.
'http:/ /developer.intel.com/software/products /mkl/index.htm.

72

measures are shown in Table 5, where p;, §; and T; are defined in Section 5.5, and BSV

Table 5: Performance measures for ATLAS on Hanwang handwritten digit database

Class| 0 1 2 3 4 5 6 7 8 9
SV |7208|3256| 763982556541 | 7221|5066 | 5506 | 7245 | 5876
BSV| 65 | 441 | 30 | 88 | 89 | 47 | 114 | 452 | 35 | 354
t; 10.10710.040(0.112)0.114/0.099{0.108]0.073/0.076{0.091{0.055
G; [1.00/1.96]1.00/1.00{1.00]1.00|1.08{1.09|1.00]1.59
T; | 69| 18 1101102 46 | 67 | 24 | 28 | 57 | 34

denotes the number of bounded support vectors. Note that the size of the working
set for class 3 is set to 8500 at the second step. It can be observed from Table 5 that
i is less than 0.1, which infers that most non-support vectors are removed at the
step of parallel optimization. In addition, most 3; are close to 1.0. That is, at the
step of sequential optimization, the algorithm usually goes through the training set
once and stops. In order to see how the kernel computation influences the training

speed, we compare the performance of the above three methods, as shown in Table 6.

Table 6: Performance comparisons of three methods for kernel computation

Methods ATLAS|MKL6.0|C implementation
o)+ @ (seconds) 1957 | 2265 7401
95 + g8 (seconds) 755 | 1169 758
Total training time (seconds)| 2712 | 3434 8159

In Table 6, the kernel computation dominates the cost for C implementation,
which is consistent with the complexity analysis in Section 5.5, while it does not seem
to be true for ATLAS and MKL6.0. In fact, ATLAS and MKL6.0 are both optimized
on P4 and efficiently make use of SIMD instructions, where several computations are
done with a single instruction in parallel [55]. That is, parallelism exists in ATLAS
and MKL6.0. When we analyze the computational complexity, kernel elements are
assumed to be calculated sequentially. In addition, compared with C implementation,
ATLAS achieves a speed-up factor of about 3 on P4.

73

The size of working set

In Section 5.5, we claim that there exists an optimal size of the working set which
achieves the minimal cost. Therefore we continued to test the proposed method on
Hanwang digit database and to observe how the size of the working set affects the
performance. Fig. 18 shows the training time and average number of support vectors

with the growing size of the working set. It can be seen from Fig. 18 that the training

EN
™~
N

R

o
©
T

bed
<)

6.6t

Training timetx10®seconds)
N

Average number of support vectors (x1 0%
o
b

87

0.8 0.9 1 1.1 1.2 13 14 6‘8.8 0.9 1 11 1.2 1.3
size of working set x10° size of working set x10°

Figure 18: Training time and average number of support vectors with the size of
working set.

time and average number of support vectors are growing with the size of the working
set (> 8000), but the growth rate is slow. That is, training time is not sensitive to
this parameter in a large range such that the users do not need to tune this parameter
obviously. Moreover, although the average number of support vectors is increasing,
the substitution error rate on Hanwang testing set remains unchanged (0.5%). This
fact indicates that a working set good size can remove the redundant support vectors
to some extent. For the optimal training speed, it is better to set different working
sizes at these two steps. Moreover, at the second step, the size of the working set is

chosen to be close to the number of support vectors in each class.

Testing different kernels and comparing performance with existing algo-
rithms

In this experiment we tested the proposed method on MNIST database with RBF

and polynomial kernel and on Hanwang handwritten digit database with RBF kernel,

74

and compared its performance with that of existing SVM packages such as SV Mlght 16

and LIBSVM 7. For RBF kernel, a 576 dimensional discriminative feature vector was
extracted [33]. With respect to the polynomial kernel, we directly applied SVM on
28 x 28 pixel images. Since patterns on the original MNIST are not truly located
at the center, the preprocessing was performed by first enclosing the pattern in the
bounding rectangular box, and then by translating this rectangle into the center of a

28 x 28 box. Then patterns were smoothed using the following mask:

. 1 11
— . 99
TR (99)
111
Next, we used DeCoste’s [24] idea to normalize each pattern by its Euclidean-norm
scalar value such that the dot product was always within [—1,1]. We used the poly-
nomial kernel (x; - x)7. The dimension of input vectors was 784 (28 x 28). The size
of the working set was still set to 8000. There exists a fast method for computing
general polynomial kernel (x, - x5)9, where ¢ is a positive integer. Let u_ = llog, q]

and vy = [log, q]. Then

uo ifu_ 4 q—2% <uyg+ 2% —g,
u:{ 4 + e (100)
us otherwise.
The polynomial kernel can be calculated by
(1 %)® = ((((x1 - %2)?)%)) (31 - %9)07%"" (101)

The number of multiplication operations is « + |¢ — 2%|. For example, (%1 - x9)" =
((0Ger - %2)%)%)* (31 - %)™

In order to ensure that the comparisons are fair, the following pre-conditions are
assumed:

e Dense feature vector that is stored in a contiguous memory.
e Similar size of cache that stores kernel elements.

e The fixed stopping tolerance.

16 Available from http:// svmlight.joachims.org/.
7 Available from http:// www.csie.ntu.edu.tw/"cjlin/libsvm/.

79

e The fixed kernel parameters and C in (76).
e The fixed experimental platform.

The post condition is that each method should achieve a similar error rate on the
test set. Before we conduct the performance comparisons, some facts on Libsvm and
SVM!" are provided. Libsvmn efficiently implements Keerthi et al’s SMO and uses
a simple LRU row caching strategy, which is the same as SVM"""s and different

shrinking methods. The stopping conditions for libsvm are

and termination criteria for SVM“" are given by

vi(Fi+b) > -7 Vi oy =0,
lyi(Fi +0)] < 7 Vi0<o<C, (103)
vi(F;+0) < 7 Viog=C,

where 7 is a stopping tolerance and set to 0.01. In addition, SVM'"" skips checking
KKT conditions of inactive variables before it terminates. The cache sizes on MNIST
and Hanwang handwritten digit databases are set to 250 M '® and 400 M, respec-
tively. The working set size for the proposed method is set to 8000. Table 7 shows
comparisons of the total training time of three methods on MNIST and Hanwang

handwritten digit databases. It can be seen that the proposed method performs best

Table 7: Comparisons of total training time of three methods(hours). A: one-against-
others training strategy for multi-classes; B: one-against-one for multi-classes.

SVM"™"(v5.0)|Libsvm(v2.4)

Database Proposed method| A B A B

RBF 0.064 1.11} 037 |3.04] 0.39
MNIST |POLY 0.075 2.03] 0.54 14.52) 0.54
Hanwang digit| RBF 0.75 - 7.63 - | 16.21

on both databases and its training time scales well with the size of the training set.
Also, the above table indicates that SVM“"* and Libsvm perform much better based

on a one-against-one training strategy for multi-classes than on a one-against-others

1 Megabytes. 1M = 220 bytes.

76

strategy. The reason is that for a one-against-others strategy the limited cache only
stores a small number of rows of kernel matrix when the size of training set is large
so that cache thrashing occurs frequently and LRU caching policy is prone to failure.

light

Moreover, we can see that the computational cost of SVM and Libsvm is very

high when the training strategy for multi-classes is one-against-others.

10 efficiency

With respect to the proposed method, only the working set is required to be stored in
memory, rather than the whole training set. A new working set is loaded into memory
from a data file by queue operations such that data are accessed sequentially most
of the time. As a result, the IO buffer for file reading operations will be efficiently
utilized and file access time will be considerably reduced. On Hanwang handwritten
digit database, when the size of the working set is set to 8000, the total IO time is

only 14.39 seconds, which is much less than the total training time of 2712 seconds.

Performance on a large database with thousands of classes

This experiment was performed on Hanwang handwritten Chinese character database.
The o? parameter of RBF kernel in Eq. (84) is set to 0.8, which can be obtained
according to the method in [35]. For the proposed algorithm, the size of the working
set at two steps are set to 8000 and 3000, respectively. The total training time is about
19 hours. With respect to Libsvm and SVM"™"_ their computational cost of Libsvm
on this database is prohibitively high based on a one-against-other training strategy
for multi-classes. Therefore, we only test SVM“"* ysing a one-against-one strategy.
Its training time is about 644 hours. Also, in our experiment, the training speed of
SVM"9" is fast on the data set of one pair of classes since the number of samples for
each class is small, just about 800. However, its time complexity quadratically grows
with the number of classes (m) whereas the dominant cost of the proposed algorithm
proves to linearly scale with m in (98) for a sufficiently large m. This experimental
result indicates that the proposed algorithm’s advantage over Libsvm and SVMH“9h

is more obvious on a database of huge size with a large number of classes.

77

5.6.2 Performance on a large artificial data set

In the previous experiments, the size of working set is large enough to contain support
vectors. In some cases, the condition is not satisfied due to the memory constraint.
Therefore, we have to find a method to deal with this problem. In this experiment,
the proposed method is tested on an artificially generated data set called ringnorm [9],
which has 20 dimensions and 2 classes. Class 1 is multivariate normal with a mean of
zero and a covariance matrix 4 times the identity. Class 2 has unit covariance matrix
and mean (a, a, ..., a), where a = 725‘6 9. According to Fukunaga et al’s method [47],
the precise Bayes’ error rate for the above two-class classification problem can be
computed using numerical integration which yields 1.24%. The generated training
and testing sets consist of 100 million and 3 million samples, respectively, where two
classes have the same priori probability ?°. The ¢? of RBF kernel in Eq. (84) and C
are set to 198.0 and 20.0, respectively. At the parallel optimization step, the size of
the working set is 8000. After parallel optimization ends, the size of training set for
the sequential optimization is 5807025. Then we divide the set into many subsets,
each of which consists of 14,000 samples. The size of working set is still 8000. At
this stage, we observed that on each subset the number of support vectors is about
7900 and among these support vectors the number of bounded ones is about 7700.
The total training time and IO time are 15.89 hours and 316 seconds, respectively.
The final decision is made using SVMs on these subsets in a majority vote method:
for each unseen pattern, the output of each SVM is added together. This strategy
is similar to that in the ensemble methods such as Bagging [8]. The error rate on
the test set using the above rule is 1.23%, a little lower than the Bayes’ error rate.
Theoretically the classification accuracy of any classifier should not be higher than
that of the optimal Bayes classifier. The bias may come from the fact that the data
generated by a computer does not exactly characterize the two-class multivariate
Gaussian distributions. Moreover, we tested each SVM independently on the test set
and observed that their error rates are close. Their mean and standard deviation are

0.0126 and 7.0 x 107, This indicates that each subset is sufficient statistically for
the classification.

A
%0
*0Data source is referred to http: /[www.cs.toronto.edu/ ~delve/data,/ringnorm.

In paper [9], a is

78

5.6.3 SVM’s generalization performance for handwritten char-

acter recognition

In this subsection, we investigate the generalization performance of SVM on several

handwritten character databases when it is trained by the proposed algorithm.

Recognition of handwritten digits and lowercase characters

The feature extraction [33] involves edge detection. Smoothing is a necessary pre-
requisite step. Since it is difficult to find an optimal filtering function to smooth
the image, we follow a strategy similar to that of human vision: first recognize the
global shape under the coarse resolution and then focus on the details under the fine
resolution. Thus, for all handwritten digit databases mentioned above and NIST
lowercase database, when training a basic SVM, the images are blurred three times
using mask (99), which does not only remove noises but also reduces the number of
support vectors. When training virtual SVM [102], we smooth the image only once
to avoid the excessive removal of the details.

With respect to virtual SVM (VSVM), support vectors for different classes are
first merged *'. Then virtual patterns are generated by shifting them one pixel in
four directions: up, down, left and right. RBF kernel is used in the following experi-
ments. Tables 8,9, 10 show the performance comparisons on CENPARMI, USPS and
handwritten NIST lowercase database, respectively. Misrecognized patterns for the
proposed method on these databases are illustrated in F igs. 19,20,21.

