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ABSTRACT

Vibration and buckling analyses of tapered composite beams using

conventional and advanced finite element formulations

Abolghassem Zabihollah

Tapered composite beams are being used in various engineering applications such as
helicopter yoke, robot arms and turbine blade in which the structure needs to be stiff at
one location and flexible at another locations. Laminated tapered beams can be
manufactured by terminating some plies at discrete locations. Different types of ply drop-
off can be achieved depending on the application. Due to the variety of tapered composite
beams and complexity of the analysis, no analytical solution is available at present and
therefore finite element method has been used for the calculation of response. In the
present thesis, the free vibration response and buckling of different types of tapered
composite beams are analyzed first using conventional finite element formulation.
Conventional finite element formulation requires a large number of elements to obtain
acceptable results. In addition, continuity of curvature at element interfaces can not be
guaranteed with the use of conventional formulation. As a result, stress distribution
across the thickness is not continuous at element interfaces. In order to overcome these
limitations, an advanced finite element formulation is developed in the present thesis for
vibration and buckling analysis of tapered composite beams based on classical laminate

theory and first-order shear deformation theory. The developed formulation is applied to

i



the analysis of various types of tapered composite beams. The efficiency and accuracy of
the developed formulation are established in comparison with available solutions, where
applicable, as well as with the results obtained using conventional formulation. A detailed
parametric study has been conducted on various types of tapered composite beams, all
made of NCT / 301 graphite-epoxy, in order to investigate the effects of boundary
conditions, laminate configuration, taper angle, the ratio of the length of the thick section
to the length of the thin section and the ratio of the height of the thick section, to the

height of thin section.
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Chapter 1

Introduction, Literature Survey and Scope of the Thesis

1.1 Vibration analysis in mechanical design

Mechanical vibration deals with the interaction of inertia and restoring forces. The
former is due to the effect of mass of an object, while the latter is due to the elastic
deformation capability of the object. The inertia force tends to maintain the current state
of the object. The restoring force tends to push the object back to its equilibrium position.
Obviously this is a time-dependent phenomenon. Time-dependent problems are of great

concern in almost all mechanical engineering applications.

Undesired vibrations in equipment cause loss of accuracy as in the case of
measuring equipment, fatigue failure and discomfort for human beings as in the case of
aircrafts and cars. If the frequency of exciting force gets close to the frequency band of
the natural frequencies of the structure, the mechanical component experiences severe
vibration due to resonance. The resonance will decrease the lifetime of the structure and
causes unpredictable failures. Dynamic analysis in mechanical design is of great
importance to control the vibration in order to maintain the operating performance and to

prevent sudden failures in structures.



1.2  Buckling analysis in mechanical design

Change in the geometry of a structure or a mechanical component under
compression results in the loss of its ability to resist loading. Stability of structures under
compression can be grouped into two categories: (1) instability associated with a
bifurcation of equilibrium; (2) Instability that is associated with a limit of maximum load.
The first category is characterized by the fact that as the compressive load increases, the
member or system that originally deflects in the direction of applied force, suddenly
deflects in a different direction. This phenomenon is called buckling. The point of
transition from the usual deflection mode under load to an alternative deflection mode is
refereed to as the point of bifurcation of equilibrium. The lowest load at the point of

bifurcation is called critical buckling load.

Buckling analysis is basically a subtopic of non-linear rather than linear
mechanics. In linear mechanics of deformable bodies, displacements are proportional to
the loads. In buckling, disproportional increase in displacement occurs due to a small
increase in the load. The instability due to buckling can lead to a catastrophic failure of a

structure and it must be taken into account when one designs a structure.

1.3  Composite materials and structures

Development of composite materials is one of the great technological advances of
the last half of the twentieth century [1]. By the term composite we usually refer to
materials created by the synthetic assembly of two or more organic or inorganic
components, in order to obtain specific characteristics and properties such as high

strength, high modulus and low weight. Selected materials to create a composite material



are a reinforcing component and a compatible matrix binder. Composite materials are
subdivided into the following classes on the basis of the form of the structural
constituents: (i) laminar: composed of layers or laminar constituents; (i1) particulate: the
dispersed phase consists of small particles; (ii1) fibrous: the dispersed phase consists of

fibers; (iv) flake: the dispersed phase consists of flat flakes.

Fiber reinforced composite materials are the engineering materials which are most
commonly used in modemn industries, such as acrospace, construction and automotive
industries. In fibrous composite materials, the fibers provide virtually all strength and
stiffness. The purpose of the matrix is to bind the reinforcements together and keep them
in proper orientation, transfer the load to and between them and distribute it evenly,
protect the fibers from hazardous environments and handling, provide resistance to crack
propagation and damage, provide all the inter-laminar shear strength of the composite,
and offer protection from high temperature and corrosion. The key point behind the
fibrous composite is that the individual fibers are stiffer and stronger than the same
material in bulk form whereas matrix materials have their usual bulk-form properties [2].
By changing the orientation of the fibers, we can optimize the composite material for
strength, stiffness, fatigue, heat and moisture resistance. Fiber reinforced composite
materials for structural applications are often made in the form of a thin layer, which is

called lamina.

The structural elements, such as bars, beams and plates are made by stacking

together many plies of fiber reinforced layers in different angles to achieve the desired



properties. The different layers of lamina are permanently bonded together under heat
and pressure using a hot press or autoclave. Fiber orientation in each lamina and stacking
sequences of layers can be chosen so as to achieve the desired strength and stiffness for

specific applications.

Helicopter yoke, robot arms, turbine blade and satellite antennas are specific
applications of composite structures that need to be stiff at one location and flexible at
another location. Such structures can be made by terminating some plies at discrete
locations to reduce the stiffness of the beam. This results in a tapered shape. Different
techniques have been developed to create a tapered section. Some of the most common
types of tapered sections are shown in Figure 1.1. One of the main objectives of this
thesis is to investigate the vibration and buckling behavior of different types of tapered

beams.
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Figure 1.1  Schematic illustration of tapered sections

1.4 Finite element method
Structural analysis of complex designs relies heavily on the use of computer
models. In analyzing the modern structures, it is no longer possible to treat structures as a

series of black boxes being acted upon by various forces. Engineers must consider both



microscopic and macroscopic points of view in mechanical design. Finite element
method (FEM) is one of the most powerful tools in engineering for the analysis of
complex structures such as tapered composite beams. The speed of convergence and
accuracy of the results obtained by finite element methods are strongly dependent on the
element types, which are selected for the analysis. In conventional FEM, a beam element
is modeled using two nodes at the ends where each node has two degrees of freedom. In
conventional FEM the beam should be divided into a large number of elements to achieve
an accurate result. Advanced FEM considers four degrees of freedom per node (eight
degrees of freedom per element). The present thesis investigates the capability of the
advanced FEM to provide the desired accuracy and speed of convergence for vibration
and buckling analysis of tapered composite beams. It will be shown that the advanced

FEM gives better accuracy and rapid convergence compared to conventional FEM.

1.5  Literature survey

In this section a comprehensive literature survey is presented on the vibration and
buckling of composite beams, and on the application of the finite element method to
composite beams. The literature survey is limited to the works available in English
language and mostly published in the last two decades. The work done relevant to each

topic is chronicled.



1.5.1 Vibration analysis of composite beams

Most of the works on composite beams have concentrated on delamination and
failure analysis of composite beams. There are a few research works that deal with
vibration analysis of laminated beams.

Abarcar and Cunniff [3] obtained experimental results for natural frequencies and
the mode shapes of cantilever graphite-epoxy and boron-epoxy composite beams. Their
work clearly indicated the interaction between bending and twisting for 15 degree and 30
degree laminated beams. Noor [4] obtained the natural frequencies for simply supported
symmetric laminated plate by using classical laminate theory. Miller and Adams [5]
studied the vibration characteristic of orthotropic fixed-free beams using the classical
laminate theory. Chen and Yang [6] investigated the static and dynamic response of
symmetrically laminated beams. Chandrashekhara et al [7] analyzed the free vibrations of
composite beams including the effects of rotary inertia and shear deformation. A paper by
Hodges et al [8] deals with the free vibration of composite beams using exact integration
method and mixed finite element method. They discuss the influences of laminate
configuration on the natural frequencies. Krishnaswamy et al [9] obtained the analytical
solutions to vibration of laminated composite beams. Reddy and Khdeir [10] studied free
vibration behavior of cross-ply composite laminates under various boundary conditions.
The study concludes that shear deformation laminate theory accurately predicts the
behavior of the composite laminate, whereas the classical laminate theory over predicts
natural frequencies of the laminate. Exact solutions for free vibrations of composite
beams including the rotary inertia and shear deformation were obtained by Abramovich

[11]. Abramovich and Livshits [12] obtained analytical solutions for free vibration of



non-symmetric cross-ply laminated beams. Hjela and Teboub [13] use symbolic
computations to analyze generally orthotropic composite beams. Eisenberger et al [14]
obtained the dynamic stiffness of laminated beams by applying first order shear
deformation theory. Marur and Kant [15] applied higher order theory and finite element
for free vibration of composite beams. Teoh and Huang [16] obtained the analytical
results for vibration of fiber reinforced composite beams. In this work both shear and

rotary inertia are included.

Song and Waas [17] treat effects of shear deformation on free vibration of
composite beams for different boundary conditions. Banerjee [18] uses dynamic stiffness
to obtain natural frequencies of a Timoshenko composite beam under axial loading. Shi
and Lam [19] present the free vibration analysis of composite beams based on the third
order beam theory. By using Hamilton’s principle, they derived the variation consistent
equations of motion in matrix form. This work also studied the influences of the mass
component resulting from higher-order displacement on the flexural vibration of
composite beams. They proposed linear bending strain expressions to formulate accurate
element with the same number of degrees of freedom. Ganapathi et al [20] used a three-
node beam element to obtain natural frequencies of laminated composite beams. The
formulation is general in the sense that it includes anisotropy, transverse shear
deformation, in-plane and rotary inertia effects. Exact solutions for free vibrations of
laminated composite beams have been given by many authors [2, 21, 22, and 23].
Matsunaga [24] presents the vibration of multi-layer composite beams according to

higher order deformation theories. He uses the method of power series expansion of



displacement components. Rao ef a/ [25] use mixed theory for vibration analysis of

laminated beams.

Few researchers have investigated non-uniform and tapered composite beams.
Rao and Ganesan [26] investigated the harmonic response of tapered composite beams
using finite element method based on a higher order shear deformation theory. The
tapered model in this investigation consists of individual tapered plies that are laid up in
the width axis. Free vibration of stepped Timoshenko composite beams was studied by
Farghaly and Gadelrab [27]. They obtained natural frequencies for a steeped composite
beam based on Timoshenko beam theory. Tong et al [28] consider a linear-tapered beam
for free vibration analysis. Polyzois et al [29] present dynamic analysis for linear tapered
poles by applying finite element method. A complete review of different models of
tapered composite beams has been presented by He er al [30]. Recently, Abd EL-
Maksoud [31] presents the dynamic analysis of uniform and mid-plane tapered composite
beams by using a higher order finite element formulation. Nigam [32] presents the
dynamic analysis of laminated composite beams using Hierarchical Finite Element

Method (HFEM).

1.5.2 Buckling analysis of composite beams

There are few works available on buckling analysis of composite beams in the
literature. Khdeir and Reddy [33] used various plate theories to study the buckling of
laminated plates. Banerjee and Williams [34] obtained critical buckling loads for columns
by considering shear deformation effects. Khdeir and Reddy [35] discussed buckling

behavior of cross-ply rectangular composite beams with different boundary conditions.



They present analytical solution for composite beams with different boundary conditions.
Song and Waas [17] discussed the effects of shear deformation on the buckling of
composite beams. They use simple higher-order theory, which assumes a cubic
distribution for the displacement field through the thickness of the beam. Chen and Peng
[36] studied the stability of rotating composite beams subjected to axial compressive
load. Kim ez al [37] conducted the buckling analysis of cross-ply laminate with one-
dimensional through-the-width delaminations. Matsunaga [38] studied the buckling of
multi-layer composite beams using higher-order deformation theories. Lee et al [39]
presented a general analytical model based on the classical laminate theory to study the
lateral buckling of a laminated composite beam with I-section. They consider different
laminate configurations and boundary conditions. The exact solutions for critical
buckling loads based on classical laminate theory for different boundary conditions are
given by Bertholet [21], Reddy [2] and Whitney [22]. Abd EL-Maksoud [31] used an
advanced finite element formulation to study the buckling of laminated beams. Recently,
Cortinez and Piovan [40] discussed buckling of thin-walled composite beams. Lee and

Kim [41] treated the lateral buckling of channel section composite beams.

1.5.3 Finite element vibration analysis

The idea of finite element method is to divide the domain of interest into some
smaller sub-domains called finite elements. Various procedures have been developed to
achieve more accuracy and rapid convergence of solutions. The most common procedure
is to increase the number of elements while keeping the degrees of freedom of each
element fixed. This technique has been applied for vibration analysis of beams by many

researchers including Zienkiewicz [42], Cook [43] and Reddy [44]. They considered a
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beam element with two nodes at the ends and two degrees of freedom that are, the
deflection and rotation per node. Thomas and Dokumaci [45] presented an internal node
element considering the total deflection and bending slope as the co-ordinates at the two
terminal node and two internal nodes giving eight degrees of freedom to the element.
Thomas and Abbas [46] presented a finite element model for Timoshenko beam element
by considering total deflection, total slope, bending slope and the first derivative of
bending slope as degrees of freedom. They raise the order of element matrices to the
eighth-order. Dawe [47] presented a Timoshenko beam element with three nodes having
two degrees of freedom, namely, the lateral deflection and the cross-sectional rotation per
node. Nickel and Secor [48] derived stiffness and mass matrices of Timoshenko beams
by using deflection, total slope and bending slope as the nodal co-ordinates for the end
nodes and the bending slope at the mid-point, giving rise to matrices of order seven.
Kapur [49] improved this model by taking bending deflection; shear deflection, bending
slope and shear slope as nodal co-ordinates. To [50] considered four degrees of freedom
per node and two nodes at the ends to obtain stiffness and mass matrices for tapered
beams based on the Euler-Bernoulli beam element. In this model, the deflection, rotation,
curvature and gradient of curvature are considered as degrees of freedom. Houmat [51]
investigated the vibration of Timoshenko beams considering four-node element with
variable degrees of freedom. In this model both the element transverse displacement and
cross-sectional rotations are described by a cubic polynomial plus a variable number of
trigonometric sine terms. Addition of trigonometric terms to the base polynomial function
is known as Hierarchical finite element method. Shi et al [52] presented a finite element

model for higher order plate theories. Gupta and Rao [53] applied finite element method

i1



for the analysis of rotating Timoshenko beams. Ramtekkar et al [54] used a six-node
element to obtain natural frequencies of laminated beams. The transverse stress
components have been invoked as the nodal degrees of freedom by applying elasticity

relations.

Finite element method has been used for vibration analysis of tapered beams in
many works. Gupta and Rao [55] used finite element with two nodes at the ends and two
degrees freedom per node to obtain the stiffness and mass matrices for linearly tapered
and twisted beams. Cleghorn and Tabarrok [56] presented a finite element model for free
vibration of lineary-tapered beams. Rao and Ganesan [57] applied conventional finite
element formulation to determine natural frequencies of linearly tapered beams. Most
recently Abd El-Maksoud [31] applied an advanced finite element model similar to the
one presented by To [50] for vibration analysis of tapered composite beams. Nigam [32]
used hierarchical finite element method to investigate the dynamic response of laminated

composite beams.

1.6  Objectives of the Thesis

The objectives of the present thesis are: (1) to investigate the vibration response
and buckling of composite beams with different types of taper configurations; (2) to
develop and evaluate a finite element model with eight degrees of freedom that
incorporates the essential (deflection and slope) and natural (bending moment and shear
force) boundary conditions in the formulation for the vibration and buckling analyses of
tapered composite beams; and (3) to conduct a detailed parametric study of the tapered

composite beams.
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This thesis presents advanced finite element models with eight nodal degrees of
freedom that are based on classical laminate theory (Euler-Bernoulli beam element) and
shear deformation theory (Timoshenko beam element). The advanced finite element
formulation is applied to the vibration and buckling analyses of different types of tapered

beams.

The advanced formulation gives more accurate results by using fewer elements,
which is a good advantage in terms of computational expenses and discretization errors.
The analysis is performed for different types of tapered beams to assess the superiority of
each type of tapered beams with respect to natural frequencies and critical buckling load.

Finally a detailed parametric study on tapered composite beams is conducted.

1.7  Layout of the Thesis
The present Chapter provided a brief introduction and literature survey on
vibration and buckling analysis of composite beams that have uniform and variable

thickness, as well as on higher order finite element method.

In Chapter 2, the conventional finite element formulation based on Euler-
Bernoulli beam theory is developed. The methodology is applied to determine the natural
frequencies and the critical buckling load of uniform thickness, mid-plane tapered and
internally tapered composite beams. Detailed comparison has been made between

different types of tapered beams.
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In Chapter 3 the conventional finite element formulation based on Timoshenko
beam eclement is developed. The effects of shear deformation and rotary inertia are
considered. The developed formulation is applied to vibration analysis of uniform

thickness and tapered composite beams.

Chapter 4 gives the development of a higher order finite element beam element by
considering four degrees of freedom per node. The formulation is called as Advanced
Finite Element Formulation. The advanced model is applied to the vibration and buckling
analyses of different types of tapered composite beams. This chapter also introduces a
higher order finite element model with four degrees of freedom per node based on

Timoshenko beam element.

Chapter 5 is devoted to the parametric study on tapered composite beam taking
into consideration the lengths of the thick and thin sections, laminate configurations,
taper angle and boundary conditions. The parametric study is conducted to determine

natural frequencies and critical buckling loads of tapered composite beams.

The thesis ends with Chapter 6, which provides the overall conclusions of the

present work and some recommendations for future work.
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Chapter 2

Analyses of composite beams based on classical laminate theory

using conventional finite element formulation

2.1 Introduction

Composite structures are increasingly being used in a variety of structural
components in aerospace and automobile industries due to their high strength to weight
and stiffness to weight ratios. Interest in laminated beams as movable elements of
machines that have uniform and non-uniform configurations, and tapered and stepped
configurations, is growing as they are finding a number of applications in modern
industries, such as turbine blades, helicopter blades and robot arms. Understanding the
vibration and stability characteristics of laminated beams is essential to control the

functionality of the beam component during operation.

In this chapter, buckling and vibration analysis of laminated beams are conducted
using conventional finite element formulation. Section 2.2 discusses the one-dimensional
analysis of laminated plate. In Section 2.3 ﬁnité element formulation for uniform
composite beams has been developed. In Section 2.4 the formulation for the mid-plane

tapered beams is developed and the element properties, namely, stiffness, mass and
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geometric stiffness matrices are obtained. Finally, the formulation for the mid-plane
tapered beam model will be modified so as to be applied to the analysis of a variety of
internally-tapered configurations. The chapter ends with example applications involving

different types of tapered beams.

2.2 One-dimensional analysis of laminated plates

Most of the composite structures are designed and constructed as laminations of n
successive layers to create a laminated plate as shown in Figure 2.1. Thus, the theory of
plates is applied for the analysis of the laminated plates. The elementary theory of plates
assumes that, the normal stress (in z-direction) is negligible within the volume of the

plate relative to the other stress components.

h/2

-h/2 X

Figure 2.1  Schematic illustration of a laminated plate

Analysis of laminated plates reduces to one-dimensional analysis in the following two
cases: (1) laminated beams, and (2) cylindrical bending of plate strip.

1) Laminated beams

In this case, the width of the laminated plate (along y-axis) 1s very small compared to the

length (along x-axis). Therefore, changes in the width direction (y-axis) are negligible.
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As a result, the equation of the plate reduces to one-dimensional equation as a function of
x only.

2) Cylindrical bending

Consider a laminated plate shown in Figure 2.2 that is very long along the y
direction and has a finite dimension, /, along the x-axis. Assume that the transverse load
g(x) is uniformly distributed at any section parallel to the x-axis. In this case the
deformation of the plate can be considered to be independent of the coordinate along the
length of the plate. In such a case the deflection w and the displacements along the x-axis
and y-axis are functions of x only, and also all derivatives with respect to y-axis are zero.
A beam element can be considered as a strip of such a plate with length / and width b as

shown in Figure 2.2.

Figure 2.2  Schematic illustration of laminated plate in cylindrical bending
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2.3  Vibration and buckling analysis of uniform thickness-composite beams based
on Classical Laminated Plate Theory (CLPT)
Classical laminated plate theory states that the transverse shear stresses through
the thickness of the laminate are negligible and further, the normal to the middie plane
remains normal after deformation. Therefore, the rotation of the mid-plane about y-axis

(clockwise positive) can be expressed as:

9, (x)=-— @2.1)

where w and ¢, denote the deformation in the thickness direction and the rotation about

y-axis respectively. Neglecting rotational inertia, the equation of motion of a uniform-

thickness laminated beam based on classical laminate theory is given by [21]:

2 2 2
M, N O s ba(x)=bp. O
2 X 2 5

b
ox ox o1’

2.2)

where b and N! denote the width of the beam and the initial axial force per unit width
along x-axis respectively. M denotes the bending moment about the y-axis per unit

width. Considering the beam element as a plate strip in cylindrical bending, M _ is given

by [21]:

Ou, ov, o’w
M, =B, ”‘a}“"Bls”a—;‘Dn 'é’x—g"

(23)
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where u_and v, denote the deformation of the reference point in the mid-plane in x and
y directions, respectively. B, (i =1, j =1, 6) and D,, represent the coefficients of
coupling stiffness and bending stiffness matrices, respectively. In the case of mid-plane
symmetric laminated beams, B,, = B,, =0 and Equation (2.3) reduces to the following
equation:

2
M =D 0w

1
¥ ox?

2.4)

The term g(x)denotes the distributed transverse load on the laminated beam and is

defined as follows [21]:

alx)= az[z . g-j —az(z - lj 2.5)

whereo, and £ are the stress in the thickness direction and the thickness of the laminated
beam, respectively.

The term p, denotes the mass per unit length per unit width of the laminated beam and is
defined as [21]:

Ps :ipk(hk _hk—l) (2.6)

where p, 1s the density of each ply and, #, and 4, , denote the height of the upper and

lower surfaces of each ply with respect to the mid-plane {21]. In the case of constant

density, p, for all plies, equation (2.6) reduces to:
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p, = ph @.7)
Combining Equation (2.4) and Equation (2.2), the Equation of motion for a laminated

beam is obtained as follows:

0’ 0*w , 07w o*w
b—a;;(Dug;-)—bNx . ~bg(x)+bp, —5 =0 2.8)

It is worth noting that by replacing bD;; and bp with EI and p4, respectively, in

Equation (2.8) one may obtain the equation of motion of beams made of isotropic
materials based on Euler-Bernoulli beam theory. When classical laminate theory is
applied for beam analysis, it is common in the literature to call it as Euler-Bernoulli beam

theory.

2.3.1 Finite element model

The finite element model for the laminated beam is constructed using the three-
step procedure given in reference [23]. First the domain (i.e., the length of the beam) is
divided into a set of sub-domains as shown in Figure 2.3. The ub-domains are called

beam elements and interfaces of the elements at the ends are called nodes.
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Figure 2.3  Finite element model of a beam

2.3.1.1 Weak form formulation based on Euler-Bernoulli beam theory

A typical element is isolated from the domain as shown in Figure 2.4 and its
structural behavior is modeled. We use the weak form of the governing Equation (2.8) to
construct the finite element model. In the weak form, w and ¢, that are respectively the
deflection and rotation as shown in Figure 2.4 are the primary variables. 0, (i = 1, 2, 3, 4)

represent secondary variables corresponding to the primary variables. To construct the

weak form of Equation (2.8), a function v is chosen as the weight function.

1]

Q
Q>

o2

Qs
Q4

Figure 2.4 A typical finite element of uniform beam
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Multiplying equation (2.8) by weight function v and integrating over the element:

i 2 2 2 2
d ow 0w 0w
b——| D,, ——— |~ vbN' —vb +vb =0 2.9
!{V dxz ( 11 axz ) X axz Q(x) ps 8f2 }x ( )

Integrating the first term of Equation (2.9) by parts twice and the second term once, the

weak form is obtained as follows:

l 2 2 2 2
j(bD“ AW ot D ha(x)+vbp, 2 Wde +vi(bDnQJ—Vj

° -0.7)7 ox? dx Ox ot’ dx Ox? .
2 2 2
e, S Dy Sl Ay O
dx Ox o dx Ox . dx Ox i
—vbNia—w +vbNi§K =0 (2.10)
ax x={ ' ax x=0

The secondary variables are defined as follows:

d 0*w . Oow
e | Llpp SV _pyt Y
4 [dx( E 6x2J * 6xl:0

d 0w . Ow
e | L pp, 0N Nt O
o; [dx( ! ﬁsz * 6xl:[

2.11)
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Using Equation (2.11), we can rewrite Equation (2.10) as follows:

i 2 2 2
600 S Lot 222 s, 2 o) - 0500)- 0540
0

! 5;'7 ox? Ox Ox

=0 (2.12)

The third step is to develop finite element model based on the weak form given by
equation (2.12). Since, deflection, w, and slope, ¢, must be continuous everywhere in the
domain, they should be continuous at each and every interface between two elements. For

convenience sake, we defineg_=¢. The deflection ¥ and slope, @, at nodes 1 and 2 are

given as:

we(0,1) = wt
we(l, )= we

pl0.0)=- 4 s 2.13)
dx 0
awe
go(l,t) = — =w
dx x=l )

Since there are four boundary conditions per element, we need a fourth-order polynomial

as follows:

Welx,t)=cf +cix+cix? +¢ix’ 2.14
1 2 3 4
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To determine the coefficients,c;, one can write boundary conditions (2.13) using

Equation (2.14):

e e
Wy =G
e __ e
Wy, =0
e e e e32 e73
wy =c¢ +e i+l + eyl (2.15)

W =~ —2cil -3¢l
Rewriting Equation (2.15) in matrix form, we get the following matrix equation:

wl 10 0o 0]

w; _ 0 -1 © 0 c; 2.16)

wel |11 2P|

wel |0 =1 =21 =3*||cf

In short form Equation (2.16) can be written as:

m=[rl{d) 2.17)

e} =[r]"{w} (2.18)

Substituting {c} from Equation (2.18) into Equation (2.14), one can approximate the

deflection of the beam by the following Equation:

w(x, )= W*(x,t)= Wi N, + wiN, + wiN, + wiN, (2.19)
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where N, (j =1,2,3,4 ) denote the interpolation functions. The essential requirements for
the interpolation functions are: (1) They must be such that W° (x,t) satisfies the boundary
conditions given by equation (2.15); (2) The first and second derivatives of N;with

respect to x are not equal to zero; (3) They should be complete and include all lower

order terms in the polynomial leading to the highest term.

The interpolation functions have been obtained using MATLAB ® software as follows:

(See fenl.m function in Appendix-B)

R x? X’
Nl :1—3—IT+2—1—3—
2 3
Nf=-x+2 -2 (2.20)
I 1
X g X }
RO
I I
xz X3
Ne=2_2_
o

Then substituting w from Equation (2.19) into Equation (2.12) and considering
v=N,,N;,N;,N, (because there are four unknowns, w; ), the i" Equation is obtained

as:
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Equation (2.21) can be simplified as follows:

4 d*N d’N, ~dN. dN, d2
0= bD, ——L L+ BN! ! eb NN
Z{;{K okt dx? Y dx dx Ps
. . dN, dN,
~ O/ N,(0)-O;N,(1)- Qz( - ] -Q{———-—]
X x=0

dx
The following coefficients are introduced:

1 2 2
e d Ni d Nj
Kz’j = -([bD“ ‘—d—x—z—jdzz—dx

dN, dN;

G = ij' e

i
M; = [bp,N,N,dx
0
1
= J.bNiQ(x)dx
0

dN. dN,
jok :qf+Q12N,-(0)+Q38Ni(l)+Q26(_—:{;—] +Q:(‘_;l—;cl_)
%=0 x=l

Substituting Equations (2.23)-(2.27) into Equation (2.22), the i th

element is obtained as:
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(2.22)

(2.23)

(2.24)

(2.25)
(2.26)

2.27)

Equation of the finite



S K+ 6w+ M —L|-F =0 (2.28)

For convenience sake, hereafter the superscript e is removed from the equations. In

matrix form equation (2.28) can be written as:

(K]+Gws +[a vy = iy (2:29)

where [K ] ,[G] and [M ] represent stiffness, geometric stiffness and mass matrices

respectively, and {F }is a force vector.

2.3.1.2 Element properties of uniform-thickness composite beam

The element properties (namely, stiffness, mass and geometric stiffness) of a
uniform-thickness laminated composite beam have been obtained by performing the
integrations of Equations (2.23) to (2.25) by MATLAB® software. The results are given

as follows: (See the results obtained from program fen/.m in Appendix-B).

6 -3 -6 -3

2bD 200 31 P
Kl=221 2.30
[x] 7 6 (2.30)
sym 21

156 -221 54 131

Ml}—éﬁi 4> 131 -30r° 231)
420 156 221 '
sym 4]
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36 -3/ -36 -3/

6] bN'! 4> 31 =T 232
301 36 3/ )
sym 4]

2.3.2 Free vibration analysis of uniform-thickness composite beam
In natural vibration, the initial axial force N! =0 and g(x)= 0. The nodal values are

given as:

w()=W,e™  i=v-1 (2.33)
Substituting Equation (2.33) into Equation (2.29) and considering N! = 0, we will obtain:

(K1~ e[} = {0} (2.34)

where @ represents natural frequency of vibration.

Considering 1 = @’ , Equation (2.34) is an eigenvalue problem in the form:

(K] -Anm)mi=lo} (2.35)

where Aand W represent the eigenvalue and the eigenvector respectively. In order to
determine the natural frequencies of uniform-thickness composite beam, MATLAB®

software has been used to solve the equation (2.35). (See unib2.m in Appendix-B)
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The exact solutions corresponding to the Euler-Bernoulli beam theory, for
transverse vibrations of uniform mid-plane symmetric composite beams, having different
boundary conditions are listed bellow [21]. The following nomenclature is used for all

cases;
w, : Natural frequency of the n” mode; L : length of the beam;

A : area of cross-section of the beam; b : width of the beam

p : density of the composite material ; D,,: bending stiffness coefficient
1) Simply supported beam

2

bD.

