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ABSTRACT

PRICING KERNEL MEASURES OF CANADIAN FUND PERFORMANCE

Mohamed A. Ayadi, Ph.D.
Concordia University, 2003

The dissertation consists of four essays that address several issues related to the
performance of Canadian equity and fixed-income mutual funds.

In the first essay, a general asset pricing framework is used to derive a conditional asset
pricing kernel that accounts efficiently for time variation in expected returns and risk, and is
suitable to perform (un)conditional evaluations of passive and dynamic investment strategies. The
abnormal unconditional pefformance of Canadian equity mutual funds over the period 1989-1999

~ becomes negative with conditioning. The performance statistics are weakly sensitive to changes
in the level of relative risk aversion of the uninformed investor. The reversal in the size-based
performance results with limited information conditioning is alleviated somewhat | with an
expansion of the conditioning set. Estimates of survivorship bias due to thé elimination of funds
with shorter lives, which range from 36 to 58 basis points per year, are stable across performance
models but differ across groupings by fund objective.

In the second essay, we examine the sensitivity of various measures of portfolio
performance using various return-based Iinear‘benchmark models in both their unconditional and
conditional versions for a sample of Canadian equity mufual funds. In a departure from the
current literature, performance inferences are based on tests that incorporate the contemporaneous
cross-corfclations across fund returns. The performance inferences are sensitive to the choice of
the linear benchmark model. Conditioning has é more proﬁounced impact on absolute than on
relafivé performance iﬁferences; Risk-adjusted performance is related with the age and size of a
fund and its management fees, and to a lesser extent with the fund’s management expense ratio.

These identified relationships suggest important differences and similarities between the

-iii -



availability of scale economies and levels of compctition‘in the Canadian versus the American
and European mutual fund industries.

| In the third essay, we use higher-order moment and nonlinear asset pricing kernel models
to estimate the risk-adjusted performance of a sample of Canadian equity mutual funds.
(Un)conditional frameworks are developed that are suitable to perform evaluations of fixed-
weight and dynamic strategies. The results show that the weak unconditional »perforrnance
becomes positive and significant with nonlinear and conditional kernel-based benchmarks. A
- restriction on the mean of the asset-pricing kernel not only affects the performance statistics and
inferences but also reverses and mitigates the conditioning information-based size effect. The
findings on the relationship between fund performance and fund characteristics suggest that risk-
adjusted performance is related to the age and size of the fund and to.a lesser extent to the fund
load structure but is unrelated to management fees.

In the fourth essay, we presents new evidence on the performance of Canadian fixed-
income funds using various linear single- and multi-factor benchmark models based on a‘ sample
of Canadian fixed-income mutual funds over the period, 1985-2000. Frameworks are developed
that are suitable to perform evaluations of fixed-weight and dynamic strategies. The results show
evidence of negative performance, which improves with partial conditioning. The performance
measures are weakly sensitive to the return generating process. Tests that do not incorpofate the
contemporaneous cross—corgelaﬁons in the returns. among jndividual funds consistently alter and-
reverse the conditioning information-based performance vinferences and the lﬁrge fund effect. The
stock market factor not only imprpves the p erformance statistics but also preserves the s ingle
factor-based .superior performance of large funds. The findings on the relationship betvséén fund
performance and fund characteristics suggest that risk-adjusted performance is related with the
fund age, management expense ratio, and load structure, and to a lesser extent with fund size and
@nagemcnt fees. These identified relationships suggest important differences and similarities on

the economics of the Canadian versus the American and European fixed-income mutual fund
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industries. Estimates of survivorship bias, which are less than 15 basis points per year, are stable

across performance models but differ across fund objective groups.



Acknowledgements

No words can express my gratitude enough toward my supervisor, Dr. Lawrence
Kryzanowski, for his guidance, encouragement, and support. He has read this thesis and its
previous drafts uncountable times and has continuously provided invaluable suggestions to me. I
would not have achieved what I have achieved now without his generous support and advice

through all the years of my graduate studies at Concordia University.

I would like to thank the other members of my dissertation committee: Dr. Lorne Switzer and
Dr. Simon Lalancette for their helpful suggestions.. Both of them have provided valuable insights

and encouragement in writing this thesis.

While attending Concordia University, I have been fortunate to be surrounded by its
outstanding faculty and classmates. I have learned a lot from them about how to access various
problems in finance and econometrics. I would like to thank Dr. James McIntosh,‘Dr. Pierre
Perron, and Dr. Jerome D_etemple. Also thanks to my colleagues, Hatem Ben-Ameur, Zhongzhe

He, and Skander Lazrak, at Concordia University.

The support from my colleagues and especially the Dean of the Faculty of Business, Dr.

Martin Kusy, at Brock University facilitated the complétion of the dissertation process.

I would like to thank my parents for their love and support. They gave me a life and made me

what I am. Also, they have always given me encouragement and done whatever they can.

Finally, I would like to thank my wife, Sonia, for her continuous love and emotional support
over the past three years. Special dedication also to my daughter Emna, who has been with me at
the end of the thesis process. Her smile always let me forget all the distress during some difficuit

periods.



CHAPTER

CHAPTER

CHAPTER

1
2

2.1
22
23
24

24.1
24.2
2.5
25.1
252
2.6
2.6.1
262
263
2.64
2.6.5
27
271
272
2721
2722

273
274
2.8

3

31
32
33
33.1
332
333
34
34.1
342
343
343.1
34.3.2
3.44
345
345.1

TABLE OF CONTENTS

INTRODUCTION

PORTFOLIO PERFORMANCE MEASUREMENT USING
APM-FREE KERNEL MODELS

Introduction o

General Asset Pricing Framework or GAPF

Time-Varying Returns and Asset Pricing Kernels
Performance Evaluation of Passively and Actively Managed
Portfolios

Unconditional Framework

Conditional Framework

Econometric Methodology and Construction of the Tests

The General Methodology

The Estimation Procedure and the Optimal Weighting Matrix
Sample and Data

Mutual Fund and Benchmark Returns

Information Variables

Predictability of Mutual Fund Excess Returns

Passive Strategies

Optimal Risky Asset Allocation Specifications

Empirical Performance Results

Evaluation of Unconditional Performance

Evaluation of Conditional Performance

Conditioning with the Dividend Yield Only

Conditioning with the Dividend Yield and Yield on the One-Month
T-Bill

Performance and Relative Risk Aversion

Survivorship Bias and RlSk-Ad_] usted Performance
Conclusion

LINEAR PERFORMANCE MEASUREMENT MODELS AND
FUND CHARACTERISTICS

Introduction

Sample and Data .

Econometric Methodology

The Estimation Method and Construction of the Tests

The Estimation Procedures

Information Variables, Benchmark Assets, and Factors

~ Portfolio Performance Using Various Linear Benchmark Models

Empirical Issues

The Unconditional CAPM

The Conditional CAPM

Conditional CAPM with Time-Varying Betas
Conditional CAPM with Time-Varying Alphas and Betas
The Unconditional Four-Index Model

The Conditional Four-Index Models

Conditional Four-Index Model with Time-Varying Betas

- Vil -

10
12

16
16
18
21
21
25
27
27
28
29
30
30
31
31
33
34

35
36
38
40

42
42
45
46
46
47
48
50
50
50
52
53
55
57
59
59



CHAPTER

CHAPTER

3452
3.5
35.1
352
353
354
355

3.6
3.6.1
3.6.2
3.7

4.1
4.2
43
4.3.1
432
433

434
4.4

44.1
442
443
444
445
44.6
447

4.5
45.1
452
4.6

5.1
5.2
5.2.1
522
53
5.3.1
532
533
534
535
54

Conditional Four-Index Model with Time-Varying Alphas and Betas
Market Timing Models and Tests

The Unconditional Treynor-Mazuy Timing Model

The Conditional Treynor-Mazuy Timing Model

The Unconditional Henriksson-Merton Timing Model

The Conditional Henriksson-Merton Timing Model
Similarity of the Performance Rankings Across the Various
Performance Metrics

Relationship between Performance and Fund Characteristics
Mutual Fund Characteristics

Risk-Adjusted Performance and Mutual Fund Characteristics
Conclusion

PORTFOLIO PERFORMANCE MEASUREMENT USING
HIGHER~-ORDER MOMENT AND NONLINEAR ASSET
PRICING KERNEL MODELS '

Introduction

Data and Sample

Econometric Methodology

The Estimation Methods and Construction of the Tests

The Estimation Procedures

Information Variables and Predictability of Mutual Fund Excess
Returns

Passive Strategies and Benchmark Assets

- Higher-Order Moment and Nonlinear Asset Pricing Kernel Models

The Unconditional Skewness Pricing Kernel Model

The Conditional Skewness Pricing Kernel Model

The Unconditional Kurtosis Pricing Kernel Model

The Conditional Kurtosis Pricing Kernel Model

The Unconditional BHV Nonlinear Pricing Kernel Model
The Conditional BHV Nonlinear Pricing Kernel Model
Risk-Adjusted Performance and the Risk-Free Asset Pricing
Restriction

Relationship between Performance and Fund Characteristics
Mutual Fund Characteristics

Risk-Adjusted Performance and Mutual Fund Characteristics
Conclusion

PERFORMANCE OF CANADIAN FIXED-INCOME
MUTUAL FUNDS

Introduction

Samples and Data

Samples

Fund Survival and Mortality

Econometric Methodology

The Estimation Method and Construction of the Tests
The Estimation Procedures

Information Variables

Bond Indices and Factors :

Predictability of Bond and Bond Fund Excess Returns
Performance Evaluation

- Viii -

60
62
62

66
67

69
71
73
74
75

77
77
80
81
81
83

85
86
87
87
90
92
94
96
98

100
101
102
103
105

106
106
110
110
112
113
113
114
115
116
117
117



54.1
54.1.1
5.4.12
5.4.2
5.4.2.1
54.2.2
3.3

5.6
5.6.1
5.6.2
57

CHAPTER 6
REFERENCES

APPENDICES

Unconditional Benchmark Models

Unconditional Single Factor Models

Unconditional Multi-factor Modéls

Conditional Benchmark Models

Conditional Single Factor Models

Conditional Multi-factor Models

Survivorship Bias and Performance

Portfolio Performance and Bond Fund Characteristics
Mutual Fund Characteristics

Risk-Adjusted Performance and Mutual Fund Characteristics
Conclusion

CONCLUSION

Appendix A: Asset Allocation Problem

Appendix B: Tables

-ix -

117
118
120
124
124
127
130
132
133
134
135

136

140

149
150



Table Al

Table A2

Table A3

Table A4

Table A5

Table A6

Table A7

Table A8

Table A9

Table A10

Table All

Table A12

Table A13

Table A14

Table A15

Table Al6

LIST OF TABLES

Summary statistics for the mutual funds and attributes, and mutual fund excess
return predictability

Summary statistics for the instrumental variables and passive portfolios

Portfolios of funds performance measures using the unconditional and
conditional pricing kernels

Individual fund performance measures using the unconditional and conditional
pricing kernels

Summary statistics for the unconditional and conditional pricing kernels

Summary statistics for performance for the unconditional and conditional
pricing kemels for various relative risk aversion levels

Survivorship bias and risk-adjusted performance

Performance and risk measures for portfolios of funds using the unconditional
and conditional CAPM

Summary statistics for the performance estimates based on the unconditional
and conditional CAPM and four-index models for the fund groups based on
individual fund performances

Performance and risk measures for portfolios of funds using the unconditional
and conditional four-index models

Performance and timing measures for portfolios of funds using the
unconditional and conditional models of Treynor and Mazuy and of Henriksson
and Merton

Summary statistics for the performance and timing measures for portfolios of
funds using the unconditional and conditional models of Treynor and Mazuy
and of Henriksson and Merton

Rank correlations, performance sign maintenance, and ranking concordance for
the various performance measures

The relationship between risk-adjusted performance and mutual fund attributes

Performance measures for portfolios of funds using the unconditional :'md
conditional skewness, kurtosis, and BHV pricing kernel models

Performance measures for individual funds using the unconditional and
conditional skewness, kurtosis, and BHV pricing kernel models

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165



Table A17

Table A18

Table A19

Table A20

Table A21
Table A22
Table A23

Table A24

Table A25

Table A26 -

Table A27

Table A28

Table A29
Table A30

Table A31

Summary statistics for the performance estimates using the unconditional and
conditional skewness, kurtosis, and BHV pricing kernel models based on
individual fund performances

Performance measures for portfolios of funds using the unconditional and
conditional skewness, kurtosis, and BHV pricing kernel models with the
restriction on the pricing of the risk-free asset

The relationship between risk-adjusted performance and mutual fund attributes

Summary statistics and characteristics for the surviving and non-surviving
fixed-income funds

Entries and exits of funds
Summary statistics for the instrumental variables, bond indices, and factors
Bond and bond mutual fund excess return predictability

Performance and risk measures for portfolios of funds using unconditional and
conditional single factor models

Averages of individual fund performance using the unconditional and
conditional single- and multi-factor models

Summary statistics for the performance estimates based oﬁ the unconditional
and conditional factor models for the fund categories based on individual fund

performances

Performance and risk measures for portfolios of funds using unconditional and
conditional two-factor models

Performance and risk measures for portfolios of funds using unconditional and
conditional five-factor models

Survivorship biases and average excess returns
Survivorship biases-and risk-adjusted perforr'nanceb

The relationship between risk-adjusted performance and mutual fund attributes

-xi-

166

167

168

169

171
172
173

174

175

176

177

179

180
181

182



CHAPTER 1

INTRODUCTION

| Portfolio management has become an increasingly important industry in Canada as well as in
many countries across the world. Measuring and evaluating the performance of actively managed
portfolios have received significant interest in the academic literature and practical world during
the ‘last thirty years. Four important issues of particular interest are first, the identification of the
appropriate return generating process to adjust for risk and to estimate normal or passive
benchmark performance. This issue is closely related to developments and advances in the asset
pricing literature. Hence, most papers in the literature use classical aséet pricing models such as
the CAPM, the APT and multifactor models, the CCAPM, or the ICAPM to develop performance
statistics and tests. The validity of these metrics is largely dependent on that of the underlying
models. Alternative approaches stem from the general asset pricing framework or the stochastic
discount factor representation of asset prices. This methodology requires weaker market
conditions of either the law of one price or no arbitrage conditions. Of the few papers that use this
flexible framework, most of them apply existing asset pricing kernels that are not adapted to
performance evaluation where negative realizations are possible.

Second, there is a growing bbdy of research examining the role of conditioning information
in the construction of the performanée statistics and tests, and on the impact of information
conditioning on performance inferences. Classical measures of investment performance are
unreliable since they are unconditional. They confuse the inherent time-variation in the expected
returns and risks of funds with the possibility of superior abilities of portfolio managers. A
conditional performance evaluation asserts that any managed portfolio strategy that can be
replicated using publicly available information should not be deemed to be superior performance.

Only managers who correctly and efficiently use private information have superior abilities. This



conditional approach is suitable to accommodate the complex portfolio and indiviciual assets
dynamics, and is consistent with the semi-strong version-of market efficiency.

Third, several studies attempt to unravel the detenﬁinants of fund performance. The few
studies of non-U.S. funds obtain findings that differ somewhat from those for U.S. funds. Fund
attributes or properties examined és potential determinants of fund performance in this rapidly
evolving literature include fund size, age, fees, trading activity, flows, and past returns. However,
these studies typically do not examine the robustness of their results to the potential nonlinearities
in the fund payoffs, choice of performance evaluation model, market index benchmark, or
conditioning information.

Fourth, the last fifteen years have witnessed an important growth of fixed-income assets and
funds. This has increased interest in fixed-income funds, which to-date has received a relatively
small ambunt of research interest in the literature compared to equity funds. However, not all of
the a forementioned issues are addressed for fixed-income funds. Hence, there is stilla debate
>about the appropriate benchmark model for fixed-income fund returns ranging from the single- to
the multi-factor specifications. Other unresolved issues are related to the role of conditioning
information, the potential determinants of performance, and the robustness of the obtained
relationship between performance and several fund attributes or characteristics. Finally, there is
no rigorous and comprehensive assessment of the impact of survivorship bias on the performance
of ﬁ;(ed-incoxﬁe funds, and its properties with respect to performance moﬂels and fund objective
grouf)ings. |

The dissertation consists‘ of four chapters that address s.everal issues related to the
performance of Canadian equity and fixed-income mutual funds.

The second chapter, “Portfolio Performance Measurement using APM-Free Kernel Models”,
aésesses the performance of Canadian equity mutual funds over the period 1989-1999. We use the
general asset pricing framework or GAPF based on the stochastic discount factor or SDF -

representation of asset prices to derive a conditional asset pricing kernel that accounts efficiently



for time variation in expected returns and risk. The proposed SDF is efficient by construction and
is differentiated from most existing SDF models because it has a unique structure that reflects
nonlinear interdependence between its unconditional and conditional versions due to the time-
variability in the optimal risky asset allocation. We develop frameworks that are suitable for
performing unconditional evaluations of fixed-weight and dynamic strategies. The empirical
performance measures and their associated tests are constructed and fested within the appropriate
empiﬁcal framework. We advocate the use of a flexible estimation methodology using the
(un)conditional Generalized Method of Moments or GMM of Hansen (1982). We also test the
sensitivity of the performance measures to changes in the level of the relaﬁvg risk aversion of the
uninformed investor, and estimate survivorship bias and its sensitivity to the choice of the
performance measurement model using an additional sample of non-surviving Canadian equity
mutual funds.

The empirical results show that the unconditional risk-adjusted performance of fund
managers is positive and that conditioning information negatively impacts the performance
Statistics and inferences. With limited conditioning, the performance statistics based on all
individual funds are higher than those based on portfolios of the funds, and the superior
performance switches from large funds to small funds. An expansion of the conditioning
information set seems to alleviate the impact of the conditional pricing kernel on'the size-based
statistics. The performance statistics and mferences are only weakly sensitive to changes in the
level of relative risk aversion of the uninformed investor. Finally, the survivorship bias due to the
elimination of funds with shorter lives is important for the performance of Canadian equlty
mutual funds This 1mportance is similar to that estimated for U.S. and European funds. While
Sut'VlVOI‘Shlp bias is reasonably stable across performance models, it differs materially across
funds grouped by their invcstxﬁent objectives.

The third chapter, “Linear Performance Measurement Models and Fund Characteristics”,

examines the sensitivity of various (un)conditional measures of portfolio performance using



various return-based linear benchmark models for a sample of Canadian equity mutual funds over
'tvhe period, 1989-1999. Our approach departs from the current literature, by assessing the
performance inferences based on tests that incorporate the contemporaneous ¢ ross-correlations
across fund returns using e qual- and size-weighted portfolios o f funds grouped by investment
objective. S everal (un)conditional s tock s election and market t iming models are proposed and
estimated using the flexible and robust Generalized M ethod of M oments or GMM o f Hansen
(1982). We also attempt to unravel the déterminants of fund performance based on various fund
attributes or characteristics, and to examine the robustness of our results to the éhoice of
performance evaluation model or market index benchmark. Empirical evidence shows that the
measured selection performance of fund managers improves as the conditional benchmark
becomes rhultifactor. Managers of Canadian mutuzil funds exhibit pervasive negative market-
timing ability, and controlling for | conditioning information somewhat alleviates the
pervasiveness of the negative market-timing inferences. The non-parametric performance
- rankings tests indicate that all of the measures are quite strongly related or concordant, and
suggest that conditioning has a more pronounced impact on absolute than on relative performance
inferences. Risk-adjusted performance is related with the age and size of a fund and its
management fees, and to a lesser extent with the fund’s management expense ratio. These
identiﬁed relationships suggest important differences and similarities between the availability of
scale economies -énd levels of competition in the Canadian versus the American and European
mutuél fuﬁd industries. |

In the fourth chapter, “Portfolio Performance Measurement using Higher-Order Moment and
Nonlinear Asset Pricing Kernel Models”, we use higher-order moment and nonlinear asset
priéing kcmél models to estimate the risk-adjusted performance of a sample of Canadian equity
mutual funds over the period, 1989-1999. These models jointly accommodate tﬁe conditional
pricing of portfolios with linear and nonlinear payoffs and have not yet been tested in the context

of (un)conditional performance evaluation. The importance of the restriction on the mean of the



asset pricing kemel for performance evaluation is tested. We relate nonlinear perfqrmance
statistics to several fund characteristics or attributes such as fund type, age, size, and management
fees and expenses, and to emﬁine the robustness of these relations for Canadiah equity mutual
funds. We develop the appropﬁate framework for the estimation of the SDF-based performance
measures and the relationship between fund performance and fund characteristics. The flexible

| (un)conditional Generalized Method of Moments (GMM) of Hansen (1982) is used to estimate
the various models. The empirical results show weak unconditional performanc.e, which becomes
positive and significant with nonlinear and conditional kernel-based benchmarks. The additional
restriction on the mean of the asset pricing kernel not only affects the performance statistics and
inferences but also reverses and mitigates the conditidning information-based performance
superiority of large over small funds (so-called “large fund effect” herein). Finally, the findings
on the relationship between fund performance and fund characteristics suggest that risk-adjusted
performance is related to the age and size of the fund and to a lesser extent to the fund 1oad
structure but is unrelated to management fees.

The fifth chapter, “Performance of Canadian Fixed-Income Mutual Funds”, examines the
performance of Canadian fixed-income mutual funds over the period 1985-2000. We use various
single- and multi-factor lineér benchmark models and develop frameworks that are suitable to
perform evaluations of fixed-weight and dynamic strategies. The selected benchmark models
seem appropriate to span the movements in the expected returns of bonds and to accommodate
the unique features of bond returns. We also address two important issues largely ignored in the
literature. First, a comprehensive analysis of the survivorship bias inherent in large samples of
fixed-income mutual funds. In particular, we study its imbact and properties with respect to risk-
adjusted performance, benchmark model, and fund investment objectives. Second, we examine
the determinants of fixed-income fund pcfformancé and | robustness based on linear
(un)conditional bénchmark models. Fund attributes or properties as potential determinants of fund

performance include fund size, age, fees, trading activity, flows, and past returns. The empirical



tests show evidence of underperformance. The performance measures are weakly sensitive to the
return generating process, and partial conditioning pdsitively impacts the performance statistics
and inferences. Tests that do not incorporate the contemporaneous cross-correlations in the
retumns among individual funds consistently alter and reverse the conditioning information-based
performance inferences and the large fund effect. The stock market factor is useful for evaluating
the conditional performance of Canadian fixed-income funds. Its inclusion not only improves the
performance statistics but also preserves the single f actor-based s uperior p erformance of large
funds. The estimates of survivorship bias, which are less than 15 basis points per year, are similar
to that estimated for European funds but lowg:r than the U.S. estimates. Our estimates are stable
across performance models but differ across fund objective groupings. The findings on the
relationship between fund performance and fund characteristics suggest that risk-adjusted
performance is related with the age of the fund, management expense ratio, and _Ioad structure,
and to a lesser extent with fund sizé and management fees. These identified relationships suggest
imporﬁant differences and similarities on the economics of the Canadian versus the American and
European fixed-income mutual fund industries.

Finally, some concluding remarks and directions for future research are presented m the sixth

chapter.



CHAPTER 2
PORTFOLIO PERFORMANCE MEASUREMENT USING APM-FREE KERNEL

MODELS

2.1 Introduction

Most previous studies of portfolio performance evaluation use equilibrium-based asset
pricing models such as the CAPM and the APT to estimate the risk-adjusted performance of
actively managed portfolios. These performance metrics are obtained by comparing the
portfolio’s average excess return to that implied by the selected model for the same level of risk.
Evidence against the empirical validity of these models in the form of priced anomalies is
mounting. These models also fail to deliver reliable measures of performance and sometimes
generate misleading inferences. This is caused essentially by problems related to estimation bias
due to the presence of timing informatioﬁ (Dybvig and Ross, 1985; Admati and Ross, 1985; and
Grinblatt and Titman, 1989) and to the choice and efficiency of the chosen benchmarks where
rankings can change with the use of different benchmarks (Roll, 1977, 1978). These problems led
to the development of an asset pricing model-free measure to assess portfolio performance.

This alternative methodology relies on the general asset-pricing framework or GAPF based
on the stochastic discount factor or SDF representation of asset prices. According to Harrison and
Kreps (1979), this methodology requires weaker market conditions of either the law of one price
or no arbitrage conditions. The GAPF implies that any gross reﬁnn discounted by a market-wide
random variabie has a constant conditional expectation. The GAPF nests all common
(un)conditional asset pricing models such as the CAPM, APT, ICAPM, Multifactor Models,
CCAPM, or Option Models, depending on the specification of the stochastic discount factor.
Moreover, the GAPF allows for an integration of the role of conditioning information with

different structures (Hansen and Richard, 1987).



‘Grinblatt and Titman (1989) initially apply the GAP framework to portfolio performance
evaluation via their positive period weighting measure or PPWM where the SDF is the marginal
utility of the return on an efficient portfolio. Subsequently, this methodology is applied and
further developed by Glosten and Jagannathan (1994), Grinblatt and Titman (1994), Chen and
Knez (1996), Kryzanowski and Lalancette (1996), Bansal and Harvey (1996), He et al. (1999),
Goldbaum (1999), Dahlquist and Soderlind (1999), and Farnsworth et al. (2002). Most of these
papers use e xisting a sset pricing kernels tha_t are not adapted top erfotmancé evaluation when
realizations may be negative, adopt simple linear conditioning information integration between
the unconditional and conditjonal pricing kernels, and/or employ unconditional average returns.

Thus, given these limitations in the literature, this paper has two major objectives. The first
major objective is to introduce a conditional’ asset-pri;:ing kernel adapted to performance
evaluation that efficiently adcounts for the time variation in expected returns and risk, and not to
rely on the linear information scaling used in most SDF-based performance tests reported in the
literature. This SDF depends on some parameters and on the returns on an efficient portfolio, and
satisfies some regularity conditions. This approach has the advantage of not being dependent on
any asset pricing model or any distributional assumptions. The proposed SDF is efficient by
construction, given that it prices all the benchmarks and assets. The proposed SDF is further
differentiated from most existing SDF models because it has a unique structure that reflects
nonlinear interdependence between its unconditional and conditional versions caused essentially
by the time-variability in the optifnal risky asset allocation. The framework also is suitable for
performing unconditional evaluations of ﬁxed;weight strategies and (un)conditional evaluations
of dynamic strategies. |

The second major objective is to develop the appropriate empirical framework for the
estimation of the performance measures. We advocate the use of a flexible estimation
methodology using the (un)conditional Generalized Method of Moments or GMM of Hansen

(1982). We construct the empirical performance measures and their associated tests, and use this



methodology to assess the performance of a set of Canadian equity mutual funds over the period
1989-1999. We also test the sensitivity of the performance measures to changes in the level of the
relative risk aversion of the uninformed investor, and estimate the survivorship . bias and its
sensitivity to the choice of the performance measurement model.

The first major finding is that the measured unconditional performance of fund managers is
positive. The performance statistics deteriorate with conditioning, which suggests that the time-
variation in the conditional risky asset allocation used herein appears to have a greater impact on
conditional performance than the common linear information scaling applied in most SDF-based
performance tests. While the unconditional performance estixﬁates are similar when the averages
of the individual fund performances are compared against the average performances of the
portfolios of all funds, the tests of significance for the latter are more reliable since the latter
reflect the contemporaneous correlations in the returns among the individual funds. With limited
conditioning, the performance statistics based on all individual funds are higher than those based
on portfolios of the funds, and the superior performance switches from large funds to small funds.
These results may be due to an increased noﬁlinearity in the risk adjustment for the limited
conditional pricing kernel. Furthermore, an expansion of the conditioning information set seems
to alleviate the impact of the conditional pricing kernel on the size-based statistics.

The second major finding is that performance statistics and inferences are only weakly
sensitive to changes in the level of relative risk aversion of the uninformed investor. This
indicates that the pricing kernel-based performance measure is reasonably robust over a certain
range of investor preferences.

The third major ﬁnding is tﬁat survivorship bias due to the elimination of funds with shorter
lives is important for the performance of Canadian equity mutual funds. This importance is
similar to that estimated for U.S. and European funds. While survivorship bias is reasonably
stable across performance models, it differs materially across funds grouped by their investment

objectives.



The remainder of the paper is organized as follows: Section two presents the general asset-
pricing frémework. In section three, we derive the asset-pricing kernel in the presence of time-
varying returns. We conduct a (un)conditional portfolio performance ‘evaluation using the
developed normalized pricing .operator in section four. In section five, we develop and explain the
econometric methodology and the construction of the tests. Section six introduces fhe sample and
the data used herein. Section seven presents and discusses the main empirical results. Finally,

section eight summarizes the findings and discusses their implications.

2.2 General Asset Pricing Framework or GAPF

The fundamental theorem in asset pricing theory states that the price of a security is
determined by the conditional expectations of its discounted future payoffs in frictionless
markets. The stochastic discount factor or SDF is a random variable that reflects the fundamental

economy-wide sources of risk.' The basic asset pricing equation is written as:

@1 P,=EWM, X,,,) adli=l.,N

The conditional expectation is defined with respect to the sub-sigma field on the set of states of
nature, 2., which represents the information available to investors at time f. P, is the price of

asset 7 at time ¢, X, ,, is the payoff of asset i at time ¢ +1, and M, is the stochastic discount

factor or the pricing kernel.? The prices, payoffs and discount factors can be real or nominal, and

the general assumption is that the asset payoffs have finite second moments. As shown by

! It is a generalization of the standard discount factor under uncertainty. It is stochastic because it varies
across the states of nature.

% The SDF has various other names such as the intertemporal marginal rate of substitution in the
consurnption-based model, the equivalent martingale measure for allowing the change of measure from the
actual or objective probabilities to the risk-neutral probabilities, or the state price density when the Arrow-
Debreu or state-contingent price is scaled by the associated state probability.
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Luttmér (1 996), (2.1) becomes an inequality when transaction costs or any other market fﬁctions
are infroduced.

If a riskless asset with a unit payoff exists, then its price is equal to the conditional mean of
the pricing kernel:

1

£+l

2.2) EWM,)=P , =

When the security payoff is a gross return, the price is one. Then equation (2. 1) is equivalent to:

2.3) EM R )=1, all i=1. N

where R, represents a gross return or payoff divided by price on asset i at time ¢ +1.

fr,=R,-R 7.4+ 18 defined as an excess return, it has a zero price. The pricing equation

then becomes:
2.4 E, (Mmri‘m) =0, all i=1..,N

The SDF representation integrates both the absolute and the relative pricing approaches and
has several advantages. First, it is general and cpnvenient for pricing stocks, bonds, derivatives
and real assets. Sccvond, the SDF representation is simple and flexible in that it nests all asset-
pricing models by introducing explicit assumptions on the functional form of the pricing kernel
and on the payoff distributions.> Third, the SDF representation leads to a reliable analysis of
passively and actively managed portfolios by avoiding the limitations of the traditional models by
providing robust measures. Fourth, by construction, the SDF representation offers a suitable

framework when performing econometric tests of such models using the GMM approach of

* These models include the CAPM of Sharpe (1964), the APT of Ross (1976), the CCAPM of Lucas (1978)
and Breeden (1979), the ICAPM of Merton (1973), the multifactor models of Chen, Roll, and Ross (1986)
and Fama and French (1993), and the Nonlinear APM of Hansen and Singleton (1982).
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Hansen (1982). Fifth, the SDF representaﬁon accommodates conditioning information and
exploité its implications and the predictions of the underlying model in a simple way.

Kan and Zhou (1999) identify z_m empirical flaw associated with the SDF methodology when
the asset returns are generated by a linear factor structure. They argue that the SDF methodology
ignores the full dynamics of asset returns in that it does not incorporate the data generating
process in the moment conditions, and that ‘some noisy or unsystematic factors may satisfy the
SDF equation. Specifically, Kan and Zhou show that under such assumptions, the model
paraineters (specifically risk premiums) are poorly estimated in that they are less efficient
compared to those estimated with classical regression methods, and that the pchr of the
specification tests is signiﬁcaﬁtly reduced due to the miéspeciﬁcation of the second moment
matrix of the moment cohditions. Thé evidence on this last problem is corroborated in Kaﬁ and
Zhang (1999) for GMM tests of SDF models with useless factors. Jagannathan and Wang (2000)
and Cochrane (2000) contradict these results by demonstrating that the GMM/SDF estimation is
as efficient as the tfadit‘ional‘time-seric_s and cross;sectionai regressions a symptotically-and in

finite samples.

2.3 Time-Varying Returns and Asset Pricing Kernels

When investment opportunities are time-varying, the stochastic discount factors or the period
weights can be interpreted as the conditional marginal utilities of an investor with isoelastic
preferences described by a power utility function that exhibits constant relative risk aversion

(CRRA) given by:

1 -
U(W,)'—'WW: 4

where W, is the level of wealth at ¢, and y is the relative risk aversion coefficient.

12



In a single-period model, the uninformed investor who holds the bcﬁchmark portfolio (the

risky asset) maximizes the conditional expectation of the utility of his terminal wealth:
(2.5) E[UW,,)1Q,]

The conditional expectation is based upon the information set €2, .

The investor with such preferences decides on the fraction a, of wealth to allocate to the
risky asset and any remaining wealth is invested in a risk-free security. The return on wealth is
given by:

(2.6) Rw,r+l = atRb,m +(1- at)Rf,m =a; (Rb,m - Rf,n—l) + Rf,t+l =& Tpat Rf,m

where:

R, .. : the gross return on the benchmark portfolio from ¢ to ¢ +1;
¥y 1 - the excess return on the benchmark portfolio from 7 to £ +1;

R, .. the gross risk-free rate from ¢ to £ +1 that is known one period in advance at time ¢,
and
@, : is the proportion of total wealth invested in the benchmark portfolio.

The optimal risky asset allocation or portfolio policy is no longer a constant parameter when
asset returns are predictable. Fama and French (1988, 1989), Ferson and Harvey (1991), Bekaert
and Hodrick (1992), Schwert (1989), and Kandel and Stambaugh (1996), among others,
document evidenceA of significant return predictability for long and short horizons, where the
means and variances of asset returns are time-varying and depend on some key variables such as
lagged returns, dividend yield, term structure variables, and interest rate variables. Moreover,
more recent papers by Brennan et al. (1997), Campbell and Viceira (1999), Brandt (1999),
Barberis (2000), and Ait-Sahalia and Brandt (2001) invoke different assumptions on the

intertemporal preferences of investors and on stock return dynamics. They show that the optimal
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portfolio weight is a function of the state variable(s) that forecast the expected returns when stock
returns are predictable. It follows that the optimal portfolio weight is a random variable
measurable with respect to the set of state or conditioning variables and is consistent with a

conditional Euler equation:*
Q) o, =a(Q,)

Thus, considering a ¢ onstant o ptimal p ortfolio weight w hen returns are predictable a ffects the
construction of any measure based on this variable, and distoﬁs inferences related to the use of
such a measure. In addition, the functional form and the parameterization of the optimal portfolio
allocation depend on the relationship between asset returns and the predicting variables. Brandt
(1999) conducts a standard non-parametric estimation of the time-varying portfolio choice using
four conditioning variables, dividend yield, default premium, term premium, and lagged excess
return.

Assuming initial wealth at time ¢ equals one, the conditional optimization problem as in
Brandt (1999), Ferson and Siegel (2001), and Ait-Sahalia and Brandt (2001) for the uninformed

investor is:

2.8 a: =argmax E[U(a,7,,,, + R, ) 1€2,]

The first order condition gives:
(2-9) E[U,(azrb,tﬂ + Rf,t+1)rb,t+l l Qt] = E[(atrb,m + Rf,t+l )—r rb,tﬂ I Qt] =0

This is a conditional Euler equation.
Now define, M}, = (a,t,,,, + R,,,,)”, which is a strictly positive conditional stochastic

discount factor consistent with the no-arbitrage principle. This ensures that, if a particular fund

* See the appendix 2.1 for a proof that the optimal risky asset allocation is a nonlinear function of the first
and second conditional moments of asset returns.
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has a higher positive payoff ‘,than another fund, then it must have a higher positive performance.
Grinblatt and Titman (1989) and Chen and Knez (1996) stress the importance of this positivity

property in providing reliable perforniance measures.>*

MC

M., can be normalized such that: (2.10) Qf,, = —*L— = M¢ R e Then E(Qr,) =1.

E M/

t+l

This scaling is more convenient and is consistent with the original derivation of the PPWM of
Grinblatt and Titman (1989) and Cumby and Glcﬁ (1990). The new conditional normalized
pricing kernel plays a central role in the construction of the portfolio performance measure. The

unconditional normalized pricing kernel is given by:

Mll
Q1) Qi =——"—=M} R, where & isa constant parameter,
E(M,) ,

Let &, i =(u,c), be the (un)conditional portfolio performance measure depending on the

use of the appropriate SDF. It is an admissible positive performance measure with respect to the

Chen and Knez (1996) definition.” Specifically:

@12) A = E(Q 7, 01) = E(r, 1) + Cov(Q},,, 7, yan1) » Such that E(Qf 7, ... ) =0 and

£Q/.) =1.

@13) & = E(Qisryen) = E, (1) 11) + CoV,(QSy,7,,.,), such that E,(Qf,r,,.)=0 and
E (Q;.,,) =1. In equations (2.12) and (2.13), 7,141 18 the excess return on any particular portfolio

y.

% In this sense, the traditional Je nsen a Ipha is implied by the CAPM pricing kernel when the p ositivity
condition is not satisfied everywhere (Dybvig and Ross, 1985).

€ In general, when the pricing kernel can be negative with certain positive probability, a truncation is
adopted. The truncation provides a similar representation for an option on a payoff with a zero strike price.
7 According to Chen and Knez (1996), a performance measure is admissible when it satisfies four minimal
conditions: it assigns zero performance to each portfolio in the defined reference set, and it is lipear,
continuous, and nontrivial.
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It follows that the expected performance measure reflects an average value plus an
adjustment for the riskiness of the portfolio measured by the covariance of its excess return with

the appropriate normalized pricing kernel. Specifically:

(arb,ﬁ-l + Rf,H-l )—’

(2.14) Ol = -
i E[(arb,ﬂl +Rf,t+l) 7]

(atrb,tﬂ + R ,,t+l)-r

(2.15) ol = —,
“ El(@rq+R, )7 ]

2, =a(,)

The condition that guarantees that the benchmark portfolio is efficient for the uniformed investor
is-that E, (Q;lr,,,m') = O,‘or‘equivalently E(Q/.Ry,n) =R, ,, . In the case where R, ,,, isa
vector of gross returns on K efficient benchmark portfolios, the condition becomes:
E(Q/.Ry,) =R, f‘l x» Where 1, is a K-vector of ones. This condition guarantees that the

benchmark portfolios are efficient for uninformed investors. The restriction on the conditional

mean of the pricing kernel ensures correct pricing of the risk-free asset.

2.4 Performance Evaluation of Passively and Actively Managed Portfolios

2.4.1 Unconditional Framework

When uninformed investors do not incorporate public information, the portfolio weights are

fixed or constant. The gross return on such a portfolio is: R ol = w'Ru,,l , with w'l, =1, R, is
a N-vector of gross security returns, and 1,, is a N-vector of ones. We aésume that the portfolio
weights w are chosen one period before. The corresponding unconditional performance measure
isv

(2.16) ﬂ’:‘ = E(Qtu«»lrp,tﬂ) = E(Qt':-lRp,t-O-I) - Rf,t+l =0
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where E(Q;,)=1and E(Q;\y7,,,)=0.
A = E(QuiRy ) — Ry = WE(QLR, 1) - Ryt =WRpuly — Ry =0

Qiu+l = Q(r bt+19 a)

It follows that the risk-adjusted return on the passive portfolio held by the uninformed investor is
equal to the risk-free rate.

The unconditional normalized pricing kemnel or the PPWM is able to price any asset or
portfolio whose returns are attainable from all possible linear combinations of the original N
assets or fixed-weight trading strategies. It does not price correctly any returns outside this

defined return space.

The parameters of Q,,, are chosen such that E(Qy,.r,,,,) =0.If 7, ., is of dimension K,

then E(Qi%.q) =04 and E(Q,) =1. Informed investors, such as possibly some mutual

fund managers, trade based on some private information or signals implying non-constant

weights for their portfolios.*” The gross return on an actively managed portfolio is given by:
Ry = W) Ry, with w(Q7)1y, =1

where Q7 and Q" represent public and private information sets, respectively.

The unconditional performance measure is given by:

2.17) A = EQpatans) = EQuiRop) = Rpp = EMQY QLR ) - Ry

When informed investors optimally exploit their private information or signals, this measure is

expected to be strictly positive.

¥ The information may either concern individual stocks and/or the overall market.
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2.4.2 Conditional Framework

When uninformed investors use publicly known information in constructing their portfolios,

the weights are a function of the information variables. The gross return is given by:
R, .q =wWQ! )R, with W(Q])'1, =1,and Qf < Q)
The conditional SDF prices the portfolio such that:

(2.18) ’?'f = El (thﬂrp.tﬂ) = E: (Qf+1Rp,t+l) - Rf,t+1 =0

/’l«f = Et (W(Qf )'QtCARl‘,ul) - Rf'“l
= W VE(QRge) = Ry =WV Ry i1y = Ry =0

Oy = Q(rb,z-mgf &)
Consistent with the semi-strong form of the efficient market hypothesis, this neutral performance
reflects the fact that the use of publicly known information does not produce superior risk-

adjusted returns,
~ To model the conditioning information, define Z, € Qf, where Z, is a L-vector of

conditioning variables containing unity as its first element. These conditional expectations can be
analyzed in either of two different ways. First, we can create general managed portfolios, and
then examine the implications for the unconditional expectations as in Cochrane (1996).
Alternatively, as in Glosten and Jagannathan (1994), we can explicitly specify or approximate the
.conditional moments by incorporating the time-variation into the expected asset returns and
volatilities. This latter approach has the disadvantage of beihg sensitive to any misspecification in
the conditional moments, and can lead to estimation problems given the increase in the number of
parameters to be estimated compared to the number of available obscrvatibns. Consequently, we
focus on the first approach using different models of conditioning information to characterize the

managed portfolios.

® There is no restriction on the weight function. It may be nonlinear including any option-like trading
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Hansen and Singleton (1982) and Hansen and Richard (1987) pfopose including the
conditioning information by scaling the original returns by the instruments.'” This simple
multiplicative approach implies linear trading strategies and does not require the specification of
the conditional moments.'' This approach allows one to uncover an additional implication of the
conditional SDF model that is not captured by the simple application of thc law of iterated

expectations. These scaled returns can be interpreted as payoffs to managed portfolios or

conditional assets. In effect, an investor whose trading strategy is based on the value of Z "

where [ =1,...,L, will put Z,, dollars into the asset."” The investor will receive Z,R,,, dollars at

the end of the period, and each period the investor’s portfolio is rebalanced according to the value
of the instrument. Hence, the payoff space is expanded to NL dimensions to represent the number
of trading strategies-available to uninformed investors."*

The conditional performance measure can be written as:

(2.19) }“: = Et(th+1Rl,t+1)®Zt - Rf,t+l]'N ®Zr =0

(2.20) E(Qn)Z, =2,

Assuming stationarity and applying the law of iterated expectations yields:

strategies (Merton, 1981; and Glosten and Jagannathan, 1994).

1 Bekaert and Liu (1999) propose that the conditioning information be integrated into the conditional
pricing kernel model by determining the optimal scaling factor or the functional form of the conditioning
information. These authors arguc that the multiplicative model is not necessarily optimal in terms of
exploiting the conditioning information and in providing the greatest lower bound. However, at the
empirical level, this approach has a notable limitation in that the optimal scaling factor depends on the first
and s econd ¢ onditional moments o f the distribution o f asset returns leading to an increasing number of
parameters to be estimated and different parameterization of the conditional asset-pricing kernel. All of this
leads to the need to estimate a complex system of equations. :

' 1t has become a commonly used approach in the asset pricing literature.

2 The expected or average price of this trading strategy is equal to the expected or average value of the
chosen instrument. ' :
B The intuition underlying the multiplicative approach is closely related to the evidence of returns
predictability, where some prespecified variables predict asset returns. Such evidence potentially improves
the risk-return tradeoffs available to uninformed investors, unlike the time-invariant risk-return tradeoff,
Bekaert and Hodrick (1992), Cochrane (1996), and Bekaert and Liu (1999) show that scaling the original
returns by the appropriate instruments improves or sharpens the Hansen-Jagannathan lower bound on the
pricing kernel when we account for conditioning information.
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@2.21) EIQ. (R ®Z)]= E(R, 11, ®Z,)

) E(Q5,2,) = E(Z,)

where ® is the Kronecker product obtéined by multiplying every asset return by every
instrument. These two conditions ensure that the conditional mean of the pﬁcing kernel is one,
and that these managed portfolios are correctly priced. The conditional normalized pricing kernel
is only able to price any asset or p ortfolio whose returns are a ttainable from d ynamic trading
strategies of the original N assets (i.e., asset returns scaled with the instrqments) with respect to
the defined conditioning information set.

The conditional performar‘lce‘for the actively managed portfolio is given by:

(2.23) A = E(Qlutin) = E QiR ) - R 1441

This conditional test determines whether the private‘ information or signal contains useful
information beyond that available publicly, and whether or not this information has been used
profitably. | |

The unconditional evaluation of dynamic performance that is impﬁed by the conditional
normalized pricing kernel is obtained by the simple application of the law of iterated expectations
on the conditional model as in Ferson and Schadt (1996) and Dahlquist and Soderlind (1999). The
parameterization of the conditional normalized pricing kernel differs from the one associated with

the conditional evaluation and is consistent with the following two moment conditions:

(2.24) E (thu Ru+1 )=R 2 1 N

th+1 = Q(rb,&l’Qf’a)
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2.5 Econometric Methodology and Construction of the Tests

In this section, the empirical framework for the estimation of the performance measures and
for the tests of the different hypotheses and specifications using Hansen’s (1982) generalized
method of moments (GMM) is detailed.'"* Important issues associated with the estimation

procedure and the optimal weighting or distance matrix also are dealt with.
2.5.1 The General Methodology

Two estimation methods are available for assessing the performance of actively managed
portfolios such as mutual funds using a GMM system approach. The two-step method first
estimates the appropriate normalized pricing kemnel using a system of moment equations
including only passively managed portfolios, and then measures the risk-adjusted fund
performance by multiplying the gross fund return by the estimated or fitted pricing kernel and
subtracting off the gross return on the risk-free asset. The performance estimates obtained in the
secdnd‘ step do not account for the sampling errors resulting from the first-step estimatidn, and
consequently are consistent but not fully efficient (Chen and Knez, 1996). The one-step method
jointly and simultaneously estimates the normalized pricing kernel parameters and the
performance measures by augmenting the number of moment conditions in the initial system with
the actively managed fund(s) or portfolio(s) of funds. The estimates so obtained are more
efficient than those from the two-step method, but require more moment conditions especially
when all the funds are included in the evaluation. | |

In this paper, a one-step estimation is conducted using the excess returns for each individual

fund or portfolio of funds and the set of passive portfolios.”” This multivariate framework

' This general and flexible technique has become the common approach to estimate and test asset-pricing
models that imply conditional moment restrictions, even in the presence of nonstandard distributional
assumptions. It is an alternative to the maximum likelihood approach with no requirement to specify the
law of motion of the underlying variables. Cochrane (2000) provides a comprehensive exposition of the
relationship between the two techniques.