Table 8: Error rates of different methods on CENPARMI database (%).

Methods Recognized|Error rate
Cho’s [16] 96.05 3.95
5.W. Lee’s[81] 97.80 2.20
400-20-10 MLP + AdaBoost [28]/97.20 2.80
MQDF [27] 98.00 - 12.00
GLVQ [30] 96.30 3.70
Local Learning Iramework [30] [98.10 1.90
Proposed method 98.70 1.30
Sve-rbf [83] 98.90 1.10

21Svms from different classes share some support vectors

79

Table 9: Performance comparison of some methods on the USPS qatabase. USPS+,
one variant of USPS database, contains some machine-printed digit samples.

Classifiers training set|test error reference
Nearest-neighbor USPS+ | 5.9% Simard et al. [106]
LeNet1 USPS+ | 5.0% LeCun et al. [76]
Optimal margin classifier | USPS 4.6% Boser et al. [5]
SVM USPS 4.0% Scholkopf et al. [98]
Local learning USPS+ | 3.3% Bottou et al. [6]
Virtual SVM USPS 3.2% Scholkopf et al. [99]
Virtual SVM, local kernel | USPS 3.0% Schélkopf [100]
Boosted Neural Nets USPS+ 2.6% Drucker et al. [39]
Tangent distance USPS+ | 2.6% Simard et al. [106]
Feature-based virtual SVM| USPS 2.34% the proposed method
Human error rate — 2.5% Bromley et al. [10]
Human error rate — 1.51% |our statistical results [29]

Table 10: Error rates of different methods on the test set of NIST lowercase database.

Methods Raw error rate (%)
GLVQ [30] | 10.17
MQDF [30] 10.37
160-100-27 MLP [30] 8.40
Local Learning Framework [30][31] 7.66
Feature-based SVM 7.44
VSVM 6.70

On MNIST handwritten digit database, in order to further enhance the perfor-
mance of VSVM, multi-scale virtual patterns are generated. After we trained SVM,
the number of merged support vectors was 10,422 and then virtual patterns were gen-
erated by shifting these support vectors by one pixel in four directions (up, down, left
and right) and smoothing them once, twice and three times, respectively. When the
virtual patterns are smoothed once, the trained SVM is called VSVM®. The total size
of the virtual training set was 156,330 (=3 x5 x10,422). Performance comparisons
of different methods on MNIST testing set are shown in Table 11.

In Table 11, VSVM? is virtual SVM with multi-scale virtual patterns. Although

VSVM" achieved the state-of-the-art performance, the performance gap is not as

80

397 588 648 747 783 790 809

\
ge
9,
¥
§
¥

1—>2 2—>8 3->9 352 3->2 3—>2 4->6
812 919 1140 1351 1452 1453 1520

¢4 71 B &8 4 7] &

4->6 4->9 5->8 6->0 7->9 7->9 T—>4
1525 1527 1637 1640 1663 1668 1764

T->4 7->2 8->5 8->2 8-—>9 8->0 8§—>9
1882 1928 1952 1965 1994

7l 22 2

9->7 9->8 9->8 9->8 9->2

Figure 19: The 26 errors (1.3% error rate) for the CENPARMI test set. The number
in the upper-left corner of each image indicates the test sample number. The first

digit on the bottom specifies the true label. The second digit on the bottom is the
recognized digit label.

obvious as that between VSVM® and feature-based SVM. If the trade-off between
cost and accuracy is taken into account, VSVM® is a better choice in practice. Liu
et al. [83] also obtained similar results based on different features using SVM. The
performances of other methods in [78] were reported on pixel values without explicit
feature extraction. The above comparisons indicate that extraction of discriminative
features is still a better choice to improve the generalization performance of a classifier
than other strategies when a prior knowledge for the specified classification problem

is available. Fig. 22 shows the misrecognized patterns of VSVM? on MNIST testing
set.

9.6.4 Rejection performance of SVM

In some real world applications such as cheque recognition, the reliability rate is more

unportant than the raw error rate. So it is necessary to evaluate SVM’s rejection

81

18 28 53 79 165 199 234 266
A B A = TARNE]
6—>4 3->5 1->5 2->5 0->8 8—>0 I->6 4->7

340 485 510 ‘ 528 i 562 792 794 836
k[3] B &=
T—>4 3->5 2->0 0-—>2 5->2 3->5 5~->9 4->2

915 971 994 995 1067 1047 1105 1119
9, @ B
2->7 4->1 5->0 0->5 0->2 T—>4 3->2 T->2

5

1307 1335 1354 135 1358 1376 1380 1387

=
(b
=

3-55 1-56

T->4 T->4 3->5 4—>6 4->9 4-—>9
14177_ 1426 _ 1432 1469 : 1529 1545 v 1657“W 1734
[l 4] [@QAl M B
8-—>2 3->5 3-—>5 6->8 T->2 9->7 5->8 4->9
1814 1815 1816 1865 _ 1872 ' 1952 1978
A [[B & O
1->4 1->7 1—>4 9—>8 4->7 5->8 5->3

Figure 20: The 47 errors (2.34% error rate) for the USPS test set. The number in the
upper-left corner of each image indicates the test sample number. The first digit on
the bottom specifies the true label. The second digit on the bottom is the recognized
digit label. From the above figure, it can be seen that there are obviously four errors
in the original labelling (234, 971, 994, 1978).

performance. The reliability is defined by

Recognition rate
100%- Rejection rate’

Reliability =

Patterns are rejected when the difference between the outputs of the top two
classes is smaller than a predefined threshold §. Experiments aimed at evaluating

rejection performance were conducted on MNIST database. Its results are shown in
Table 12.

5.7 Conclusions

We have presented an efficient training algorithm for support vector machines on sev-
eral databases as well as a huge database with thousands of classes. This algorithm
consists of two steps: parallel and sequential optimizations. At the parallel optimiza-

tion step, most non-support vectors are quickly removed so that the training time

82

< B B

c—>T c—>k d->a d—>a

T

%
S bl

i

4

(o]

o
Hs
33
r

?"
1

Ll [£] O W DB L
e—>¢ e—>q f~>t f=>b h->n h—> >l j—=>i
JME K KO M Al
—>g k—>x k—>h I->i I->j m->n m->u n->h
a Al K [{ N/

n->r o->a p—=>f —>n s—>f >z u->v v->y

Figure 21: Some misclassified patterns on the test set of NIST database for hand-
written lowercase characters. The first character on the left at the bottom specifies
the true label. The character on the right is the recognized character label.

for sequential optimization can be reduced dramatically. In addition, some effective
strategies, such as kernel caching and efficient computation of kernel matrix, are inte-
grated to speed up the training process. Further, the space and runtime complexity
of the proposed algorithm are analyzed and we show that its runtime complexity
linearly scales with the number of classes and the size of the data set.

Extensive experiments have been conducted to study various appealing proper-
ties of the proposed algorithm. Compared with Libsvm and SVM' 9t ihe proposed
algorithm has a much higher training speed, especially on databases of a huge size
with thousands of classes. In addition, we tested the generalization performance of
feature-based SVM on several handwritten character databases trained by the pro-
posed algorithm. The state-of-the-art performances have been achieved on these
databases. Particularly on MNIST and Hanwang handwritten digit databases, very

low error rates of 0.38% and 0.5% were obtained, respectively.

83

Table 11: Comparisons of generalization performances of different methods on MNIST
database.

Methods Raw error rate
LeNet1 [78] 1.7%
400-300-10 network [78] 1.6%
Polynomial SVM [13] 1.4%
Tangent Distance [78] 1.1%
LeNet5 [78] 0.9%
Virtual polynomial SVM [102] 0.8%
Boosted LeNet4 [78] 0.7%

SVM on vision-based feature [114] 0.59%
Virtual SVM with 2pix VSVs [24] 0.56%

Feature-based SVM 0.60%
VSVM? 0.44%
SVC.1bf [83] 0.42%
VSVM? 0.38%

Table 12: Rejection performances for VSVM® under different &

€ |Recognition rate{Substitution|Rejection rate Reliability
1.1 96.69% 0.04% 3.27% 99.96%
1.4 94.41% 0.01% 5.58% 99.99%
1.7 91.51% 0 8.49% 100%
= 99.56% 0.44% 0 99.56%

34

248 583 584 939 948 1015 1227 1233
4 H § < B @
4->6 8->2 2—>7 3->5 8—>0 6—>5 7> 9—>4
1248 1261 1879 1902 2036 2071 2131 2136
A O & & 7 4 [
9->5 T->1 8—>3 9->4 T->9 4> 6~>1
2524 2928 2940 3226 3423 3763 4164 4177
= 9 7] @
9—>5 7->9 6->0 6—>8 9->7 2->7
4202 4498 4762 4824 5655 5938 6577
8—->7 9->8 9->4 T—>2 5—53 T—>1
8317 8409 9506 9730 9793 9840
7> 85 7->2 5->6 49 77

Figure 22: The 38 errors (0.38% error rate) for MNIST test set. The number in the
upper-left corner of each image indicates the test sample number. The first digit on
the bottom specifies the true label. The second digit on the bottom is the recognized

digit label.

85

Chapter 6

Handwritten Chinese character

recognition using SVM

6.1 Introduction

Important progress has been made in research on handwritten Chinese character
recognition in the last decade [68], [62] and [11]. In recent years structural analysis
approach [128] seems to have been overtaken by pattern matching methods involving
extraction of statistical features in research on handwritten character recognition.
The accuracy of an overall recognition system depends to a large extent on the dis-
criminative capability of the extracted features and generalization performance of the
classifier.

Handwritten Chinese characters have complex structures and large shape varia-
tions. Also, many similar patterns exist. Matching methods based on pixel values
alone can not perform well, some preprocessing steps such as shape normalization and
feature extraction are necessary. Nonlinear normalization [127] is a useful technique
for correcting nonlinear shape variations and homogenizing the two-dimensional line
density so that space can be more efficiently utilized and feature sampling points are
stabilized for pattern matching methods. However, the original method operates on
binary images. Nonlinear normalization may produce many jags which have a con-
siderable impact on feature extraction. It is difficult to smooth these jags without

destroying stroke information.

With respect to classifiers for the recognition of handwritten Chinese characters,

86

which have thousands of categories, many good classification techniques such as multi-
layer perceptron can not be directly applied due to the complexity of modelling and
“local minima problem”. Learning vector quantization (LVQ) [122], which generates
some representative reference patterns as templates, and modified quadratic discrim-
inant function (MQDF) [66],[68] are two main classification methods for handwritten
Chinese characters since both have achieved good performance. Although LVQ is a
supervised learning method, its decision boundaries are pairwise hyperplanes. When
the real class boundary is nonlinear, a large bias will be generated. MQDF assumes
that data in each class is distributed unimodally in a gaussian-like manner. The max-
imal likelihood approach is applied to generate the density model for each class and
then the Bayesian decision rule is used for classification. This method, which does
not focus directly on the goal of classification, leads to a sub-optimal rule since the
estimation of class density is usually a hard and ill-posed problem without sufficient
prior knowledge.

The purpose of this chapter is to improve the accuracy of handwritten Chinese
character recognition by using an enhanced nonlinear normalization method and sup-
port vector machine (SVM). Nonlinear normalization is applied to gray-scale images,
and jags can be removed while preserving the edge information. Support vector ma-
chine is usually applied to classification problems with a small number of categories
such as handwritten digit recognition [24] due to the lack of an efficient algorithm for
training SVM on a large data set with thousands of classes. Recently this problem has
been solved by our proposed algorithm [32],[34] so that we can test the performance
of SVM in more real-world challenging classification applications.