®, =(1’—’5) 2Zu n=1,2 3. (2.36)
L pA

2) Fixed-fixed beam
2
W, = (g—”—) Dy, n=1,23.. (2.37)

For the first three modes, the values of £, are given as:
¢, =4.732 ¢, =17.853 ¢, =10.996

3) Fixed-free beam

o, =2 [P0 n=1,23 (2.38)
LN o
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For the first three modes, the values of &, are given as:
&, =3.516 &, =22.034 £, =61.701

2.3.3 Buckling analysis of uniform-thickness composite beam

In the study of buckling problem, we consider an axial compressive load as:

N =-P (2.39)

Further, only the static case with no external transverse load is considered. Considering

Equation (2.39) and the static case as mentioned in the above, Equation (2.29) reduces to:

(x]-Hc )} ={o} (2.40)

where matrix [5 ] is defined as:

[6]= R%[G] (2.41)

Substituting Equation (2.32) into Equation (2.41), matrix [5] is given by:

36 -3/ -36 -3/

[-—]_ b 41> 31 = (2.42)
301 36 3l '
sym 477
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Equation (2.40) is an eigenvalue problem where P represents the eigenvalue. The system
represented by equation (2.40) has N eigenvalues where N represents the total degrees of

freedom. The smallest eigenvalue will be the critical buckling load.

The exact solutions corresponding to the Euler-Bernoulli beam theory for critical
buckling loads of uniform mid-plane symmetric composite beams, having different
boundary conditions are listed below [21]. The following nomenclature is used for all

cases;

P - critical buckling load,; L- length of the beam;

Dy, - bending stiffness coefficient. b-width of the beam

1) Simply supported beam

7°bD
P, ==t (2.43)
2) Fixed-fixed beam
47°bD
P, = -——]—74]* (2.44)
3) Fixed-free beam
)
P = L 2.45
cr 4L2 ( )
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2.3.4 Free vibration analysis of laminated beam-column
A beam under compressive axial load is well known as beam-column since it exhibits
behaviors of both the beam and column. For a beam-column the Equation (2.29) changes

to the following form:

(]~ P[G]- 2lm]) 7} = {o} (2.46)

where P is the prescribed axial load and P < P.;. One may note that compressive axial
load reduces the total stiffness of the element. Equation (2.46), again is an eigenvalue

problem where A = . Here o represents the natural frequencies of the beam-column.

24 Finite element analysis of tapered composite beam

In general, there are three types of tapered beams, externally-tapered, mid-plane
tapered and internally-tapered beams. Externally-tapered beams as shown in Figure 2.5
can be modeled as combinations of elements with different thickness. The thickness for

cach element is constant. Thus, each element can be considered as uniform beam.

Line of symmetry

Figure 2.5  Schematic illustration of externally-tapered beam
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Mid-plane tapered beams are in the form of Figure 2.6. In this case the centerline of each

ply is not a straight line instead it is a function of x along the length of the element.

Resin pocket

Figure 2.6  Schematic illustration of mid-plane tapered beam

Internally-tapered beams have been designed and developed in different types as shown

in Figure 2.7.
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Continuous plies interspersed (Model D)

Figure 2.7 Tapered beam models, A, B, C and D



2.4.1 Governing equation for mid-plane tapered beam
In this Section, the Equation of motion of a tapered beam is derived. The constitutive

equation for laminated beam is given by Equation (2.2):

o'M S O'w o'w
b ~+bN. +bglx)=5b 2.2
o TN thal)=be @2)
where M _ 1s the bending moment per unit length about y-axis given by [21]:
n B
A@:ijﬂz (2.47)

k=1p,

where n represents the total number of plies in the laminate, and %, , and 4, are the

distances to the lower and upper surfaces of each individual ply with respect to x axis.

o, denotes the stress along the x direction. For a ply, the relation between stress and

strain is given by [21]:

O-x foraed ngx (248)

where Q,, is the first coefficient of the transformed ply stiffness matrix and ¢_ is the total

strain along x axis which is given by [21]:

£, =& +zk, (2.49)

g, and k,_ denote the strain of the reference point and the curvature of the beam in the x-

direction. In a tapered beam, all plies rotate by angle ¢ with respect to the x-direction.
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Hence, the transformed strain along the taper axis (x') can be determined by neglecting

strain in the thickness direction and shear strain as follows:

g, =&, cos’(¢) (2.50)
Since x' lies on the two-dimensional plane of the individual ply, Q,, relates o, and &,

as:
o =0yt, 2.51)

In order to obtain the bending moment along x-axis, we must consider the effect of &, in
the x-direction, which can be obtained by transformation of o by the angle of ¢ and

neglecting o .and y ... Therefore we have:

o, =0, cos’(p)=0,¢, cos’(§)= 0,2, cos'(¢) (2.52)

Considering Equations (2.47), (2.51) and (2.52), the bending moment for the laminated

beam along x-axis is derived as:

. i B
M, = J.cos“(q})[zélg;’ +zandez (2.53)
k=1 gy

i
1

As one can see from Figure 2.8 the distances to the lower and upper surfaces of the ™ ply

with respect to the x’-axis that are denoted by k, , and 4, are related to the ply thickness

by the following relation:

(B, =1y, )eos(g) =1, (2.54)
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Figure2.8  The K" ply of the mid-plane tapered beam

Performing integration of the Equation (2.53), the bending moment of the laminated

tapered beam is obtained as follows:

,
[

M, =3 206 s )1 S oos' OB

.
hy

Equation (2.55) can be simplified to the following equation:

k=1

M, :Z{(hrz Zhizljcos (¢)Q115 +(h,3 3 £31j0054(¢)Q11 :i

Equation (2.56) is simplified to the following form:

M, = B, (x)e! cos*(g)+ Dy (x)cos* (g )k,

where
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(2.56)

(2.57)



(h;:z - hﬁ] El (2-58)

(2 —n2, )0, (2.59)

(2.60)

For a mid plane symmetric laminate B;; = 0 [21]. Thus the bending moment reduces to:

0

2w
ox?

M, =D, (x)cos*(4) (2.61)

Substituting these equations into Equation (2.2), the equation of motion for a tapered

beam is obtained as:

o? o’w . 0w o’w
—a-;z—(bpu(x)cos‘*(g») o j—bNx P —bg(x)+bp, =0 (2.62)

After redoing the derivation explained in Section 2.3.1, one can get the element

properties for a mid-plane tapered beam as follows:

f d’N. d’N,
K, = j bD,, (x)cos*(p) 7 d—zjdx (2.63)
0
Lo dN.dN,
G, = j bN'! % , L dx (2.64)
X X
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I
M, = [bp,N.N dx (2.65)
0

2.4.2 Element properties for mid-plane tapered beam
To construct the stiffness and mass matrices for a tapered beam, one should note
that in tapered case, the cross-section area and the value of D;; are not constant through

the length of the beam. D;; can be written by the following Equation [21].

D, (x) = il:tllcflf +£1k§:l(—Q_n)k (2.66)

where ¢, for each ply is given by:

t

The term (Q,,), denotes the first coefficient of the transformed ply stiffness matrix of

t=h,—h_ = (2.67)

individual ply, which is given by [21]:

0,, =cos*(8)Q,, +sin*(0)Q,, +2cos’ (O)sin’ (H)Q,, +4cos’ (B)sin*(9)Q;, (2.68)

where 8 is the fiber orientation angle and @, are the coefficients of the ply stiffness

matrix for each ply which are given in reference [21]. Z, is the distance between the

centerline of the tapered ply and the mid-plane of the laminate.

For the ply &, Z, is a function of x as shown in Figure 2.8.

Z, =mx+c (2.69)
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Taper angle, ¢

Figure 2.9  Centerline of a tapered ply

where c is the intercept of the centerline of the ply from the mid-plane line and m is the

slope of the line that is given as:

m = —tan(g) (2.70)
¢ denotes the taper angle of the laminated beam. Substituting Equation (2.69) and (2.67)

into Equation (2.66), we can get:

3

Dy x) ZLos mx+c)k 12¢co

k=1

3(¢)}( N @.71)

Substituting Equation (2.71) into Equation (2.63) it can be shown that:

K; f beos’ (¢){Z(—5——5(mx+c)i] —-—5—@}(1) %%@x 2.72)

T cos( 12 cos®

The stiffness matrix [K ] is obtained by substituting the shape functions into Equation

(2.72) and performing the integration as specified by Equation (2.72). Integration has
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been performed using MATLAB® software to determine the stiffness matrix for

symmetric mid-plane tapered beams. (See fenl.m in Appendix-B).

K, K|, K K}
[Ke]:C053(¢ K1:z Kziz Kz} K2:4
K, Ky K Ky
K, K, K3 K,

(2.73)

where the coefficients of the stifthess matrix are given as follows:

n

. — \  24m*I* +60clm +60c” +5¢°
K = Zb(Qll)ktk 573 :
k=1

e (= 1 \14m*I* +40clm + 60c” + 5t}
Ky, = Zb(Qn )ktk( _) :
k=1

10 P2
e N 1\14m’I* +40clm + 60c* + 5t}
Ky, = Zb(Qn)ktk[_"’] 2 ‘
= 5 I
. (= 1 \34m*I* +80clm+60c” + 5t}
K, :Zb(Qn)ktk(_Tb‘) B :
k=1

8m’I* +30clm +60c” + 5t}
151

Kzez = Zn:b(gn )ktk
k=1

. (= 1 \14m*I* +40cim + 60c* + 5¢)°
Ky = ;b(Qu)ktk (16] JE :

26m*1” +60clm +60c” + 5t

K:ze4 :zn:b(gl)ktk
k=1

301
L Sy 24m*1I* + 60clm +60c” +5¢;°
Ky = Zb(Qn )ktk 573 .
k=1

e S (= 1 \34m*I* +80chm + 60c” +5¢,°
Ky = ;b(Qll)k tk(ﬁ) ]2 :
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38m’1* +90ckm +60c” + 5t

Kf4 :ib(gll)ktk 151
=1

(2.74)

The geometric stiffness matrix [G] does not change by tapering the laminate. Also, the
only change in mass matrix is due to the change in cross-section between thick and thin

sections. The geometric stiffness matrix is given by:

36 -31 -36 -3/

6] bN! ZVERC Y B 275
30/ 36 3 )
sym A7

The mass matrix for tapered laminated beam is obtained as (See fenl.m in Appendix-B):

1 1 9 1 ]
—3ml+1 —— —A\ml+2 ——\6ml +13
33 (3ml +13g) 4201(7ml+22g) 140(m +2g) 420( ml+13g)

1 1 1
—1*(3ml +8 ————I(7mil +13 ]l +2
] po <o Gmi+32) ?20(m+ g) £ (ml +2¢)
—(10ml +13 —1{(15ml + 22
S(lomi+13g) o 1{15mi +22¢)

R
sym 540 [ (Sml + Sg) |

(2.76)
where g denotes the distance to the upper surface of the laminated beam from the mid-

plane.
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2.4.3 Finite element modeling for taper models A and C

Models A and C have the same geometry except that in model A all dropped-off
plies are replaced by resin pocket. Also each finite element of model C can be considered
for model A. Here model C is analyzed in full detail and the results are extended to model

A. Since all models are symmetric, consider the upper half of the beam made with

models A and C as shown in Figure 2.10.

el.l el.2 el.3
(a) Model C

Node 2

Node 1

e ,,}

(b) Model A

Figure 2.10  Schematic illustration of finite element for (a) model C and (b) model A

43



Although the resin pocket is not laminated, in order to proceed with the formulations as
in the case of the laminated composite, let us consider the resin pocket to be made of

imaginary layers with the same thickness as the other layers in laminated element.

As it is seen in Figure 2.10 the lengths of the layers in resin section are not equal.
Therefore, the integration can not be performed from x = 0 to x = [ and it should be the
summation of integrations for each segment. For convenience sake the following

notations are used:

d’N, d’N,
SN2 2.77)
dx*  dx
For an element with the length 1, K is given by:
I 3! !
K; = [bD,,(x)Rdx = [bD,,(x)Rebx + [ D), (x)Rdx (2.78)
0 0 n

One should note that in this case, to calculate D;,(x), the plies located at resin pocket

should be taken into account. Therefore we have:

n2 3

D, (x)= Z(COS(¢) oo ;(¢))(an) ;(cotsk@) 12c[s

T ¢)]( ) (279)

where n/ and n2 denote the number of drop-off plies and number of imaginary plies
considered together as resin pocket respectively. Notations » and p are used to indicate

the imaginary resin layer and composite material prepreg.
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The coefficients of the element matrices for tapered beams designated as model A and
model C have been computed numerically by using MATLAB® software. (See kmidd.m

and kmidC.m in Appendix-B)

2.4.4 Finite element modeling for taper models B and D

Finite element model for typical models B and D are shown in Figures 2.11. For
convenience, each model is meshed by three elements. As one can see each element in
model B is similar to the corresponding element in model D except that in model B the
drop-off plies above resin pocket are the same for all elements in the mesh but in model

D the plies above resin pocket are different for each element mesh.
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el.1 el.2 el.3

(a) Model B

<+ el1 P 12 P )3 »

(b) Model D

Figure 2.11 FEM model for tapered beams: (a) model B and (b) model D

To explain the procedure, we consider a typical element of model D as shown in Figure
2.12. The resin pocket is considered as lamination of some plies with different lengths.
One can see that the area above uniform layers is similar to a mid-plane taper. Thus the
coefficients of stiffness matrix given by Equation (2.74) should be calculated as the

summation of integrations of each sub-section:
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(Ki}f)omL = (kg )O-L[ +(K; )14_,,2 +(K§)H (2.80)

Node 2

Node 1

L ____>|L ———’!

Figure 2.12  First part of finite element model D

where K are computed using Equation (2.74). As shown in Figure 2.12 layers below

the resin pocket are laid up uniformly. Therefore for these layers the taper angle should
be set as zero. Individual routines have been developed using MATLAB ® software to
calculate stiffness and mass matrices for internally-tapered beams, models A, B, C and D.

The programs and routines have been listed in the next section.

2.5 Computer program and flowchart

In this Section the important routines developed for vibration and buckling
analyses of uniform-thickness and tapered composite beams are listed. The flowchart
shown in Figure 2.11 summarizes the procedures of the main computer programs in

MATLAB ® software. Listing of routines and programs are provided in Appendix-B.
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Dmat
Qmat

Elindex
Sycbe

Kmmat bl

Kmmat b2

Kmmat_ba

Kmmat bb

Kmmat bc

Kmmat bd

This function calculates D matrix for a laminate composite
This function calculates Q matrix for a laminate composite

Calculates index for assembling matrices

Apply system boundary condition

Stiffness and mass matrices for isotropic uniform Euler —
Bernoulli beam

Stiffness and mass matrices for laminated composite
uniform Euler —-Bernoulli beam

Stiffness and mass matrices for laminated composite Euler-
Bernoulli beam made with model A

Stiffness and mass matrices for laminated composite Euler-
Bernoulli beam made with model B

Stiffness and mass matrices for laminated composite Euler-
Bernoulli beam made with model C

Stiffness and mass matrices for laminated composite Euler

Bernoulli beam made with model D
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INPUT

1. Material properties

2. Nodal connectivity data
3. Laminate configuration
4. Thickness of ply

5. Boundary condition

6.

Number of elements

J

Calculating element length and number of degrees of freedom

{§

Initializing global stiffness and
mass matrices to zero

1l

Start loop over the number of
> clements

1

Call Functions
1.Omat.m
2.Dmat.m
3.elindex.m
4 Element matrices

¢

Repeat
over the
elements

Application of boundary
condition call sysbc.m

l

Solve for eigenvalues

Fnd

Figure 2.11 Flowchart of the main computer program
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2.6  Example applications

In this Section a set of problems are solved for free vibration and buckling
analyses of composite beams and free vibration of composite beam-columns to validate
the formulations presented. The problems are solved for laminated beams in cylindrical

bending. The results are compared with the exact solution in the case of uniform beams.

2.6.1 Uniform-thickness composite beam

2.6.1.1 Vibration analysis of uniform-thickness composite beam

Example 2.6.1.1

Problem description

A uniform-thickness composite beam with simply supported boundary condition made up
of 144 plies is to be analyzed for free vibration. Mechanical properties are: E; is 144 GPa,
E;is 12.14 GPa, v,,1s 0.21, v,, 15 0.288, G}, is 4.48 GPa, pis 1660.80 kg/m’.

The geometric properties of the beam are: length (L) is 219.5 mm, individual ply

thickness (#) is 0.1542 mm and the laminate configuration is[0, /+ 45, /% 45,, /- 45,,]

s -

The problem is solved using different number of elements to obtain the desired accuracy.
The results are compared with the exact solution as well as with the results given in

reference [32].

Table 2.1
beam

The lowest three natural frequencies (x 10°rad/sec) of a simply supported

7.937 7.968 7.943 7.939 7.84
31.748 35.238 32.124 31.874 31.3
71.434 88.574 79.286 72.739 70.5




Example 2.6.1.2

Problem description

Uniform-thickness composite beams with (a) simply supported, (b) fixed-fixed and (c)
fixed-free boundary conditions as shown in Figure.2.12 made up of 36 plies of NCT/301
graphite-epoxy are to be analyzed for free vibration. Mechanical properties are: E; is
113.9 GPa, E; is 7.9856 GPa, v, is 0.0178, v,, is 0.288, Gi, 1s 3.138 GPa, pis 1480
keg/m’.

The geometric properties of the beams are: length (L) is 25 cm, individual ply thickness

(t;) 1s 0.125 mm and the laminate configuration is (0/90) os.

The problem is solved using different number of elements to obtain the desired accuracy.

25 cm

(a) Simply supported uniform composite beam

25 cm

(b) Fixed-Fixed uniform composite beam

|< 25 cm >|

( ¢ ) Fixed-Free uniform composite beam

Figure 2.14 Uniform-thickness composite beams (example 2.6.1.2)
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The results are compared with the exact solution given by Equations (2.35)-(2.37). Tables
2.1 to 2.3 give respectively the natural frequencies for the simply supported, fixed-fixed

and fixed-free beams for mid-plane symmetric composite laminated beams.

Table 2.2
beam

The lowest three natural frequencies (x 10’ rad/sec) of a simply supported

1.366 1.516 1372 1.368 1367
5.466 6.951 6.068 5.531 5.49
12.300 - 15.252 13.652 12.52

The lowest three natural frequencies (x10° rad/sec) of fixed- fixed beam

3.100 - 3.148 3.111 3.102
8.539 - 11.352 8.711 8.619
16.743 - - 20.259 17.100

The lowest three natural frequencies (x 107 rad/sec) of fixed-free beam

30.511 48.199 30.77 30.61 30.5
85.439 - 104.07 86.50 86.1

One observes that by increasing the number of elements to 4, the results for all the above
boundary conditions get close enough to the corresponding exact solutions. Another
interesting observation is that the natural frequencies for fixed-free boundary condition
are the smallest compared to the cases of simply supported and fixed-fixed boundary

conditions and the largest natural frequencies are for fixed-fixed boundary conditions.
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2.6.1.2 Buckling analysis of uniform-thickness compeosite beam

Example 2.6.1.2 is considered to solve for critical buckling load. The mechanical
properties and the geometry of the beams remain the same as example 2.6.1.2. The
critical buckling load is obtained using FEM formulation explained in Section 2.3.2 and

the results are compared with the exact solution given by Equations (2.58)-(2.60).

Table 2.4 gives respectively the critical buckling loads for the simply supported, fixed-
fixed and fixed-free beams based on the cylindrical bending theory for mid-plane

symmetric composite laminated beams.

Table 2.5 Critical buckling loads (x10°N) for uniform composite beam with
different boundary conditions

Simply
supported
Fixed- 157.54 - 159.62 159.01 158.70
Fixed
Fixed- 9.847 9.921 9.852 9.847 9.847

Free

Table 2.4 shows that by using 3 elements for fixed-free and simply supported boundary
conditions the results obtained by MATLAB® are accurate enough compared to exact
solutions whereas in fixed-fixed boundary condition we need more elements to have an
accurate result. This is due to constraining four degrees of freedom in fixed-fixed case
whereas for simply supported and fixed-free boundary conditions only two degrees of

freedom are constrained.

53



2.6.1.3 Vibration analysis of uniform-thickness beam-column

Example 2.6.1.2 is considered for vibration analysis of a beam-column. In this
case, the beams are loaded with a compressive axial load. The axial load is increased
gradually as percentages of the critical buckling load to investigate the effects of axial
load on the natural frequencies of beam-columns. Figure 2.15 illustrates that the ratio of
natural frequency of beam-column under axial compressive load to natural frequency of
the same beam without axial load (®/m,;) vs. the percentage of critical buckling load, P,
for simply supported, fixed-fixed and fixed-free composite beams. One should note that

P, in Figure 2.15 is related to the corresponding boundary conditions for each case.

i

e Fixed-Free

e SiMPIY-
Supported
—— Fixed-Fixed

Figure 2.15 Frequency ratios vs. the percentage of critical buckling load for laminated
beam-columns

Figure 2.15 shows that for all the above boundary conditions, the natural frequency

decreases with the increase in the percentage of the corresponding buckling loads.
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Another interesting result is that the rate of change of the natural frequencies for all

boundary conditions is almost the same.

2.6.2 Tapered composite beam

Example 2.6.2.1

A mid-plane tapered composite beam as shown in Figure 2.6 has the following geometric
properties: height is 1.219 mm,; length is 12.2 mm (taper section). The configuration of

the thick section is [+45, ]S and that of the thin section is[+45), . There are 8 plies in the

thick section and 4 plies in the thin section. The angle of taper is equal to 1.43°. The thick
section is fixed and thin section is free. The beam is meshed with two equal-length
elements. The mechanical properties are the same as the mechanical properties of
example 2.6.1.1. In Table 2.6, the results of the formulation obtained in the present

chapter have been compared with the results of the same example given in reference [32].

Table 2.6 The lowest three natural frequencies (x10° rad/sec) of fixed-free beam

1 0.453 0.4430
2 2.29 2.1987
3 6.69 6.4743

2.6.2-1 Free vibration analysis of tapered beam model A

Example 2.6.2.2

Tapered beam made of model A as shown in Figure 2.10 is considered with 36

and 12 plies at thick and thin sections respectively, which results in 24 drop-off plies. The
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configuration of the thick section is (0/90) ¢s and that of the thin section 1s (0/90) 35 The
problem is solved for different taper angles while the height ratio of thick and thin
sections remains constant. As a result, the lengths of the beams change according to
Table 2.7. The mechanical properties of the composite material are the same as in
example 2.6.2.2. The thickness of each individual ply is 0.125 mm. The mechanical
properties of the epoxy resin are given as: Elastic Modulus (E) is 3.93 GPa, Shear
Modulus (G) is 1.034 GPa and Poisson’s Ratio (v) is 0.37. The beam is meshed by using
three elements. The problem is solved for free vibration and the results for simply

supported, fixed-free and fixed-fixed laminated beams are listed in Tables 2.8-2.10,

respectively.
Table 2.7 The angles and length of the tapered beams
0.1 0.5 0.75 1.0 1.5 2.0 2.5 3.0
1 0.8594 | 0.1719 | 0.1146 | 0.08594 | 0.0573 | 0.0430 | 0.0344 | 0.0286
190 38 25.46 19 12.7 9.54 7.36 6.36

Table 2.8 Natural frequencies (x 10 rad/sec) of simply supported laminated beam of

model A

0. . . .0654

0.5 0.1712 0.7172 1.6355
0.75 0.3852 1.6138 3.6800 .

1.0 0.6848 2.8690 6.5422 12.7907
1.5 1.5408 6.4552 14.7195 28.7783
2.0 2.7391 11.4754 26.1669 51.1592
2.5 4.2797 17.9293 40.8835 79.9317
3.0 6.1624 25.8165 58.8683 115.0936
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Natural frequencies (x10° rad/sec) of fixed-free laminated beam of model

Table 2.9
A
. 0.0180 0.0470 0.0947
0.5 0.1023 0.4508 1.1769 2.3673
0.75 0.2303 1.0143 2.6481 5.3264
1.0 0.4094 1.8032 4.7078 9.4692
1.5 0.9213 4.0571 10.5922 21.3050
2.0 1.6378 7.2124 18.8298 37.8740
2.5 2.5590 11.2697 29.4200 59.1748
3.0 3.6847 16.2259 42.3618 85.2058
Table 2.10  Natural frequencies (x10°rad/sec) of fixed-fixed laminated beam of
model A

0.1 . 0.0472 .1069

0.5 0.3994 1.1812 2.6736 5.5440

0.75 0.8987 2.6571 6.0157 12.4740
1.0 1.5974 4.7249 10.6947 22.1764
1.5 3.5946 10.6306 24.0618 49.8941
2.0 6.3901 18.8980 42.7746 88.6968
2.5 9.9840 29.5265 66.8315 138.5809
3.0 14.3760 42.5152 96.2307 199.5425

2.6.2.2 Free vibration analysis of tapered beam model B

The tapered beam of example 2.6.2.2 is considered to be made as model B. The
beam is meshed with three equal-length elements. As it is seen in Figure 2.11, in the first

and second elements, there are 16 and 8 uniform plies respectively. The problem is
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solved for free vibration and the results obtained for simply supported, fixed- free and

fixed-fixed boundary conditions are listed in Tables 2.11-2.13 respectively.

Table 2.11  Natural frequencies (x10%rad/sec) of simply supported laminated beam

model B

0.1 0.0164 0.0342 0.0673 0.1313
0.5 0.4107 0.8571 1.6839 3.2836

0.75 0.9242 1.9286 3.7888 7.3882
1.0 1.6431 3.4287 6.7356 13.1345
1.5 3.6976 7.7151 15.1550 29.5522
2.0 6.5749 13.7169 26.9417 52.4536
2.5 10.2760 21.4348 42.0954 82.0860
3.0 14.8021 30.8698 60.6156 118.2004

Table 2.12  Natural frequencies (x 10" rad/sec) of fixed-free laminated beam model B

0.1 0.0081 . .
0.5 0.2032 1.2257 2.4049
0.75 0.4573 2.7579 54110
1.0 0.8130 4.9029 9.6196
1.5 1.8295 11.0301 21.6436
2.0 3.2531 19.6115 38.4765
2.5 5.0842 13.6742 30.6426 60.1173
3.0 7.3234 19.6930 44.1247 86.5651
Table 2.13  Natural frequencies (x 10" rad/sec) of fixed-fixed laminated beam model B

0.1 0.0494 2327
0.5 1.2359 5.8169
0.75 2.7809 . 13.0881
1.0 4.9438 10.9823 23.2678
1.5 11.1236 24.7098 52.3525
2.0 . 19.7752 43.9278 93.0709
2.5 13.0589 30.8985 68.6354 145.2286
3.0 18.8078 44.4935 98.8319 209.4080
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As one can observe the frequencies for all the boundary conditions and taper angles of
model B are higher than the results for tapered beam of model A. This result was
expected because the tapered section of model A is less stiff than the model B and it is
due to a large pocket of resin in model A and due to the fact that the stiffness of resin
material is lower than the stiffness of the fibers. In both cases the frequency is increased
as the taper angles increased. The reason for this behavior is that increasing the angles
results in decreasing the length and the beam becomes shorter and therefore the |

frequency of vibration increased.

2.6.2.3 Free vibration analysis of tapered beam model C

The tapered beam of example 2.6.2.2 is considered to be made as model C. The
beam is modeled with 3 equal-length elements. As one can see the total volume of the
resin pocket for models C and B are the same but they are distributed at different
locations in each model. The problem is solved for free vibration and the results obtained
for simply supported, fixed- free and fixed-fixed boundary conditions are listed in Tables

2.14 -2.16 respectively.

Table 2.14  Natural frequencies (x10*rad/sec) of simply supported laminated beam
model C

0.1 0.0071 0.0305 0.0690 0.1363
0.5 0.1790 0.7628 1.7269 3.4083
0.75 0.4028 1.7165 3.8854 7.6687
1.0 0.7160 3.0511 6.9073 13.6330
1.5 1.6110 6.8689 15.5410 3.0673
2.0 2.8638 12.2037 27.6273 54.5283
2.5 4.4745 19.0672 43.1653 85.1957
3.0 6.4429 27.4549 62.1538 122.6735
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Table 2.15

Natural frequencies (x 10 rad/sec) of fixed-free laminated beam model C

0.1 0.0045 0.0193 0.0504 0.0998

0.5 0.1148 0.4843 1.2607 24972
0.75 0.2583 1.0897 2.8366 5.6188

1.0 0.4593 1.9374 5.0428 9.9889

1.5 1.0333 4.3589 11.3460 22.4744

2.0 1.8370 7.7489 20.1699 39.9527

2.5 2.8701 12.1071 31.5137 62.4227
3.0 4.1327 17.4339 45.3767 89.8825

Table 2.16  Natural frequencies (x10*rad/sec) of fixed-fixed laminated beam model C

0.1 0.0172 0.0510 0.1139 0.2404
0.5 0.4307 1.2749 2.8487 6.0101
0.75 0.9692 2.8689 6.4103 13.5223
1.0 1.7253 5.1050 11.3951 24.0399
1.5 3.8763 11.4739 25.669 54.0881
2.0 6.8910 20.3972 45.5748 96.1524
2.5 10.7666 31.8638 71.2066 150.0229
3.0 15.5028 45.8880 102.5305 216.3160

2.6.2.4 Free vibration analysis of tapered beam model D

The tapered beam of example 2.6.2.2 is considered to be made as model D. The

problem is solved for free vibration and the results obtained for simply supported, fixed

free and fixed-fixed boundary conditions are listed in Table 2.17-2.19 respectively.
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Table 2.17
model D

Natural frequencies (x10"rad/sec) of simply supported laminated beam

0.1 0.0196 0.0380 0.0758 0.1462
0.5 0.4915 0.9526 1.8957 3.6559
0.75 1.1059 2.1435 4.2654 8.2258
1.0 1.9662 3.8107 7.5829 14.6236
1.5 4.4245 8.5748 17.0616 32.9030
2.0 7.8670 15.2455 30.3317 58.4937
2.5 12.2948 23.8239 47.3930 91.3956
3.0 17.7089 34.3114 68.2454 131.6081
Table 2.18  Natural frequencies (x10*rad/sec) of fixed-free laminated beam model D
0.1 0.0817 0.0480 0.05085 0.1077
0.5 0.2044 0.6201 1.2712 2.6928
0.75 0.4601 1.3953 2.8603 6.0588
1.0 0.8180 2.4806 5.0850 10.7711
1.5 1.8408 5.5818 11.4412 24.2348
2.0 3.2731 9.9242 20.3397 43.0833
2.5 5.1154 15.5087 31.7801 67.3163
3.0 7.3683 22.3360 45.7622 96.9329
Table 2.19  Natural frequencies (x 10° rad/sec) of fixed-fixed laminated beam model D

0.1 0.0240 0.0506 0.1935 0.2532
0.5 0.6022 1.2655 2.9838 6.3309
0.75 1.3551 2.8473 6.7135 14.2447
1.0 2.4090 5.0620 11.9353 25.3239
1.5 5.4211 11.3893 26.8542 51.6979
2.0 9.6387 20.2474 47.7405 101.2974
2.5 15.0627 31.6361 74.5939 158.2789
3.0 21.6944 45.5551 107.4141 227.9245
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The fundamental frequencies of different types of tapered beam are compared in Figure
2.16. As one can observe the fundamental frequency for model D is higher than the
others, this result was expected for model D because the number of uniform plies in
model D are 12 in the first element and 8 in the second element, whereas, in model B
there are 8 uniform plies in first element and 4 in the second one. As it is observed in

tapered formulation, the slope decreasesD,,, bending stiffness. Another feature of

importance is that the value of the frequencies of models A and C are almost the same.
This shows that the effect of tapering on the frequency are more than the effect of resin

material.

i

—&— Model A

—Z~Model B

Figure 2.16 Fundamental frequencies for simply supported tapered beam models,
A,B,Cand D
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2.6.2.5 Buckling analysis of tapered composite beam

The tapered beams described in the example 2.6.2.2 are considered for buckling

- analysis. The critical buckling loads obtained for simply supported, fixed-free and fixed-

fixed boundary conditions are listed in Tables 2.20-2.23.