5 Farnsworth et al. (2002) show that the performance estimates and associated standard etrors are invariant
to the number of actively managed individual funds or portfolios of funds in the GMM system. Thus, a
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incorporates all of the cross-equation correlations. By construction, this estimation accounts for
the restriction on the mean of the normalized (un)conditional p ricing kernels.' Dahlquist and
Soderlind (1999) and Famsworth et al. (2002) note the importance of accounting for this
restriction in order to obtain reliable estimates. |

The general steps and expressions leading primarily to the general case of conditional GMM
estimation relevant for the conditional ¢valuation of dynamic trading-based portfolios are now
presented. The unconditional G MM e stimation is trivially obtained as a special ¢ ase from the
general one.

Let 8 =(a y)" be the vector of unknown SDF parameters to be estimated. Our model

implies the following conditional moment restriction:
(2'26) Et[Qc (rb,t+l’Zt ’00)rp,t_+l] = ON

such that E,[Q°(7;,,,1-Z,,6,)]=1.

¢ _.Ne : - AT :
Now define u,,, = Q°(r}4,1,Z,,0)1, oy =t(ty 157,115 Z,,0) as a N-vector of residuals or

pricing errors, that depend on the set of unknown parameters, the excess returns on the
benchmark portfolio(s), the conditioning variables, and the excess returns on passive trading
strategy-based portfolios.

Assume that the dimensions of the benchmark excess return and the conditioning variables
are K and L, respectively. Then, the dimension of the vector of unknown parameters is (KL+1).

We then have:

(2.27) E,[u(rb,,,r, 2V p a1 1 Z:0,)]= E[u(rb,r+1 1Fp a1 »Z,56,)]=0,

system, which is estimated simuitaneously for each fund or portfolio of funds with the passive portfolios, is
equivalent to an extended system with several funds or portfolios of funds. Such a system setup limits the
number of moment conditions and controls the saturation ratios in the estimation.

'® The means of the normalized and non normalized pricing kernels are equal to one and the inverse of the
gross return on the risk-free asset, respectively.
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Define h(r;',+1,rp’,+l, Z,0)=u, ®Z, =uty 157 11,Z,,0)®Z,. Our conditional and

unconditional moment restrictions can be written as:'’

(228) E( [h(rb,t+l ? rp,t+l ? Ztseo )] = E[h(rb.t+l ’rp,t+l aano )] = ONL > and

(2-29) Et[Qc (rb,t+l’Zt’00 )Zz _Zt] = E[Qc (rb.z+1’Z:’90 )Zt - Zt] = 0L

Because the modei is overidentified, the GMM system is estimated by setting the (KL+1) linear
combinations of the NL moment conditions equal to zero. When an additional moment condition
is considered,’”® the number of moments increases to L(N+1) and the number of parameters
remains unchanged. Similarly, when the system estimation of the performance measures is
completed in one step, the number of moment conditions (L(N+1)) and the number of unknown
parameters (KL+2) is augmented,

Define:
(2.30) C 20(0) = Elh(r, 07, 400 Z,,0)]
Since this does not depend on ¢, it implies that g has a zero at 0 = 6,.Bythe law of large

numbers through the stationarity assumption, the sample mean of h(¥, ,,,,7, .1, Z,,0) converges

to its population mean given by:

1< _
(2.31) g+ @) =-T—Zh(r,,,m,r w12 20,6)

=1

" Some technical assumptions are required for the consistency (strict stationarity and ergodicity of the
process underlying the observable variables) and for the identification of the model. The variable 4 must
have a nonsingular population conditional or unconditional covariance matrix, and the conditional and
unconditional expectations of the first derivatives of % must have a full raw rank. See Hansen (1982) and
Gallant and White (1988) for more details.

'* Koenker and Machado (1999) derive restrictions on the growth rate of the number of moment conditions
to ensure the validity of the conventional asymptotic inference for the GMM estimation. In effect, these
restrictions affect the estimation of the optimal weighting matrix.
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For large values of T, the vector g,.(6) should be close to zero when evaluated at 8 = 0,.
Following Hansen (1982), the GMM estimator is obtained by selecting’ éT that minimizes the
sample quadratic form J, that is given by:"

(2.32) J(0) =g (0)YW, g, (6)

where J¥; is a symmetrical and nonsingular positive semi-definite NLx NL weighting matrix.

The general asymptotic variance-covariance matrix of the estimator of 8, is given by:

(2.33) Cov(8,) = (DyWD,)  (DWS, WD, DiWD, )™
where:
Outy 15 Y015 Z56,) . |
(2.34) D, = E . 6;9' ® Z, | represents the expectation of the NLx (KL +1)

matrix of first-derivatives. S, is the asymptotic variance-covariance matrix of g,(8,) which is

defined as:

(2.35) S, = Z E[h(’izma"p,r+1’ano)k(’i;,:-ju”'p.:-m’zt-pao)']

o

When the model is overidentified, the remaining “free” restrictions ((N-K)L-1) are used
to assess and test the goodness of fit of the model or as a test of the overidentifying restrictions.
Let J, (é,.) be the minimized value of the sample quadratic form.”° When the opﬁmal weighting
matrix or the inverse of the variance-covariance matrix of the orthogonality conditions is used,
TJ, (é,) has an asymptotic standard central chi-square distribution with (N-K)L-1) degrees of

freedom. This is the well-known Hansen J;, -statistic. This estimation can handle the assumption

® Under some regularity conditions, Hansen (1982) shows that the GMM estimator is consistent and .
asymptotically normal for any fixed weighting matrix.
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that the vector of disturbances exhibits non-normality, conditional heteroskedasticity, and/or

serial correlation even with unknown form.

2.5.2 The Estimation Procedure and the Optimal Weighting Matrix

The est.imates of the portfolio performance measure are obtained by minimizing the GMM
criterion function ¢ onstructed from a set of moment c onditions in the s ystem. T his requires a
consistent estimate of the weighting matrix that is a general function of the true parameters at
least in the efficient case. The dominant approach in the literature is the iterative procedure

suggested by Ferson and Foerster (1994).”'

Hansen (1982) proveé that the GMM estimator is asymptoﬁcaliy efficient when thé weighting

matrix is chosen to be the inverse of the variance-covariance matrix of the moment conditions.”

Specifically, S, is the positive definite spectral densify at frequency zero or long run variance-
covariance matrix of A(7,,,,,7,.15Z,,6,). In this case, the asymptotic variance-covariance
matrix of the estimator is given by:

(2.36) Cov(d;) =(D\S;'D,)™

This variance-covariance matrix is unknown and should be replaced by a consistent sample
estimate, which is a function of consistent sample estimates of D, and §, that are given by ﬁ,

and § r» respectively.

® Jagannathan and Wang (1996) show that T times the minimized GMM criterion function is
asymptotically distributed as a weighted sum of central chi-squared random variables.

2! This consists of updating the weighting matrix based on a previous step estimation of the parameters, and
then updating the estimator. This is repeated until convergence for a prespecified criterion and for a large
number of steps. Ferson and Foerster (1994) and Cochrane (1996) find that this iterative approach has
better small sample properties than the two-step procedure, and is robust to small variations in the model
s?eciﬁcations. .

2 The choice of the weighting matrix only affects the efficiency of the GMM estimator. Newey (1993)
shows that the estimator’s consistency only depends on the correct specification of the residuals and the
information or conditioning variables.
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Replacing the expectation operator with the sample average operator, and replacing €, with

A

8, gives a consistent sample estimate of D, given by:

n Y R A
2.37) b =L T Tpons Z0oOr) o z
TS 00’

A robust and consistent sample estimate of S, is obtained by using an estimator of the spectral

density at zero frequency to A(7 .57, 1,2, ,,ér) . This GMM efficient estimation of portfolio

pa+l?
performance measures is the most frequently used approach, and is used in Chen and Knez
(1996), Kryzanowski et al. (1997), Dahlquist and Soderlind (1999), and Farnsworth et al. (2002).
To estimate the optimal weighing matrix and to calculate the asymptotic standard errors for
the GMM estimates, a consistent estimate of the empirical variance-covariance matrix of the

moments is required. This variance-covariance matrix is defined as the zero-frequency spectral

density of the pricing errors vector (7, ,,1,7,,1>Z,,6,) . A consistent estimate of this spectral

density is used herein to construct a heteroskedastic and autocorrelation consistent (HAC) or
robust variance-covariance matrix in the presence of heteroskedasticity and autocorrelation of
unknown forms (Priestly, 1981). Chen and Knez (1996), Kryzanowski et al. (1997), Dahlquist
and Soderlind (1999), and Farnsworth et al. (2002) construct robust t-statistics for their estimates
of performance by using the modified Bartlett kernel proposed by Newey and West (1987a) to

construct a robust estimator for the variance-covariance matrix.?

 The higher-order sample autocovariances are downweighted or linear declining weights, and those with
order exceeding a certain parameter receive zero weight.
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2.6 Sample and Data

2.6.1 Mutual Fund and Benchmark Returns

The initial mutual fund sample, which is drawn from the Financial Post mutual fund database,
consists of 95 Canadian equity funds with no more than 5% of their values missing over the
period from November 30, 1989 through December 31, 1999. The 122 monthly returns for each
fund are given by the monthly changes in the net asset value per share, and are adjusted for
capital gains and dividend payments. As in most previous studies (Chen and Knez, 1996; Ferson
and Schadt, 1996; Kryzanowski et al., 1997; and Farnsworth et al., 2002), only équity funds are
used for the tests of abnormal performance since an equity-based asset pricing kernel cannot price
or be used to evaluate the performance of non-equity funds. To be able to test the sensitivity of
the p erformance statistics with respect to the selected benchmark, two benchmark proxies are
used herein; namely, the 300 and value-weighted TSE indices. We use an additional sample of
terminated and start-up funds over the studied period to estimate the impact of survivorship bias
on fund performance, and to assess the impact of performance sensitivity across performance
metrics and benchmark models.

Table Al presents some summary statistics on these funds. Panel A gives statistics on the
cross-sectional distribution of the 95 mutual funds. The average annual fund returns vary from -
3.08% for Cambridge Growth qf Sagit Investment Management to 18.03% for AIC Advantage of
AIC Limited, and have a cross-sectional mean of 9.86%. The fund annual volatilities or standard
deviations range from 6.00% for Canadian Protected of Guardian Timing Services to 31.05% for
Cambridge Special Equity of Sagit Investment Management. Over the same sample, the annual

average mean and volatility of the TSE 300 index return are 11.17% and 14.53%, respectively.

[Please insert table A1 about here.]
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In panel B of table Al, portfolios of funds grouped by investmcnf objectives are obtained
from equal-weighted portfolios using the 95 funds in ihe sample. The number of funds in each of
six investment objective categories is 27 aggressivc growth funds, 50 growth funds, 12 growth
and income funds, 3 income funds 1 balanced fund, and 2 specialty funds. Among the groups
with at least five funds, the highest and lowest mean returns occur in the group of aggressive
growth funds and the group of growth and income funds, respectively. The first-order

autocorrelations of the fund returns are greater than 0.1 for 30 of the 95 funds.
2.6.2 Information Variables

A set of six instfumcntal variables is selected based on evidence of their predictive power in
studies of stock retum predictability. Data for each of these variables are drawn from Statistics
Canada’s CANSIM database. The set includes DY or the dividend yield of the TSE 300 index
(Fama and French, 1988, Ferson and Schadt, 1996, Kryzanowski et al., 1997, Christopherson et
al., 1998, and Farnsworth ét al., 2002); TB1 and TB3 or the Canadian one- and three-month T-bill
rates, respectively (Fama and Schwert, 1977; and Ferson and Korajczyk, 1995); RISK or the risk
premium as measured by the yield spread between long corporates (McLeod, Young, Weir bond
index) and long Canadas (Chen, ‘Roll, and Ross, 1986; Kryzanowski and Zhang, 1992; and
Kryzano§vski and Koutoulas, 1996); TERM or the slope of the term structure as measured by the
yield spread between long Canadas and the one period lagged three-month Treasury bill rate
(Ferson and Harvey, 1991; and Chen and Knez, 1996); TSEVWX and TSE300X are the value-
weightcd and the TSE 300 index excess returns, respectively (Harvey, 1989); and DUMJ is a
dummy variable for the month of January (Ferson and Schadt, 1996; Kryzanowski et al., 1997,
and Famsworth et al., 2002).

Descriptive statistics such as autocorrelations, and the correlation matrix for these variables
are provided in papels A and B of table A2, respectively. The correlations between these

instruments range from -0.825 to 0.841. Since two variables account for most of the time
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~ variation in mutual fund excess returns, subsequent empirical analysis only uses DY or DY and

TB1 in the estimation of the performance measures.

[Please insert table A2 about here.]

2.6.3 Predictability of Mutual Fund Excess Returns

To motivate the imple'fnentation of the conditional methodology, we conduct a predictability
analysis of two groups of six portfolios of mutual fund excess returns. The groups are equal- and
‘size-weighted portfolios of funds using the individual fund returns within each investment
objective. Time-series regressions of the excess returns of these portfolios of funds on a set of
five instruments consisting of the lagged values of the dividend yield, the risk premium, the slope
of the term structure, the one-month Treasury bill rate, and the dummy variable for the month of
January are performed. The pfedi'ctivc power of the instruments is assessed using the Wald test
proposed by Newey and West (1987b).

The results repbrted in panel D of table A1 indicate significant levels of predictability for
the equal- and size-weighted portfolios of funds. The null hypothesis, that all the slope
coefficients associated with the selected instruments are zeros, is largely rejected. The evidence
of high predictaﬁility in the stocks compésing the funds in the portfolios may explain these
patterns. These figures also are higher than the unreported ones obtained with the portfolios of
funds returns and with the passive portfolio excess returns. Furthermore, the unreported
coefficients associated with the dividend yield on the TSE 300 index and the yield on the one-
month Treasury bill are significant for most of the portfoiios. These findings provide strong
support for undertaking a conditional performance analysis where the use of the conditional asset-
pricing kernel eliminates the predictability in the mutual fund excess returns based on the set of

predetermined information variables.
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2.6.4 Passive Strategies

Passive or basis or reference assets must reflect the investment opportunities set of investors
and portfolio managers. In the empirical implementation of the performance measures, the type
and the number of assets to be considered are important issues. In effect, assets included must be
consistenf with the type of funds (essentially equity) under consideration. We construct ten size-
based p ortfolios represeﬁting passive buy and hold stock market strategies considering all the
stocks on the TSE/Western monthly database. In a first step, we compute the market value of
each stock by multiplying the December-end price by the numbér of shares outstanding. The
stocks are ranked on the basis of their market values at the end of the previous year. Ten decile
portfolios are then formed each year with an approximately equal number of securities in each
portfolio. The securities with the smallest capitalization are plaéed in portfolio one, as in
Kryzanowski et al. (1997).

Panels A and C intable A2 provide descriptive statistics such as a utocorrelations and the
“correlation’ matrix fof these ten portfolios, respectively. The annualized average returns on the
size portfolios range from 1.27% for portfolio six to 58.58% for portfolio one. All the series
indicate a low degree of persistence since all of the first-order autocorrelations are less than

0.236.
2.6.5 Optimal Risky Asset Allocation Specifications

In a conditional setting, the optimal risky asset allocation of the uninformed investor is a
function of the conditional moments of asset returns. We assume that these conditional moments
are linear in the state variables. Hence two linear specifications are adopted and integrated into

the construction of the performance measures; namely:**

(2.38) a, =2

* Ait-Sahalia and Brandt (2001) use a single linear index to characterize the relationship between the
portfolio weight and the state variables.
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where « is a vector of unknown parameters, and Z, is a vector of instruments (inclidiz

constant) with a dimension equal to two or three depending if the set of conditioning varierizs
includes DY only or both DY and TB1. When an unconditional evaluation is conduciesi, the

uninformed investor’s portfolio policy is a constant.

2.7 Empirical Performance Results

We use the (un)conditional pricing kernel models to assess the risk-adjusted performancs of
the 95 equity funds under consideration. In particular, we determine the average and the meds.
performance of all funds, its sign and significance, its variability in total and per group i t:mos.
and its sensitivity to the procedure for forming portfolios of funds and to the selected bencivaark
portfolio.”®

We address two important issues related to risk-adjusted performance measurement. Firat, we

examine the sensitivity of the performance metrics to changes in the level of relative risk aversior,

of the uninformed investor. Second, we estimate the survivorship bias and its sensitivity zoraxs
performance metrics and b enchmark models by using an additional sample of terminstecd 2w

start-up funds over the studied period.
2.7.1 Evaluation of Unconditional Performance

The performance results for the major equal- and size-weighted portfolios of mutual finds

using the two benchmark variables are summarized in table A3. Panel A shows that al! scuz.-

weighted portfolios have consistently positive and significant abnormal performance. The iz

L

of a portfolio of all funds is 0.1933% per month, and the growth/income fund group comisibuiey

¥ Equal- and size-weighted portfolios of funds based on the investment objectives and for ail fin
constructed. These portfolios provide insights on potential size effects associated with performance s

~ interpreted as funds-of-funds. They represent diversified investments that do not suffer from i
common criticism o f funds-of funds that they add an extra layer of c osts. O ther constructions ¢
based on industry or geographic sector investment themes.
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the most with a highly significant lambda of 0.2591% using the value-weighted TSE i;ﬁdm BN
benchmark. The same analyses conducted on the size-weighted portfolios of funds {panci 2
produces comparable and more significant results. The lambdas of the 27 aggressive growii ¢
and the 50 growth fund portfolios are a highly significant 0.2463% and 0.2626%, respectiveiy
The lambda of a size-weighted i)onfolio of all funds is 0.2438% per month. An equal-weighis

portfolio- of funds appears to underestimate unconditional performance.

[Please insert table A3 about here.]

The performance of individual funds is summarized in panels A and D of table A4 for the i,
portfolio performance formation procedures. The results indicate that the equai-weiziwic
portfolios of performances based on the value-weighted TSE index as a benchmark rave
positive mean and median lamﬁda of 0.1931% and 0.1778%, respectively (average p-vatin: .7

0.275). The aggressive growth, growth, and growth/income portfolios exhibit not significas: tnu

positive abnormal performance. However, these aggregate significance levels must be interta
with care since they are averages of individual levels, and the lambdas are symmeiicaiyy
distributed with fat tails. These results differ from those reported for U.S. funds (Chen and ¥ oo,
1996; Ferson and Schadt, 1996; and Farnsworth et al., 2002), and are consistent with the gvicco
in Kryzanowski et al. (1997).

When ﬁle individual fund performances are weighted by the total net asset yalusts of the
funds, the average lambda increases to 0.2224% and becomes less insignificant (average p-v:l.i
of 0.225) usihg the value-weighted TSE indei. This performance improvement is obtained fur the
aggressive growth and growth portfolios, and confirmed when the other benchmark is usec.

| The comparison between these individual performance averages and the performanci: of
portfolios of all funds suggests similar inferences with comparable lambda point estimates &l

consistent superior performance of large funds across the two benchmark variables. Howescr, (.
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p-values associated with the performance of portfolios of funds are superior and more reliable

than those obtained from averaging the individual statistics.

[Please insert table A4 about here.]

To better understand the sources of this positive average performance, we examine the
distribution of the p-values for all funds and per fund group for the two benchmarks using
heteroskedasticity and autocorrelation consistent t-statistics. Based on table A5, almost 43% of
the funds have p-values less than 5%, and only three funds exhibit significant negative
performance using the value-weighted TSE index as the benchmark. A predominance of funds
with good performance exists across all major fund groups. The p-values based on the Bonferroni
inequality indicate that the positive extreme t-statistics are significant for all funds and across all
major fund groups.” This rejects the joint hypothesis of zero lambdas. However, the conservative
p-values corresponding to the minimum t-statistic for all funds are 0.577 and 0.458 using the TSE

300 and the value-weighted TSE indices, respectively.

[Please insert table A5 about here.]

Overall, this positive and significant unconditional performance may reflect the presence of
private and/or public information correlated with future returns. A conditional performance
evaluation controlling for the effects of public information is necessary to better assess the

performance of our sample of fund managers.
2.7.2 Evaluation of Conditional Performance

The conditional model is estimated using two specifications for the conditioning structure in
order to assess the sensitivity of the performance measures to the conditional specification. The

first considers only the dividend yield on the TSE 300 index, while the second considers both the

% This test uses the maximum or the minimum one-tailed p-value from the t-statistic distribution for all
funds and fund groups multiplied by the corresponding number of funds.
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dividend yield and the yiéld on the one-month T-bill. To assess the validity of the conditional
approach, Wald tests (Newey and West, | 1987b) are conducted on the coefficients of the time-

varying alpha.
2.7.2.1 Conditioning with the Dividend Yield Only

When the conditional asset pricing kernel model with DY as the only instrumental variable is
used, the performance of an equal-weighted portfolio of all funds is 0.1371% is weaker but still
significant using the value-weighted TSE index (sce panel C in table A3). This could be
explained by the significant decrease in the performance of the growth, and growth/income
portfolios. In contrast, the performance of the aggressive growth portfolio increases to 0.2785%
and becomes more significant. The performance analyses using the size-weighted portfolios of
funds reveal a clear deterioration of the performance to 0.1209% (see panel D of table A3). This
is explained by the low performance of the aggressive growth portfolio, and the surprisingly
negative lambda of the growth/income portfolio. Overall, thé conditional model has more impact
on the size-weighted portfolios than on the equal-weighted portfolios.

Examining the perfofmance of individual funds further supports the previous ¢ onclusions.
Based on table A4, the a verage fund performance is a ffected n egatively using the ¢ onditional
model. The distribution of the lambdas becomes less symmetric and with less observations in the
tails. These results differ from the empirical evidence for U.S. funds reported in Chen and Knez
(1996) and Ferson and Schadt (1996) who report that the inclusion of public information
positively impacts their performance statistics. The changes in the point estimates of performance
from the unconditional to conditional frameworks reported herein are consistent with those
observed in Bansal and Harvey (1996) and Kryzanowski et al. (1997).

With the conditional model, the performance statistics based on all individual funds are
higher than those of the portfolios of all funds. This result could be explained by the increasing

nonlinearity in the risk adjustment with the conditional pricing kernel. The superior performance
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switches from large funds to small funds confirming the differential impact of conditioning
information on size-weighted portfolios. The most notable source of the deterioration in the
conditional lambdas is the poor ﬁerformance of the individual growth and growth/income funds.
Overall 42 and 15 funds have negative and significantly negative lambdas, respectively, using the
value-weighted TSE index as the benchmark. The number of funds with positive and significant
performance decreases from 42 to 38. Moreover, all of the Bonferroni p-values, which correspond
to the extreme maximum and minimum t-statistics reject the null hypothesis of joint zero lambdas

(see panels C and D of table 2.5).
2.7.2.2 Conditioning with the Dividend Yield and Yield on the One-Month T-Bill

Based on the results reported in table A3 (panels E and F), the performance values become
negative but not significant when the information set is expanded to two instruments, except for
the aggressive growth group which exhibits decreased positive performance. The lambda for the
equal-weighted portfolios of all funds is -0.0573% using the value-weighted TSE index as the
benchmark. The Wald tests validate the conditional approach in that the Wald statistics reject the
null hypothesis of no time-variation in the optimal allocation of risky assets for all portfolios.
These figures are verified using the size-weighted portfolios of funds, where the lambda of the
aggregate portfolio is -0.0129%.

Based on panels C and F of table A4, the performance of the individual funds and portfolios
of performances support the conclusions reached previously for the portfolios of funds. The
distn'bution of the conditional lambdas is | now asymmetric with less extreme observations
compared to the unconditional and conditional lambdas based on one instrument.

With the full conditional model, the differences between the averages of individual fund
performances and the performances of portfolios of funds are more pronounced with a consistent

superior performance of large funds across the two benchmark variables. The extension of the
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conditi‘oning information set seems to alleviate the impact of the conditional pricing kernel on the
size-based statistics.

Based on panels E and F of table AS, the number of funds with significant negative lambdas
is 36 compared to 3 and 15 funds using the unconditional and conditional with one-instrument
estimations. The number of significant and positive lambdas decreases to 16, which is less than
half of the number obtained with the unconditional asset pricing kernel model. These figures are
caused by the negative performance of the aggressive growth, growth, and growth/income funds.
Moreover, the Bonferroni test is significant for all major fund groups. This rejects the joint null
hypothesis of zero conditional lambdas.

The overall results indicate that fund managers experience greater difficulty in realizing
excess returns when public information, such as the dividend yield and the yield on one-month T-
bills, are integrated into the construction of the asset pricing kernel and the performance
measures. This finding partially confirms the theoretical conclusions of Chen and Knez (1996)
who advocate that performance results can change in either direction in the presence of
conditioning information, due to an infinity of admissible (un)conditional stochastic discount

factors.
2.7.3 Performance and Relative Risk Aversion

We now test the sensitivity of the performance measures to changes in the level of the
relative risk aversion of the uninformed investor using the sets of equal- and value-weighted
portfolios of funds under the (un)conditional specifications. We seck an answer to the question:
how is the ability of fund managers to fealize excess returns related to the changes in the risk
preferences of uninformed investors? These preferences are important since they affect the
construction of the benchmark model and may affect measured performance.

The results for the unconditional tests, which are reported in panels A and B of table A6,

suggest that the performance metrics are decreasing in the coefficient of relative risk aversion.
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The performance for the equal-weighted portfolios of all funds (panel A) is 0.2017% with a
gamma equal to 3, 0.1994% with a gamma equal to 4, 0.1975% with a gamma equal to 5, and
0.1964% with a gamma equal to 6 when the TSE 300 index is used as the benchmark. However,
this negative association is consistent across all portfolios of funds, the two benchmark variables,
and the two portfolio formation procedures. Thus, the unconditional performance is negatively
but weakly sensitive to changes in the level of relative risk aversion. This could be explained by
implied investment/risk restrictions due to changes in the risk attitudes of the uninformed

investor.

[Please insert table A6 about here.]

The results for the conditional model with one instrumental variable DY are presented in
panels C and D of table A6. On average, they show a weak positive link between lambda and
gamma, especially for the size-weighted growth portfolio. When the value-weighted TSE index is
used as the benchmark, its performance improves from 0.1082% when gamma is equal to 3, to
0.1153% when gamma is equal to 6. The only major exceptions are the equal- and size-weighted
aggressive growth portfolios, whose performances deteriorate as the uninformed investor
becomes more risk averse. A conditional framework with one instrumental variable affects the
nature of the relationship between fund performance and relative risk aversion, but has little
effect on the measured performance of the aggressive growth and growth style managers.

To test the robustnéss of this last conclusion, we use the extended conditional model with two
instrumental variables. The results reported in panels E and F of table A6 are consistent
(negative) for the aggressive growth portfolios. In contrast, the performances of the growth
portfolios indicate weak sensitivity to changes in gamma. These two empirical observations
suggest that a weak negative average link exists between conditional performance and relative

risk aversion.
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Nevertheless, it is difficult to make unambiguous statements about the direction of the
sensitivity of performance inferences to changes in the relative risk aversion of the uninformed
investor based on the results for all these models. However, the risk-adjusted p erformance of
aggressive growth-oriented managers is negatively related to changes in the risk preferences of

uninformed investors.
2.7.4 Survivorship Bias and Risk-Adjusted Performance

The original sample of mutual funds includes only funds that existed or survived over the full
studied period. This sampling procedure produces a survivorship bias that is likely to overstate
measured performance. This bias is inherent in the majority of the papers published on
performance measurement (Jensen, 1968; Lehmann and Modest, 1987; Grinblatt and Titman,
1994; Ferson and Schadt, 1996; and Kryzanowski et al., 1997).27 Recent attempts to address this
issue use various approaches. Grinblatt and Titman (1989) and Wermers (1997) examine the
effect of survivorship on a database of stock holdings and estimate the survivorship bias to be 20
basis points per year. Malkiel (1995) obtains a greater value of 1.4 percent per year for
survivorship bias over the ten-year period 1981-1991. Brown and Goetzmann (1995) estimate a
survivorship bias of 80 basis points over a 10-year period for a sample of mutual funds. Elton et
al. (1996) argue that the size of this bias is a function of the number of years in the study. They
find that the bias varies between 25.4 basis points per year to 71.9 basis points per year for a 14-
year sample using several benchmark models and reinvestment assumptions. These conclusions
are partially confirmed by Carhart et al. (2002) where the survivorship bias is an increasing
function of the time-length of the sample. They find a survivorship bias equal to 43 basis points
for a five-year sample, and that the bias ranges from 17 basis points for a one year sample to one
percent per year for samples longer fhan fifteen years. However, the size of the bias is robust to

the underlying performance model.
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Thus, our objective in this section is to estimate the survivorship bias for Canadian equity
mutual funds, and then to examine thé impact of survivorship bias on the measured performance
across fund investment objective and chosen performance measurement model. Survivorship bias
is estimated as the difference between the risk-adjusted‘perfonnances of the size-weighted
portfolios of all sumvmg and non-surviving funds, and of surviving funds only.

For this purpose, we track monthly returns and total net asset values of funds that have
existed, started up and tefminated over the studied period of November 1989 through December
‘1999. Five size-weighted portfolios of aggressive growth, growth, growth/income, income, and
all funds are then constructed using all of the funds as long as they have at least one monthly
returmn, Fox" instance, the aggressive growth and growth portfolios consist of 41 and 114 funds
including 14 and 64 end-of-period dead funds, respectively. The growth/income portfolio has 24
funds where 50% of the funds are terminated ‘by period end. These figures represent the
maximum number of funds in each portfolio since the composition of each portfolio changes over
time depending on the existence and termination of each fund.

Based on the results reported in panels A, B, and C of table A7, the estimate of the
survivorship bias varies somewhat across the various benchmarks and the pérformance
measurement models. The survivorship bias ranges from 36 basis points per year using the
conditional asset pricing kernel with one instrumental variable (DY) to 58 basis points per year
with the unconditional model. The survivorship bias differs across fund objective groups in that it
is more pronounced for the growth/income and growth groups at 119 and 49 basis points per year,
respectively, than for the aggressive and income groups where it is 15 and nearly zero basis
points per year, respectively. These results are robust to the benchmark model. These bias
estimates and properties differ from those of Eltdn et al. (1996), and parallel the findings of

Carhart (1997) and Carhart etal. (2002) for U.S. equity mutual funds. Furthermore, the risk-

T Most of these studies completely ignore this selection bias or argue that this bias has a limited and
insignificant impact on their conclusions.
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adjusted perfomianccs of these extended size-weighted portfolios deteriorates and are negative
when conditioning information is integrated into the estimation. This is consistent with our

original conclusions that do not account for the survivorship bias.

[Please insert table A7 about here.]

2.8 Conclusion

This paper uses the general asset-pricing or SDF framework to derive an asset-pricing kernel
that is relevant for evaluating the performance of actively managed portfolios. Our approach
reflects the predictability of asset returns and accoufxts for conditioning information, Three
performance measures are constructed and are related to the unconditional evaluation of fixed-
weight strategies, and unconditional and conditional evaluations of dynamic strategies. The
appropriate empirical framework to estimate and implement the proposed performance measures
and their associated tests using the GMM method is developed.

| The developed models are used to assess the risk-adjusted performance of a sample of 95
Canadian equity mutual funds with and without the addition of shorter-lived funds. The empirical
evidence indicates abnormal unconditional performance, and that conditional performance is
negative on average. Significant negative performance is found for the growth and
growth/income, and income portfolios of fund, and positive but not significant performance is
found for the a ggressive growth p ortfolios of funds. Survivorship bias is material as it ranges
from 36 to 58 basis points per year for the total sample. While survivorship bias is reasonably
stable across performance models, it differs materially across fund objective groups.

Performance inferences are weakly related to changes in the relative risk aversion of the
uninformed investor for all but the aggressive growth grouping of funds. Risk-adjusted

performance deteriorates as the uninformed investor becomes more risk averse.
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Our approach may be extended in two ways. The first extension is to examine potential
relationships between the performance measures and some business cycle indicators or variables
to better determine if the performance of active portfolio management differs during periods of
expansion and contraction. The second extension is to conduct the unfeasible fully efficient
conditional GMM estimation, which is based on general interactions between functions of
conditioning variables and pricing errors, using nonparametric estimates for the optimal set of

instruments as suggested in Newey (1993).
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CHAPTER 3
LINEAR PERFORMANCE MEASUREMENT MODELS AND FUND

CHARACTERISTICS

3.1 Introduction

The evidence for the sensitivity of measured portfolio performance to the choice of the
benchmark model is mixed. Lehmann and Modest (1987) find that measured performance is very
sensitive to the choice of the return generating process and to the estimation procedure for the
CAPM- and APT-based benchmark models.”® Kryzanowski et al. (1994, 1998) identify a
benchmark invariancy problem using various conditional intertemporal or multi-factor asset
- pricing models for Canadian mutual funds. Performance inferences are sensitive to various
features involved in the construction of the benchmark models, such as number of factors,
nonsynchronous trading adjustment, and firm sizes used for the factor extraction. In contrast,
Farnsworth et al. (2002) and Blake et al. (1993) find robust performance inferences for several
stochastic discount factor models for U.S. equity funds and for various bond-based benchmark
models for U.S. bond funds, respectively. The performance inferences reported in these papers
typically are based on tests that do not incorporate the contemporaneous cross-correlations across
individual fund returns.

Other studies attempt to unravel the determinants of fund performance. The few studies of
non-U.S. funds obtain findings that differ somewhat from those for U.S. funds.”” Fund attributes

or properties e xamined as potential d eterminants o f fund p erformance in this rapidly e volving

literature include fund size, age, fees, trading activity, flows, and past returns. Furthermore, these

% Also, see Coggin et al. (1993) and Grinblatt and Titman (1994).

® The evidence for U.S. funds includes Ippolito (1989), Elton et al. (1993), Gruber (1996), Carhart (1997),
Sirri and Tufano (1998), Zheng (1999), Berk and Green (2002), and Chen et al. (2003). The evidence for
non-U.S. (Buropean) funds includes Dahlquist et al. (2000) and Otten and Bams (2002).
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studies typically do not examine the robusthess of their results to the choice of performance
evaluation model or market index benchmark.

Thus, given these deficiencies in the literature, this paper has two major objectives. The first
major objective is to provide new and robust tests of the sensitivity of performance inferences
based on the family of (un)conditional linear benchmark models for Canadian equity mutual
funds. These CAPM and four-index benchmark models are estimated using the flexible and
robust Generalized Method of Moments or GMM of Hansen (1982). This paper is the first to
examine a full conditional multi-index model.*® To deal with inference problems caused by
returns of individual funds being contemporaneously correlated that have plagued most previous
tests, the performance inferences drawn herein are based on equal- and size-weighted portfolios
of funds grouped by investment objective.

The second major objective is to examine the robustness of the relation between performance
differentials across fund groups and the differences in fund characteristics or attributes for
Canadian equity mutual funds. Of specific interest is whether the determinants of fund
performance are robust even if the performance inferences themselves are not across the class of
linear performance benchmark models studied herein, and what the estimated relations imply
about economies of scale and the level of competition in the Canadian mutual fund industry.

The first major finding is that the measured selection performance of fund managers
improves as the conditional benchmark becomes multifactor. The performance inferences for the
stock selection skills by fund managers are not positive and are weakly positive for the extended
conditional CAPM and the full conditional multifactor model, respectively.

The second major finding is that managers of Canadian mutual funds exhibit pervasive

negative market-timing ability, and that controlling for conditioning information somewhat

% Zheng (1999) uses a partial conditional three-index model. Subsequent to the initial draft of our paper,
Lynch et al. (2002) assess the performance of individual funds using both a partial and full conditional
multi-index model where they argue that dividend yield by itself is sufficient as a conditioning variable to
describe movements in the business cycle.
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alleviates the pervasiveness of the negative market-timing inferences. The evidence strongly
suggests that the widely used unconditional timing models o f Treynor and M azuy (1966) and
Henriksson and Merton (1981) are not appropriate for measuring the timing ability of managers
of Canadian mutual funds.

The third major finding is that the performance rankings across all of the performance
measurement models are significantly and quite strongly related or concordant. Furthermore, the
level of concordance across the rankings using various performance measurement metrics is
weakened by partial and not by full conditioning, and is relatively unchanged after the
incorporation of a market-timing adjustment or by the particular choice of one from a number of
reasonably representative market index benchmarks. Thus, full model conditioning appears to
have a much greater impact on absolute rather than on relative portfolio performance inferences.

* The fourth major finding is that the determinants of Canadian equity mutual funds is a mix of
that identified for U.S. and European funds, and reflects the different market structure that exists
in the Canadian mutual fund industry. Four of these significant determinants of the performance
of Canadian equity mutual funds are robust across the‘ various linear performance models
evaluated herein. These determinants are the age, size, management fee, and to a lesser extent the
management expense ratio of each fund. Two of the identified relationships provide information
about the economics of the mutual fund industry in Canada. First, the positive relation between
performance and fund size suggests the presence of scale economies in the Canadian mutual fund
industry. This is consistent with the evidence found for funds only in Europe (Otten and Bams,
2002) with the exception of Sweden (Dahlquist et al, 2000). Second, the weakly negative
relation between performance and the management expense ratio suggests a weak level of
competition in the Canadian mutual fund industry. This finding is consistent with that reported by
Elton et al. (1993) and Carhart (1997) for U.S. funds, and not with that reported by Ippolito

(1989) and Otten and Bams (2002) for U.S. and European funds, respectively.



The remainder of the paper is drganized as follows: In section two, the sample of funds and
data used in the empirical tests reported herein are discussed. In section three, the econometric
methodology and the construction of the tests are developed. In section four, the various
benchmark models are presented and the estimates of ﬁsk-adjusted portfolio performance results
for our sample of mutual funds are presented and analyzed. In section five, the empirical results
from the market-timing-adjusted mod‘_:ls and from the performance ranking tests are reported and
assessed.‘ In section six, the relationship between risk-adjusted performance and several fund

characteristics is examined. Finally, section seven concludes the paper.

3.2 Sample and Data

The sample consists of 95 Canadian equity funds from the Financial Post mutual fund
database with no more than 5% of their values missing over the period from November 1989
through December 1999. This selection screen imparts a survivorship bias in the results presented
herein in favor of better performance. The 122 monthly returns for each fund are calculated using
the monthly changes in the net asset valﬁe per share or NAVPS, and are adjusted for capital gains
and dividend payments. To facilitate comparison with previous studies, only equity funds are
examined.

Some summary statistics on these funds are presented in table A1. Panel A reports statistics
on the cross-sectional distribution of the 95 mutual funds. The average annual fund returns vary
from -3.08% for Cambridge Growth of Sagit InveStmént Managemcnt to 18.03% for AIC
Advantage of AIC Limited, and the grand mean is 9.86%. The annual standard deviations range
from 6.00% for Canadian Protected of Guardian Timing Services to 31.05% for Cambridge
Special Equity of Sagit Investment Management. The corresponding average annual TSE 300

index return and volatility are 11.17% and 14.53%, respectively.
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Summary statistics are provided in panel B of table A1 for equal-weighted portfolios of funds
grouped by the six major investment objectives. If the one balanced fund is ignored, the highest
and lowest mean returns occur for the aggressive growth grouping of 27 funds and the growth and
income grouping of 12 funds. The aggressive growth and specialty funds exhibit the highest and
llowest unconditional volatilities of 13.39% and 11.02%, respectively. The first-order

autocorrelations of the fund returns are greater than 0.1 for 30 of the 95 funds.

3.3 Econometric Methodology

3.3.1 The Estimation Method and Construction of the Tests

The GMM method is used to estimate the risk-adjusted performance, assess timing ability,
and examine the relationship between fund performance and fund attributes.’' Not only does the
GMM allow for an easy integration of conditioning information but it uses a robust estimator for
the variance-covariance matrix to construct p-values that are robust to serial correlation and
conditional heteroskcdésticity. This is true even with arbitrary forms, using different kernel
functions such as the modified Bartlett kernel in Newey and West (1987a), the Parzen kernel in
Gallant (1987), or the quadratic spectral kernel in Andrews (1991).

For the (un)conditional linear modéls, the performance measures of stock selection and
market timing abilities are estimated using time-series regressions for each fund or each portfolio

of funds. The vector of residuals is defined as:

3.1 et =l — Xy = I'x

31 This general and flexible technique has become the common approach to estimate and test asset pricing
models that imply conditional moment restrictions, even in the presence of nonstandard distributional
assumptions, GMM is an alternative to the maximum likelihood approach with no requirement to specify
the law of motion of the underlying variables. Cochrane (2000) provides a comprehensive exposition of the
relationship between the two techniques.
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where 7, is the fund or portfolio of funds p excess retun between ¢ and t+1, a, is the risk-

adjusted performance, I is a vector of the coefficients with dimension equal to J, and X isa
vector of independent variables whose dimension is model specific. The total number of
parameters to be estimated is (J+1) for each fund or each portfolio of funds. The models imply

that:

(3.2) E(e,,,|F)=0 forallpand?

For the unconditional tests, F, = {1, X}, where X, | corresponds to the vector of the original
regressors in the model. When conditioning information is introduced, F, = {1, X,}, where X,
includes the original regressors augmented by their cross-products with the instrumental
variables. For the case of the conditional CAPM with time-varying alphas and betas, four
instrumental variables are added to F, ={l,X,,z}. Assuming a dimension n, for F, the

orthogonality conditions are constructed using:

3.3) E(¢,,,®F)=0, forallpand¢

P+l

3.3.2 The Estimation Procedures

The estimates of the portfolio performance measures are obtained from minimizing the GMM
criterion function constructed from the set of moment conditions using time-series regression
normal equations. T his requires a consistent estimate of the weighting matrix. Hansen (1982)
proves that the GMM estimator is asymptotically efficient when the weighting matrix is chosen to
be the inverse of the variance-covariance matrix of the moment conditions.? This GMM efficient
estimation of portfolio performance is used in Chen and Knez (1996), Kryzanowski et al. (1997),

and Famsworth et al. (2002).
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Several restrictions on the parameter estimates are tested under the GMM framework based
on the Wald test developed by Newey and West (1987b). Let g(.) be a known vector of
functions with dimension of v, less or equal to the dimension of the vector of parameters, and

G, = 0g(.)/ 08 be the Jacobian of g(.) evaluated at &, and assumed to have a rank of v. Then,
the restriction g(Bo‘)= 0 is tested using the Wald statistic, based on the unrestricted GMM

estimator @7 . It has the following construction:
G4 A =Txg(6;) (G V;'Gr) " g(6f)

where @ is the vector of unknown parameters and Vr ! is a consistent estimator of the asymptotic

variance-covariance matrix of the unconstrained estimator constructed using the optimal

weighting matrix,
3.3.3 Information Variables, Benchmark Assets, and Factors

For the conditional models, five instrumental variables are selected initially based on their
predictive power uncovered in studies of stock return predictability.”® The variables, which are
drawn from Statistics Canada’s CANSIM database, are the lagged values of DY or the dividend
yield of the TSE 300 index (Fama and French, 1988; Ferson and Schadt, 1996; Kryzanowski et
al., 1997; Christopherson et al., 1998; and Famsworth et al., 2002), TB1 or the one-month
Treasury bill rate (Ferson and Schadt, 1996; and Famsworth et al, 2002), RISK or the risk

premium as measured by the yield spread between the long-term corporate McLeod, Young, Weir

32 The choice of the weighting matrix only affects the efficiency of the GMM estimator. Newey (1993)
shows that the estimator’s consistency only depends on the correct specification of the residuals and the
information or conditioning variables. :

% Time-series predictive regressions of the excess returns for the six equal-weighted portfolios based on
investment objectives and the six size- or NAV-weighted portfolios of funds on the five instraments
provide strong support for conducting a conditional performance analysis. The unreported coefficient
estimates for the dividend yield and T-bill yield variables are significant for most of the portfolios. The null
hypothesis, that all the slope coefficients associated with the selected instruments are zeros, is largely
rejected. '
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- bond indéx and long-term government of Canada bonds (Chen, Roll, and Ross, 1986;
Kryzanowski and Zhang, 1992; and Koutoulas and Kryzanowski, 1996), TERM or the slope of
the term structure as measured by the yield spread between long-tem government of Canada
bonds and the one period lagged three-month Treasury bill rate (Ferson and Harvey, 1991; and
Chen and Knez, 1996), and DUMJ or a dummy variable for the month of January (Ferson and
Schadt, 1996; Kryzanowski et al., 1997; and Famsworth et al., 2002). To allow for a simple
interpretation of the estimated coefficients, the variables are demeaned in some of the models, as
in Ferson and Schadt (1996).

Descriptive statistics and autocorrelations, and a correlation analysis of these variables are
provided in panels A and B of table A2, respectively. The correlations between all the
instruments range from -0.825 to 0.841.