This chapter is organized as follows. Section 2 describes the improved nonlinear
shape normalization. Then the feature extraction method is given in Section 3. Sec-
tion 4 presents a method to tune kernel parameters for support vector machine on
a large data set. The experimental results are described in Section 5. Finally, we

summarize the paper and draw conclusions.

6.2 Improved nonlinear normalization

Lee and Park [80] compared the performance and computational complexity of exist-

ing nonlinear normalization methods and experimental results indicated that Yamada

87

et al’s method based on line density [127] performs better while having a higher com-
putational cost and side effects of jags. In fact, run-length coding of images can speed
up the calculation of line-density histograms and reduce costs [82]. Kim et al. [65]
extended Tsukumo et al’s method [116] from a binary image to a gray-scale image in
order to partially alleviate the effect of jags. But Tsukumo et al’s method defines the
line density in one dimension while Yamada et al’s method works in two dimensions.
As a result, the overall performance of Tsukumo et al’s is not as good as Yamada
et al’s. In order to effectively remove jags after nonlinear normalization, we can use
modified Yamada et al’s method on binary image to determine the position of sam-
pling points and produce the gray-scale image. Noise filtering and edge smoothing
are much easier on a gray-scale image than on a binary image. The diagram of the
nonlinear normalization scheme is shown in Fig. 23.

In Fig. 23, median filtering is used to remove nonlinear noise such as salt-and-
pepper noise, which often appears in binary character images. Smoothing operator
is a linear lowpass filter for Gaussian noise. Linear normalization is executed in the
form of backward mapping from normalized image to input image in order to avoid
the holes and gaps in the normalized images. Also, the aspect ratio is preserved
so that the global character shape is not changed. The size of linear normalization
(128 x 128) is usually larger than the original one. The rationale is that the increased
gaps between character strokes will be helpful for noise removal since most Chinese
characters have complex structures and frequent two-pixel gap between strokes in the
original image makes noise removal difficult. The gray-scale image is just a copy of a
binary image. But it is represented in float data type.

Regarding nonlinear normalization, Yamada et al’s method [127] is applied to
binary image for calculating the histogram of line density and determining the position
of a sampling point. Then the gray-scale image is produced. But in Yamada et al’s
method, the pixel value of the output image is attributed from one pixel in the original
image. Due to the discrete nature of input and output images, many sampling points
of the input image are mapped to the same point in the output image. It is more
reasonable to consider all contributions from these input sampling points. To describe
precisely the proposed method, we introduce some notations. Let f(i,7) be an input
image, whose sizeis IxJ,i=1,...] and j = 1,...,J. Let g(m, n) be the normalized

image, whose size is M x N, m=1,.... M and n = L,...,N. Let p(i, j) be the line

88

Original Image

Linear Normalization

128 x 128
Binary Image

/

Median Filter
128 x 128

Duplicate

128 x 128

Gray-scale Image

Smoothing
128 x 128

Nounlinear Normalization
128 x 128

Figure 23: Diagram of nonlinear normalization

i Gray-scale

Image

Median Filter
128 x 128

!

Smoothing
128 x 128

$

Anti—alias scaling
64 x 64

H(i) = Zp(i,j)

46)

m = ¢(i)

Il

Zp(i,j)

(m,n) on the normalized image, is given by

89

1

density calculated from the input binary image by Yamada et al’s method. The

feature projection functions on the x and y axes are defined as

(104)

The forward function, which maps position (7, j) on the input image to position

: M

= Lk:l H(k) x ST +0.5],
n = 00
= v x =N tos). (105)

T
=1 2= V()
where | A} is the maximal integer not larger than A (floor of A). Define sets S, =
{ilp(i) = m}, where m = 1,..., M. Let n,, be the number of elements in set S,,. In
order to assure the pixel value of all positions in the normalized image, a backward

mapping is required. Fig. 24 shows the backward mapping for index m.

T
1 ny e e o
2

e

8

@

NIL
M-1 Tt e @ @
M

Figure 24: Backward mapping

In Fig. 24, T is an array of length M. Element T[i] is a pointer to the starting
address of an array that contains the size of set S; and its elements. NIL means
the empty pointer. That is, no input index i is mapped here. To calculate all pixel
values in the normalized image, each element in T must be a non-empty pointer. The

following procedure assigns a new value to the NIL pointer using the nearest neighbor

principle.

Assign a new value to the NIL pointer
Input: T[i], i =1,..., M, where T[M] # NIL
OQutput: T(i], where T[i] # NIL, i = 1,... . M
kM.
Repeat
IF T[k] = NIL
Tkl =Tk + 1]

90

END IF
k<+k—1.
Until £ = 0.

Similarly, we can determine the backward mapping for index n. After that, each
pixel in the normalized image can have its corresponding pixels in the input gray-
scale image. If multiple pixels in the input image are mapped to the same pixel in
the normalized image, the maximal value among these source pixels is assigned to the
destination pixel. In fact, this operation can also be regarded as a nonlinear filter,
which reduces the effects of jags considerably. In the last operation, anti-alias scaling

method [126] is applied and a gray-scale image of size 64 x 64 is obtained.

6.3 Féature Extraction

Most Chinese characters consist of line strokes so that information based on the edge
direction is important for feature extraction. Kimura et al. [68] proposed a weighted
directional code feature, which calculates the directional histogram of chain codes in
a local region. Similarly, Sun et al. [113] define 12 directional patterns using 3 x 3
masks and determine the edge orientation according to them, rather than chain code.
However, both methods are just suitable for feature extraction in a binary image.
For a gray-scale image, we calculate directional histograms based on image gradients.

The procedure for feature extraction is given as follows:

e The gray-scale normalized image is standardized such that its mean and maxi-

mum values are 0 and 1.0, respectively [46].

e Center a 64 x 64 normalized image into an 80 x 80 box in order to efficiently

utilize the information in the four peripheral areas!

e Robert edge operator [92] is applied to calculate gradient strengths and direc-
tions. For example, the gradient magnitude and direction of pixel g(m,n) are

calculated as follows:

Au = g(m,n) - g(m+1,n+ 1),

!Peripheral strokes for Chinese characters usually contain more stable information than the cen-
tral strokes.

91

Av = g(m,n+1)—glm+1,n),
&)
Au’’

s(m,n) = VAU + Av: (106)

where 6(m, n) and s(m, n) specify the direction and gradient magnitude of pixel

6(m,n) = arctan(

(m, n), respectively.

Using a similar strategy as in [113],[62], we divide the image into 9 x 9 subareas
of size 16 x 16, where each subarea overlaps with eight pixels of the adjacent
subareas. Each subarea is divided into four parts: A, B, C and D (see Fig. 25).
Ais a 4 x 4 area at the center. B is a 8 x 8 area exclusive of area A. C is a

12 x 12 area exclusive of area B. D is a 16 x 16 area exclusive of area C.

wROR-=R

Ny
N

Figure 25: 16 x 16 sub-area.

In each area of A,B,C,D, the strengths of gradients with each of 32 quantized
gradient directions are accumulated. In order to reduce side effects of position
variations, a mask (4, 3, 2, 1) is used to down-sample the accumulated gradient

strengths of each direction. As a result, a 32 dimensional feature vector is
obtained.

After gradient strengths on 32 quantized directions is generated, the directional

resolution is reduced from 32 to 16 by down-sampling using one-dimensional
mask (1,4,6,4,1) [46].

A feature vector of size 1296 (9 horizontal, 9 vertical and 16 directional reso-

lutions) is generated.

92

e The variable transformation z%* is applied to each component of the feature

vector such that the distribution of each component is normal-like [48].

e Scale the feature vector by a constant factor such that values of feature compo-

nents range from 0 and 1.0.

In order to save the processing time and storage cost, multiple discriminant anal-

ysis is applied to reduce the dimension [41].

6.4 Parameter selection for support vector machine

Given training vectors x; € R”, 7 =1,...,/ and a vector y € R such that y; € {-1,1},
training a support vector machine is to find «, which can be obtained by solving the

following convex quadratic optimization problem:

Maximize e’a — 1aTQa
subject to 0 < o; <C, i=1,...,1 (107)
yia =0

where e € R is a vector whose components are one, ¢} is an [x [semi-positive definite
kernel matrix with elements Qij, where Qy; = y;y; K(x;,%;), 4,5 = 1,..., 1, and kernel
function K satisfies the Mercer conditions [85].

Good selection of C' and kernel parameters plays an important role in the good
generalization performance of SVM. One of the simple and efficient methods is to use
a cross validation set to tune these parameters. For a large data set with thousands of
classes, it is not effective to train SVM on the training set with all classes and evaluate
its performance on the validation set due to high computational cost. Thus, a good
selection of a training subset and a validation set with a small number of classes is
required. Our basic idea is to select these classes such that the cost for selection
procedure is not high and patterns in these classes are similar or easily misclassified.

The proposed method is given below:
1. Group the training data in terms of classes.

2. Divide training data of each class into two parts: 75 percent for training and

the rest for validation.

93

3. Use discriminant function with a low computation cost for each class. For

instance, we can use a Euclidean discriminant function
di(x)=|lx—w ||} i=1,...,c (108)
where y; is the mean vector of class ¢ and ¢ is the number of classes.

4. Evaluate the performance of discriminant functions on the validation set and

calculate the confusion matrix defined by

iy Mg - Nie
N21 TN -+ Ny

CF = . _ . (109)
Te1 Mg+ 70 TN

where each row ¢ corresponds to class C; and each column J means the number

of patterns classified to class C;.

5. Calculate the number of misclassified patterns for each class according to

er; = Z n” (110)

J=Lj#i
6. Sort er;, t =1,...,cin a decreasing order and obtain the subscripts iy,..., 4y
of the top I(< ¢) choices.
7. Find the classes whose patterns can be classified to the class set {Ci,Ciyy ..., Ciy}
according to the confusion matrix
I
S = J{Clna,; #0}. (111)
k=1

8. Choose the training set and cross validation set from class set S for support

vector machine to tune C and kernel parameters.

After C' and kernel parameters are obtained, we train the support vector ma-

chine on the whole training set with all classes. The training algorithm is described
in [32],[34]. ’

94

6.5 Experiments

Experiments were performed on P4 with Windows 2000 Professional system equipped
with 1.5 Gigabytes RAM. The source code for SVM algorithm [34] was written in C++
and compiled by Microsoft visual C++ 6.0 2.

In our experiments we used ETL9B database created by Electrotechnical Labo-
ratory of Japan. It contains 200 samples for each of 3036 categories, 2965 Chinese
and 71 Hiragana characters. All samples are binary images of size 64 (width) by 63
(height). The samples on this database are divided into 5 sets (A to E), each with 40
characters per category. In our experiment, sets A through D are used for training
and set E for testing. As a result, the sizes of training and testing set are 485760 and
121440, respectively.

For support vector machine, the one-against-others method was used to construct
3036 classifiers. That is, each classifier was constructed by separating one class from
the rest. The classification decision was made by choosing the class with the largest
classifier output value.

In the following, several experiments have been done to investigate the perfor-
mance of improved nonlinear normalized method, feature extraction and support

vector machines.

In our experiments, some parameters are set manually. In Fig. 23, the mask for

smoothing operation is given by

. 1 11

AEERIE (112)
1 11

The constant factor in the feature extraction is set to 0.05 and the size of 1296-

dimensional feature vector is reduced to 392 when discriminant analysis is applied.

6.5.1 Nonlinear Normalization

In this part, we visually compare the performance of Yamada et al’s nonlinear nor-
malization method and our method. Fig. 26 shows the normalized images. From this
figure, it can be observed that the proposed method successfully fixed the jag prob-

lem. Moreover, some strokes in peripheral regions are distorted in Yamada et al.’s

http:// www.cenparmi.concordia.ca/ people/jdong/HeroSvm.html.