Table 2.20  Critical buckling load (x10* N) of tapered laminated beam model A

0.1 0.1399 0.0565 0.5556
0.5 3.4995 1.4146 13.8915
0.75 7.8733 3.1827 31.2535
1.0 13.9955 5.6576 55.5557
1.5 31.4799 12.7256 124.9608
2.0 55.9394 22.6133 222.0540
2.5 87.3554 35.3131 346.7614
3.0 125.7041 50.8153 498.9880
Table 2.21  Critical buckling load (x10* N) of tapered laminated beam model B

0.1 0.4504 0.1030 0.8284
0.5 11.2596 2.5771 20.7094

0.75 25.3332 5.7983 46.5941
1.0 45.0341 10.3073 82.8287
1.5 101.3099 23.1867 186.3302
2.0 180.0644 41.2088 331.1684
2.5 281.2660 64.3647 517.2791
3.0 404.8741 92.6427 744.5802
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Table 2.22

Critical buckling load (x10° N) of tapered laminated beams model C

0.1 0.1490 0.0650 0.6164
0.5 3.7225 1.6254 15.4100
0.75 8.3810 3.6570 34.6719
1.0 14.8979 6.5006 61.6322
1.5 33.5098 14.6218 138.6287
2.0 59.5466 25.9828 246.3420
2.5 92.9887 40.5750 384.6906
3.0 135.8107 58.3874 553.5693
Table 2.23  Critical buckling load (x10*N) of tapered laminated beam model D
0.1 0.4534 0.0866 0.9294
0.5 11.3346 2.1662 23.2341
0.75 25.5014 4.8737 52.2739
1.0 45.3320 8.6371 92.9240
1.5 101.9722 19.4884 209.0315
2.0 181.2222 34.6340 371.4933
2.5 283.0359 54.0913 580.2208
3.0 407.3539 77.8487 835.1000

As one can see the critical buckling loads increase by increasing taper angle for all types
of boundary conditions and taper models. Figure 2.19 shows the effects of taper angle on
the critical buckling load for a simply supported tapered beam model D. As it is seen for
all taper angles, taper beam model D gives the highest value of critical buckling load. The

lowest values of critical buckling load belong to the tapered beam model A.
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Figure 2.19  Critical buckling load for simply supported tapered beam

2.7 Conclusions and discussions

In this Chapter, the conventional finite element model was developed for the
vibration and buckling analysis of uniform-thickness and tapered composite beams based
on classical laminate theory. In the conventional formulation, we considered two nodes
per beam element. Two degrees of freedom, deflection and rotation, are considered for
each node. The formulation has been applied to obtain natural frequencies and critical
buckling load of umform-thickness and tapered composite beams. In the case of uniform-

thickness beams, the results obtained have been compared with the exact solutions.

Finite element model was developed for analysis of tapered composite beams.

Various types of tapered composite beams, viz. model A, staircase {(model B), overlapped

(model C) and continuous plies interspersed (model D) have been investigated for natural
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frequencies and critical buckling loads under different boundary conditions. Tapered
beam made with model D has the highest stiffness, model B and C take the second and
third ranks respectively. Model A has the lowest stiffness. Therefore the natural
frequencies and critical buckling loads of model D are the highest and consequently
models B, C and D occupy the second, third and forth positions. Natural frequencies of

model D are about three times more than the corresponding results for model A.

Observation of the results obtained for different boundary conditions for uniform
beams as well as non-uniform beams reveals that the natural frequencies for fixed-fixed
support are the highest. Simply supported and fixed-free supports take the second and

third positions.

By increasing taper angles while keeping the thickness constant, the natural

frequencies and critical buckling loads increase for all types of tapered beams.
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Chapter 3

Vibration analysis of laminated composite beams based on

First-order Shear Deformation Theory (FSD'T)

3.1 Introduction

The classical theory of laminate describes, with a good precision, the mechanical
behavior of thin laminate. In the case of thick laminate (ratio of the length to thickness
less than 10), the results derived using the classical laminate theory show significant
difference with the experimental results [2]. Also in composite materials the ratio of
Young’s modulus in fiber direction to the in-plane shear modulus is very high. This leads

to a larger influence of shear deformation.

The first-order shear deformation theory (FSDT) improves the classical laminate
theory by introducing the effects of transverse shear deformation. The first-order shear
deformation theory, when considered for beams, is called as Timoshenko beam theory.
The basic assumptions in Timoshenko beam theory are similar to classical laminate
theory except that in Timoshenko theory, the transverse normal does not remain
perpendicular to the mid surface after deformation. Figure 3.1 illustrates schematically

the rotation of the cross-section in Timoshenko beam element. In Figure 3.1, ¢ represents

the total rotation corresponding to Euler-Bernoulli beam element and y represents the
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total rotation of the cross-section in the Timoshenko beam element. As it is seen the value

of ¢ is different from vy due to the effects of the shear deformation. y = ¢ —y is used as

the mean value of the shear deformation. One should note that in Figure 3.1, ¢ = w

Ox

Normal to reference

Direction of deformed P beap axis
cross-section
) Y /'/

y

Normal to defol‘me/ e
beam axis L

Figure 3.1 Definition of section rotation in the Timoshenko beam model

3.2 Vibration analysis of uniform-thickness laminated beam

3.2.1 Equation of motion for Timoshenko beam

The basic Equations for mid-plane symmetric composite beams in cylindrical bending are

given as [3]:
G0N . 07w o*w
b——;+bNx7+bQ(X):bps atz (3.1)
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2
M, b0, = bl oy (3.2)

b
ox ot?

where Q_denotes the transverse shear force per unit width which is given by [21]:
ow
Q, = Fss(_ - w] (3.3)

where F, is given by:

n n

Fs = (hk = hyy )(655 )k = (tk )(Ess )k (3.4)

k=1 k=1

In Equation (3.4), n represents the total number of plies in the laminate, # the thickness of

individual ply, and /; and A ; are the distances to the upper and lower surfaces of K" ply

from the mid-plane. C, is computed using the following relation:
C,, = C,, sin’ (0) + C;, cos’(0) (3.5)

where 0 is the angle between fiber orientation and the reference axis and the values of

Cyq and Css are given by:
C44 = Gz3 Css = G13 (3.6)
where G;; and G,; denote the shear modulus values in relevant planes.
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In first-order shear deformation theory, the transverse strains are considered
constant through the laminate thickness; as a result the transverse shear stress will also be
constant. In fact, the transverse shear stress is not constant through the thickness. This
difference is corrected by considering a shear correction factor. Here the shear correction

factor is denoted by x . For most applications of the isotropic materials the value of y is

considered 5/6 but for laminated beams, the value of shear correction factor depends on
the laminate configuration and the number of plies. The value of the shear correction
factor has been computed for different laminate configurations and number of plies by
Raman and Davalos [59]. Considering the shear correction factor, the transverse shear

stress is given by:

ow
0, :Hss(‘a_—W) (3.7)
X
where
Hs = pks, (3.8)

where [, the rotational inertia is given by:

hi2

I, = j prldz (3.9)

~h/2

where 4 is the thickness of the laminate, z denotes the axis along the laminate thickness
and pis the mass density of individual ply.

The bending moment is given by [21]:
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M_=D,x, (3.10)

x

where x_denotes the curvature along x-axis which is given by:

oy
K =-— 3.11
toox ( )

Considering Equation (3.11), Equation (3.10) can be written as follows:

M, =-p, (3.12)
Ox

D1, ps» g (x) and N have been detailed in chapter 2 and are used here. Substituting

Equations (3.12) and (3.7) into Equations (3.1) and (3.2) respectively, the differential
equations for mid-plane symmetric laminated beams based on Timoshenko beam model

are obtained as follows:

o'w Oy 0w *w
bH | — ———|+bN +bglx)-b =0 3.13
SS(axz ax) x axz q()C) ps 612 ( )
0 oy ow o'y
— bD,| —— |-bH | — —w |-b] =0 3.14
ﬁx( ! ax) Ss(ﬁx Wj 7 o (3-19)

where b denotes the width of the beam.
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3.2.2. Weak form of the governing equations

To construct the weak forms of Equations (3.13) and (3.14), one can use the
three- step procedure introduced in reference [2] that has been used in Chapter 2. In
Timoshenko beam element there are two coupled differential equations for deflection and

rotation. Therefore we require two weight functions, v, and v, to construct the weak

forms of the differential Equations. Multiplying Equation (3.13) by v, :

1 2 2 2
o'w oy ;0w 0 W'l
0= bH e |4+ VBN ——+v,b —vbp —— 3.15

ﬂ:vl ss(axz ax] VIO Py v q(x) V0P, o X ( )

Integration by parts of the first and second terms results in the following Equation:

I 1 2
B dv, [ Ow ; dvy Ow owi,
| [”Hﬁ:z;‘(é;‘*”)*{”Nx prara AN 57}”“

x=l x=1
—|:V1bH55 (@— l//ﬂ —v,bN’ il (3.16)

ox -0 |20

Introducing the following notations for secondary variables:
Of =— bHSS(@—z//)+bN;@ 3.17)
Ox ox |,
o, = bHSS(?—M—/~§V)+bN;§K (3.18)
ox ox |,

Considering Equations (3.17) and (3.18), the Equation (3.16) is obtained as:
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29 X

’ dv, (0w ; dv, 8 8’ . )
0= Z[[bHSS %(;-—y&%—bNx —a;l—a—“—}—kv]bps —a—t—?——vlbq(x):ILL\ -0y, (O)—Q3 v, (l)

(3.19)
Similarly, muitiplication of Equation (3.14) by v, results in the following relation:

2

]
o oy ow B
0= ! (v, 5;(51)1] _5;) —v,bH, (5[ - y/) —v,bl Bt—lg—)dx (3.20)

Introducing the secondary variables by:

. oy |
0; =—[bDn = (3.21)
X A x=0
. oy
0f = [bD“ = (3.22)
X Sx=l

Integrating by parts the first term of equation (3.20) and using Equations (3.21) and

(3.22), the Equation (3.20) can be written as:

l dv, Oy ow 8%y . )
0= ! [bD“ __Z_EJrvszSS(—a;—w}rvzan vl GRS (0)-0:v,(7) (3.23)

dx

3.2.3 Generation of finite element model

Considering primary variables at the end nodes:

w0)=w;  wl)=w;  wO)=y; wl)=y; (3.24)
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choosing a linear approximation for displacement and the cross-section rotation as

follows:
w=a, +a,x (3.25)
w=b +b,x (3.26)

and substituting boundary conditions from Equation (3.24), one can get:

w, =a, w; =a, +a,l (3.27)

y, =b, w, =b +b,l (3.28)

Solving Equations (3.27) and (3.28) the varnables a;, a, b; and b, are determined as

follows:

a, =W, a, ==+ (3.29)
b =y, b, =2 ;"" (3.30)
Substituting a,, a,, b; and b; into Equations (3.25) and (3.26), we will obtain:

w' =w¥, +wi'Y, (3.31)
ye =y 0, +y, P, (3.32)
where ¥, ,¥,, ®, and @, are interpolation functions which are given as:

¥ =1 m’li (3.33)
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(

3.34)

3.35)

(3.36)

Now, considering v, =¥, and v, = ®, (fori =1,2), from Equation (3.19) the following

Equation is obtained:

J

2 d’w,
2, —}’—] ~077,(0)-05%, () =0

! I
[ bglx)dx+ [P pb
!w@xglmL y

Similarly the i Equation of Equation (3.23) is obtained as:

~0;0,(0)- @, (1)=0

Introducing the following notations:
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d¥ d¥, [ &
w, +19NJ'(—2@L Z
de 7 dx \ ‘5

dq}j
a7

Je

(3.37)

(3.38)




]
av. d¥,
K;' = [bH —t—Ldx
0

dx dx

4
d¥,
12 i
K} :!bH55 —L®,dx

K? =K%

i Ji

5 dx dx

/
4D, dO
K2 =j|:bD” Lt 4 hH DD,

I
- av, d¥,
Gij:ij;iql L dx
0

dx dx
I
1
M} = [bp, ¥ dx
0
!
22
M} = [bl @0 dx
0

F! =059 ,(0)+0;®,()

!
FP = J-\Piqux +OrY, (0)+ 05, (l)
0

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

Substituting Equations (3.39)-(3.47) into Equations (3.37) and (3.38), the finite element

model for a laminated composite beam can be obtained by the following two equations:
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> (K} +G, Jws —ZKJQV/HZM”—%—EZ = (3.48)
Jj=l Jj=i

. 22, e 21 e 22 2W; 1

ZKU'W ZK w; +Z}:M —z =0 (3.49)
- £

The element Equations (3.48) and (3.49) can be rewritten in matrix form as follows:

) el ) L] e
Considering Equation (3.50), the element properties, namely the stiffness, mass and

geometric stiffness are introduced by Equations (3.51), (3.52) and (3.53) respectively.

[Ke]:[[ff”] [K”ﬂ (3.51)
[Me]—’—ﬂM“] o} ﬂ (3.52)

[Ge]= PG]] {gﬂ (3.33)

Here, one should note that when both deflection and rotation are approximated using
linear interpolation functions such as Equations (3.31) and (3.32), the element becomes

very stiff in the case of thin beam. Recalling that for a thin beam, the transverse shear
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strain ¥ is neglected and using Equation (3.25) and Equation (3.26) for a thin beam, the

shear strain 1s determined by:

7=y, b, ~byx (3.54)
Ox

Neglecting shear strain, Equation (3.54) results in a, —b, =0 andb, =0, which itself
results in a constant value for bending energy. In finite element literature, this
phenomenon is well known as shear locking. One may see reference [2] for more details
on shear locking. To overcome locking, we use reduced integration to evaluate the
stiffness coefficients associated with the transverse shear strain in the element stiffness
matrix (second term in Equation (3.42)). All other coefficient matrices are evaluated
using full integration. Here, we use one point Gauss-quadrature to evaluate the term
associated with the shear strain and two point Gauss quadrature to evaluate the other
coefficients. Integration using Gauss-quadrature method has been explained in details in

reference [67].

3.2.4 Element properties for uniform-thickness laminated beam
In the case of uniform thickness, bD,, is constant. All coefficients of the matrices
in Equation (3.42) are evaluated using full integration except the coefficients associated

with transverse shear strain (i.e., the second term of K**), which are evaluated using
reduced integration. Integration has been performed in MATLAB® (Appendix-B) and the

results are given as:
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4 -2 -4 -2

.1 bH *+8 20 I*-§
IS ]=--4;5 P (3.55)
sym I +65
where
5o ‘;fu (3.56)
55

The Equation (3.55) can be divided into two terms corresponding to bending stiffness and

shear stiffness as follows:

4 =21 -4 -=2]

bH roor
e| - 3.57
[ ”] 4] 4 21 (3-57)
sym I’
0 0 0 O
4 1 0 -1
[ko]- 2220 (3.59)
! 0 0
Sym 1

where the subscripts b and st are assigned for bending stiffness and shear stiffness
respectively. For convenience sake, the superscript e is removed in the following

equations. The stiffness matrix for laminated Timoshenko beam is given by:
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[k]=[x,]+[x,] (3.59)
The mass matrix is given by:

2p, 0 p,. 0O

! 21 0 1,
M|=— ¥ N 3.60
[m]= 5 o (3.60)
sym 27,

p, denotes the mass inertia of the laminate which is given by:

hi2
p,= [ piz (3.62)

~h/2

Replacing for 7 and p, from Equations (3.9) and (3.62) respectively, the mass matrix is

obtained as:

W
up| 12 06
[M]=—6-— 5 0 (3.63)
om L
i 12 ]

Note that bh = 4 where A 1s cross-section area.
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The geometric stiffness matrix is obtained as follows:

(3.64)

2
T
2
<
<o
oo O O

Sym

3.2.5 Free vibration analysis of laminated beam

In free vibration analysis, we consider [2]:

w(x,t) =W (x)e™ i=+-1 (3.65)

w(x,1) = O(x)e™ (3.66)

Therefore Equation (3.50) reduces to:

i 2]

The exact solution for simply supported laminated beam based on Timoshenko beam

theory is given by [2]:
2
o, = (_”;ﬁ) \/ bDy, bH s (3.68)

h 2
P b + (ZL’EJ bD,,
where o, denotes the n” natural frequency of the beam.
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3.2.6 Free vibration analysis of laminated beam-column
The free vibration of a beam with axial compressive load is a special problem of

beam, which is called beam-column, due to its capability to resist buckling like a column
as well as lateral loading like a beam. Considering N! = —P , Equation (3.50) changes to

the following form:

(&)~ Pl6]- 0’ [m Dﬁgﬂ - Hgﬂ (3.69)

where [5 ] = —]\]7;— [G]

3.3. Vibration analysis of tapered composite beam

3.3.1 Mid-plane tapered beam
In the case of a beam with non-uniform thickness, as it was explained in the previous

chapter, D, is a function of x coordinate, which is given by Equation (2.70). This

equation is also used in this chapter.

Examination of the Equations (3.57), (3.58), (3.63) and (3.64) for uniform beam shows

that only the Equation (3.58) is a function of D, . Therefore, Equation (3.70) should be
used in integration of [KS,], Equation (3.58). Integration of Equation (3.58) has been

performed using MATLAB® software. The coefficients of the matrix given by Equation

(3.58) have been determined as follows:
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n b
_g M2, (4t,m1” +12t,cml +121,* +17°) (3.71)

e 127 cos(p)
Ky, =-Ky (3.72)

Ky, =Ky, (3.73)

The coefficients m and ¢ have already been defined in chapter 2 in Section 2.4.2. Using
Equations (3.71)-(3.73) in the Equation (3.58) for the stiffness matrix of a uniform beam,

the Equation (3.58) has been modified for a tapered beam as follows:

0 00 0
10 -1

x.]=k, 0 o (3.74)
sym 1

3.3.2 Analysis of tapered beam models A and C

As it i1s seen in Figure 2.10, tapered beam models A and C have some similarities
in terms of geometry. Tapered beam model C is constructed by adding some elements
made with model A. Analysis of models A and C has been already detailed in section
2.4.3. In Timoshenko beam element we use the symbolic expression derived for mid-
plane tapered beam to compute the stiffness matrix of model A. One should note that the
element coefficients of the plies located in the resin pocket should be computed by using
the material properties of resin.
Individual routines have been developed in MATLAB® software (Appendix-B) in order

to compute the stiffness and mass matrices for tapered beam models A and C for
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Timoshenko beam element. For example the routines for stiffness matrices for models A

and C are named as kmidAT.m and kmidCT.m respectively.

3.3.3 Analysis of tapered beam, models B and D

Tapered beams made with models B and D are illustrated in Figure 2.11. The
analysis of tapered beam models B and D proceeds in the same way as the procedure
described in Section 2.4.4. Again for these cases the element coefficients can be
computed by using the relations obtained for mid-plane tapered beams. To illustrate the
computing procedure, the first element of model D is isolated in Figure 2.10. The
integration in Equation (3.58) should be considered as the summation of integrations
from L, to L, and from L; to L. In Timoshenko beam element only Equation (3.58) is a
function of D;;. One should note that in order to compute the element properties for
layers located in resin pocket, the material properties of resin should be considered. The
stiffness and mass matrices for tapered beam models B and D have been computed
numerically by using MATLAB® software (Appendix-B). The routines for stiffness

matrices for models A and C are named as kmidBT.m and kmidDT.m respectively.

3.4  Example applications

In this Section the formulations developed in the previous Sections have been
applied to free vibration analysis of uniform and tapered composite beams. The results
obtained by MATLAB® software will be compared with the exact solution given by

Equation (3.68) in the case of uniform beam. Various types of internally-tapered beams
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will be investigated. In the case of tapered beams, the results are validated by choosing a

very small taper angle and comparing the results with uniform beams.

3.4.1 Uniform-thickness composite beams

Problem description

A uniform-thickness composite beam with simply supported boundary conditions
as shown in Figure 3.2 made up of 72 plies of NCT/301 graphite-epoxy is to be analyzed

for free vibration. Mechanical properties are: E; 1s 113.9 GPa, E, is 7.9856 GPa, v,, is

0.0178, v,, is 0.288, Gy3 15 2.856 GPa, G, 15 3.138 GPa and p is 1480 kg/m3.

85.9 mm

Figure 3.2  Simply supported beam of example 3.1

The geometric properties of the beam are, length (L) 1s 85.9 mm; thickness (h) is 9.0 mm
(L/H =9.5); individual ply thickness (t) is 0.125 mm and the laminate configuration is
(0/90) ¢ . The problem is solved using different number of elements to obtain the desired
accuracy. The results are compared with the exact solution given by equation (3.68).
Table 3.1 gives the lowest three natural frequencies for the simply supported beam based

on the cylindrical bending theory for mid-plane symmetric composite laminated beams.
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Table 3.1
beam

2.115

T 0.087

The lowest three natural frequencies (x 10" rad/sec) for a simply supported

2.052 2.197 2.079
2 6.572 8.099 7.216 6.926 6.850
3 11.694 16.114 13.785 12.852 12.603

Comparison of results given in Table 3.1 with the results obtained in Table 2.1 indicates
that in order to achieve an accurate result for a Timoshenko beam element, the beam

should be divided into many elements.

3.4.1.1 Effects of laminate configuration on natural frequencies
We now intend to explore the effects of laminate configuration on the natural
frequencies. The above example is considered to determine the natural frequencies for

[0/90] 18 s» [i45] 18s and [04/ i4516] 5-

Table 3.2 The lowest three natural frequencies (x 10" rad/sec) for a simply supported

beam with different laminate configurations

[0/90] 15 5 2.087 6.926 12.852
[+45] 155 1.619 5.845 11.620
[04/ +4516] . 2.021 6.797 12.733

Effects of laminate configuration on stiffness of the element in Timoshenko beam
element can be seen by considering Equations (3.4), (3.5) as well as Equations (2.64) and

(2.65) where one can see that theses Equations are a function of laminate configuration.
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34.2 Tapered composite beams

Example 3.4.2.1

As the first example we consider a symmetric tapered beam with a very small taper angle
of 0.251°. With such a small angle tapered beam can be compared with uniform beam.
The beam consists of 48 plies at the thick section and 40 plies at the thin section. That
means we have only 8 plies that are cut-off. The tapered beam is modeled with model C
as shown in Figure 2.8(a). The configuration of the thick section is (0/90) 155 and that of
the thin section is (0/90) 10s. The beam is meshed using four equal-length elements. The
material properties of graphite-epoxy are the same as in the problem described in section
3.4.1. The mechanical properties of the epoxy resin are given as: Elastic Modulus (E) is
3.93 GPa, Shear Modulus (G) is 1.034 GPa and Poisson’s Ratio (v) is 0.37. The lowest
three natural frequencies have been determined for both uniform and tapered beams using

4 elements. The results for uniform beam are determined for simply supported boundary
condition as 1.628x10* rad/sec, 7.640x10"*rad/sec and 20.860x10"rad/sec respectively
and the results for tapered beam are obtained as 1.489x10°rad/sec, 7.130x10"rad/sec

and 20.368x10%rad/sec. As seen the results for uniform and tapered beams are close

enough to validate the formulations developed for tapered beam.

Example 3.4.2.2

A tapered beam made with model A as shown in Figure 2.8 (b) is considered with 48
plies at thick section and 24 plies at thin section. As a result there is a large amount of

resin pocket in this model. The mechanical properties are as detailed in example 3.4.1.
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The problem is analyzed considering various taper angles. The relation between the
length and the taper angles is given in Table 3.3. The thickness of individual ply is as
considered in example 3.4.2.1. The configuration of the thick section is [£45] 12s and that
of the thin section is [#45] ¢s. The material properties of the graphite-epoxy and resin are

the same as in the problem described in Section 3.4.1.

Table 3.3 Relation between the length and taper angle in example 3.4.2.2
1 2 3 4 5
0.0859 0.0429 0.0286 0.0214 0.0171

Natural frequencies for the above problem are given in Table 3.4.

Table 3.4 The natural frequencies (x10"rad/sec) for simply supported laminated
beam model A of example 3.4.2.2

4.331

1 0.860 13.930
2 3.380 15.526 39.442
3 7.372 30.261 65.754
4 12.568 46.295 91.726
5 18.683 62.656 117.433

From the results given in Table 3.4, we conclude that the higher the taper angle is the
higher the natural frequencies are. This result was expected when we examine the
Equations (3.71)-(3.73) where we see that the taper angle has a direct effect on the
stiffness of the beam. On the other hand from Table 3.3 we see that the taper angle affects

the length of the beam which itself affects the stiffness of the beam. The above problem
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has been solved for different laminate configurations to investigate the effects of laminate
configuration. Figure 3.3 illustrates the fundamental frequencies for tapered beam model
A with different laminate configurations that are: (i) LC (1) that has [0/90]2s
configuration at thick section and [0/90] ¢s configuration at thin section; (ii) LC (2) that
has [+45] 125 configuration at thick section and [+45] ¢ configuration at thin section; (iii)
LC (3) that has [04 /%45,¢]s configuration at thick section and [04 /+454]s configuration at
thin section. The lowest four natural frequencies are determined for different boundary
conditions and for the laminate configurations LC (1), LC (2) and LC (3). As one can see
the results given by Figure 3.3 are similar to the results obtained for uniform thickness
beam. The influence of the laminate configuration on the stiffness matrix has been

discussed in example 3.4.2.1.

Another feature of importance is that by increasing taper angle, the natural frequencies
increase. This result can be expected by observation of Equation 3.71 and Table 3.3
where one can see that the slope of the beam has a direct effect on the stiffness matrix of
the element. On the other hand Table 3.3 indicates that increasing the taper angle while

keeping the thickness as constant, decreases the length of the beam.
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undamental Freq. for model A

iR R i

——LC (1)
—-u—-LC (2)
—4—LC (3)

T

Figure 3.3  Fundamental frequencies for tapered beam model A for different laminate
configurations

Example 3.4.2.3

Problem described in example 3.4.2.2 is considered as a tapered beam made with model
B as shown in Figure 2.11. In this case eight plies have been dropped off in each element.
The beam is meshed with three equal-length elements. The first and second elements
consist of 16 and 8 uniform plies respectively. Table 3.5 gives the natural frequencies

obtained for the above problem.

Table 3.5 The natural frequencies (x10*rad/sec) for simply supported laminated
beam model B with LC (2) configuration

1 0.896 4.527 14.341
2 3.624 16.464 40.341
3 8.066 32.043 66.807
4 13.916 48.646 92.842
5 20.786 65.294 118.606
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Problem 3.4.2.3 has been solved for different laminate configurations. Figure 3.4 shows
the results for various taper angles. As one can sec the general form of these results are
similar to the results determined for model A except that in tapered beam model B the
value of the natural frequencies are higher than those given for model A. This is due to
the existence of uniform plies in the tapered beam model B which cause a stiffer element

compared to the tapered beam model A.

——LC (1)
—#-1.C (3)

Figure 3.4  Fundamental frequencies for tapered beam model B for different laminate
configurations

Example 3.4.2.4

Problem described in example 3.4.2.2 is considered as a tapered beam made with model
C as shown in Figure 2.10(a). This model is similar to model A except that here the

volume of the resin pocket is smaller than the resin pocket of model A. In this case eight
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plies have been dropped off in each element. The beam is meshed with three equal-length

elements. Table 3.6 gives the natural frequencies obtained for the above problem.

Table 3.6 The natural frequencies (x10%rad/sec) for simply supported laminated
beam model C with LC (2) configuration

1 0.872 4.410 14.184
2 3.427 15.760 39.773
3 7.470 30.628 66.173
4 12.726 46.753 92.239
5 18.901 63.180 118.051

As it was expected the results obtained for model C are slightly higher than the results
given for tapered beam model A. Therefore we conclude that the resin pocket has not
much effect on the stiffness value. This problem has been solved for different laminate
configurations. Figure 3.5 illustrates these results. The effects of taper angle and laminate
configuration on natural frequencies have been already discussed in the previous

examples.
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+LC (1‘)
-3 LC (3)

——L.C (2)

Figure 3.5  Fundamental frequencies for tapered beam model C for different laminate
configurations

Example 3.4.2.5

Problem described in example 3.4.2.3 is considered as a tapered beam made with model
D as shown in Figure 2.11(b). This model is similar to model B except that here there are
28 and 12 uniform plies in the first and second elements respectively. The beam is
meshed with three elements. Table 3.7 gives the natural frequencies obtained for the

above problem.