The TSE 300 and value-weighted TSE are used as proxies of the market benchmark for the
CAPM models. The five indexes used in the multifactor model are obtained from BARRA for the
small-cap stock portfolio, the growth stdck portfolio, and the value stock portfolio. The TSE 35
index is used as a proxy for the large-cap stock portfolio and is obtained from the TSE Review.
The Scotia Canada Universe bond index obtained from Datastream is used as a proxy for the
aggregate bond index since it includes all marketable corporate and government bonds. Ten size-
based portfolios are formed from all the stocks on the CFMRC to represent passive buy and hold
stock strategies. As reported in panel A of table A2, all the return series for these ten portfolios

display a low degree of persistence with no first-order autocorrelation exceeding 0.236.
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3.4 Portfolio Performance Using Various Linear Benchmark Models

3.4.1 Empirical Issues

Most of the previous research on performance measurement assesses the performance
statistics and inferences using individual funds and avéraging their individual performances. This
approach produces unreliable and biased results since it very likely that the individual estimated
alphas are correlated within fund groups. In this case, the basic assumption of independence
underlying any statistical test is violated. In addition, the average significance levels are
meaningless. In this paper, we use an alternative robust approach that is based on the performance
of two types of portfolios of funds. The first type includes four equal-weighted portfolios of funds
constructed using individual fund returns within each investment objective. The second type is
composed of four size-weighted portfolios of funds constructed using the individual fund returns
and the corresponding total net asset values within each investment objective. Our approach does
not suffer from the limitation of the testing methods based on individual performances and

represents an innovation of the paper.
3.4.2 The Unconditional CAPM

The traditional CAPM is widely used as the benchmark model to measure risk-adjusted
portfolio performance (e.g., see Jensen, 1968, 1969). Dybvig and Ingersoll (1982) show that the
single market beta representation or traditional CAPM is equivalent to a stochastic discount factor
mode] where the pricing kernel is a linear function of the efficient market portfolio return.* The
assumption that the systematic risk of the portfolio is stationary over the evaluation period is not
tenable when the portfolio manager is timing the market by adjusting her exposure to the

movements in the market return (Grinblatt and Titman, 1989) or when the portfolio manager uses

3 These two representations are equivalent and unique up to the addition of a random variable that is
orthogonal to the asset return into the discount factor specification. Moreover, the parameters of the single
beta model are related to the SDF representation coefficients.
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derivatives securities that alter the characteristics or the return distribution of the portfolio under

management (Admati and Ross, 1985; and Dybvig and Ross, 1985).*

The riék—adjustcd performance of managed portfolios, @, , then is given by:

3.5) Lo =0+ Bt €, 1=0,.,T—1, p=1,.,N

E(gp,ul) = E(rm,tﬂgp.ﬂl) = O

where f3, is the sensitivity of the excess return on the fund to the excess return on the market

portfolio, #, ., is the excess return on the benchmark portfolio m between t and ¢ +1, and ¢, ,, is
the random error of fund p in month ¢ +1.

The results reported in panels A and B of table A8 for the four equal-weighted portfolios of
funds exhibit no significant performance. The alpha of the portfolio of all funds is -0.1411% per
month (p-value 0£0.19). The only exception is for the equal-weighted growth portfolioo£50
funds that has a significant alpha of -0.1594% (p-value of 0.05). The alpha of the size-weighted
portfolio of all funds is higher with -0.1128% but it is not significant, and only the size-weighted
portfolio of 12 growth/income funds has a significant negative alpha of -0.1827% per month (p-
value of 0.01). Both of the portfolios with significant alphas also have relatively high estimated
unconditional betas of 0.844 and 0.769, respectively.*® The size-weighted aggressive growth and
growth p ortfolios o utperform the e qual-weighted p ortfolios using the two market b enchmarks.
The betas of these two size-weighted portfolios of 0.840 and 0.861 are higher than the 0.832 and

0.844 estimates, respectively, using their corresponding equal-weighted portfolios. This result is

consistent using portfolios of all funds. All of the adjusted R are relatively high exceeding 80%.

[Please insert table A8 about here.]

% The CAPM-implied SDF may take negative values in some states of nature implying negative
erformance measures for superior managers (Dybvig and Ingersoll, 1982).

® The unreported empirical distribution of the individual fund alphas has a slight negative skewness with

fat tails.
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An examination of the distribution of the p-values of the performance for all funds and per
fund group that are reported in table A9 shows that only 24% of the funds have negative and
significant alphas, and no fund has a positive and significant alpha when the value-weighted TSE
index is used as the benchmark. The Bonferroni p-values tend to confirm these results. The
negative extreme t-statistics are significant only for the growth and growth/income fund groups

rejecting the hypothesis that all alphas are zeros.

[Please insert table A9 about here.]

The overall results are similar to those reported by Ferson and Schadt (1996) for U.S. mutual
funds, are consistent with those reported by Dahlquist et al. (2000) for Swedish equity mutual
funds, and are somewhat consistent with those reported by Kryzanowski et al. (1997) for
Canadian mutual funds for the period 1981-1988. Although these unconditional CAPM-based
performance statistics do not lead to any serious inferences about the ability of fund managers,

they are useful for comparison purposes with the other models reported below.
3.4.3 The Conditional CAPM

In the conditional CAPM, the positive and linear relationship between the conditional

expected return and market risk premium for a fund p is given by:
(3.6) E‘.(?’ p,H-l) = ﬂp,lEt (r m,l+l)

Most previous tests of asset pricing and portfolio performance implicitly or explicitly assume
linear conditional expectations in conditioning information.”’” The main conditioning variables are

the lagged values of the four conditioning variables discussed above.

37 Examples include Harvey (1989), Cochrane (1996), Chen and Knez (1996), Ferson and Schadt (1996),
Kryzanowski et al. (1997), Christopherson et al. (1998) and Ait-Sahalia and Brandt (2001). Harvey (2001)
provides sufficient conditions on the data distribution to form expectations linear in the conditioning
information.
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3.4.3.1 Conditional CAPM with Time-Varying Betas

Ferson and Schadt (1996) argue that a conditional CAPM specification is appropriate to
estimate the abnormal performance of mutual funds when the expected returns and risk vary with
changing economic conditions. The conditional beta in their framework has the following linear

reaction function:
(3-7) ﬁp,t = bpo + bille

The intercept c oefficient b,, is the unconditional mean of the c onditional beta. The vector of
slope coefficients b, measures the response of the conditional beta to movements in the

innovations in the conditioning variables, z, = Z, — E(Z,) . The conditional performance measure,

a, is implied by the following equation:

(3.3) Toant =0 + byl + b (20, )+ 6,0, t=0,.,T~1, p=1,.,N
Bt ya8pist) = B2y i€ p101) = E(e,,,)=0, I=1,.,L

This model is an unconditional multi-factor model where the additional factors are the
products of the market portfolio and the lagged information variables. These factors are
interpreted as returns to self-financing dynamic strategies obtained by purchasing z, units of the
market portfolio by borrowing at the risk-free rate.

The conditional alpha is estimated as the intercept of the extended regression model and the
average beta is obtained from the estimated c oefficient associated with the benchmark excess
return. The performance and risk results for the equal- and size-weighted portfolios of funds are
presented in panels C and D of table A8. They are marginally better than the unconditional
statistics. Most portfolios now have negative but not significant performance. For example, the
alpha of the equal-weighted portfolio of all funds is -0.1261% (p-value of 0.19) using the value-

weighted TSE index as the benchmark. This is below the average monthly management fees of
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0.1442% suggesting neutral performance. However, the growth and growth/incdme portfolios
have negative and significant performance, and their alpha point estimates are weaker than most
of the fund portfolios.® This evidence is somewhat consistent with the results of Férson and
Schadt (1996) who find that the inclusion of cbnditioning information impacts their performance
statistics away from inferior performance. Their argument holds if the covariance between the

conditional beta and the excess return on the benchmark portfolio or Cov(r,,b,z) is negative.”

However, this result contrasts with that of Christopherson et al. (1998, table 1) for the conditional
performance of U.S. pension fund managers. The superior performance of size-weighted
portfolios compared to their equal-weighted counterparts suggests that partial conditioning
preserves the unconditional-based large fund effect. Moreover, the beta coefficients are slightly
lower for most of the portfolios under the conditional methodology. This suggests that
unconditional betas may be biased, and that fund managers could be revising their pbrtfolios to
changing economic conditions.

The Wald test conducted on the marginal contribution of the conditioning variables produces
mixed results that vary with the benchmark variable. It rejects the null hypothesis of fixed betas
using the TSE 300 index as the benchmark for all portfolios except the equal-weighted aggressive
growth portfolio (average p-value of 0.26). With the value-weighted TSE index as the
benchmark, the constant conditional betas hypothesis cannot be rejected for most portfolios

except the two growth/income portfolios.*

*® The unreported analysis of the individual fund performances and risks results in similar inferences. There
are 53 and 51 funds with a conditional alpha higher than the unconditional estimate using the TSE 300
index and value-weighted TSE indices as benchmarks, respectively. The distribution of the alphas is still
negatively skewed with more observations in the tails compared to the normal distribution and conditioning
information decreases the fund risk sensitivities.

% In this case, the unconditional Jensen alpha is negatively biased.

“ With the same benchmark variable and using the 5% (10%) significance level, the hypothesis of fixed
betas is rejected for 17 (18) of 27 aggressive growth funds, 32 (36) of 50 growth funds, and 5 (7) of 12
growth/income funds. Similar figures are obtained in the performance tests reported by Dahlquistetal.
(2000) for Swedish equity mutual funds.
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The examination of the p-value distributions in panels C and D of table A9 indicates that
more funds have significant performance compared to the unconditional tests. There are two
funds (one aggressive growth and one growth oriented) with positive and significant alphas using
the value-weighted TSE index as the benchmark. In addition, the Bonferroni conservative p-
values are significant only for the minimum extreme t-statistics, rejecting the joint hypothesis of
zero alphas against the alternative that at least one alpha is negative. |

The overall results indicate that a partial conditional approach is superior to models with
constant betas, conditioning information positively impacts the inferences, and fund managers do
not possess enough skills to display positive risk-adjusted performance. This conclusion is
somewhat parallel to that obtained by Ferson and Schadt (1996) given their positive but non

significant conditional alphas.
3.4.3.2 Conditional CAPM with Time-Varying Alphas and Betas

Christopherson et al. (1998) advocate the use of a full conditioning model. If the portfolio
manager possesses private information, the portfolio weights are conditionally correlated with
future returns. In turn, the conditional alpha depends on this conditional covariance where the

dependence is approximated by the following linear function:

(3.9 o, =, +a,z,

This conditional equation can be modified as follows:

(3.10) Foun = O+ 0,2 + b, b (20 )+ 6 £=0,.,T 1, p=1,.,N

E(2i€,,1) = By pras) = E@T 8 0) =E(€,,,) =0, 1=1,...,L

Coefficient restriction tests are performed on the validity of the conditional alpha, beta, and joint

alpha/beta structures.
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In the above full conditional CAPM model with time-varying alphas and betas, the alphas
also are a function of the four conditioning variables. The validity of this extended specification is
tested through Wald tests on the alpha, beta, and on their joint structures (i.e., W1, W2, and W3,
respectively). The results for the eqﬁal- and size-weighted portfolios of funds, which are
presented in panels E and F of table A8, seem to validate this full conditioning approach.” All of
the Wald tests are significant using the TSE 300 index as the benchmark. However, the
performance statistics are comparable to those reported earlier for the time-varying beta only
conditional model. The conditional alphas are -0.1260% and -0.1008% based on the equal- and
'size-wei'ghted portfolios of all funds, respectively, with the value-weighted TSE index as the
benchmark. E xcept for the aggressive growth and a ggregéte portfolios, the other portfolios of
funds exhibit negative and highly significant alphas. With full conditioning, the large fund effect
is confirmed. Thus, unlike Christopherson et al. (1998), the inclusion of conditioning information
only has a limited and mixed impact on our risk-adjusted performance inferences.*?

To better understand the source of this performance, we examine the distributions of the p-
values adjusted for serial correlation and heteroskedasticity that are reported in panels E and F of
table A9. The number of funds with negative and significant alphas is higher at 35, and is due
essentially to the growth and growth/income groups. The number of funds with positive and
51gn1ﬁcant alphas remains the same at two compared to that for the conditional beta model with
the value-welghted TSE index as the benchmark but higher than that implied by the model with
constant alphas and betas. In addltlon, the Bonferroni p-values are all significant, except for the
minimum t-statistics associated with the growth/income and income groups. This rejects the joint

hypothesis of zero alphas.

“! This evidence is further confirmed when the same test on the conditioning structure rejects the null
hypotheses of fixed alphas and betas for 61 funds and 65 funds, respectively, at the 10% level using the
value-weighted TSE index as the benchmark.

4 Similar inferences are drawn from the unreported individual fund performances and risk estimates where
the performances of 58 (57) funds are slightly poorer (better) than those for the previous partial conditional
(unconditional) model. The distribution of the conditional alpha is less asymmetric, but still negative with
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The performance based on the extended conditional CAPM model. tends to confirm the
absence of any stock selection skills by fund managers. This conclusion does depend on the
assumption that this model represents the appropriate return generating process driving mutual
fund returns. We assess the robustness and the stability of these performance inferences using a

four-index model next.
3.4.4 The Unconditional Four-Index Model

Elton, Gruber, and Blake (1996) propose the use of a four-index model as a benchmark to
estimate the risk-adjusted performance of mutual funds. This methodology is closely related to
the return-style analysis of Sharpe (1992, 1995), where the performance of a fund is measured
relative to a benchmark that consists of four portfolios that capture the investment style of the
manager. The model is similar to the three-factor model of Fama and French (1993, 1995, 1996),
the four-factor model of Carhart (1997), and the characteristics based performance model of
Daniel et al. (1997). Gruber (1996), Elton et al. (1999), and Gruber (2001) find that this model
outperforms the single factor model and is useful in explaining the behavior of U.S. mutual fund

returns.

The four-index model is based on the following unconditional specification:
(3.11) Lm=0,+ .Bp,m';u,m + ﬂp,SLrSL,Hl + ﬂp,GVrGV,Hl + ﬂp,n" Bert T Vo0
t=0,.,T-1,p=1,.,N
E (rm,l+lvp,t+l) =E (rSL,H-lvp,H-l) =K (rGV,:+1vp,t+l) = E (’}uu"p,m) =E ("p,m) =0
where r,,,, is the excess return on fund p in month ¢ +1, Yysq 18 the return differential between

small- and large-cap stock portfolios in month #+1, Tovun 18 the retum differential between

fewer observations in the tails. The distribution of betas is still negatively skewed with fat tails. The tests
also indicate an incremental increase in the explanatory power of the regressions.

* Sharpe develops an asset class factor model. It imposes restrictions on the model coefficients to be non
negative and to sum to one. The fitted portfolio can be interpreted as a portfolio of the different benchmarks
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growth and value stock portfolios, and r,,,, is the excess on an aggregate‘ bond index

representing corporate and government bonds in month ¢ +1 or the bond index total return minus

the one-month Treasury bill rate. The beta coefficients Boys k={m,SL,GV,B} measure the
sensitivities o fthe excess retumns of fund p to the four factors in the equation, and @, isthe

unconditional risk-adjusted performance.

The performance and risk estimates for equal- and size-weighted portfolios of funds are
presented in table A10. The alphas for the equal- and size-weighted portfolios of all funds are -
0.0164% and 0.0053%, respectively. All of the portfolios have non-significant performances
except for the size-weighted portfolio of growth/incom¢ funds which has a negative alpha. All of
the portfolios have positive weightings or betas on the smallness index, and negative weightings
on the growth-value index with the exception of the aggressive growth portfolios.* This
surprising result for the growth and growth/incomg portfolios tends to question the validity of the

assumed return structure or fund self-classification.

[Please insert table A10 about here.]

This realized performance is analyzed further by examining the distribution of the p-values
associated with the individual alphas m panel G of table A9. 12 funds have negative and
significant alphas, and only seven have significant positive alphas. Since the computed
Bonferroni p-values are significant for the minimum and the maximum t-statistics at the 0% and
9% levels, rcspecﬁvcly, the joint null hypothesis of zero for the four index-based alphas is not
supported by the data. The evidence for this model seems to indicate that fund mangers do

outperform the benchmark when we consider management fees. Although this model provides a

with short-selling restrictions. The drawback of this style analysis is that it does not capture dynamic
strategies.

“ Based on an examination of the weightings or betas of the individual funds, the average size index beta
of 0.25 indicates that the average fund tends to hold stocks that are essentially smaller than the average
stock in the TSE 300 index.
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good description of the returns of U.S. mutual funds (Elton et al. 1993; and Gruber, 2001), such is

not the case for the Canadian mutual fund returns.

3.4.5 The Conditional Four-Index Models

3.4.3.1 Conditional Four-Index Model with Time-Varying Betas

The conditional version of this multifactor model with time-varying beta coefficients is given

by:

(312) rp.rﬂ = a; + ﬂp.m (Zt)rm,tﬂ + ﬁp,SL (Z‘ )rSL,rﬂ + ﬂp,GV(Zt )rGV,tH + pr,E (zr)rB,H-l + vp,t+l’

t=0,.,T-1, p=1,.,N

The following linear multiplicative information structures are assumed:

ﬁp,m (Z, ) = bp,m.O + b;’J,mzt
B,s(2)=b,50+b, 47,
ﬂp,GV (z)= bp,GV,o + bgl),GVZ:

!
,Bp,ﬂ(z:) = bp.B.o + bp.ﬂzt
where b,,,0,8, g 00, 6v 9, and b, 5, are average conditional betas, and b, ,,b, o ,b, 5y, and b;,a
are vectors of beta-response coefficients with respect to the four factors to innovations in the

conditioning variables, and o, measures the conditional risk-adjusted performance. The

estimation is subject to the regularity conditions given by:

E(rk,n-lvp.m) = E(Ztlrk.t+lvp,t+l) = E(vp,u-l) = O

k={m,SL,GV,B} and [ =1,...,L
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This conditional model is designed to capture non-linearities with a multiplicative structure,
which are implied by dynamic portfolio strategies that combine the four factors with the set of
conditioning information variables.

The performance and risk statistics for the equal- and size-weighted portfolios of funds are
presented in table A10. The equal- and size-weighted average alphas increase to 0.0285% and
0.0469%, respectively, from -0.0164% and 0.0053% for the unconditional model due to the
relatively good performances of the aggressive growth and growth portfolios. This conditional
estimation confirms the superior performance of large funds observed with the unconditional
statistics. The beta estimates are similar to those for the unconditional model with positive
weightings on the size index for all portfolios, and negative weightings on the growth-value index
with the exception of the aggreésive growth and aggregate portfolios. This result is corroborated
by the Wald tests, which cannot reject the joint time-variation in all index sensitivity coefficients.
Based on individual factor tests, the time-variation in the mket, size, and bond index sensitivity
coefficients are rejected for only a few of the equal-weighted portfolios of funds, but not for the
size-weighted portfolios.”’

The improvements in the performance results by moving from unconditional to conditional
alphas are presented in panel H of table A9. More funds (9) now have positive and significant
performance, and 57 funds have a better alpha. The Bonferroni p-values are all significant, which
rejects the joint null hypothesis of zero conditi@nal alphas.

Overall, the conditional alphas ésﬁmated for this four-factor model indicate that fund
performance is weakly positive but not significant. This indicates that fund managers are
marginally able to realize abnormal returns equivalent to their management fees once we control
for conditional information effects. This confirms the conclusions of Kryzanowski et al. (1997)

that performance improves using a conditional multifactor model. However, the results suggest

%S The same test cannot reject (at the 10% significance level) the hypothesis of time-varying betas for
almost 60% of the funds.
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that this proposed conditional model does not provide a good description of mutual fund returns

in Canada.
3.4.5.2 Conditional Four-Index Model with Time-Varying Alphas and Betas

This extended model assumes that conditional performance is related to some predetermined
information variables as in Ferson and Harvey (1999) and Lynch et al. (2002).% The conditional

four-index model with time-varying alphas and betas has the following form:

B1Y) 1 =0y, +BonZ i + Bt s + B (2 oy in + Bog (2 )50 + Vourr

t=0,..,T-1, p=1,.,N
The c;)ndiﬁonal alpha is linearly related to the set of instruments known at time ¢
(3.14) =0, +a,z,
where all the time-varying factor loading coefficients are linear in the vector of instruments as in

the partial conditional model and «,, measures the conditional risk-adjusted performance. The

estimation is subject to the regularity conditions given by:

E(levp.tﬂ) = E(';c,t+lvp,t+l) = E(ler;z,lq-lvp,lﬂ) = E(vp,tH) = O

k={m,SL,GV,B} and | =1,...,L

The time-varying structures of the conditional factor loadings and alphas are tested using Wald
tests.

The performance and risk statistics for the equal- and size-weighted portfolios of funds are
presented in panels E and F of table A10. There is a notable increase in the alphas of all portfolios
compared to the partial and unconditional models. However, none of the alphas are significant

and only the growth/income portfolios have negative alphas. The beta estimates are similar to
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those for the two previous models with positive weightings on the size index for all portfolios,
and negative weightings on the growth-value index with the exceﬁtion of the aggressive growth
and growth/income portfolios. The Wald test results shoW that time-variation in the conditional
alphas cannot be rejected except for the equal-weighted portfolio of growth funds and the joint
time-variation in the all coefficients is highly significant.

The changes in the performance results by moving from unconditional to conditional alphas
are presented in panel I of table A9. More funds (11) now have positive and significant
performance, and 56 funds have a better alpha than from the unconditional and partial conditional
models. The Bonferroni p-values are all significant, which rejects the joint null hypothesis of zero
conditional alphas.

Overall, the results from the full conditional model tend to confirm the positive impact of

conditioning information on performance inferences.

3.5 Market Timing Models and Tests

Most studies on mutual‘ funds find little evidence of timing ability (Chang and Lewellen,
1984; H enriksson, 1984; and Cumby and Glen, 1990). Conditional tests on t he market-timing
ability of Canadian fund managers by Kryzanowski et al. (1994, 1997) confirm this conclusion.
Bollen and Busse (2001) identify positivc‘ market-timing ability using daily data, and report that

market-timing inferences depend on the frequency used in measuring mutual fund returns.
3.5.1 The Unconditional Treynor-Mazuy Timing Model

Treynor and Mazuy (1966) demonstrate that the relation between the excess returns of the

portfolio and the market becomes nonlinear when the portfolio manager is timing the market. The

* Ferson and Harvey (1999) develop conditional models for stock and bond return predictability.

62



unconditional specification of their model requires that stock returns not be co-skewed with the

benchmark return, and is based on the following quadratic nonlinear equation:
(3.15) Tourt = O+ Bl + ¥ g+t gy £=0,,T =1, p=1,.,N

E (rm,t+lup,t+l) =E (rnitﬂup,lﬂ) =E (up,tﬂ) =0

where @, is a measure of timing-adjusted selectivity, S, is the unconditional beta, and ¥, is the

market timing coefficient. Positive alpha and gamma values indicate that the manager has

supcridr selection and timing skills, respectively."’

The results of estimating the quadratic regression model (15) on the twelve portfolios of
funds are presented in table All. The gamma coefficients are negative and significant using the
two market benchmarks. This clearly suggests that this model is misspecified. The estimated
alphas are insignificant positive and negative using the TSE 300 index and the value-weighted
TSE index, respectively, as the benchmark. These timing adjusted performances are clearly
superior to those obtained .by the unconditional CAPM.*® This result differs from the finding by
Dahlquist et al. (2000) that the selectivity measure is not sensitive to this non-linear adjustment in
the benchmark model. Moreover, the size-weighted performance statistics consistently dominate
the equal-weighted ones for the three largest groups of funds. The explanatory power of the

regressions of above 79% is quite high for all of the models.
[Please insert table A11 about here.]

Information on the distribution of the p-values associated with the estimated selectivity and

timing measures is provided in table A12. Few funds have positive and significant alphas for the

two market benchmarks. While ten funds have negative and significant alphas, only four funds

" Admati et al. (1986) analyze the asymptotic properties of alpha and gamma in the quadratic regression
assuming that the investment strategy involves linear risk adjustment to timing information.
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have positive and significant alphas for the value-ﬁeightéd TSE index as the benchmark. Based
on the conservative p-value estimates using tﬁe Bonferroni inequality, the joint null hypothesis of
zero alphas is rejected. The only exéeption is for the maximum t-statistic calculated using the
value-weighted TSE index as the benchmark (p-value of 0.660). At least 82 funds have negative
(often significant) timing coefficients for each of the two market benchmarks. These results are
corro_boratcd by the Bonferroni p-values computed using the extreme values of the t-statistics.
These p-values are only significant per fund group and for all funds using the minimum t-
statistics, and are rarely significant for the maximum t-statistics. This evidence is not only similar
to that reported for U.S. funds by Ferson and Schadt (1996) and for Japanese funds by Cai et al.
(1997) but it supports the view that the unconditional timing model is inappropriate to measure

the timing abilities of fund managers.

[Please insert table A12 about here.]

3.5.2 The Conditional Treynor-Mézuy Timing Model

The conditional format of this model builds upon the work of Admati et al. (1986) that
assumes exponential utility and multivariate normality. This implies that the portfolio beta is a
linear function of the timing signal (the future market return plus the noise x) and the

conditioning information, or:
(316) ﬂp,ﬂ-l = ao + a{z, + “z (rm,t+l + K)

This model was first derived and tested by Ferson and Schadt (1996) on U.S. mutual fund

managers. The conditional equation is written as:

3.17) Tt =0+ oty + A (20 D)+ ol Fl g, £=0,.,T -1, p=1L. N

*® This evidence is further confirmed with individual fund performances where 57 and 88 of the 95 funds
have an increase in the alpha p oint e stimates using the T SE 300 index and value-weighted T SE index,
respectively, as the benchmark in the timing adjusted regressions.
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E(rm,r+lup,:+l) = E(ztlrm,zﬂup,:ﬂ) = E(rv:,nlup,wl) = E(up,t-H) = 0’ I= 1""’L

The adjustment for conditioning information is captured by the new A, coefficients. o and y;

measure conditional selectivity and market-timing performances, respectively.

The estimation results for the three ‘major equal- and size-weighted portfolios of funds are

summarized in table Al1l. While all of the timing coefficients are negative for all portfolios for

the two market benchmarks? not all coefficients are significant for the TSE 300 index benchmark
where only the growth and aggregate portfolios have negative and significant gammas. Compared
to their unconditional counterparts, there is a small deterioration and amelioration in the point
estimates and their significance levels for the value-weighted TSE and TSE 300 index
benchmarks, respectively.” This is inconsistent with the conclusions of Ferson and Schadt (1996)'
that conditioning information has a positive impact on the timing statistics. Moreover, the little
positive impact on the selectivity measures across the two types of portfolios with the inclusion of
conditioning information using the value-weighted TSE index as the benchmark is reversed using
the other benchmark variable.

Information on the distribution o f the p-values o f b oth p arameters is summarized in table
A12. Few funds have significant positive or negative alphaé for the two market benchmarks, as
was the case for the unconditional statistics. The Bonferroni p-values are all significant except for
the one associated with the maximum t-statistic using the value-weighted TSE index as
benchmark. Therefore, the joint null hypothesis of zero alphas is rejected, with the exception of
the aggressive growth group for the value-weighted TSE index as benchmark. With the
introduction of conditioning information, the number of funds with negative and significant
gammas decreases from 52 to 39 and 35 to 11 using the value-weighted TSE and TSE 300

indexes as benchmarks, respectively. Similarly, only a few funds have positive and significant

*® This result is further corroborated using individual funds with decreasing conditional timing measures for
58 of 95 funds based on the value-weighted TSE index as the benchmark.
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gammas. Moreover, the conservative p-values are only significant for the minimum cﬁtreme t-
statistics. This rejects the joint null hypothesis of zero gammas.

These additional results on individual funds suggest that Canadian mutual fund managers
have weak negative market timing ability once we control for conditioning information. One
alternate explanation for these results is that the assumptions underlying the conditional Treynor
and Mazuy timing model are violated. This is consistent with the conclusions of Kryzanowski et
al. (1994), and confirms the results of Cai et al. (1997) where the conditional gamma coefficient
is negative and statistically significant for Japanese mutual funds. However, it only partially
agrees with the evidence obtained by Ferson and Schadt (1996) for two particular U.S. fund
groups, the maximum gain and specialty, which exhibit negative conditional market timing

coefficients.
3.5.3 The Unconditional Henriksson-Merton Timing Model

Henriksson and Merton (1981) argue that the portfolio manager may time the market by
changing the exposure of her portfolio through switching the asset allocation between risky assets
and risk-free securities based on the manager’s prediction of whether the market portfolio return
will be higher or lower than the risk-free rate.”’ A successful market timer increases the portfolio
weight on the risky asset prior to a market rise and decreases this weight prior to a market

decline. The Henriksson and Merton unconditional model is given by:*!

3.18) run =%t Botuin+¥,Yate, n 1=0,.,T-1, p=1,.,N

where Y, = max(0,-r,,,,) . The equation is subject to the following conditions:

E(rm.l+lep,t+l) = E(Yt+lep.t+1) = E(ep,H—l) =0

50 This approach does not consider the magnitude of the relative returns.
*! Jagannathan and Korajczyk (1986) show that this model might lead to incorrect inferences for managers
with no abilities using simple portfolio strategies such as buying call options in the market.
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The additional term in equation (3.18) represént_s the terminal payoff of a put option on the
benchmark portfolio with a strike price equal to the risk-free return.

The results for the various portfolios of funds reported in panels E and F of table A1l are
basically identical to those with the unconditional Treynor and Mazuy model. Most of the
gammas are negative and significant for the two market benchmarks, which indicates perverse
timing ability. The alphas are positive but not‘signiﬁcant for reported portfolios except for the
size-weighted portfolio of growth funds. The point estimates for both of these two parameters are
higher compared to those reported earlier for the unconditional timing model. There is no
evidence of a large fund effect associated with stock selection and/or timing performance.

Table A12 reports information on the distributions of p-values of the selectivity and timing
estimates. They indicate that there are more funds with positive and significant alphas (13) than
with negative and significant alphas (2). In addition, the Bonferroni p-values are significant
rejecting the joint null hypothesis of zero alphas using the two benchmark variables for all but the
growth/income group based on the maximum t-statistics. Furthermore, the majority of funds (77
and 89) exhibit negative timing coefficients using the two market benchmarks. Their respective p-
?alues are less than 5% for 19 and 41 cases. The constructed Bonferroni p-values are only
significant for those tests corresponding to the minimum t-statistics for most of the fund groups
and for all funds. This rejects the null hypothesis of zero gammas. Such a negative market timing
result is consistent with that reported by Chang and L ewellen (1984), Henriksson (1984), and

Ferson and Schadt (1996).
3.5.4 The Conditional Henriksson-Merton Timing Model

Ferson and Schadt (1996) proposed a conditional version of this model where the timing
ability of the manager is related to the forecast of the non-expected market excess return, and the
expected excess return is measured with respect to predetermined information variables. The

equations for the conditional test are given by:

67



(3'19) rp,t+l = a; + ﬁ;rm,t+l + A;; (Ztrm,u-l) + y:rn‘l,ti-l + C;J (ztrr:,m-l) + ep.H-l’
t=0,.,T-1, p=1,.,N

i . 1 e
E(rm,tﬂep,tﬂ) = E(ZI rm.H-lep,tH) = E(rm,mep,rﬂ) = E(Zx rm.tﬂepxﬂ) = E(eplﬂ) =0, /=1,..,L

where 7, ., =D{r,, . —E(#,,,)>0} and Dfr,,,~E(,,,)>0} is an indicator function that

equals one if the difference between the excess return on the benchmark and the conditional mean
of that excess return or the unexpected component is positive, and is zero otherwise. The

conditional mean is estimated by a linear projection of the excess return for the benchmark on the
lagged values of a set of instrumental variables. The interpretations of the signs of o and ¥y, are

as in the unconditional version of the model discussed above.

The results for the various portfolios of funds reported in panels G and H of table All are
somewhat d ifferent from the unconditional statistics. A1l p ortfolios have insignificant gammas
except the equal- and size-weighted growth and aggregate portfolios that have significant (and
negative) gammas usiﬁg the value-weighted benchmark. These estirﬁates are a notable
improvement over the unconditional estimates. The alphas of the equal- and size-weighted
portfolios of all funds are still positive at 0.1222% and 0.1491% per month but are not significant.
Most of the portfolios have positive but not significant alphas with the exception of the
growth/income fund group. These timing-adjusted performances are consistently weaker than the
unconditional counterparts across the two portfolio types and market benchmarks.

The distﬁbutions of the p-values for the alphas and gammas are summarized in table A12.
The number of funds with positive and significant alphas decreases from 12 to 3 and from 13 to 7
using the TSE 300 and value-weighted TSE indexes as benchmarks, respectively. This is
essentially due to the weak performance of certain growth funds. In addition, more funds have
negative and significant a lphas (7 c ompared to 4), especially using the TSE 300 index as the

benchmark. Only the Bonferroni p-values related to the positive extreme t-statistic are significant
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for all_ funds (p-value of 0.067) -and for the aggressive growth group for the value-weighted TSE
index as the benchmark. Only the conservative p-values associated with the minimum t-statistic
are significant for all funds, growth, and growth/income funds for the TSE 300 index as the
benchmark. Both observations lead to the rej ecﬁon of the joint null hypothesis of zero alphas.

Fewer funds exhibit negative and significant gammas using the two market benchmarks when
conditioning information effects are controlled for. Most of these funds belong to the aggressive
growth and growth groups. The number of funds with positive and significant gammas is
unchanged. The Bonferroni p-values are 6nly significant when constructed using the minimum t-
statistics for all funds, and for the aggressive growth group for the value-weighted TSE index as
the benchmark. Such results suggest the existence of weak inferior market timing ability for
Canadian fund managers. The overall evidence for this conditional model partially corroborates

the conclusions of Ferson and Schadt (1996) and Kryzanowskd et al. (1994, 1997).%
3.5.5 Similarity of the Performance Rankings Across the Various Performance Metrics

The similarity of the performance rankings across the various metrics used for measuring
performance is tested in this section. As is evident from an examination of the Spearman rank
correlations between the seventeen alpha estimates that are reported in panel A of table A13, the
performances of individual funds vary across the various performance measurement models. Not
only are 99 of the 136 correlations below 0.9 but also the correlation coefficients decrease with
the introduction of conditioning information, and with the introduction of a multifactor structure
into the measurement model.

This is supported further by an examination of the sign and ranking of performance results for
the individual funds across the seventeen performance models that are reported in panels B and C

of table A13. Only 32 of the 95 funds have the same sign for alpha (26 negative and 6 positive)

2 The validity of the timing models is further assessed by examining the timing performance of ten size-
based passive portfolios. The unreported results indicate that only the conditional Henriksson and Merton
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across the selection-only performance measurement models. This decreases to 24 funds (18
negative and 6 positive) when all performance measures are considered. Only two funds have a
significant positive or negative alpha across all models when the selection-only performance
measures are examined.” |

To test the hypothesis that the rankings under the different benchmark models are not
significantly related, the non-parametric Kendall coefficient of Concordance (W) for several sets
of rankings is calculated, as in Peterson and Rice (1980)‘.54 The concordance values are significant
for all of the comparisons reported in panel C of table A13. Thus, the null hypothesis that the
various sets of performance rankings are unrelated cannot be rejected at the 0.01% level of
significance. Nevertheless, the values of the concordance measure are only 0.665 and 0.716 for a
comparison of the rankings across all the linear performance measurement models without and
with a market-timing adjustment, respectively. These values of the concordance measure increase
10 0.979 and 0 .857, respectively, when only the rankings from the unconditional performance
measurement models are examined, and decrease to 0.615 and 0.663, respectively, when only the
rankings from the conditional performance measurement models are considered. Thus,
conditioning accentuates differences in performance rankings across the various performance
measurement models examined herein. Furthermore, partial but not full conditioning of CAPM-
based performance measures of selection changes the rankings materially. To illustrate, the value

of the concordance measure for the selection performance rankings for the unconditional CAPM

model and to a lesser extent the conditional Treynor and Mazuy model produce timing statistics that are not
significantly different from zero.

% Additional but unreported tests find that only a small number of funds maintain their rankings across all
of the portfolio performance models for all fund groups. Almostan e qual number of funds improve or
lower their rankings for most pairs of performance measures. The same conclusions follow when the
performance rankings are examined from the perspective of an investor interested in examining which
managers provide the most value added to the fund where the rankings are established only for funds with
?ositive alphas.

* The concordance coefficient measures the association between different sets of rankings and is defined as
the ratio of the sum of squares of ranking deviations from the mean of the sums of the ranks (variability of
the rankings) to the maximum possible sum of the squared deviations. W takes values between 0 and 1,
where 0 and 1 indicate no agreement and perfect agreement in the rankings, respectively. This statistic is
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for the TSE 300 and value-weighted TSE indices versus their conditional counterparts with both

time-varying alphas and betas of 0.975 and 0.972, respectively, are much higher than the

corresponding values of 0.619 and 0.616, respectively, when their conditional counterparts only

have time-varying betas. The concordance values for these comparisons are nearly identical

across the market index benchmarks. The value of the concordance measure for the selection

performance rankings for the unconditional versus partial and full conditional four-factor models -
is fairly high at 0.884 and 0.869, respectively. Furthermore, the impact on the selection

performance rankings is minor when a CAPM-based performance measure with a market-timing

adjustment is conditioned.

The choice of market index from among a set of reasonably representative market index
benchmarks also has a minor impact on the selection performance rankings. Sf)eciﬁcally, the
values for the concordance of the‘ selection performance rankings for the unconditional versus
conditional Treynor and Mazuy (1966) timing model for the TSE 300 and value-weighted TSE
indices of 0.987 and 0.988, respectively, are high. Their counterparts for the Henrikssbn and
Merton (1981) timing model are only marginally lower at 0.936 and 0.960, respectively. The
concordance values for these comparisons are nearly identical across market index benchmarks.
Together with the results reported in previous sections of this paper, this suggests that full
conditioning is likely to have a greater impact on absolute than on relative performance
inferences. Thus, the choice of the performance measurement benchmark and its implementation

are important for assessing the performance of Canadian equity mutual funds.

[Please insert table A13 about here.]

3.6 Relationship between Performance and Fund Characteristics

distributed as Chi-square in large samples (more than seven items ranked). See Siegel and Castellan (1988)
for more details.

71



Numerous studies examine the relationship between risk—adjusted performance and fund
characteristics such as age, size, expenses, turnover, and flows. If the mutual fund market is
perfectly competitive, fund expenses will reflect the costs of generating the risk-adjusted returns.
Ippolito (1989) examines this hypothesis and finds that the Jensen alphas are unrelated to fund
expenses. This evidence suppoﬁs the costly information market efficiency argument of Grossman
(1976) and Grossman and Stiglitz (1980).> Elton et al. (1993) reformulate Ippolito’s approach
and use a three-factor model that incorporates the effects of holding non S&P stocks and bonds
and document a negative relationship between alphas and management expense ratios. Various
authors, such as Grinblatt and Titman (1994), Carhart (1997), and Chevalier and Ellison (1999),
report corroborating evidence. Otten and Bams (2002) find evidence of economies of scale for
European mutual funds as reflected in a positive relationship between risk-adjusted performance
and fund size as measured by the log of the total net assets of the fund. Otten and Bams also
obtain a negative correlation between the expense ratio and their conditional multifactor alpha.
Dahlquist et al. (2000) find a strong negative relation between risk-adjusted performance and
fund size for a subgroup of Swedish equity mutual funds, and that funds with high fees under-
perform those with low fees. Similarly, Chen et al. (2003) find evidence for diseconomies of scale
based on a large sample of U.S. equity funds using both gross and net fuhd returns. They argue
that fund size erodes performance because of liquidity and organizational diseconomies. Some of
these empirical stylized facts or regularities are reproduced using the rational equilibrium model
of Berk and Green (2002). This model assumes competitive ﬁrovisidn of capital by investors to
mutual funds, differential ability to generate excess returns, and learning about managerial ability

from past returns.

%5 The noisy rational expectations model of competitive equilibrium in Grossman and Stiglitz (1980) asserts
that when the information is costly to collect and implement, the market is efficient if the prices of trades
made by informed investors are sufficiently different from those obtained in full information in order to
compensate these investors for the cost of becoming informed.
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As in Grinblatt and Titman (1994) and Chen et al. (2003), this issue is addressed herein in a
cross-sectional setting using the (un)conditional risk-adjusted performance measures and several

fund attributes (defined below). The following equation is used to conduct the GMM estimation:
(3.20) ) =cy+CX,+&,, j={uc}, p=1,.,N,i=1..1

E(XiE,)=E,)=0

where X, =(Expense Ratio Management Fees Ln(TNA) Ln(Age) D(Load)) isa vectorof

fund characteristics with a dimension equal to I. The vector of coefficients C measures the

marginal effect of each attribute variable on the risk-adjusted performance of the fund. £, is a

vector of random errors.
3.6.1 Mutual Fund Characteristics

Net asset values per share or NAVPS and total number of shares are used to compute the total
net asset value or TNA to reflect the size of the fund. The average fund size is $288.7 million, and
ranges between $67.4 million for the Templeton Canadian Stock fund and $2876.6 million for the
PH&N Equity PI Fund. These statistics iltustrate the relatively smaller size of Canadian mutual
funds compared to those in the U.S. where the average size is $1.1 billion in 1999.

The management expense ratio or MER represents the total of all management and other fees
charged to the fund, as a percentage of the fund’s total assets.’® For our sample, it varies from
0.09% to 4.60%. Management fees or MGF are charged by the fund’s investment advisor(s) for
managing the fund and selecting the different securities. They range from 0.13% of a fund’s total
assets to 2.50% annually, and average 1.73%.

Six fund types are considered herein; namely, aggressive growth, growth, growth/income,

income, balanced, and specialty. Fund age or AGE averages 21 years, and ranges from 67 years

73



for the Spectrum United Canadian Investinent Fund to 10 years for the Strategic Value Canadian
O’Donnell Fund.

The dummy variable or LOAD is used to indicate if the fund is a load fund with sales charges
or front-end 1oads upon purchase of s hares and/or deferred sales ¢ harges ot back-end loads i f
shares are sold within a set time. Another dummy variable or OPTLO captures if the fund has
optional load charges. For our sample, 15 funds have front-load charges, 5 have deferred sales
charges, 34 have optional load charges, and 41 are no-load funds. By fund type, there are 5
aggressive growth funds and 9 growth funds with front and/or back-end load charges. All the
variables are estimated at the end of the sampling pericd. Some descriptive statistics of fund

attributes are presented in panel C of table Al.
3.6.2 Risk-Adjusted Performance and Mutual Fund Characteristics

Based on the results reported in table A14, a strong relationship exists between performance
and fund age, management fees, and size, and to a lesser extent with the management expense
ratio. The coefficients of the two dummy variables are not significant for all regressions. Since
fund age is negatively related to performance, this suggests that younger funds perform better
than older funds. This result is robust to the introduction of conditioning information and to the
market timing a djustment. It c onfirms prior e vidence for U .S. funds by Chevalier and E llison

(1999) and for European funds by Otten and Bams (2002).

[Please insert table A14 about here.]

Fund size, as measured by the log of the total net assets of the fund, has a significantly
positive relation with the risk-adjusted performance for most of the tests, and especially for the
conditional and market timing adjusted performance measures. This indicates the presence of

economies of scale in the Canadian mutual fund market. Such a result is consistent with the

% The other expenses include the shareholder servicing costs, custodian and transfer-agent fees,
sharcholder reporting costs, legal fees, auditing fees, interest expense, and directors’ fees. These expense
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European results reported by Otten and Bams (2002) but contrasts with those of Grinblatt and

Titman (1994) and Chen et al. (2003) for the U.S. and with Dahlquist et al. (2000) for Sweden.

The results for the impact of the fee structure, as reflected by the management expense ratio,
management fees, and the load dummy variables, on the risk-adjusted performance are mixed.
Management fees are consistently positively related to the alphas across the performance
measurement models. This suggests signaling through higher fees by fund managers. Moreover,
the relationship between the management expense ratio and performance is weakly negative,
which suggests that funds with high expenses do not perform as well as funds with low expenses.
This evidence is consistent with that reported by Elton et al. (1993) and Carhart (1997), and
differs from that reported by Ippolito (1989) and Otten and Bams (2002). It suggests a weak level
of competition in the Canadian mutual fund industry. Finally, no evidence exists that load funds
or funds with optioﬁal loads eam sufficiently high returns compared to no-load. funds to pay for

their extra sales charges.

3.7 Conclusion

This paper provides extensive new evidence on the sensitivity of performance inferences to
the choice of performance measurement model and its implementation on a sample of 95
Canadian equity mutual funds using the flexible and robust GMM framework. Several linear
models with and without conditioning information and/or a market-timing adjustment are used to
examine the selection ability of this sample of fund managers. Significant differences in the
selection performance measures anci inferences using alternative performance measurement
models are identified. The market-timing tests suggest perverse and weak market-timing abilities

of fund managers using unconditional and conditional timing models, respectively. Tests of the

items are detailed in the statement of operations,
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performancc‘ rankings across all the performance measurement models find that all of the
rankings are significantly related, and that partial conditioning of betas (and not also alphas)
accentuates the differences in performance rankings across performance measurement models.
The findings also suggest that full model conditioning is likely to have a greater impact on
absolute than on relative performance inferences. |

This paper uncovers the determinants of performance by studying the relationship between
performance and fund-specific attributes across performance measurement models. Measured
performance is negatively related to fund age across the various performance measures, and is
negatively related to the management expense ratio across the majority of performance measures.
The finding that large funds seem to perform better than small funds implies the existence of
economies of scale in the Canadian fund industry. Canadian fund managers also appear to signal

their selection abilities via increased fund management fees.
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CHAPTER 4
PORTFOLIO PERFORMANCE MEASUREMENT USING HIGHER-ORDER MOMENT

AND NONLINEAR ASSET PRICING KERNEL MODELS

4.1 Introduction

The search for an adequate 'performance measure for actively managed portfolios has
received wide interest in the portfolio performance literature during the last twenty years. This
interest is closely related to theoretical and empirical developments in the asset pricing literature.
One major development is the use of nonlinear asset prici;lg models free of any implicit or
explicit restrictions on the joint distribution of factor realizations and asset returns. The nonlinear
arbitrage pricing framework implies a nonlinear pricing equation and extends the classical linear
factor models. Bansal and Viswanathan (1993) and Bansal, Hsieh, and Viswanathan (BHV, 1993)
argue that nonlinear pricing models can price primitive securities whose payoffs are nonlincar
. functions of the underlying factors. Nonlinearities may also arise when derivative securities are
traded even when the lincar factor pricing restrictions are satisfied. Thus, the nonlinear asset
pricing kemel is an unknown nonlinear function of factor realizations and is relevant for pricing
any asset or portfolio irrespective of its payoff structure.”’ Recent studies have a similar‘focus
where they develop higher-order moment models for testing asset pricing relationships. Harvey

and Siddique (2000) make a strong argument for including skewness and develop an asset pricing

kernel that is quadratic in the benchmark return. Dittmar (2002) derives a pricing kernel that is

57 The unknown pricing kernel can be approximated using the semi-nonparametric (SNP) approach based
on truncated series expansions. In effect, Gallant and Tauchen (1989), Bansal and Viswanathan (1993), and
BHV (1993) approximate the pricing kernel using a truncated polynomial series expansion in asset returns.
Another variant of the SNP proposed by Chapman (1997) rests on an orthonormal polynomial expansion in
a small number of state variables implied from a stochastic version of the neoclassical growth model.
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nonlinear in the return on aggregate wealth and is consistent with a set of restrictions on
investors’ preferences.™®

A second major development is the integration of the role of conditioning information in tests
of asset pricing theories. When expected returns and risks are time-varying, the unconditional
performance metrics fail to produce a reliable measure of abnormal performance by confusing the
inherent time-variation with the possibility of superior abilities of portfolio managers. Most tests
on portfolio performance fail to exploit both developments since they use linear factor or kernel
pricing models or develop unconditional performance statistics.>

Other studies attempt to unravel the determinants of fund performance based on linear
benchmark models. They produce mixed results for non-U.S. and U.S. funds.®® Fund attributes or
properties examined as potential determinants of fund performance in this rapidly evolving
literature include fund size, age, fees, trading activity, flows, and past returns. However, these
studies do not account for potential nonlinearities in the fund payoffs and/or examine the
robustness of their results to the choice of performance evaluation model, market index
benchmark, and conditioning information.