95

SRR
el
A

Figure 26: (A) Original images, (B) Normalized images using Yamada et al’s, (C)
Normalized images using the proposed method.

method. This side-effect was also observed by Liu et al.[82]. They tried to fix this
problem by increasing the line density in the peripheral regions by means of a hybrid
definition of Tsukumo et al.’s [116] and Yamada et al’s. But this modified definition
did not perform well in our experiments. Fig. 26.C shows that the improved method

removes this side-effect completely.

6.5.2 Coarse classification

There are 3036 classes for ETLIB. In order to reduce the computational cost and
speed up the classification, a pre-classifier is required. The goal of a pre-classifier
is to obtain a high cumulative recognition rate so that a small number of selected
candidates include the true class label. The performance of the following three pre-

classifiers are investigated

e Discriminant function based on city-block distance
dix) = =) " |xj — 5. (113)
j=1

e Discriminant function based on Euclidean distance

di(x) = — | % — i ||*. (114)

96

e Discriminant function for the normal density®

di(x) = (S) Tx = S0 S5 s (115)

where S, is the within-class scatter matrix.

e Support vector machine with a linear kernel
di(x) = wlz + b (116)

where ¢ = 1,...,c and p; is the mean vector of class C;. Figure 27 shows the cumu-

lative recognition rates of these pre-classifiers.

100 v T T T T T v 100

__99.95¢

©

o

@
©
©
©

©
€0,
¥

©
N
tn

Cumuiative recognition rate(%)
Cumuiative recognition rate(%,
3
t5]

—«— City block
—=— Euyclidean distance 99.75¢
—o— Linear discriminant analysis
—e— Linear SVM

—=— City block

—=— Euclidean distance

—&~ Linear discriminant analysis
—o— Linear SVM

99.7 - e z !

2 3 4 5 [7 8 9 10 15 20 25 30 35 40 45 50
Rank Rank

o
<

©
o
2

Figure 27: Comparisons of cumulative recognition rates

Although linear SVM performs best on the rank-1 recognition accuracy, its cu-
mulative recognition rate degrades quickly, compared with other classifiers. It is
surprising that linear SVM performs worse than linear discriminant analysis. One
possible reason is that linear SVM is trained using one-against-the-rest strategy and
the same desired output (-1.0) is imposed on the sample which does not belong to
the current class. Therefore, under this strategy SVM only focused on the decision
boundary without differentiating the patterns in other classes. Linear discriminant
analysis is derived from the assumption of normal density for each class and takes

into account the difference. This result indicates that linear SVM is not suitable for

3 Assume that the covariance matrices and prior probability of each class are close to each other.

97

pre-classification and the method by which SVM generates outputs of posterior prob-
ability needs to be developed. Among the above pre-classifiers, discriminant function
based on Euclidean distance is the best choice and its cumulative recognition rate at
rank 20 is 99.92%.

6.5.3 Performance of support vector machine

After pre-classification, support vector machine with RBF kernel is used as the main
classifier to make the final decision from the 20 candidates obtained by Euclidean
discriminant function. The RBF kernel is given by

I x—x|?

k(x, %) = exp(~ 15

). (117)

We use the proposed method in Section 4 to determine an optimal parameter for o?
and C'in eq. (107). In the method, we use Euclidean discriminant function and set
the parameter I to 20. After the method is applied, the cardinal number of set S is
144. As a result, the sizes of training and validation sets for tuning parameters C' and
0 are 21600 (=144 x 200 x 75%) and 7200 (=144 x 200 x 25%), respectively. The
parameter o? is set to 0.8 and C to 10.0 when the highest performance on validation
set has been achieved.

On the training set, each class consists of only 160 samples, which is not sufficient
to achieve high performance when SVM with RBF kernel is used. In order to increase
the number of training samples, we shift each training image in four directions (left,
right, down, up) by one pixel. The size of the shifted training set is 2,428,000 (=
485760 x 5). Table 13 shows the recognition accuracy of different methods on ETLYB.

Table 13: Recognition accuracy of different methods on ETLIB

Classifiers Size of training set|{Substitution error (%)
Nearest neighbor 485760 2.9%
SVM* 485760 1.1%
SVM’ 2,428,000 1.0%
MQDF [68] 576840 0.95%
Improved MQDF [117) 546480 0.59%
Asymmetric Mahalanobis distance [62] 546480 0.58%

98

It can be seen from Table 13 that SVM? on the shifted training set just slightly
improves the performance while sacrificing the computational speed since the average
number of support vectors for SVM® is 587, which is larger than that for SVM® (312).
For other groups’ results, the error rate was averaged on several testing sets using
the rotation method. In addition, we can observe that there is a gap between SVM’s
performance and the best one. But SVM has potential to fill this gap in the future.
Some misclassified patterns for the proposed method are shown in Fig. 28. We can

see that most patterns are misclassified to those with the similar shape.

MoMOE

R M ol B

h b ko R

WO ot B B> i

LA .

KA oW k¥ B

Figure 28: A part of misclassified patterns on ETL test set. The first character on
the bottom specifies the original label. The second character is the recognized label.

Although a high recognition rate on ETLIB has been reported, techniques for
off-line handwritten Chinese character recognition are far from mature. In a recent
survey, Suen et al. [112] showed that on larger real databases the recognition accuracy
was still low. Therefore, we tested SVM on Hanwang handwritten digit database
mentioned in Chapter 5 by following the same procedures except for adding virtual

patterns. The recognition rate on its testing set was just 96.97%.

99

6.6 Conclusion

In this chapter we propose a method to improve Yamada et al’s [127] nonlinear
normalization scheme so that the jags effects and stroke distortion in the peripheral
region in the normalized image can be removed. In addition, a method is presented
to generate the good subsets with a small number of classes for tuning SVM’s kernel
parameters when SVM is applied to solve a large classification problem on a large
data set with thousands of classes. Several experiments were conducted on ETLIB

handwritten Chinese database and the recognition accuracy of 99% has been achieved.

100

Chapter 7

Fast SVM Testing Algorithms

7.1 Introduction

Support vector machines (SVMs) have achieved excellent performance in many ap-
plications such as handwritten digit recognition [98] and face detection [87]. One
drawback of SVM is that its classification speed is very slow during the testing stage
because it is proportional to the number of support vectors. On a large data set many
support vectors will be generated since Vapnik [121] has shown that the recognition
error rate is bounded by the ratio between the number of support vectors and the
size of the training set. The low classification speed makes SVM less competitive in
tasks where both accuracy and speed are required. Hence, it is important to develop
a fast algorithm to speed up SVM’s classification.

Much research has been done to speed up SVM’s classification process. Basi-
cally these works can be divided into two categories. One is to reformulate the SVM
training problem and yield a good accuracy with a small number of support vectors.
Osuna et al. [88] added some terms into the cost function in order to enhance the
sparsity of SVM’s solution. The reduction of run-time is in the 50-95% range. The
other is the reduced set method [12][13][101][103] which approximates the decision
function with a much smaller number of reduced set vectors. Experiments on MNIST
handwritten digit database have shown a factor of about fifty improvement in speed
without sacrificing the accuracy of the original virtual SVM solution [13]. The cur-
rent unconstrained conjugate gradient method for finding the reduced set vectors

is very expensive computationally, because it has to find a solution in a space of a

101

huge number of variables [13]. In [101] an iteration procedure for computing fast ap-
proximations of the Gaussian kernel expansions is presented. Although the iteration
method is attractive, numerical instabilities often occur and the computational cost is
still high. In addition, due to the prohibitive cost, the experiment was just conducted
to approximate the SVM solution of each class separately.

In this chapter we extended the iteration method in [101] to the general ker-
nel and designed a fast algorithm to approximate the reduced set vectors shared
by each binary SVM solution for multi-class classification. Experimental results on
MNIST database and Hanwang handwritten digit database with RBF kernel were
very promising, i.e. about 16,000 and 10,895 patterns per second on MNIST and
Hanwang databases, respectively.

This chapter is organized as follows. The mathematical formula is first derived
to approximate the reduced set vector simultaneously. In Section 3, an eflicient
algorithm is designed to find these reduced set vectors. Section 4 presents a fast block
algorithm in the test phase. Experimental results are given in Section 5. Finally we

summarize this chapter with some concluding remarks.

7.2 Simultaneous approximation of reduced set vec-

tors

In support vector machines the training data {x},i=1,...., x;, € X C R" are
mapped into a dot product space H with a map ¢ : X — H such that the mercer
kernel [85] k(x,x') =< ®(x),®(x') >. The bold font is used to denote a column
vector. SVM [5] finds a linear hyperplane to separate the data in the space #, whose

solution is expressed in terms of kernel expansion, given below
f(x) = wlid(x)+b
l
= D Bik(x,%;) + b (118)
i=1
where x; whose corresponding f; is nonzero is called support vector and w = 22:1 Bi®(x;).
For multi-class classification, the one-against-others strategy is used to train SVM

so that there is a corresponding binary SVM for each class. Suppose that their

decision functions are fm(x) = ®(x)TW™ + by, = N7 7k (x, x7) + br,, where M is

102

the number of classes, x]" and N™ is the support vector and the number of support

vectors for class m, respectively. The final decision rule is given by
m* = argmax f(x) (119)
m

Let U = JM_ {x"i = 1,...,N™} be a set of collection of support vectors from
M classes and |U| be the cardinal number of set U. Then F = {®(x)|x € U} live in
a subspace span(F) C #. If the dimension of the subspace span(F) is much smaller
than |U|, SVM solution for each class can be re-written equivalently in terms of kernel
expansion which consists of dim(span(F)) vectors. Unfortunately, since the matrix
k(x,x), x € U and x' € U, is positive definitive, the dimension of the subspace
span(F) is equal to |U] [104]. Therefore, instead of the equivalent representation, we
can seek a subspace with a much lower dimension and project w™ onto the subspace.
Let us suppose that {®(z;)|z; € R}, i =1,...,L and L < |U|, span this subspace.
In order to find the basis vectors and projections, we can minimize the following
unconstrained optimization problem.

Nm

M L
Minimize £ = " || Y 4" d(z;) - > opraem |2 (120)
m=1 1=1

=1

Let vector 8™ = (", ..., 8%.)7, matrix A = (®(2z1),...,®(z)), matrix B™ =
(®(xT), ..., ®(xFm)) and vector v = (y™ ..., v™T. The optimization problem

(120) can be rewritten as

M
Minimize £ =) " || Ay™ — B™g™ ||2 (121)

ma=1

For the fixed basis vectors ®(z;), i = 1,..., L, the optimal coefficients ™ can be

computed using the stationary condition:
VmE =0 (122)

So we can yield 2AT(Ay™ — B™B™) = 0, then 4™ = (ATA)'ATB™™, We can
see that (ATA);; = k(z;,z;), where i,j = 1,... I and (ATB™);; = k(zi, xT), i =
1,...,Landj=1,... N™.