Table 3.7 The natural frequencies (x10*rad/sec) for simply supported laminated
beam model D with LC (2) configuration

1 0.941 4.693 13.932
2 3.926 16.729 36.966
3 8.760 31.115 59.635
4 14.868 45.531 81.920
5 21.648 59.663 104.178
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As we expected the natural frequencies for tapered beam model D are higher than that of
the other tapered models. This i1s due to the existence of more number of uniform plies in
the element. The above problem has been solved for different laminate configurations
and various taper angles to have a better comparison between the results for different
tapered models. Figure 3.6 shows these results in graphical form. Fundamental
frequencies for simply supported beam made with all types of tapered models under
investigation have been determined and illustrated in Figure 3.7. Based on the results
illustrated in Figure 3.7, one can conclude that the natural frequencies for tapered beam
model D is the highest and consequently models, B, C and A take the other positions.

This conclusion is valid for all taper angles and laminate configurations.

| —e—LC (1)
| —a—LC (2)
—&— LC (3)

Figure 3.6 = Fundamental frequencies for tapered beam model D for different laminate
configurations
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—&— Model A
- Model B
~—4&r—model C

Figure 3.7  Fundamental frequencies for simply supported tapered beams with LC (2)
configuration vs. taper angle

3.4 Conclusions and discussions

In this Chapter, the conventional finite element formulation based on Timoshenko
beam theory was developed for analysis of uniform-thickness and tapered composite
beams. The developed formulation was used to analyze the uniform-thickness beam and
various types of tapered beams viz. models A, B, C and D. In the case of uniform-

thickness beams, the results obtained have been compared with the exact solutions.

Based on the results obtained in this Chapter, it is shown that the tapered beam made with

model D has the highest stiffness; models B and C take the second and third ranks,

respectively. Model A has the lowest stiffness. Therefore, the natural frequencies of
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model D are the highest and consequently models B, C and D take the second, third and

fourth positions. Natural frequencies of model D are about three times that of model A.

With regard to the boundary conditions, we conclude that the natural frequencies for
fixed-fixed support are the highest. Simply supported and fixed-free supports take the

second and third positions.

According to the results given for different taper angles, we conclude that by increasing
the taper angle while keeping the thickness constant, the natural frequencies increase for

all types of tapered beams.
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Chapter 4

Vibration and buckling analyses of composite beams using

advanced finite element formulation

4.1 Introduction

In the conventional FEM formulation, in order to get a result with acceptable
accuracy, the beam has to be divided into many elements. Furthermore, in general, finite
element model based on low degree polynomial displacement functions incorporates only
crude curvature distributions and usually yields discontinuous bending moments across
element interfaces. It has been shown that accurate results can be obtained more
efficiently by increasing the number of degrees of freedom in the element rather than

increasing the number of elements that have the same or lower degrees of freedom [51].

4.2 Analysis of uniform-thickness laminated beam based on CLPT

In this Section, an advanced finite element formulation for the analysis of
composite beams is established. In this model, a beam element with two nodes at the ends

and four degrees of freedom per node is considered. The transverse displacement w, the

2 3

slopegw—, the curvature—(?——;ﬁ, and the gradient of curvature
ox ox ox

are considered as the

3
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degrees of freedom for each node. Thus a seventh degree polynomial displacement
function is required to satisfy boundary conditions. This element represents all the
physical situations involved in any combinations of displacement, rotation, bending
moment and shear force. In the following sub-sections, the stiffness, geometric stiffness
and mass matrices of uniform-thickness composite beam will be derived using the

advanced finite element beam model.

4.2.1. Governing equations

The Equation of motion for a composite beam is given by [21]:

0w

o’

2 2
oM, +bN! g Zv+bq(x)=bps
x

b
ox?

2.2)

where b and N| denote the width of the beam and initial axial force along x-axis,
respectively, and M  denotes the bending moment along x-axis per unit width and is
given by:

ou ov oO*w

M =Bll—a—x”—+Bl6——"——D

e 2.3
* Ox " ox? @3)

Further, q(x) and p, are transversely distributed load and density of the laminated beam
per unit length, respectively. q(x) and p  are given by Equations (2.5) and (2.6)
respectively. In the case of mid-plane symmetric laminated beam, B,, =B, =0 and

M _reduces to the following equation:
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M, =-D, o “4.1)
where
n _ 13 o
D, = ZIkZ/;2 +£ ( Il)k (4.2)
pn 12

where ¢, denotes the thickness of each ply and (Ql ), denotes the first coefficient of the

transformed stiffness matrix of the lamina which is given by:

0,, = cos*(0)Q,, +sin*(6)Q,, +2cos’ (§)sin’(B)Q,, +4cos’(0)sin’ (8)Q,, 4.3)

where 6 is the fiber orientation angle and the coefficients of ply stiffness O, are given

in reference [21]. Z, denotes the distance from the centre line of each ply to the mid-plane

of the laminate. Combining Equation (4.1) and Equation (2.2), the constitutive Equation

of symmetric composite beams in cylindrical bending has been obtained as:

d’ o*w , 07w o*w
;1;2‘(50115;7)—’?% e ~bg(x)+bp, 5 =0 (4.4)

One should note that for uniform thickness laminated beam 5D, has a constant value.

4.2.2 Weak form
The weak form corresponding to the Equation (4.4) has been obtained in Sub-section

2.3.1.1 by following the three-step procedure presented in reference [45]:
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l 2 2 2
dvow . dv ow J"w d
‘(‘;( 11 dx2 5 PN bN '—5'+bq(X)+prs —a—t—z——}x +VEC-(bD“ —

x Y dx

2 2 2
SV PYOWCALY L PO WA I PO
dx Ox i dx Ox o dx Ox o
—vbN;—82 +vbN;-6—W— =0
x|, x| o

The following notations introduce the secondary variables:

d d*w dw
f =\ —| bD,, —— [|-bN —
2 {dx[ R J * dxj'xzo
d d*w dw
£ = bD —bN e
Z {dx( " dx? ] *dx l:z

d*w
¢ = bD, ——
Q2 [ " dxz Jx:()

Substituting Equations (4.6)-(4.9) into Equation (4.5), we obtain:

; 0*w
+bN! ——+vbp, v

j 0%y 0w ov ow
d EUPEIPER .

oy

x=0 Q4( ax)

=0
Ox

~019(0)-090)-05(- &

x=f
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4.7

(4.8)

(4.9)
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4.2.3 Finite element model

In this model, four degrees of freedom are considered for each node; shear force
and bending moment as natural boundary conditions, and deflection and slope as
geometric boundary conditions. Thus there are eight degrees of freedom per element. A
finite element model of a uniform beam with four degrees of freedom per node is shown

in Figure 4.1.

Wi Wy
™ i\
P 2
M, -\ ™
S p| - M
F, F;

Figure 4.1  Finite element model of a uniform beam with four degrees of freedom per
node.

The deflection, W, should be approximated by a seventh-order polynomial as follows:
W(x) =c,+exte,x’ +e,x° +ext Hex’ +ex® +eyx’ (4.11)

Then, rotation, shear force and bending moment as a function deflection W are given as

follows:
dW(x) 2 3 4 5 6
o(x)= —m = a —2e,x =305 —de, ¥’ —Sepx’ —6eex ~Te,x (4.12)
d*w(x) [ 2 3 4]
F(x)=bD,, 5 = bDy[be, +24e,x -+ 60csx” +120c,x’ +210¢,x (4.13)
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d*w(x)

)C2

M(x)=-bD,, =-bD,, [zc2 +6¢,x+12¢,x" +20c,x° +30c,x”* + 4207x5] (4.19)

To evaluate the above relations at the two ends of the element, one can choose the first
node at x =0 and the second node atx =/. One may consider the value of bD,, at the

ends as follows:

A, =bD11L=0 4.17)

A, =bDy| _ (4.18)

)

It should be noted that A, and A, have the same values for uniform beam (A, = A, = A).

To evaluate the coefficients ¢,, one can use the following boundary conditions:

w(0)=wf =c, (4.19)
Pl0)=p, =-2" = (4.20)
F(0)=F, =6A,c, (4.21)
M(0)=M, = 2Ac, (4.22)
W()=wt =c,+el+cl’ +e,l +c,0* +el° +ed° +e,” (4.23)
ol) =0, = —(c, + 2¢,] +3¢,0” + dc,I® +5¢,0* + 6¢,0° +7c,1%) (4.24)
F(l)=F, = A,|6c, +24c,] +60c,” +120c,/* +210c,1*] (4.25)
M) =M, = -A,2c, + 6,1 +12¢,1> + 20¢,0* +30¢ 1" + 42¢,1° | (4.26)

In matrix form, the Equations (4.17)-(4.24) can be written as:
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W, 1 0 0 0 0 0 0 0 ¢
?, 0 -1 0 0 0 0 0 0 ¢,
F, 0 0 0 6A, 0 0 0 0 c
M| |0 0 =24, 0 0 0 0 0 c
w,{ (1 1 P & I & & 7 e
®, 0 -1 =21 -3 — 47 - 51 -6/’ =717 || e
F, 0 0 0 6A, 24A,0  60A 17 120A,01°  210A,1° ||c,
M,] [0 0 =24, —6bD,l —12A,0° —20A,° —30A,01" —42A,F ||{¢]
(4.25)
In short form the Equation (4.25) can be rewritten by:
{d}=[rke} (4.26)
Using interpolation functions W(x) can be approximated as:
wi=[nvlda} (4.27)

where [N] is a vector containing interpolation functions. Substituting for {d}, from

equation (4.26) into Equation (4.27), we have:

= [NIrked (4.28)
Substituting for {c} from equation (4.11) into Equation (4.28), we get:

l7]= [N IxT (4.29)
where [X] is a vector which is given by:

[X]=[ » ¥ ¥ x ¥ x* ¥ (4.30)
Finally, interpolation functions can be obtained by solving the following equation:

[V]=[rT"[x] 431
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By using MATLAB® software, the interpolation functions are obtained as follows: (See

Nad.m in Appendix-B):

x4 x5 x6 x7
N] =1 "35’]‘:4‘847;‘7076‘-4'207

4 5 6

X X X X
NZ =_x+20‘l—3~*‘45‘24—+3675——1076—

Y x* 2x* X 2x X
Ny=\ =+t 55 +t7
AN O 3 1 3/ 6/

7

|

(1) =x" 5x* 10x°  15x°
Ny=|— tor Tt
AMN 2T l 21

_35x" 84x’  70x°  20x’
N5— l4 - 15 + 16 E l7

_Isxt 39x° 34x® 10x

No ? 7 & &
- 5 6 7
N, =] 22 P S
A, N6l 207 28 6l
1 -5x* 717X 13x* 2%
Ny = A T RN S
, N\ 21 ! 21 i

|

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

One may note that in the case of uniform beam, both A, and A, have the same values i.e.

A, =A, =A=>bD,,. The interpolation functions which are given by Equations (4.32)-

(4.39) satisfy the following interpolation properties:
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(i;tl)
(i;tS)

(i=2)

(i=6)

(i = 4)

(i=8)

(i¢3)

(i=7)

Introducing the generalized displacement u by the following relations:

u, =w(0)

s = W(l)
_daw
dx

U,

x=0
a*w
uy = F(0)=A, e

x=0

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)



u, =W (4.53)
dx | x=1
3
X x=l
2
uy =) =2, 27 (455)
x x=I

Considering v= N, where,i =1,2,....8. Substituting » and v in weak form obtained by

Equation (4.12), the i Equation is obtained as:

d*N. (& d*N 8 dn; 8 dzu; ( )
bN' ¢ +bp_ N. N.——=|-bN,
D dx e = 1u dx jz:u’ dx Pl JZ:]: e’ A

0=

oL ——

d d
—O¢N(0)- 05, (1)~ Qz( ;V ) —Q{—ij (4.56)
X x=0 d‘x x=1

Equation (4.58) can be simplified as:

— 0:N(0)- 0:N, (1) - QZ( ‘ﬂij ag{—ﬂ) -0 4.57)

Introducing the following coefficients:
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K, = ! bDy — St dx (4.58)
L dN. dN .
G, = j BN —i L gx (4.59)
L dx dx
)
M, = [bp,N,N dx (4.60)
0
e e e e e le e sz
F, =q; + 0, Ni(o)"‘QsNi(l)""Qz(___) +Q4("“—) (4.61)
dx ) dx )
I
q; =ijl.q(x)dx (4.62)
0

Substituting Equations (4.58) - (4.60) into Equation (4.57), the i  Equation is obtained

as.

8 d*u®
S| (K: +Ge e + M dt2’j}~Ff = (4.63)

In short form Equation (3.65) can be written as:
(&1+[GDul+ ] [i]=1F] (4.64)

[k] .[M] and [G] denote respectively the stiffness, mass and geometric stiffness

matrices, for individual element.
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4.2.4 FElement properties of uniform thickness laminated beam

Substituting interpolation functions from Equations (4.32) - (4.39) in Equations
(4.58)-(4.60) and performing integration through the length of the beam, the stiffness,
mass and geometric stiffness matrices are given by Equations (4.65) - (4.67)
respectively. (See fen2.m in Appendix-B)

[ 280 P 407 280 1400 P 40/°
11 22A 337 1 1 22A 33A
8t 379 1400 3807 sIf 1817°
2314 462A 11 77 462A  462A
a* P I 51 1° 50°
34654 99AT  22A  462A 462047 27724
500°  -400° 181 -5P° I’
[k]=2 231A  33A 462A 2772A7 462N
I’ 280 1400 -I°  —40
11 11 22A 33A
600/° 8" 3790°
77 2314 462A
21° P
346547 99N’
o 500°
|~ 231A% |
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72940 45307 —383% 13707 17150  —1905/ —~521°  —7751°
429 143 2574A  429A 429 143 5148A 429A
100! ~6l* 245 19051 -18651% ~57* —9957°
143 143A  286A 143 429 156A 1716A
1° -r =518 51t 71° 437
3861A7  198A7 5148A  156A  30888A° 10296
437* 77517 ~995P°  —43p° -131°
[ ]_bpsl 4297 429A  1716A  10296A°  1716A
420 72940 —4530/ -383*> -—13701°
429 143 2574A 429A
1007* 61! 245
13 143A 286A
/8 P
3861A° 198A°
437
L o 420N |
700 2711 s 231 =700 271 57 23]
429] 858  5148A 858A 429] 858 5148A 858A
300/ -25/° 12372 -271 971 51° 471*
1001  18018A  4004A 858 6006 12012A 1201A
-371° 5% s r AN
90090A” 180180A% 5148A 12012A  144144A° 720720A%
7303 ~231  —4717 -731* 743
i 18018A  858A  12012A  720720A% 5148A2
6]=on, 700 -271 57? 231
429] 858 5148A, 858A,
300/ B 251° _12312
1001 18018A 4004A
& 3714
90090A* 180180A7
o 7313
L 7 18018A?
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4.2.5 Free vibration analysis of laminated composite beam

In free vibration, the axial force is set to zero, NI =0, and the nodal values are given by:

(2]
wi(t)=Uce™ , i=+-1 (4.68)
Substituting Equation (4.70) into Equation (4.64) and considering N! = 0, we will obtain:

(x1-e?um]) U} =[o] (4.69)

where @ represents natural frequency of vibration. Considering A = @” , one can see that

Equation (4.71) is an eigenvalue problem in the form:

(x]- M) {v}=[o] (4.70)

where A represents the eigenvalue and U°, the eigenvector. Equation (4.70) has been
solved using MATLAB ® to determine the natural frequencies of free vibration of a

uniform- thickness composite beam.

The exact solution for the free vibration of the mid-plane symmetric laminated
composite beam using cylindrical bending theory has been given by Equations (2.36) -
(2.38).

4.2.6 Buckling analysis of laminated composite beam

In the study of buckling problem, we consider an axial compressive load on the beam as:
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Ni=-P (4.71)
In the absence of lateral force and by using Equation (4.71), Equation (4.64) reduces to:
(x1-PlGiv]=[o] 4.72)

where matrix [ ]is defined as:

G]= 7\177[6] (4.73)

Equation (4.73) 1s an eigenvalue problem where P is the eigenvalue and the smallest

eigenvalue 1s the critical buckling load.

The exact solution for critical buckling load of mid-plane symmetric laminated composite

beam using cylindrical bending theory is given by Equations (2.43)-(2.45).

4.2.7 Free vibration analysis of laminated beam-column
In the case of free vibration with compressive axial load, Equation (4.64) changes to the

following form:

()~ AG]-Almlfu} = 1o} (4.74)

Equation (4.74), again is an eigenvalue problem where A is the natural frequency of the

composite beam-column.
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4.3 Analysis of tapered beam based on CLPT
4.3.1. Governing equations

The differential equation of motion for mid-plane symmetric laminated tapered beam has

been obtained in Chapter 2 by the following equation:

o’ 0’u ; 0%u 0’u
E;Z—(bD“(x)COSL‘(¢) P J bN —a—;‘——bq(X)+bps '5;2— =0 (4.75)

Following the same procedure as in Section 4.2 for uniform beam, the weak form is

obtained as:

8T d*N, d°N, 4N dN, d’u’
= x Jcos — PN L 4 b N. I
;!H . ) ¢) dx?  dx* Y dx  dx 1y TOPSY dr?

dx

. dN.
N,-(O)—Qs"N,»(l)~Q§(—%) —Q:[~ﬂ] -0

(4.78)

For drop-off plies, the value of bending stiffness is a function of x and is expressed by:
n f,3 o
D, (%)= Z{;,;f,f + -]EZ—J( N (2.66)
k=1

wherez, is the distance between ply centerline and the mid-plane surface. In tapered

laminate, Z, is a function of x as shown in Figure 2.9 and is shown in Figure 4.5 for

convenience.
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Taper angle, ¢

Figure 4.2  Centerline of the tapered laminate as function of x

zZ, =mx+c (2.69)

Considering Equation (2.66), the coefficients of the stiffness, geometric stiffness and the

mass matrices are given by the following equations:

. d*N, d’N,

Kij = ijll(X)COS4 (¢)—‘—1“x—‘2-1‘7xz—1dx (479)
0
L dN. dN.

G = j BN’ d—d—' - L dx (4.80)
0 X X
1

M; = [bp,N,N dx (4.81)
0

where i =1,2,....8,7=12,....8
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4.3.2 Element properties of mid-plane tapered beam
The stiffness matrix for mid-plane symmetric laminated tapered beam is obtained by

performing the integration in Equation (4.79) in MATLAB ® software as follows:

K]el KIEQ Kle?a K ]€4 KIES Kle6 Kle7 K]eg
Ky Ky Ky Ky K Ky K
Ky Ky K5 Ky Ky K
K :4 K :5 K :6 K :7 K :8
K5€5 KSEG K5e7 K5€8
K Ko K
Ky Ko
| sym K |

[k ]= cos?(9) (4.82)

The coefficients of stiffness matrix are long algebraic expressions, which are given in

Appendix-A. Here the first and the last coefficients are presented to give an idea of such

expressions.
£ =370 (6,),1.(156¢> +156ml + 48m? 1 +1342) (4.83)
1 4291
e _ - 1 2y 2 242 r2
K =) ——— U0, ),1,13900¢” +5460cml +2134m”1" +325¢, (4.84)
o 18018A

Similarly the mass matrix for tapered mid-plane symmetric laminated beam is obtained

by performing the integration in Equation (4.81) in MATLAB ® software as follows:
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€ [ e e € e € e
M, M, M; M, M, M, M, M;
e e e e e € e

M, M, M, M, M, M, M,

€ e [4 e e (4

My M, My M, M; M;

[Me]_ My My M, My Mg
Mg Mg Mg Mg (4.85)

Mg Mg Mg

M3y Ms

| sym Mg,

where each coefficient of mass matrix is a long algebraic expression which is shown in

Appendix-A. For example the first and the last expressions are given here:

1
M, = —— pbl(235ml +1042 4.86
1 2574/7( m g) ( )
£ = 1 pbl*(51ml +86g) (4.87)
3603604’

where g denotes the intercept of the upper surface of the laminated beam measured from

the mid-plane.

The geometric stiffness matrix is computed by Equation (4.67) given for uniform

symmetric beams except that in tapered beam, one should note that the values of A, and
A, are computed at the respective ends of the tapered beam and therefore they have

different values whereas in uniform beam both A, and A,have the same values.
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4.3.3 Element properties of tapered beam models A and C

As it is seen in Figure 2.8, tapered beam models A and C have similar geometry.
Geometrically the model C consists of a number of elements, which have been made
using model A (Here, we use three elements of model A to construct model C). On the
other hand model A can be considered as a mid-plane tapered beam. In this case, the
resin pocket is divided into imaginary plies. Therefore, the element properties of tapered
beam model A can be obtained by using the symbolic relations given for mid-plane
tapered beams. As one can see the plies in the laminate have unequal lengths. Thus the
integrations should be performed with different limits. That is instead of integrating from
zero to [ for all plies, one should perform the integration from zero to /; plus /; to /, etc.
One should note that the element coefficients of the plies located in resin pocket should
be computed by using the material properties of resin.
Individual routines have been developed in MATLAB® software to compute the

stiffness, mass and geometric stiffness matrices for tapered beam models A and C.

4.3.4 Element properties of tapered beam models B and D

Another two important models for constructing tapered beams are shown in
Figure 2.9. These two models have some similarities. Each element in both models
consists of some drop-off plies, some imaginary plies in resin pocket and some plies,
which are laid up uniformly. Obviously the number of the plies is different for each
model. Again for these cases the element coefficients can be computed by using the
relations obtained for mid-plane tapered beams. To illustrate the computing procedure,

the first part of finite element of model D is isolated in Figure 4.3. The integrations are

117



the summation of integrations from L; to L;, and L, to L. One should note that to
compute the element properties for plies located in resin pocket, the material properties of

resin should be considered.

Node 1 O O Node 2

Figure 4.3  First part of finite element of model D

44  Advanced finite element formulation for vibration analysis of composite

beam based on FSDT

The Euler-Bernoulli beam theory neglects the effects of shear deformation. Thus
for bending vibration, this gives higher frequency than those obtained by experiment and
for thick beams these values for lower modes are not accurate. Timoshenko theory
improves the Euler-Bernoulli beam theory by including the effects of shear deformation.
Various finite element formulations have been presented for the analysis of Timoshenko
beam. Chapter 3 dealt with the analysis of Timoshenko beam using conventional finite
element formulation where four degrees of freedom (rotations and deflections at the ends)

have been considered per element. The results obtained in chapter 3 showed that in
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conventional finite element formulation, a large number of elements should be considered

to achieve an accurate result.

In this section an advanced finite element model for analysis of Timoshenko
beams has been established based on the finite element model presented by Thomas and
Abbas [47] for isotropic materials. In this model, four degrees of freedom, total
deflection, w, first derivative of deflection, w', slope,y and first derivative of slope, v’
are considered for each node, as a result, for a two-node element, there are eight degrees

of freedom.

4.4.1 Governing equations
The equations of motion of laminated beam based on Timoshenko beam theory have

been determined as in Equations (3.13) and (3.14) and are given here for convenience.

o*w oy 0w o’w
bH . | ———— |+ BN +b -b =0 3.13
SS[axz aX] x axz q(X) ps atz ( )
0 oy ow oy
—\| bD,, —— |—-bH .| ——w |- bl _ =0 3.14
Gx( i ax) Sj(ﬁx Wj Y ot ( )

4.42 Weak form
The weak forms of the governing equations have been determined by Equations (3.19)

and (3.23) as follows:
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X

i av, [ ow , dv, dw *w . .
0= ![bHﬁ —J;(E— ~ z//j+bNx —J;a— +bp, — —vlbq(x)}u'x -0, (0)- 0, (1)
(4.88)

4 2
dv aw ow 0 74 . .
0= Z.).[bD“ Ei__a;+vsz55 (-a'-‘x‘ ~y/j+v2blw Bg*jldx —Q2V2 (0)_Q4V2 (l) (489)

4.4.3 Interpolation functions

To construct the finite element model, we have four degrees of freedom per
element corresponding to deflection and four degrees of freedom corresponding to
rotations. Therefore to satisfy the boundary conditions we consider cubic polynomial
expressions for w and y of the forms:

w=a, +ax+a,x’ +a,x’ (4.90)

w=b, +bx+b,x’ +bx’ (4.91)

Here, we define the generalized co-ordinates, w, w',w and y'at nodes 1 and 2.

weO,6)=wi , We(l,t)=wt , L - <, W) we (4.92)
Ox o Ox -
€ € (-4 € a ¢ € a ¢ €
4 (O’t):l//l W (Z,t)=l//3, “51/{“ 25 v =Y, (4.93)
X x=0 ax x=I

Substituting approximation expression (4.90) into boundary conditions (4.92) involving

deflection, we have:

W =at, (4.94)

W =a (4.95)
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w; =a, +afl+ail’? +ail’ (4.96)

we =af +2all+3ail’ (4.97)

Similarly substituting approximation expression (4.91) into boundary conditions (4.93)

involving rotations, we have:

we =b (4.98)

y, =b (4.99)

we =b +bil+b7 + b (4.100)
3 o 1 2 3

wi =b +2b51+3b51° (4.101)
4 1 2 3

Determining the coefficients a, and b, (i = 0, 1, 2, 3) from Equations (4.94)-(4.101) and

substituting them in Equations (4.91) and (4.92), one may write the following

approximation expressions for w and ¢ :

we =z4:Wf‘Pj s WE :iW:CDi (4'102)
= =

where, ¥, and @, denote the interpolation functions for w and y that are obtained as:

¥ =0 =135+ (4.103)
x2 JC3

¥ =0 =-a 42— (4.104)
2 3

e = Df = 3&] - 2(?} (4.105)
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2 3
X X

Y, =0 = (4.106)
I ]
4.4.4 FElement matrices

The stiffness and mass matrices for Timoshenko beam element are given by the

following equations:

[k<]= (4.107)

o] o}
<] = (4.108)
ol [m?]
where,
! d‘I’i dy.
Kl = ! b, —+— L (4.109)
!
d¥,
K} :_([bﬂss-zi—;cbjdx (4.110)
K=K} (4.111)
0 do, d,
K2 :!{bD“ —(};-gjwﬂﬁcp,@j}dx (4.112)
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7
M} = [bp, V¥ dx
0

)
22
M7 =[bl @ ® dx
0

(4.113)

(4.114)

The stiffness and mass matrices of Timoshenko beams are obtained upon performing the

integrations in the Equations (4.109)-(4.114).

51
[Ke]: bH
sym
where
5 — Dll
H55

|-

13 6

—+—0

35 51

{

10
—]—l—l2 L5
210 10

Lpils
105 10

123

1 L Il
2 10 10
A6 L Bp1
70 51 10 420 10
Lo
10 30 60
_1_3_.2__1_.5 L _21_3_1_5
420 10 60 140 30
SR
2 10 10
13, 55 o1 “lp 1
35 ol 10 210 10
—2—1 0
15
L2
105 15
(4.115)
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(4.117)

Note that the nodal displacement vector is considered as{w,,y,, W/, !, w,,w,, wh, w1},

where w and  denote the deflection and rotation, and w'and w'represent the first

derivative of w and i/, respectively.

4.5

Computer programming

Different programs and routines have been developed in MATLAB® software to

perform the vibration and buckling analyses of uniform and tapered composite beams.

The flowcharts of the main programs for uniform and tapered beams are as shown in

Figure 2.11. The details of the programs are provided in Appendix-B. The nomenclature

of the programs and routines are chosen such that one may get an idea of the functions of

the programs. For example kadA.m is used for k£ matrix of tapered beam model A using

advanced FEM and ada.m refers to analysis of tapered beam model A and so on.
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4.6  Example applications

In this Section a set of problems has been solved for free vibration and buckling
of composite beams, and for the free vibration of composite beam-columns to validate the
formulations presented. The problems are solved considering cylindrical bending theory.
Comparisons with existing results and the results obtained in the present work using

conventional formulation are made wherever possible.

4.6.1 Uniform-thickness composite beams
Example 4.6.1

Uniform-thickness composite beams with (a) simply supported, (b) fixed-fixed
and (c) fixed-free boundary conditions as shown in Figure 2.5 made up of 36 plies of
NCT/301 graphite-epoxy with the following mechanical properties are to be analyzed for
free vibration based on CLPT. E; is 113.9 GPa, E; is 7.9856 GPa, v,,is 0.0178, v,, is
0.288, Gy, is 3.138 GPa, p=1480 kg/m’. The geometric properties of the beams are: the
length (L) of the beam is 25 cm; individual ply thickness (ty) is 0.125 mm and the
laminate configuration is (0/90) os.

The problem is solved using different number of elements to obtain the desired accuracy.
The results are compared with the exact solution given by equations (2.36) to (2.38).
Tables 4.1 to Table 4.3 give the natural frequencies for the simply supported, fixed-fixed
and fixed-free beams based on the cylindrical bending theory for mid-plane symmetric

composite laminated beams. In the following tables, nA and nC denote the number of
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elements used in advanced formulation and conventional formulation, respectively, and

nDOF denotes the total number of degrees of freedom.

Table 4.1

1366

The natural frequencies (x 10’ rad/sec) of a simply supported beam

, 1368 1.367

2 5.466 5.466 5.531 5.49

3 12.300 12.644 13.652 12.52
Table 4.2 The natural frequencies (x10°rad/sec) of a fixed-fixed beam

fode act @
1 3.100 3.098 3.098 3.111 3.102
2 8.539 8.543 8.540 8.711 8.619
3 16.743 17.673 16.744 20.259 17.100
Table 4.3 The natural frequencies (x 10’ rad/sec) of a fixed-free beam
1 0.4868 0.486 0.486 0.487 0.487
2 3.051 3.051 3.051 3.061 3.051
3 8.543 8.553 8.543 8.650 8.610

The results of the Tables 4.1 to Table 4.3 show that the advanced formulation gives more

accuracy and faster convergence than conventional formulation. The fast convergence is

important when one needs to determine the higher modes of vibration. By using two

advanced elements the percentage of error is about zero even for the third mode whereas

the use of 4 conventional elements gives 0.72 % error for the third mode in all boundary

conditions. Figure 4.4 shows the natural frequencies of a simply supported beam based

on the results given in Table 4.1. As one can see, the results obtained using advanced

formulation fully match the exact solutions.




—— Exact solution

Figure 4.4  Natural frequencies of simply supported beam of example 4.6.1

Example 4.6.2

Example 4.6.1 is considered to solve for critical buckling load. The mechanical properties
and the geometry of the beams remain the same in example 4.6.1. The critical buckling
load is obtained using advanced formulation explained in section 4.2.5 and the results are

compared with the exact solution given by Equations (2.43)-(2.45).