Thus, given these limitations in the literature, the major objective of this paper is two-fold.
The first objective is to complerrient previous research by providing new evidence on the impact
of nonlinear dynamics in the benchmark model and conditioning information on the risk-adjusted
performance of funds by using various higher-order moment and polynomial asset pricing kernel
models. These models jointly accommodate the conditional pricing of portfolios with linear and
nonlinear payoffs and have not yet been tested in the context of (un)conditional performance

evaluation. As in previous research by Chen and Knez (1996), Ferson and Schadt (1996),

%8 His asset pricing equation accounts for the fourth moment of asset returns and outperforms the traditional
CAPM and multifactor models in explaining the cross-section of expected returns.

% See, for example, Ang and Chua (1979), Leland (1999), Ferson and Schadt (1996), and Kryzanowski et
al. (1997).
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Kryzanowski et al. (1994, 1997), Christopherson et al. (1998), and Famsworth et al. (2002), our
frameworks are suitable to perform evaluations of fixed-weight and dynamic strategies. The
importance of the restriction on the mean of the asset pricing kernel or equivalently the pricing of
the risk-free asset in performance evaluation also is tested. The second objective is to relate
nonlinear p erformance s tatistics to several fund c haracteristics ot attributes suchas fund type,
age, size, and management fees and expenses, and to examine the robustness of these relations for
Canadian equity mutual funds.

We develop the appropriate ﬁamcwérk for the estimation of the SDF-based performance
measures and the relationship between fund performance and fund characteristics. The flexible
(un)conditional Generalized Method of Moments (GMM) of Hansen (1982) is used to estimate
the various models. GMM p.ermits adjustment o f the s tandard errors for serial correlation and
heteroskedasticity and can handle non iid distributions for the pricing errors. All of the tests are
conducted ona sample of 95 Canadian équity mutual funds over the period, November 1989
through December 1999.

The ﬁrst major finding is that the measured unconditional performance of fund managers is
negative or neutral but improves as the pricing kernel-based benchmark model becomes nonlinear
and conditional. However, the performance statistics and inferences are highly sensitive to the
inclusion of the restriction on the pricing of the risk-free asset. The effects are mixed due to the
interdependence of the pricing restriction with the set of conditioning information. This
restriction has a pronounced impact on the some of the large fund effects observed with the
conditional models.

The second major ﬁnding is that the determinants of Canadian equity mutual funds are
somewhat concordant with those identified for U.S. and European funds, and reflect the different

market structure that exists in the Canadian mutual fund industry. Three of these significant

% The evidence for U.S. funds includes Ippolito (1989), Elton et al. (1993), Gruber (1996), Carhart (1997),
Sirri and Tufano (1998), Zheng (1999), Berk and Green (2002), and Chen et al. (2003). The evidence for
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determinants of the performance of Canadian equity mutual funds are robust across the various
nonlinear performance models evaluated herein. These determinants are age and size, and to a
lesser extent the fund load structure. Performance as measured herein is unrelated to fund
management fees.

The remainder of the paper is organized as follows: In section two, we discuss the sample of
funds and data used in the empirical tests reported herein. In section three, we develop and
explain the econometric methodology and the construction of the tests. In section four, the
various asset-pricing kernel models are presented and the estimates of risk-adjusted portfolio
performance for our sample of mutual funds are presented and analyzed. In section five, the
relationship between risk-adjusted performance and several fund characteristics is examined.

Finally, section six concludes the paper.

4.2 Data and Sample

The sample consists of 95 Canadian equity funds from the Financial Post mutual fund
database with no more than 5% of their values missing over the period from November 1989
through December 1999. This selection screen imparts a survivorship bias in the results presented
herein in favor of better performance. The 122 monthly returns for each fund are calculated using
the monthly changes in the net asset value per share or NAVPS, and are adjusted for capital gains
and dividend payments. To facilitate comparison with previous studies, only equity funds are
examined.

Some summary statistics on these funds are presented in table Al. Panel A reports statistics
on the cross-sectional distribution of the 95 mutual funds. The average annual fund returns vary
from -3.08% for Cambridge Growth of Sagit Investment Management to 18.03% for AIC

Advantage of AIC Limited, and the grand mean is 9.86%. The annual standard deviations range

non-U.S. (European) funds includes Dahiquist et al. (2000) and Otten and Bams (2002).
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from 6.00% for Canadian Protected of Guardian Timing Services to 31.05% for Cambridge
Special Equity of Sagit Investment Management. The corresponding average annual T SE 300
index return and volatility are 11.17% and 14.53%, respectively.

Summary statistics are provided in panel B of table A1 for equal-weighted portfolios of funds
grouped by the six major investment objectives. If the one balanced fund is ignored, the highest
and lowest mean returns occur for the aggressive growth grouping of 27 funds and the growth and
income grouping of 12 funds. The aggressive growth and specialty funds exhibit the highest and
lowest unconditional volatilities of 13.39% and 11.02%, respectively. The first-order

autocqrrelations of the fund returns are greater than 0.1 for 30 of the 95 funds.

4.3 Econometric Methodology

4.3.1 The Estimation Methods and Construction of the Tests

We use Hansen’s (1982) generalized method of moments (GMM) to estimate the risk-
adjusted performance and to examine the relationship between fund performance and fund
attributes. This method is very convenient to estimate higher-order moment and nonlinear SDF
models, allows easy integration of conditioning information, and produces p-values robust to
errors due to serial correlation and conditional heteroskedasticity. This is true even with arbitrary
forms, and when using different kernel functions such as the modified Bartlett kernel in Newey
and West (1987a), the Parzen kernel in Gallant (1987), or the qﬁadratic spectral kernel in
Andrews (1991).

The conditional stochastic discount factor models involve the computation of conditional

expectations. The empirical estimation of these conditional expectations is performed by creating
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general managed portfolios, and then examining the implications for the unconditional
expectations as in Cochrane (1996)."
The conditional SDF assigns zero performance to passively managed portfolios or any

portfolio based on public information:

“.1) atc E'Et[Mc (1N +R:,t+1)]®zt —1N ®Zt

7+

e+ 5,0+

“2) af =E[M: (1, +R,,)®z]-1,®z =0

4.3) M, =M(R,,.2,,9)

where ® is the Kronecker product obtained by multiplying every asset return by every

instrument, M, is the conditional SDF, R, ,,, is a N-vector of equity net returns, R, ., is a V-

vector o f benchmark portfolio returns, z, isa L-vector of ¢ onditioning variables (including a
constant), ¢’ is the vector of SDF unknown fixed parameters with a dimension equal to K, and
1, is a N-vector of ones.

Assuming stationarity and applying the law of iterated expectations, we have:

(4.4) E[M: (1, +R

t+1

)®2)]=E(ly ®2z)

8¢+

This last pricing equation is used to estimate the several proposed SDF models. The
corresponding conditional performance measures are those for returns on actively managed
portfolios. The construction of the unconditional SDFs and performance measures is trivial by

assuming that the condiﬁoning information includes only a constant.

8! This approach consists in scaling the original returns by the instruments and avoids the specification of
conditional moments and the increasing parameterization of the system. Moreover, it allows one to uncover
an additional implication of the conditional SDF model that is not captured by the simple application of the
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4.3.2 The Estimation Procedures

Our model implies the following conditional moment restriction:
4.5) E[MR, 152,00)A+ R, )] =1,
Now define as a N-vector of residuals or pricing errors:
(4.6) G =[MRy 52,9+ R, -1y =6,(R,, 1, R, 10152, 0)

This relationship depends on the set of unknown parameters, the net returns on the benchmark
portfolio, the conditioning variables, and the met returns on passive trading strategy-based
portfolios (eventually net returns on individual assets). Given the model structure, the dimension

of the vector of unknown parameters is XL. We then have:

4.7 | E e (‘Rm,H-l R 1152,,90)1 =0y

Using the law of iteréted expectations, the moment conditions can be written as:
4.8) Ele,(R,, .. R 320,0,)®2,]1=0,,

The SDF parameters and the p erformance measures are jointly e stimated ina system that
includes m oment ¢ onditions related to the returns of a setof passive strategies and additional
moment restrictions related to the returns of a subset of funds or portfolios of funds that are

supposedly managed actively.” These additional moment conditions are given by:

4.9) E[gz (ha,m s Rl pa+1rZss 00 ) ® z, ] = On,L

law of iterated expectations. These scaled returns can be interpreted as payoffs to managed portfolios or
conditional assets.

S2 Farnsworth et al. (2002) show that the performance estimates and associated standard errors are invariant
to the number of actively managed individual funds or portfolio of funds in the GMM system. Thus,
estimating the system for each fund or portfolio of funds separately is equivalent to an extended system
with several funds or portfolios of funds. Such a system setup limits the number of moment conditions and
controls the saturation ratios in the estimation,
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where  £,(R,, .1, Ry pn102,,6,) = 2, -IMR,, 1,2, 0 )1+ R, 1) -1, ], R is the

Tp.t+l
vector of net mutual fund returns with a dimension equal to 1, and @ = (¢ @)’ is the vector of

unknown p arameters with a dimension e qual to (KL+n,). The GMM e stimation e xploits t hese
moment restrictions by setting their sample analogues equal to zero. The sample moment

conditions are constructed as:

T
(4.10) g (@)= T‘lZ(glln g;r)'

t=1

Following Hansen (1982), the GMM estimator is obtained by selecting ér to minimize the

sample quadratic form g,(6)'W;g,(6) . When W, is the optimal weighting matrix, TJ, (éT)
has an asymptotic standard central chi-square distribution with (N-K)L+n,(L-1) degrees of
freedom. This is the well-known Hansen J-statistic.” This estimation can handle the
assumption that the vector of disturbances exhibits non-normality, conditional heteroskedasticity,
and/or serial correlation even with unknown form. This GMM efficient estimation of the portfolio
performance measures is used ip Chen and Knez (1996), Kryzanowski et al. (1997), and
Famsworth et al. (2002).

Although a unified estimatioh framework is used for all of the SDF models,‘ the saturation
ratios differ due to differences in the parameterization of each SDF specification. The saturation
ratios are d ecreasing functions of the number of p arameters and moment ¢ onditions, and they
deteriorate with conditioning for each benchmark model. In this paper, the saturation ratios are

managed so that they always exceed 14.

Several restrictions on the parameter estimates are tested under the GMM framework based

on the Wald test developed by Newey and West (1987b). Let s(.) be a known vector of functions

 Hansen (1982) proves that the GMM estimator is asymptotically efficient when the weighting matrix is
chosen to be the inverse of the variance-covariance matrix of the moment conditions. The choice of the
weighting matrix only affects the efficiency of the GMM estimator.

84



with dimension of v, less or equal to the dimension of the vector of parameters, and

Sy =0s(.)/ 00 be the Jacobian of s(.) evaluated at 6, and assumed to have a rank of v. Then,
the restriction s5(6,) =0 is tested using the Wald statistic, based on the unrestricted GMM

estimator &7 . It has the following construction:
(@.11) A, =T xs(6;) (S, Yy S5) " s(0r)

. where ¥V, ' is a consistent estimator of the asymptotic variance-covariance matrix of the

unconstrained estimator constructed using the optimal weighting matrix.
4.3.3 Information Variables and Predictability of Mutual Fund Excess Returns

For the conditional models, two instrumental variables are used based on their predictive
power uncovered in studies of stock return predictability. The variables, which are drawn from
Statistics Canada’s CANSIM database, are the lagged values of DY or the dividend yield of the
TSE 300 index (Fama and French, 1988; Ferson and Schadt, 1996; Kryzanowski et al., 1997; and
Famsworth et al., 2002) and TB1 or the one-month Treasury bill rate (Ferson and Schadt, 1996;
and Farnswaorth et al., 2002). Descriptive statistics and autocorrelations, and a correlation analysis
of these variables are provided in panels A and B of table A2, respectively. The correlations range
from -0.825 10 0.841.

In order to motivate the implementation of the conditional methodology, we conduct a
predictability analysis of mutual fund excess returns for six equal-weighted portfolios based on
investment objectives, and six size- or NAV-weighted portfolios of funds. The predictability

analysis consists of time-series regressions of portfolio excess returns on the five instruments

 Three additional instrumental variables are selected initially. They are RISK or risk premium as
measured by the yield spread between the long-term corporate McLeod, Young, Weir bond index and long-
term government of Canada bonds, TERM or the slope of the term structure as measured by the yield
spread between long-tem government of Canada bonds and the one period lagged three-month Treasury bill
rate, and DUMJ or a dummy variable for the month of January.
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described earlier. The predictive power of the instruments is assessed using the ‘Wald test
discussed earlier.

The reported results in panel D of table Al indicate significant levels of predictability for
both types of portfolios of funds. The null hypothesis, that all of the slope coefficients associated
with the selected instruments are zeros, is largely rejected. The coefficient estimates for the
dividend yield on the TSE 300 index and the one-month T-bill yield are significant for most of
the portfolios. These findings provide strong support for conducting a conditional performance

analysis.
4.3.4 Passive Strategies and Benchmark Assets

Passive or basis or reference assets must reflect the investment opportunities set of investors
and portfolio managers. In the empirical implementation of the performance measures, the type
and the number of assets to be considered are impoftant issues. In effect, assets included must be
consistent with the type of funds (essentially equity) under consideration. We construct ten size-
based portfolios representing passive buy and hold stock market strategies considering all of the
stocks on the TSE/Western monthly database. In a first step, we compute the market value of
each stock by multiplying the December-end price by tﬁe number of shares outstanding. foc
stocks are ranked on the basis of their market values at the end of the previous year. Ten decile
portfolios are then formed each year with an approximately equal number of securities in each
portfolio. The securities with the smallest capitalization are placed in portfolio one, as in
Kryzanowski et al. (1997).

Panels A and C in table A2 provide descripﬁvé statistics and autocorrelations and the
correlation matrix for these ten portfolios, respectively. The annualized average returns on the
size portfolios range from 1.27% for the sixth portfolio to 58.58% for the first portfolio. All of the
series indicate a low degree of persistence where all of the first-order autocorrelations are less

than 0.236.
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Two proxies of the benchmark asset are retained; namely, the TSE 300 and value-weighted
TSE indices. This permits us to test the sensitivity of the performance statistics with respect to the

selected benchmarks.

4.4 Higher-Order Moment and Nonlinear Asset Pricing Kernel Models

(Un)conditional higher-order moment ‘and nonlinear pricing kernel models are used to
estimate the risk-adjusted performance of the 95 equity funds under consideration. In particular,
we determine the average and the median performance of all funds, its sign and significance, its
variability in total and per group of funds, and its sensitivity to the procedure for forming
portfolios of funds and to the selected benchmark portfolio. For the four retained groups of funds,
we construct four equal-weighted portfolios and four size-weighted portfolios based on the
individual fund returns and total net asset values. We also examine the role of conditioning
information and the restriction on the mean of the asset pricing kernel by analyzing their impact

on the SDF specification and on the risk-adjusted performance.
4.4.1 The Unconditional Skewness Pricing Kernel Model

Several studies have provided considerable evidence against the symmetry of asset and
portfolio returns or the normality a ssumption.” Harvey and Siddique (2000, 2002) extend the
model of Kraus and Litzenberger to account for conditioning information, They define a
stochastic discount factor that is quadratic in the market return in order to account for conditional
co-skewness.* Such a framework may be useful for portfolio performance evaluation given the

growing evidence provided by Merton (1981) and Glosten and Jagannathan (1994) that portfolio

% He and Leland (1993) show that asset return distributions cannot be characterized by only the first two
moments (mean and variance). They argue that it is important to account for higher order moments such as
skewness and kurtosis. Kraus and Litzenberger (1976) derive an unconditional asset-pricing model, which
explicitly accounts for skewness in the assumed preferences, and is based on a second-order approximation
of the marginal utility. They find that skewness is priced.
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managers may follow option-like trading or dynamic strategies, and given that managers prefer
positively skewed portfolios that generate large positive returns with high probability.

We use the unconditional version o f the model o f Harvey and Siddique (2000) w here the
asset-pricing kernel is quadratic in the aggregate weaith return and all the coefﬁc.icnts are time-

invariant, which is written as:*"%

(4.12) M, = + PR, 0+ ¢3R2

m, e+l

The abnormal unconditional performance measure is obtained by taking the difference
between the unconditional expectations of the product of the SDF and the fund gross return, and

one. Specifically, it is given by:
(413) ap,t = E[Mtuﬂ (1 + Rp,r+l )] - 1

A significantly positive alphé indicates superior use of private information by the fund manager
or the non-control in the evaluation process of the use of public information.

The results for portfolios of funds are reported in table A15 and reveal two 'important results.
First, all of the portfolios produce negative alphas except for size-weighted portfolios of
aggressive growth and growth funds but none of the alphas is significant. Overall, the alphas of
the equal- and size-weighted portfolios of all funds are -0.0816% (p-value of 0.58) and 0.0138%
(p-value of 0.92), respectively, using the value-weighted T SE index as the benchmark. These
results suggest neutral performance since the average management fees is 1.73% per year.
Second, the size-weighted performance statistics are higher compared to their equal-weighted

counterpatts across all portfolios with the exception of the growth/income portfolios.

* Their model is useful in explaining the cross-sectional variation of expected returns and the time-series
variation of ex-ante market risk premiums,
67 . . . o

It has an equivalent representation in terms of expected return where the unconditional expected excess
return for the asset is linearly related to the unconditional covariance with the excess return for the market,
and to the unconditional covariance with the square of the excess return for the market. The last term
measures the unconditional co-skewness.
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[Please insert tabie AlS5 about here.]

A detailed analysis of individual fund performance is presented in tables A15 and A16. These
results tend to corroborate the results obtained with the portfolios of funds. The average alpha is
negative and the size-weighted portfolios of individual performances perform better than the
eqﬁal-weighted portfolios. The distribution of the alphas is negatively skewed with close to

normal tails.

[Please insert table A16 about here.]

This weak performance is examined further by éxamining the distribution of p-values
reported in table A17. This examination indicates that there are more funds with negative alphas
than with positive alphas. Only a limited number of funds have positive and significant alphas,
specifically, 9 and 11 funds using the TSE 300 and value-weighted TSE indices as the
benchmarks, respectively. Moreover, the null joint hypothesis of zero alphas is rejected using the
conservative Bonferroni p-values except for the one-tailed tesf associated with the minimum t-

statistics when the value-weighted TSE index is used as the benchmark.

[Please insert table A17 about here.]

Despite the nonlinear dynamics inherent in the model structure, the overall results indicate
either the absence of any selection abilities by the Canadian fund managers or the limitation of
the model as the appropriate benchmark to measure normal performance. These performance
figures and inferences are weaker than those reported by Ferson and Schadt (1996) using the

unconditional CAPM and by Kryzanowski et al. (1997) using an unconditional APT.

% This unconditional specification is implicit in the model of Kraus and Litzenberger (1976) and does
account for the skewness in the asset return distribution.
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4.4.2 The Conditional Skewness Pricing Kernel Model

The original model of Harvey and Siddique (2000) is based on the conditional asset-pricing

kernel quadratic in the aggregate wealth return with time-varying coefficients and is given by:
(414) Micﬂ = ¢l (zt) + ¢2 (zt )R}n,r+l + ¢3 (Z, )R:n,tﬂ

where all the @ coefficients are functions of the information set available to the uniformed

investor.” This model is equivalent to a fully conditional skewness model with time varying
alphas, betas, and co-skewness. It extends the conditional CAPM with time-varying alphas and
betas of Christopherson et al. (1998). Given the complexity of the estimation system, we limit our
choice of predetermined information variables to the dividend yield on the TSE 300 index and the
yield on a one month T-bill. Extending the conditioning set to more than two variables increases
the parameterization of the system and affects the power of the tests. Thus, as in most previous
tests éf asset i)ricing and portfolio performance (Cochrane, 1996; Chen and Knez, 1996; Ferson
and Schadt, 1996; Kryzanowski et al., 1997; and Christopherson et al., 1998),” linear response

functions are assumed for the time-varying coefficients such that:

?(2,) =@ + 9,2,

0,(z,) = 0oy + 93,2,

?:(2,) = 03 + 932,
The i/alidity of each linear response function and that of the complete conditioning structure is
tested using the Wald tests under the GMM system ﬁ'amework.

The conditional abnormal performance measure is given by:

% The pricing equation implied by this conditional specification has the equivalent representation in terms
of expected returns where the conditional expected excess return for the asset is linearly related to the
conditional covariance with the excess return for the market, and to the conditional covariance with the
square of the excess return for the market.

7 Harvey (2001) provides sufficient conditions on the data distribution to form expectations linear in the
conditioning information.
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(4.15) a,, =EIM;,(1+R, . )]-1

The conditional alpha is estimated via the conditional expectations of the product of the
conditional SDF and the gross return on the fund minus one. A positive value of this measure
indicates the efficient use of private information by the fund manager.

The conditional performances of four portfolios of funds are reported in table A15. There is a
notable increase in all of the alphas and significance levels using the two benchmark variables. In
addition, all o f the p ortfolios o f funds display p ositive and s ignificant p erformance w here the
alphas of the equal- and size-weighted portfolios of all funds are 0.4449% and 0.4904%,
respectively, using the value-weighted TSE index as the benchmark. In all cases, there is a large

fund effect associated with the aggressive growth, growth, and aggregate portfolios manifested by
| the better performance of the size-weighted statistics compared to the equal-weighted ones. In
contrast to the unconditional estimation, the performance figures under the TSE 300 index are
now higher than those obtained with the value-weighted TSE index due to the differential effect
of the nonlinear risk adjustment with the scaled factors.

Overall, conditioning information seems to positively impact performance, preserves the
supeﬁor performance of large funds, and reverses the performance relationship between the two
benchmark variables. Furthermore, thé conditional performance evaluation seems to be justified.
The Wald tests associated with the hypotheses on the time variability of the individual and joint
coefficients deliver significant p-values.

The evidence on the individual fund performances for both portfolio formation approaches as
reported in tables A15 and A6 supports these conclusions. It indicates a positive average alpha
for all portfolios of performance. The performance figures are higher than those obtained with the
unconditional model producing an average alpha of 0.4060% per month for the equal-weighted
portfolios and 0.4192% per month for the size-weighted portfolios using the value-weighted TSE

index as the benchmark. In addition, the shape of the alpha distribution has changed with positive
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Aasymmeiry and fewer extreme observations. A comparisbn of the performance of the equal-
weighted portfolios with the size-weighted portfolios reveals the existence of a large fund effect
that is robust across the fund portfolios and the benchmark variables. Based on the Wald tests on
the marginal contribution of the conditioning variables, all of the joint tests are highly significant,
while some of the individual tests are only significant at the 13% level.

The sources of this positive average performance are examined next by analyzing the
disﬁbuﬁon of the p-vélueé for all of the fupds and per fund group using heteroskedasticity and
autocorrelation consistent t-statistics for the t wo benchmarks. Based on the results reported in
table A17 almost 60% of the funds have p-values less than 5%, and only four funds exhibit
significant negative alphas using the value-weighted TSE index as the benchmark. There isa
predominance of funds with good performance across all fund groups. Moreover, the p-values
based on the Bonferroni inequality indicate that positive extreme t-statistics are significant for all
funds and across all fund groups. This rejects the joint hypothesis of zero alphas. However, the
conservative p -values c orresponding to the minimum t-statistics for all fund groups are rarely
significant using the two benchmark variables.

- Overall, this positive and significant conditional risk-adjusted performance shows that the
fund managers have the ability to efficiently exploit their private information and generate excess
returns. This shift in the performance statistics compared to the unconditional estimates

corroborates the findings of Ferson and Schadt (1996) and Kryzanowski et al. (1997).
4.4.3 The Unconditional Kurtosis Pricing Kernel Model

Dittmar (2002) extends the conditional skewness model of Harvey and Siddique (2000) and
proposes to account for the fourth moment in the asset pricing equation. A nonlinear asset-pricing

kernel cubic in the return on aggregate wealth is endogenously derived and is consistent with
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intuitive preference restrictions.” The pricing equation is equivalent to a fourth-moment CAPM,
as derived by Fang and Lai (1997).” The unconditional kurtosis pricing kernel model is based on

the following specification:

(4‘16) Mtuﬂ = ¢l + ¢2Rm,t+l + ¢3R3|,t+l + ¢4R3

mt+1

where all the ¢ are time-invariant. The corresponding performance measure is estimated using

equation (4.13). A positive unconditional alpha is associated with superior use of private
information or the lack of adequate controls for public information effects.

The summary estimation results for the performance of four equal- and size-weighted
portfolios of funds are reported in table A15. The performance for all portfolios is consistently
positive and significant for most of them, across the two benchmark variables. Specifically, the
alphas of the equal-weighted portfolios of all funds are equal to 0.3602% and 0.4544% using the
TSE 300 and value-weighted TSE indices, respectively. These figures are higher when the fund
retumns are weighted by their total net asset values in the portfolios suggesting superior
performance of large funds. These results show significant improvements compared to those
estimated using the unconditional skewness pricing kernel model. They suggest that accounting
for the fourth moment in asset return distributions has a positive impact on measured
~ performance.

The analysis of the individual mutual fund performances, which is presented in tables A15
and A16, confirms the previous conclusions with respect to positive average performance and the
large fund effect. The mean and median alphas are positive at 0.5450% and 0.5476%,

respectively, using the value-weighted TSE index. However, the averages of the p-values do not

"' This approach considers a general utility function where the form is restricted by standard assumptions
such as positive marginal utility and risk aversion, decreasing absolute risk aversion, augmented by
decreasing absolute prudence. These restrictions are then used to sign the coefficients of the first
;)olynomial terms in the Taylor expansion of the approximated utility function. '

? In the same vein, Chung et al. (2001) show that a high-order moment framework is appropriate when the
asset return distribution diverges from normality, They find that once high-order co-moments are accounted
for, the standard Fama and French (1995, 1996) three-factor model loses its significance.
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give reliable inferences on the éigniﬁcancc of the performance statistics. The positive alphas for
the 27 aggressive growth funds, the 50 growth funds, and the 12 growth/income fund portfolios
of performances could explain this good performance. These results are confirmed using the TSE
300 index as the benchmark. Moreover, the size-weighted portfolios of performances dominate
the equal-weighted portfolios of performanées using the two benchmark variables. The
distribution of the alphas is negatively skewed but less asymmetric with fewer observations in the
tails than that for the unconditional skewness pricing kernel model.

To better understand the sources of this good performance, we examine the distribution of the
p-values reported in table A17. A large number of funds have positive and significant alphas.
Specifically, 47 and 53 funds have significantly positive alphas using the TSE 300 and value-
weighted TSE indexes as the benchmarks, respectively. This represents almost five times the
nurﬁber obtained with the unconditional skewness model (9 and 11, respectively). Most of these
funds belong to the aggressive growth and growth groups (16 and 28 funds, respectively).
Moreover, all of thé Bonferroni p-\}alues are significant except for the ones associated with the
minimum t -statistics when the TSE 300 index is used as the benchmark. This rejects the null
hypothesis of joint zero alphas.

Overall, this unconditional kurtosis model produces different results than those for the
unconditional skewness model in that this model finds more instances of superior abilities among
the studied fund managers. This switch in the performance statistics towarcis better results appears

to be due to the increasing complexity in the nonlinear structure of this benchmark model.
4,4.4 The Conditional Kurtosis Pricing Kernel Model

The conditional kurtosis stochastic discount factor is cubic in the benchmark return with

time-varying coefficients and is given by:

(@.17) M;, = 0(2,)+9,(2) Ry +0,(Z)RE .. + 0, (2R .
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where all the ¢ are functions of the set of conditioning variables. This specification implies a

fully conditional four-moment asset-pricing model with time-varying alphas. As in most
conditional performance tests, we assume a linear conditioning structure on the time-varying

coefficients with respect to the two selected information variables, or:

?(z) =, +9,2,
0,(2,) = Py + 0,2,
0:(2,) = Py + 032,
24(2)= P + P2,
Wald statistics are constructed to test the separate and joint validity of the response functions.

The conditional risk-adjusted performance is measured by calculating equation (4.15). Table
Al5 summarizes the performance results for four portfolios of funds. All portfolios have positive
and significant alphas across the two benchmark variables. However, there is no conclusive
evidence that conditioning information produces superior performance statistics and inferences
since few portfolios are better off without conditioning. The better performance of the size-
weighted statistics is less pronounced since it is only observed with the value-weighted TSE
index as the benchmark. Finally, the performance figures are higher using the TSE 300 index as
the benchmark compared to the other benchmark.

The individual and joint tests on the validity of the conditional model are all significant.
Time-variation can only be rejected in the first (constant) and the fourth coefficient associated
with the cubic benchmark return in the SDF specification when the value-weighted TSE index is
used as the benchmark (p-values of 0.21 and 0.56, respectively).

Based on tables A15 and A16, the conditional performances of the individual mutual funds
tend to confirm the previous results. All portfolios of performances display positive alphas. The
average conditional alpha is positive and exceeds the alpha for the unconditional model, except

when the value-weighted TSE index is used as the benchmark (0.4895% compared to 0.5450%
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per month). These differenpes in performance become smaller when weighted by the size of the
funds. However, the performance of the size-weighted portfolios of performances remains
superior to that of the equal-weighted portfolios.

With the conditional model, the distribution of the alphas becomes positively skewed with
fewer observations in the tails. The inferences from the Wald tests are similar to those obtained
with the portfolios of funds, which supports our conditional performance evaluation approach.

An examination of the sources of these good conditional performance statistics in table A17
reveals that more funds have positive alphas and fewer funds have negative alphas. However, the
number of those funds with p-values less than 5% is comparable to that for the unconditional
model across the two benchmark variables. In addition, the conservative p-values constructed
using the Bonferroni inequality are all signiﬁgant for the maximum t-statistics, which rejects the
joint null hypothesis of zero conditional alphas. Those p-values corresponding to the minimum t-
statistics are not significant for all funds and per fund group. This result is consistent with the
results on the alpha distribution.

The performance figures and tests with the conditional kurtosis stochastic discount factor
model confirm that conditioning information and the nonlinear dynamics in the benchmark model

have a positive impact on risk-adjusted performance.
4.4.5 The Unconditional BHV Nonlinear Pricing Kernel Model

BHYV (1993) propose a nonlinear approximation of the true stochastic discount factor using a
polynomial series expansion.” They argue that their framework is convenient for pricing any
asset or portfolio return with potential nonlinearities in the underlying payoff structure such as
derivative securities or actively managed portfolios with option-like features.” The expression for

their unconditional nonlinear pricing kernel is given by:

™ Bansal and Viswanathan (1993) use neural networks to approximate the unknown pricing kernel.
™ In the same spirit, Glosten and Jagannathan (1994) approximate the nonlinear payoff of managed
portfolios by a function of payoffs of options on well chosen index portfolios.
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(4.18) M, =@yt o R tO R, + 0, R::,m + ¢5R;,r+1

BHV (1993) motivate the use of the fifth order instead of the third order in order to re‘duce the
collinearity between the variables. It is easily shown that both the unconditional CAPM and the
unconditional skewness model are nested under this nonlinear specification. The unconditional
performance measure is given by equation (4.13). This unconditional alpha provides a reliable
measure of performance in the absence of any public information.

The results for the four portfolios of funds, which are reported in table AlS5, show an
improvement in the performance point estimates compared to those delivered by the
unconditional kurtosis pricing kernel model. However, there is a decrease in significance levels.
The alphas of the equal-weighted portfolio of all funds are now 1..21 10% with a p-value = 0.12,
and 1.3244% with a p-value = 0.06, respectively, using the value-weighted TSE index as the
benchmark. This is due to the good performance of all funds with positive alphas. Those with
negative alphas display poor but not significant performance. With the increasing nonlinearity,
the large fund effect is maintained for all portfolios and is robust across the two benchmark
variables. The only exception is the growth/income group using the value-weighted TSE index as
the benchmark.

When the same tests are conducted on individual mutual funds, as reported in tables A15 and
Al6, we observe an improvement in the alphas but a deterioration in their significance levels. The
distribution of the alphas beqomes more concentrated around its mean and weakly asymmetric
with small tails. In addition, the superior performance of the size-weighted statistics remains for
the two benchmark variables.

The obtained results are well explained by examining the distribution of p-values reported in
table A17. The number of funds with positive alphas has increased from 78 to 83. However, the
number of funds with positive and significant alphas has décreased from 53 to 43, and the number

of funds with negative and significant alphas remains at zero. Only the one-tailed test for strictly
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positive élphas based on the Bonferroni inequality is significant. This rejects the null hypothesis
that all alphas are jointly zero.

Overall, there is evidence of weak positive unconditional abnormal performance. This may
reflect true performance or it could be biased since it does not account for public information

effects.
4.4.6 The Conditional BHV Nonlinear Pricing Kernel Model

The conditional BHV pricing kernel is a polynomial function in the non-central moments of

the benchmark return with ﬁme-varying coefficients. This kernel has the following expression:
4.19) M =@)(z,)+ o fR et T O (2R, 1 + 0, (2, )R,i,m +@5(z, )R;,m

where @,, @,, @,, and @, are assumed to be linearly related to the two selected conditioning

variables. This gives a fully conditional pricing model with time-varying alphas. The conditioning
structure on the time-varying coefficients is assumed to be linear with respect to the two selected
information variables, or:

P0(2) = oy + P12,

p(z,)= D10 +¢1'1Z:

0:(2,) = 0y + 2,2,

(05.(2,) = Q5 + 052,
The above linear specifications are individually and jointly tested using the Wald statistics. The
conditional abnormal performance measure is calculated using equation (4.15). The alpha in this
pricing equation is obtained by calculating the conditional expectations and is suitable for
actively managed portfolios with potential nonlinear i)ayoffs.

The estimates of the conditional performance of the four portfolios of funds exhibit

comparable results to those obtained with the conditional kurtosis model, and they exhibit

divergent results from the unconditional estimates (see table A15). The alphas of the equal- and
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size-weighted portfolios of all funds are 0.6968% and 0.7742% per month using the TSE 300
index as the benchmark, respectively. Similar figures are obtained using the other benchmark
with a notable difference related to the equal-weighted portfolio of aggressive growth funds. With
conditioning information, the performance statistics are consistently below the unconditional
estimates for all portfolios and across the two benchmark variables. This result could be
eXplained by the negative impact of the interaction between the fifth moment of benchmark return
and the two information variables. This interaction also has weakened the previously established
unconditional returns-based large fund effect.

Furthermore, the Wald tests on the marginal significance of the conditioning variables

provide significant results about the joint time-variation of all coefficients. These test results
reject the individual time-variation in @y (z,) and @;(z,) coefficients of the SDF equation using

both benchmarks.

The same tests are conducted next using individual fund data. These results are reported in
tables A15 and A16. They suggest similar performance inferences as with the portfolios of funds.
The average conditional alpha is positive for all portfolios but lower than the corresponding
unconditional average alpha. The inclusion of condiﬁoning information does not seem to
positively affect the point estimates of performance. In addition, the distribution of the
conditional alphas becomes positively skewed with less extreme observations in the tails using
the value-weighted T SE index as the benchmark. The shape of the d istribution o f c onditional
alphas changes for the other two benchmarks. The equal-weighted portfolios underperform
portfolios formed based on fund size, which supports the superior performance of large funds.
Tests on the validity of the conditional methodology support the joint time-variation in all
cocfficients but reject this hypothesis for the first, third and fourth coefficients of the SDF

equation.
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Based on the p-value distributions reported in table A17, there are more funds with positive
and significant alphas when the two benchmark variables are used compared to the unconditional
results. All the funds with negative alphas have p-values greater than 5%. Since all of the
Bonferroni p-values associated with the maximum t-statistics are significant, this rejects the joint
null hypothesis of zero alphas. These new results based on the conditional polynomial BHV
model are similar to those obtained with the other two conditional nonlinear SDF models.

The overall evidence suggests that the performance inferences are sensitive to the selected
benchmark model, and that nonlinear dynamics and conditioning information have a positive
effect on risk-adjusted performance for our sample of funds. Such results are consistent with
previous studies by Lehmann and Modest (1987), Grinblatt and Titman (1994), Kryzanowski et
al. (1997, 1998), and Farnsworth et al. (2002) for information conditioning. They extend previous

findings to both information conditioning and pricing nonlinearities.
4.4.7 Risk-Adjusted Performance and the Risk-Free Asset Pricing Restriction

The robustness of the performance statistics and inferences is tested by imposing the
restriction that the mean of the asset pricing kernel should be equal to the inverse of the gross
return of the risk-free asset.” The estimation is then conducted by including an additional
moment condition for the one-month T-bill for all of the models. The results, which are reported
in table A 18, reveal that the restriction on the pricing o f the risk-free asset has a pronounced
impact on the risk-adjusted performance inferences compared to those for the restriction-free
case. The estimation with the additional restriction produces mixed evidence with performance
improvement and deterioration using unconditional and conditional returns, respectively. This
result is consistent across the three pricing kernel models and the two benchmark variables. Tt
suggests the presence of interdependence between the additional moment condition and the

conditioning information. The unconditional performance statistics now exceed the conditional
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ones for all of the models except for the skewness pricing kernel using the value-weighted TSE
index as the benchmark. Finally, the restriction-based estimation has no impact on the superior
performance of large funds inherent in the unconditional tests but reverses or mitigates some of

the large fund effects observed with conditioning information.

[Please insert table A18 about here.]

4.5 Relationship between Performance and Fund Characteristics

Numerous studies examine the relationship between linear risk-adjusted performance and
fund characteristics such as age, size, expenses, turnover, and flows. If the mutual fund market is
perfectly competitive, fund expenses will reflect the costs of generating the risk-adjusted returns.
Ippolito (1989) examines this hypothesis and finds that the Jensen alphas are unrelated to fund
expenses. This evidence supports the costly information market efficiency argument of Grossman
(1976) and Grossman and Stiglitz (1980).7° Elton et al. (1993) reformulate Ippolito’s approach
and use a three-factor model that incorporates the effects of holding non S&P stocks and bonds
and document a negative relationship between alphas and management expense ratios. Grinblatt
and ‘Titman (1994), Carhart (1997), and Chevalier and Ellison (1999) report corroborating
findings. Otten 'and Bams (2002) find evidence of economies of scale for European mutual funds
as. reflected in a positive relationship between risk-adjusted performance and fund size as
measured by the log of the total net assets of the fund. Otten and Bams also obtain a negative
correlation between the éxpensc ratio and their conditional multifactor alpha. Dahlquist et al.

(2000) find a strong negative relation between risk-adjusted performance and fund size for a

”* Dahlquist and Soderlind (1999) and Famsworth et al. (2002) stress the importance of the risk-free asset
},)ricing restriction in conducting performance evaluation.

® The noisy rational expectations model of competitive equilibrium in Grossman and Stiglitz (1980) asserts
that when the information is costly to collect and implement, the market is efficient if the prices of trades
made by informed investors are sufficiently different from those obtained in full information in order to
compensate these investors for the cost of becoming informed.
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subgroup of Swedish equity mutual funds, and that funds with high fees underperform those with
low fees. Similarly, Chen et al. (2003) find evidence for diseconomies of scale based on a large
sample of U.S. equity funds usiﬁg both gross and net fund returns., They argue that fund size
erodes performance because of liquidity and organizational diseconomies. Some of these
empirical stylized facts or regularities are reproduced using the rational equilibrium model of
Berk and Green (2002). This model assumes competitive provision of capital by investors to
mutual funds, differential ability to generate excess returns, and learning about managerial ability
from past returns.

As in Grinblatt and Titman (1994) and Chen et al. (2003), this issue is addressed herein in a
cross-sectional setting using the (un)conditional ﬁsk—adjusted performance measures and several

fund attributes that are defined below. The following equation is used to conduct the estimation:
(4.20) a[{ =a,+A4'X,+¢,, j={u,cl,p=1L.,N,i=1..,1

E(X£,)=E(,) =0

where X, =(Expense Ratio Management Fees Ln(TNA) Ln(Age) D(Load)) isa vectorof

fund characteristics with a dimension equal to J. The vector of coefficients 4 measures the

marginal effect of each attribute variable on the risk-adjusted performance of the fund. & p isa

vector of random errors.
4.5.1 Mutual Fund Characteristics

Net asset values per share or NAVPS and total number of shares are used to compute the total
net asset value or TNA to reflect the size of the fund. The average fund size is $288.7 million, and
ranges between $67.4 million for the Templeton Canadian Stock fund and $2876.6 million for the
PH&N Equity PI Fund. These statistics illustrate the relatively smaller size of Canadian mutual

funds compared to those in the U.S. where the average size is $1.1 billion in 1999.
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The management expense ratio or MER represents the total of all management and other fees
charged to the fund, as a percentage of the fund’s total assets.” For our sample, it varies from
0.09% to 4.60%. Management fees or MGF are charged by the fund’s investment advisor(s) for
managing the fund and selecting the different securities. They range from 0.13% of a fund’s total
assets to 2.50% annually, and average 1.73%.

Six fund types are considered; namely, aggressive growth, growth, growth/income, income,
balanced, and specialty. Fund age or AGE averages 21 years, and ranges from 67 years for the
Spectrum United Canadian Investment Fund to 10 years for the Strategic Value Canadian
O’Donnell Fund.

The dummy variable or LOAD is used to indicate if the fund is a load fund with sales charges
or front-end 1oads upon purchase o f s hares and/or deferred sales charges or back-end loads if
shares are sold within a set time. Another dummy variable or OPTLO captures if the fund has
optional load charges. For our sample, 15 funds i)ave front-load charges, 5 have deferred sales
charges, 34 have optional load charges, and 41 are no-load funds. By fund type, there are 5
aggressive growth funds and 9 growth funds with front and/or back-end load charges. All of the
variables are estimated at the end of the sampling period. Some descriptive statistics for all of the

fund attributes are presented in panel C of table Al.
4.5.2 Risk-Adjusted Performance and Mutual Fund Characteristics

Based on the results reported in table A19, a strong relationship exists between performance
and fund age and size. Since fund age is negatively related to performance, this suggests that
younger funds perform better than older funds. This result is robust to the nonlinear specifications
and to the introduction of conditioning information. This result confirms prior evidence in the

U.S. by Chevalier and Ellison (1999) and in several European markets by Otten and Bams (2002).

77 The other expenses include shareholder servicing costs, custodian and transfer-agent fees, shareholder
reporting costs, legal fees, auditing fees, interest expense, and directors’ fees. These expense items are
detailed in the statement of operations.
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[Please insert table A19 about here.]

Fund size, as measured by the log of the total net assets of the fund, has a significantly
positive relation with the ﬁsk—adjusted performance in most of the tests, and especially in tests
using the conditional performance measures. This indicates the presence of economies of scale in
the Canadian mutual funds market. Su;:h a result is consistent with the European results reported
by Otten and Bams (2002) but contrasts with the conclusions of Grinblatt and Titman (1994) for

the U.S. and with Dahlquist et al. (2000) for Sweden.

The results for the impact of the fee structure, as reflected by the management expense ratio,
management fees, and the load dummy variables, on the risk-adjusted performance are not
significant for most of the regressions. At best, the relationship between the load structure
reflected by the two dummy variables and performance is negative and highly significant using
the unconditional measures. This suggests that load funds or funds with optional loads earn low
returns compared to no-load funds to pay for their extra sales charges. This relationship becomes
insignificant when we integrate conditioning information, This result contrasts with the evidence
produced by Ippolito (1989) where the load coefficient is positive and significant. Finally, there is
no evidence that performance of the funds with high expenses is different from that of the funds
with low expenses. This conclusion is parallel to that reported by Ippolito (1989) and differs from
that reported by Elton et al. (1993), Carhart (1997), and Otten and Bams (2002). These last two
results on the influence of the load structure and management fees are inconsistent with the
implications of the costly information equilibrium model of Grossman (1976) and Grossman and

Stiglitz (1980).
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4.6 Conclusion

In this paper, various higher-order moment and polynomial kernel models are used to assess
the risk-adjusted performance of a sample of | 95 - Canadian equity mutual funds. These
frameworks are convenient to price portfolios with nonlinear payoffs and non-symmetrical
distributions. The impact of conditioning information on the estimated performance is assessed
using the flexible GMM of Hansen (1982). The results indicate that the measure of performance
i1s sensitive to the retumm-generating process and that nonlinear dynamics, conditioning
information, and the restriction on the mean of the asset pricing kernel impact the performance
statistics and inferences. Furthermore, the tests on the relationship between fund characteristics
and fund performance reveal that risk-adjusted performance is related to the age and size of the
fund and to a lesser extent to the fund load structure but is unrelated to management fees.