In order to find the optimal z;, i = 1,..., L, we use the strategy in [101]: sequen-

tially optimize one vector z while fixing other vectors. Without loss of generality,

103

z, is chosen for the optimization. Let U™ = YV Am®(x) — S,y ®(z;). The

optimal y{*, m = 1,..., M can be computed by
oF
=0

o8 123
o (123)

Then 4* = 5—‘1',%%3, m=1,..., M. Substitute 4™ into (120) and we can obtain

< \I,m, (I)(Zl) >?
k(zly Zl)

Minimize B' = Y (|| & ||? -

m=1

) (124)

. M g™ o 2 . e .
which is equivalent to maximizing) . _, SO (m)> e zzll)> . The stationary condition is

given by
M
< U™ P(zq) >2
=0 125

For a kernel type k(x,x') = k(|| x — x' ||?), we thus obtain

Vo,

M N™

gi(m) = > (OB x" -2 |?)

m=1 =1

- Z%mk(ﬂ Zi— & “2))

X B (1~ 2)
i
- Z’V}"k'(ﬂ z; — 71 ||*)z)),
MJ_ N™
galz) = 3 (Q_Ark(l X" — 2 |)

=Skl - (1)

XD BPE (] X — 2 ||2)

i=1

- Z YRl 2z =20 [1%),

"= e 20

104

For a kernel type k(x,x') = k(x7x'), we can obtain

gi(z1) = k(|2 |?) Z(}:ﬁmk(z
‘ZV Z1Zz

x(Z A7k (27 x

Z "k (21 2;)z;)),

g(zi1) = Kz [?) Z(Zﬂ{"k(zfx
Z Zl Zl y
_ 91(21)
zZ, = g——z(zl)' (127)

After that, we use an iteration to update z;

Zitl =) (128)

where ¢ denotes the iteration step. Similarly, we can update z;, i = 2, ... , L. For
example, for radial basis function (RBF) kernel & (x, x’) = exp(—”f_—xlﬂi), the iteration

202
formula for z,, p=1,..., L is given by

v
N t”2

R i WAEETS
—Z% exp(—] Z;ZZ |)+
X(Zﬂ’"exp 2—2 “)]

2 =22
—Z% eXp (==)a;),

[2 ”2

wE) = S srop- Bl

105

t ”2

z; — 7,
—Z'yz exp(— | 557)+7;n)

—z, |

Zﬂmexp L)
e M
_ Z Zﬁm H X?;;-sz I)

t ”2

~}:% exp(— ZL_Z —55)

t
2t = Q1(th). (129)

7.3 Fast algorithm for simultaneous approximation

For the sake of simplicity, we just use RBF kernel to illustrate the algorithm. Since
the iteration formulae (126) and (127) show similar structures, the following can be
easily adapted to other kernel types such as polynomial kernel. Before the algorithm

is presented, some notations are defined below:
e K% an L x L square matrix and (K*)ij = k(zi,2;)

o K. an L x |U| matrix and (K*)i; = k(zi,%;), x; € U,i=1,....L and
j=1..., U]

e K*™: [x N™ matrix and (K=™);; = k(zi,xgn), t=1,...,Landj=1,... N™
® vi: a workspace vector of size MaxSv = max N m=1,....M

e vy a workspace vector of size n

e v3: a workspace vector of size M

e vy: a workspace vector of size n

e R: a workspace of size L x MaxSv

106

e D: n x M workspace matrix
e (J: L x M workspace matrix

imati ™=l i e (z) - Are(xr) |2
e ¢™: approximation error of class m and e™ =|| Y _.° | " ®(z;)—) ;. O !

e Z: L x n matrix and its ith row vector (Z7); = z;

X: |U] x n matrix and its ith row vector (X7); = x;, x; € U

e X™ N™ xn matrix and (X7); = x7

e idx™: a vector of size N™ that stores index numbers for support vectors of class
m. That is, the corresponding rows in the matrix X where support vectors of

class m are located.

11

y™: vectors of length L and 4™ = (4, ..., y™)T

o O™ B = (B .., B m)"

In the above notations, (K);; denotes an element located in the ith row and jth
column of matrix K. It can also be written as K[i][j]. (K); denotes the ith column
vector of matrix K. Then a fast algorithm for the simultaneous optimization of

reduced set vectors is proposed and summarized below:

Fast simultaneous optimization of reduced set vectors

Input: X and idx™, ™, m=1,..., M.
Output: z;, ¢ =1,...,L and v, m = 1,..., M.
Initialization:

1.1 Select row vectors from X randomly and initialize Z.

1.2 Compute matrices K% and K.

1.3 Initialize v™, y™ = (K*)~}(K=™)gm
m=1,..., M.

b

Optimization:
2.1t 0.

107

Repeat

For p=1tolL

2.2.1 vy «+ 0, TotalSum « 0.

2.2.2 Qljl[m] v;"K"[j]p],
j=1,...,L,m=1,....M.

vs[m] « 37, Qljlim),
D =77Q.

2.2.3
For m=1to M
2.2.3.1 Sum < 7" — v3[m].
2.2.3.2 v{[i] « BK**[p][idx™{i]],
1=1,...,N™
Sum < Sum + Zf\:{ vy(d],
TotalSum + TotalSum 4 SumxSum.
2.2.3.3 vy = (X™)Tv,.
2.2.3.4 v4 < Sum X (vq — (D), + v2h).
2.2.3.5 vy « vy + vy,
End
2.2.4 Update z,: z,
End

1
" TotalSum * V2

2.3 Update K* and K==,

2.4 Compute the inverse matrix of K* using Cholesky factorization [50].
2.5 ApproxError « 0.
2.6

For m=1to M

2.6.1 R[i x N™+j] « K*[i][idx™[j]}, i =1,...,Land j=1,..., N,
2.6.2 v, =Rf™, where R is an I x N™ matrix.

2.6.3 Update y™: ™ = (K?)"lv,.

2.6.4 Compute e™.

2.6.5 ApproxError < ApproxError + ™.

108

End
2.7 t«t+1.

Until ¢t > T or ApproxError < e.

In the above algorithm, 7" specifies the maximal iteration number and ¢ is a threshold
for the approximation error. In{34], a fast method can be used to calculate kernel
matrices K* and K** by means of Block Linear Algebra Subprogram (BLAS) [38].
In the following, we describe briefly the method to compute K=. For kernel element

eXp(—“zi—;ﬂE), Il z; —z; ||? can be rewritten as

| zi — 2z, ||*= 2Tz + zJsz — 2277, (130)

i, j =1,..., L. Terms z}z; can be calculated by calling CBLAS function cblas_sdot.
z/zj, 4, § = 1,..., L can be rewritten as ZZ” (Gram matrix), which can be easily
calculated by calling CBLAS function cblas_ssyrk. Due to symmetry of the kernel
matrix, only elements in the upper triangle are calculated for the implementation of
cblas_ssyrk. Similarly, CBLAS function cblas_sgemm can be applied to calculate
K**. Further, cblas_sgemm and cblas_sgemv are used to compute the multi-
plication between matrix and matrix and between matrix and vector in the above

algorithm, respectively.

7.3.1 Analysis of run-time complexity

For the sake of complexity analysis, we assume that the computational cost of exp(— ﬂ’%éﬂf)

is linearly scale to that of x7x'. In addition, we Just consider the cost of multiplication
operations. In addition, the specified iteration step 7" is used to control the stopping
condition. So the cost of 2.6.4 in the above algorithm is not taken into account.

There are three loops in the algorithm. First the cost for each step is estimated.
1.2 1 O(3L%*n + Ln|U|)

1.3 : The inverse matrix K* is computed using Cholesky factorization. The cost is
O(L?) [22]. The total cost for this step is O(L® + M (LN™ 4 L))

2.2.2: O(LM +nLM)

2.2.3.2 : O(N™ + 1)

109

2.2.3.3 : O(nN™)
2.2.3.4 : O(2n)
2.2.4: O(n)

2.3 : O(LL? + Ln|U|)
2.4 : O(L%)

2.6.2: O(LN™)
2.6.3: O(L?)

Based on the estimated cost of each step, the total cost can be computed as

M
O(éLQn + LnfU) + L + Y (LN™ + L) + T(L*M

m=1

M M
LM+ LY (N +1)+ LY nN™+nl

m=1 m=1

+2LMn + %LG + Ln|U| + L®

+ i LN™ + ML?)) (131)

m=1

The expression (131) can be simplified as

0(%@ + 1)L+ (T +) LnfU| + (T +1)L°

+@T+ 1LY N™ 4 (T(n +2) + 1)ML?

m=1
M
+T(M +n)L +2TLMn+TLn > N™) (132)
m=1

In order to show which steps dominate the computational cost, we ignore some items
with light cost and yield

O(3TL*n + TLn|U| + TL3

133
+TnML* + TLn M N™) (153)

110

(133) shows that the dominant cost comes from steps 2.2.2, 2.2.3.3, 2.3, 2.4. The
computations at these steps mainly depend on BLAS functions. Since BLAS pack-
age such as matrix multiplication is implemented by hardware vendors in assembly
language, which makes efficient use of cache, memory and instructions such as single
instruction and multi-data (SIMD) [56] on Intel Pentium series or vector instructions
in vector processors [90]. Moreover, BLAS has been efficiently implemented on differ-
ent platforms, which enables the proposed algorithm to perform well across platforms.

Therefore, the proposed algorithm can be expected to run efficiently.

7.4 Block algorithm in the test phase

After the reduced vector sets z;, i = 1,. .., L and weighted vectors yr,m=1,....M

are generated, the decision function for classifying an unknown pattern x is given by

L
m* = argmax Y "k(z;,) (134)

i=1
Usually we classify an unknown pattern one by one. But the computation done in
this way is not efficient since the reduced set vectors z; is loaded into the level 1
and level 2 caches from the main memory again. The cache hit ratio is low. When
the dimension n of vectors is high and L is large, it is likely to lead to Translation
Lookaside Buffer (TLB) misses [90]. In a computer system with hierarchical memory,
a large number of memory accesses will waste a lot of CPU cycles and the cost is high.
Therefore, a block algorithm is designed to classify a group of unknown patterns once.
The memory can be efficiently accessed since the reduced set vectors are shared by

the group of unknown patterns. First we define some notions in the block algorithm
below:

¢ Z: L x n matrix and its ith row vector (Z7); = z;

e P: the number of pattern vectors in a group

X: a P x n matrix. Each row vector denotes a test vector.

K**: an L x P matrix and (K*);; = k(z,;, (X)), i=1,...,L,j=1,... P.

[

Q: a P x M matrix

111

e E: a M x L matrix and (ET),, = y™
e v: a vector of length M, which stores thresholds for M binary SVMs in (118)
e o: a vector of length P, which stores the classified results.

The the block algorithm is presented as follows:

Fast Block Algorithm for classification

Input: Z, X, E, v.
Output: o.

1. Compute K**.
2. Q= (K=)TET.
3.

For i=1to P

3.1. ofi] « argmax;(Qi]l5] — v[j]),
j=1,...,M.

End

In the above block algorithm, K#* can be efficiently computed using the method in

Section 3. The BLAS function cblas_sgemm is used to compute Q at step 2.

7.5 Experimental results

To study speed and accuracy of th proposed methods, two handwritten digit databases
were used in our experiments: MNIST and Hanwang. MNIST [78] handwritten digit
database consists of 60,000 training samples and 10,000 testing samples !, which orig-
inate from NIST database. A linear transform was performed such that all patterns
were centered into 28 x 28 while keeping the aspect ratio. The pixel values of resulting

gray-scale images were scaled to fall in the range from -1.0 to 1.0.

! This database is available from http: //yann.lecun.com/exdb/mnist/.

112

Hanwang handwritten digit database [36] is a large commercial database from
Hanwang, an OCR company in China. It consists of 1,321,718 training samples and
300,000 testing samples.

In these experiments, a 576 dimensional feature vector [33] is obtained based on
the gradients of an image from the normalized patterns of size 22 x 22. On Hanwang
handwritten digit database, a 576 dimensional feature vector is first extracted. Then
its dimension is reduced to 120 by principal component analysis [48]. The above
feature vectors are used to train SVMs with RBF kernel. For a polynomial kernel, a
784-dimensional vector based on the image pixels is generated [33].

The code was compiled by Microsoft visual C++6.0. All experiments were per-
formed on a PC with single Intel P4 1.7 Ghz processor with 256K L2 (second-level)
cache, SDRAM ? of 1.5 Gigabytes and 200 G hard disk (7200 RPM). The operating
system was Windows 2000 Professional.

Support vector machines in our experiments are trained by the fast algorithm in
[36]. The strategy for training SVMs with multi-classes is one-against-others. The
value of 0% for RBF kernel is set to 0.3. In the following subsections some algorithm

properties are investigated.