Table 4.4 gives the critical buckling loads for the simply supported, fixed-fixed and

fixed-free beams based on the cylindrical bending theory for mid-plane symmetric

composite laminated beams.
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Table 4.4 Critical buckling loads (x10°N) for beam of example 4.6.2 with different
boundary conditions

mply 3938 39.38 39.38 39.54 39.43
supported
Fixed- 157.52 157.64 157.53 159.02 158.76
fixed
Fixed-free 9.847 9.847 9.847 9.859 9.848

The results of the Table 4.4 shows that for buckling analysis, the advanced formulation
gives more accuracy by using fewer elements compared to conventional formulation.
This is the same result as we experienced in dynamic analysis. Therefore we conclude
that advanced formulation has better accuracy than conventional formulation for dynamic

analysis as well as static analysis.

Example 4.6.3

Example 4.6.1 is considered for vibration analysis of a beam-column. In this case, the
beam is loaded with a compressive axial load. The axial load is increased gradually as the
percentage of the critical buckling load to investigate the effects of axial load on the
natural frequencies of beam-column. Figure 4.5 shows the ratio of the natural frequency

of free vibration with axial load P over the natural frequency of free vibration without

axial load,ﬁ)—, vs. the percentage of critical buckling load for simply supported, fixed-
1

fixed and fixed-free boundary conditions.
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Figure 4.5  Effects of axial load on frequency ratio for laminated beams

Figure 4.5 shows that by increasing the axial load, the natural frequencies decrease. This
result was expected from Equation (4.74) where one can conclude that the compressive
axial load decreases the value of stiffness of the element. As 1t is seen in Figure 4.5 the
rate of change of the frequency for fixed-fixed, fixed-free and simply supported cases are

very close.

Example 4.6.4

A uniform-thickness composite beam with simply supported boundary conditions is
considered to solve for natural frequencies based on Timoshenko beam model using

advanced formulation. The mechanical properties are selected similar to the example
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4.6.1. The laminate configuration is cross-ply. Total thickness is 0.018 m and number of

plies are 144. The length of the beam is 0.0859 m.

Table 4.5 compares the results for example 4.6.4 using different number of advanced
elements with the exact solution. To show the superiority of advanced formulation
presented above the example 4.6.4 is solved using conventional formulation. The beam

has been meshed by 5 elements. The results for the first three natural frequencies are

4.044 x10* rad/sec, 13.117 x 10" rad/sec and 24.372 x10* rad/sec, respectively.

Table 4.5 Natural frequencies (x10*rad/sec) of simply supported uniform beam
based on Timoshenko beam element

1 3.86 5.293 4.461 3.802
2 11.541 17.687 12.708 12.125
3 19.693 78.471 22.252 19.059

Comparing the results given in Table 4.5 with the results obtained by using conventional
formulation for Timoshenko beam element, one can see that advanced formulation offers
faster convergence and more accurate results. These results become more important when
determining higher modes of vibration. For example, the conventional formulation gives
23% of error in computing the third mode of vibration while for advanced formulation

there is only 3% of error.
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4.6.2 Tapered beams
4.6.2.1 Effects of taper types on vibration response

Example 4.6.2.1

Example 2.6.1.2 is solved using advanced formulation and the results are compared with
the results given in reference [32] determined wusing Hierarchical finite element

formulation.

Table 4.6 Natural frequencies (x 10’ rad/sec) for fixed-free laminated tapered beam
of example 4.6.2.1

1 0:453 0.4430

2 2.29 2.1987

3 6.69 6.4743
Example 4.6.2.2

Problem description

Various tapered beams made of models A and C as shown in Figure 2.10 and models B
and D as shown in Figure 2.9 are considered with 36 and 12 plies at thick and thin
sections respectively that results in 24 drop-off plies. The stacking sequence of the
laminate at thick section is (0/90)¢s and at thin section is (0/90)3;;. Hereafter this laminate
configuration will be referred as LC (1). The beam is meshed with three equal-length
elements for all tapered beams. The problem is solved for different taper angles while the

height ratio of thick and thin sections remains constant. As a result, the length of the
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beam changes according to Table 2.5. The mechanical properties of the composite
material are the same as in example 4.6.1 and the thickness of each individual ply is
0.125 mm. The mechanical properties of the epoxy resin are: Elastic Modulus (E) is 3.93

GPa, Shear Modulus (G) is 1.034 GPa, and Poisson’s Ratio (v) is 0.37.

Tapered beam model A

To make a tapered beam with model A, 24 plies have been dropped off which results in a
large resin pocket. The problem is solved for free vibration. The results for simply
supported, fixed-free and fixed-fixed laminated beams are listed in Tables 4.6 to 4.8

respectively.

Table 4.7 Natural frequencies (x10*rad/sec) for simply supported laminated tapered
beam model A

0.1 0.0068 0.0280 0.0613 0.1105

0.5 0.1702 0.7005 1.5342 2.7640
0.75 0.3831 1.5763 3.4520 6.2193

1.0 0.6811 2.8025 6.1371 11.0567
1.5 1.5326 6.3060 13.8094 24.8765
2.0 2.725 11.2111 24.5522 44.2339
2.5 4.2583 17.5203 38.3673 69.1234
3.0 6.1328 25.2328 55.2567 99.5517
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—e— conventional
—~g— Advanced

Figure 4.6  Natural frequencies for tapered beam model A with taper angle of 3 °

Figure 4.6 compares the results obtained using conventional and advanced formulations
for the lowest four natural frequencies of a simply supported tapered beam model A. As it

is seen the results obtained by advanced formulation are always lower than the results

given by conventional formulation.

Table 4.8 Natural frequencies (x10°* rad/sec) of fixed-free laminated beam model A

0.1 0.0040 0.0179 0.04566 0.0855
0.5 0.1018 0.4485 1.1448 2.1388
0.75 0.2291 1.0093 2.5760 4.8124
1.0 0.4074 1.7943 4.5797 8.5557
1.5 0.91684 4.0375 10.3051 19.2512
2.0 1.6300 7.1785 18.3218 34.2275
2.5 2.5473 11.2178 28.6311 53.4867
3.0 3.6686 16.1559 41.2346 77.0316
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Table 4.9
A

Natural frequencies (x 10" rad/sec) of fixed- fixed laminated beam model

0.5 1.0831

0.75 2.4372 . 7.7854
1.0 4.3329 8.2780 13.2841
1.5 9.7496 18.6329 31.1445
2.0 17.3342 33.1281 55.3730
2.5 27.0879 51.7686 86.5304
3.0 13.9188 39.01206 74.5573 124.6213

Tapered beam model B

Tapered beam model B as shown in Figure 2.9 is made by dropping off eight plies in
each element. Thus, the resin pocket in this case is distributed at different locations. The
beam is meshed with three equal-length elements. As it is seen in Figure 2.9, in the first
and second elements, there are 16 and 8 uniform plies respectively. The problem is
solved for free vibration and the results for simply supported, fixed-free and fixed-fixed

laminated beams are listed in Tables 4.9 to 4.11 respectively.

Table 4.10  Natural frequencies (x10"rad/sec) of simply supported laminated beam

model B

0.1 0.0072 0.0318 0.0660 0.1157
0.5 0.1811 0.7969 1.6506 2.8946
0.75 0.4075 1.7931 3.7140 6.8946
1.0 0.7244 3.1879 6.6029 11.5791
1.5 1.6301 7.1732 14.8571 26.0548
2.0 2.8983 12.7536 26.4158 46.3237
2.5 4.5291 19.9297 41.2794 72.3892
3.0 6.5228 28.7029 59.4507 104.2551
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Table 4.11

Natural frequencies (x 10 rad/sec) of fixed -free laminated beam model B

0.1 0.0050 0.0199 0.0532 0.1004

0.5 0.1258 0.4998 1.3305 2.5114
0.75 0.2832 1.1247 2.9937 5.6508

1.0 0.5035 1.9996 5.3223 10.0462

1.5 1.1330 4.4994 11.9760 22.6054

2.0 2.0145 7.9997 21.2927 40.1910

2.5 3.1480 12.5011 33.2736 62.8057

3.0 4.5338 18.0041 47.9208 90.4529

Table 4.12  Natural frequencies (x10° rad/sec) of fixed - fixed laminated beam model

B

0.1 0.0174 0.0502 0.0978 0.1544
0.5 0.4352 1.2571 2.4453 3.8613
0.75 0.9792 2.8286 5.5020 8.6881
1.0 1.7409 2.8286 5.5020 8.6881
1.5 3.9173 5.0288 9.7816 15.4459
2.0 6.9648 20.1183 39.1327 61.7931
2.5 10.8838 31.4385 61.1520 96.5629
3.0 15.6749 45.2778 88.0712 139.0701

Tapered beam model C

Taperéd beam of model C, as shown in Figure 2.8 has been made by dropping off 8 plies
in each element. The beam is modeled with 3 equal-length elements. As one can see the
total volume of the resin pocket for models C and B are the same but they are distributed
at different locations in each model. The problem 1s solved for free vibration and the
results for simply supported, fixed-free and fixed-fixed boundary conditions are listed in

Tables 4.12 to 4.14 respectively.
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Table 4.13
model C

Natural frequencies (x10*rad/sec) of simply supported laminated beam

0.1 0.0071 0.0298 0.0653 .

0.5 0.1782 0.7453 1.6337 2.9403
0.75 0.4011 1.6774 3.6759 6.6159

1.0 0.7131 2.9822 6.5352 11.7618
1.5 1.6047 6.7105 14.705 26.4658

2.0 2.8531 11.9308 26.1450 47.0546

2.5 4.4585 18.6441 40.8562 73.5313

3.0 6.4211 26.8513 58.8413 105.9001

Table 4.14  Natural frequencies (x10* rad/sec) of fixed -free laminated beam model C

0.1 0.0045 0.0019 0.0048 0.0091

0.5 0.1148 0.4831 1.2224 2.2795
0.75 0.2583 1.0870 2.7505 5.1291

1.0 0.4593 1.9325 4.8900 9.1186

1.5 1.0334 4.3484 11.0032 20.5183

2.0 1.8374 7.7310 19.5629 36.4802

2.5 2.8713 12.0815 30.5707 57.0069

3.0 4.1353 17.3999 44.0279 82.1015

Table4.15  Natural frequencies (x10*rad/sec) of fixed - fixed laminated beam model

C

0.1 0.0166 0.0463 0.0884 0.1474
0.5 0.4168 1.1592 2.2101 3.6868
0.75 0.9380 2.6083 4.9729 8.2955
1.0 1.6676 4.6371 8.8410 14.7480
1.5 3.7524 10.4342 19.8936 33.1851
2.0 6.6716 18.5514 35.3695 59.0011
2.5 10.4255 28.9899 55.2713 92.1999
3.0 15.0149 41.7513 79.6019 132.7865
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Tapered beam model D

Tapered beam of model D as shown in Figure 2.9 is made by dropping off eight plies in
each element. Thus, the resin pocket in this case is distributed at different locations. The
beam is meshed with three equal-length elements. As it is seen in Figure 2.9, in the first
and second elements, there are 28 and 12 uniform plies respectively. The problem is
solved for free vibration and the results for simply supported, fixed-free and fixed-fixed

laminated beams are listed in Tables 4.15 to 4.17 respectively.

Table4.16  Natural frequencies (x10*rad/sec) of simply supported laminated beam

model D

0.1 0.0082 0.0333 0.0735 0.1314

0.5 0.2068 0.8349 1.8376 3.2853
0.75 0.4653 1.8786 4.1347 7.3922

1.0 0.8272 3.3399 7.3508 13.1419
1.5 1.8614 7.5153 16.5405 29.5713
2.0 3.3094 13.3617 29.4080 52.5760
2.5 5.1716 20.8801 45.9553 82.1594
3.0 7.4481 30.0715 66.1849 118.3261
Table 417  Natural frequencies (x10* rad/sec) of fixed-free laminated beam model D

0.1 0.0036 0.0195 0.0532 0.1017
0.5 0.0902 0.4887 1.3321 2.5447
0.75 0.2030 1.0997 2.9972 5.7257
1.0 0.3610 1.9551 5.3286 10.1793
1.5 0.8123 4.3993 11.9902 22.9050
2.0 1.4442 7.8217 21.3178 40.7237
2.5 2.2564 12.2228 33.3128 63.6381
3.0 3.2504 17.6034 47.9772 91.6517
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Table 4.18

Natural frequencies (x10* rad/sec) of fixed-fixed laminated beam model D

0.1 0.0182 0.05147 0.0996 0.1651
0.5 0.4559 1.2868 2.4905 4.1275
0.75 1.0258 2.8955 5.6038 9.2871
1.0 1.8238 5.1477 9.9628 16.5107
1.5 4.1038 11.5831 22.4174 37.1516
2.0 7.2963 20.5940 39.8567 66.0532
2.5 11.4018 32.1819 62.2833 103.2199
3.0 16.4210 46.3485 89.7006 148.6575

4.6.2.2 Effects of ply orientations on vibration response of tapered beams

Now we intend to study the effects of ply orientations on free vibration of tapered
beam. Observation of the results presented in the previous section shows that the tapered
beam model D gives higher natural frequencies for all types of boundary conditions,
which means that the tapered beam model D is the stiffest model compared to the other
tapered types. In this section the tapered beam model D is considered to investigate the
effects of ply orientation on natural vibration of tapered beam. Tables 4.19 and 4.20 give
the natural frequencies for laminate configuration LC (2) that has (£45) o at thick section
and (+45) 3, at thin section and laminate configuration LC (3) that has (04/+457), at thick

section and (04/+45); at thin section respectively.
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Table 4.19

with LC (2) configuration

Natural frequencies (x10*rad/sec) for simply supported beam of model D

0.1 0.0059 0.0242 0.0522 0.0953

0.5 0.1499 0.6053 1.3306 2.3830
0.75 0.3372 1.3620 2.9939 5.3620

1.0 0.5996 2.4214 5.3226 9.5327

1.5 1.3492 5.4486 11.9766 21.4500
2.0 2.3989 9.6873 21.2937 38.1367
2.5 3.7488 15.1381 33.2753 59.5954
3.0 5.3990 21.8020 47.9232 85.8295

Table 4.20  Natural frequencies (x10° rad/sec) for simply supported beam of model D

with LC (3) configuration

0.1 0.0104 0.0411 0.0942 0.1641
0.5 0.2608 1.0296 2.2856 4.1040
0.75 0.5868 2.3168 5.1428 0.2342
1.0 1.0432 4.1188 9.1430 16.4168
1.5 2.3474 9.2680 20.5731 36.9402
2.0 4.1735 16.4779 36.5777 65.6773
2.5 6.5219 25.7497 57.1930 102.6325
3.0 9.3928 37.0848 82.3209 147.8117

Figure 4.7 compares the fundamental frequency obtained for laminate configurations LC

(1), LC (2) and LC (3) for tapered beam of model D with different taper angles.
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~—$—1C (1)
~iF-1C (2)

Figure 4.7  Fundamental frequency for simply supported tapered beam model D

Figure 4.7 shows that the tapered beam with LC (3) laminate configuration gives the
highest natural frequency. The effects of ply orientations on free vibration can be
determined by investigating the Equations (2.67) and (2.68) where one can see that beam

stiffness Dy; 1s a function of Q;; which itself is a function of ply orientation.

It can be seen from Figure 4.7 that by increasing taper angle the natural frequencies
increase for all ply orientations under investigation. Recalling the geometric dimensions
of tapered beams given in Table 2.5, one can see that the higher the taper angle is the
smaller is the length of the beam. Equation (4.85) shows that the length of the beam has

direct effects on stiffness matrix.
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4.6.2.3 Effects of boundary conditions on vibration response of tapered beams

To see the effects of boundary conditions on natural frequencies, a tapered beam
made with model D is considered. Taper angle of 3° is chosen and the laminate
configuration is cross-ply. The first four natural frequencies are plotted in Figure 4.8. The
effects of boundary conditions on natural frequencies for tapered beam are similar to the
corresponding results obtained for uniform beams. As it is seen the natural frequencies
for fixed-fixed support are the highest and the fixed-free support gives the lowest natural
frequencies. This is due to the effects of restrained degrees of freedom. In fixed-fixed
support there are four restrained degrees of freedom whereas for fixed-free support there

are only two restrained degrees of freedom.

—&— simply supported
- Fixed-free

= Fixed-fixed

Figure 4.8  Natural frequencies for tapered beam of model D with LC (1)
configuration and taper angle of 3 °
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4.6.2.4 Effects of taper types on vibration response of tapered beams

To study the effects of types of the tapered beams on natural frequencies, different types
of tapered beams that are simply supported have been considered. The natural
frequencies have been computed for different taper angles. The results are shown in
Figure 4.9. As it was expected the natural frequencies for tapered beam model D are the
highest and tapered beam models, B, C and A take respectively the other positions. This
is the same result that we saw in conventional formulation. The reason for this has

already been discussed in Chapter 2.

—&— Model A
—&&— Model B
& Model C

i Model D

Figure 4.9  Fundamental frequencies for different tapered beams with LC (1)
configuration and simply supported boundary condition
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4.6.2.5 Effects of taper types on buckling of tapered beams

As we observed from the results given in example 4.6.2.2 the tapered beam with
LC (3) configuration is the stiffest beam. To investigate the effects of the type of taper on
buckling loads, we consider tapered beam models, A, B, C and D for different boundary
conditions and different taper angles. Tables 4.21 to 4.24 give the critical buckling loads
for tapered beam models A, B, C and D respectively. To have a clear observation, these
results are plotted in Figure 4.10. As one can see in Figure 4.10, the tapered beam model
D gives the highest value for critical buckling load. Consequently tapered beam models
B, C and D take the other positions. This observation is similar to the results shown in
Figure 4.9. This is due to the high stiffness of tapered beam model D that has been

discussed in the previous section.

Table 4.21  Critical buckling load (x10*N) of tapered laminated beams of model A
with LC (3) configuration

0.1 0.2038 0.0826 0.7725
0.5 5.0956 2.0664 19.3136
0.75 11.4649 4.6492 43.4542
1.0 20.3811 8.2649 77.2485
1.5 45.8518 18.5938 173.7874
2.0 81.4999 33.0498 308.9008
2.5 127.3147 51.6286 482.5479
3.0 183.2822 74.3246 694.6761
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Table 4.22

with LC (3) configuration

Critical buckling load (x10*N) of tapered laminated beams of model B

0.1 0.2119 0.0898 0.8194

0.5 5.2985 2.2463 20.4864
0.75 11.9213 5.0540 46.0931

1.0 21.1925 8.9845 81.9397
1.5 47.6773 20.2126 184.3411
2.0 84.7446 35.9271 327.6597
2.5 132.3834 56.1234 511.8521
3.0 190.5791 80.7952 736.8624

Table 4.23  Critical buckling load (x10°N) of tapered laminated beams of model C

with LC (3) configuration

0.1 0.08716 7999

0.5 . 2.1789 19.9977
0.75 11.7178 4.9024 44.9934
1.0 20.8308 8.7151 79.9847
1.5 46.8634 19.6065 179.9430
2.0 83.2980 34.8499 319.8422
2.5 130.1236 54.4400 499.6400
3.0 187.3259 78.3727 719.2820

Table 4.24  Critical buckling load (x10*N) of tapered laminated beams of model D

with LC (3) configuration

0.1 0.4139 0.1237 1.5400
0.5 10.3475 3.0930 38.5015
0.75 23.2813 6.9592 86.6257
1.0 41.3872 12.3714 153.9945
1.5 93.1095 27.8321 346.4437
2.0 165.4986 49.4706 615.7907
2.5 258.5326 77.2802 961.9535
3.0 372.1832 111.2525 138.4827




—&— Model A
il Model B
~ <4 — Model C

Figure 4.10  Critical buckling loads for simply supported tapered beam with LC (3)
configuration

4.7 Conclusions and discussions

In this Chapter, the advanced finite element formulation has been developed for vibration
and buckling analyses of uniform-thickness and tapered composite beams based on
classical laminate theory. The formulation has been applied to obtain natural frequencies
and critical buckling loads of uniform-thickness and tapered composite beams. In the
case of uniform-thickness beams, the results obtained have been compared with the exact

solutions.
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The advanced finite clement formulation has been applied for the analysis of tapered
composite beams. Various types of tapered composite beams, viz. model A, staircase
(model B), overlapped (model C) and continuous plies interspersed (model D) have been
investigated for natural frequencies and critical buckling loads under different boundary
conditions. Based on the results obtained in this chapter, it is shown that the tapered beam
made with model D has the highest stiffness and that models B and C take the second and
third ranks respectively. Model A has the lowest stiffness. Therefore the natural
frequencies and critical buckling loads of model D are the highest and models B, C and A
take the second, third and fourth positions. Natural frequencies of model D are about
three times more than the corresponding results for model A. By comparing the results
obtained using advanced formulation with the results obtained using conventional
formulation, one can see that the results obtained using advanced formulation are always

lower than the results obtained using conventional formulation.

With regard to the boundary conditions, we conclude that the natural frequencies for
fixed-fixed support are the highest. Simply supported and fixed-free supports take the

second and third positions.

According to the results given for different taper angles, we conclude that by increasing

taper angles while keeping the thickness constant, the natural frequencies and critical

buckling loads increase for all types of tapered beams.
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Chapter 5

Parametric study on tapered composite beams

5.1 Introduction

In Chapters 2 and 3 different types of tapered sections were analyzed using
conventional finite element formulation. In Chapter 4, advanced finite element
formulation has been developed for uniform-thickness, mid-plane tapered and internally-
tapered composite beams. The advanced formulation was applied to buckling analysis,
vibration analysis and the analysis of laminated beam-columns. Four types of tapered

sections were introduced as models A, B, C and D as shown in Figure 2.4.

The examples described in Chapters 2, 3 and 4 were designed so as to focus our
study on the effects of different types of tapered sections on vibration response and
buckling. Commonly used tapered beams consist of a thick section, a thin section and a
tapered section as shown in Figure 5.1. The length of the tapered section depends on the

taper angle and usually is much smaller than the lengths of the other two sections.

Major considerations in designing a tapered composite beam are ply orientations,

taper angle and type of the tapered section, namely, external, mid-plane and internal
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tapering. In terms of internal tapering, there are four choices that are called as models A,

B, Cand D.

&J Taper angle

by

Resin pocket

l L ; L, { Ls I

Figure 5.1  Schematic illustration of a tapered beam of model B

In this Chapter, the parametric study is conducted on the tapered beam shown in Figure
5.1. The material chosen is NCT/301 graphite-epoxy that is available in the laboratory of
Concordia Centre for Composites. The properties of the material are listed in Table 5.1
and Table 5.2. The specifications of composite (ply orientations) and geometric
properties (number of plies, taper angle, and length) are detailed in individual problems.
In all cases the laminate is symmetric. All problems are solved using advanced finite
element formulations. In some cases the results obtained using conventional formulation

are given for comparison.

The tapered beams are analyzed for different types of internally tapered sections
that are called as models A, B, C and D. Vanations in the boundary conditions, stacking
sequences and taper angles are considered for all cases. In general, there are two ways of

changing the taper angle: (a) change the length of tapered section while keeping the
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thickness of the thick and thin sections as constants. b) change the number of drop-off

plies (i.e., change the thickness of thick and thin sections).

The free vibration and buckling problems are solved using advanced formulation.
In some cases the results obtained using conventional formulation are given for
comparison. The results are summarized in tables and where applicable, in plots. The

results are compared and interpreted right after each problem.

5.2 Parametric study on the free vibration of tapered compaosite beams

Example 5.2.1

Problem Description

The tapered composite beam of Figure 5.1 has the following geometric properties:
length of the thick section (L;) is 135 mm; length of the thin section (L3) is 135 mm;
length of tapered section (L) is 28.6 mm; height at thick section (h;) is 4.5 mm; height at
thin section (hy) is 1.5 mm; ply thickness (tp) is 0.125 mm; stacking sequence for the
thick section is [0/90] ¢s and for thin section is [0/90] ;5. Taper angle ¢ is 3 °. There are 36
plies in the thick section ane 12 plies in the thin section. The mechanical properties of the
graphite-epoxy and the resin are listed in Table 5.1 and Table 5.2 respectively. Tapered
section is considered to be made of model C. The thick and thin sections are modeled
using one element for each and the tapered section is modeled using three equal-length

elements.
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Table 5.1 Mechanical properties of unidirectional graphite-epoxy prepreg

Longitudinal Modulus (E;) 113.9 GPa

Transverse Modulus (E) 7.985 GPa

(Es) = (E) 7.985 GPa

In-Plane Shear Modulus (Gyz) 3.137 GPa

Out-of-Plane Shear Modulus (Gy3) 2.852 GPa
Density ( p, Kg/m’) 1480
Major Poisson’s Ratio (v;; ) 0.288
Minor Poisson’s Ratio (v, ) 0.018

Table 5.2  Mechanical properties of resin material

Elastic Modulus (E) 3.93 GPa
Shear Modulus (G) 1.034 GPa
Poisson’s Ratio (v ) 0.37

5.2.1 Effects of boundary conditions on the natural frequencies

The lowest three natural frequencies for the above-mentioned problem are
obtained using conventional and advanced finite element formulations. The results
obtained using both the formulations are given in Table 5.3.

Before discussing about the results it is necessary to validate the results. In order
to validate the results given in Table 5.3, the problem described in section 5.2 is solved

for a very small angle (0.5 °) and numbers of plies in thick and thin sections are
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considered as 36 and 32, respectively. In this case the tapered section is meshed by two
equal-length elements. The total length remains the same (L = 298.6 mm). The results for
this geometry can be compared with that for a uniform beam with the same length and 36

plies.

For example, for fixed-free condition, the lowest three natural frequencies for the tapered
laminated beam described above with taper angle of 0.5 ° are obtained as: 3.30x10%,
20.400 x10” and 56.619x10%, respectively. The corresponding results for a uniform

beam are given as: 3.413x10%, 21.45 x10° and 60.63x10° respectively. For simply

supported and fixed-fixed beams the fundamental frequencies for tapered beam with
taper angle of 0.5° are obtained as: 8.998x10% and 20.467x10” respectively, and the
corresponding tesults for uniform-thickness beams are given as: 9.58x10> and

21.805x10*. Considering the fact that there is considerable change in the thin section
length, it can be observed that the results for tapered beam and uniform-thickness beam

are comparable thus validating the results given in Table 5.3.
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Table 5.3 The lowest four natural frequencies of tapered beam of the beam described
in example 5.2.1

1| 3.797(3.798) 4.108(4.110) T 12.523(12.544)
2 23.701(23.841) 12.451(12.465) 35.666(36.051)
3 50.310(51.349) 35.391(35.598) 68.528(71.843)
4 85.111(94.318) 69.563(71.269) 107.002(126.873)

* The values in the parentheses have been obtained using conventional formulation

Observation of the results of Table 5.3 shows that changing the boundary
condition results in a considerable variation in the natural frequencies. The natural
frequencies for the fixed-fixed support are the highest and the second rank is for the
simply supported case and the lowest values are for fixed-free support. Figure 5.2 gives
the lowest four natural frequencies for different types of boundary conditions. Figure 5.2
shows the observation results of Table 5.3 in graphical form. It may be noted that for the

finite element model, the modes are not continuous.
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—g— Fixed-Free
—i— Fixed-Fixed

Figure 5.2 ~ Effects of boundary conditions on natural frequencies of the beam
described in example 5.2.1
5.2.2 Effects of laminate configuration on the natural frequencies

The problem described in example 5.2.1 is considered to investigate the effects of
laminate configurations on the natural frequencies. The same material and geometric
properties are used. The laminate configurations considered are: (i) LC (1) that has
[0/90]9s configuration at thick section and [0/90] 35 configuration at thin section ; (i)
LC (2) that has [1+45] ¢s configuration at thick section and [145] 3¢ configuration at thin
section; (ii1) LC (3) that has [04 /+457] s configuration at thick section and [04 /£45]
configuration at thin section. The lowest four natural frequencies are determined for
different boundary conditions and for the laminate configurations LC (1), LC (2) and LC
(3). Table 5.4 and Table 5.5 give the values of the lowest four natural frequencies for the

above cases.
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Table 5.4

The natural frequencies of tapered beam with

corresponding to different boundary conditions

LC (2) configuration

1 2.609 (2.609) 2.895 (2.896) 8.905 (8.916)
2 16.499 (16.597) 8.827 (8.836) 24.797 (25.064)
3 35.733 (36.565) 24.611 (24.746) 49324 (51.239)
4 59.173 (65.552) 49.352 (50.794) 74.555 (88.570)

* The values in the parentheses have been obtained using conventional formulation

Table 5.5

corresponding to different boundary conditions

The natural frequencies of tapered beam with LC (3) configuration

1 4.604 (4.606) 4723 (4.725) 14.254 (14.268)
2 27.940 (28.092) 14.255 (14.698) 42.190 (42.638)
3 57.203 (58.168) 41.859 (42.112) 79.057 (81.082)
4 101.093 (111.907) 79.099 (80.504) 126.719 (149.367)

*The wvalues in the parentheses are
formulation.

Figures 5.3, 5.4 and 5.5 show the effects of laminate configuration for simply supported,

fixed-free and fixed-fixed boundary conditions respectively,
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Figure 5.3  Natural frequencies of laminate configurations LC (1), LC (2) and LC (3)
with simply supported boundary condition

—o—LC(1)
——LC(2)

Figure 5.4  Natural frequencies of laminate configurations LC (1), LC (2) and LC (3)
with fixed-free boundary condition
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Figure 5.5  Natural frequencies of laminate configurations LC (1), LC (2) and LC (3)
with fixed-fixed boundary condition

One can observe that for all types of boundary conditions, the natural frequencies for LC
(3) laminate configuration are the highest and the lowest values belong to LC (2)
laminate configuration. The changes in natural frequencies for different configurations
are due to change in stiffness and mass matrices for each configuration. Recalling
Equations (4.67) and (4.68), one can see that stiffness and mass matrices directly depend
on the value of D;; which itself directly depends on Q; as shown in Equation (4.2).
Further, tapered beam of example 5.2.1 has been considered. The changes in the
fundamental frequency corresponding to different ply orientation angles for the laminate
with [£0] ply group are plotted in Figure 5.6. As one can see the fundamental frequency

drops significantly for ply orientation angles greater than 10°.
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—e— Simply supported

—ig— fixed-free
—a— fixed-fixed

Figure 5.6  Fundamental frequencies of tapered beams with [10] ply group

5.2.3 Effects of the taper angle on the natural frequencies

To study the effects of taper angles on the natural frequencies, the tapered beam
described in example 5.2.1 is considered. Taper angles have been increased from 1° to 3 °
to investigate the effects of taper angle on natural frequencies. The thickness ratio for all
angles remains constant and therefore, increasing the taper angle results in decreasing the
length of the tapered section. To have comparable results, the total length of the beam for
all angles i1s kept constant and the change in the length of the tapered section is
considered and correspondingly the lengths of the thick and thin sections are adjusted

using equal increments.
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Tables 5.6 to 5.8 give the values for the lowest three natural frequencies for simply

supported, fixed-free and fixed-fixed supports respectively.