The approach used herein may be extended in at least two ways. First, it can be extended to
test the performance of other fund types such as fixed income and global funds with highly
nonlinear payoffs. Second, it can be extended by adopting altemnative structures of nonlinear

dynamics and conditioning information.
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CHAPTER 5

PERFORMANCE OF CANADIAN FIXED-INCOME MUTUAL FUNDS

5.1 Introduction

Performance measurement and evaluation of actively managed funds have received wide
interest in the academic literature and among practitioners. However, most of the attention
focuses on equity mutual funds,’® and much less research examines the performance of
bond/fixed-income funds. This alternative category of funds is as important as equity funds
considering the increasing number of fixed-income funds and the notable growth in total assets
under management over the last fifteen years.

The majority of the papers in the bond fund stream of research rely on traditional asset
pricing models adapted to bond pricing. These models range from single- to fnulti-factor
specifications.” For gxample, Cornell and Green (1991) study the performance of U.S. high-yield
bond funds to obtain information on the time-series behavior of low-grade bond returns using a
two-factor model reflecting m‘ovements in interest rates and stock prices.® Blake et al. (1993)
conduct the first rigorous test of the performance of U.S. bond funds using linear and nonlinear
single- and multi-factor models. Their results suggest that bond funds underperform the selected
indices post-expenses and that this performance is robust across several bond return generating

processes. In a similar vein, Lee (1994) uses several benchmark model specifications, which are

" For example, see Jensen (1968, 1969), Lehmann and Modest (1987), Grinblatt and Titman (1989, 1993,
1994), Chen and Knez (1996), Kryzanowski et al. (1994, 1997, 1998), Ferson and Schadt (1996), Carhart
(1997), Christopherson et al. (1998), and Farnsworth et al. (2002).

” Another approach relies on the stochastic discount factor (SDF) methodology. He et al. (1999) test the
performance of a small sample of corporate bond mutual funds using the non-parametric (un)conditional
models of Hansen and Jagannathan (1991) and Chen and Knez (1996). Kang (1997) adapts the numeraire
portfolio approach of Long (1990) to evaluate the performance of U.S. govermment and corporate bond
funds and concludes that the numeraire-denominated abnormal returns after expenses are negative and
similar to the Jensen alpha estimates. Ferson et al. (2003) use extended SDF representations of continuous-
time term structure models to assess the conditional performance of U.S. fixed-income funds. They find
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selected based on their mean-variance efficiency, to assess the performance of a large sample of
U.S. bond funds. Lee finds that a multi-factor structure with medium- and short-term bond
indices and a stock market index is the most appropriate for performance evaluation and that
bond fund managers do not exhibit any superior abilities after expenses. Elton et al. (1995)
evaluate the performance of bond funds using a relative pricing APT model based on a few bond
indices and unanticipated changes in macroeconomic variables. The reported risk-adjusted
performance is negative and comparable to the level of transaction costs. Detzler (1999) extends
the analysis to global bond funds and reports evidence of underperformance.®! Kryzanowski and
Lalancette (1996) develop a conditional version of the positive period weighting measure of
Grinblatt and Titman (1989) to measure the performance of a small sample of bond funds over
the period 1981-1988. Their Canadian results seem to be consistent with the U.S. evidence. All of
these papers fail to develop conditional performance statistics based on linear benchmark models,
and fail to conduct their tests on a large sample of fixed-income funds. Moreover, most of these
studies suffer from a potential survivorship bias since they do not conduct a comprehensive
analysis of the survivorship bias inherent in their samples of fixed-income mutual funds.

Other studies attempt to unravel the determinants of fixed-income fund performance based on
linear benchmark models. They produce mixed results for U.S. and non-U.S. funds.? Fund
attributes or properties examined as potential determinants of fund performance in this rapidly
evolving literature include fund size, age, fees, trading activity, flows, and past returns. However,
most of these studies do not account for fund dynamic strategies and/or examine the robustness of
their results to the choice of performance evaluation model, market index benchmark, and

conditioning information.

that a two-factor affine model outperforms a single factor model and report evidence of conditional
underperformance during 1985-1999.
i They conclude that the risk-adjusted bond fund returns are well explained by this two-factor model.

8! Her framework stems from unconditional single and multi-index benchmark models and fails to account
for the time-variation in the expected international bond returns, which are documented by Harvey et al.
(2002).
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Thus, given these limitations in the literature, this paper has three major objectives. The first
major objective is to provide extensive and robust evidence on the performance and the
sensitivity of performance inferences based on (un)conditional linear single- and multi-factor
benchmark models for Canadian fixed-income mutual funds. These models must accommodate
the unique features of fixed-income funds such as non-stationarity in returns, their frequent use of
derivatives in their hedging and speculative activities, and the time-variation in their expected
. returns and risks. As in previous research by Chen and Knez (1996), Ferson and Schadt (1996),
Kryzanowski et al. (1994, 1997), Christopherson et al. (1998), He et al. (1999), and Farnsworth et
al. (2002), the frameworks applied herein are suitable to perform evaluations of fixed-weight and
dynamic strategies.”’ All of the models are estimated using the flexible and robust Generalized
Method of Moments or GMM of Hansen (1982) on two samples of Canadian surviving and non-
surviving fixed-income mutual funds over the period 1985-2000. GMM permits adjustment of the
standard errors for serial correlation and heteroskedasticity and can handle non iid distributions
fqr the pricing errors. This paper is the first to examine partial and full conditional single- and
multi-factox.' models using a comprehensive sample of unds.. To d eal with inference p roblems
caused by returns of individual funds being contemporaneously correlated that have plagued most
previous tests, the performance inferences drawn herein are based on equal- and size-weighted
portfolios of funds grouped by commeon investment objectives.

The second major objective is to estimate the survivorship bias inherent in the fixed-income
mutual funds database and to examine its impact and properties with respect to risk-adjusted
performance, benchmark médel, and fund investment objective. The third major objective is to
examine the robustness of ‘th‘e relation between performance differentials across fund groups and

the differences in fund characteristics or attributes for Canadian fixed-income mutual funds, and

%2 The evidence for U.S. funds includes Blake et al. (1993) and Elton et al. (1995). The evidence for non-
U.S. (European) funds includes Dahlquist et al. (2000).
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to draw inferences about what the estimated relations imply about economies of scale and the
level of competition in this segment of the Canadian mutual fund industry. This paper is the first
to address these issues using partial and full conditional benchmark models.

‘The first major finding is that the measured performance of fixed-income fund managers is
negative and weakly sensitive to the return generating process. The performance statistics and
inferences improve with partial conditioning. Tests that do not incorporate the contemporaneous
cross-correlations in the retums among individual funds consistently alter and reverse .the
condiﬁo_m'ng information-based inferences and the superior performance of large funds across all
benchmark models. The sfock market factor is useful in describing the return generating process
of Canadian fixed-income funds. Inclusion of a stock market factor not only improves the
performance statistics but also preserves the single factor-based s uperior p erformance of large
funds.

The second major finding is that survivorship bias due to the elimination of funds with
shorter lives is not overly material for the performance of Canadian fixed-income mutual funds.
This limited effect is similar to that estimated for European funds but is lower than that estimated
for U.S. funds. While survivorship bias is reasonably stable across performance models, it differs
materially across funds grouped by their investment objectives.

The third major finding is that the determinants of Canadian fixed-income mutual funds is a
mix of that identified for U.S. and European funds, and reflects the different market structure that
exists in that segment of the Canadian mutual fund industry. Five of these significant
determinants of the performance of Canadian fixed-income mutual funds are somewhat robust
across the various (un)conditional linear performance models evaluated herein. These
determinants are the age, management expense ratio, load structure, and to a lesser extent the size

and management fees of each fund. Two of the identified relationships provide information about

¥ Conditioning is performed using information publicly available to uminformed investors. Such
information includes interest rates, term structures, and bond yields, which previous studies identify as
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the economics of the fixed-income mutual fund industry in Canada. First, the weak positive
relation between performance and fund size suggests very limited scale economies in that
segment of the Canadian mutual fund industry. This is partially consistent with the evidence
found for funds in the U.S. (Ferson et al., 2003) and Europe (Dahlquist et al., 2000). Second, the
negative relation between performance and the management expense ratio suggests a pronounced
* level of competition in that segment of the Canadian mutual fund industry. This finding is
consistent with that reported by Blake et al. (1993) and Elton et al. (1995) for U.S. funds.

The remainder of the paper is organized as follows: In section two, we discuss the samples of
funds and data used in the empirical tests reported herein. In section three, we develop and
explain the econometric methodology and the construction of the tests employed in this paper. In
section four, the various benchmark models are presented and the estimates of risk-adjusted
portfolio performance for our samples of mutual funds are presented and analyzed. In section
five, we estimate the survivorship bias for our sample of fixed-income funds and assess its impact
on the performance statistics. In section six, the relations between risk-adjusted performance and

several fund characteristics are examined. Finally, section seven concludes the paper.

5.2 Samples and Data

5.2.1 Samples

Two different samples of Canadian fixed-income funds are carefully constructed based on
information from the Financial Post mutual fund database over the period from March 1985
through February 2000. The first sample consists of 162 fixed-income funds that existed at the
end of that period with a varying number of observations per fund. This sample includes 108
government funds, 28 corporate funds, 21 mortgage funds, and 5 high-yield funds. The non-

surviving funds sample is smaller with 72 funds. All of these funds have been terminated before

being useful in predicting bond return movements.
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February 2000. Potential mergers and name changes are accounted for in constructing the two
samples. Several sources of information, such as the Financial Post quarterly reports, individual
fund reports, and specific fuild news in the financial press, are used to supplement the original
information. Most of the terminated funds invest in government securitiés (46), followed by
corporate (11), mortgage (13), and high-yicld (2) as investment objectives. For the two samples,
the monthly returns for each fund are given by the monthly changes in the net asset values per
share, and are adjusted for all distributions. The size of each fund is taken as its total net asset
value. By using the second sample of terminated funds, the impact of survivorship bias can be
assessed across performance models and metrics, and across groupings of funds by investment
category.

Some summary statistics on the surviving funds are presented in table AZO'. Panel A of table
A20 gives statistics on the cross-sectional distribution by investment objective and for all of the
162 funds. The average annual fund returns vary from 1.07% for Industrial Alliance bond 2 fund
to 10.92% for SSQ bond fund, and have a cross-sectional mean of 7.13%. The fund annual
volatilities or standard deviations range from 0.53% for Synergy Canadian ST income fund to
7.96% for Spectrum United LT bond fund. Over the same sample, the annual average mean and

volatility of the return on the Scotia Universe bond index are 10.54% and 2.26%, respectively.

[Please insert table A20 about here.]

In panel B of table A20, equal-weighted and size-weighted portfolios of funds grouped by
investment objective and for all of the funds are obtained using the 162 surviving funds in the
sample. The number of funds in each of four investment objective categories depends on the
timing of the entry of each fund in the sample resulting in different portfolio compositions across
time. The size-weighted portfolio of government funds and the equal-weighted portfolio of
mortgage funds exhibit the highest and the lowest unconditional mean returns of 9.19% and

8.20% per annum, respectively. In contrast, the size-weighted portfolio of corporate bond funds
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has the highest unconditional volatility of 5.65% per antum, and the equal-weighted portfolio of
mortgage funds has the lowest unconditional volatility of 2.49% per annum. The average annual
returns on portfolios of all funds are 8.82% and 8.98% using equal- and size-weighted structures,
respectively. For all groups but the high-yield portfolios, the unconditional mean returns and
volatilities of the size-weighted portfolios are higher than those of the equal-weighted portfolios.
On average, the estimation of the performance statistics is conducted using 111 observations.
Panel C of table A20 provides similar information for portfolios of terminated funds. For the
major fund groups (government, corporate, and mortgage), the mean return and volatility
statistics are higher and lower than those obtained with the surviving funds, respectively, with the
exception of the equal-wéighted portfolio of corporate bond funds. The average annual returns on
portfolios of all funds are 8.05% énd 8.30% using the equal- and size-weighted structures,
respectively. Given the nature of these funds, the minimum, maximum, and average number of
observations for the 72 individual funds across the four fund groups are smaller, which leads to

an average sample length of approximately seven years.
5.2.2 Fund Survival and Mortality

The two constructed samples include virtually all of the fixed-income funds that existed
between 1985 and 2000. They mirror the evolution of the Canadian bond fund market over this
period of time. In table A21, we report the entry and exit of funds on a yearly basis and estimate
the corresponding attrition and mortality rates. The attrition rate reflects the percentage of funds
that are left in the sample at each point in time, and ranges between 0% and 10.44% with an
average of 1.60%. These figures are somewhat similar (with more variability) that those obtained
for the U.S. e quity mutual fund market. Elton et al. (1996) find an attrition rate o £2.3% that
varies across the fund groups. Carhart et al. (2002) use a comprehensive sample of funds over a
long time period of 1962-1995 and estimate an attrition rate between 0.5% and 8.6% with an

average of 3.6%. However, our average rate is lower than the 9.37% reported by Dahlquist et al.
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(2000) for Swedish bond funds. Our sample exhibits a mortality rate that is decreasing over the
sample period. Nevertheless, more than 20% ofthe funds that existed at the beginning o f the
sample period did not survive by the end of the studied period. Over the sample period, the

number of funds more than triples.

[Please insert table A21 about here.]

5.3 Econometric Methodology

5.3.1 The Estimation Method and Construction of the Tests

The GMM method is used to estimate the risk-adjusted performance and to examine the
relationship between fund performance and fund attributes® To estimate the performance
measures for each benchmark model, a separate time-series regression is run for each fixed-
income fund and for each size and equal-weighted portfolio of fixed-income funds. Not only does
the GMM allow for an easy integration of conditioning information but it uses a robust estimator
for the variance-covariance matrix to construct p-values that are robust to serial correlation and
conditional heteroskedasticity. This is true even with arbitrary forms, using different kernel
functions such as the modified Bartlett kernel in Newey and West (1987a), the Parzen kernel in
Gallant (1987), or the quadratic spectral kernel in Andrews (1991).

For the (un)conditional lincar models used to measure performance, we define the vector of

residuals of fund i or portfolio of funds 7 as:

(51) u:‘,nl =L

it+1

-a;—0X

% This general and flexible technique has become the common approach to estimate and test asset pricing
models that imply conditional moment restrictions, even in the presence of nonstandard distributional
assumptions. GMM is an alternative to the maximum likelihood approach with no requirement to specify
the law of motion of the underlying variables.
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where 7,,,, denote the excess returns on fund or portfolio of funds i, «,

; 1is the risk-adjusted
performance, & is a vector of the coefficients with dimension equal to J, and X is a vector of

independent variables whose dimension is model specific. The total number of parameters to be

estimated is (J+1) for each fund. The models imply that:

52 E(u;,,,1Q,)=0 foralliand ¢

For the unconditional tests, Q, = {1, X, }, where X, corresponds to the vector of the original

regressors in the model. When conditioning information is introduced, Q, = {1, X, }, where X,

includes the original regressors augmented by their cross-products with the instrumental

variables. For the case of the conditional factor models with time-varying alphas and factor

loadings, four instrumental variables (described below) are added to Q, = {1, X,,z} . Assuming

a dimension n, for Q,, the orthogonality conditions are constructed using:

(5.3) ‘ E(u

i+l

®Q,)=0, foralliand¢

5.3.2 The Estimation Procedures

| The estimates of the portfolio performance measures are obtained from minimizing the GMM
criterion function constructed from the set of moment conditions based on the normal equations
in the time-series regreésion. This requires a consistent estimate of the weighting matrix. Hansen
(1982) proves that the GMM estimator is asymptotically efficient when the weighting matrix is
chosen to be the inverse of the variance-covariance matrix of the moment conditions.® This
GMM efficient estimation of portfolio performance is used in Chen and Knez (1996),

Kryzanowski et al. (1997), and Farnsworth et al. (2002) for equity funds.

* The choice of the weighting matrix only affects the efficiency of the GMM estimator. Newey (1993)
shows that the estimator’s consistency only depends on the correct specification of the residuals and the
information or conditioning variables.
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Several restrictions on the parameters estimates are tested under the GMM framework based
on the Wald test developed by Newey and West (1987b). Let g(.) be a known vector of
functions with dimension of v, 1es_s or equal to the dime_nsion of the vector of parameters, and

G, =0g(.)/ 08 be the Jacobian of g(.) evaluated at &, and assumed to have a rank of v. Then,
' the restriction g2(6,) =0 is tested using the Wald statistic, based on the unrestricted GMM

estimator & . It has the following construction:
(4 A =Txg07) (G, V;'Gr) " g(6;)

where € is the vector of unknown parameters and ¥, ' is a consistent estimator of the asymptotic

variance-covariance matrix of the unconstrained estimator constructed using the optimal

weighting matrix.
5.3.3 Information Variables

For the conditional models, four instrumental variables are used based on their predictive
power uncovered in studies of bond return predictability.*® They are drawn from Statistics
Canada’s CANSIM database and are the lagged values of TB1 or the one-month Treasury bill
rate (Fama and French, 1989; Ilmanen, 1995; and Balduizi and Robotti, 2001), DEF or the
default premium as measured by the yield spread between the long-term corporate McLeod,
Young, Weir bond index and long-term government of Canada bonds (Chang and Huang, 1990;
Fama and French, 1989, 1993; Kirby, 1997; and Ait-Sahalia and Brandt, 2001), TERM or the
slope of the term structure as measured by the yield spread between long-term government of
Canada bonds and the one period lagged three-month Treasury bill rate (Chang and Huang, 1990;

Fama and French, 1989, 1993; Ilmanen, 1995; Kirby, 1997; and Ait-Sahalia and Brandt, 2001),

% Several other conditioning v ariables have been tested such as inflation rate, yield spread between the
three-month T-bill and the one-month T-bill, yield spread between the six-month T-bill and the one-month
T-bill, real yield on one-month T-bill, an equal-weighted stock index, and a dummy variable for the month
of January. They lead to similar inferences.
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and REALG or the real return on long-.term government bonds measured by the difference
between the yield on the long-term government bond (5 to 10 years) and the inflation rate lagged
by one month (Ilmanen, 1995). To allow for a simple interpretation of the estimated coefficients,
the variables are demeaned in the conditional tests, as in Ferson and Schadt (1996).

Descriptive statistics and autocorrelations, and a correlation analysis of these variables are
pro‘}ided in panels A and B of table A22, respectively. The correlations between all of the

instruments range from -0.81 to 0.39.

[Please insert table A22 about here.]

5.3.4 Bond Indices and Factors

Several bond and stock indices are used as factors as in Cornell and Green (1991), Blake et
al. (1993), Lee (1994), and Elton et al. (1995) to construct and assess the performance of the
proposed benchmark models. There are eight Scotia Capital (henceforth SC) bond indices
reflecting the C anadian d omestic bond and mortgage markets and one a ggregate stock market
index. We use a broad Canadian bond index that is the SC Universe bond index. It contains 900
marketable C anadian b onds with terms to maturity longer than 1 year. The a verage termis 9
years and the average duration is 5.5 years. Similarly, there are six bond indices related fo
government and corporate bond issues with different maturity structures (long-term and medium-
term). The only included mortgage-backed securities overall bond index accounts for the

“ performance of closed and open pools with an average term of 2.75 years and an average duration
of 2.25 years. It is used to span the movements in the returns of mortgage funds. Finally, the TSE
300 index is used as a stock factor that could be useful in describing the return generating process
of bond fund returns. All of these indices and factors are obtained from Datastream, CANSIM,

and the CFMRC databases.
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Descriptive statistics and autbcorrelations, and a correlation analysis of these variables are
provided in panels A and C of table A22, respectively. All of the bond fund index categories have
correlations of 0.83 or higher, and the majority are above 0.90. The correlations between the bond

indexes and the TSE 300 index range from 0.35 to 0.44.
5.3.5 Predictability of Bond and Bond Fund Excess Returns

In order to motivate the implementation of the conditional methodology, a predictability
analysis is conducted of bond excess retumns using nine bond portfolios and six equal- and size-
weighted portfolios of bond funds based on investment objectives. The predictability analysis
consists of time-series regressions of the excess return on each portfolio on the four instruments
described earlier. The predictive power of the instruments is assessed using the GMM-based
Wald tests discussed earlier.

The results reported in table A23 indicate significant levels of predictability for both types of
portfolios of bonds and of bond funds. The null hypothesis, that all of the slope coefficients
associated with the selected instruments are ZEros, is' rejected with p-values below 8%. The
reported coefficient estimates for the one-month Treasury bill rate and the term premium are
positive and significant for most of the bond indices and portfolios of funds. These findings

provide strong support for conducting a conditional performance analysis.

{Please insert table A23 about here.]

5.4 Performance Evaluation

5.4.1 Unconditional Benchmark Models

The evidence reported in this section should be interpreted with care given the theoretical and

empirical limitations of the underlying unconditioned benchmark models. However, measures of
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their performance are required in order to assess the performances of their conditional

counterparts, which are reported in the next section of this paper.

3.4.1.1 Unconditional Single Factor Models

The most commonly used measure of mutual fund performance is the Jensen alpha or o;

based on the following single factor unconditional specification:

(.5 T =0+ Bl + g, 120, T =L i=1. N

where r;,,, and 7,,,, denote the excess returns on fund or portfolio of funds i and on the
benchmark between ¢ and ¢ +1, respectively. The slope f, is the systematic risk of the fund or

portfolio of funds i, and u,,,, is the error term specific to the fund or portfolio of funds in month

£ +1. The validity of this model relies on the assumption‘ that the returns of the underlying bond
portfoiios are stationary, and that the systematic risk measures capture the two risk dimensions of
a bond; namely, interest rate risk and default risk.

Two versions of this model are i mplemented herein depending on the s pecification o f the
benchmark factor. The single market factor (SMF) model uses the SC Universe bond index,
which includes a large number of government and corporate marketable securities. The single
specific factor (SSF) model uses a benchmark portfolio that is consistent with the investment
objective of each fund (as in Blake et al., 1993). Thus, the SC government bond index, the SC
corporate bond index, and the SC mortgage backed securities overall index are used as
benchmark variables for government, corporate, and mortgage bond funds or portfolios thereof,
respectively.

The results for ten portfolios of funds (five equal-weighted and five size-weighted) using the
unconditional SMF model are reported in panels A and B of table A24. While the mortgage and

high-yield portfolios exhibit insignificant and positive alphas, the other portfolios exhibit negative
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and significant alphas. The portfolios of corporate funds exhibit the poorest alphas. The alphas of
the equal- and size-weighted portfolios of all funds are -0.0671% and -0.0513% per month,
respectively. Performance superiority of large (small) funds is only observed for portfolios with
negative (positive) alphas. All of the portfolios with significant alphas also have relatively high
weightings or estimated unconditional betas compared to the two other portfolios with
insignificant alphas. As expected, this result implies that the SC Universe bond index is not a
reliable market index for the funds concentrating in mortgage or high yield securities. The betas
of the equai-weighted portfolios of government and corporate funds of 0.844 and 0.820 are lower
than the 0.880 and 0.900 estimates, respectively, for their size-weighted counterparts. With the
exception of the portfolios of mortgage and high-yield funds, the adjusted R? are relatively high at

close t0 95%.

[Please insert table A24 about here.]

The results for the ten portfolios of funds using the unconditional SSF model are reported in
panels C and D of table A24. The estimated alphas now imply lower performance for the various
portfolios of government, corporate, and mortgage funds. As expected, the risk sensitivities of the
equal- and size-weighted portfolios of mortgage funds increases from 0.242 and 0.283 to 0.501
and 0.568, respectively, using the SC Universe mortgage backed securities overall index instead
of the SC Universe bond index.

Equal- and size-weighted averages of the alphas of individual funds for various fund samples
using the SMF model are reported in panel A of table A25. The results are consistent with those
reported for the portfolios of funds. The equal- and size-weighted average alphas are -0.0852%
and -0.0912% per month.*” They are essentially due to the negative performance of the

government and corporate fund groups. Only the average alphas of the high-yield funds are

*" Unreported results on the SSF models show that the average alphas are weaker that their counterparts
based on the SFM.
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positive. Unlike the evidence for the portfolios of funds, small funds consistently outperform

large funds.

[Please insert table A25 about here.]

An examination of the distribution of the p-values for all individual funds and across
individual fund groupings, which are reported in panel A of table A26, shows that less than 2% of
the funds have positive and significant alphas, and half of the funds have negative and significant
performance. This result is confirmed with the unreported evidence from the SSF model, where
the numbers of funds with positive and negative alphas decrease and increase, respectively. The
Bonferroni p-values tend to support these inferences for both models. The negative extreme t-
statistics are all significant with the exception of the high-yield group, and none of the Bonferroni

p-values associated with the maximum t-statistics are significant.

[Please insert table A26 about here.]

The overall performance inferences for the unconditional single factor models are similar to
those reported by Blake et al. (1993), Lee (1994), Elton et al. (1995), and Kang (1997) for U.S.
mutual funds, by Dahlquist et al. (2000) for Swedish bond mutual funds, and to some extent with
those reported by Kryzanowski and Lalancette (1996) for Canadian bond funds for the period

1981-1988.
5.4.1.2 Unconditional Multi-factor Models

Numerous papers argue that multi-factor return generating processes are superior to their
single factor counterparts for capturing bond risks. Blume et al. (1987) and Comnell and Green
(1991) propose a two-factor model consisting of a bond and a stock index to examine the risk-
return relationship of high- and low-grade bonds. Gultekin and Rogalski (1985) and Elton et al.
(1988) use an APT approach to model bond returns, and conclude that the average returns on

default-free bonds are linearly related to at least two factors. Elton et al. (1995) develop a relative
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APT model for the expected returns of bonds consisting of rnulti-factdr structures with four or six
fundamental economic variables. The bond pricing and term structure of interest rate literature
also suggests a multi-factor model for bond returns.*® Brennan and Schwartz (1982) advocate an
equilibrium bond-pricing model with two risk factors .measured by the instantaneous yields on a
maturity and on a consol bond, which represent the short and long ends of the yield curve,
respectively. Other two-factor models specifications include one real and one nominal factor as in
Pennacchi (1991), or one short-term factor and a stochastic volatility of interest rates factor as in
Longstaff and Schwartz (1992).%

Three unconditional multi-factor models are used herein to estimate the risk-adjusted
performance of bond funds; namely, two different two-factor models and one five-factor model.
The two-factor risk model has a similar construction to the model in Blake et al. (1993). It uses
the SC Universe bond index and the SC mortgage backed securities overall index to capture the
risk characteristics of these types of securities. The two-factor stock model uses the returns on
both the TSE 300 index and the SC Universe bond index. The two-factor stock model aims to
assess the different sensitivities of various bonds or portfolios thereof to movements in the bond
and stock markets, asin Blume etal. (1987) and Cornell and Green (1991). This model also
captures equity-like characteristics embedded in some corporate bond issues.

The unconditional five-factor model reflects differences in maturity structure and default risk.
The latter risk is captured by the differences in risk premiums between different securities. The
SC intermediate and long-term government bond indices are used herein to capture maturity

differences. The SC intermediate and long-term corporate bond indices and the SC mortgage

% Factors proposed to determine nominal bond prices include the uncertainty about good prices, differences
among investors in investment horizons and wealth, uncertainty about future production opportunities,
illiquidity, and changes in regulations and taxes. These models are based on the premise that the prices of
default-free bonds with different maturities and coupons are deterministic functions of a small number of
underlying state variables that follow a continuous diffusion process. These state variables are often
Proxied by changes in one or more spot rates in the empirical tests.

® Extended specifications are proposed by Garbade (1986) and Litterman and Scheikman (1991). The latter
authors uncover a linear three-factor model in which the three factors implicitly account for the level,
steepness, and curvature of the yield curve.
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backed securities overall index are used to capture default risk differences. This five-factor model
is very close to the Reg-6 model of Blake et al. (1993), except for the exclusion of a high-yield
bond index in our model.

For all of these multi-factor models, fund performance is obtained by comparing the return of

a fund or portfolio of funds to the return on a tracking portfolio with similar factor loadings that
combines a set of passive bond indices and the risk-free asset. The multi-factor Jensen alphas ¢,

are estimated by the following time-series regressions:

X
(5.6) ia =0+ Budy o ¥ty 120, T =1 i=1. N

k=1
where 7;,,, and I, ,,, denote the excess returns on fund or portfolio of funds i and on the kth

factor between ¢ and f +1, respectively. f, is the sensitivity of the excess return on the fund or

portfolio of funds to the excess return on the th factor, and U, is the error term specific to

fund or portfolio of funds i in month ¢ +1.

The alpha and beta estimates for the varic;us portfolios of individual funds are presented in
tables A27 and A28 for the three multi-factor models. The alphas for the equal- and size-weighted
portfolios of all of the funds are consistently negative and significant. The deterioration in
performance is more pronounced when the risk factor related to the mortgage backed securities
overall index is in the specification of the return-generating dynamics. The lowest average alpha
of about -0.0975% per month is obtained using the five-factor model and the equal-weighted
portfolio of all funds. The ovcrau negative performance is caused by the underperformance of the
government and corporate bond fund groups. Performance supérioﬁty of large funds also exists
across the three muiti-factor models and for most fund groupings, and it is stronger in the
presence of the stock factor. The average risk sensitivities are high for all of the portfolios of

funds for the market index that best describes the investment objective for the fund grouping, and
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the sensitivities to the stock factor are low for all of the pbrtfolios of funds. For the five-factor
model, high factor loadings occur for the portfolio of government bond funds on the medium-
‘térm government bond factor, and for the portfolio o f corporate bond funds on the long- and
medium-term government and medium-term corporate bond factors. Such results reveal

information on the investment styles of these bond fund managers.

[Please insert tables A27 and A28 about here.]

Equal- and size-weighted averages of the alphas of individual funds for various fund samples
using the three multi-factor models are reported in table A25. The equal-weighted average alphas
for all of the funds are -0.0910%, -0.0973%, and -0.1041% per month using the two-factor risk
model, two-factor stock model, and the five-factor model, respccti\}ely. Performance superiority
of small funds exists across these three benchmark models.

The distribution of the p-values for the alpha estimates for the multi-factor benchmarks are
reported in table A26. Only two government funds have positive and significant alphas for the
two-factor stock model. This number of funds decreases to one when the TSE 300 index is
replaced by the mortgage backed securities index and to zero with the use of the five-factor
benchmark model. In contrast, the number of funds with negative and significant alphas is
substantial across the three benchmark models, and it is 95 with the five-factor benchmark model.
Since the computed Bonferroni p-values are highly significant only for the minimum t-statistics,
with the exception of the high-yield fund category, the null joint hypothesis of zero for the multi-
index-based alphas is not supported by the data. The evidence for this model seems to indicate
that fund mangers weakly outperform the benchmark when management fees are considered.

This evidence is consistent with that obtained in the U.S. for the six-factor model of Blake et
al. (1993), the three-factor model of Lee (1994), and the fﬁndamental-six model of Elton et al.
(1995). Multi-factor models appear to provide a better d escription o f the returns on Canadian

bond funds by capturing the various risk characteristics of fixed-income securities. The validity of
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the. unconditional approach requifes that the returns of bond portfolios are stationary over time.
This condition is likely to be violated for three reasons. First, the various bond issues in the
portfolio have different fixed payoffs at specific maturity dates, which lead to changesin the
probability distribution of the returns of the portfolio over time. Second, the betas of bonds
change as their durations change due to movements in interest rates. Third, most bond fund

managers invest in derivative securities with time-varying betas.>

5.4.2 Conditional Benchmark Models

3.4.2.1 Conditional Single Factor Models

The unconditional single market factor is extended to a conditional setting where conditional
expectations are linearly constructed using the vector of predetermined information variables.”!
The approach of Ferson and Schadt (1996) is used by assuming that the beta of each fund varies

over time according to the following linear reaction function:

(5.7 /61,: =b, +bjz,

The intercept ¢ oefficient b,y is the unconditional mean o fthe conditional beta. The vector o f
slope coefficients &; measures the response of the conditional beta to movements in the

inmovations in the conditioning variables, z, = Z, —E(Z,). The augmented conditional beta

single factor model can then be written as:

(5.8) Tion =@ +bghy o +0/(2,1 )+, =0T —Li=1.,N

* Dybvig and Ingersoll (1982) demonstrate that the CAPM fails to price derivative assets.

°! Such a structure is implicitly or explicitly assumed in most previous tests of asset pricing and portfolio
performance (Cochrane, 1996; Chen and Knez, 1996; Ferson and Schadt, 1996; Kryzanowski et al., 1997;
Christopherson et al., 1998; and Ait-Sahalia and Brandt, 2001).
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where &; is the conditional risk-adjusted alpha.?? The validity of this conditional model is tested

using the Wald test on the time-variation in the systematic risk of the funds.
A conditional alpha single factor model also is used. This fully conditioned model has both
time-varying alphas and betas as in Christopherson et al. (1998). The conditional alpha is

approximated by the following linear function:

(5.9) a;, =0, +a;z,

This conditional equation can be modified as follows:

(5.10) Tt = + 2, + b1, +b](2, 0, )+, t=0,,T—1i=1. N

The validity of this extended specification is tested through Wald tests on the alpha, beta, and on
their joint time-varying structures.

The p erformance and risk results for the equal- and size-weighted p ortfolios o f i ndividual
funds are presented in panels E, F, G, and H of table A24 for the two conditional single-factor
benchmark models. Most alphas improve but remain negative and significant. To illustrate, the
alpha of the equal-weighted portfolio of all funds is -0.0537% and -0.0538% per month using the
conditional beta and alpha models, respectively. Since this is smaller than the average monthly
management fees of 0.1205%, this implies weak positive performance pre-expenses. The
portfolios of government and of corporate bond funds have negative and significant performance,
respectively, unlike the portfolios of other fund categoﬁes. These résults are somewhat consistent
with those obtained for U.S. and Canadian equity funds by Ferson and Schadt (1996) and

Kryzanowski et al. (1997), respectively. Both of these studies find that the inclusion of

*? This model can be viewed as an unconditional multi-factor model where the additional factors are the
products of the SC Universe bond index and the lagged information variables, which are the yield on one-
month T-bills, the slope of the term structure, the default premium, and the real yield on long-maturity
government bonds. These factors are interpreted as returns to self-financing dynamic strategies by
purchasing z, units of the market portfolio by borrowing at the risk-free rate.
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conditioning information moves their performance statistics towards better performance.” Partial
and full conditioning seems to preserve the unconditional performance superiority of large funds
for most of the portfolios. The beta coefficients are higher for most of the portfolios of funds
under the conditional methodology. This suggests that unconditional betas may be biased and that
bond fund managers could be revising their portfolios to. changing economic conditions.

The Wald tests conducted on the marginél contribution of the predetermined information
variables in the conditional beta specification are highly significant for all of the portfolios, with
the exception of the portfolios of high-yield funds. The Wald statistics largely reject time-
variation in the alphas, and cannot reject joint time-variation of the alphas with the betas.*

An analysis of the average performances of the individual funds reported in tables A25
reverses the inferences about the effect of conditioning. The simple average conditional alpha is
still negative at -0.0893% but now is marginally inferior to the unconditional estimate of -
0.0852%. The magnitude.of the difference is higher for the conditional alpha model. This result
could be caused by the extremely weak performance of some government and corporate bond
funds. Moreover, performance superiority shifts from large to small firms with partial but not
with full conditioning. |

The distributions of the p-values for the alpha estimates that are adjusted for serial correlation
and heteroskedasticity are reported in table A26. The number of funds with poéitive and
significant alphas is higher at 7 for the conditional alpha model. This is due essentially to the
government and mortgage funds. The number of funds with negative and significant alphas
decreases to 50 for the fully conditional model.* This last observation tends to support our

previous argument that a few extreme funds are driving the weak average conditional

** This argument holds if the covariance between the conditional beta and the excess return on the
benchmark portfolio is negative. In this case, the unconditional Jensen alpha is negatively biased.

* Unreported results show similar conclusions based on the individual fund regressions. The time-variation
in the beta coefficient hypothesis is significant at the 10% level for over 70% of the funds for the
conditional beta model. The null hypotheses of fixed betas and of fixed alphas and betas with a full
conditional model are rejected for 114 and 125 funds, respectively.
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performance. All of the Bonferroni p-vélues are significant, except for the minimum t-statistics
associated with the mortgage and high-yield funds and the corporate bond funds. This rejects the
joint hypothesis of zero conditional alphas. |

Overall, the conditional alphas estimated for the two conditional single-factor models indicate
that fund performance improves, although fund managers marginally underperform the market,
once we control for conditional information effects. This confirms the conclusions of He et al.

(1999) and Dahlquist et al. (2000) for U.S. and Swedish bond funds, respectively.
J3.4.2.2 Conditional Multi-factor Models

We use two versions of the conditional multi-factor models to estimate the risk-adjusted
performance of fixed-income funds. The first specification called the partial conditional model is
based on time-varying factor sensitivity coefficients and is written as:

K
(5.11) Toon =0+ O BuE o s £ =0,,T =1 i=1,...,.N

k=1

where a; is the conditional multifactor abnormal performance, and all of the conditional betas

are linearly related to the vector of the four lagged instruments as in (5.7). The full conditional
model relies on time-varying structures for all of the coefficients including the alphas and betas,
and has the following expression:

K
(5.12) Tt = ¥z, + Y Bz My +tty 0, £=0,.,T =1 i=1,.,N
k=1

where all of the coefficients have a linear reaction function in the four conditioning variables as in
(5.7) and (5.9).
- Under partial and full conditioning, we have two two-factor risk models, two two-factor stock

models, and two-five factor models. The validity of all conditional specifications is assessed

% Unreported results indicate similar statistics using the conditional beta model.
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using ihe Wald tests on the time-varying structure of each coefficient and on the joint structure of
all of the coefficients.

The performance and risk estimates for the ten equal- and size-weighted portfolios of funds
using the two-factor models and the five-factor models are reported in tables A27 and A28,
respectively. The conditional alphas are consistently negative across all portfolios with the
exception of the mortgage and high-yield groups. The latter portfolios have non significant
positive and/or negative alphas. With partial conditioning, these performance estimates are better
than their unconditional counterparts across all o fthe models. For example, the alphas of the
equal-weighted portfolio of all funds are -0.0691%, -0.0557%, and -0.0782% per month using the
two-factor risk model, the two-factor stock model, and the ﬁve-facfor model, respectively.
Surprisingly, when all of the coefficients are time-varying, there is a deterioration in the alphas
point estimates in all specifications that include the Scotia MBS index. For the two-factor stock
model, the performance figures improve with full conditioning except for the portfolios of high-
yield funds but with marginal differences compared to the partial information-based estimates.
Moreover, the performance statistics are consistently higher using the two-factor stock
benchmark compared to the two other models with partial and full conditionings. These last two
observations suggest that tﬁe stock market factor has a pbsitive impact on the performance
statistics and inferences. The superior performance of large funds uncovered with the
unconditional models is mitigated with the conditional two-factor risk models and becomes
superior small fund performance with the full conditional five-factor model.

The average conditional risk sensitivities on the Scotia market factor are lower (higher) than
the unconditional estimates for the two-factor risk (stock) models. For the five-factor model, the
estimation of the risk sensitivities yields similar conclusion to the case without conditioning. The
only e xception is related to the factor 1oadings of the p ortfolios of five high yield funds with
extreme values on the Scotia LT government and corporate bond factors. The small relative size

of these portfolios could partially explain these unusual patterns.
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The Wald test résults indicate strong support for all of the conditional models whefe the joint
null hypothesis of fixed coefficients 'is strongly rejected by the data. However, the individual
time-variation in the alphas is not significant for all of the portfolios for the three benchmark
models. These tests also suggest that conditional two-factor stock models better describe the
dynamics of the returns of fixed-income funds compared to the two other competing models.”®

An examination of the equal- and size-weighted averages of individual fund performances,
which are reported in table A25, reveal three important results.”’ First, there is evidence of
significant underperformance. S econd, the performance-based tests o f individual funds reverse
the effect of conditioning obtained for the portfolios of funds. Third, unlike the tests that
incorporate the contemporaneous cross-correlation across individual funds, the performance
statistics for individual funds suggest superior performance of small funds for most fund
groupings.

The examination of the p-value distributions in panels B, C, and D of table A26 indicates that
more (less) funds have positive (negative) and significant performance compared to the
unconditional tests for the three multi-factor models. These improvements are more pronounced
for the two-factor stock model and the five-factor model with 46 (8) and 38 (9) funds have
positive (positive and significant) alphas, respectively.”® In addition, the Bonferroni conservative
p-values are significant for the minimum e xtreme t-statistics for most g roupings, r ejecting the
joint hypothesis of zerd conditional alphas against the alternative that at least one alpha is
negative. |

Overall, the results from the partial and full conditional multifactor benchmark models

confirm the weak performance of Canadian fixed-income fund managers and the positive impact

% Unreported results the tests on individual funds indicate similar evidence where the test on the joint time-
variation of all coefficients is significant for more than 84% of all of the funds across the six conditional
benchmark models.

%7 For the partial and full conditional five-factor models, the estimation cannot be undertaken for four
government funds and two corporate funds due to reduced degrees of freedom.
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of conditioning information on performance inferences. They also uncover the central role of the
stock market factor in the return generating process, and depiction the need for its inclusion in the
evaluation of fixed-income fund performance. This evidence is partially consistent with the

conclusions of Cornell and Green (1991) using an unconditional stock factor-based framework.

5.5 Survivership Bias and Performance

The estimation of the risk;adjusted performance is not affected by survivorship biases since
the global sample of mutual funds includes all funds that existed over the full studied period. This
sampling procedure permits us to uncover the performance of the surviving funds and to produce
an estimate of survivorship bias. Relatively little research has estimated this bias and examined its
properties based upon the performance of fixed-income funds.”” Blake et al. (1993) argue that
survivorship bias has a lesser impact on bond funds compared to equity funds due to the stability
of their performance. Blake et al. find the annualized average alpha for a small sample of
terminated funds. Their estimate based on a six-index model is 1.02% below that of all of the
- funds in the sample over the period 1979-1988. Dahlquist et al. (2000) estimate a survivorship
bias of 0.10% per year using average excess returns of equal-weighted portfolios of surviving and
non-surviving Swedish bond funds §ver the period 1993-1997. Their estimate becomes negative
using a conditional risk-adjusted performance measure.

Thus, in this section, the-survivorship bias for Canadian bond mutual funds is estimated
across fund investment objectives and chosen benchmark models. Survivorship bias is estimated

using raw returns and on a risk-adjusted basis for equal-and size-weighted portfolios of funds. It

*® Unreported results on the partial conditional models indicate comparable and weaker figures. There are
1, 5, and 8 funds with positive and significant alphas using the two-factor risk model, the two-factor stock
model, and the five-factor model, respectively.

* In contrast, the literature for equity mutual funds is more extensive and uses different methodologies.
See, for example, Grinblatt and Titman (1989), Malkiel (1995), Wermers (1997), Carhart (1997), and
Carhart et al. (2002).
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is Iheasured by the difference between the performances of portfolios of all surviving and non-
surviving funds, and of surviving funds only.

For this purpose, the monthly returns and total net asset values of funds with at least one
monthly return from the period between March 1985 through February 2000 are tracked. Five
size- and five equal-weighted portfolios of government, corporate, mortgage, high-yield, and all
funds are constructed using all of the funds, where portfolio composition changes as funds
commence and terminate their operations.

Based on the results reported in table A29, our first estimate of the survivorship bias is
positive for most fund groups indicating that the non-surviving funds exhibit lower performance
than the surviving funds. The bias is fairly high at about 20 basis points per year for the equal-
weighted portfolios of funds. The bias diminishes for the size-weighted portfolios to about § basis

points per year. The bias also fluctuates considerably on an annual basis.

[Please insert table A29 about here.]

When risk-adjusted performance measures are used, the estimates of the survivorship bias are
comparable to those based on the raw returns (see table A30). The bias estimates are relatively
stable across the twelve benchmark models. The survivorship bias ranges from almost zero basis
points per y ear using the conditional factor models to3 b asis points per year with the partial
conditional five-factor model. The size of the survivorship bias decreases with full conditioning
of the benchmark models. Moreover, the survivorship bias differs across fund objective
categories in that the bias is more pronounced for the mortgage category at 15 basis points per
year than for the government and corporate categories where the bias averages 6 and 8 basis
points per year, respectively. These bias estimates and their properties differ from those reported
by Blake et al. (1993) for US bond mutual funds and parallel the findings of Dahlquist et al.
(2000) for Swedish bond funds. Overall, we conclude that the survivorship bias in the Canadian

bond fund market has little impact on risk-adjusted performance.
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[Please insert table A30 about here.]

5.6 Portfolio Performance and Bond Fund Characteristics

The relationship between risk-adjusted performance and fund characteristics such as age,
size, expenses, turnover, and flows has been marginally examined in the context of bond mutual
funds.'”® Most of this research emphasizes the role of the management expense ratio and its
impact on several risk-adjusted performance measures. Blake et al. (1993) and Elton et al. (1995)
find that the performance of U.S. bond funds is negatively associated with the level of their
expense ratios. These results are robust to different specifications of the return generating process
for the funds. Detzler (1999) obtains corroborating evidence for global bond funds. For Swedish
mutual funds, Dahlquist et al. (2000) report that the performance of bond funds is related to net
flows of money into funds, past performance, expense measures, administrative fees, and fund
size but unrelated to fund turnover. Ferson et al. (2003) report weak cross-sectional differences in
performance for portfolios of U.S. funds grouped according to fund size, expense ratio, turnover,
income yield, and lagged return or lagged new money flows.

As in Grinblatt and Titman (1994), this issue is addressed herein in a cross-sectional setting
using the (un)conditional risk-adjusted performance measures and several fund attributes that are

defined below. The following equation is used to conduct the estimation:

(5.13) a,.j =c, +CX, +e, j={u,c},p=1..,N,s=1,..,8

where X =(Experise Ratio ManagementFees Ln(TNA) Ln(Age) D(Load))' is a

vector of fund characteristics with a dimension equal to S. The vector of coefficients C measures

' This differs from the extensive rescarch on equity mutual funds by Ippolito (1989), Elton et al. (1996),
Grinblatt and Titman (1994), Cathart (1997), Chevalier and Ellison (1999), Dahlquist et al. (2000), and
Otten and Bams (2002). '
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the marginal effect of each attribute variable on the risk-adjusted performance of the fund. e, isa

vector of random €rTors.
5.6.1 Mutual Fund Characteristics

Net asset values or NAV and total number of shares are used to compute the total net asset
value or TNA to reflect the size of the fund. The average fund size is $367.7 million, and ranges
between $23.3 million for the Ivy mortgage fund of Mackenzie Financial Corporation and
$2431.9 million for the Income fund (B) of the Great West Life Insurance Company.