7.5.1 Convergence speed

Support vector machines are trained on MNIST with a 576-dimensional feature vector
and RBF kernel. The numbers of support vectors for each class are shown in Table 14.

Some support vectors from different classes are shared. Therefore, when they are

Table 14: Number of support vectors of the original SVM

digitf 0 [1234516713819
N™ [2069/1286[2950[2788[2506[2789(1942(2508|308 12552

merged, the total number U] of different support vectors is just 10799. L in the
optimization problem (120) is set to 1000. Thus the number of free parameters is
586,000 (576 x 1000 + 1000 x 10). The approximation errors £ in (120) in different
steps are depicted in Fig. 29. It can be observed that the proposed algorithm in

*Single Data Rate Memory

113

Approximation error E (x103)

1 10 20 30 40 50 60 70 80 90 100
iteration step ¢

Figure 29: Approximation Error E every 10 steps.

Section 3 reaches the minimum at a fast rate. In addition, since the computational

time for each iteration is about 116 seconds, the optimization takes about 1.93 hours
(116 x 60 seconds).

7.5.2 Accuracy vs number of reduced vectors L

The approximation error E usually grows with the number of reduced vectors L.
When L is sufficiently large, the approximation error could be very small so that the
classification accuracy determined by Eq. (134) can be the same as the original one.
However, in order to speed up the classification in the test phase, L must be small
without sacrificing the accuracy. Table 15 illustrates the classification accuracy vs.

L. 'The error rate of the original SVM system is 0.61%. From the above table we

Table 15: Classification accuracy vs. number of reduced vectors

L 400 | 600 | 800 | 1000
Error rate|0.72%0.63%10.62%0.61%

can see that in the reduced set method L could be much smaller than the size of the
original merged support vectors |U| while the accuracy is maintained. Also, the above

results indicate that the approximation error does not have a direction connection to

114

the classification accuracy.

7.5.3 Block algorithm

In order to further reduce the computational cost in the test phase, a 576-dimensional
feature vector is reduced to 120 dimensions by principal component analysis [33].
After the dimension reduction, the SVM’s error rate on the test set is 0.61%. |U| in
the SVM system is 9739. When L is set to 600, the reduced set method has achieved
an error rate of 0.64%. The classification speeds for the original SVM system and
one based on the reduced set method on MNIST test set are 149 and 1923 patterns
per second, respectively when test patterns are classified one by one. When the
block algorithm is applied, the classification in the test phase can be sped up further.
Table 16 shows how the classification speed grows with the number of group patterns.

When P is set to 2000, the current recognition system achieved a speed-up factor of

Table 16: Classification speed (patterns per second) vs. number of group patterns P

P 20 | 100 | 500 | 1000 | 2000
test speed|6,807(11,904(14,556/15,244(16,393

110, compared with the original SVM system. The speed-up mainly comes from the

fact that BLAS package makes efficient use of memory and SIMD instructions in P4.

7.5.4 Large handwritten digit database

Hanwang handwritten digit database is much larger than MNIST. After SVMs are
trained on it using RBF kernel and 120-dimensional feature vectors, the total number
|U| of the merged support vectors is 41,417. When L is set to 1000, the recognition
error rate on Hanwang test set is 0.53%, which is very close to that (0.50%) of the
original SVM system [36]. The classification speed is about 10,895 patterns per

second.
7.5.5 Polynomial kernel

When the algorithm in Section 3 is slightly modified to adapt to a polynomial kernel,

we use the modified algorithm to find the reduced set vectors for SVMs trained on

115

MNIST with the polynomial kernel and 784-dimensional vectors. The polynomial
kernel is (x"x')7. After the training, |U| is 13767. When L is set to 800, The
classification accuracy of the reduced set system on the test set is 98.6%, slightly

inferior to the original one (98.72%) [33].

7.6 Conclusions

The chapter presents a fast iteration algorithm to approximate the reduced set vectors
shared by each binary SVM solution for multi-class classification simultaneously. The
algorithm can be applied to SVMs with the general kernel types such as k(|| x —x’ ||?)
and k(xTx'). In addition, a fast block algorithm in the test phase is proposed to
speed up the classification further. Experimental results on MNIST and Hanwang
handwritten digit databases look very promising. The achieved classification speeds
in the test phase on the two databases on P4 are 16,000 and 10,895 patterns per
second without sacrificing the accuracy of the original SVM system. The proposed
algorithms lead to a significant increase in speed, which enables SVM to be very

competitive in tasks where both accuracy and speed are major concerns.

116

Chapter 8

Conclusions

8.1 Summary

This thesis presents some fruitful solutions to several existing problems of neural
networks and support vector machines when they are applied to very large-scale
data sets. The three questions raised in Chapter 1 “Introduction” can be answered
faithfully. Particularly, we believe that the proposed methods for support vector
machines described in Chapters 5 and 7 are crucial to real applications where learning
is performed on a data set of huge size and both high accuracy and speed are required.
Now we add some remarks to the answers to these three questions.

Regarding the first question “How to adapt the structure of a neural network
to yield a good generalization performance for classification on a large data set?”,
we present chapter 3 to answer it. The main issue is to deal with the trade-off
between accuracy and model complexity (or bias and variance). We assume that
real data exists in the low-dimensional manifold. Learning is performed in a local
space to obtain a good accuracy regardless of the complexity of the true classification
boundary. Ensembles of neural networks are used to reduce the model variance.
Experimental results on the medium data set such as MNIST have shown that the
proposed local learning framework achieved a good performance.

For the second question “How to design an efficient training algorithm for sup-
port vector machines on a data set of huge size with millions of high-dimensional
samples and thousands of classes such that the run-time complezity of the algorithm

linearly scales to the size of data set, the dimension of input vectors and the number

117

of classes?” | we present chapters 5 and 6 to describe the algorithm and analyzing its
space and run-time complexity. Various appealing properties of the algorithm have
been studied and experimental results on several large databases, including public
and commercial ones, have shown a very promising performance. We can say fairly
that essentially this problem has been solved although the solution may not be the
best one. In addition, we tackle the above two problems successfully based on the gen-
eral principle of divide and conquer'. The principle is widely applied to algorithm
design *. In Chapter 3, a classification task in the global space is decomposed into
sub-tasks in local spaces, which effectively deal with the dilemma of bias and vari-
ance. In Chapter 5, the complex optimization problem for SVM training on a large
data set is split into hundreds of sub-problems, which can be solved efficiently. Our
success in solving these problems indicates that this principle could be beneficially
applied to design an efficient learning algorithm especially on a large set. Moreover,
for the design of a high-performance learning algorithm, some issues from other areas
such as computer architecture, operating system and numerical analysis still have to
be considered.

We answer the third question in Chapter 7 “How to make support vector machines
achieve both high accuracy and classification speed in the test phase?”. Although
usually there is a trade-off between accuracy and speed in scientific computation, the
algorithms presented in Chapter 7 have shown that it is possible for support vector
machines to achieve both high accuracy and classification speed in the test phase.
Experimental results on very large handwritten digit database have been promising.

Finally, we hope that techniques and methods in this thesis can be applied to

solve more complex learning problems in industry and academic research, which have

not been tried in this thesis.

8.2 Future work

During the development of this thesis some important problems have not been ad-
dressed yet due to the time constraint. I believe that the performance could be further

improved when the following problems can be solved:

'Given a complex problem, split it into several smaller sub-problems and independently solve
each sub-problem and combine solutions to sub-problems to yield a solution for the original one.
*For example, quick-sort.

118

e Lor local learning framework, one of the problems is how to determine the op-
timal number of prototypes for the partition of the global pattern space. The
traditional methods such as k-means clustering usually set the value heuristi-
cally. Since the parameter has a significant effect on the performance, users
have to spend much time tuning this parameter by trial and error, which is not
effective. A more effective way is to apply a data-driven strategy. That is to
say, the optimal number of prototypes could be set automatically by solving an

optimization problem.

e In the proposed fast SVM training algorithm, the convergence has not be ad-
dressed theoretically yet. Moreover, the proposed method gives only an approx-
imate solution to the original problem. Although its performance on numerous
problems looks promising, it is still important to close the gap between two
solutions theoretically so that we can find some necessary conditions to apply

the proposed algorithm to real-world problems.

e For the proposed fast SVM testing algorithm, the computational cost is still
high on large data sets with thousands of classes. More research work has to

be done.

119

Bibliography

[1] D. Aberdeen, J. Baxter, and R. Edwards, “92 c/mflops/s, ultra-large-scale
neural-network training on a PIII cluster,” Proceedings of Super Computing,
Dallas, TX, November 2000.

[2] E. Bauer and R. Kohavi, “An empirical comparison of voting classification

algorithms: bagging, boosting and variants,” Machine Learning, vol. 36, pp.
105-139, 1999.

(3] R. Bellman, Adaptive Control Processes: A Guided Tour, Princeton University
Press, New Jersey, 1961.

[4] C.M. Bishop, Neural Networks for Pattern Recognition, Clarendon Press, Ox-
ford, 1995.

[5] B.E. Boser, .M. Guyon, and V.N. Vapnik, “A training algorithm for optimal
margin classifiers,” Proceedings of the 5th Annual ACM Workshop on Computa-

tional Learning Theory, D. Haussler, Ed., pp. 144-152. ACM Press, Pittsburgh,
PA, 1992.

(6] L. Bottou and V. Vapnik, “Local learning algorithm,” Neural Computation,
vol. 4, no. 6, pp. 888-901, 1992.

[7] P.S. Bradley and U.M. Fayyad, “Refining initial points for k-means cluster-
ing,” Proceedings of the Fifteenth International Conference on Machine Learn-

ing(ICML’98), pp. 91-99, Morgan Kaufmann, San Francisco, CA, 1998.

[8] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2, pp. 123
140, 1996.

120

9]

[10]

1]

[12]

[14]

[15]

(18]

L. Breiman, “Bias, variance and arcing classifiers,” Tech. Rep. 460, UC-
Berkeley, Berkeley, CA, 1996.

J. Bromley and E. Sickinger, “Neural-network and k-nearest-neighbor classi-
fiers,” Tech. Rep. 11359-910819-16TM, AT&T, 1991.

H. Bunke and P. Wang, editors. Handbook of Character Recognition and Docu-
ment Image Analysis. World Scientific, 1997.

C.J.C. Burges, “Simplified support vector decision rules,” Proceedings of the
13th International Conference on Machine Learning, pp. 71-77, Morgan Kauf-
mann, San Mateo, CA, 1996.

C.J.C. Burges and B. Schélkopf, “Improving the accuracy and speed of support
vector learning machines,” Advances in Neural Information Processing Systems,
M. Mozer, M. Jordan, and T. Petsche, Eds., vol. 9, pp. 375-381. MIT Press,
Cambridge, MA, 1997.

C.J.C. Burges, “A tutorial on support vector machines for pattern recognition,”
Data mining and Knowledge Discovery, pp. 121-167. 1998.

C.C. Chang and Chih-Jen Lin, “Libsvm: a library for support vector machines,”
Tech. Rep., Dept. of Computer Science and Information Engineering, National
Taiwan University, 2003.

S.B. Cho and J.H. Kim, “Combining multiple neural networks by fuzzy integral
for robust classification,” IEEE Trans. Systems, Man and Cybernetics, vol. 25,
no. 2, pp. 380-384, 1995.

S.B. Cho, “Neural-network classifiers for recognizing totally unconstrained

handwritten numerals,” IEEE Trans. Neural Networks, vol. 8, no. 1, pp. 43-53,
January 1997.

R. Collobert and S. Bengio, “SVMTorch: Support vector machines for large-

scale regression problems,” Journal of Machine Learning Research, vol. 1, pp.
143-160, 2001.

C. Cortes and V.N. Vapnik, “Support vector networks,” Machine Learning,
vol. 20, pp. 273-297, 1995.

121

[20]

21

24]

[25]

[26]

[27]

[29]

T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEFE Trans.
Information Theory, vol. 13, pp. 21-27, January 1967.