Table 5.6 Effects of taper angle on the natural frequencies (x 10’ rad/sec) for simply
supported tapered beam with LC (1) configuration

1 4270 25.013 50.508
2 3.910 24.280 50.116
3 3.797 23.701 50.310

Observation of the results of Table 5.6 shows that increasing the taper angle leads to
decreasing the natural frequencies. One should note that these results are obtained for
realistic tapered beam, which consists of a thick section, a thin section and a tapered
section. Decreasing the natural frequencies by increasing taper angle relates to the
decreasing the value of D;;, which in turn results in decreasing stiffness and mass
(matrices). Figure 5.6 shows that the rates of decreasing the natural frequencies for all
types of tapered section are very close. The natural frequency shows significant drop

between 1 and 2 degrees but after 2 degree the slope becomes less steep.
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Figure 5.7  Effects of taper angle on the natural frequencies of tapered beam of model
C with LC (1) configuration

Table 5.7 and Table 5.8 give the values of the lowest three natural frequencies for fixed-
free and fixed -fixed supports for tapered beam with LC (1) laminate configuration. As
expected from our discussion for simply supported beam (Table 5.6), the natural
frequencies decrease by increasing taper angle for both fixed-free and fixed-fixed

supports.
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Table 5.7

free tapered beam with LC (1) configuration

Effects of taper angle on the natural frequencies (x 10’ rad/sec) for fixed-

6.392 19.182 55.009
4204 12.556 36277
4110 12.465 35.508

Table 5.8

fixed tapered beam with LC (1) configuration

Effects of taper angle on the natural frequencies (x 10 rad/sec) for fixed-

19.266 55.449 106.349
12.581 36.578 69.039
12.522 35.666 69.528

5.2.4 Effects of the length ratio of the thick and the thin sections on the natural
frequencies
To see how the ratio of the lengths of thick and thin sections (L,/L3) affects the
natural frequencies, the data input of the problem described in section 5.2 is used except
that here the lengths of the thick section and the thin section are changed while the total
length remains unchanged. In the first case the length of the thick section is considered as
half of the length of the thin section and in the second case both thick and thin section

have equal lengths and as the last case the length of the thick section is considered as
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twice the length of the thin section. The values of the lowest three natural frequencies for
simply supported, fixed-free and fixed-fixed supports are given in Tables 5.9 to 5.11
respectively. These results show that for simply supported and fixed-free supports, a
longer thick section leads to higher natural frequencies whereas for fixed-fixed support a
longer thin section leads to higher natural frequencies. This observation is shown
graphically in Figure 5.7 for the fundamental frequencies for simply supported, fixed-free

and fixed —fixed supports.

Table 5.9 The lowest three natural frequencies (x10°rad/sec) of tapered beam of
model C with LC (1) configuration for simply supported boundary condition

1 3.797 23.701 50.310

2 4.876 27.990 57.245

Table 5.10  The lowest three natural frequencies (x10”rad/sec) of tapered beam of
model C with LC (1) configuration for fixed-free boundary condition

172 2.828 13.965 28.787
1 4.110 12.465 35.598
2 4.883 14.555 41.994
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Table 5.11  The lowest three natural frequencies (x10°rad/sec) of tapered beam of
model C with LC (1) configuration for fixed-fixed boundary condition

172 14.256 28.798 57.879
1 12.522 35.666 69.528
2 12.290 42.356 79.157
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Figure 5.8  Effects of the length ratio on the fundamental frequency
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5.2.5 Effects of the thickness ratio of the thick and the thin sections on the natural

frequencies

The effects of the ratio of the thickness of the thick and thin sections (h;/h; ) are
investigated by considering the data input for the problem explained in section 5.2. There
are 36 layers in the thick section for all cases and further, there are 24 layers in the thin
section for the first case, 18 for the second case and 12 for the third case. The laminate
configuration for all cases is LC (1). The values of the lowest three natural frequencies
for simply supported, fixed-free and fixed-fixed supports are given in Tables 5.9 to 5.11
respectively. One can see that for simply supported and fixed-fixed cases, increasing the
thickness ratio does increase the natural frequencies, which is due to corresponding
changes in the mass and stiffness (matrices). For fixed-free support, the natural
frequencies increase by increasing the thickness ratio from 1.5 to 2 but after that again

decrease. This result is due to the location of the restrained degrees of freedom.

Table 5.12  The lowest three natural frequencies (x10°rad/sec) of tapered beam of
model C with LC (1) configuration for simply supported boundary condition

1.5 7.363 32.457 69.127
2 5.762 29.127 59.231
3 3.797 23.701 50.310
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Table 5.13

model C with LC (1) configuration for fixed-free boundary condition

The lowest three natural frequencies (x10”rad/sec) of tapered beam of

1.5 3.930 17.616 50.197
2 4.183 15.052 44.440
3 4.108 12.451 35.391
Table 5.14  The lowest three natural frequencies (x10°rad/sec) of tapered beam of
model C with LC (1) configuration for fixed-fixed boundary condition

1.5 17.425 50.417 94.336
2 14.882 44.729 81.277
3 12.529 35.667 69.528

The fundamental frequencies for simply supported, fixed-free and fixed-fixed boundary

conditions are plotted in Figure 5.8.
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Figure 5.9 The effects of the thickness ratio on the fundamental frequency

5.2.6 Effects of different types of tapered section (A, B, C, and D)

To study the effects of different types of tapered section on the natural
frequencies, the problem described in Section 5.2 is considered. The material and the
geometric properties are as described in Section 5.2. Here, different types of tapered
section (models A, B, C and D) are considered in tapered beam. The lowest three natural
frequencies for simply supported, fixed-free and fixed-fixed boundary conditions for all

types of tapered section and different laminate configurations are given in Tables 5.15 to

5.17.
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Table 5.15  Effects of different types of tapered section on frequencies (x10° rad/sec)
for simply supported beam with taper angle of 3 °

1 | 3.785 3810 | 3.797 3.835
LC (1) 2 23.567 23.736 23.701 24369
3 50.288 50.323 50.310 49.637
1 2614 2715 2.609 2.739
LC (2) 2 16.884 17.463 16.50 17.962
3 35.205 35.854 35.733 35.417
1 4619 4.680 4.604 4.849
LC (3) 2 28.533 28571 27.940 30.121
3 56.410 57.306 57.203 56.984
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Table 5.15  Effects of different types of tapered section on frequencies (x 10” rad/sec)
for fixed-free beam with taper angle of 3 °

1 4.092 4.120 4.108 4.215
LC (1) 2 12.445 12.468 12.451 12.308
3 35.179 35.440 35.391 36.308
1 2.960 T 3.029 2.895 3.111
LC(2) 2 8.671 8.905 8.827 8.811
3 25.140 26.123 24.610 26.918
1 4.810 4.984 4.723 5.023
LC (3) 2 14.070 15.045 14.255 14.421
3 42.735 43.295 41.859 45.526

The first three natural frequencies of fixed-free beam with LC (3) laminate configuration
for different types of tapered beams are shown in Figure 5.9. The taper angle for all types

of tapered beam is 3 °.
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Figure 5.10  The effects of type of tapered section on the natural frequencies of fixed-
free boundary conditions and LC (3) laminate configuration

Table 5.17  Effects of different types of tapered section on frequencies (x 107 rad/sec)
for fixed- fixed beam with taper angle of 3 °

1 12.526 | 12.541 12.523 12.316
LC (1) 2 35.452 35.717 35.666 36.678
3 69.425 69.497 69.528 68.689
1 8.706 8.956 8.905 8.804
LC(2) 2 25.348 26.330 24.798 27.061
3 48.737 49.745 49324 49.215
1 13.972 14.305 14.254 14.204
LC(3) 2 43.118 43.243 42.191 45.817
3 78.051 79.286 79.056 78.662
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The results obtained for different types of tapered section show that the natural
frequencies for tapered beam in which tapered section is made as model D gives the
highest values for the natural frequencies. This result was expected from the geometry of
the model D. Model D has more uniform layers in the tapered section. For example, in
the problem explained in section 5.2, there are 36 plies in the thick section, which are
dropped to 12 in the thin section through three equal-length elements. Therefore, in the
first and second elements 24 and 12 plies are laid up uniformly (zero taper angle).

Whereas in the model B the uniform plies in the first and second elements are 16 and 8

respectively. Recalling equation (4.2) and noting thatz, = tan(—¢)x+ ¢, one can see that
increasing ¢ decreases the z, and therefore decreases the value for D, . Therefore, when

the drop-off plies lower the value of D,; the lower is the stiffness of the tapered beam.

Considering this reason, we expect to have lower value for the natural frequencies for
model B. Observation of the results given in the Tables 5.11 to 5.13 confirms our
expectation. The natural frequencies for models A and C are very close, which means that
the resin does not considerably affect the stiffness of the beam and this is the same
observation that was obtained from the investigation of the tapered beam in the previous

chapters.

5.3 Parametric study on the critical buckling load of tapered composite beams

The parametric study on the critical buckling load is conducted using advanced
formulation as we did for the parametric study on natural vibration. The problem
described in example 5.2.1 is considered; the material and geometric properties explained

in example 5.2.1 are used here to solve the problems for critical buckling load.
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5.3.1 Effects of boundary conditions on critical buckling load

The problem described in Section 5.2 is considered to investigate the effects of
boundary conditions on the critical buckling load. The thick and thin sections have equal
length and laminate configuration is LC (1). All types of tapered section are taken into
consideration and the problems are solved for simply supported, fixed-free and fixed-
fixed boundary conditions. Table 5.18 gives the critical buckling load for simply
supported, fixed-free and fixed-fixed supports. The critical buckling load for fixed-fixed
support is the highest whereas the fixed-free support gives the lowest value for the critical
buckling load. As expected (from our discussion in Section 5.2.3), the critical buckling

loads for model D are the highest followed by models B, C and A.

Table 5.18  Effects of boundary conditions on critical buckling load for tapered beam

Model
N R v 1.180 a3
B 2.066 1.193 14350
C 2.055 1.186 14358
D 2133 1.246 14361

5.3.2 Effects of laminate configuration on critical buckling load
The problem described in example 5.2.1 is considered to study the effects of

laminate configuration on the critical buckling load. The input data of the example 5.2.1
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is used here for the laminates LC (1), LC (2) and LC (3). All types of tapered sections are
taken into consideration. Tables 5.19 to 5.21 give the critical buckling loads for simply

supported, fixed-free and fixed-fixed supports respectively.

Table 5.19  Effects of laminate configuration on critical buckling load of simply
supported beam

LC (2) 0.917 1.007 0.964 1.000
LC(3) 3.0513 3.077 3.055 3.180
Table 5.20  Effects of laminate configuration on critical buckling load of fixed-free
beam

LC (1) 1.180 1.193 1.186 1.246
LC (2) 0.559 0.518 0.562 0.590
LC (3) 1.723 1.743 1.727 1.822
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Table 5.21  Effects of laminate configuration on critical buckling load of fixed-fixed
beam

LC (1) 14339 14.350 14.358 14.361
LC (2) 7.069 7.124 7.081 7.091
LC (3) 19.295 19.306 19.299 19.317

The laminate LC (3) gives the highest value for the critical buckling load and the
laminate LC (2) gives the lowest value. In fact, the value of the critical buckling load for
the laminate LC (3) is about three times more than the corresponding value for the
laminate LC (2) and about 30% more than corresponding value for laminate LC (1)
These results were expected from our discussions in Section 5.2.2 where we discussed
that the stiffness of the laminated beam is a function of laminate configuration due to the
existence of the term Dj; that is a function of Q;; (See equation 4.2). From Equation

(4.3), one may see that the value of Q;; depends on fiber orientation.

5.3.3 Effects of the taper angle on critical buckling load

To see how the taper angle affects the critical buckling load, the tapered beam explained
in Section 5.2.3 is considered except that here the tapered section is considered to be of
model D with laminate configuration L.C (3). This laminate configuration is selected
because it is more common and we saw in the Section 5.3.2 that LC (3) laminate gives

the highest value for the critical buckling load. Changing the taper angle is performed in
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the same manner as we did in Section 5.2.3. Thicknesses of the thick and thin sections
remain the same and therefore changing the taper angle leads to changing the length of
the tapered section. The total length of the beam for all angles is kept constant and the
change in the length of the tapered section is considered and correspondingly the lengths

of the thick and thin sections are adjusted using equal increments.

Table 5.22  Effects of taper angle on critical buckling load for model D with LC (3)
configuration

1 3.793 2.185 20.167
2 3.375 1.956 19.422
3 3.180 1.822 19.317

Table 5.22 gives the critical buckling loads for simply supported, fixed-free and fixed-
fixed boundary conditions for different taper angles. Table 5.22 shows that increasing the
taper angle result in decreasing the critical buckling load for simply supported, fixed-free
and fixed-fixed supports. One should note that these results have been obtained for a
realistic tapered beam, which consists of a thick section, a thin section and a tapered
section. As we discussed in section 5.2.2, increasing taper angle results in decreasing
stiffness of the laminated beam and in turn results in decreasing critical buckling load.

Figure 5.10 shows the changes in critical buckling loads vs. taper angle.
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Figure 5.11 Effects of taper angle on the critical buckling load for a tapered beam

5.3.4 Effects of the length ratio of the thick and the thin sections on critical

buckling load

The study of the effect of the ratio of the thick and thin section lengths is
conducted by considering the problem explained in the previous section except that here
the taper angle is 3 ° and the lengths of the thick and thin sections have been changed
while keeping the total length of the beam constant. As the first case, the length of the
thin section is considered as twice the length of the thick section and for the second case,
both the thick and thin sections have equal length. As the last case, the length of thin

section is half of the length of the thick section.

Table 5.23 gives the critical buckling load for tapered beam explained above for

different length ratio values. One can see that increasing the length of the thick section
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results in increasing the critical buckling load. This result is valid for all types of supports
under investigation that are simply supported, fixed-free and fixed-fixed boundary

conditions. This is due to increasing stiffness of the beams.

Table 5.23  Effects of Li/L; on critical buckling load of model D with LC (3)
configuration

172 - 2249 1.096 | 16.796
1 3.180 1.822 19317
2 5712 3511 24.628

—e— simply supported
—5— Fixed free
—4&— Fixed-Fixed

Figure 5.12  Effects of length ratio on the critical buckling load for a tapered beam
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5.4 Conclusions and discussions

In this chapter a parametric study on vibration and buckling of tapered composite
beams has been conducted. Different types of tapered sections have been considered in
tapered beams. The problems have been solved for different boundary conditions, various
taper angles and different laminate configurations. The effects of the length ratio of the
thick and thin sections as well as thickness ratio of the thick and thin sections have been

investigated.

We conclude that tapered beam having model D as tapered section provides the
highest natural frequencies and critical buckling loads compared to the other tapered
sections. Consequently tapered beams with models B, C and A as tapered section take the
second, third and fourth positions. Increasing taper angle decreases the value of natural
frequencies and critical buckling loads. One should note that these results are obtained for
realistic tapered beam, which consists of a thick section, a thin section and a tapered
section. Another feature of importance is that the higher the length of the thick section is

the higher are the natural frequency and critical buckling loads.
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Chapter 6

Conclusions and future work

In the present thesis the advanced finite element formulation has been developed
for buckling and vibration analysis of tapered composite beams. Different configurations
of tapered beams, mid-plane tapered as well as internally tapered beams have been
investigated. The study on the vibration and buckling response has been conducted using
conventional finite element formulation and advanced formulation for uniform-thickness

and tapered composite beams.

The constitutive equation of motion of the tapered composite beams has been
derived by taking into account the effect of taper angle. Based on the differential equation
developed for tapered beams, the conventional and advanced finite element formulations

have been improved for mid-plane and internally tapered beams.

The finite element model for the composite beams is considered based on
conventional formulation with two degrees of freedom per node, namely deflection and
slope. 1t was shown that the conventional FEM model for beams has some
disadvantages: large number of elements are needed to achieve accurate results and the
curvature varies linearly along the length of the element, which is not appropriate for

tapered beams.
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The conventional finite element model has been improved by introducing
advanced finite element formulations for Euler-Bemoulli and Timoshenko beam
elements. The advanced formulation based on the Euler-Bernoulli beam element
considers four degrees of freedom per node, that are, displacement, slope, curvature and
gradient of curvature. The advanced formulation based on the Timoshenko beam element
considers displacement, rotation, the first derivative of displacement, and the first
derivative of rotation per node. Thus, both the elements adequately represent all the
physical situations involved in any combinations of displacement, rotation, bending

moment and shearing force.

The symbolic computations and numerical results have been obtained using
MATLAB ® software. The element properties, that are, stiffness, mass and geometric

matrices have been computed numerically using individual sub-routines.

The parametric study is carried out for the tapered composite beams to see the
effects of various changes in the laminate parameters on the natural frequencies and
critical buckling loads. The effects of the length ratio (the length of the thick section over
the length of the thin section), the thickness ratio (the ratio of the thickness of the thick
and thin sections), and the taper angle are considered to see the effects of the geometry
changes on the natural frequencies and critical buckling load. The effects of the changes
in the boundary conditions and the changes in the laminate configurations are also
considered in the parametric study. The work done in the present thesis has provided

some conclusions on the performance of the advanced finite element formulation, and
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manufacturing and design of the tapered composite beams. The most important

conclusions on finite element formulation are:

» The accuracy can be obtained more efficiently and rapidly by increasing the
number of degrees of freedom in the element rather than increasing the
number of elements of the same or fewer degrees of freedom. This result has
been achieved from comparisons of the conventional and advanced finite
element formulations.

» The advanced formulation uses fewer elements to obtain accurate results
which itself leads to less expensive computational processes. This result is
very important in vibration analysis especially in the computation of higher
frequencies.

» In general, the Euler-Bernoulli beam element needs less number of elements
to arrive at an accurate result whereas the Timoshenko beam element uses
more elements to give an accurate result. This conclusion is valid for both

conventional and advanced finite element formulations.

In terms of manufacturing and design of tapered composite beams, the laminated beam
with only a tapered section designed using different tapered configurations is not a
practical one. A more realistic tapered beam consist of a thick section, a tapered section
and a thin section. Both the cases have been investigated for their vibration and buckling

response. The most important conclusions are:
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» The tapered beam model D (staircase-dispersed), is the stiffest configuration,

hence this model gives the highest natural frequencies and critical buckling
loads for all types of boundary conditions, geometries and laminate
configurations.

The tapered beams designed using model A and model C (overlapped-
grouped), are very similar in term of stiffness. This result shows that the resin
pocket has no significant effect on the stiffness.

In term of stiffness, the tapered beam model D is the stiffest model and the
model A is the least-stiff model. Further models B and C take the second and

third ranks.

The study on the vibration and buckling of the tapered laminates can be continued in the

future based on the following recommendations:

1.

The advanced finite element formulation presented in this thesis can be
extended for the analysis of the forced vibration response of different types of

laminated beams.

. The advanced finite element formulation introduced for uniform-thickness

Timoshenko beam element can be extended for tapered beams.

. The effects of damping can be included in the vibration analysis for both

Euler-Bernoulli and Timoshenko beam elements.
The advanced finite element formulation could be extended for the analysis of

tapered laminated composite plates.
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Appendix-A
The coefficients of stiffness and mass matrices of tapered composite beams using

advanced finite element formulation

1.1 Coefficients of the stiffness matrix for tapered composite beams using

advanced finite element formulations
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1.2 Coefficients of the mass matrix for tapered composite beams using advanced

finite element formulations
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Appendix-B

MATLAB ® programs

elindex

%This function makes an index for assembling
Y%ostiffness and mass matrices

%nnel = number of nodes per element

%ndof = number of degree of freedom per element
%iel = element counter

function [index J=elindex(iel,nnel,ndof)
edof=nnel*ndof;
start=(iel-1)*(nnel-1)*ndof;
for i=1:edof

index(i)=start+1i;
end

elasmbl

% This function assembles the elements matrices

% kk = assembled stiffness matrix

% mm = assembled mass matrix

% k = element stiffness matrix

% m = element mass matrix

% index = refer to index for assembly which calculate
% 1n “elindex” function

function [kk,mm]=elasmbl(kk,mm,m k, index)
edof=length(index);
for i=1:edof
11=index(1);
for j=1:edof
ji=index(j);
kk(i1.3j)=kk(iL,ji) k(1)
mm(1i,jj)=mm(iL,jj)+m(i,j);
end
end

symbc

% This function applies boundary conditions
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% kk(i,j) for degree of freedom which are constrained is set as zero
% m(1,)) for degree of freedom which are constrained is set as zero
% bedof refer to a vector contains the constrained DOF

function [kk,mm]=symbc(kk,mm,bcdof)
t=length(bcdof);
sdof=size(kk);
for 1=1:t
c=bcdof(i);
for j=1:sdof
kk(c,j)=0;
kk(,c)=0;
mm(c.j)=0;
mm(j,c)=0;
end
mm{c,c)=1;
end

Omat
This function computes [Q] matrix for a laminate.

function [Q]=Qmat(E1l,E2,G12,rl2,r21)
0(1,1)=E1/(1-r12*r21);

( )
0(2,1y=0(1,2);
Q(2,2)=E2/(1-rl2*r21);
Q(3,3)=G12;
O={ Q{1,1) Q(1,2) 0;
Q(z,1) 9(2,2) 0;
0 0 Q(3,3)1;
abdmat

This function computes A, B and D matrices for a laminate.

function [A,d,D]=abdmat (teta,Q,h)

[numl, num]l=size{teta);

zh=zeros (1, num+l});

for i=l:num+l
zh(1,1)=-h/2+(i-1)* (h/num) ;

end

1
bl
J
p)
H
O
t
ot
93]
¢t
1

&
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A=zeros (3, 3);
B=zeros{(3,3);
D=zeros{3,3);
for nlay=1:num
Qbar=zeros (3, 3);
m=cos (teta(nlay));
n=cos (pi/2-teta(nlay));
Qbar(1,1)=0(1, 1) *m™4+2*(Q(1,2)+2*Q(3,3))*n"2*m"2+0(2,2)*n"4;
Obar (1,2)=(Q(1,1)+0(2,2)-4*Q{(3,3))*n"2*m"2+Q(1,2)* (n~44+m™4) ;
Qbar(2,1) Qbar(l 2);
Qbar (1,3)= 1)-0(1,2)-2*Q(3,3) ) *n*m" 3+ (Q(1,2) -
Q(2,2)+2*Q(3,3))*DA3*H1;
Qbar (3,1)=Qbar (1, 3);
Qbar (2,2)=0(1, 1) *n™4+2* (Q(1,2)+2*Q(3,3) ) *n"2*m"2+0(2, 2) *m"4;
Qbar (2,3)=(0(1,1)-0(1,2)-2*0(3,3))*n"3*m+(Q(1,2) -
0(2,2)+2*Q(3,3))*n*m"3;
Qbar (3,2)=0Qbar (2, 3);
Qbar (3,3)={(Q(1,1)+Q(2,2)-2*Q(1,2)~
2*Q(3,3)1)Y*n"2*m " 2+0(3,3)* (n"4+m™4) ;

for i=1:3

i,3)+0bar (i, 3)* (h/num) ;

é(i;j)¥B£-”j)+O 5*Qbar (i, ) *(zh(nlay+l)~2-zh(nlay)"2);

5Anic 1< i 38 atrix
D(i,1d)=D(1, j)+1/3*Qbar(1 3)*(zh(nlay+1l)"3-zh(nlay)"3):
$Bending Stiffness Matrix
end
end
end
kmmat b2

This function gives the stiffness and mass matrices for a uniform laminated beam based
on Euler-Bernoulli beam theory.

ng modualus

function [k,m]=kmmat b2(d,b,1,area,ro)
k=d*b/ (1"3)*[12 6*1 -12 6*1;

6*1 4*172 -6*1 2*1"2;

-12 -6*1 12 -6*1;

6*1 2*17°2 —-6*1 4*1727;

m={(ro*area*1/420)*[156 22*1 54 ~13*1;
22%1 4*172 13*%1 -3*1"72;
54 13*1 156 -22*1;
=13*1 -3*172 -22*1 4*1"2];
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kmidA

This function creates stiffness matrix for tapered beam model A based on Euler-Bernoulhi
beam theory using conventional FEM

function
[kl=kmidA(E1l,E2,NU12,NU21,G12,WID, TP, tetal, angle, AL, OXXi,npt, npm, npta,n
n,pl;

n=tan(angle);
k=0;
Ql1=E1/(1-(NU12*NU21));
033=G12;
Q12=Q11*NU21;
Q21=(NU12*E2) / (1-(NU12*NU21));
Q22=E2/(1-(NU12*NU21));
0={0Q11,012,0;021,022,0;0,0,033];
TP1=TP/cos (angle);
for i=l:npta
c=TP* (npt+0.5~1);
teta=tetal(l,1i):
M=cos (teta) ;
N=sin(teta);
OXX=M"4*Q11+N"4*Q22+ (2*M " 2*N"2*Q12) + (4*M"2*N"2*Q33) ;
QYY=(N"4*Q11)+ (M 4*Q22) + (2*M 2*N"2*Q12) + (4*M"2*N"2*Q33) ;
QXY= (M"2*N"2*Q11)+ (M "2*N"2*Q22)+ ( (M 44+N"4) *Q12) - (4*M " 2*N~2*Q33) ;
OX8=(M"3*N*Q11) ~ (M*N"3*Q22)+ { { (M*N"3) = (M"3*N) ) *QL12)+(2* { (M*N"3) -
(MA3*N) ) *Q33) ;
QYS=(M*N"3*QL1) = (M"3*N*Q22)+ ( { (M"3*N) - (M*N"3) ) *Q12)+ (2% ( (M"3*N) ~
(M*N~3)) *Q33) ;
0SS=(M"2*N"2*Q11)+ (M "2*N"2*Q22) - {2*M "2*N"2*Q12)+ ( ( (M"2-N"2)"2) *Q33) ;
QT=[QXX, OXY, 2*QXS;0XY, QYY, 2*0XS5;Q0XS,0YS, 2*Q0S33] ;

R

5]

A= (24*n"2*AL"2+60*c*AL*n+60*c"2+5*TP1"2) / (AL"3) ;
B=(14*n"2*AL"2+40*c*AL*n+60*c"2+5*TP1"2) / (AL"2) ;
C=(34*n"2*AL"2+80*Cc*AL*n+60*c"2+5*TP1"2) / (AL"2) ;
D=(8*n"2*AL"2+30*c*AL*n+60*c"2+5*TP1°2) / (15*AL) ;
E=(26*n"2*AL"2+60*c*AL*n+60*c"2+5*TP1"2) / (30*AL) ;
F=(38*n"2*AL"2+90*c*AL*n+60*c"2+5*TP1"2) / (15*AL) ;

H=WID*QXX*TP*cos (angle)"3;

% Tapered plies

ks=H*[0.2*A,0.1*B,-0.2*A,0.1*C;
0.1*R,D,~0.1*B,E;
-0.2*RA,~-0.1*%B,0.2*A,-0.1*C;
0.1*C,E,-0.1*C,F];

k=ks+k;
end
$ Resin plilies with egual length
for i=npta+l:npt-nn

c=c~-TP;
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A= (24*n"2*AL"2+60*Cc*AL*n+60*c"2+5*TP1"2) / (AL"3);
B=(14*n"2*AL"2+40*c*AL*n+60*c"2+5*TP1"2)/ (AL"2);
C={({34*n"2*AL"2+80*Cc*AL*n+60*c"2+5*TP1"2)}/ (AL"2);
D=(8*n"2*AL"2+30*c*AL*n+60*c"2+5*TP1"2) / (15*AL);
E=(26*n"2*AL"2+60*Cc*AL*n+60*c"2+5*TP172) / (30*AL) ;
F=(38*n"2*AL"24+90*c*AL*n+60*c"2+5*TP1"2) / (15*AL)
H=WID*QXXi*TP*cos (angle)"3;
ks=H*[0.2*A,0.1*B,~-0.2*A,0.1*C;

’

0.1*B,D,-0.1*B,E;
-0.2%A,-0.1*B,0.2*A,-0.1*C;
0.1*C,E,-0.1*C,F];

k=ks+k;

o]
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n
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ji=nn-j+1;

b=L1(j7);

tp=TP;

alfa=angle;

g=0QXXi;

1=AL;

=1

[ks]=kmidf (tp,q,1l,m,c,a,b);

k=ks+k;
k=cos (angle) *k;
end

k=k~-(p/10)*[12/AL 1 -12/AL 1;
1 4*AL/3 -1 ~RL/3;
-12/AL -1 12/AL -1;
1 -AL/3 -1 4*RL/3];

kmidBl

This function creates stiffness matrix for tapered beam model B based on Euler-Bernoulli
beam theory using conventional FEM

function
{k]=kmidB1l (E1,E2,NU12,NU21,G12,WID, TP, tetal, angle, AL, OXXi, npm, npta, npt,
th, nptm, npu, pj
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m= tan(angle)
Ql1=E1/(1-(NU12*NU21));

Q33=G12;

Q12=011*NU21;
Q21=(NU12*E2) / (1-(NU12*NU21));
Q22=E2/ (1~ (NU12*NU21));
0={011,012,0;021,0Q022,0;0,0,Q33];
k=0;

TP1=TP/cos (angle);

for i=l:npta

c=TP* (npt+0.5~-1);

teta=tetal (1,1i);
M=cos (teta) ;
N=sin{teta):;
OXX=M"M*QLI+N M *Q22+ (2 M 2*N"2*Q12) + (4*M " 2*N"2*Q33) ;
QYY=(N"4*Q11)+ (M 4*Q22)+ (2*M"2*N"2*Q12)+ (4*M"2*N"2*(033);
QXY= (M "2*N"2*Q1L1L)Y+ (M 2*N"2*Q22)+ ( (M"4+N"4)y*Q12) -
(4*M"2*N"2*Q33) ;