The management expense ratio or MER represents the total of all management and other fees

charged to the fund, as a percentage of the fund’s total assets.'”!

For our sample, it varies from
0.10% to 4.16%. Management fees or MGF are charged by the fund’s investment advisor(s) for
managing the fund and selecting the different securities. They range from 0.00% of the total
assets of a fund to 2.40% annually, and average 1.45%. The MER is higher than that estimate&
for 209 U.S. bond funds of 1.027% reported by Blake et al. (1993).

Four fund types are considered; namely, government, corporate, mortgage, and high-yield.
Fund age or AGE averages 13 years, and ranges from 42 years for the Scotia Canadian Income
fund to two years for the Synergy Canadian ST Income fund.

The dummy variable LOAD is used to indicate if the fund is a load fund with sales charges'or
front-end load upon purchasé of shares and/or deferred sales charges or back-end loads if shares
are sold within a set time. Another dummy vaﬁable or OPTLO captures if the fund has optiénal
load charges. For our sample, seven funds have front-load chérges, 37 have deferred sales
charges, 39 have optional load charges, and 80 are no-load funds. By fund type, there are 32

government funds, 7 corporate funds, and 5 mortgage funds with front and/or back-end load

! The other expenses include shareholder servicing costs, custodian and transfer-agent fees, shareholder
reporting costs, legal fees, auditing fees, interest expense, and directors’ fees. These expense items are
detailed in the statement of operations.
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charges. All of the variables are estimated at the end of the sampling period. Some descriptive

statistics for all of the fund attributes are presented in panel D of table A20.
5.6.2 Risk-Adjusted Performance and Mutual Fund Characteristics

Based on the results reported in table A31, a strong relationship exists between performance
and fund age, load structure, and management expense ratio, and to a lesser extent with the size
and management fees. Since fund age is positively related to performance, this suggests that older
funds perform better than younger funds. This result weakens with the full conditional models. It
contrasts with prior evidence on equity funds obtained for the U.S. by Chevalier and Ellison

(1999) and in several European markets by Otten and Bams (2002).

[Please insert table A31 about here.]

Fund size, as measured by the log of the total net assets of the fund, has a weak positive
relation with the risk-adjusted performance for most of the tests, and especially for the
unconditional performance measures. This indicates limited evidence for the existence of
economies of scale in the Canadian fixed-income mutual fund market. Such a result is somewhat
inconsistent with the evidence of Ferson et al. (2003) of insignificant differences in the
conditional performances of large and small U.S. funds. This finding partially confirms the
Swedish evidence reported by Dahlquist et al. (2000) of positive and significant risk-adjusted
performance ofa trading s trategy o fbuying e qual-weightéd portfolios o f large size funds and
short-selling the small size funds or using cross-sectional regressions.

The relationship between the managemént expense ratio and performance is negative for all
of the regressions but essentially significant with the unconditional measures.'” This result
suggests that funds with high expenses do not perform as well as funds with low expenses. When

the unconditional five-factor model is used, a percentage point increase in expenses reduces

12 Similar and highly significant results are obtained using only the management expense ratio as the
independent variable in the cross-sectional regression, as in Blake et al. (1993) and Elton et al. (1995).
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performance by 0.06%. This sensitivity cocfficient decreases with the presence of conditioning
information. This evidence confirms the results reported by Blake et al. (1993) and Elton et al.
(1995) but not by Ferson ét al. (2003) for U.S. bond funds, and by Detzler (1999) for global bénd
funds but with a smaller mégnitudc_:. Finally, the relation bétween performance and fund load
structure is negative and éigniﬁc,ant, WMch suggests that funds with higher exit/load fees perform
worse than other funds. This result becomes non significant using the full conditional
performance measures. This finding is consistent with the results for Swedish bond funds

reported by Dahlquist et al. (2000).

5.7 Conclusion

The performance of Canadian ﬁxed—income funds is examined in this paper by testing several
linear benchmark models with and without conditioning inforrhation. All of the estimations are
conducted on a comprehensive sample o f surviving and n on-surviving Canadian fixed-income
mutual funds using the GMM framework. The results indicate that performance inferences are
negative and weakly sensitive to the choice of the benchmark. Conditioning information and the
stock market factor positively impact the performancc statistics and inferences. Tests on the
relation between fund performance and fund characteristics reveal that the former is related to
fund age, management expense ratio, and load structure, and to a lesser extent to fund size and
management fees. Survivorship bias is less material as it ranges from 0 to 15 basis points per year
for the total sample. Whilé survivorship bias is reasonably stable across performance models, it
differs materially across fund objective categories.

Our approach may be extended in various directions, such as using a stochastic discount
factor methodology adapted to the pricing of fixed-income securities, assessing the market timing
behavior of bond fund mangers, and identifying the determiqants of fund flows based on several

fund characteristics. These alternative directions are left for future work.
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CHAPTER 6

CONCLUSION

The main objective of this dissertation is to provide new evidence on several issues related to
the perfofmance of Canadian equity and fixed-income mutual funds. In particular, the thesis
develops and proposes various frameworks to better assess the risk-adjusted performance of these
actively managed portfolios. The thesis also attempts to uncover the determinants of fund
performance using several fund characteristics or attributes such as fund type, age, size, and
management fees and expenses, and to examine the robustness of these relations across several
benchmark models and to assess their implications for the e conomics o f the Canadian mutual
funds industry. Finally, the thesis aims to estimate the survivorship bias for the two types of funds
and examine the properties of this survivorship bias with respéct to the performance measurement
model, fund objective, and conditioning information. Although the theoretical developments and
empirical examinations are presented in four chapters, the contribution of this dissertation to the
portfolio performance literature can be summarized from three perspectives.

First, in the second chapter, we extend the traditional approaches to measure the performance
by using the SDF representation of asset prices to derive an asset pricing kernel that is adapted for
performance evaluation. Our approach reflects the predictability of asset returns and permits an
easy integration of conditioning information with different structures. We constrﬁct empirical
frameworks that are suimb}e for ﬁnconditional evaluatioh of fixed-weight strategies, and
(un)conditional evaluations of dynamic strategies using the GMM method. In the third chapter,
we examine a full conditional multi-index model, and the assessed performance inferences are
based on tests that do inéorporatc‘ the contemporaneous cross-correlations across individual fund
returns. In the fourth chapter, we provide the first tests of (un)conditional higher-order and

polynomial asset pricing kernel models in the context of performance evaluation. These models
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| jointly accommodate the conditional pricing of portfolids with linear and nonlinear payoffs. In the
fifth chapter, partial and full linear conditional models are developed and tested on a large sample
of fixed-income funds. These frameworks permit us to uncover the appropriate return generating
process for this type of funds.

Secondly, the dissertation addresses important empiricgl questions and issues. In the second
chapter, we examine the effect of conditioning with a limited and an extended information set on
the performance statistics and inferences. We also test the sensitivity of performance to changes
in the level of relative risk aversion of the uninformed investor. Finally, we assess the
survivorship bias inherent in our database of surviving and non-surviving Canadian equity mutual
funds. The third chapter studies the sensitivity of the performance inferences based on the family
of (un)conditional 1 inear benchmark models for stock selection and market timing. A dditional
non-parametric tests based on performance rankings across all models are conducted. The
robustness of the relation between performance differentials across fund groups and the
differences in fund. charactcﬁsﬁcs or attributes also are examined. In the fourth chapter, we
examine the joint effect of nonlinear dynamics and conditioning information on risk-adjusted
performance and inferences. Moreover, the importance of the restriction on the mean of the asset
pricing kernel or equivalently the pricing of the risk-free asset in performance evaluation is
assessed. In the fifth chapter, we shed light on the sensitivity of the performance inferences to
several single- and multi-factor benchmark models and on the role of bartial and full information
conditioning. We also estimate survivorship bias and uncover its properties based on samples of
surviving and non-surviving Canadian fixed-income mutual funds, and examine the robustness of
the relationship between the risk-adjusted performance and bond fund characteristics.

Thirdly, the empirical results of this dissertation convey important and valuable implications
for the literature. In the second chapter, we obtain a surprising result contrasting with prior
evidence on the positive effect of conditional information. Such a result could be explained by the

greater impact of the time-variation in the conditional risky asset allocation compared to the
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- common linear information scaling applied in most SDF-based performance tests. We also show
that the reversal in the size-based performance results with limited information conditioning is
alieviated somewhat with an expansion of the conditioning set. Performance inferences are
weakly related to changes in the relative risk aversion of the uninformed investor. Finally, our
estimate of survivorship bias is important and is similar to that estimated for U.S. and European
funds. It ranges from 36 to 58 basis points per year for equity funds, and is stable across
performance models but differs across groupings by fund objective. In the third chapter, we find
that using a conditional multifactor benchmark model improves measured performance. Canadian
mutual funds managers display pervasive negative market-timing ability, and controlling for
conditioning information somewhat mitigates the pervasiveness of the negative market-timing
inferences. The performance ranking tests indicate that full model conditioning appears to have a
much greater impact on absolute rather than on relative portfolio performance inferences. Finally,
the test on the relation between fund performance and fund characteristics finds that the
determinants of Canadian equity mutual funds is a mix of that identified for U.S. and European
funds, and suggest the presence of scale economies and a weak level of competition in the
Canadian mutual fund industry. In the fourth chapter, we report evidence that nonlinear dynamics
and conditioning information positively impact measured performance. The inclusion of the
additional restriction on the mean of the asset pricing kernel produces mixed effects on the
performance statistics and inferences, and it alters the conditioning infonnation-based large fund
effect. Finally, there are three si@iﬁcant determinants of the Canadian equity fund performance
that are robust across the various nonlinear performance models. These determinants are age and
size, and to a lesser extent the fund load structure. In the fifth chapter, the ristadjusted
performance is negative and performance inferences are weakly sensitive to the return generating
process and improve with partiél' conditioning. Performance tests that do not incorporate the
contemporaneous cross-correlations in the returns among individual funds consistently alter and

reverse the conditioning information-based inferences and the superior performance of large

138



funds across all benchmark models; The stock market factor is useful in describing the fetum
generating process of Canadian fixed-income funds. Inclusion of a stock market factor not only
improves the performance statistics but also preserves the single factor-based superior
performance of large funds. The estimation of the survivorship bias indicates that it is less
material for Canadian fixed-income mutual funds than for their equity counterparts, that it is
reasonably stable across pe;formancé models, but differs across funds grouped by their
investment objectives. Finally, five of the significant determinants of the performance of
Canadian fixed-income mutual funds are robust across the various linear performance models.
These determinants are the age, management expense ratio, load structure, and to a lesser extent
the size and management fees of each fund. This result suggests very limited scale economies and
a pronounced level of competition in that segment of the Canadian mutual fund industry.

This thesis addresses various questions and issues in portfolio performance and could be
extended in at least four ways. The first extension is by developing a dynamic framework that
integrates business cycle indicator variables and SDF-based performance measures. The second
extension is to conduct the unfeasible fully efficient conditional GMM estimation, which is based
on general interactions between functions of conditioning variables and pricing errors, using
nonparametric estimates for the optimal set of instruments as suggested in Newey (1993). The
third extension is to test for alternative specifications of the nonlinear dynamics and optimal
structures of conditioning information. The fourth extension is to examine the determinants of
fund flows based on several fuﬁd characteristics. We leave these alternative directions for future

work.
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APPENDICES
Appendix A
The conditional asset allocation problem is based on the following maximization:

Max E[U(R, ;)]

a

¢

where R, . = a,r;‘,+, +R,,,, and the conditional expectation is based upon the information set
€, . The following first-order condition or FOC is obtained by differentiating E[UR,,.)]

with respect to &, and setting the result equal to zero:

0 - '
BE—.EI[U(RW,HI )] = Et [U (Rw,t+l )]Et(rb,tﬂ) + COVt [U (‘Rw,t+l )’ rb,t+1 ]
t

= El [U'(Rw,tﬂ )]Et(rb,ﬂl) + Ex [U,(Rw,ﬂl )]COV, (Rw,l+l ’ rb,t+l)
=E[U'R, ,)E (%) + &, E[U"(R,,.)Var, (7,,,,)
=0

The last expression follows by applying Stein’s lemma. The optimal risky asset allocation is

obtained by solving the last expression:

g L B
‘ ) (D Vﬂl',(rb‘“l)

-E t [U”(Rw,ul )] . . . s . . S g
- is the uninformed investor’s global absolute risk aversion, which is
E[U'R,,.)] '

where © =

assumed to be a fixed parameter.

The optimal risky asset allocation or portfolio policy is no longer a constant parameter but a
nonlinear function of the first and second conditional moments of the benchmark returns. It is

measurable with respect to the set of state or conditioning information, or:

a, =a(Q,)
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Table Al. Summary statistics for the mutual funds and attributes, and mutual fund excess return
predictability

This table reports the summary statistics for the mutual fund returmns (in %) and for the mutual fund return predictability based on time
series predictive regressions of two groups of portfolios of mutual fund excess returns on five lagged instrumental variables using
monthly data from November 1989 through December 1999, for a sotal of 122 observations. The instruments are dividend yield, risk
premiumm, slope of theé term structure, one-month Treasury bill rate, and dummy variable for January. The abbreviations AG, G, and GI
refer to aggressive growth, growth, and growth & income, respectively, and the prefixes EW and SW refer to equal- and size-weighted
portfolios of funds with these investment objectives, respectively. Panel A provides the statistics on the distribution of various
parameter estimates for the sample of 95 equity mutual funds. Panel B reports some statistics on the equal-weighted portfolios of
funds for the major groupings by investment objectives and for all funds. Panel C reports the summary statistics for the fund attributes
(measured at period end). MER and MGF are the % management expense ratio and management fees of the fund, respectively. AGE
is the age of the fund measured in years since fund inception. SIZE is the total net asset value of the fund in millions. LOAD is a
dummy variable equal to one if the fund charges front- or back-end sales charges. Panel D reports the mutual fund excess return
predictability results where the estimations are conducted using the GMM method. The y*-row presents the Newey and West (1987b)

tests of the hypothesi_s that all the slope coefficients are zeros. The next row includes the cormresponding p-values.

Panel A: Individual mutual funds

Statistics

Mean Return Std. Dev. Minimum Maximum Skewness Kurtosis
Mean 0.8215 4.1030 ~17.9935 12.2822 -0.695 4.105
Std. Dev. 0.2920 0.9536 3.3824 5.8822 0.603 1.884
Minimum -0.2563 1.7320 -23.7762 5.9845 -1.562 0.305
1% -0.1198 2.6242 -23.2102 6.2039 -1.514 0.356
2.5% 0.1464 2.8489 -22.6766 6.5448 -1.476 0.967
5% 0.3798 3.1518 -21.7504 7.2469 -1.401 1.298
10% 0.5600 3.2865 -20.7581 7.7613 . -1.231 1.714
25% 0.7014 3.6534 -20.0053 9.1103 -1.048 2.900
Median 0.8040 3.9964 -18.8240 10.9419 -0.870 4.192
75% 0.9302 4.2270 -16.7178 12.9623 -0.518 5.089
90% 1.1170 . 4.8647 -14.6339 15.8471 0.097 6.014
95% 1.4009 5,7417 -11.5281 26.6862 0.462 7.225
97.5% 1.4491 6.6748 -8.4121 31.3842 0.732 8.308
99% 1.4720 7.7122 -5.0960 36.9568 1.349 9.675
Maximum 1.5024 8.9621 -4.5660 39.2593 2.054 10.437
Panel B: Investment objective portfolios
Objective N Mean Return Std. Dev.
Ag. Growth 27 0.8409 3.8646
Growth 50 0.8143 3.5717
Growth & Income 12 0.8156 3.3359
All 95 0.8215 3.5226
Panel C: Descriptive statistics for the fund attributes
Fund Attribute | Mean Median | Std. Dev. Min. - Max.’ Skew. Kurt. -
MER 2.055 2.130 0.741 0.090 |  4.600 0.363 | 3.287
MGF 1.732 2.000 0.498 0.130 ~ 2.500 -1.918 3.747
AGE 21.361 14.053 12.906 10.185 67.157 1.410 1.474
SIZE 288.712 | 191.179 | 333.448 67.416 | 2876.553 5.447 39.042
LOAD 0.170 0.000 0.376 0.000 1.000 1.801 1.268
Panel D: Mutual fund excess return predictability
Fund Portfolio EWAG | EWG | EWGI | SWAG | SWG | SWGI
N 27 - 50 12 27 50 12
> 15343 | 16467 | 17.531 | 15.268 | 16.250 | 16.978
p-value 0.009 0.006 | 0.004 0.009 0.006 0.005
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Table A2. Summary statistics for the instrumental variables and passive portfolios

This table rcports the summary statistics for the monthly returns of the instrumental variables and ten size-sorted
passive portfolios using all TSE stocks. TSEVWX and TSE300X are the value-weighted and 300 TSE index returns
less the 1-month Treasury bill rate in % or TB1, respectively. DY is the dividend yield on the TSE 300 index. TERM is
the yield spread between long Canadas and the one period lagged 3-month Treasury bill rate or TB3 in % per month.
RISK is the yield spread between the long-term corporate bond (McLeod, Young, Weir bond index) and long Canadas
in % per month. Ten size-sorted stock portfolios are formed according to size deciles on the basis of the market value
of €quity outstanding at the end of the previous year. The securities with the smallest capitalizations are placed in P1.

Panel A reports various statistics for these instruments and passive portfolios, including autocorrelation coefficients of

order 1, 3, 6, and 12. Panel B presents the correlation matrix of the instcuments. Panel C presents the correlation matrix
of the passive portfolios. The data cover the period from November 1989 to December 1999, for a total of 122

observations,

Panel A: Descriptive statistics and autocorrelations

Portfolios

Mean

Median | Std. Dev.

Min.

Max

Skew.

151

. Kurt. £ P Ps P12
TSEVWX | 0.545 | 0.569 4.194 -19.552 | 11.436 | -0.787 | 6.686 | 0.063 | 0.026 | 0.043 | -0.037
TSE300X 0.417 0.710 4.243 -20.490 | 11.559 | -0.889 6.826 0.066 | 0.006 | 0.050 | -0.122
DY 0.204 0.191 0.062 0.109 0.338 | 0.385 1.952 | 0976 | 0.928 | 0.856 | 0.682
TERM 0.130 0.138 0.001 -0.245 0.148 | -0.743 | 2942 0.920 | 0.793 | 0.630 | 0.244
RISK .0.072 { 0.073 0.000 0.038 0.103 | -0.163 | 1.839 | 0.948 | 0.837 | 0.721 | 0.619
TBl 0.514 0.415 0.002 0.212 1.143 | 1.161 3.449 0.966 | 0.883 | 0.747 | 0.438
TB3 - 0.528 0.441 0.002 0.228 1.138 | 1171 3.510 0.963 | 0.882 | 0.738 | 0.420
Pl -0.049 | 0.033 0.115 -0.181 0.705 | 1.767 | 10.756 | 0.228 | 0.070 | -0.103 | 0.111
P2 0.014 0.012 0.076 -0.258 0.297 | 0.158 4.825 0.222 | 0.079 { -0.070 | -0.018
P3 0.008 0.007 0.065 -0.207 0.181 | 0.021 3.723 0.236 | 0.141 | 0.038 | -0.018
P4 0.008 0.008 0.064 -0.250 0.263 | 0.161 6.373 0.225 | 0.070 | -0.062 | 0.042
P5 0.005 0.008 0.065 -0.230 0.396 | 1.164 | 14.139 | 0.111 | -0.037 | -0.087 | -0.032
P6 0.001 | 0.006 0.055 <0.271 0.142 } -1.033 | 7.022 | 0.136 | 0.118 | 0.059 | -0.087
P7 0.001 0.002 0.046 -0.216 | 0.103 | -0.899 | 6.101 0.062 | 0.054 | -0.008 | -0.088
P8 0.004 | 0.004 0.044 <0200 | 0.114 | -0940 | 6.222 | 0.109 | 0.052 | 0.026 | -0.166
P9 0.004 [ 0.003 0.044 -0.181 0.106 | -0.629 | 4.822 | 0.063 | 0.036 | 0.023 | -0.129
P10 0.009 0.009 0.040. -0.190 0.085 | -1.009 | 6.604 | -0.036 | -0.018 | 0.048 | -0.067
Panel B: Correlation matrix of instruments
Instruments | TSEVWX | TSE300X DY | TERM | RISK TB1 TB3
TSEVWX 1.000 0.991 -0.276 | 0.122 | -0.054 -0.254 | -0.266
TSE300X 1.000 -0.245 | 0.113 | -0.033 -0.233 - 1 -0.245
DY 1.000 | -0.493 | 0.666 0.841 0.833
TERM 1.000 { -0.447 -0.825 | -0.810
RISK 1.000 0.557 0.540
TB1 1.000 0.996
TB3 B 1.000
Panel C: Correlation matrix of passive portfolios
Portfolios Pl | P2 P3 P4 P35 P6 P7 P8 P9 P10
P1 1.000 | 0.670 | 0.655 | 0.627 | 0.595 | 0.655 | 0.555 | 0.455 | 0.458 | 0.398
P2 1.000 | 0.892 | 0.867 | 0.681 | 0.843 ! 0.784 | 0.708 | 0.675 | 0.593
P3 1.000 | 0.830 | 0.670 | 0.837 | 0.780 | 0.718 | 0.692 | 0.622
P4 1.000 | 0.652 | 0.837 ] 0.799 | 0.732 | 0.698 | 0.634
P5 1.000 | 0.752 | 0.743 | 0.675 | 0.697 | 0.652
P6 1.000 | 0.900 | 0.874 | 0.825 | 0.774
P7 1.000 | 0.886 | 0.884 | 0.811
P8 1.000 | 0.925 | 0.840
P9 1.000 | 0.883
P10 1.000




Table A3. Portfolios of funds performance measures using the unconditional and conditional pricing
kernels

This table reports the performance measures (& in %) per investment objective using the unconditional pricing kernel
for the two selected benchmarks. The dividend yield (DY) and the yicld on the onc-month T-bill (TB1) are used as
instrumental variables. Simultaneous system estimation, including the ten size-based passive strategies, is conducted
using the GMM method. All represents the statistics of the portfolios of all funds. Size is defined as the total net asset
value of the fund. TSE 300 and TSEVW are the TSE 300 and value-weighted TSE indexes, respectively. The J-Statistic
is the minimized value of the sample quadratic form constructed using the moment conditions and the optimal
weighting matrix. Wald corresponds to the p-value based on the Newey and West (1987b) Wald test of the marginal
significance of the two conditioning variables. Monthly data are used from November 1989 through December 1999,
for a total of 122 observations per portfolio of funds.

Fund TSE 300 TSEVW

Group A | pvalue T wald A | pvalue [ Wald
Panel A: Equal-weighted portfolio of funds and unconditional pricing kernel
Ag. Growth | 0.1884 0.012 0.1789 0.016

Growth 0.2144 0.001 0.2098 0.001
Growth/Inc. | 0.2681 0.000 0.2591 0.000

All 0.1994 0.000 0.1933 0.000

J-Stat 0.1506 0.1505

Panel B: Size-weighted portfolio of funds and unconditional pricing kernel
Ag. Growth | 0.2565 0.001 0.2463 0.002

Growth 0.2697 0.000 0.2626 0.000
Growth/Inc. | 0.1923 0.006 0.1830 0.008

All 0.2514 0.000 0.2438 0.000

J-Stat 0.1506 0.1505

Panel C: Equal-weighted portfolio of funds and conditional pricing kernel
with DY as instrumental variable :

|Ag. Growth | 0.3077 0.000 0.2785 0.000
Growth 0.1012 0:024 0.0919 | 0.040
Growth/Inc. [ 0.1479 0.002 0.1290 0.008
All 0.1599 0.000 0.1371 0.000
J-Stat 0.1792 . 0.1792 '
Panel D: Size-weighted portfolio of funds and conditional pricing kernel with
DY as instrumental variable
Ag. Growth | 0.2885 0.000 0.2510 0.000
Growth 0.1289 0.004 0.1129 0.011
Growth/Inc. | 0.0033 0.947 -0.0130 0.794
All 0.1414 0.001 0.1209 0.007
J-Stat 0.1794 0.1793 :

Panel E: Equal-weighted portfolio of funds and conditional pricing kernel
- with DY and TB1 as instrumental variables
|Ag. Growth | 0.0299 0.445 0.000 | 0.0056 0.890 0.000

Growth -0.0899 | . 0.099 0.000. | -0.0746 0.134 0.000
Growth/Inc. | -0.0818 0.152 0.000 | -0.0522 0.338 0.000
All -0.0605 0.182 { 0.000 | -0.0573 0.183 0.000
J-Stat - 0.1843 0.1828

Panel F: Size-weighted portfolio of funds and conditional pricing kernel with
‘DY and TB1 as instrumental variables
Ag. Growth | 0.1097 0.008 0.000 0.0824 0.046 0.000

Growth | -0.0529 0.324 0.000 ; -0.0236 0.621 0.000
Growth/Inc. | -0.0961 0.114 0.000 | -0.0803 0.156 0.000
All -0.0197 0.676 0.000 | -0.0129 0.763 0.000
J-Stat 0.1840 0.1825
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Table A4, Individual fund performance measures using the unconditional and conditional pricing
kernels '

This table reports summary statistics of performance (, in %) per investment objective based on individual fund performances using the
unconditional and conditional pricing kemels for the two benchmark variables. The dividend yield (DY) and the yield on the one-month
T-bill (TBI) are used as instrumental variables. Simultancous GMM systemn estiration is conducted using a subset of the individual funds
in addition to the ten size-based passive strategies. All represents the equal- or the size-weighted portfolio of the performances of all
individual funds. The J-Statistic using the Bartlett kemel is the minimized value of the sample quadratic form ¢ onstructed u sing the
moment conditions and the optimal weighting matrix. Wald corresponds to the p-value based on the Newey and West (1987b) Wald test
of the marginal significance ofthe two c onditioning variables. Size is defined as the total net asset value ofthe fund. TSE300 and
TSEVW are the 300 and value-weighted TSE indicés, respectively, Monthly data are used from November 1989 through December 1999,
for a total of 122 observations per fund.

Fund TSE 300 ] TSEVW
Group ]Mean Mean Mean Mean
Mean A | Med. A |Std.Dev. | p-val | Skew. K urt.{Wald | Mean A | Med. A {Std.Dev. p-val | Skew. { Kurt. [Wald
Panel A: Equal-weighted portfalios of individual fand performances using the unconditional pricing kernel
Ag. Growth {0.1884 [ 0.1743 | 0.004 10.263]-0.99 [2.66 0.1796 | 0.1778 | 0.004 {0.258]-1.17[3.34
Growth 0.214510.1941 | 0.003 [0.288{ 0.30 14.39 0.2106 | 0.1858 | 0.003 ]0.285] 0.33 [ 4.14
Growth/Inc. | 0.2684 ] 0.1991 | 0.005 [0.204] 1.31 |4.38 0.2597 | 0.1944 | 0.005 [0.1901 1.30 | 4.37
All 0.1996 | 0.1743 | 0.004 [0.281] 0.14 [4.25 0.1931 | 0.1778 | 0.004 |0.275] 0.00 | 4.62
Mean J-Stat | 0.1506 0.1505
Panel B: Equal-weighted portfolios of individual fund performances using the conditional pricing kernel with DY as
the instrument :
Ag. Growth | 0.2988 | 0.2215 | 0.003 Jo.152] 0.81 [0.91 0.2715 | 0.2212 { 0.003 [0.158] 0.70 | 0.74
Growth 0.1034 1 0.0934 | 0.003 {0.224] -0.05 [0.49 0.0844 | 0.0857 | 0.003 [0.210] -0.20 ] 0.36
Growth/Inc. | 0.1669 | 0.0725 | 0.006 |0.114] 1.83 [4.68 0.1522 | 0.0681 | 0.006 j0.118] 1.75 [ 4.48
All 0.1614 ] 0.1538 | 0.003 {0.198} 1.06 {3.54 0.1412 ! 0.1452 | 0.003 [0.198] 0.95 [3.30
Mean J-Stat ] 0.1799 | ) 0.1805
Panel C: Equal-welghted portfolios of Individual fund performances using the conditional pricing kernel with DY
and TBI1 as the instruments .
Ag. Growth | 0.1137 | 0.0854 | 0.004_[0.165] -0.04 [0.420.000] 0.0902 | 0.0521 | 0.004 |0.1791 0171 0.77 0.000
Growth -0.09711-0.1178] 0.002_[0.170[ 0.90 [1:80}0.000] -0.0911 | -0.1140| 0.002 ]0.171 ] 0.50 1.75 {0.000,
Growtti/Inc. {-0.0984 [-0.1590 [ 0.004 "10:201] 2.40 |7.5010.000] -0.0890 -0.1585| 0.004 {0:.168] 2.61 { 8.29 [0.000
All -0.0461 |-0.0742] 0.003 0.168] 1.02 |2.08[0.000] -0.0474 | -0.0897 | 0.003 10.181| 0.99 | 2.65 0.000
Mean J-Stat { 0.1848 0.1833
Mean |Mean p- [Mean Mean [Mean p-| Mean
Meand{ t(A) val  |Wald Mean A | #(A) val | Wald
Panel D: Sizé-welghted _portfolios of individual fund performances using the unconditional pricing kernel
Ag. Growth | 0.2391 | 1.950 | 0204 102308 | 1.934 T 0.198
Growth 0.2474 1 2284 | 0.218 0.2417 | 2.279 | 0.213
Growth/Inc. 1 0.1918 | 1.273 | 0.292 0.1835 | 1.230 | 0.268
All 1022831 1993 | 0.231 ) 0.2224 | 1978 | 0.225
Mean J-Stat | 0.1506 ' -1 0.1505
Panel E: Size-welghted portfolios of individual fund performances using the conditional pricing kernel with DY as
the instrument
Ag. Growth 10.2590 | 2.392 | 0.185 : 0.2309 | 2.214 | 0.179
Growth ~ 10,1311 | 1.623 | 0.205 0.1169 | 1.541 | 0.182
Growth/Ine. | 0.0207 | -0.302 | 0.169 0.0063 | -0.444 | 0.175
All ~_10.1469 | '1.526 | 0.204 0.1289 | 1.405 | 0.195
Mean J-Stat | 0.1797 0.1799 -
Panel F: Size-weighted portfolios of individual fund performances using the conditional pricing kernel with DY and
TBI1 as the instruments '
Ag. Growth | 0.1384 | 1.392 | 0.154 [0.000] 0.1157 | 1.170 | 0.148 ]0.000
Growth -0.0557 | -0.147 | 0.149 10.000| -0.0511 | -0.222 | 0.143 [0.000
Growth/Inc. 1-0.1245] -1.529 | 0.258 [0.000 -0.1154§ -1.520 | 0.210 | 0.000
All -0.0218| 0.042 | 0.159 10.000 -0.0239 | -0.153 | 0.158 {0.000
Mean J-Stat { 0.1849 0.1833
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Table AS. Summary statistics for the unconditional and conditional pricing kernels

This table presents summary statistics for the unconditional and conditional performance measures (A in %) per fund
group and for all funds. The dividend yield (DY) and the yield on the one-month T-bill (TBI1) are used as instrumental
variables. All of the p-values are based on a GMM system estimation using the Bartlett kernel. Information related to
the funds with significant performance and with positive significant performance at the 5% level is provided in the
table. The Bonferroni p-values are the minimum and the maximum one-tailed p-values from the t-distribution across all
of the funds and all of the fund groups, multiplied by the defined number of funds. N is the number of finds in each

group.
Bonferroni
Percent of funds with Number of funds p-value

Fund Group | N | Max.p | Min.p p<5% with A >0&p<5% | Min.t [ Max. t
Panel A: TSE 300 index and unconditional pricing kernel

_A&Growth 27 0.894 0.000 48.15 11 0.245 | 0.000
Growth 50 0.980 0.000 42.00 21 1.000 | 0.000
Growth/Inc. 12 0.984 0.000 41.67 4 0.073 | 0.000
All 95 0.984 0.000 42.11 37 0.577 | 0.000
Panel B: Value-weighted TSE index and unconditional pricing kernel
Ag. Growth. 27 0.931 0.000 48.15 11 0.237 [ 0.000
Growth 50 0.948 0.000 42.00 21 1.000 | 0.000
Growth/Inc. 12 0.866 0.000 50.00 5 0.058 | 0.000
All 95 0.948 0.000 43.16 38 0.458 | 0.000
Panel C: TSE 300 index and conditional pricing kernel with DY as the instrumental variable
Ag. Growth 27 | 0.938 0.000 62.96 16 0.000 | 0.000
Growth 50 0.959 0.000 60.00 22 0.000 | 0.000
Growth/Inc. 12 | 0.715 0.000 75.00 6 0.000 | 0.000
All 95 0.959 0.000 60.00 44 0.000 | 0.000

Panel D: Value-weighted TSE index and conditional pricing kernel with DY as the instrumental variable

Ag. Growth 27 0.904 0.000 - 55.56 14 0.000 | 0.000
Growth 50 0.912 0.000 62.00 22 0.000 | 0.000
Growth/Inc. 12 0.655 0.000 8333 -6 0.000 | 0.000
Allr 95 0.912 0.000 60.00 42 0.000 | 0.000

Panel E: TSE 300 index and conditional

ricing kernel with DY and TB1 as the instrumental variables

Ag. Growth 27 0.858 0.000 55.56 11 0.000 | 0.000
Growth 50 0.971 0.000 58.00 8 0.000 | 0.000
Growth/Inc. 12 0.978 0.000 66.67 1 0.000 [ 0.000
All . 95 | 0978 | 0.000 58.95 21 0.000 | 0.000
Panel F: Value-weighted TSE index and conditional pricing kernel with DY and TB1 as the instrumental
variables

Ag. Growth 27 0.869 0.000 48.15 8 0.000 | 0.000
Growth 50 0.934 0.000 58.00 7 0.000 | 0.000
Growth/Inc. 12 0.787 0.000 58.33 1 0.000 | 0.000
All 95 0.944 0.000 54.74 16 0.000

0.000

154




Table A6. Summary statistics for performance for the unconditional and conditional pricing kernels
for various relative risk aversion levels

This table reports the performance measures or lambda (A in %) per investment objective for various levels of the
relative risk aversion or RRA coefficient Gamma or y using the unconditional and conditional pricing kernels for two
selected benchmarks. The dividend yield (DY) and the yield on the one-month T-bill (TB1) are used as instrumental
variables. Simultancous system estimation that includes the ten size-based passive strategies is conducted using the
GOMM method. All represents the statistics of the portfolios of all funds. Information related to the estimated
performance, the p-values, and the J-statistic using the Bartlett kernel is provided in the table. TSE 300 and TSEVW
are the 300 and value-weighed TSE indexes, respectively. The J-statistic is the minimized value of the sample quadratic
form constructed using the moment conditions and the optimal weighting matrix. Monthly data are used from

November 1989 to December 1999, for a total of 122 observations per portfolio of funds.

Benchmark

TSE

300

TSEVW

Gamma 3

4

35

2

p-
Fund Group A val.

P-
A val.

A

pP-.
val.

A

p-
val.

A

p-
val.

A

P
val.

A

p-
val.

A

P-
val.

Panel A: Unconditional pricing kernel for equal-weighted portfolios of funds

Ag. Growth | 0.1899 {0.01

0.1884 j0.01

0.1865

0.01

0.1855 10.01

0.1822

0.01

0.1789

0.02

0.1766

0.02

0.1757

002

Growth 0.2157 10.00

0.2144 10.00

02124

0.00

0.2113 10.00

0.2131

0.00

0.2098

0.00

0.2076

0.00

0.2068

0.00

Growth/Inc. | 0.2704 10.00

0.2681 {0.00

0.2652

0.00

0.2635 10.00

0.2638

0.00

0.2591

0.00

0.2559

0.00

0.2544

0.00

All 0.2017 10.00

0.1994 10.00

0.1975

0.00

0.1964 10.00

0.1959

0.00

0.1933

0.00

0.1902

0.00

0.1892

0.00

J-Stat 0.1506

0.1506

0.1505

0.1505

0.1504

0.1505

0.1505

0.1505

Panel B: Unconditional pricing kernel for size-weighted portfolios of funds

Ag. Growth ] 0.2592 ]0.00

0.2565 10.00

0.2540

0.00

0.2524 10.00

0.2505

0.00

0.2463

0.00

0.2435

0.00

0.2422

0.00

Growth 0.2725 {0.00

0.2697 10.00

0.2671

0.00

0.2655 10.00

0.2668

0.00

0.2626

0.00

0.2598

0.00

0.2585

0.00

Growth/Inc. | 0.1951 {0.01

0.1923 10.01

0.1898

0.01

0.1883 10.01

0.1873

0.01

0.1830

0.01

0.1802

0.01

0.1790

0.01

All 0.2545 10.00

0.2514 10.00

0.2489

0.00

0.2460

0.00

0.2438

0.00

0.2410

0.00

0.2388

0.00

J-Stat 0.1506

0.1506

0.1505

0.2474 10.00

0.1505

0.1504

0.1505

0.1505

0.1505

Panel C: Conditional pricing kernel with

DY as Instrumental va

riable for equal-wei,

hted portiolio:

of funds

Ag. Growth [ 0.3264 {0.00

0.3077 10.00

0.3049

0.00

0.3076 10.00

0.2729

0.00

0.2785

0.00

0.2700

0.00

0.2710

0.00

Growth 0.1110 }0.01

0.1012 10.02

0.1064

0.02

0.1097 10.01

0.0939

0.04

0.0919

0.04

0.0910

0.04!

0.0935

0.03

Growth/Inc. | 0.1458 10.00

0.1479 10.00

0.1487

0.00

0.1488 10.60

0.1279

0.01

0.1290

0.01

0.1294

0.01

0.1289

0.01

All 0.1588 10.00

0.1599 10.00

0.1598

0.00

0.1592 10.00

0.1376

10.00

0.1371

0.00

0.1364

0.00

0.1361

0.00

J-Stat 0.1794

0.1792

0.1791

0.1791

0.1794

0.1792

0.1790

0.1789

Panel D: Conditional pricing kernel with

DY as instrumental va

riable for size-weighted portfolios of funds

Ag. Growth | 0.2941 }0.00

0.2885 10.00

02831

0.00

0.2701 10.00

0.2613

0.00

0.2510

0.00

02444

0.00

' 0.2336

0.00

Growth 0.1222 10.01

0.1289 10.00

0.1312

0.00

0.1320 0.00

0.1082

0.02

0.1129

0.01

0.1144

001

0.1153

0.01

Growth/Inc. {-0.000310.99

0.0033 {0.95

0.0055

0.91

0.0070 10.89

-0.0167

0.74

-0.0130

0.79

-0.0105

0.83

-0.0079

0.87

All 0.1493 10.00

0.1414 {0.00

0.1438

0.00

0.1450 10.00

0.1270

0.00

0.1209

0.01

0.1258

0.00

0.1224

0.01

J-Stat 0.1795

0.1794

0.1793

0.1792

0.1795

0.1793

0.1791

0.1789

Panel E: Counditional pricing kernel with

DY and TBI as the instrumental variables for equal-weighted portfolios

of funds

Ag. Growth ] 0.0400 }0.31

0.0299 {0.44

0.0224

0.56

0.0226 10.56

0.0122

0.76

0.0056

0.89

0.0023

0.95

0.0012

0.98

Growth -0.088610.11

-0.0899(0.10

-0.0887

0.10

-0.086910.10

-0.0726

0.15

-0,0746

0.13

-0.0751

0.13

-0.0749

0.12

Growth/Inc. |-0.0791{0.17

-0.0818 10.15

-0.0817

0.15

-0.0807 10.15

-0.0489

0.37

-0.0522

0.34

0.0534

0.32

-0.0538

0.32

All -0.057310.21

-0.0605[0.18

-0.0618

0.17

-0.0603 10.17

-0.0537

022

-0.0573

0.18

-0.0592

0.16

-0.0597

0.15

J-Stat  0.1865

0.1843

0.1830

0.1821

0.1847

0.1828

0.1816

0.1808

Panel F: Conditional pricing kernel with DY and TB1 as the instrumental variables for size-weighted portfolios of funds

Ag. Growth | 0.1190 10.00

0.1097 10.01

0.1048

0.01

0.1018 {0.01

0.0904

0.03

0.0824

0.05

0.0782°

0.06

0.0756

0.06

Growth -0.054110.32

-0.052910.32

-0.0505

0.34

-0.0482 10.36

-0.0225

0.64

-0.0236

0.62

-0.0237

0.61

0.0235

0.61

Growth/Inc. ;-0.096610.11

-0.0961 {0.11

-0.0953

0.12

-0.0945 10.12

-0.0800

0.16

-0.0803

0.16

-0.0802

0.15

-0.0799

0.15

All -0.0175]0.71

-0.0197 10.68

-0.0196

0.67

-0.0190 {0.68

-0.0092

0.83

-0.0129

0.76

-0.0148

0.73

00157

0.71

J-Stat 0.1861

0.1840

0.1828

0.1819

0.1843

0.1825

0.1813

0.1805
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Table A7. Survivorship bias and risk-adjusted performance

This table reports the performance measures (A in %) per investment objective group for size-weighted portfolios of
surviving and non-surviving funds and estimates of the survivorship bias using three asset pricing kernel models and
two selected benchmarks. The survivorship bias is the difference between the risk-adjusted performance of the size-
weighted portfolios of all funds and of surviving funds only. Simultaneous system estimation, including the ten size-
based passive strategies, is conducted using the GMM method, Panel A provides information on the performance
estimates of four size-weighted portfolios of all funds using the unconditional asset pricing kernel and an estimate of
the survivorship bias. Panel B provides information on the performance estimates of four size-weighted portfolios of all
funds using the conditional asset pricing kernel with one instrumental variable (DY) and an estimate of the survivorship
bias. Panel C provides similar information to panel B using the conditional asset pricing kernel with two instrumental
variables (DY and TB1) and an estimate o f the survivorship bias. All represents the statistics o f the size-weighted
portfolio of all funds. The standard errors of the e stimates are adjusted for serial correlation and heteroskedasticity
(Newey and West, 1987a). Size is defined as the total net asset value of the fund. TSE 300 and TSEVW are the TSE

300 index and the value-weighted TSE index, respectively. Monthly data are from November 1989 through December
1999, for a total of 122 observations per portfolio of funds.

TSE 300 TSEVW
A | p-val | Surv. Bias A | pval { Surv. Bias
Panel A: Size-weighted portfolios of all funds using the unconditional asset
pricing kernel
Aggressive Growth | 0.2364 | 0.00 0.2412 | 0.2265 | 0.01 0.2376

Fund Group

Growth 0.2071 | 0.00 0.7512 | 0.2017 | 0.00 0.7308
Growth/Income 0.1336 |- 0.05 0.7044 | 0.1259 | 0.06 0.6852
Income 0.1911 | 0.05 | -0.0180 | 0.1826 | 0.05 | -0.0312
All 0.2030 | 000 | 0.5808 | 0.1956 | 0.00 0.5784

Panel B: Size-weighted portfolios of all funds using the conditional asset pricing
kernel with one instrumental variable DY
|Aggressive Growth | 0.2736 | 0.00 0.1788 | 0.2334 | 0.00 0.2112

Growth 0.0967 | 0.03 03864 | 0.0854 | 0.06 0.3300
Growth/Income -0.0582 § 0.17 0.7385 | -0.0687 | 0.11 0.6684
Income -0.0363 | 0.60 | -0.0072 | -0.0523 | 0.45 | -0.0084
All 0.1086 | 0.01 0.3936 | 0.0912 | 0.03 0.3564

Panel C: Size-weighted portfolios of all funds using the conditional asset pricing
kernel with two instrumental variables DY and TB1
|Aggressive Growth | 0.0977 | 0.02 0.1440 | 0.0699 | 0.10 0.1500

Growth -0.0874 | 0.06 | 04140 | -0.0645 | 0.13 0.4908
Growth/Income -0.1879 { 0.00 | 1.1016 | -0.1794 | 0.00 1.1892
Income -0.2810 | 0.00 | -0.0048 | -0.2545 | 0.00 | -0.0012
All -0.0584 | 0.16 0.4644 | -0.0499 | 0.19 0.4440
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Table A8. Performance and risk measures for portfolios of funds using the unconditional and
conditional CAPM

This table reports the performance (x in %) and tisk measures for each investment objective group using the unconditional CAPM and
the conditional CAPM with time-varying betas and/or alphas for two benchmark variables. The conditional CAPMs are based on four
instrumental variables; namely, the lagged values of the dividend yield (DY), the yield on one-month T-bill (TB1), the risk premium
(RISK), and the slope of the term structure (TERM). GMM estimation is conducted by regressing each portfolio of funds excess return
on a constant, the benchmark excess return, and variables representing the lagged instruments and the product of the four lagged
instrumental variables and the benchmark excess retumn. The alpha and beta are the estimates of the intercept and the slope of the
regression, respectively. The standard errors of thesc estimates are adjusted for serial correlation and heteroskedasticity (Newey and
West, 19872). The number of funds in portfolio is given in panel B of table 2.1. All represents the statistics for the portfolios of all
funds. Information related to the estimated performance or alpha, the beta, the p-values, and the adjusted R? is provided in the table.
TSE 300 is the TSE 300 index and TSEVW is the value-weighted TSE index. W1, W2, and W3 correspond to the p-values bascd on
the Newey and West (1987b) Wald test on the validity of the time-varying alphas, time-varying betas, and time-varying alphas and
betas, respectively. Size is defined as the total net asset value of the fund. Monthly data are from November 1989 to December 1999,
for a total of 122 aobservations per portfolio of funds.