N. Cristianini and J.S. Taylor, An Introduction to Support Vector Machines

and other kernel-based learning methods, Cambridge University Press, 2000.

J.Du Croz and N.J. Higham, “Stability of methods for matrix inversion,” IMA
Journal of Numerical Analysis, vol. 12, pp. 1-19, 1992.

C. Decaestecker, “Finding prototypes for nearest neighbour classification by

means of gradient descent and deterministic annealing,” Pattern Recognition,
vol. 30, no. 2, pp. 281-288, 1997.

D. DeCoste and B. Scholkopf, “Training invariant support vector machines,”
Machine Learning, vol. 46, no. 1-3, pp. 161-190, 2002.

C. Diamantini and A. Spalvieri, “Certain facts about Kohonen’s LVQ1 algo-
rithm,” IEEE Trans. Circuits Syst. I, vol. 47, pp. 425-427, May 1996.

C. Diamantini and A. Spalvieri, “Quantizing for minimum average misclassifi-
cation risk,” IEEE Trans. Neural Networks, vol. 9, no. 1, pp. 174-182, Janunary
1998.

J.X. Dong, C.Y. Suen, and A. Krzyzak, “Comparison of algorithms for hand-

written numeral recognition,” Tech. Rep., CENPARMI, Concordia University,
Montréal, Canada, 1999.

J.X. Dong, C.Y. Suen, and A. Krzyzak, “An empirical study of boosting al-

gorithm,” Tech. Rep., CENPARMI, Concordia University, Montréal, Canada,
2000.

J.X. Dong, Adam Krzyzak, and C.Y. Suen, “Statistical results of human per-

formance on USPS database,” Tech. Rep., CENPARMI, Concordia University,
Montréal, Canada, 2001.

J.X. Dong, A. Krzyzak, and C.Y. Suen, “Local learning framework for handwrit-
ten character recognition,” Engineering Applications of Artificial Intelligence,
vol. 15, no. 2, pp. 151-159, 2002.

122

[31]

[32]

[33]

[34]

[35]

[37]

[38]

[39]

J.X. Dong, A. Krzyzak, and C.Y. Suen, “Local learning framework for recogni-
tion of lowercase handwritten characters,” Proceedings of International Work-
shop on Machine Learning and Data Mining in Pattern Recognition, pp. 226—
238. Springer Lecture Notes in Computer Science, Leipzig Germany, July 2001.

J.X. Dong, C.Y. Suen, and A. Krzyzak, “A fast SVM training algorithm,” Pat-
tern Recognition with Support Vector Machines, S.-W. Lee and A. Verri, Eds.,
pp. 53-67. Springer Lecture Notes in Computer Science LNCS 2388, Niagara
Falls, Canada, August 2002.

J.X. Dong, C.Y. Suen, and A. Krzyzak, “A fast SVM training algorithm,”
International Journal of Pattern Recognition and Artificial Intelligence, vol.
17, no. 3, pp. 367-384, 2003.

J.X. Dong, C.Y. Suen, and A. Krzyzak, “A fast parallel optimization for train-
ing support vector machine,” Proceedings of 3rd International Conference on
Machine Learning and Data Mining, P. Perner and A. Rosenfeld, Eds., pp.
96-105. Springer Lecture Notes in Artificial Intelligence (LNAI 2734), Leipzig,
Germany, July 2003.

J.X. Dong, A. Krzyzak, and C.Y. Suen, “High accuracy handwritten Chinese
character recognition using support vector machine,” Proceedings of Interna-

tional Workshop on Artificial Neural Networks, Florence, Ttaly, September 2003.

J. X. Dong, A. Krzyzak, and C.Y. Suen, “A fast parallel SVM algorithm and

its applications to very large datasets,” submitted to IEEE Trans. Pattern
Analysis and Machine Intelligence, 2003.

J.J. Dongarra, J.D. Croz, S. Hammarling, and R.J. Hanson, “An extended set of

fortran basic linear algebra subprograms,” ACM Transactions on Mathematical
Software, vol. 14, no. 1, pp. 1-17, 1988.

J.J. Dongarra, J.Du Croz, 1.S. Duff, and S. Hammarling, “A set of level 3 basic
linear algebra subprograms,” ACM Trans. Math. Soft., vol. 16, pp. 1-17, 1990.

H. Drucker, R. Schapire, and P. Simard, “Boosting performance in neural
networks,” International Journal of Pattern Recognitiona and Artificial Intel-
ligence, vol. 7, no. 4, pp. 705-719, 1993.

123

[40]

[41]

[42]

[43]

[44]

[46]

[49]

[50]

[51]

R.O. Duda and P.E. Hart, Pattern Classification and Scene Analysis, John
Wiley & Sons. Inc, New York, 1973.

R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification, John Wiley &
Sons. Inc, New York, second edition, 2001.

R.A. Fisher, “The use of multiple measurements in taxonomic problems,” Ann.
Eugenics, vol. 7, pp. 179188, 1936.

G.W. Flake and S. Lawrence, “Efficient SVM regression training with SMO,”
Machine Learning, vol. 46, no. 1-3, pp. 271-290, March 2002.

R. Fletcher, Practical Methods of Optimization, John Wiely and Sons, Inc.,
2nd edition, 1987.

Y. Freund and R. Schapire, “Experiments with a new boosting algorithm,”
Proceedings of the Thirteenth International Conference on Machine Learning,
pp. 148-156, Bari, Italy, 1996.

Y. Fujisawa, M. Shi, T. Wakabayashi, and F. Kimura, “Handwritten numeral
recognition using gradient and curvature of gray scale image,” Proceedings of

International Conference on Document Analysis and Recognition, pp. 277280,
India, August 1999.

K. Fukunaga and T.F. Krile, “Calculation of Bayes’ recognition error for two
multivariate gaussian distributions,” IEEE Trans. Computers, vol. C-18, no. 3,
pp- 220-229, July 1969.

K. Fukunaga, Introduction to Statistical Pattern Recognition, Academic Press,
second edition, 1990.

K. Funahashi, “On the approximate realization of continuous mappings by
neural networks,” Neural Networks, vol. 2, no. 3, pp. 183-192, 1989.

G.H. Golub and C.F.Van Loan, Matriz computations, The Johns Hopkins
University Press, Baltimore, Maryland, 3nd edition, 1996.

B. Hassibi and D.G. Stork, “Second order derivatives for network pruning:

Optimal brain surgeon,” Advances in Neural Information Processing Systems,

124

[52]

[58]

[59]

[60]

[61]

S. Hanson, J. Cowan, and L. Giles, Eds., vol. 5, pp. 164-171. Morgan Kaufmann,
San Mateo, CA, 1992.

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning:
Data Mining, Inference, and Prediction, Springer Series in Statistics. Springer-
Verlag, New York, 2001.

J. Hertz, A. Krogh, and R.G. Palmer, Introduction to the Theory of Neural
Computation, Addison-Wesley, New York, 1991.

Intel, The IA-32 Intel Architecture Software Developer’s Manual. Volume 3:
System Programmer’s Guide. Order number 245472, 2002.

Intel, Intel Pentium 4 and Intel Xeon Processor Optimization Reference Man-
ual. Order Number: 248966, 2002.

Intel, The IA-32 Intel Architecture Software Developer’s Manual. Volume 1:
Basic Architecture. Order number 245470, 2002.

T. Joachims, “Text categorization with support vector machine: learning with
many relevant features,” Proceedings of ECML-98, 10th European Conference

on Machine Learning, pp. 137-142, Springer Verlag, Heidelberg, Chemnitz, DE,
1998.

T. Joachims, “Making large-scale support vector machine learning practical,”
Advances in kernel methods: Support Vector Machines, B. Schélkopf, C. Burges,
and A. Smola, Eds., pp. 169-184. MIT Press, Cambridge, MA, December 1998.

R.A. Jocobs, M.I. Jordan, S.J. Nowlan, and G.E. Hinton, “Adaptive mixtures
of local experts,” Neural Computation, vol. 3, no. 1, pp. 79-87, 1991.

B.H. Juang and S. Katagiri, “Discriminative learning for minimum error clas-

3

sification,” IEFE Trans. Signal Processing, vol. 40, no. 12, pp. 3043-3054,

December 1992,

5. Katagiri, C.H. Lee, and B.H. Juang, “Discriminative multilayer feedforward
networks,” Proc. IEEFE Workshop Neural Networks for Signal Processing, pp.
11-20, Piscataway, NJ, August 1991.

125

[62]

[63]

[64]

[66]

[67]

[68]

[69]

[70]

[71]

N. Kato, M. Suzuki, S. Omachi, H. Aso, and Y. Nemoto, “A handwritten
character recognition system using directional element feature and asymmetric
Mahalanobis distance,” IEEE Trans. Pattern Analysis and Machine Intelli-
gence, vol. 21, no. 3, pp. 258-262, 1999. '

5.5. Keerthi, S.K. Shevade, C. Bhattachayya, and K.R.K. Murth, “Improve-
ments to Platt’s SMO algorithm for SVM classifier design,” Neural Computa-
tion, vol. 13, pp. 637-649, March 2001.

5.5. Keerthi and E.G. Gilbert, “Convergence of a generalized SMO algorithm
for SVM classifier design,” Machine Learning, vol. 46, no. 3, pp. 351-360, March
2002.

5.Y. Kim and S.-W. Lee, “Gray-scale nonlinear shape normalization method for
handwritten oriental character recognition,” International Journal of Pattern

Recognition and Artificial Intelligence, vol. 12, no. 1, pp. 81-95, February 1998.

F. Kimura, K. Takashina, S. Tsuruoka, and Y. Miyake, “Modified quadratic
discriminant functions and the application to Chinese character recognition,”

IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 9, no. 1, pp. 149-
153, 1987.

F. Kimura and M. Shridhar, “Handwritten numeral recognition based on mul-

tiple algorithms,” Pattern Recognition, vol. 24, no. 10, pp. 969-983, 1991.

F. Kimura, T. Wakabayashi, S. Tsuruoka, and Y. Miyake, “Improvement of
handwritten Japanese character recognition using weighted direction code his-

togram,” Pattern Recognition, vol. 30, no. 8, pp. 1329-1337, 1997.

T. Kohonen, Self-Organization and Associate Memory, Springer-Verlag, Berlin,
Germany, 3nd edition, 1989.

T. Kohonen, “The self organizing map,” Proceedings of the IEEE, vol. 78, no.
9, pp. 14641480, Sept. 1990.

T. Kohonen, Self-Organizing Maps, Springer-Verlag, Berlin, Germany, 2nd
edition, 1997.

126

[72]

(73]

[74]

[77]

[78]

A. Krogh and J. Vedelsby, “Neural network ensembles, cross validation, and ac-
tive learning,” Advances in Neural Information Processing Systems, G. Tesauro,
D. Touretzky, and T. Leen, Eds., vol. 7, pp. 231-238. MIT Press, Cambridge,
MA, 1995.

H. Kuhn and A. Tucker, “Nonlinear programming,” Proceedings of 2nd Berkeley
Symposium on Mathematical Statistics and Probabilistics. pp. 481-492, Univer-
sity of California Press, 1951.

C.L. Lawson, R.J. Hanson, D.R. Kincaid, and F.T. Krogh, “Basic linear algebra
subprograms for Fortran usage,” ACM Transactions on Mathematical Software,
vol. 5, no. 3, pp. 308-323, 1979.

C.L. Lawson, R.J. Hanson, D.R. Kincaid, and F.T. Krogh, “Algorithm 539
basic linear algebra subprograms for Fortran usage [f1],” ACM Transactions on
Mathematical Software, vol. 5, no. 3, pp. 324-325, 1979.

Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R. E. Howard, W. Hubbard,
and L.J. Jackel, “Backpropagation applied to handwritten zip code recogni-
tion,” Neural Computation, vol. 1, no. 4, pp. 941-551, 1989.

Y. LeCun, J.S. Denker, and S.A. Solla, “Optimal brain damage,” Advances in
Neural Information Processing Systems, D.S. Touretzky, Ed., vol. 2, pp. 598-
605. Morgan Kaufmann, San Mateo, CA, 1990.

Y. LeCun, L.D. Jackel, L. Bottou, J.S. Denker, H. Drucker, I. Guyon, U.A.
Miiller, E. Sackinger, P. Simard, and V.N. Vapnik, “Comparison of learning
algorithms for handwritten digit recognition,” Proc. Int. Conf. Artificial Neural
Networks, pp. 53-60, Paris, 1995.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 80, no. 11, pp.
2278-2324, November 1998.

S.-W. Lee and J.-S. Park, “Nonlinear shape normalization methods for the
recognition of large-set handwritten characters,” Pattern Recognition, vol. 27,
no. 7, pp. 895-902, 1994.

127

(81]

S.W. Lee, “Multilayer cluster neural networks for totally unconstrained hand-
written numeral recognition,” Neural Networks, vol. 8, no. 5, pp. 783-792,

1995.

C.L. Liu, I.J. Kim, and J.H. Kim, “High accuracy handwritten Chinese char-
acter recognition by improved feature matching method,” Proceedings of the

4th International Conference on Document Analysis and Recognition, pp. 1033~
1037, Ulm, Germany, August 1997.

C-L. Liu, K. Nakashima, H. Sako, and H. Fujisawa, “Handwritten digit recog-
nition using state-of-the-art techniques,” Proceedings of the eighth Interna-

tional Workshop on Frontiers in Handwriting Recognition, Niagara on the lake,
Canada, August 2002.

T. Matsui, T. Tsutsumida, and S.N. Srihari, “Combination of
stroke/background structure and contour-direction features and handprinted
alphanumeric recognition,” Proc. Int. Workshop on Frontiers in Handuwriting

Recognition, pp. 87-96, Taipei, Taiwan, Republic of China, 1994.

J. Mercer, “Functions of positive and negative type and their connection with
the theory of integral equations,” Philos. Trans. Roy. Soc. London, vol. A(209),
pp. 415-446, 1909.

D. Opitz and R. Maclin, “Popular ensemble methods: an empirical study,”
Journal of Artificial Intelligence Research, vol. 11, pp. 169-198, August 1999.

E. Osuna, R. Freund, and F. Girosi, “Training support vector machines: an
application to face detection,” Proc. IEEE. Conf. on Computer Vision and
Pattern Recognition, pp. 130-136, Puerto Rico, June 17-19 1997.

E. Osuna and F. Girosi, “Reducing the run-time complexity of support
vector machines,” Advances in kernel methods: Support Vector Machines,

B. Scholkopf, C. Burges, and A. Smola, Eds., pp. 271-283. MIT Press, Cam-
bridge, MA, December 1999.

E. Parzen, “On the estimation of a probability density function and the mode,”

Annals of Mathematical Statistics, vol. 33, pp. 1065-1076, 1962,

128

[90]

[91]

98]

D.A. Patterson and J.L. Hennessy, Computer Architecture: A Quantitative

Approach, Morgan Kaufmann, San Francisco, California, second edition, 1996.

J.C. Platt, “Fast training of support vector machines using sequential min-
imal optimization,” Advances in kernel methods: Support Vector Machines,
B. Scholkopf, C. Burges, and A. Smola, Eds., pp. 185-208. MIT Press, Cam-
bridge, MA, December 1998.

L.G. Roberts, “Machine perception of three-dimensional solids,” Optical and
Electro-Optical Information Processing, J.T. Tippet, Ed. MIT Press, Cam-
bridge, MA, 1965.

F. Rosenblatt, Principles of Neurodynamics: Perceptron and Theory of Brain
Mechanisms, Spartan Books, Washington, DC, 1962.

D.E. Rumelhart, J.L. McClelland, and PDP Research Group, Parallel Dis-
tributed Processing, vol. 1: Fundations, MIT Press, 1986.

A. Sato and K. Yamada, “Generalized learning vector quantization,” Advances
in Neural Information Processing Systems, vol. 8, pp. 423-429. MIT Press, 1996.

A. Sato and K. Yamada, “A formulation of learning vector quantization using
a new misclassification measure,” Proc. IEEE Conf. on Pattern Recognition,
pp. 322-325, 1998.

A. Sato and K. Yamada, “An analysis of convergence in generalized LVQ,”

Proc. of International Conference on Artificial Neural Networks, pp. 171-176,
1998.

B. Schélkopf, C.J.C. Burges, and V. Vapnik, “Extracting support data for a
given task,” Proceedings, First International Conference on Knowledge Discov-

ery and Data Mining, U. M. Fayyad and R. Uthurusamy, Eds., pp. 252-257.
AAAT Press, Menlo Park, CA, 1995.

B. Scholkopf, C.J.C. Burges, and V. Vapnik, “Incorporating invariances in sup-
port vector learning machines,” Artificial Neural Networks—ICANN 96, C. Mals-
burg, W. Seelen, J.C. Vorbriiggen, and B. Sendhoff, Eds., vol. 1112, pp. 47-52.
Springer Lecture Notes in Computer Science, Berlin, 1996.

129

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

B. Scholkopt, Support vector Learning, Ph.D. thesis, R. Oldenbourg Verlag,
Miinchen., Technical University of Berlin, 1997.

B. Scholkopf, P. Knirsch, A.J. Smola, and C. Burges, “Fast approximation of
support vector kernel expansions, and an interpretation of clustering as approx-
imation in feature spaces,” Mustererkennung, DAGM-Symposium, pp. 124-132,
Springer, Berlin, 1998.

B. Scholkopf, P. Simard, A. Smola, and V. Vapnik, “Prior knowledge in support

”

vector kernels,” Advances in Neural Information Processing Systems, M. Jor-
dan, M. Kearns, and S. Solla, Eds., vol. 10, pp. 640-646. MIT Press, Cambridge,

MA, 1998.

B. Scholkopf, S. Mika, C. Burges, P. Knirsch, K.-R. Miiller, G. Rétsch, and
A.J. Smola, “Input space vs. feature space in kernel-based methods,” [EEE
Transactions on Neural Networks, vol. 10, no. 9, pp. 1000-1017, 1999.

B. Schélkopf and A.J. Smola, Learning with Kernels, MIT Press, Cambridge,
Massachusetts, 2002.

A.J.C. Sharkey, “Multi-net systems,” Combining Artificial Neural Nets: En-
semble and Modular Multi-Net Systems, Amanda J.C. Sharkey, Ed., pp. 1-30.
Springer-Verlag, London, 1999.

P. Simard, Y. LeCun, and J. Denker, “Tangent prop — a formalism for specifying
selected invariances in an adaptive network,” Advances in Neural Information
Processing Systems, J.E. Moody, S.J. Hanson, and R.P. Lippmann, Eds., vol. 4.
Morgan Kaufmann, San Mateo, CA, 1993.

M. Skurichina and R.P.W. Duin, “Bagging for linear classifiers,” Pattern Recog-
nition, vol. 31, no. 7, pp. 909-930, 1998.

A.J. Smith, “Cache memories,” Computing Surveys, vol. 14, no. 3, pp. 473-530,
September 1982.

S.N. Srihari, “Recognition of handwritten and machine-printed text for postal

address interpretations,” Pattern Recognition Letters, vol. 14, pp. 291-302,
1993.

130

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

C.Y. Suen, C. Nadal, T.A. Mai, R. Legault, and L. Lam, “Recognition of
totally unconstrained handwritten numeral based on the concepts of multiple
experts,” Proc. Int. Workshop on Frontiers in Handwriting Recognition, pp.
131143, Montreal, Canada, 1990.

C.Y. Suen, C. Nadal, R. Legault, T.A. Mai, and L. Lam, “Computer recognition
of unconstrained handwritten numerals,” Proceedings of the IEEE, vol. 80, no.
7, pp. 1162-1180, July 1992.

C.Y. Suen, S. Mori, S.H. Kim, and C.H. Leung, “Analysis and recognition
of Asian scripts-the state of the art,” Proceedings of the 7th International
Conference on Document Analysis and Recognition, pp. 866-878, Edinburgh,
Scotland, August 2003.

N. Sun, M. Abe, and Y. Nemoto, “A handwritten character recognition system
by using improved directional element feature and subspace method,” IEICE
Trans. System & Information, vol. J78-D-I1, no. 6, pp. 922-930, June 1995.

L.N. Teow and K.F. Loe, “Robust vision-based features and classification

schemes for off-line handwritten digit recognition,” Pattern Recognition, vol.
35, no. 11, pp. 2355-2364, 2002.

S. Thrun, C. Faloutsos, T. Mitchell, and L. Wassermanand, “Automated learn-
ing and discovery: state-of-the-art and research topics in a rapidly growing

field,” Tech. Rep., Center for Automated Learning and Discovery, Carnegie
Mellon University, 1998.

J. Tsukumo and H. Tanaka, “Classification of handprinted Chinese characters
using nonlinear normalization methods,” Proc. 9th. Int. Conf. Pattern Recog-

nition, pp. 168-171, Rome, Italy, November 1988.

N. Tsumura, T. Wakabayashi, F. Kimura, and Y. Miyake, “High accuracy in
similar characters using compound tunction,” IEICE Trans. System & Infor-
mation, vol. J83-D-II, no. 2, pp. 623-633, 2000.

131

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

K. Tumer and J. Ghosh, “Linear and order statistics combiners for pattern
classification,” Combining Artificial Neural Nets: Ensemble and Modular Multi-
Net Systems, Amanda J.C. Sharkey, Ed., pp. 127-161. Springer-Verlag, London,
1999.

V. Vapnik, “Principles of risk minimization for learning theer,” Advances
in Neural Information Processing Systems, J.E. Moody, S.J. Hanson, and R.P.
Lippmann, Eds., vol. 4, pp. 831-838. Morgan Kaufman, San Mateo, CA, 1992.

V. Vapnik, The nature of statistical learning theory, Springer Verlag, Berlin,
1995.

V.N. Vapnik, Statistical Learning Theory, Wiley, New York, 1998.

Y. Waizumu, N. Kato, K. Saruta, and Y. Nemoto, “High speed and high accu-
racy rough classification for handwritten characters using hierarchical learning
vector quantization,” IEICE Trans. System & Information, vol. E83-D, no. 6,
pp. 1282-1290, 2000.

C.H. Wang and S.N. Srihari, “A framework for object recognition in a visually
complex environment and its application to locating address blocks on mail

pieces,” International Journal of Computer Vision, vol. 2, pp. 125-151, 1989.

R.C. Whaley and J.J. Dongarra, “Automatically tuned linear algebra software,”
Proceedings of High Performance Networking and Computing(SC*98), 1998.

R.C. Whaley, A. Petitet, and J.J. Dongarra, “Automated empirical optimiza-
tion of software and the ATLAS project,” Tech. Rep., Dept. of Computer
Science, Univ. of Tennessee, 2000.

G. Wolberg, H.M. Sueyllam, M.A. Ismail, and K.M. Ahmed, “One-dimensional

resampling with inverse and forward mapping functions,” Journal of Graphics
Tools, vol. 5, no. 3, pp. 11-33, 2001.

H. Yamada, K. Yamamoto, and T. Saito, “A nonlinear normalization method
for handprinted Kanji character recognition-line density equalization,” Pattern
Recognition, vol. 23, no. 9, pp. 1023-1029, 1990.

132

[128] K. Yamamoto and A. Rosenfeld, “Recognition of handwritten Kanji characters
by a relaxation method,” Proc. of the 6th Int. Conf. on Pattern Recognition,
pp. 395-398, 1982.

133