OX8= (M 3*N*Q11) - (M*N~3*Q22) + { ( {
(MA3*N) ) *Q12) +(2* ({(M*N"3) - (M"3*N) ) *Q33);

QYS= (M*N B*Qll) (MA3*N*Q22) + ( (({M
(M*N~3) ) *Ql2) + (MA3*N) - (M*N~3) ) *033);

Q88= (MAZ*NAZ*Q11)+ C2FNN2FQ22) - (2FMA2FNN2FQL2) + ( (M2~
N*2)"2)*Q33);

QT=[0OXX, QXY, 2*QXS; OXY, QYY, 2*QXS; QXS, QYS, 2*QSS] ;

RPLY PARBMETER

M*N~3) ~

MA3* )_

24*m"2*ALN2460*Cc*AL*m+ 60+ 24 5% TP1 "2
14*m"2*AL"2+40*c*AL*m+60*c”2+5*TP1"2

) /ALN3

)/ (AL" 2)
34*mN2*ALN2+80*c*AL*m+60*¢c”"2+5*TP172) / (AL"2) ;
8*m M 2*AL"2+30*Cc*AL*m+60*c™2+5*TP"2) / (15*AL) ;

)

)

26*m"2*ALN2+60* c*AL*m+60*c”2+5*TP1"2) / {30*AL) ;
38*m"2*AL"2+90*c*AL*m+60*c”2+5*TP172) / (15*AL) ;

g,«,‘,\ﬁ~ﬁ.h

ID*QXX*TP*cos(angle)A3
s=H*[{0.2*A,0.1*B,~0.2*A,0.1*C;
0.1*B,D,~0.1*B,E;
-0.2*A,-0.1*B,0.2*A,-0.1*C;
0.1*C,E,~0.1*C,F];
k=ks+k;
end
L1(1)=0;
for i=l:npm
J=1i+1;
L1{(j)=-1*TP/m;
end
for j=1:npm
c=c-TP;
a=0;
jj=npm-j+1;
b=L1{i7);
tp=TP;

g=0XXi;
1=AL;
{ks}=kmidf (tp,q,l,m,c,a,b);
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k=ks+k;
k=k*cos (angle) ;

end
HT=npu*TPk;
D=0;
if npu~=0,
for l=l:npu
M=cos {tetal (1,1));
N=sin{tetal(l,1));
OXX=M"4*Q11+N "4 *Q22+ (2*M 2* N "2*Q12) + (4*M"2*N"2*(Q33) ;
HB=HT-TP;
D=D+((1/3)* (HT"3-HB"3) *QXX) ;
HT=HT-TP;
end
else
end

ks=WID*D*[12/AL"3 6/AL"2 -12/AL"3 6/AL"2;
6/AL"2 4/AL 6/AL"2 2/AL;

~12/AL"3 6/AL"2 12/AL"3 6/AL"2;

6/AL"2 2/AL 6/AL"2 4/RAL];

k=k+ks;

k=k-(p/10)*{12/AL 1 -12/AL 1:
1 4*AL/3 -1 -AL/3;
-12/AL -1 12/AL -1;
1 -AL/3 -1 4*AL/31;

kmidC1l

This function creates stiffness matrix for tapered beam model C based on Euler-Bernoulli
beam theory using conventional FEM

function
[k]=kmidC(E1l,E2,NU12,NU21,G12,WID, TP, tetal, angle, AL, QXXi, npt, npnm, npta,p
)

m=tan(angle);
Ql1=E1/(1-(NU12*NU21));
033=G12;
Q12=0Q11*NU21;
Q21=(NU12*E2)/ (1-(NU12*NU21});
Q22=E2/(1-(NU12*NU21)});
Qz[Qll,le, O:Q21IQ22I O;OI OIQ33];
k=0;
TP1=TP/cos (angle);
for i=l:npta
c=TP* (npt-1+0.5);
teta=tetal (1,1);
M=cos (teta);
N=gin(teta);

QXX=M"4*Q11+N"4*Q22+ (2*M"2*N"2*Q12) + (4*M"2*N"2*Q33) ;
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QYY={(N"4*Q11)+ (M 4*Q22) + (2*M"2*N"2*Q12) + (4*M"2*N"2*Q33) ;

QXY= (M"2*N"2*Q11}) + (M "2*N"2*Q22}+ ( (M 4+N"4) *Q12) - (4*M"2*N"2*Q33) ;

QX8= (M"3*N*Q11) ~ (M*N"3*Q22) + { { (M*N"3) = (M"3*N) ) *Q12)+ (2* ({M*N"3) -
(MA3*N) ) *Q33) ;

QYS= (M*N"3*Q11) - (M "3*N*Q22) + ( { (M"3*N) - (M*N"3) ) *Q12)+ (2* ( {(M"3*N) ~
(M*N~3)) *Q33) ;

QSS={M"2*N"2*Q11)+ (M 2*N"2*Q22) — (2*M"2*N"2*Q12)+ ( ({(M"2~-N"2) ~2) *Q33)

QT=[QXX, OXY, 2*QXS; OXY, QYY, 2*0XS; 0XS, QYS, 2*QSs] ;

A= (24*m"2*AL"2+60*c*AL*m+60*c"2+5*TP1"2) /AL"3
B=(14*m“Z*ALA2+4O*C*AL*m+6O*CA2+5*TPlA2)/(ALA )
C=(34*m"2*AL"2+80*Cc*AL*m+60*Cc"2+5*TP1"2) / (AL"2) ;
D=(8*m"2*AL"2+4+30*c*AL*m+60*c”2+5*TP1"2) / (15*AL) ;
=(26*m"2*AL 24+ 60*Cc*AL*m+60*c"2+5*TP1"2) / (30*AL) ;
=(38*m"2*AL"2+90*c*AL*m+60*c"2+5*TP1"2) / (15*AL) ;

H=WID*QXX*TP*cos {angle)"3;

ks=H*[0.2*A,0.1*B,-0.2*A,0.1*C;
0.1*B,D,-0.1*B,E;
-0.2*A,~0.1*B,0.2*A,~-0.1*C;
0.1*C,E,-0.1*C,F];

k=ks+k;

end

nptal=npta+l;

npt2=npta+npm;

for j=1:npm

c=c~-TF;
a=0;
Ji=npm-Jj+1;
b=L1(373);
tp=TP;
alfa=angle;
q=0XX1i;
1=AL;
[ksl=kmidf (tp,q,1l,m,c,a,b);

k=ks+k;
k=k*cos (angle) ;
end

k=k-{(p/10)*[{12/AL 1 -12/AL 1;
1 4*AL/3 -1 -AL/3;
-12/AL -1 12/AL -1;
1 -AL/3 -1 4*AL/3};

kmidd

This function creates stiffness matrix for tapered beam model D based on Euler-Bernoulli
beam theory using conventional FEM
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function

[k}=kmiddl (E1,E2,NU12,NU21,G12,WID, TP, tetal, angle, AL, QXXi, npm, npta, npt,
th,nptm, npu, p);

m=tan (angle);

k=0;

Q11=E1/(1-(NU12*NU21));
Q33= G12,
012=Q11*NU21;

021=

{

NUlZ*EZ)/( - (NUL12*NU21)) ;

Q22=E2/ ( (NU12*NU21) ) ;

0= [Qll,Q12,O,Q21,Q22,0;0,0,933];

TP1=TP/cos {angle);

for i=l:npta

c=TP* (npt-i+0.5);

teta=tetal(l,i);

M=cos (teta) ;

N=sin (teta):;

QXX=M"4*Q1 14N 4 * Q22+ (2*M " 2*N"2*Q12)+ {(4*M "2*N"2*Q33) ;
OYY= (N*4*011) + (MM *Q22) + (2 M "2*N"2*Q12) + (4 *M"2*N"2*(Q33) ;

QXY= (M"2*N"2*Q11) + (M "2*N"2*Q22)+ ( (M 4+N"4) *Q12) - (4*M"2*N"2*Q33) ;

OXS=(M"3*N*Q11) - (M*N"3*Q22) + ( ( (M*N"3) - (M"3*N) ) *QI12)}+ (2* ( (M*N"3) -
(M7"3*N) ) *Q33);

QYS=(M*N"3*Q11) - (M"3*N*Q22) + ( ( (M"3*N)~ (M*N"3))*Q12)+(2* ( (M"3*N) ~
(M*N~3) }y*Q33) ;

QSS=(M"2*N"2%Q11)+ (M "2*N"2*Q22)} = (2*M"2*N"2*Q12) + ( ( (M"2~N"2)"2) *Q33);

ena

QT [QXX OXY, 2*0QX3; 0XY, QYY, 2*0XS5; 0XS,QYS, 2*0SS] ;

A=(24*m"2*AL"2+60*c*AL*m+60*c"2+5*TP1"2) /AL"3
B=(14*m"2*AL"2+40*c *AL*m+6O*cA2+5*TPlA2)/(ALA )
C=(34*m"2*AL"2+80*c*AL*m+60*c"2+5*TP1"2) / (AL"2) ;
D= {8*m"2*AL"2+30*Cc*AL*m+60*c " 2+5*TP1"2) / (15*AL) ;
E=(26*m"2*AL"2+60*c*AL*m+60*c"2+4+5*TP"2) / (30*AL) ;
F={38*m"2*AL"2+4+90*c*AL*n+60*c"2+5*TP1"2) / (15*AL) ;
H=WID*QXX*TP*cos (angle) "3;
ks=H*[0.2*A,0.1*B,-0.2*A,0.1*C;

0.1*B,D,-0.1*B,E;

-0.2*A,-0.1*B,0.2*A,-0.1*C;

0.1*C,E,-0.1*C, F];
k=ks+Xk;
(1)=0;
i=1:4
J=i+1;
L1(j)=-1*TP/m;
for j=1:4

c=c~TP;

a=0;

J3=4-3+1;

b=L1(373);

tp=TP;

q=0XXi;

1=AL;

[ks]=kmidf ({tp,qg,1,m,c,a,b);

k=ks+k;
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HT=npu*TP;
D=0;
if npu~=0C,
for 1=th:nptm
M=cos (tetal (1,1));
N=sin(tetal(l,1}));
QXX=M"M*Q11+NM4*Q22+ (2FM A 2* N 2*Q12) + (4 *M2*N*2*Q33) ;

HB=HT~TP;
D=D+{(1/3}* (HT"3-HB"3) *QXX) ;
HT=HT-TP;
end
else
end

ks=WID*D*[12/ARL"3 6/AL"2 -12/AL"3 6/AL"2;
6/AL"2 4/RL 6/RL"2 2/AL;
-12/AL"3 6/AL"2 12/AL"3 6/AL"2;
6/AL"2 2/AL 6/AL"2 4/AL];

k=k+ks;

k=k-(p/10)*{12/AL 1 -12/AL 1;
1 4*AL/3 -1 -BAL/3;
~12/AL -1 12/AL -1;
1 -AL/3 -1 4*AL/3];

conposite Timoshenko beam

function [k, m}l=kmmat t2(d,b,1f55,area,l,ro,mu)

o

%2 Bending stiffness matrix

kb= (b*d/1)*[0 0 0 Q;
0O 10 -1;
0 00 0;
0 -1 0 1731:
%  Shear stiffness matrix
ks=(mu*f55*b/ (4*1))*[4 2*1 -4 2*1;
2*1 172 -2*1 172;
-4 -2*1 4 -2%1;

2*1 172 =2*1 1~271;
Summation of bending and shear matrices
k=ks+kb;
Mess matrix

m=(ro*area*l1/6)*

201 0;

A
C h O h;
1062 0;

0 h*2 0 h"2}5
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kmidAT

This function creates stiffness matrix for tapered beam model A based on Timoshenko
beam theory using conventional FEM

function
{k]l=kmidATl (El,E2,NU12,NU21,G12,WID, TP, tetal, angle, AL, k, OXXi, npt, npm, np
ta,p,MO,nn, £55);

kb=zeros (4,4);

m=tan (angle);

k=zeros(4,4);
Q11=E1/{(1-(NU12*NU21}));

Q33=G12;

Q12=0Q11*NU21;

Q21=(NU12*E2)/ (1-(NUL2*NU21)) ;
Q22=E2/(1-(NU12*NU21));
0=1011,012,0;021,022,0;0,0,033];

for i=l:npta
c=TP* {(npt+0.5-1);
teta=tetal (1,1);
M=cos (teta);
N=sin(teta);
OXX=M"4*Q11+N 4 *Q224 (2*M M 2* N 2* Q12 )+ (4*M " 2*N"2*Q33) ;
b=WID;
A=QXX* (4*TP*m " 2*AL"N2412*TP*c*m*AL+12*TP*c*2+TP"3) / (12) ;
kb= (WID*A/AL)*[0 O 0 0;

0160 -1;
000 G;
0 ~-10 11;
k=kb+k;
end
for i=npta+l:npt-nn
c=c-TP;

A=0XXi* (4*TP*m " 2*AL"2+12*TP*c*m*AL+12*TP*c"2+TP"3)/(12);
kb= (WID*A/AL)*[0 0 0 0;
010 -1;
0 00 0;
0 -10 17;
k=kb+k;
end
L1(1)=0;
for i=1l:nn
J=i+1;
L1(j)=-1i*TP/m;
end
for j=l:nn
c=c-TP;
a=0;
Ji=nn-j+1;
b=L1(j3);
t=TP;
g=0XX1i;
1=AL;
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Al=1/3*g*t*m"2/172* (b"3-a’3)+g*t*c*m/1"2* (b 2-
at2) +art* (c”2+1/12%t72) /172* (b-a) ;
kb= (WID*AL/AL)*[0 0 0 0;

010 ~1;

000 0;

0 -10 1];
k=kb+k;

end

ks= (MO*£55/ (4*AL))*[4 2*AL -4 2*AL;
2*AL AL"2 -2*AL AL"2;
-4 ~2*AL 4 -2*AL;
2*AL AL"N2 ~2*AL AL"271:;

k=k+ks;

k=k-(p/10)*[12/AL 1 -12/AL 1;
1 4*AL/3 -1 -AL/3;
~12/AL -1 12/AL -1;
1 -AL/3 -1 4*AL/31;

kmidBtl

This function creates stiffness matrix for tapered beam model B based on Timoshenko
beam theory using conventional FEM

function
[k]=kmidBt1{(El,E2,NU12,NU21,G12,WID, TP, tetal, angle, AL, QXXi, npm, npta, npt
, th,nptm, npu, p, MO, £55)

m=tan (angle) ;
Ql1=E1/(1-(NU12*NU21)):

Q033=G12;

Q12=Q11*NU21;
Q21=(NU12*E2)/{1-(NU12*NU21));
Q22=E2/(1-(NU12*NU21));
0={Q11,012,0;021,022,0;0,0,033];
k=0;

for i=l:npta
c=TP* (npt+0.5-1);
teta=tetal (1,1);
M=cos {teta};
N=sgin{(teta);
QXX=M"4*Q11+N"4*Q22+ (2*M"2*N"2*Q12) + (4*M"2*N"2*Q33) ;
b=WID;
A=QXX* (4*TP*m"2*AL"2+12*TP*Cc*m*AL+12*TP*c™2+TP"3) / (12) ;
kb= {(WID*A/AL)*[0 0 0 0;0 1 0 -1;0 0 0 0;0 -1 0 -171;
k=kb+k;

end

L1(1)=0;

for i=l:npm
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9=

i+1;

L1{j)==1i*TP/m;

end

for J=l:npm

c=c-TP;
a=0;
Ji=npm-3+1;
p=L1(39);
t=TP;
q=0%xX1i;
1=AL;

Al=1/3*g*t*m"2/172* (b"3-a"3)+g*t*c*m/1°2* (b~ 2~
ar2)+grt*(c”2+1/12*t72) /172* (b-a) ;

kb= (WID*A1/AL)*[0 C O 0;

010 -1;
000 0;
0 -1 0 13;
k=kb+k;
end
HT=npu*TP;
D=0;

if npu~=0,
for l=th:nptm

c=c—-TP;
M=cos (tetal (1,1));
N=sin{tetal{(l,1));
OXX=M"4*Q11+N"M4*Q22+ (2*M"2*N"2*Q12)+ (4*M " 2*N"2*Q33) ;
OYY=(N"4*Q11)+ (MM*Q22)+ (2*M"2*N"2*Q12) + (4*M"2*N"2*Q33) ;
QXY= (M"2*N"2*011)+ (M"2*N"2*Q22) + { (M"4+N"4) *Q12) = (4*M"2*N"2*Q33) ;
QXS=(M"3*N*Q11) - (M*N"3*Q22)+ { { (M*N"3) ~ (M "3*N) ) *Q12) + (2* ((M*N"3) -

(M"3*N) ) *Q33) ;

QYS= (M*N"3*Q11) -~ (M "3*N*Q22)+ ( ( (M"3*N) - (M*N"3) ) *Q12)+(2* ( (M*3*N) ~

(M*N"3))*Q33) ;

QSS={(M"2*N"2*Q11)+ (M 2*N"2*Q22) — (2*M " 2*N"2*Q12)+ { ((M"2-

N~2)~2) *Q33)

QOT=[QXX, QXY, 2*0XS; QXY,QYY, 2*QXS3;CXS, QYS, 2*033] ;
HB=HT-TP;

D=D+ ((1/3}* (HT"3-HB"3) *OXX) ;

HT=HT-TP;

end

ks=(MO*£55/ (4*AL))*[4 2*AL -4 2*AL;
2*AL AL™2 -2*AL AL"Z;
-4 -2*AL 4 -2*AL;
2*AL, AL"2 -2*AL AL"21;

k=k+ks;
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k=k- (p/10)*[12/AL 1 -12/AL 1;
1 4*AL/3 -1 -AL/3;
-12/AL -1 12/AL -1;
1 -AL/3 -1 4*AL/3];

kmidtC

This function creates stiffness matrix for tapered beam model C based on Timoshenko
beam theory using conventional FEM

functicn
[k]=kmidtCl1(El,E2,NU12,NU21,G12,WID, TP, tetal, angle, AL, QXXi, npt,npm, npta
,P.MO, £55)

m=tan(angle);
Qli=E1/(1-{(NU12*NU21));

Q33=G12;

Q12=Q11*NU21;
Q21=(NU12*E2)/{1-{NU12*NU21));
Q22=E2/(1-{NU12*NU21));
0=[0Q11,012,0;,021,022,0;0,0,Q033];
k=0;

for i=l:npta
c=TP* (npt+0.5-1);
teta=tetal (1,1);
M=cos (teta) ;
N=sin(teta);
QXX=M""4*QL1+N"4*Q22+ (2*M"2* N "2*Q12)+ (4*M"2*N"2*0Q33) ;
b=WID;
A=QRX* (4*TP*m " 2*AL"2+12*TP*Cc*m*AL+12*TP*c*2+TP"3) / (12) ;
kb= (WID*A/ALY*[0 0 0 0O;
010 -1;
0 00 0;
0 -10 11;

k=kb+k;
end
L1(1)=0;
for i=l:npm
d=i+1;
L1 (3)=-1*TP/m;
end
for J=l:npm
c=c-TP;
a=0;
3i=npm-j+1;
b=L1(33);

207



t=TP;
g=0QXX1i;
1=AL;
Al=1/3*g*t*m"2/172* (b"3-a"3)+g*t*c*m/1"2* (b" 2~
ar2y+g*t* (¢m2+1/12*t72) /172* (b-a) ;
kb= (WID*A1/AL)*[0 O O O;
010 ~-1;
000 0;
0 -1 0 13};

k=kb+k;
end

ks=(MO*£55/ (4*AL))*[4 2*AL ~4 2*AL;
2*AL AL"2 -2*AL AL"2;
-4 ~2*Al, 4 -2*AL;
2*AL AL"2 -2*AL AL"2);:

k=k+ks;

k=k-(p/10)*[{12/AL 1 -12/AL 1;
1 4*AL/3 -1 -AL/3;
-12/AL -1 12/AL -1;
1 -AL/3 -1 4*AL/3]

kmiddt

This function creates stiffness matrix for tapered beam model D based on Timoshenko
beam theory using conventional FEM

function
[k]=kmiddtl(El,E2,NU12,NU21,G12,WID, TP, tetal,angle, AL, QXXi,npm, npta, npt
,th, nptm, npu, p, MO, £55) ;

m=tan (angle);

k=0;

Q11=E1/(1-(NU12*NU21));

Q33=G12;

Q12=0Q11*NU21;
Q21=(NU12*E2) / {1~ (NU12*NU21)) ;
Q22=E2/(1-(NU12*NU21));
Q:[Q11/Q121 O;QzllQZZIO;OI OIQ33];

for i=l:npta
c=TP* (npt-i+0.5);
teta=tetal (l,1i);
M=cos (teta);
N=sin{teta);
OXX=M"4*Q11+NM*Q22+ (2FM 2 N 2*Q12) + (4 M 2*N"2*Q33) ;
A=QXX* {(4*TP*m " 2*AL"2+12*TP*c*m*AL+12*TP*c2+TP"3) / (12) ;
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kb={(WID*A/AL)*{0 0 0 0O;
010 -1;

000 0;

0 -1011;

k=kb+k;
end
L1(1)=0;
for i=l:npm
J=i4+1;
L1(j)==1*TP/m;
end
for j=l:npm
c=c~-TP;
a=0;
Jji=npm-j+1;
b=L1(3j3);
t=TP;
g=0QXXi;
1=AL;
Al=1/3*g*t*m"2/1"2* (b"3~-a”3)+g*t*c*m/1°2* (b"2~
ar2)y+grer (241 /12*t72) /17 2% (b~a);
kb= (WID*AL/AL)*[0 0O 0 O;

010 -1;

000 0O;

0~-10 1];
k=kb+k;

end

HT=npu*TP;
D=0;
if npu~=0,
for l=th:nptm

c=c-TP;
M=cos (tetal(1l,1)); tnote instead of th in
M=cos{tetal (i,th)} ,1t is chang to (1,1

N=sin (tetal(1l,1));
OXX=M" 4 *Q11+NM*Q22+ (2*M 2 N 2*Q12) + (4 *M 2* N 2*Q33) ;

HB=HT-TP;
D=D+ { (1/3)* (HT"3-HB"3) *QXX) ;
HT=HT-TP;
end
kb=(WID*D/AL)*[0 O O O;
010 -1;
0 0 0 0;
0 -1 0 171;
k=kb+k;
else
end

ks=(MO*£55/ (4*AL))*[4 2*RL -4 2*AL;
2*AL AL"2 -2*AL AL"2;
-4 -2*AL 4 -2*AL;
2*AL ALN2 ~2*AL ALM2];
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k=k+ks;

uni b2

display{’
display{'ox

uniform’)

")

I=input {
113 9e9
.A*ivf’i

.9856e9;
wwut {'Enter G112 = '};

g12 3. 138e9
snulZ=input ('nulZ = "}
nul2=0.288;
fnuZli=inpat{'ne2l = "}
nu2l1=0.0178;
ttp=i »Lt{‘~iter thickness of egach ply = "j;

=input (5
lb O 2986;
{"Enter wi

nel=input ('
ip=input (‘s

nnode=nel-+1

nnel=2;

ndof=2;

sdof=nnode*ndof; DOF

for i=l:nel
nodes (i, 1)=1i;
nodes (i, 2)=1i+1;
end
if ip==
bcdof={1 sdof-1];
elseif ip==2
bedof=[1 27;
else
bedof=[1 2 sdof-1 sdof];
end

bcval=zeros{size (bcdof
2intialization matric
kk=zeros (sdof, sdof);
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mm=zeros (sdof, sdof) ;
tk=zercsid,d);
m=zeros (4,4} ;

for i=1:2:np

ii=i4+1;

teta (i)=0;

teta (11)=90;
end

teta=teta*pi/180;
[gl=gmat (el,e2,gl2,nul2,nu2l);
[Dl=dmat (g, teta,np, tp);
area=b*np*tp;
for iel=l:nel
d=D;
1=1b/nel;
[index]=elindex (iel, nnel, ndof);
[k,m]=kmmat b2(d,b,1,area,ro);
[kk,mm]=elasmbl (kk,mm,m, k, index) ;
end
[kk,mm]}=symbc (kk,mm, bcdof) ;

[ev,eql=eig(kk,mm} ;

[lambda, item]=sort (diag(eq));
fr=sqgrt (lambda) ;
nmod=sdof-length (bcdof);

for i=1:nmod
frexl=(i*pi/lb}"2;
frex2=sqrt (b*d/(ro*area));
frex(i)=frexl*frex2;
beta(i)=frex(i)*1"2/(sgrt (b*d/ (ro*area)));
end

midA

. This program gives the natural
TR

E1=113.9e9;E2=7.9856e9;NU12=0.288;NU21=0.0178;G12=3.138e9;G23=2.96e9;
WID=1.0;TP=0.000125;1r0=1480;p=0;
npm=12;npta=12;angle=-1;angle=angle*pi/180;

L=-12*0.000125/tan (angle});
MO=0.833;

ip=1;
it=2;

ol

D
—
>
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for II=1:2:36
J=11+1;
tetal (I1)=45;
tetal (J)=-45;
end
tetal=tetal*pi/180;
QXXi= 4.2869%e9;

nel=4;
nn=npm/nel;
nnode=nel+l;
nnel=2;

ndof=2;
sdof=nnode*ndof;

el

nodes (i,1)=1i;
nodes (i,2)=i+1;
end
if ip==
becdof=[1 sdof-1];
elseif ip==
bedof=[1 21;
else
becdof={1 2 sdof-1 sdof];
end

beval=zeros (size {(bcdof));
fintialization matrices
kk=zeros (sdof, sdof);
mm=zeros (sdof, sdof) ;
k=zeros {4, 4);
m=zeros{4,4);

tp=TP;

glz2=G12;

g23=G23;

teta=tetal;

£55=f5bmat (tp,gl2, g23, teta)
for iel=l:nel

AlL=L/nel;
npt=npta-+npm;
index=feeldofl (iel, nnel, ndof);

al=npt*TP*WID;
az={(npt-nn) *TP*WID;
area=(al+a2)/2;

if it==

[k]=kmidAl(El,E2,NU12,NU21,G12,WID, TP, tetal,angle, AL, 0XX1i,npt,npm,npta,
nn,p);
m=mmidA (ro, area,AL);

k=k*2Z; % for buckling
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elself it==2

[k]=kmidAT1(El,E2,NU12,NU21,G1l2,WID, TP, tetal, angle, AL, k, 0XX1i, npt, npm, np

ta,p, MO, nn, £55);
[m]l=(ro*area*AL/6)*[2 0 1 O;
000 0;
10 2 0;
0 0 0 01;

end

[kk, mm]=elasmbl (kk, mm,m, k, index) ;
if iel~=nel,
NPm=npmn-nn;
else
end

[V,Ql=eig(kk,mm) ;

[LAMBDA, ITEM]=sort (diag(Q));
NEWV=V (:, ITEM) ;

fr=sqgrt (LAMBDA)

E1=113.9e9;E2=7.9856e9;NU12=0.288;NU21=0.0178;G12=3.138e9;G23=2.96e9;
WID=1.0;TP=0.000125;r0=1480;p=0;
npm=3;npta=12;nptm=24;npu=9%;angle=-1;angle=angle*pi/180;

1=-12*0.000125/tan{angle) ;

ip=1;

1t=2; 5it=1 for E Rerrnoullil it=2 for Timoshenko
MO=0.833;
sfor =]

for I1I=1:2:24

J=11+1;

tetal (I1)=45;

tetal (J)=-45;
end
tetal=tetal*pi/180;
OXXi=3.7e9/(1-0.37"72);
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nel=4;
nnode=nel+1;
nnel=2;

ndof=2;
sdof=nnode*ndof;

for i=l:nel
nodes (i, 1)=i;
nodes{(i, 2)=1i+1;
end
if ip==
becdof=[1 sdof-11;
elseif ip==2
becdof={1 21];
else
bcdof=[{1 2 sdof~1 sdof];
end
bcval=zeros (size (bcdof));
f2intialization matrices
kk=zeros {(sdof, sdof);
mm=zeros (sdof, sdof) ;
k=zeros (4, 4);
m=zeros (4, 4);
tp=TP;
gl2=G12;
g23=G23;
teta=tetal;
£55=£f55mat (tp,gl2,g23, teta);
th=npta+npm+1;
for iel=l:nel
npt=npta+tnpm+npu;
AlL=L/nel;
index=elindex (iel, nnel,ndof});
al=(npt)*TP*WID;
az=(npt-npm) *TP*WID;
area={(al+a?)/2;
if it==

[k]l=kmidBl (E1,E2,NU12,NU21,G12,WID, TP, tetal, angle, AL, OXXi, npm, npta, npt,
th,nptm, npu, p);
m=mmidA{(ro, area, AL) ;

elseif it==

[k]l=kmidBtl(E1l,E2,NU12,NU21,G12,WID, TP, tetal, angle, AL, OXXi, npm, npta, npt
, th, nptm, npu, p, MO, £55) ;
Im]={ro*area*AL/6)*[2 0 1 0;
000 0;
102 0;
00 0 0]1;
end

[kk,mm]=elasmbl (kk,mm,m, k, index) ;
if iel~=nel,
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th=th+npm;
npu=npu-npm;
else
end
end

[kk, mm]=symbc (kk, mm, bcdof) ;

[V,Ql=eig(kk,mm);
[LAMBDA, ITEM]}=sort (diag(Q));
NEWV=V (:, ITEM);

fr=sqrt (LAMBDA)

o

fireq. for model O using conventiocns
El1=113.9e9;E2=7.9856e9;NU12=0.288;NU21=0.0178;G12=3.138e9;623=2.8526e9;
WID=1.0;TP=0.000125;r0=1480;p=0;

npm=3;npta=21;angle=-5;angle=angle*pi/180;
L=-12*0.000125/tan {angle);

ip=1;
it=2; % it=1 for E Berncullii it=2 for Timoshenko
MO=0.833;

for 1I=1:4
tetal(II)=0;
end

for II=5:2:24
J=11+1;
tetal (I1)=45;
tetal (J)=-45;
end
tetal=tetal*pi/180;
OXX1= 4.2869e9;
nel=4;
nnode=nel+1;
nnel=2;
ndof=2;
sdof=nnode*ndof;

for i=l:nel
nodes (i,1)=1i;
nodes (1,2)=1+1;
end
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if ip==

becdeof={1 sdof-11;
elself ip==

becdof=[1 27];
else

bedof=[{1 2 sdof-1 sdof];
end
beval=zeros (size{bcdof));
¢intialization matrices
kk=zeros (sdof, sdof);
mn=zeros (sdof, sdof) ;
k=zeros(4,4);
m=zeros {(4,4);
tp=TP;
gl2=G12;
g23=G23;
teta=tetal;
£55=f55mat (tp,gl2,g23, teta);

for iel=l:nel
npt=npmt+npta;