TSE 300 TSEVW

Adgl Adg'.
Fund Group Q. p-val] B |pval|l W1 [W2{ W3 | K a p-val B _|pvalfWi|{w2| W3 | R
Panel A: Equal-weighted portfolios of mutual funds and unconditional CAPM

Ag. Growth -0.0122 § 0.95 | 0.81 | 0.00 10.78 | -0.1262 | 0.55 | 0.83 | 0.00 0.80
Growth -0.0489 | 0.46 | 0.84 | 0.00 0.97] -0.1594 | 0.05 | 0.84 {0.00 0.96
Growth/Inc. | -0.0240 | 0.73 | 0.78 | 0.00 0.96 | -0.1290 | 0.11 | 0.79 | 0.00 0.96
All -0.0315 | 0.75 ] 0.81 | 0.00 0.94{ -0.1411 | 0.19 | 0.82 | 0.00 0.94
Panel B: Size-weighted portfolios of mutual funds and unconditional CAPM

Ag. Growth 0.0116 | 0.95 | 0.82 | 0.00 0.82 ] -0.1026 | 0.58 | 0.84 [0.00 0.84
Growth 0.0034 | 0.95 | 0.86 | 0.00 097 | -0.1095 | 0.13 | 0.86 | 0.00 0.96
Growth/Inc. -0.0817 | 0.20 | 0.76 | 0.00 0.96 | -0.1827 | 0.01 | 0.77 | 0.00 0.95
All -0.0020 | 0.98 | 0.33 | 0.00 0.95] -0.1128 { 0.22 | 0.84 {0.00 0.95
Panel C: Equal-weighted portfolios of mutual funds and conditional CAPM with time-varying betas

Ag. Growth 0.0080 § 097 { 0.80 | 0.00 0.26 0.79 { -0.1060 | 0.59 { 0.83 | 0.00 Q.60 0.80
Growth -0.0399 { 0.53 | 0.84 { 0.00 0.00 0.97 | -0.1467 | 0.03 { 0.84 | 0.00 0.41 0.96
Growth/Inc. -0.0232 | 0.7t | 0.78 { 0.00 0.00 0971 -0.1253 | 0.06 { 0.79 [0.00 0.00 0.96
All -0.0195 | 0.84 { 0.81 | 0.00 0.00 0.94 | -0.1261 | 0.19 | 0.82 | 0.00 0.30 0.94
Panel D: Size-weighted portfolios of mutual funds and conditional CAPM with time-varying betas

Ag. Growth 0.0293 | 087 | 0.81 | 0.00 0.06 0.83 | -0.0839 | 0.63 | 0.82 | 0.00 0.38 0.84
Growth 0.0167 | 0.77 | 0.85 { 0.00 0.00 0.97 { -0.0920 { 0.15 | 0.86 [ 0.00 0.17 0.96
Growth/Inc. | -0.0850 | 0.12 | 0.77 | 0.00 0.00 0.97 | -0.1812 | 0.00 { 0.78 | 0.00 0.00 0.96
All 0.0091 | 0.91 ] 0.82 | 0.00 0.00 0.95] -0.0983 | 0.24 | 0.83 | 0.00 0.14 0.95

Panel E: Equal-weighted portfolios of mutual funds and conditional CAPM with time-varying alphas and betas
Ag. Growth 0.0221 | 0:50 ] 0.79 | 0.00 | 0.04 {0.10] 0.00 { 0.80 | -0.0928 | 0.60 [ 0.82 | 0.00{0.02{0.39 0.02 10.82

Growth -0.0376 | 0.48 { 0.83 | 0.00 | 0.00 10.00| 0.00 | 0.97 | -0.1504 | 0.01 | 0.84 }{0.00 {0.00{0.27] 0.00 {0.96
Growth/Inc. | -0.0242 | 0.64 | 0.77 | 0.00 | 0.00 |0.00] 0.00 { 0.97 | -0.1317 | 0.01 | 0.78 { 0.00 [0.00]0.10] 0.00 [0.97
All -0.0150 | 0.85 { 0.80 | 0.00 | 0.00 {0.00{ 0.00 |0.95 | -0.1260 | 0.11 | 0.82 [ 0.00 {0.00]0.27] 0.00 | 0.95

Panel F: Size-weighted portfolios of mutual funds snd conditional CAPM with time-varying alphas and betas
Ag. Growth 0.0382 | 081 | 0.79 1 0.00 | 0.01 {0.01] 0.00 { 0.84 | -0.0773 | 0.61 | 0.81 | 0.00 {0.00]0.13] 0.00 ] 0.85

Growth 0.0187 | 0.71 } 0.84 { 0.00 | 0.01 |0.00{ 0.00 | 0.97 | -0.0962 | 0.07 | 0.85 | 0.00 {0:00 0.12} 0.00 { 0.96
Growth/Inc. | -0.0892 | 0.06 | 0.76 | 0.00 | 0.00 [0.00] 0.00 1 0.97 | -0.1913 | 0.00 | 0.77 | 0.0010.0010.04{ 0.00 [ 0.96

Al 0.0116 1 0.87 | 1.06 | 0.87 | 0.00 [0.00{ 0.00 | 0.96 | -0.1008 | 0.15 | 0.83 | 0.00 [0.00]0.05} 0.00 | 0.95

157



Table A9, Summary statistics for the performance estimates based on the unconditional and
conditional CAPM and four-index models for the fund groups based on individual fund
performances

This table presents summary statistics for the performance measures based on the unconditional and the conditional CAPM and four-
index model with time-varying betas and/or alphas for each fund group and for all funds. The instrumental variables are the lagged
values of the dividend yield (DY), the yield on one-month T-bill (TB1), the risk premium (RISK), and the slope of the term structure
(TERM). N is the number of funds in each group. Panels A, C, and E present these results for the CAPM using the TSE 300 index as
the benchmark. Panels B, D, and F present these results for the CAPM using the value-weighted TSE index as the benchmark. N is the
number of funds in each group. All the p-values are based on GMM estimation and are adjusted for serial correlation and
heteroskedasticity (Newey and West, 1987a). Information related to the funds with significant performance at the 5% level and with
positive significant performance is provided in the table. The Boaferroni p-values are the minimum and the maximum one-tailed p-
values from the t-distribution across all of the funds and all of the fund groups, multiplied by the defined number of funds.

Bonferroni Bonferroni

Percent of funds | Number of funds with p-value p-value
Fund Group N | Max.p | Min.p with p<5% a>0and p<5% (Min. t) (Max. t)
Panel A: TSE 300 index as benchmark variable and uaconditional CAPM
Ag. Growth 27 | 0.974 0.021 741 1 0.323 0.276
Growth 50 0.993 0.000 16.00 1 0.000 0.161
Growth/Inc. 12 0.844 0.000 16.67 0 0.000 0.616
All 95 0.993 0.000 12,63 . 2 0.000 0.305
Panel B: Value-weighted TSE index as benchmark variable and unconditional CAPM
Ag. Growth 27 | 0999 | 0.007 11.11 0 0.092 1.000
Growth 50 | 0.995 0.000 30.00 1] 0.000 1.000
Growth/Inc. 12 | 0.752 0.000 33.33 0 .000 1.000
All 95 0.999 0.000 24,21 0 0.000 1.000
Panel C: TSE 300 index as benchmark variable and conditional CAPM with time-varying betas
Ag. Growth ~ 27 | 0.962 0.003 11.11 1 0.042 0.073
Growth 50 | 0.988 0.000 24.00 1 0.000 0.004
Growth/Inc. 12 0.579 0.000 25.00 0 0.000 0.319
Al 95 | 0.988 0:000 18.95 2 0.000 0.008
Panel D: Value-weighted TSE index as benchmark variable and conditional CAPM with time-varying betas
Ag. Growth 27 | 0927 0.001 14.81 ‘ 1 0.007 0.314
Growth 50 | 0.850 0.000 34.00 i 0.000 0.227
Growth/Inc. 12 | 0.675 0.000 25.00 0 0.000 1.000
All 95 1 0.927 0.000 26.32 2 0.000 0.431
Panel E: TSE 300 index as benchmark variable and conditional CAPM with time-varying alphas and betas
Ag. Growth 21 0.984 0.001 22.22 3 0.009 0.009
Growth 50 | 0948 | 0.000 26.00 2 0.000 0.001
Growth/Inc. 12 0.622 0.000 33.33 1 0.000 0.226
All 95 0.984 0.000 26.32 7 0.000 0.001
Panel F: Value-weighted TSE index as benchmark variable and conditional CAPM with time-varying alphas aud betas
Ag. Growth 27 | 0.838 | 0.000 22.22 1 0.000 0.050
Growth S0 | 0.834 0.000 42.00 1 0.000 0,023
Growth/Inc. 12 | 0.589 0.000 58.33 0 0.000 0.956
All 95 | 0.838 0.000 38.95 2 0.000 0.043
Panel G: Unconditional four-index model
Ag. Growth - 27 | 0973 0.000 22.22. 3 0.011 0.026
Growith 50 | 0.986 0.000 20.00 2 0.000 0.297
Growth/Inc. 12 | 0953 0.000 33.33 1 0.000 0.218
All 95 | 0.986 0.000 22.11 7 0.000 0.092
Panel H: Conditional four-index model with time-varying betas
Ag. Growth 27 | 0905 0.006 18.52 3 0.007 0.029
Growth 50 | 0.988 0.000 22.00 4 0.000 0.108
Growth/Inc. 12 | 0.958 0.000 50.00 1 0.000 0.018
All 95 0.988 0.000 24.21 9 0.000 0,100
Panel I: Conditional four-index model with time-varying alphas and betas
Ag. Growth 27 { 0958 0.000 18.52 4 0.098 0.004
Growth .50 | 099 0.000 23.00 6 0.000 0.054
Growth/Inc. 12 | 0905 0.000° 50.00 i 0.000 0.002
All 95 | 0.996 0.000 27.37 11 0.000 0012
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Table A10. Performance and risk measures for portfolios of funds using the unconditional and
conditional four-index models

This table reports the performance (o in %) and risk measures by investment objective using the unconditionat and conditional four-
index model. GMM estimation is conducted for each portfolio of funds by Tegressing its excess return on the market index excess
teturn, the return differential between small and large-cap stock portfolios, the return differential between growth and value stock
portfolios, and the excess retum on an aggregate bond index representing corporate and government bonds. Beta of M, SL, GV, and B
are the estimates of the coefficients associated with the market index excess retumn, the size factor, the growth-value factor, and the
bond factor, respectively. The instrumental variables are the lagged values of the dividend yield (DY), the yield on one-month T-bill
(TB1), the risk premium (RISK), and the slope of the term structure (TERM). The standard errors of these estimates are adjusted for
serial correlation and heteroskedasticity (Newey and West, 1987a). All represents the statistics for the portfolios of all funds.
Information related to the estimated performance (alpha), the factor betas (estimated value and p-values), and the adjusted R? is
provided in the table. W1, W2, W3, W4, WS, and W6 correspond to the p-values based on the Newey and West (1987b) Wald test on
the validity of the time-varying alphas, time-varying betas of the market factor, the size factor, the growth-value factor, and the bond
factor, and the joint time-variation in all coefficients, respectively. Size is defined as the total net asset value of the fund. Monthly data
used are from November 1989 to December 1999, for a total of 122 observations per porifolio of funds.

Fund ’ Adj.
Group o __|p-val| 8(M) [p-val} B(SL) |p-val| B(GV) |p-val| p®B) |p-vall W1 | W2 |w3|walwWs| wse Rg
Panel A: Equal-weighted portfolios of mutual funds and unconditional four-index model
Ag. Growth | 0.0275 10.79] 0.91 {0.00{ 0.51 [0.00] 0.02 ]0.69]-0.04[0.36 0.95
Growth -0.0459)0.26 | 0.88 {0.00] 0.15 10.00]| 0.05 }10.05[-0.0110.75 098
Growth/Inc.}|-0.0267] 0.55| 0.82 [0.00] 0.15 10.00| .05 |0.01] 0.01 | 0.79 0.98
All -0.016410.731 0.87 [0.00{ 0.25 |0.00] -0.03 |0.22|-0.01 [ 0.64 0.98
Panel B: Size-weighted portfolios of mutual funds and unconditional four-index model
Ag. Growth | 0.0362 [0.70 | 0.91 |0.00] 0.43 [0.007 0.01 0.79]-0.0410.36 0.95
Growth 0.004210.921 0.89 10.00] 0.13 [0.00] -0.03 0.11 {-0.01 | 0.81 0.98
Growth/Inc. {-0.0878{ 0.05 | 0.79 [0.00] 0.13 {0.00] 0.05 |0.01 | 0.03 [0.32 0.97
All 0.0053 1091 | 0.87 10.00] 0.21 {000 -0.02 [0.34]-0.01[0.74 0.98
Panel C: Equal-weighted portfolios of mutual funds and conditional four-index model with time-varying betas
|Ag. Growth |0.1379 {026 | 0.92 [0.00] 0.47 70.00T 0.07 [0.03]-0.03]0.65 0.7310.18]0.00{0.42{ 0.00 | 0.95
Growth -0.012610.77{ 0.88 10.00] 0.13 {0.00] -0.01 {0.59]0.02 {062 0.2210.0010.00{0.18{ 0.00 | 0.98
Growth/Inc.|-0.048710.38 | 0.82 10.06] 0.13710.00| -0.01 [0.73 | 0.02 | 0.55 0.18)10.01[0.18]0.08{ 0.00 | 0.98
All 0.023510.58 | 0.87 }0.001 0.22 {000} 0.00 {0.87]0.00 |0.92 0.60]0.0010.0010.35{ 0.00 | 0.98
Panel D: Size-weighted portfolios of mutual funds and conditional four-index model with time-var, ing betas
Ag. Growth]0.1485 1 0.18 | 0.91 {0.00] 0.41 [0.00] 0.06 ]0.08 ]-0.00]0.93 0.0110.00}0.0010.54] 0.00 | 0.96
Growth 0.0289 10.56 | 0.89 [0.00} 0.11 {0.00] 0.00 [0.96] 0.03 | 0.45 0.0310.0210.24/0.08] 0.00 { 0.98
GrowtlvInc. {-0.0955] 0.09 | 0.81 [0.00] 0.10 {0.00] -0.00 {0.85] 0.03 |0.50 0.11]0.0010.08|0.04] 0.00 | 0.98
All 0.0469|0.38| 0.87 {0.00] 0.18 [0.00] 0.0t [0.74] 0.01 {0.68 0.02[0.00[0.01{0.30f 0.00 | 0.98

Panel E;: Equal-weighted portfolios of mutual funds and conditional four-index model with time-varying alphas and betas
Ag Growth}0.1525 |0.21] 0.92 {0.00 | 0.47 10.00] 0.07 10.05]-0.01[0.86 | 0.89 [0.95]0.17]0.00]0.40] 0.00 | 0.95
Growth 0.0077 10.86 | 0.88 10.00] 0.12 {0.00.] -0.01 [0.49] 0.03 {0.53| 0.06 [0.17]0.00]0.00[0.07] 0.00 | 0.98
Growth/Inc. -0.046210.40 | 0.82 [0.001 0.12 10.00| 0.60 |0.87]0.00 | 0.91] 0.51 {0.18]0.00]02710.22] 0.00 | 0.08
All 0.0422 {043 087 {0.00] 0.22 10.00] 0.01 |0.74] 0.01 | 0.80] 0.29 [0.490.00/0.00]0.21] 0.00 | 0.98
Panel F: Size-weighted portfolios of mutual funds and conditional four-index model with time-varying alphas and betas

Ag Growth | 0.1551 {0.16 | 0.91 {0.00] 041 10.00] 0.06 [0.0970.00 [1.00] 0.77 [0.08[0.00]0.00]073] 0.00 | 0.9
Growth 0.0442 10.38 | 0.88 [0.00-] 0.10 J0.00 | 0.00 [0.98{ 0.04 | 0.35]-0.33 [0.02{0.01]0.24]0.08] 0.00 | 0.98
Growth/Inc. {-0.0945 0.08 | 0.80 10.001 0.10 [0.00] 0.00 {0.59] 0.01 | 0.83| 0.54 [0.12[0.00/0.25|0.07| 0.00 | 0.98
All 0.055010.32 { 0.87 | 0.00{ 0.18 [0.00| 0.01 [0.56]0.02 {0.59] 0.45 [0.02]0.60]0.00]0.26] 0.00 | 0.98
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Table All. Performance and timing nieasures for portfolios‘of funds using the unconditional and
conditional models of Treynor and Mazuy and of Henriksson and Merton

This table reports the performance (« in %) and timing measures for various investment objectives grouping using the unconditional
and conditional Treynor and Mazuy (1966) and Henriksson and Mertan (1981) models for two benchmark variables. GMM estimation
is conducted for each portfolio of funds by regressing the individual fund or fund grouping excess return on the benchmark excess
return, the squares of the benchmark excess retum, and the product of the instrumental variables and the benchmark excess return for
the conditional Treynor and Mazuy (1966) model. For the conditional Henriksson and Merton model, the excess return on each
portfolio o f funds is regressed on the b enchmark e xcess retum, an indicator function that depends on the benchmark c onditional
expected retum, the product of the instrumental variables and the benchmark excess return, and the product of the indicator function
with the instrumental variables. The instrumental variables are the lagged values of the dividend yield (DY), the yield on one-month
T-bill (TB1), the risk premium (RISK), and the slope of the term structure (TERM). The standard errors of the performance and
timing estimates are adjusted for serial correlation and heteroskedasticity (Newey and West, 1987a). TSE 300 and TSEVW are the
TSE 300 index and the value-weighted TSE index, respectively. All represents the statistics for the portfolios of all funds. Size is
defined as the total net asset value. The number of funds in portfolio is given in panel B of table 2.1. Monthly data are used from
November 1989 through December 1999, for a total of 122 observations per portfolio of funds.

TSE 300 TSEVW

Fund Group o |lpval] y [pva[AdiR®| o |[pval] 7 |pvil] Adj. R
Panel A: Equal-weighted portfolios of mutual funds grouped by investment objectives for
unconditional Treynor and Mazuy model

Ag. Growth 0.17411 04210971000 | 0.79 10.0879] 0.68 [-1.0310.00] 0.81
Growth 00342 | 0.60 10431000 | 097 1-0.0267] 0.71 |-0.6410.00| 096
Growth/Inc. 00474 | 047 1037 001 | 096 1-0.0236] 0.75 [ -0.51 | 0.00] 0.96
All 007471046 | 0551000 | 094 [0.0017]0.99 [-0.76 | 0.00| 094

Panel B: Size-weighted portfolios of mutual funds grouped by investment objectives for
unconditional Treynor and Mazuy model

[Ag. Growth 0.17981 033 | 0871 0.00 | 0.83 ]0.0936] 0.61 [ 0.94]000] 085
Growth 007421022 [-037]000 ] 097 10.0117] 086 |-0.58{000] 0.96
Growth/Inc, 1-0.02331 0.68 [ -0.30] 004 | 096 1-0.0863] 0.20 | -0.46]0.00]| 0.96
All 00882] 030 |-047] 000 | 095 [0.0162]0.86 | -0.68]0.00] 0.95

Panel C: Equal-weighted portfolios of mutual funds grouped by investment objectives for
~_conditional Treynor and Mazuy medel

Ag. Growth 0.1534] 052 |-0.95]1007T 079 T0.0890]0.70 [-1.33]001] 0.1
Growth 00113 0.87 |-034{ 0.01 | 097 {-0.0226] 0.77 | 0.85 | 0.00| 0.6
Growth/Inc. 0.0067 | 092 |-020] 025 | 097 1.0.0361] 6.64 1 -0.61|000] 097
All 0.0518 | 0.65 |-0.47]0.05 | 0.94 [0.0080 | 0.94 | -0.92 | 0.00| 095

Panel D: Size-weighted portfolios of mutual funds grouped by Investment objectives for
conditional Treynor and Mazuy model ‘

Ag. Growth 0.1365] 051 1-070/0.12 | 083 10.0730]0.72 [-1.07[001 [ 0.85
Growth 005291040 10241004 | 097 10.01780.80 [-0.75[{0.00] 097
Growth/Inc. -0.05591 0.36 |-0.1910.26 | 0.97 1-0.0912] 0.21 [-0.62]0080] 096
All 005991052 1-033}009 | 096 |0.0171[0.86 [-0.7910.00] 0.95

Panel E: Equat-weighted portfolios of mutual funds grouped by investment objectives for
unconditional Henriksson and Merton model .

Ag. Growth 040651 0.13 }-026] 002 | 0.79 {03759} 0.14 [-0.32]0.00] 0.81
Growth 0.1188 } 0.21 |-0.10§ 003 | 097 {0.1432]0.11 [-0.19{0.00] 096
Growth/Inc. 0.0891 | 039 |-0071029 | 096 1008931033 [-0.14]0.00] 0.96
All 01913 016 |-0.14] 003 | 094 {0.1959 | 0.11 |0.21 | 000| 0.94

Panel F: Size-weighted portfolios of mutual funds grouped by investment ohjectives for
unconditionat Henriksson and Merton model

Ag. Growth 0.376510.12 10221003 | 083 103517 0.12 [ -0.29 ] 000] 085
Growth 0.1488 | .09 |-0.09] 0031 0.97 [0.1741] 0.05 [-0.18[0.00] 0.96
Growth/Inc. 001751085 {-0.06] 032 | 096 [00284]0.74 {-0.13]0.00] 096
All 018521 0.13 [-0.111 004 | 095 [0.1950] 0.08 [-0.19]0.06] 0.95

Panel G: Equal-weighted portlalios of mutual funds grouped by investment objectives for
conditional Henriksson and Merton model’

Ag. Growth 0.1737 | 0.51 [.-0.06 [ 063 | 0.80 |0.2426 [ 0.37 [-0.19T0.14] 0382
Growth 1001221088 [ -002] 0671 097 ]0.0917] 037 [-0.15]0.01 [ 097
Growth/Inc. -0.0482] 0.56 | 0.03 1 0491 0.97 {0.0180 [ 0.87 | -0.09[0.12] 0.97
All 0.0488 | 069 |-0021 072 | 095 [0.1222 037 }-0.15[002] 095

Panel H: Size-weighted portfolios of mutual funds grouped by investment objectives for
conditienal Henriksson and Merton model

Ag. Growth 0.1657 | 049 1-005[ 064 | 0.84 [0.24141035]-0.19]0.12] 085
Growth 007521036 {-003/048 | 097 10.1505} 0.15 | -0.16[0.01{ 097
Growth/Inc. -0.11361 0.17 1 003 [ 046 | 0.97 1-0.0336] 0.75 [-0.09 [012] 096
All 1007271052 {-0.03/063 | 096 [0.1491]0.26 |-0.16[0.02] 0.96
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Table A12. Summary statistics for the performance and timing measures for portfolios of funds using
the unconditional and conditional models of Treynor and Mazuy and of Henriksson and
Merton »

This table presents summaty statistics for the performance and timing measures « and ¥, respectively, based on the unconditional and
the conditional Treynor and Mazuy (1966) and the Henriksson and Merton (1981) models for each fund group and for all funds. N is
the number of funds in each group. All the p-values are based on GMM estimation and are adjusted for serial comelation and
heteroskedasticity (Newey and West, 19872). Information related to the funds with significant performance (timing) at the 5% level
and with positive significant performance (timing) is provided in the table. The Bonferroni p-values are the minimum and the
maximum one-tailed p-values from the. t-distribution across all of the funds and all of the fund groups, multiplied by the defined
number of funds. : : :

Performance measure Timing measure
% of Bonfetlmni % of Bonfc;roni
Fund funds, |# of funds, g0 }—EvalE P funds, | #of funds, }—PValue
o .
Group N Max | Min p<3% & p<5% Min. t {Max.t| Max | Min ps% (720 &p<st Min. t} Max. ¢

Panel A: TSE 300 index as benchmark variable and unconditional Treynor and Maz ny model
Ag. Growth [27(0.973[0.000( 11.11 3 1.000 { 0.120 { 0.840 { 0.000] 55.56 1 0.000 | 0.326
Growth 5010.978{0.000| 10.00 2 0.000 { 0.052 { 0.972 10.000] 30.00 ] 0.000{ 1.000
Growth/Ine.112]0.87510.000 ] 16.67 1 0.000 | 0.164 | 0.718 | 0.000| 41.67 0 0.001 | 1.000
All 95]0.97810.000] 11.58 6 0.000 | 0.100 1 0.972 10.000{ 36.84 3 0.000] 0.727
Paunel B: Value-weighted TSE index as benchmark variable and unconditional Treynor and Mazuy model
Ag. Growth [2710.948 {0.024] 741 2 1.000 | 0.315 | 0.900 | 0.000| €6.67 0 0.000 { 1.000
Growth 5010.98810.000{ 14.00 1 0.011 | 0.347 { 0.907 { 0.000] 50.00 0 0.000 | 1.000
Growth/Inc.{12]0.910}0.000] 2500 1 0.000.1 0285 { 0.517 | 0.000] 66.67 0 0.000 ] 1.000
All 9510.98810.000] 14.74 4 - 0.000 | 0.660 | 0.907 { 0.000} 55.79 1 0.000 | 0.369
Panel C: TSE 300 index as benchmark variable and conditional Treynor and Mazuy model .
Ag. Growth {27]0.964.10.007 | 7.41 2 107951 0.095}0.988{0.002] 11.11 0 0.026 | 1.000
Growth 5010.998[0.007] 12.00 1 0.000 | 0.019 10.964 { 0.000{ 18.00 2 0.002 | 0.300
Growth/Ine.{12{0.93210.000| .33 0 0.000 | 0.395 {0.839 ] 0,008 | 16.67 1 0.299 | 0.045
All 9510.998 1 0.0001 11.58° 3 0.000 | 0.036 | 0.988 { 0.000] 15.79 4 0.005] 0.125
Panel D: Value-weighted TSE index as benchmark variable and conditional Treynor and Mazuy model
Ag. Growth [2710.998 {0.015] 741 ; 2 1.000 { 0.199 1 0.950 | 0.000| 48.15 0 0.001 | 1.000
Growth 5010.977]0.000] 16.00 1 0.001 | 0.154 {0.933]10.000] 40.00 0 0.000 | 1.000
Growth/Inc.}1210.996]0.000 | 16.67 0 0.002 1 0415 {0.797 {0.001 | 50.00 1 0.003 | 0.035
All 9510.99810.000{ 14.74 3 1 0.001 -] 0.292 | 0.950 | 0.0001 42.11 1 0.000 | 0.279
Panel E: TSE 300 index as benchmiark variable and unconditional Henrlksson and Merton model ‘
Ag. Growth {2710.896 [0.002] 14.31 4 1.000. [ 0.028 1 0.917.{0.060] 33.33 0 0.005 | 1.000
Growth 5010.999]0.000f 18.00 7 = 0.000 | 0.088 | 0.994 {0.000| 18.00 0 0.004 | 1.000
Growth/Inc.{12{:0.969 { 0:000 | 16.67 1 0.000 | 0.286 { 0.920 [ 0.000] 833 0 0.001 | 1.000
All 95]10.99910.0001 16.84 12 0.000 | 0.098 ] 0.994 {0.000| 21.05 1 0.008 | 1.000
Panel F: Value-weighted TSE index as benchmark variable and unconditional Henriksson and Merton model
Ag. Growth [27]0.839]0.002} 14.81 | 4 1.000 1'0.024 1 0.985 | 0.000] 51.85 0 10.000] 1.000
Growth. 5010.97810.001 ] 16.00 7 0.058 | 0.015 | 0.996 {0.000| 42.00 0 0.000 | 1.000
Growth/Inc.{12{0.947 | 6.044 | 16.67 2 1000 | 0:261 {0.436 ] 0.000] 50.00 0 0.000 | 1.000
All 95[{0.978 | 0.001{ 15.79 13 0.110 } 0.028 | 0.996 | 0.000 | 44.21 1 0.000 | 1.000
Panel G: TSE 300 index as bénchmark variable and conditional Henriksson and Merton model o
Ag. Growth [2710.88610.004 | 7.41 2: 1.000 | 0.04810.998 ] 0.104] 0.00 0 1.000 | 1.000
Growth 5010.987{0000] 800 | 1 0.000 | 0.294:1 0.993 { 0.001] 6.00 3 0:02110.785
GrowthIne. [ 12]0.93410.000 [ 16.67 0 0.000 { 0.322 { 0.839-/0.218] 0.00 0 1.000 | 1.000
All 95]0.987]0.000] 10.53 3 0.000 | 0.167 | 0.998 | 0.001] 4.21 2 0.040 § 1.000
Panel H: Value-weighted TSE index as benchmark variable and conditional Henriksson and Merton model
Ag. Growth {27£0.869.10.002 | 11.11 3 1.000 § 0.019 | 0.961 10.018] 14.81 0 0.119 ] 1.000
Growth 50[0.96710.0081 14.00 | 4 0.250 1 0.180 1 0.975{0.000] 26.00 0 10.003] 1.000
Growth/Inc.]12] 0.956 {0.085] 0.00 0 0.871 1 0496 | 0.895 { 0.016| 25.00 0 0.089 | 0.522
All _19510.967]10.002 10.53 7 0.475 | 0.067 1 0.97510.000] 21.05 0 0.005 | 1.000
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Table A13. Rank correlations, performance sign maintenance, and ranking concordance for the various
performance measures

This table reports the rank correlation between seventeen performance measures and some statistics related to the sign and ranking of
these performance measures for all funds and per fund group. The risk-adjusted measures are constructed using several performance
madels: All models with the exception of the four-index models zre tested with two market index benchmarks: TSE 300 and value-
weighted TSE indices. M1 and M2 are related to the unconditional CAPM; M3 and M4 are related to the conditional CAPM with
time-varying betas; M5 and M6 are related to the conditional CAPM with time-varying alphas and betas; M7, M8, and M9 are related
to the unconditional and conditional four factor models with time-varying betas and with time-varying alphas and betas, respectively;
MI10 and M11 are related to the unconditional Treynor and Mazuy (1966) timing model; M12 and MI3 are related to the
unconditional Henriksson and Merton (1981) timing model; M14 and M15 are related to the conditional Treynor and Mazuy (1966)
timing model; and M16 and M17 are related to the conditional Henriksson and Merton (1981) timing model. Panel A presents the
Spearman rank correlations between all pairs of performance measures. Panel B provides information on the number with consistent
positive and negative alphas across all performance models per fund group and for all funds. The number of significant alphas for each

sign-is reported in parentheses. These statistics are estimated for the stock selection performance measures and for all measures. Panel
C reports the Kendall coefficient of concordance (W) for sixteen sets of performance rankings.

Panel A: Spearman rank correlations between the various performauce estimates

Performance Measure .
ML | M2 | M3 T MAT M5 | M6 | M7 M8 M9 | MI0 | Mi1 | M12 | M13 [ Mi14 | MIS | Mi6 | Mi7

M1 [1.000

M2 10.9947( 1.000

M3 10.238°[0.221°] 1.000

M4 10.242°10.232710.9927 [ 1.000

M5 10.949710.94171 0.236° [0.231"| 1.000

M6 [0.9407°10.944" 1 0.225° [0.228° [0.989"| 1.000

M7 [0.960710.9527] 0.248" [0.245° |0.962" 1 0.950" | 1.000

M8 - 10.712710.720710.293 [0.2017]0.764 " | 0.774" | 0.767" | 1.000

M9 [0.686710.695 | 0.288" 10.285  |0.745 | 0.756" ] 0.738" | 0.980" | 1.000
{M10[0.900™]0.894™1 0.211" 10.2117]0.921" | 0.922" | 0.885" [0.733" | 0.746™ | 1.000
{M11 0.890™10.888™"} '6.199 | 0.200 |0.912™10.919" | 0.865" | 0.728" | 0.747" [0.992" 1.000
{M120.642"10.640™] 0.173 | 0.178 [0.724 | 0.738" | 0.649" | 0.608" | 0.659" 10.861"]0.867"] 1.000

M13 10.638 °10:635” | 0.145 | 0.150 [0.727 [ 0.740™ | 0.646 " | 0.598" | 0.651" |0.849"10.865"1 0.989" | 1.000
M1410.879™10.870™] 0.232° [0.226710.929" [0.927" | 0.892" | 0.729™ | 0.747" 10.675"]0.971"] 0.855" 1 0.855" 1.000
M1510.863 '10.859™] 0.213 10.2087]0.9197| 0.926™ | 0.866" | 0.728" | 0.750" 10.96610.976 "] 0.863™ [0.872" 10,989 | 1000
M16[0.78010.769] 0.250" {0.245°0.833" | 0.839" | 0.775" | 0.683" | 0.711" ]0.899"70.905"] 0.872" 10.883" |0.925" 0.922"| 1.000
{M17]0.7497(0.739™] 6.197 | 0.196 [0.810" [0:817" ] 0.751" | 0.643" | 0.679™ |0.893"10.904" T 0.000™ 0.919" [0.9197]0.923" | 0.978" | 1.000
:' Significant at the 1% level (2-tailed). :
‘Significant at the 5% level (2-tailed).
Pavel B: Performance sign maintenance
) N Stock Selection Measures All Measures

Fund Group Positive Negative _ | Positive | Negative

Ag. Growth 27 4(0) 4() 4(0) 2(0)

Growth 50 0(0) 13() 0(0) 9(0)

Growth/Inc. 12 1(0) _5(0) 1(0) 3 (0)

All 95 6(0) . 26 (2) 6 (0) 18 (0)
Panel C: Performance ranking concordance between the various performance estimates

Ranking Set Kendall’'s W Ranking Set Kendall’'s W

(M1,M3) 0.6188" M12,M16) 0.9362°

(M1,M5) 0.9747 . M13,M17) 0.9595°

(M2,M4) 0.6158 Unconditional measures without timing 0.9792°

(M2,M6) 0.9722° Unconditional measures with timing- 0.8572°

M7,M8) 0.8835° Conditional measures without timing 0.6154"

(M7,M9) 0.8688" Conditional i es with timing 0.6634°

Mi0,M14) 09873 All selection measures 0.6645

(MI11,M15) 0.9881" - All measures 0.7159°

* Significant at the 0.01% level (1-tailed).
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Table A14. The relationship between risk-adjusted performance and mutual fund attributes

This table reports the cross-sectional regression statistics of the relationship between risk-adjusted p erformance and mutual fund
atributes. 22 performance measures and 6 fund characteristics are selected for the tests using the GMM method. The risk-adjusted
measures are constructed using several performance models tested with two benchmark variables: TSE 300 and value-weighted TSE
indices. M1 and M2 are related to the unconditional CAPM; M3 and M4 are related to the conditional CAPM with time-varying betas;
M5 and M6 are related to the conditional CAPM with time-varying alphas and betas; M7, M8, and M9 are related to the unconditional
and conditional four factor models with time-varying betas and with time-varying alphas and betas, respectively; M10 and M11 are
related to the unconditional Treynor and Mazuy (1966) timing model; M12 and M13 are related to the unconditional Henriksson and
Merton (1981) timing model; M14 and M15 are related to the conditional Treynor and Mazuy (1966) timing model; and M16 and
M17 are related to the conditional Henriksson and Merton ( 1981) timing model. The fund a tiributes are: t he M ER (management
expense ratio), MGF (management fees), the log of the age of the fund in years, the log of the size of the fund in millions, and two
dummy variables indicating if the find is a load fund or LOAD and if the fund has optional sales charges or OPTLO. The risk-
adjusted performance measures are estimated using monthly observations over the period November 1989 to December 1999, The
fund characteristic v ariables ate measured at the end of the sampling period. Information related to the e stimated coefficients, p-
values, and the adjusted R2 is provided in the table. 95 observations are used representing the total number of funds. The last two rows
provide information on the number of regressions where each coefficient is significant at the levels of 5% and 10%, and where the
adjusted R2 is greater than 5% and 10%.

Performance :

{Mcasure Constant | p-val | MER p-val] MGF | p-val | Ln (AGE) |p-val{ Ln (SIZE) |p-val| LOAD |p-val| OPTLO p-val|Adj. R?
M1 -0.0066 | 032 | -0.0025 |0.02/0.0028 | 0.03 | -0.0018 [0.01| 00010 [0.11]-0.0004]|0.61]-0.00021077]0.214
M2 -0.0075 | 0.26 | -0.0026 | 0.02[0.0027| 0.04 | -0.0018 [0.01| 00010 {0.12]-0.0002]|0.82]-0.0001 |0.85]0.217
M3 -0.0074 | 0.28 | -0.0031 {0.01]0.0030 | 0.03 | -0.0019 J0.0t{ 00011 ]0.07] 00000 099! 0.0002 {082 0.250
M4 ~0.0083 | 0.22 | -0.0032 10.01{0.0029 | 003 | -0.0018 |0.0t{ 0.0011 ]0.07|0.0003 [0.72 0.0003 {0.70| 0.260
M3 0.0078 | 0.27 | -0.0003 |0.81{-0.0003| 0.73 | 0.0007 040 -0.0008 |0.22| 0.0005 |0.50 | 0.0003 }0.72 }-0.049
M6 -0.0079 | 0:26 | -0.0029 }0.02/0.0028 ] 0.05 | -0.0018 j0.0t{ 0.0011 |0.09]0.0003 {0.72] 0.0002 J0.72] 0.225
M7 -0.0044 { 0.54 -6.0031 0.01{0.0033| 002 | -0.0018 10.02] 0.0008 }0.20]-0.00011{0.91 | 0.0003 10.73| 0.213
M8 -0.0040 | 0.59 | -0.0030 {0.000.0026 | 0.03 | -0.0018 |0.01] 0.0009 [0.20]0.0013 [0.16] 0.0008 |0.22] 0.197
M9 -0.0043 | 0.56 | -0.0030 6.02 000271004 | -0.0017 1002 0.0009 ]0.20/0.0011 |0.22 0.0008 J0.22 | 0.171
M10 -0.0118 | 0.09 | -0.0017 {0.180.0027| 0.06 | -0.0020 |0.00] 00014 |0.02}-0.0004]|0.59]-0.00070.29] 0.145
M1l -0.0120 | 0.09 { -0.0019 }0.15/0.0028 | 0.07 | -0.0019 {0.00{ 0.0014 |0.03{-0.0003[0.74 [ -0.0006 |0.33] 0.153
IMIZ -0.0179 | 0.04 | -0.0009 6.53 000271 0.12 | -0.0022 10.01] 0.0019 |0.01]-0.0004]0.77] -0.0007 | 0.52] 0.055
IM -0.0159 | 0.04 | -0.0016 |0.27 0.0031 | 0.06 -0.00i9 001 0.0018 10.01-0.0005]0.66 | -0.0006 |0.55 | 0.070
M14 0.0100 ] 0.17 | -0.0017 |0.09[0.0026 | 0.04 | -0.0018 |0.01| 00012 |0.06|-0.0002]0.84 -0.0001 10.88 [ 0.095
M15 0.0102 | 0.15 | -0.0019 |0.080.0026 | 0.05 | -0.0017 }0.01| 0.0012 |0.06] 0.0001 0.94} 0.0000 10.96 | 0.108
M16 -0.0122 | 0.11 | -0.0014 |0.27}0.0020 0.16 | -0.0020 |0.00{ 0.0015 }0.03}-0.0006|0.60] -0.0004 | 0.69] 0.058
M17 -0.0131 | 0.06 | -0.0012 {0.3010.0021| 0.12 | -0.0020 10.00] 0.0016 |0.01]-0.0010]0.34{-0.0004 |0.66] 0.062
Significance (5%) 2 8 10 16 6 0 0 16

[Significance (10%) 5 10 13 16 11 0 0 12
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Table A15. Performance measures for portfolios of funds using the unconditional and conditional skewness,
kurtosis, and BHV pricing kernél models

This table-reports the performance measures (« in %) for the groups by investment objective using the unconditionat and conditional skewness, kurtosis,
and BHYV pricing kernel models for the two selected benchmarks. The dividend yield (DY) and the yield on the one-month T-bill (TB1) are used as
instrumental variables. Simultaneous GMM system estimation is conducted for each portfolio of funds using that portfolio of funds and the ten size-based
passive strategies. All rep the statistics for the portfolios of all funds. Information related to the estimatéd performance, the p-values, and the J-
statistic using the Bartlett kernel is provided in the table. W1, W2, W3, W4, and W5 correspond to the p-values based on the Newey and West (1987b)
Wald test on the validity of the time-variation in various coefficients. Thus, W1 through W4 correspond to such tests for the ¢y(z) coefficient, the ¢x(z)
cocfficient, the x(z) cocfficient, and ail. three cocfficicnts, respectively, for the conditional skewness model, W1 through W5 correspond to such tests for
the i(z) coefficient, the @x(z,) cocfficient, the gx(z) coefficient, the yz) and all four coefficients for the conditional skewness model. W1 through W35
correspond to such test for the go(z) coefficient, the @i(z) coeflicient, the @sz) coefficient, the s(z) and all four coefficients, respectively, for the
conditional kurtosis model. The J-Statistic is the minimized value of the sample quadratic form constructed using the moment conditions and the optimal
weighting matrix. Size is defined as the total net asset value of the fund. TSE 300 and TSEVW are the TSE 300 and the value-weighted TSE indexes,
respectively. Monthly data are used from Noveniber 1989 to December 1999, for a total of 122 observations per portfolio of funds.