AL=L/nel;

index=elindex{iel,nnel, ndof) ;
al=(npt)*TP*WID;

az=(npt-npm) *TP*WID;

area= (al+a2)/2;

if it==

[k}=kmidC1l (E1l,E2,NU12,NU21,G12,WID, TP, tetal,angle, AL, QXXi,npt, npm, npta,
p)i:
m=mmidA (ro, area, AL) ;
elseif it==
[k]=kmidtC1 (E1l,E2,NU12,NU21,G12,WID, TP, tetal, angle, AL, QXXi, npt, npm, npta
,p,MO, £55) ; ;
Eim} i
end
[kk,mm}=elasmbl {kk, mm,m, k, index) ;
if del~=nel,
npta=npta-npm;
else
end
end
[kk, mm] =symbc (kk,mm, bcdof) ;

imof{area,AL, re, TP)

[V,Ql=eig{kk, mm) ;

[LAMBDA, ITEM]=sort (diag(Q)};
NEWV=V {:, ITEM) ;

fr=sqrt (LAMBD)

216



gram glves the natural freq. for nodel D using conventional

E1=113.9e9;E2=7.9856e9;NU21=0.0178;NU12=0.288;G12=3.138e9;G23=2.926e9;

WID=1.0;TP=0.000125;r0=1480;p=0;M0=5/8;
npm=3;npta=3;nptm=24;npu=18;angle=~-1;
angle=angle*pi/180;

I=-12*%0.000125/tan (angle);

ip=1;
it=2;

3 F
TLOY

for II=1:2:24
J=11+1;
tetal(I1)=45;
tetal (J)=-45;

end

tetal=tetal*pi/180;

QXXi=3.7e9/(1-0.37"2);
nel=4;

nnode=nel+1;

nnel=2;

ndof=2;
sdof=nnode*ndof;

for i=l:nel
nodes (i,1)=i;

nodes (i,2)=i+1;
end
if ip==

bcecdof={1 sdof-1];
elself ip==2

bcdof=[1 2];
else

bcdof={1 2 sdof-1 sdof];
end
bcval=zeros (size (bcdof));

%3 ialization m
kk=zeros (sdof, sdof);
mm=zeros {(sdof, sdof) ;
k=zeros(4,4);
m=zeros(4,4);

tp=TP;

glz2=G612;
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g23=G23;

teta=tetal;

£55=£f55mat (tp,gl2,g23, teta);

th=npm+npta+l;

for iel=l:nel
npt=nptatnpm+npu;

tni=nodes(iel,1}; nr=nodes{iel, 2};

rdinri;

: LY =X
Al=L/nel;
index=elindex (iel, nnel, ndof);
al=(npt) *TP*WID;

az=(npt-npm) *TP*WID;
area=(al+a2)/2;

if it==

[kl=kmiddl (E1l,E2,NU12,NU21,G1l2,WID, TP, tetal,angle, AL, QXX1, npm, npta, npt,
th, nptm, npu, p};
m=mmidA {ro, area,AL);

elseif it==

[k]=kmiddtl (E1l,E2,NU12,NU21,G12,WID, TP, tetal, angle, AL, OXXi,npm, npta, npt
, th, nptm, npu, p, MO, £55) ;
[m]=(ro*area*AL/6)*[2 0 1 0;
000 0;
10 2 0;
00 0 0]:
end
[kk,mm]=elasmbl (kk,mm, m, k, index) ;
if iel~=nel,
th=th+6;
npta=npta+3;
npu=npu->56;
else
end
end

[kk,mm]=symcs (kk,mm, bcdof) ;

LUTLON ¢l Uhe 8y

i

e

[V,Ql=eig(kk, mm);
[LAMBDA, ITEM] =sort {(diag(Q)) ;
NEWV=V (:, ITEM) ;

fr=sqrt (LAMBDA)

fen2.m

This function gives the stiffness, mass and geometric
matrices for tapered composite beams using advanced FEM
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t=sym('t");

dksym(‘d“);

dZ2=sym (*d27);

p=sym(’ gﬂ),

zZ=m*xX+C;

H=sym{'H"); $H is cos{alfa)
T=t/H;

d qb*(T* z"2+4T"3/12)

*b.
1=[1 6000O06O0O0;
-100C000 0;
0 0 6*¥d1 0 0 0 O;
0 -2*d1 0 0 0 0 O;
4 175 176 1°7;

-1 -2*1 =3*172 —-4*173 -5*174 -6*1"5 -T7*1"6;

0.0 6*d2 24*d2*1 60*d2*172 120*d2*173 210*d2*1"4;

0 -2*d2 -6*d2*1 -12*d2*172 -20*d2*1"3 ~30*d2*1"4 -42*d2*1~5};
t=[1 x x"2 x™3 x4 x"5 x°6 x°7];
n=t*inv (i) ;

0
0
0
11172 1°3 1»
0
0
0

for i=1:3
for 3=1:3
nl=diff(n( ,

1,
n2 dlff( (1,

end

Nad.m

This function gives the shape functions in advanced FEM

d=g*t* (z72+t~3/12);

l=sym(*31');

=[1 00000 ;

1000 0;
*

C 0
0 - 00
000 6*xd 00 0 0;
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0 -2*d 0 0 0O 0 0;

112 13 174 175 176 1°7;

-1 -2*%1 =3*1"2 =-4*173 ~5*1"4 —-6*1"5 -7*1"76;

0 0 6*¥d 24*d*1 60*d*172 120*d*173 210*d*1"4;

0 -2*d ~6*d*1 -12*d*1"2 -20*d*1"3 -30*d*1"4 -42*d*1"b];
t=[1 x x"2 kX3 x™4 x"5 x°6 x"7];

n=t*inv (i) ;

OO OO

Mad uni

This function gives the mass matrix for uniform beam using advanced FEM

function [ml=mad uni(ro,area,L,b,D)

D=D(1,1);

[m]=(ro*area*L/420)*[72940/429 4530*L/143 -383*L"2/(2574*b*D)
1370*L"2/ {429*%b*D) 17150/429 -1905*L/143 -521*L"3/(5148*b*D) -
TI5*L"2/ (429%b*D) ;

4530+%1L/143 100*L"2/13 - -6*1L"4/(143*b*D) 245*L73/(286*b*D)
1905*L/143 ~1865*L"2/429 ~5*L"4/(156*b*D) -995*L"3/(1716*b*D);

-383*L"2/(2574*b*D) - ~6*L"4/(143*b*D) L"6/(3861* (b*D)"2) -
L~5/(198* (b*D) 2} -521*L"3/(5148*b*D) 5*L"4/(156*b*D)
7176/ (30888* (b*D) ~2) 43*L"5/10296;

1370*L"2/ (429%b*D) 245*1°3/(286*b*D) -L"5/(1898* (b*D)"2)
43*L74/ (429% (b*D)~2)  775*L"2/(429*b*D) -995*L"3/(1716*b*D) -
43*L7°5/(10296* (b*D) ~2) 131*L74/(1716* (b*D)"2);

17150/429 1905*L/143 -521*1L73/(5148*b*D) 775*L"2/(429*b*D)
72940/429 -4530*L/143 -383*L"2/(2574*b*D) -1370*L"2/(429*b*D);

-1905*L/143 -1865*L72/429 5*L"4/(156*b*D) —995*L"3/(1716*b*D) -
4530*L/143 100*L"2/13 6*L"4/(143*b*D) 245*L"3/(286*b*D);

-521*L"~3/(5148*b*D) -5*L"4/(156*b*D) 7*L"6/(30888* (b*D)"2) -
43*1L,°5/(10296* (b*D) ~2) —-383*L"3/(2574*b*D) 6*L"4/(143*b*D)
L76/(3861* (b*D)"2)  L”5/(198* (b*D)"2);

-775*L72/(429*b*D) -995*L"3/(1716*b*D) 43*L"5/(10296* (b*D)"2) -
131*L"5/ (1716 (b*D)"2) -1370*L"2/(429*b*D) 245*L"3/(286*b*D)
L5/ (198* (b*D) "2)  43*L74/ (429* (b*D) *2) ]

kad uni

This function gives the stiffness matrix for uniform beam using advanced FEM

function [k]l=kad uni(D,L,b)
D=D(1,1});
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k=(b*D/L"3)*[280/11 140*L/11 -L"3/(22*b*D) 40*L"2/(33*b*D) -280/11
140*L/11 L"3/(22*b*D) 40*L"2/(33*b*D);

140*L,/11 600*L"2/77 ~-8*L"4/(231*b*D) 379*L"3/(462*%b*D) -~140*L/11
380*L~2/77 5*L"4/(462*b*D)y  181*L"3/(462*b*D);

-L73/(22*%b*D) —-8*L"4/ (231*p*D)  2*L"6/(3465* (b*D)"2) -
L5/ (99* (b*D)"2) L3/ (22*b*D) =H*L"4/(462*b*D)  L"6/(4620* (b*D)"2)
5*L"6/ (2772* (b*D) "2) ;

40*1,72/ (33*b*D) 379*L"3/(462*b*D) -L"5/(99*% (b*D)"2)
50*L"5/(231* (b*D) ~2)  -40*L"2/(33*b*D) 181*L"3/(462*b*D) -~
5*L°5/(2772% (b*D) ~2) L 5/(462* (b*D)"2);

-280/11 ~140*L/11 1L"3/(22*b*D) -40*L"2/(33*b*D) 280/11 -
140*L/11 -L"3/{22*b*D) -40*L"2/(33*b*D};

140*L/11 380*L°2/77 -5*L"4/(462*b*D) 181*L"3/(462*b*D) -140*L/11
600*L"~2/77 8*L"4/(231*b*D) 379*L"3/(462*b*D);

L~3/(22%b*D)  5*L74/(462*b*D) L76/(4620*(b*D)"2) -
5*L75/(2772* (b*D) ~2) ~L"3/(22*b*D) 8*L"4/(231*b*D)
2*L76/ (3465*% (b*D) "~2) L"5/(99* (b*D)"2);

40*1L,°2/(33*b*D)  181*L"3/(462*b*D) 5*L"5/(2772* (b*D)"2)
L4/ (462%pb*D)  —40*L"4/ (462*b*D) 379*L"3/(462%pb*D)  L"5/(99% (b*D)"2)
50*L74/(231* (b*D)"2) ]

b=1;
tp=0.000125;
ro=1480;
npm=12;

TOresin

npta=6;
alfa=-0.5;

ip=2;

alfa=alfa*pi/180;
L={(-12*0.000125)/(tan{alfa)):

for II=1:2:18 % stacking szec
J=11+1;
tetal (I1)=0;
tetal (J)=90;

end
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tetal=tetal*pi/180;
Qr=4.288e9;

nel=3;

nnode=nel+1;
nnel=2;

ndof=4;
sdof=nnode*ndof;

for i=l:nel
nodes (i, 1)=1i
nodes{i, 2)=i+1;
end

if ip==1
becdof=[1 4 sdof-3 sdof];
elself ip==

bedof=[1 2 sdof-1 sdof];

elise
bcdof=[1 2 sdof-3 sdof-21;

end
bcval=zeros (size (bcdof));
intializaticon matrices
kk=zeros (sdof, sdof)
mm—zeros(sdof,sdof),

< Yo
e

=zeros (g, 8 ;

[Q]=0Qmat (E1,E2,G12,r12,x21);

nn=npm/nel;

for iel=1l:nel

1=L/nel;

npt=npta-+npm;
[dl,d2]=d1ld2a(Q,Qr,npta,npm, tetal, tp,nn);

% Cailculsting index for assembliing the matrices
index=elindex (iel,nnel,ndof);
t=tp;

al=npt*tp*b;
aZ={(npt-nn)*tp*b;

={al+a?2)/2;
t*tp;

1 alfa,l,Qr,npt,npm, npta,nn) ;
waekliing
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[kk,mm}=elasmbl (kk, mm,m, kl, index);

if iel~=nel,
npm=npm-nn;

else

end

[ kk, mm]=symbc (kk, mm, bcdof) ;

[LAMBDA, ITEM]=sort {diag(EV));
NEWV=V (:, ITEM) ;
fr=sqrt (LAMBDA)

BE1=113.9e9;E2=7.9856e9;r12=0.288;r21=0.0178,;G12=3.138e9;
b=1.0;tp=0.000125;r0=1480;

p=0;npmn=4;npta=6;nptn=18;npu=8;alfa=-3;alfa=alfa*pi/180;
L=12*0.000125/(tan(-alfa));
ip=2;

for II=1:2:18
J=11+1;
tetal (11)=0;
tetal (J)=90;
end

tetal=tetal*pi/180;
Qr=4.288e9;

nel=3;

nnode=nel+1;

nnel=2; odes per element
ndof=4; T per node

sdof=nnode*ndof;

for i=l:nel
nodes (i, 1)=1i;
nodes (i,2)=1i+1;
end
if ip==
bcdof=[1 4 sdof-3 sdof];
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elseif ip==
bcdof=[1 2 sdof-1 sdof];
else
bedof={1 2 sdof-3 sdof-2];

end
beval=zeros (size (bcecdof));
intizlization matrices

kk=zeros (sdof, sdof);
mm=zercs (sdof, sdof) ;

g

[Q]=QOmat(El,E2,Gl2,rl12,x21);
th=npm+npta-+l;
for iel=l:nel
npt=npta+npm+npu;
{dl,d21=d1d2b(Q, b, tp, tetal, Qr, npm, npta, npt, th, nptm, npu) ;

1=L/nel;

index=feeldofl (iel, nnel, ndof);

al=(npt) *tp*b;

aZ2={npt-4)*tp*b;

A=(al+a2)/2;

t=tp;
[kl]=kaddB1l(dl1,d2,0Q,t,alfa,l,Qr, tetal, npm, npta, npt, npu) ;

[m]=massadl (ro,A,1,dl,d2);
[kk,mm}=feasmbl2 (kk, mm,m, k1, index) ;
if iel~=nel,

th=th+4;
npu=npu-4;
else
end

end

[kk,mm]}=feaplycs (kk,mm, bcdof) ;

tsciution of the system

[V,EV]=eig{kk, mm) ;

[LAMBDA, ITEM]=sort (diag (EV));
NEWV=V{:, ITEM) ;

fr=sqrt (LAMBDA)

using advanced FEM
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E1=113.9e9;G12=4.48e9;E2=7.9856e9;r12=0.288;r21=0.0178;G12=3.138e9;
b=1.0;tp=0.000125;r0=1480;

npm=4 ;npta=14;alfa=-3;alfa=alfa*pi/180;
L=12%0.000125/({tan(-alfa));

ip=2;

for 1I=1:2:18
J=11+1;
tetal (I1)=0;
tetal (J)=90;
end

tetal=tetal*pi/180;
Qr=4.288e9;

nel=3;

nnode=nel+l;
nnel=2;

ndof=4;
sdof=nnode*ndof;

for i=l1l:nel
nodes (i,1)=1i;
nodes (i, 2)=1i+1;
end
if ip==1
becdof=[1 4 sdof-3 sdof];
elseif ip==
bcdof=[{1 2 sdof-1 sdof];
else
becdof=[1 2 sdof-3 sdof-2];

end

bcval=zeros(size (bcdof));

¢intilalizatio?
kk=zeros
nmm=zeros

[Q]1=Cmat (E1,E2,G12,rl2,xr21);

for iel=l:nel
npt=npm+npta;
[dl,d2}=d1d2c(Q, Or,npta, npm, tetal, tp)
1=L/nel;
index=elindex (iel,nnel, ndof);
al=(npt)*tp*b;
az=(npt-npm) *tp*b;
A= (al+a2)/2;
t=tp;
[k1]=kadCl(Q,t,tetal,alfa,l,Qr,npt, npm, npta,dl, d2);

[m}=massadl{ro,A,1l,dl,d2);
[kk, mm]=elasmbl (kk, mm,m, k1, index) ;
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if iel~=nel,
npta=npta-npm;
else
end
end
[kk, mm]}=symbc (kk, mm, bcdof) ;

solution of The system

[V,EV]=eig(kk,mm) ;

[LAMBDA, ITEM]=sort {(diag{EV));
NEWV=V {:, ITEM) ;

fr=sqgrt (LAMBDA)

1 composite o

El=113.9€9;G612=4.48e9;E2=7.9856e9;r12=0.288;r21=0.0178;
G12=3.138e9;b=1.0;tp=0.000125;r0=1480;

p=0;
npm=4;npta=2;nptm=18;npu=12;alfa=-3;alfa=alfa*pi/180;
L=12*0.000125/ (tan{-alfa));
ip=2;
for II=1:2:18
J=1I+1;
tetal (I11)=0;
tetal (J)=90;
end
tetal=tetal*pi/180;
Qr=4.288e9;
nel=3;
nnode=nel+l;
nnel=2;
ndof=4;
sdof=nnode*ndof;

for i=l:nel
nodes (i, 1l)=i;
nodes (i, 2)=1i+1;
end
if ip==
becdof=[1 4 sdof-3 sdofl;
elseif ip==
becdof=[1 2 sdof-1 sdof];
else
bcdof=[1 2 sdof-3 sdof-2];
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end

beval=zeros (size (bcedof));

intlalization matrices

kk=zeros (sdof, sdof);

mm=zeros (sdof, sdof) ;

[Q1=0Omat (E1l,E2,G12,xr12,r21);

th=npr+npta+l;

for iel=l:nel
npt=npta-+npm+npu;
[dl,d2]=d1d2d(Q, b, tp, tetal, Or,npm,npta, npt, th, nptm, npu) ;

1=L/nel;
index=elindex{iel, nnel, ndof);
al=(npt) *tp*b;
az=(npt-4)*tp*b;

={al+az)/2;
t_tpl

kl]—kaddBl(dl dz2,0,t,alfa,1,Qr, tetal, npm npta, npt,npu) ;
Thl=ki1*Z; ¢ for buckling

sm=Gh;
{m]=massadl {(ro,A,1,dl,d2);
[kk,mm}=elasmbl (kk, mm,m, k1, index) ;
if iel~=nel,
th=th+4;
npta=npta+2;
npu=npu-4;
else
end
end

[kk,mm}=symbc (kk, mm, bcdof);
$scoiution cf the system

[V EV]=eig(kk,mm) ;

[LAMBDA, ITEM]=sort (diag(EV));
NEWV=V (:, ITEM) ;

fr=sqrt (LAMBDA)

Tcunctwon [Gb] gbmatad(dl d2 1)

G
G
G
G
G
G
G
G
G

(1,1)=700/429/1;G(1,2)=271/858;G(1,3)=-5/5148*1"2/d1;
(1,4)=23/858*1/d1;G(1,5)=-700/429/1;G(1,6)=271/858;
(1,7)=-5/5148*1"2/d2;G(1,8)=-23/858*1/d2;G(2,2)=300/1001*1;
(2,3)=-25/18018*1"3/d1;G(2,4)=123/4004*1"2/d1;G(2,5)=-271/858;
(2,6)=97/6006%1;G(2,7)=5/12012*1"3/d2;G(2,8)=47/12012*172/d2;
(3,3)=1/90090/d1"2*175;G(3,4)=-37/180180/d1"2*1"4;
(3,5)=5/5148*1"2/d1;G(3,6)=5/12012*1"3/d1;
(3,7)=-1/144144/d1*175/d2;G(3,8)=-73/720720/d1*1~4/d2;
(4,4)=73/18018/d1"2*1"3;G(4,5)=-23/858/d1*1;
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G(4,0)==47/12012/d1*1"2;G{4,7)=T73/720720/d1*1~4/d2;
G(4,8)=7/5148/d1*1°3/d2;G{(5,5)=T700/429/1;G(5,6)=-271/858;
G(5,7)=5/5148*1"2/d2;G(5,8)=23/858*1/d2;
G(6,6)=300/1001*1;G(6,7)=-25/18018*1"3/d2;
G(6,8)=-123/4004*1°2/42;G(7,7)=1/20090/d2"2*1"5;
G(7,8)=37/180180*1"4/d272;G(8,8)=73/18018/d272*1"3;
for i=1:8

ii=i41;

for §=1ii:8
G(i,1)=CG({i,3);
end
end
[Gb]=[G];

kadtimol

This function gives the stiffness matrix for uniform Timoshenko beam
using advanced FEM

function [kl=kadtimol (h55,d,1);

a=d/hb55;
k(1,1)=6/5/1;k(1,2)=1/2;k{1,3)=1/10;k(1,4)=1/10*1;
k{1,5)=-6/5/1;k(1,6)=1/2;k(1,7)=1/10;%k(1,8)=-1/10*1;¢%
k(2,2)=13/35*14+6/5/1*a;k(2,3)=-1/10*1:%%(2,4)=11/210*1"2+1/10%*a;
k{(2,5)=-1/2;%(2,6)=9/70*1-6/5/1*%a;k(2,7)=1/10*1;
k{(2,8)=-13/420*1"2+1/10*a;k(3,3)=2/15*1;%k(3,4)=0;
k(3,5)=-1/10;k{(3,6)=1/10%1;%k(3,7)==-1/30*1;
k(3,8)==172/60;k(4,4)=1/105*1"3+2/15*1%a;k(4,5)=-1/10*1;
k(4,6)=13/420*%1"2-1/10*a;k(4,7)=1/60*1"2;k(4,8)=-1/140*1"3-1/30%a;
k(5,5)=6/5/1;k(5,6)=-1/2;k(5,7)=-1/10;
k(5,8)=1/10*1;k(6,6)=13/35*1+5/6/1*a;k(6,7)=-1/10*1;
k(6,8)=-11/210*%1"2-1/10*%a;k(7,7)=2/15*1;%k(7,8)=0;
k{8,8)=1/105*1"3+2/15*1*a;
for i=1:8

ii=i+1;

for j=1i:8

k(jll)zk(llj);

end
end
k=hb5*k;
madtimol

This function gives the mass matrix for uniform Timoshenko beam using advanced FEM

function [m}=madtimol(ro,h,1);
m(1l,1)=13/35;m(1,2)=0;m(1,3)=11/210*1;m(1,4)=0;m(1,5)=9/70;
m(1l,6)=0;m(l,7)=-13/420*1;m(1,8)=0;m(2,2)=13/420*h"2;
m(2,3)=0;m(2,4)=11/2520*1*h"2;m(2,5)=0;m(2,6)=3/280*h"2;
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m{2,7)=0;m{(2,8)=-13/5040*h"2*1;m(3,3)=1/105*1"2;
m{3,4)=0;m(3,5)=13/420*1;m(3,6)=0;
m(3,7)=-1/140*1"2;m(3,8)=0;m(4,4)=1/1260*1"2*h"2;m{4,5)=
m(4,6)=13/5040*1*h"2;m(4,7)=0;m(4,8)=-1/1680*1"2*h"2;m(5,5)=
m{5,6)=0;m(5,7)=-11/210*1;m(5,8)=0;m(6,6)=13/420*h"2
m{6,7)=0;m{6,8)=-11/2520*h"2*1;m(7,7)=1/105*%1"2;
m(7,8)=0;m(8,8)=1/1260*n"2*1"2;
for i=1:8

ii=141;

for §=1i:8

m(j,i)=m(i,])

end

end

[
A

tion made of model3i B
El 113.9e9;E2=7.9856e9;r12=0.288;r21=0.0178;G12=3.138e9;
b=1.0;tp=0.000125;r0=1480;p=0;

npm=4;npta=2;nptm=18;npu=12;
L1=0.1278;

alfa=-2;

alfa=alfa*pi/180;
L2==12*0.000125/tan(alfa);
L3=0.1278;

for I1=1:2:18
J=I1+1;
teta (I1)=0;
teta(J)=90;
end
teta=teta*pi/180;
Qr=3.7e8/(1-0.37"2);

nel=5;
nnode=nel+l;
nnel=2;

ndof=4;
sdof=nnode*ndof;
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for i=1l:nel

nodes (i, 1)=1;

nodes (i,2)=1+1;
end
if ip==

bcdof=[1 4 sdof-3 sdofl;

elseif ip==
bedof=[1 2 sdof-1 sdofl;
else

bcecdof={1 2 sdof-3 sdof-21;
end
beval=zeros (size(bcdof) ) ;
2intialization matrices
kk=zeros {sdof, sdof);
mm=zeros (sdof, sdof);
k=zeros(8,8);
m=zeros{8,8);
for iel=1:1

=8

nr=ncdesgiiel, Z};
xr=gcoord (nr) ;
3AL=xr=-xl; %element lenght

np=nptm;
index=elindex {(iel,nnel,ndof);
[Dl=dmatric(El,E2,Gl2,teta,rl2,r21,np, tp):

dl=b*D;

d2=b*D;

d=b*D;

A=np*tp;
[k]l=stiffadl(d,dl,dz,1);
% [Gbhi=gbmataci{dl,d2, 1);

{m]=massadl (ro,A,1,dl,d2);
sstiffniess matrix for taper part model A
[kk,mm]=feasmbl?2 (kk,nm,m, k, index) ;

th=npm+npta+1;

[Q]=Qmat (E1,E2,G12,r12,r21);

th=npm+npta+i;

for iel=2:4
npt=npta+npm+npu;
tetal=teta;
[d1l,d2]=d1d2d{Q, b, tp, tetal, Qr,npm,npta,npt, th, nptm, npu) ;
1=L2/3;
index=elindex (iel, nnel, ndof);
al=(npt)*tp*b;
aZ={npt-npm) *tp*b;
A=(al+a2)/2;

t=tp;
[k1]=kaddB1l(d1,d2,Q,t,alfa,l,Qr,tetal, npm, npta, npt, npu) ;

\\/)L.“ Id

[m]=massadl (ro,A,1,dl,d2);

=
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[kk, mm]=feasmbl? (kk,mm,m, k1, index) ;
if iel~=4,
th=th+4
npta=npta+Z;
npu=npu-4;
else
end
end
for iel=h:

1=0cae

np=npta;
index=elindex(iel,nnel,ndof);
[Dj=dmatric({El,E2,Gl2,teta,rl2,r2]l,np,tp);

dl=b*D;

d2=b*D;

d=b*D;

A=np*tp;
[kl=stiffadl(d,dl,dz2,1);
5 [Gohi=gbmatad{al,dz, 1};

[m}i=massadl (ro,A,1,dl,d2);
[kk,mm]=elasmbl (kk, mm,m, k, index) ;
end

[kk, mm] =symbc (kk, mm, bcdof) ;

[V,Q]l=eig(kk,mm);

[LAMBDA, ITEM]=sort (diag (Q));
NEWV=V {:, ITEM) ;

fr=sqgrt (LAMBDA)

twith a thic
E2=7.9856e9;

rl12=0.288;

r21=0.0178;

G12=3.138e9;

b=1.0;

tp=0.000125;

r0=1480;

p=0;

npm=4; % note this program is <l
h1i/h3

npta=14;

nptm=18;

L1=0.1278;

angle=-2;

angle=angle*pi/180;
1.2=-12*0.000125/tan(angle);

; investigate the effects of
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= —-Ld
L3=0.1278;

for II=1:2:18
J=1I+1;
teta(Il)=0;
teta (J)=90;
end
teta=teta*pi/180;
Qr=3.7e9/(1-0.37"2);

nel=5;
nnode=nel+1;
nnel=2;

ndof=4;
sdof=nnode*ndof;

Y IR N N I Y =) O .
. 06; gooord (43=0.09;

or i=l:nel
nodes (i, 1)=i;
nodes (i, 2)=i+1;

end

if ip==
bedof=[{1 4 sdof-3 sdof];
elseilf ip==

becdof=[1 2 sdof-1 sdof];

else
bedof=[1 2 sdof-3 sdof-2];

end
beval=zeros (size (becdof)}));

intialization matrices

Lo IR A w3 SIS 8 Hidol LU

kk=zeros (sdof, sdof);
mm=zeros (sdof, sdof) ;
k=zeros (8, 8);
m=zeros(8,8);

np=nptm;

index=elindex {(iel, nnel,ndof);
[Dl=dmatric(E1l,E2,Gl2, teta,r12,r21l,np, tp);
dl=b*D;

d2=b*D;

d=b*D;
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A=np*tp;
[k]=stiffadl(d,dl,d2,1);
5 [Ghi=gbmatad{dl,dZ,i};

[m}=massadli{ro,nr,1l,dl,d2);

$stiffness matrix for taper part model A
[kk,mm}=elasmbl (kk,mm,m, k, index) ;

end

[Q)=0Omat (E1,E2,G12,r12,r21);

for iel=2:4
tetal=teta;
npt=npm+npta;
[dl,d2]=dld2c (Q, Qr,npta, npm, tetal, tp):;

gcoord(nl]
sAL=xr-z1; %element lenght
1=L2/3;
index=feeldofl (iel,nnel, ndof);
al=(npt)*tp;
a2=(npt-npm) *tp;
A=(al+az2)/2;
t=tp;
alfa=angle;
[k1]=kadCl(Q,t,tetal,alfa,l, QOr,npt,npm, npta,dl,d2);
[ml=massadl{ro,A,1l,dl,d2);
[kk,mm]=feasmbl? (kk,mm,m, k1, index);
if iel~=4,
npta=npta-npm;
else
end
end

for lel=5:5

1=1L3/1;

np=npta;

index=feeldofl (iel,nnel,ndof};

[Dl=dmatric(El,E2,G12,teta,rl2,r21,np, tp);

dl=b*D;

d2=b*D;

d=b*D;

A=np*tp;

[kl=stiffadl{d,dl,d2,1);
gomatad{dl,dz,1);
[m]=massadl (ro,A,1l,dl,d2);

[kk,mm]j=feasmbl2 (kk,mm,m, k, index) ;
end

[kk,mm]=feaplycs (kk,mm, bcdof) ;

[V,Q]l=eig(kk,mm) ;
[LAMBDA, ITEM]l=sort (diag(Q));
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NEWV=V {:, ITEM);
fr=sqgrt (LAMBDA)
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