TSE 300 TSEVW
Fund Unconditional | Conditional Unconditional | Conditional
Group e lpval] o Jpval|Wi|w2[walwe]|ws o Ipval | o [pval] Wi]wz]lws] wa]ws
Panel A: Equal-weighted portfolios of funds using the skewuess pricing kernel models
Ag. Growth -0.0561 0.70 1.0749 | 0.00 [0.08 | 0.00 0.00{ 0.00 -0.0483 0.73 10.6932{ 0.00 | 0.19 | 0.00| 0.00 | 0.00
Growth -0.0767 Q.54 ] 0.3939 | 0.00 |0.00]0.43]0.00{0.00 -0.0400 0.76 10.3813{ 0.00 | 0.37 { 0.00 [0.00 | 0.00
Growth/ne, { -0.1082 0.58 | 0.5369 | 0.00 }0.47{0.00]0.00{0.00 <0.0636 0.74 10.3850] 0.00 § 0.05 } 0.00 {0.00 | 0.00
All -0.1133 044 | 0.6198 | 0.00 10.27]0.00]0.00 { 0.00 -0.0816 0.58 10.4449] 0.00 § 0.15{0.00 | 0.00 | 0.00
Mean J-Stat 0.142 0.141 . 0.145 0.156
Panel B: Size-weighted portfolios of funds using the skewness pricing kernel models :
Ag. Growth 0.0295 083 |1.2723 1 0.00 {0.10]0.00}0.00]0.00 0.0444 0.74 10.7577] 0.00 }{ 0.16 | 0.00 | 0.00 | 0.00
Growth 0.0241 0.83 0.4547 | 0.00 10.240.00]0.00]0.00 0.0706 0.54 [0.45931 0.00 | 0.35 ] 0.00]0.00] 0.00
Growth/Ine. | -0.2056 0.33 | 0.4249 ] 0.00 | 0.65]0.00{0.00 | 0.00 -0.1618 045 10.1661] 0.18 { 0,05 { 0.00 { 0.00 | 0.00
All ~0.0259 084 1069151 0.00 |0.27][0.00]0,00]0.00 0.0138 0.92 10.4904] 0.00 | 0.15 1 0.00 | 0.00] 0.00
Mean J-Stat 0.142 0.143 0.145. 0.157
Panel C: Size-weighted portfolios of individual fund performances wsing the skewness pricing kernel models
Ag. Growth 0.0055 035 09393 ] 0.05 |0.05}0.00] 0.24]0.00 0.0118 0.31 10.7588] 0.03 { 0.10{ 0.00 {0.01 ] 0.00
Growth -0.0030 036 10.4541 | 0.12 [0.05}0.00]0.20] 0.00 0.0409 033 103300} 0.17 { 0.07 | 0.00]0.01 | 0.00
Growth/Ine. | -0.1986 045 10.3941 | 0.23 {0.05|0.00]0.07{0.00 -0.1593 045 10.1787] 0.42 [ 0.16 | 0.00 ] 0.00 | 0.00
All -0.0513 0.36 1 0.5655.| 0.11 10.05]0.00]0.19{ 0.00 -0.0170 034 1041921 0.16 | 0.09 [ 0.00 {0.01 | 0.00
MeanJ-Stat | 0,142 0.155 ] 0.145° 0.155 :

Panel D: Equal-weighted rifolios of funids using the kurtosis pricing kernet models

Ag. Growth | 03473 | 012 -{1:1329 [ 0.00 [0.28[0.00]0.11]0.14 [0.00] 0.5401 0.03 ]0.7064 0.00 | 0.53 10.00[0.00] 0.79 T 0.00

Growth 0.4249 0:03 | 0.4477 | 0.00 |0.200.00[0.19]|0.05]0.00| 0.5886 0.00 1040911 0.00 | 0.14 { 0.00{0.00{ 0.12 { 0.00
Growth/Inc. { 0.3759 016 _]0.3691 | 0.02 0.13]0.00]023]0.04[0.00] 05735 0.05_ 0.3618] 0.03 | 0.40 | 0.00 [0.04 | 0.97 | 0.00
All 0.3602 0.10_ 1 0.6667 | 000 |0.2310.0010.16]0.09 f0.00] 0.5450 0.02 10.45441 0.00 | 0.18'10.00 1 0.05 | 0.73 [ 0.00
Mean J-Stat 0.128 0.133 0.112 0.154

| Panel E: Size-weighted portfolios of funds using the kurtosis pricing kernel model

Ag Growth | 04874 0.03 107191 { 0.00 [0.20{0.00{0.18 [ 0.02 [0.00] 0.6777 0.01 ]0.7653} 0.00 | 0.07  0.00 {0.07 { 0.58 [ 0.00

Growth 0.4972 0.00 | 0.4661 { 0.00 [0.23[0.00[0.21] 0.06 [ 0.00] 0.6165 0,00 046771 0.00 }0.16 [ 0.0010.0010.10 | 0.00
Growth/Ine. | 0.2738 034 | 0.2464-1 0.12 10.24[0.00{0.2210.02]0.00] 0.4944 0.12 10.1613 0.35 { 0.53 1 0.00 | 0.00 | 0.63 [ 0.00
All 0.4510 0.03 | 0.6447 ] 0.00 J0.19]0.00]031]0.06 |0.00] 0.6142 0.00 {0.6108 0.00 | 0.08 § 0.00 [ 0.00 { 0.19 | 0.00
Mean J-Stat 0.128 0.138 | : 0.111 0.147

Pauel F: Size-weighted portfolios of individual fund performances using the kurtosis priciog kernel models

Ag.Growth | 04188 1 020 | 0.8621 1 004 [0.2210:00]0.08]0.22]0.00] 0.5974 | 0.17 ]0.8259] 0.06 | 0.13 | 0.00 0.0210.38 ] 0.00

Growth 04484 ) 0.19 ]0.3083 | 0.13 10.22]0,01]0.05[0.19]0.00] 03657 | 0.17 ]0.4262] 0.17 1.0.15 1 0.00 0.09 | 0.35 { 0.00
Growth/Inc. | 0:2710 0.13 | 0.3251 | 0.34 | 0.3410.02[0.04][0.21 [0.00] 04965 0.26 1044301 0.25 | 0.3410.0010.12} 0.25 | 6.00
All . 03990 .1 019 | 04534 | 0.14 [0.2410.0110051020]0.06] 0.5546 0.19 10.539410.15 { 0.17 [ 0.00{0.07] 0.34 | 0.00
MeanJ-Stat | 0:128 " -] 0151 : - I 0112 |- 0.146

Pinel G: Equal-welghted portflios of funds using the BHV pricing keruel models )

Ag. Growth 1.1284 0.17 [ 0.9649 1 0.00 J0:21T0.00]0.00 Jo.06]0.00] 1.3565 0.09 10.7567] 0.00 | 0.85 { 0.00 [ 0.00 | 0.42 | 0.00
Growth 1.0986 011 1047357 0.00 |0.57{0.00]003]031{0.00] 1.2170 0.07 10.39881 0.00 { 0.36 { 0.00 } 0.00] 0.33 ] 0.00
Growth/Inc. | 0.9928 0.29 103643 | 0.02 10.08{0.00{0.4070.03{0.00] 1.3136 0.17_10.5215] 0.00 § 0.69 | 0.00{0.02{ 0.73 ] 0.00
All 0.9972 0.21 106968 | 0.00 [0.51]0.00100210.36]{0.00] 12110 0.12_ 1053661 0.00 | 0.23 ] 0.00 [0.00] 0.51 { 0.00
Mean J-Stat 0.024 - 10126 : _0.024 0.146

Panel H: Size-weighted portfolios of funds using the BHV pricing kernel model

|Ag. Growth | 1.3847 008 11.2802°] 0.00 10.23]/0.0010.02{0.24]0.00] 15719 0.04 10.7289 0.00 | 0.64 {0.00{0.00] 0.91 { 0.00

Growth: 1.1624 0.06 {0.5512 | 0.00 [0.5710.00§0.0610.40 [0.00 ] 1.2396 003 {0.45531 0.00 {0.37 { 0.00 [0.00.] 0.33 { 0.00
Growth/ne. | 09513 033 ) 0.1956 | 0.22 10.1610.00}0.15}0.00{000] 1.2912. | 0.20 {0.4495[ 0.03 | 0.10 | 0.00 | 0.00 | 0.55 | 0.00
All 1.1630 0.11 | 0.7742 | 0.00 {0.47]0.00}0.041034{0.00] 1.3244 0.06 {0.6026] 0.00 | 0.26 { 0.00 | 0.00] 0.42 { 0.00

Mean J-Stat 0.024 0.125 0.024 0.144

Panel I: Size-weighted portfolios of indlvidual fund performances using the BHV pricing kernel models

|Ag. Growth | 1.2303 0.26 10.9326 | 0.07 {0.090.00]0.40}0.40]0.00] 1.4280 026 10.9353] 0.06 §0.07|0.00{0.28]0.12 [ 0.00

Growth 1.0867 0.18 104256 | 0.16 {0.1010.00{03610.34]0.00] 1.1730 0.18 }0.4614] 0.21 | 0.12 | 0.00 {027 0.22 { 0.00
Growth/Inc. | 0.9288 031 }0.5402 | 032 |0.08}0.01}027]|037]0.00] 12712 031 [0.54091 0.24 ] 0.14 1 0.02 { 0.22] 0.25 | 0.00
All 1.0644 0.23 10.5882 | 0.16 10.10[0.00{0.36{0.3510.00] 12344 022 10.5943] 0.18 | 0.10 ] 0.00 {0.26 | 0.20 | 0.00

Mean J-Stat 0.024 0.152 0.024 0.143
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Table A16. Performance measures for fihdividual funds using the unconditional and conditional skewness,
kurtosis, and BHV pricing kernel models

This table reports the performance measures (o in %) for the groups by investment objective based on individual fund performances using the
unconditional and couditional skewness, kurtosis, and BHV pricing kernel models for the two selected benchmarks. The dividend yield (DY) and the
yield-on the one-month T-bill (TB1) are used as instrumental variables. Simuitaneous GMM system estimation is conducted for each individual fund
using that fund and the ten size-based passive strategies. All P the equal- or the size-weighted portfolio of the performances of all individual
funds. Information related to the estimated perfk (mean, median, standard deviation, skewness, and kurtosis), the p-values, and the J-statistic using
the Bartlett kernel is provided in the table. W1, W2, W3, W4, and W5 correspond 1o the p-values based on the Newey and West (1987b) Wald test on the
validity of the time-variation in various coefficients. Thus, W1 through W4 correspond to such tests for the oi(z) coefficient, the (2 coefficient, the
93(2) coefficient, and all three coefficients, respectively, for the conditional skewness model. W1 through W5 correspond to such tests for the o(z)
coefficient, the ¢(z,) coefficient, the gs(z) coefficient, the ¢i(z) and all four coefficients for the conditional skewness model W1 through W5 correspond
to such test for the @o(z) coefficient, the (=) coefficient, the 92(2) coefficient, the «(z) and all four coefficients, respectively, for the conditional
kurtosis model. The J-Statistic is the mrinimized value of the sample quadratic form constracted using the moment conditions and the optimal weighting
matrix. TSE 300 and TSEVW are the TSE 300 and the value-weighted TSE indexes, respectively. Monthly data are used from November 1989 to
December 1999, for a total of 122 observations per fund.

TSE 300 . TSEVW
Fund l l I Mean [ I Mean l
Group Meano | Med. o | Stdev. | p-val | Skew. | Kut | Meana Med. a Stdev.’ p-val Skew. Kurt,
Panel A: Equal-weighted portfolios of individual fund perfor for the ditional skewness pricing kernel model
Ag Growth | -0.0561 00922 | 000 | 034 <030 | -0.74 | -0.0483 0.0691 0.00 031 -0.10 -0.90
Growth -0.0767 -0.1081 0.00 0.34 0.16 0.15 ‘| -0.0400 -0.0931 0.00 0.35 037 | 033
Growth/Inc. -0.1082 -0.0559 0.01 0.42 0.46 3.14 -0.0636 0.0114 0.01 0.40 0.15 2.64
All -0.1133 -0.0750 0.00 0.34 -0.52 3.68 -0.0816 -0.0685 0.01 0.34 -0.43 2.85
Mean J-Stat 0.142 - 0.145

Panel B: Equal-weighted portfolios of individual fund pecformances for the unconditional kurtosis pricing kerael model
Ag Growth ‘| 0.3473 0.4811 0.01 0.21 0.17 1.72 | 0.5401 0.6450 0.01 0.20 -0.22 2.37

Growth 0.4249 0.3965 0.01 0.23 -0.26 0.17 0.5886 0.5274 0.01 0.19 -0.07 0.59
Growth/Inc. 0.3760 0.5879 001 { ©.10 -1.17 133 0.5735 0.6647 0.01 0.19 -0.60 0.74
All 0.3602 0.4215 0.01 022 | 0.24 121 0.5450 0.5476 0.01 0.21 -0.23 2.52°

Mean J-Stat 0.128 0.112

Panel C: Equal-weighted portfolios of individual fund performances for the unconditional BHV pricing kernel model

Ag Growth 1.1284 1.1581 0.02 0.30 0.68 169 | 13565 .| 1.3092 0.01 032 | 115 1.84

Growth 1.0986 1.1641 0.01 0.22 -0.67 0.59 1.2170 1.2247 0.01 0.23 -0.56 0.75
Growil/Ine. 0.9928 13503 | 0.02 0.28 -0.62 1.42 1.3186 1.3265 0.01 0.27 0.52 1.5t
All 0.9972 1.1370 0.02 0.26 ~0.20 1.27 1.2110 1.2665 0.01 0.27 Q.10 1.70
Mean J-Stat 0.024 . N : 0.024

) Mean
. | Mean a ’ Med. a I Stdev. - pval Skew. I Kurt, ] wi l w2 l w3 l w4 I w5 [ J-Stat
Panel D: TSE 300 index as benchmark and conditional skewaess prictng kernel
Ag. Growth 0.6955 0.5948 -1 0.01 0.07 0.41 2.61 0.083 | .0.000 0.108 0.000 0.155
Growth 04321 0.3929 0.00 0.15 0.10 0.32 0.087 . 0.000 0.145 0.000 0.154
Growilvinc. 04518 0.3592 0.01 -0.20 1.47 3.00 0.067 | 0.000 0.125 0.000 0.159
All _ 05024 | 04418 0.01 0.13 .| 069 3.49 0.081 0.000 0.129 0.000 0.155
Panel E: Value-weighted TSE index as benchmark and conditional skeywness pricing keruel
Ag. Growth 0.6150 0.5732 0.01 0.06 0.54 2.76 0.125 h0.000 0.009 0.000 0.156
Growth 0.3342 0.3009 0.00 0.17 0.05 0.57 0.113 0.000 0.006 0.000 0.153
Growth/Inc, 0.3258 0.1809 0.01 03f |- 1.87 4.19 0.149 0.000 0.002 0.000 0.156
All 0.4060 0.3932 0.00 0.16 { 029 1.53 0.119 0.000 0.007 0.000 0.155

Panel F: TSE 300 index ag benchmiark and conditional kurtosls ricing kernel
Ag. Growth 0.7113 0.7184 0.00 0.08 0.53 0.55 ] .0.255 0.000 | 0.041 0.244 0.000 0.148

Growth 0.3329 0.3559 0,00 0.16 -0.64 173 0.212. 0.004 - | 0.075 0.212 0.000 0.147
Growth/Inc. 0,4043 0.2064 0.01 9.28 221 578 0.323 0.011 0.045 0.210 0.000 0.165
Al 04367 04039 | o000 0.17 099 | 2:60 0244 | 0004 0.059 : 0.216 0.000 0.150

Panel G: Value-weighted TSE index as beuchmark and conditional kurtosis pricing kernel
_A‘gLGlOWﬂl 0.6343 0.6037 1 0.01 0.11 -0.53 WQO 0.144 0.000 0.029 0.295 0.000 Q.151

Growth’ 0.4069 | 03103 | 0.00 0.20 0.86 1.07 0.198 0.000 - 0.070 0.353 0.000 0.143
Growth/Tnc. 04796 | 02965 | o0.01 0.21 0.92 -0.09 0.353 0.000 0.072 0.320 0.000 0.145
All 0.4895 0.4024 0.01 0.18 055 | 125 0.205 0.000 0.056 0.319 0.000 0.146
Panel H: TSE 300 index as benchmark and conditional BHV pricing kernel
Ag. Growth 0.7299 0.6663 - | 0.01 0.11 0.66 2.12 0.149 0.001 0.238 0.406 0.001 0.165

Growth 0.4193 0.3677 0.00 0.17 0.76 1.53 0.110 0.002 0.241 . 0.292 4.000 0.146
Growth/Ine. *| 0.5648 0.4635 0.01 0.24 1.18 0.64 0.109 0.009 0.278 0.332 0.001 0.143
All 0.5414 0.4574 0.01 0.17 - 1.23 3.03 0.119 0.003 0.251 0.318 0.001 0.152

Panel I: Value-welghted TSE index as bench k and conditional BHV. pcl cing kernel
Ag. Growth 0.7291 0.8386 001 {.013 -0.65 1.28 0.112 0,000 0.156 0.148 0.000 0.136

Growth 0.4559 0.3657 0.00 0.21 1.48 3.07 0.155 0.003 0.204 0.252 0.009 0.140
Growth/Inc. 0.5977 0.6179 0.01 0.16 0.65 037 0.156 0.012 0.246 0.293 0.002 0.149
All 0.5479 0.4702 0.01 9.19 0.34 0.98 0.135° 0.003 0.194 0.231 0.005 0.144
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Table A17. Summary statistics for the performance estimates using the unconditional and conditional skewness,
kurtosis, and BHYV pricing kernel models based on individual fund performances

This table presents summary statistics for the performance measures based on the unconditional and conditional skewness, kurtosis, and BHV pricing
kernel models for each fund group and for all funds. Panels A, C, and E present the unconditional results using the TSE 300 index as the benchmark.
Panels B, D, aud F present the unconditional results using the value-weighted TSE index as the benchmark. Panels G, K, and 1 present the conditional
results using the TSE 300 index as the benchmark. Panels H, J, and L present the conditional results using the value-weighted TSE index as the
benchmark. N is the number of funds in each group. All of the p-values are based on GMM estimation and are adjusted for serial correlation and
heteroskedasticity (Newey and West, 1987a). Information related to the funds with significant performance at the 5% level and with positive significant
performance is provided in the table. The Bonferroni p-values are the minimum and the maximum one-tailed p-values from the t-distribution across all of
the funds and all of the fund groups, maltiplied by the defined number of funds.

l l I l Percent of funds Number of funds with Bonferroni Bonferroni

Fund Group N { Max.p Min. p withp < 5% a>0audp< 5% p-value (Min. ) | p-value (Max. )
Panel A: TSE 300 index as benchmark and the ditional skewness pricing kernel model
Ag. Growth 27 0.979 0.000 25.93 4 0.044 0.003
Growth 50 1.000 0.001 18.00 4 0.016 0.021
Growth/Inc. 12 ' 0939 0.000 16.67 1 0.250 0.001
All 95 1.000 0.000 20.00 9 0.030 0.004
Panel B: Val ighted TSE index is as bench k and the ditional skewness pricing kernel model
Ag. Growth 27 0.777 0.000 29.63 4 0.068 0.001
Growth 50 0.992 0.000 20.00 [ 0.099 0.004
Growth/Tnc. 12 0.884 0.000 16.67 1 0215 0.001
All 95 0.992 0.000 22.11 1 0.187 0.003
Panel C: TSE 300 index as bench k and the ditional kurtosis pricing kernel model
Ag. Growth 27 0.997 0.000 55.56 14 0.227 0.000
Growth 50 0.976 0.000 50.00 24 0.235 0.000
Growth/Inc. 12 0.447 0.000 66.67 8 0.631 0.000
All 95 0.997 0.000 52.63 47 0447 0.000
Panel D: Value-welghted TSE index as benchmark and the uncenditional kurtosis pricing kernel model
Ag. Growth 27 0.998 0.000 62.96 16 0.021 0.000
Growth 50 0.975 0.000 56.00 28 1.000 0.000
Growtl/Inc, 12 0.977 0.000 66.67 8 1.000 0.000
All 95 0.998 0.000 57.89 53 0.075 0.000
Pauel E: TSE 300 index as benchmark and the unconditioual BHV priciag kernel model
Ag. Growth 27 | 0818 0.000 3333 9 : 1.000 0.000
Growth 50 0.921 0.000 40.00 20 1.000 0.002
Growth/Inc. 12 0.889 0.000 50.00 6 1.000 0.001
All 95 0.930 0.000 | 38.95 36 0,498 0.001
Panel F: Value-welghted TSE index as benchmark aad the nditional BHV pricing kernel model
Ag. Growth 27 0.969 0.000 44.44 12 1.000 0.000
Growth 50 0.991 0.000 48.00 24 1.000 0.001
Growth/Inc. 12 0.93¢ 0.002 50.00 6 1.000 0.010
All 95 0.991 0.000 45.26 43 1.000 0.000
Panel G: TSE 300 index as bench k and the conditional skewness pricing kernel model
Ag. Growth 27 0.585 | 0.000 71.78 20 0.135 0.000
Growth 50 0.907 0.000 60.00 29 0.195 0.000
Growih/Inc. 12 0.844 0.000 41.67 5 1.000 0.000
All 95 0.907 0.000 | 62.11 55 0.371 0.000
Panel H: Value-weighted TSE index is as benchmark and the ditional skewness pricing kernel model
Ag, Growth 27 0.852 0.000 7407 19 - 0.137 0.000
Growth 50 0.891 0.000 56.00 27 0.188 0.000
Growth/Inc. 12 0.986 0.000 41.67 5 0.553 0.000
All g5 0.986 0.000 60.00 53 0014 0.000
Panel I: TSE 300 index as benchmark and the conditional kurtosls pricing keroel model
Ag. Growth 271 0.627 0.000 74.07 20 1.000 0.000
Growth 50 0,945 *0.000 46.00 21 0.263 0.000
Growth/Inc, 2 0.989 0.000 25.00 3 1.000 0.000
All 2] 0.989 0.000 49.47 45 ) 0.500 0.000
Panel J: Value-weighted TSE index as benchmark and the conditional kurtosls pricing kernel model
Ag. Growth 27 0.754 0.000 66.67 17 0.581 0.000
Growth 50 0.961 0.000 54.00 27 1.000 0.000
Growthv/Inc. 12 0.751 0.000 41.67 5 1.000 0.000
All 95 0.961 0.000 56.84 52 0.317 0.000
Panel K: TSE 300 jndex as benchmark and the conditional BHV pricing kernel model

| _Ag. Growth 27 0.752 0.000 66.67 18 1.000 0.000
Growth 50 | 0.980 0.000 52.00 26 1.000 0.000
'GmwthJ_Igc. 12 0.926 | 0.000 41.67 5 1.000 0.000
All 95 0.980 0.000 53.68 51 1.000 0,000
Panel L: Value-weighted TSE index as bench k and the couditional BHV pricing kernel model
Ag. Growth 27 0.812 0.000 7037 19 1.000 0.000
Growth 50 0.977 0.000 40.00 20 1.000 0.000
Growth/Inc. 12 0.658 0.000 41.67 5 1.000 0.000
Al 95 0.977 0.000 47.37 45 1.0600 0.000
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Table A18. Performance measures for portfolios of funds using the unconditional and conditional
skewness, kurtosis, and BHYV pricing kernel models with the restriction on the pricing of
the risk-free asset

This table reports the performance measures (a in %) for the groups by investment objective using the unconditional and conditional
skewness, kurtosis, and BHV pricing kemel models for the two selected benchmarks with the restriction on the pricing of the risk-free
asset. The dividend yield (DY) and the yield on the one-month T-bill (TB1) are used as instrumental variables. Simultaneous GMM
system estimation is conducted for each portfolio of funds using that portfolio of funds and the ten size-based passive strategies and
- additional moment conditioned on the one-month T-bill, All represents the statistics for the portfolios of all funds. Information related
to the estimated performance, the p-values, and the J-statistic using the Bartlett kerne! is provided in the table. The J-Statistic is the
minimized value of the sample quadratic form constructed using the moment conditions and the optimal weighting matrix. Size is
defined as the total net asset value of the fund. TSE 300, and TSEVW are the TSE 300 and the value-weighted TSE indexes,
respectively. Monthly data are used from November 1989 to December 1999, for a total of 122 observations per portfolio of funds.

TSE 300 TSEVW
Unconditional Conditional Unconditional Conditional
Fund Group a | p-val o | p-val o« | p-val a | p-val

Panel A: Equal-weighted portfolios of funds using the skewness pricing kernel models
Ag. Growth 0.0977 | 0.21 [-0.0091] 0.92 | 0.0487 | 0.50 | 0.3289 | 0.00

Growth 0.0562 | 030 ]0.1109 ] 0.09 | 0.0533 | 0.34 | 0.1652 | 0.00
Growth/Inc. 0.0886 | 0.17 |0.0254 [ 0.70 | 0.0841 | 0.22 | 0.0416 | 0.47
All 0.0500 | 0.33 [0.0245 | 0.690 | 0.0332 | 0.53 | 0.1421 0.00
Mean J-Stat 0.142 0.158 0.146 . 0.158

Panel B: Size-weighted portfolios of funds using the skewness pricing kernel models
Ag. Growth 0.1650 .| 0.04 {01656 | 0.02 | 0.1190 | 0.11 | 0.3377 | 0.00

Growth ~0.1019 | 0.08 [0.1400 | 0.03 | 0.1066 | 0.08 | 0.1332 | 0.03
Growth/Inc. 0.0376 | 0.56 | 0.0215 | 0.76 | 0.0354 | 0.59 |-0.0100] 0.87
All : 0.1004 | 0.07 |0.1173 | 0.04 | 0.0910 | 0.12 | 0.1365 | 0.01
Mean J-Stat 0.142 0.160 0.146 0.154

Panel C: Equal-weighted portfolios of funds using the kurtosis pricing kernel models
Ag. Growth 0.3840 | 0.00 | 0.4088 | 0.00 | 0.4395 | 0.00 ] 0.3578 | 0.00

Growth 04540 | 0.00 §0.1203 | 0.13 | 0.5209 | 0.00 | 0.0965 | 0.26
Growth/Inc. 0.4156 | 0.00 }0.0442] 0.54 | 0.4799 | 0.00 |-0.0159 | 0.85
All 0.3961 | 0.00 }0.1950 | 0.01 | 0.4576 | 0.00 | 0.0978 | 0.26
Mean J-Stat 0.127 0.134 0.122 0.141

Panel‘D:‘Size-weighted portfolios of funds using the kurtosis pricing kernel models
1Ag. Growth 05184 | 0.00 103951 ] 0.00 [ 05907 | 0.00 | 03724 0.00

Growth 0.5148 | 0.00 ]0.0887] 030 | 05756 | 0.00 | 0.0604 | 0.46
Growth/Inc, 0.3217 | 0.00 ]0.0996 | 0.20 { 0.3837 | 0.00 |-0.0112 | 0.90
All 0.4785 | 0.00 10.1667 | 0.03 | 0.5409 | 0.00 | 0.1430 | 0.04
Mean J-Stat 0.127 0.138. 0.122 ] 0.145

Panel E: Equal-weighted portfolios of funds using the BHV pricing keimel models

Ag. Growth 1.0556 | 0.00 [0.4267 | 0.00 | 10161 | 0.00 | 0.0376 | 0.77
Growth 1.0326 | 0.00 0.1096 | 0.25 | 0.9185 | 0.00 {-0.0727 | 0.46
Growth/Inc. 0.8983 | 0.00 |-0.2024[ 0.06 | 0.8631 | 0.00 |-0.1865 | 0.03 »
Al 109201 0.00 10:.1586 | 0:.06 | 0.8564 | 0.00 |-0.1075 | 0.24 |
Méan J-Stat 0.025 -] 0.140 0.037 0.146

Panel F: Size-weighted portfolios of funds using the BHV pricing kernel models .
Ag. Growth 13150 | 0.00 [0.5266 | 0.00 | 1.2513 [ 0.00 | 0.3407 | 0.00

Growth - 1.1070 0.00 10.0732 ] 048 { 0.9990 | 0.00 {-0.0135] 0.89
Growth/Inc. 0.8532 0.00 |-0.0753| 0.51 | 0.8099 { 0.00 [-0.28201 0.00
Al 1.0947 | 0.00 [ 0.1671 | 0.06 1.0151 0.00 10.0134 | 0.88
Mean J-Stat 0.025 0.138 0.037 0.146
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Table A19. The relationship between risk-adjusted performance and mutual fund attributes

This table reports the cross-sectional regression statistics of the relationship between risk-adjusted p erformance and mutual fund
attributes. 12 performance measures and 6 fund characteristics are selected for the tests using the GMM method. The risk-adjusted
measures are constructed using several benchmark models tested with two benchmark variables: TSE 300 and value-weighted TSE
indices. M1 and M2 are related to the unconditional skewness pricing kernel model. M3 and M4 are related to the unconditional
kurtosis pricing kernel model. M5 and M are related to the unconditional BHV pricing kernel model. M7 and M8 are related to the
conditional skewness pricing kemnel model. M9 and M10 are related to the conditional kurtosis pricing kemel model. M11 and M12
are related to the conditional BHV pricing kemel model. The fund attributes are: the MER (management expense tatio), MGF
(management fees), the log of the age of the fund in years, the log of the size of the fund in millions, and two dummy variables
indicating if the fund is a load fund or LOAD and if the fund has optional sales charges or OPTLO. The risk-adjusted performance
measures are estimated using monthly observations over the period November 1939 to December 1999. The fund characteristic
variables are measured at the end of the sampling period. Information related to the estimated coefficients, p-values, and the adjusted
R2 is provided in the table. 95 observations are used representing the total number of funds. The last two rows provide information on

the number of regressions where each coefficient is significant at the levels of 5% and 10%,

5% and 10%.

and where the adjusted R2 is greater than

K:::‘;;‘r';“““ Constant | p-val | MER |p-val| MGF |p-val|Ln (AGE) p-val| Ln (SIZE) |p-val| LOAD [p-val| OPTLO |p-val ‘;‘{'21'
M1 00204 | .01 {-0.0005{0.56]0.0020]0.11] -0.0021 [0.06| 0.0020 |0.01{-0.0029]0.04|-0.0019 |0.13 ] 0.050
M2 -0.0190 | 0.01 |-0.000810.27 {0.0022{0.08| -0.0020 |0.06| 0.0019 |0.01]-0.0032]0.03|-0.0017 [0.16] 0.057
M3 -0.0132 | 030 |-0.003310.05]0.0058 ] 0.01 | -0.0029 [0.03| 0.0020 |0.08[-0.0062]0.01 ] -0.0035 | 0.03] 0.147
M4 0.0114 | 0.40 1-0.0045{0.03|0.0074 }0.01 | -0.0031 [0.02| 00020 [0.10]-0.0059]0.01 [-0.0037 |0.02] 0185
im5 0.0230 | 0.41 [0.0007 |0.8910.006810.11| -0.0053 |0.14| 0.0034 [0.191-0.0146]0.00]-0.0100 [0.02 [ 0.083
[M6 -0.0140 | 0.53 {-0.0004}0.93]0.0060 [0.07| -0.0049 |0.11] 0.0029 [0.17]-0.0103]0.00 [-0.0081 | 0.02 | 0.077
M7 -0.0206 | 0.15 | 0.0011 |0.72{0.0008 | 0.81| -0.0024 [0.08] 0.0024 [0.05-0.0009]0.52 | -0.0025 |0.15] 0.014
(M3 -0.0089 | 045 |-0.0007}0.68|0.0022}029] -0.0034 |0.00] 0.0018 {0.07[-0.0021]0.11 | -0.0028 |0.07} 0.106
Imo -0.0136 | 0.29 1 0.0008 }0.58 | 0.0008 | 0.64 | -0.0033 |0.00] 0.0021 |0.07] 0.0004 10.73 | 0.0020 | 0.22 | 0.077
M10 -0.0164 | 0.18 |-0.0009]0:650.0012 [0.61] -0.0025- [0.05] 0.0024 [0.02]-0.0009]0.48 | -0.0021 |0.19] 0.056
Mi1 -0.0182 | 0.19 }0.0008 |0.750.0004 [0.89 | -0.0024 [0.06] 0.0023 [0.05[0.0007 [0.52 | -0.0013 | 042] 0.000
M2 ~0.0205 | 0.13 1-0.0007]0.780.00170.53| -0.0027 |0.05| 00027 [0.02]0.0013 [0.36|-0.0023 | 0.14 | 0.092
Significance (5%) 2 2 2 6 6 6 4] 10

[Significance (10%) 2 2 4 10 10 6 5] 3
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Table A20. Summary statistics and characteristics for the surviving and non-surviving fixed-income
funds

This table reports the summary statistics for the mutual fund returns (in %) and fund attributes for surviving and non-
surviving fixed-income funds using monthly data from March 1985 through February 2000. The number of
observations per fund varies. The prefixes EW and SW refer to equal- and size-weighted portfolios of funds with these
investment objectives, respectively. Panel A provides the statistics on the distribution (mean, standard deviation, and
quartiles) of various parameter estimates for the sample of 162 surviving bond mutual funds for three investment
objective groups (govermment, corporate, and mortgage) and for all funds (including the five high-yield funds). Panel B
reports some statistics on the equal- and size-weighted portfolios of funds for the major groupings by investment
objectives. Panel C reports some statistics on the equal- and size-weighted portfolios of terminated funds for the major
groupings by investment objectives and for all funds. Both panels B and C provide informiation on the minimum,
maximum, and average number of observations per fund in the two samples. Panel D reports the summary statistics for
the fund attributes (measured at period end). MER and MGF are the % management expense ratio and management
fees of the fund, respectively. AGE is the age of the fund measured in years since fund inception, SIZE is the total net
asset value of the fund in millions. LOAD is a dummy variable equal to one if the fund charges front- or back-end sales
charges. '

Pauel A: Individual surviving mutual funds

Fund Statistics N | Mean | Std. Dev. | Minimum | Maximum | Skewness | Kurtosis

Group

Government 108
Mean 0.6029 | 1.5335 -4.0229 4.8587 0.0404 1.1322
Std. Dev. 0.1756 | 0.3656 1.9483 | 1.3748 0.5390 | 2.0927
Minimum 0.0889 | 0.5614 -15.8482 2.0416 -2.7884 -0.5629
Ql 0.4965 1.3380 -4.9100 4.0167 -0.2324 0.3676
Median 0.6414 1 1.5945 -4.3135 " 4.8047 -0.0621 0.6633
Q3 0.7312 | 1.7937 -2.5906 5.7593 0.3082 1.2173
Maximum 09104 | 2.2980 -0.6689 9.1036 1.5032 19.8652

Corporate 28
Mean 0.5624 | 1.4000 -3.3443 4.3628 0.0306 1.1229
Std. Dev. 0.1834 | 0.4421 1.6483 1.5351 0.5607 1.7597
Minimum 0.1659 | 0.1521 -5.7803 0.5780 -1.5818 -0.0686
Ql 04162 | 1.2119 -5.0036 3.5605 -0.1747 0.2904
Median 0.5691 1.4862 -2.6052 44672 0.2060 0.5663
Q3 0.7330 | 1.7341 -1.9949 5.4582 0.4234 0.9476
Maximum 0.7868 | 2.0311 -0.1931 7.4068 0.7121 7.6597

Mortgage 21 '
Mean 0.5759 { 0.8499 -2.5107 3.0989 -0.4280 2.6615
Std. Dev. 0.1390 | 0.1936 0.9507 0.8103 0.6270 1.9414
Minimum 0.2815 | 0.4306 -4.1706° 1.2507 | -1.4958 -0.6361
Q1 0.5070 | 0.7851 -3.2092 2.6409 -0.7562 1.6662
Median 0.6443 | 0.8041 -2.5474 3.2118 -0.3136 2.4802
Q3 0.6764 | 0.9988 -1.7357 3.5714 0.0769 3.5712
Maximum 0.7389 | 1.2276 -0.5774 4.3893 0.5591 7.4843

All 162 . ‘
Mean 0.5941 1.4244 -3.7461 4.5262 -0.0304 1.3770
Std. Dev, 0.1719 . 0.4236 1.8643 1.4532 0.5720 2.0922
Minimum 0.0889 0.1521 -15.8482 0.5780 -2.7884 -0.6361
Ql 0.4779 | 1.1150 -4.8937 3.5015 -0.2577 0.3722
Median 0.6356 | 1.4832 -3.8908 4.4594 -0.0673 0.7561
Q3 0.7232 } 1.7433 -2.2010 5.4237 0.3021 1.6410
Maximum 0.9104 | 2.2980 -0.1931 9.1036 1.5032 19.8652
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Panel B: Portfolios for surviving funds based on fund investment objectives

Objective Observations Mean Std. Dev. Min. Max. .
' N | Min. | Max. | Avg. | Retun |
Govermnment 108 29 180 | 112
EW 4 0.7500 1.5280 -4.4224 | 45072
SwW 0.7660 1.5926 -4.6236 | 4.9678
Corporate 28 26 180 100
EW 0.7348 1.4915 -3.8431 | 4.3442
SwW 0.7590 1.6296 -4.4199 | 4.9724
Mortgage 21 38 180 | 131 |. '
EW . 0.6835 0.7176 -2.5916 | 2.2557
sw 0.6923 0.7500 -2.5025 | 2.3061
High-Yield 5 40 64 53
EW 0.7391 1.3540 -3.9683 | 3.4148
SW 0.7125 1.3071 -3.8651 | 3.2676
All 162 26 180 | 111
EW- 0.7353 1.3391 -4.0295 | 4.1192
SW 0.7480 1.3266 -4.0633 | 3.8652

Panel C: Portfolios for non-surviving funds based on fund investment objectives

Objective Observations Mean Std. Dev. Min. Max.
N | Min. | Max. | Avg. | Retum
Government 46 2 152 71 ,
EW 0.6794 1.5369 -4.3564 | 4.6760
SW | 0.7449 1.6546 -4.4057 | 5.3036
Corporate 11 3 158 86 '
EW 0.7502 1.5573 -4.4624 | 5.8676
sSwW ' 0.7637 1.6514 -4.5432 | 6.0950
Mortgage 13 62 180 131
' EW 0.6321. 0.7689 -2.8212 | 2.4455
SW 0.6405 0.7332 -2.8697 | 2.0962
High-Yield 2 13 13 13
EwW 0.1335 1.1885 -3.3962 | 2.0629
SwW 0.1335 1.1885 -3.3962 | 2.0629
All 72 2 180 83 ’
EW 0.6712 1.2045 | -3.9501 | 3.8492
SW 0.6916 1.0872 -3.7586 | 3.5944

Panel D: Descriptive statistics for the fund attributes

Fund Attribute | Mean | Median { Std. Dev. Min. Max. Skewness | Kurtosis
MER 1.615 1.690 0.578 0.100 4.160 -0.095 1.762
MGF 1.446 1.500 0.506 0.000 2.400 -0.343 -0.143
AGE 12.640 8.649 10.120 2.162 42.353 1.137 0.166
SIZE 367.744 | 158.290 | 539.514 23.344 | 2431.859 2.555 5.741
LOAD 0.272 0.000 0.446 0.000 1.000 1.037 -0.937

170



Table A21. Entries and exits of funds

This table reports the number of funds at the end of each year for the period of March 1985 to February 2000. It reports the number of
funds which enter and exit during each year. The attrition rate (%) is given by the number of exiting funds divided by the number of
funds at the end of the year. Survived funds are funds still in existence in March 2000. The mortality rate (%) is computed as one
minus the number of survived funds divided by the number of funds at the end of the year.

Year/Statistic | Eotry Exit Year End Attrition Survived Mortality
Rate Rate
1985 - - 59 - 46 22.03
1986 7 0 66 0.00 52 21.21
1987 14 0 80 0.00 ' 63 21.25
1938 12 0 92 0.00 73 20.65
1989 15 0 107 0.00 85 20.56
1990 6 1 112 0.89 91 18.75 -
1991 6 2 116 L.72 .96 17.24
1992 10 0 126 0.00 106 15.87
1993 13 0 139 0.00 117 15.83
1994 30 0 169 0.00 142 15.98
1995 18 3 184 ~ 163 153 16.85
1996 17 19 182 10.44 170 6.59
1997 18 3 197 1.52 186 5.58
1998 3 7 1193 3.63 189 2.07
1999 5 5 193 2.59 193 0.00
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Table A22. Summary statistics for the instrumental variables, bond indices, and factors

This table reports the summary statistics for the monthly returns of the instrumental variables, bond indices, and factors. TB1 is the
Yyield on one-month Treasury bills in % per month. TERM is the yield spread between long Canadas and the one period lagged 3-
month Treasury bill rate in % per month. DEF is the default premium measured by the yield spread between the long-term corporate
bond (McLeod, Young, Weir bond index) and long Canadas in % per month. REALG is the difference between the long-matunity (5-
10 years) government bond yicld and the inflation rate lagged by one month in % per month. The bond indices and factors are the
Scotia Capital universe bond index (SC), the Scotia Capital government bond index (SCG), the Scotia Capital government long term
bond index (SCGLT), the Scotia Capital government medium term bond index (SCGMT), the Scotia Capital corporate bond index
{SCC), the Scotia Capital corporate long term bond index (SCCLT), the Scotia Capital corporate medium term bond index (SCCMT),
the Scotia Capital mortgage backed-securities overall bond index (SCMBS), and the return on the TSE 300 index (TSE 300). Panel A
Teports various statistics for all variables, including autocorrelation coefficients of order 1, 3, 6, and 12. Panel B presents the
correlation matrix of instruments. Panel C presents the correlation matrix of bond indices and factors. The data cover the period from
March 1985 to February 2000, for a total of 180 observations,

Pane} A: Descriptive statistics and autocorrelations

TSE300 | 1.0285 | 1.1814 11.944 | -22.5231 | 4.3249 | -1.399 | 9.603 | 0.051 | -0.017 | 0.020

Statistic | Mean | Median [ Std. Dev. Min. Max. | Skew. | Kurt. | p, P3 Ps P12
TB1 0.5924 | 0.5912 0.244 02117 1.1433 | 0425 | 2211 | 0978 | 0.929 | 0.863 | 0.694
DEF 06.0698 0.0683 . 0.017 0.0383 0.1033 | 0.098 1978 | 0.913 | 0.790 | 0.629 | 0.505
TERM 0.1047 0.1196 0.144 -0.2450 | 0.3675 | -0.624 1 2.904 | 0.935 | 0.837 0.712 | 0.435
REALG | 0.2291 0.1997 0.310 ~0.6863 | 2.5913 | 2.448 | 20,515 | 0.038 | 0.170 0.074 | 0.397
SC 1 0.8787 | 0.9031 6.576 -4.8235 1.7852 | 0.012 | 3.461 0.066 | 0.016 | -0.047 | 0.051
SCG 0.8948 | 0.9463 6.571 -4.9653 | 1.8197 | -0.023 | 3.403 | 0,059 | 0.006 | -0.042 | 0.047
SCGLT | 1.0530 1.1166 8.785 -6.4339 | 2.6209 | 0.095 | 3.008 | 0.044 | 0.005 -0.035 { 0.039
SCGMT | 0.8958 | . 0.9092 6.838 -5.3207_] 1.9513 | -0.019 | 3.285 | 0.065 | 0.011 | -0.033 | 0.037
SCC 0.9208 1.0500 5.415 -4.9476 1.7423 | -0.099. | 3.174 | 0.104 | -0.010 | 0.004 | -0.058
SCCLT 1.0392 1.1787 . 7.727 -5.8679 | 2.3838 | 0.053 { 2.920 | 0.090 | -6.033 | 0.000 0.021
SCCMT | 0.9191 | -0.9694 5.882 -4.9702 1.7854 | -0.101 | 3.145 | 0.104 | -0.007 | 0.020 -0.068
SCMBS | 0.6781 | 0.6920 3172 -3.6992 | 1.0509 | -0.586 | 5.391 | 0.171 | 0.038 | 0.074 | -0.016
-0.084

Panel B: Correlation matrix of instruments

Variable 181 DEF TERM_| REALG
TB1 1.00 ‘

DEF 0.29 1.00

TERM -0.81 -0.34 1.00

REALG 0.39 0.04 -0.31. 1.00

Panel C: Correlation matrix of bond indices and factors

Partfolio SC SCG | SCGLT | SCGMT | SCC | SCCLT | SCCMT | SCMBS | TSE300
sC 1.00

SCG 1.00 | 1.00

SCGLT 097 | 097 1.00

SCGMT 1.00 | 1.00 0.96 1.00

SCC 099 | 099 0.97 0.98 1.00

SCCLT 095 | 0.95 098 | 0.94 0.98 1.00

SCCMT 099 | 099 0.96 0.99 1.00 0.96 1.00

SCMBS 094 1 093 0.84 0.94 0.92 0.83 0.93 1.00

TSE300 039 | 040 0.40 0.39 0.44 0.44 0.44 0.35 1.00

172




Table A23. Bond and bond mutual fund excess return predictability

This table reports the summary statistics on the bond portfolios and mutual fund return predictability based on time series multivariate
predictive regressions using four lagged instrumental variables and monthly data from the period March 1985 through February 2000,
for a total of 180 monthly cbservations. The abbreviations GOVT, CORP, and ALL refer to government, corporate, and all funds,
respectively, and the prefixes EW and SW refer to equal- and size-weighted portfolios of funds with these investment objectives,
respectively. The instruments are the yield on one-month Treasury bills, the default premium, the slope of the term structure or term
premium, and the real yield on long-maturity (5 to 10 years) government bonds minus the inflation rate lagged one month. The nine
bond portfolios (indices) are the Scotia Capital universe bond index (SC), the Scotia Capital universe long term bond index (SCLY),
the Scotia Capital universe medium term bond index (SCMT), the Scotia Capital government bond index (SCG), the Scotia Capital
government long term bond index (SCGLT), the Scotia Capital government medium term bond index (SCGMT), the Scotia Capital
corporate bond index (SCC), the Scotia Capital corporate long term bond index (SCCLT), and the Scotia Capital corporate medium
term bond index (SCCMT). The statistics reported are the slope coefficients associated with each instrumental variable, the ¥ -values,
and the probability of observing a larger x? statistic under the null hypothesis of no time-variation from the GMM-based Wald tests
proposed by Newey and West (1987b).

Partfolio TB1 DEF TERM | REALG x p-value
SC 1.990™ -9.680 3.6407 | -0311 9.680 0.046
SCLT 2799" | -19948" | 5.192 | -0.549 | 10067 | 0.039
SCMT 2,186 -10.669 3941 -0.368 9.794 0.044
SCG 20317 -9.444 38110 -0.304 | 9.896 0.042
SCGLT 2.799" -18.279 5.376"" -0.515 | 10.274 0.036
SCGMT 2,189 | -10012 4.016 -0.339 | 9.890 0.042
'SCC 1.818° -6.043 3.858" -0.225 | 10.229 0.037
SCCLT 2551 -10.832 54777 T -0426. | 10137 0.038
SCCMT 1.931 -7.041 [ 3.863" -0.262 | 10421 0.034
EWGOVT 1.654° -7.371 3184 -0.209 | 10.237 0.037
SWGOVT 1747 -8.152 3276 | 0244 | 10280 | 0.036
EWCORP 1458 -7.469 3.004 -0.198 | 9.261 0.055
SWCORP 1.678" -9.508 3308 | -0.237 | 9.852 0.043
EWALL 1.299™ -6.014 2.626 -0.155 9.012 0.061
SWALL 1.2727 -6.623 2.484" -0.164 | 8515 0.074

e

Significant at the 1% level (2-tailed).
** Significant at the 5% level (2-tailed).
*Significant at the 10% level (2-tailed).
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Table A24. Performance and risk measures for portfolios of funds using unconditional and
conditional single factor models :

This table reports summary statistics on the performance (ain %) and risk measures for equal- and size weighted portfolios of
individual funds using unconditional and conditional single factor models. The unconditional m odels are the single market factor
madel and the single specific factor model. The conditional models are single factor models with time-varying betas and/or alphas
based on four instrumental variables. The instrumental variables are the lagged values of the yield on one-month T-bills (TB1), the
slope of the term structure (TERM), the default premium (DEF), and the real yield on long-maturity government bonds (REALG).
GMM estimation is conducted for each portfolio of funds by regressing the excess retum on the portfolio of funds on a constant, the
excess return on the factor, and variables representing the lagged instruments and the product of the four lagged instrumental variables
and the excess return on the factor in the case of the conditional models. The alpha is the estimate of the intercept of the regression and
the beta or B(.) is the estimate of the slope of the regression. B(.) is for the respective specific factors in panels C and D, and for the
market factor in the other panels. The standard errors o £ these estimates are a djusted for s erial ¢ orrelation and heteroskedasticity
(Newey and West, 1987a). The five portfolios of funds are described in table 5.1. All represents the performances and risks of
portfolios of all individual funds. Information related to the estimated performarnce and betas is provided in the table. W1, W2, and
W3 correspond to the p-values based on the Newey and West (1987b) Wald test on the validity of the time-varying alphas, time-
varying betas, and time-varying alphas and betas, respectively. M onthly data are used from March 1985 to February 2000, for a
maximum of 180 observations per portfolio of funds.

FundGroup| N | o [pval[BQ [pval| Wi | W2 | W3 | Adj.R2
Panel A: Equal-weighted portfolios and unconditional single market factor model
Govémment | 108| -0.0840 | 0.00 [0.844] 0.00 0.97
Corporate 28 | -0.0922 | 0.00 {0.820] 0.00 . 0.96
Mortgage 21 [ 00219 10.59°0242/ 000 ° 0.38
High-Yield | 5 0.0817 | 0.51 10.707] 0.00 ‘ 0.51
All 162{ -0.0671 | 0.00 {0.734] 0.00 : 0.96
Panel B: Slze-weigrhted portfolios and unconditional single market factor model
Govemment {108 -0.0781 { 0.00 [0.880] 0.00 |. -0.97
Corporate 28 | -0.0911 | 0.00 {0.900] 0.00 0.97
Mortgage 21 | 00188 ] 0.64 10.283] 0.00 0.47
High-Yield | 5 0.0666 | 0.59.10.677] 0.00 0.50
Alt 162] -0.0513 | 0.02 10.723] 0.00 0.95
Panel C: Equal-weighted portfolios and unconditional single specific factor model
Government | 108 -0.0932 | 0.00 [0.829] 0.00 - 0.98
Corporate 28 | -0.1317 { 0.00 {0.834] 0.00 095
Mortgage 21 | 0.0104 | 0.84 {0.501} 0.00 0.50
Panel D: Size-weighted portfolios and unconditional single specific factor model
Government |108{ -0.0875 | 0.00 [0.864] 0.00 : 0.98
Corporate 28 | -0.1337 | 0.00 [0.914] 0.00 0.96
Mortgage. 211 00102 [0.84 [0.568] 0.00 0.59
Panel E: Equal-weighted portfolios and conditional beta single factor model
Government | 108 . -0.0736 | 0.00. ]0.863] 0.00 0.00 0.98
Corporate 28 | -0.0829 | 0.00 {0.839] 0.00 0.00 0.97
Mortgage . |21 | 0.0310 | 0.46 |0.266{ 0.00 0.00 040
High-Yield 5 0.0128 | 0.93 10.720] 0.00 0.31 0.51
All ) 162 -0.0537 | 0.00 10.756] 0.00 0.00_ 0.97
Panel F: Sizwﬂ[hted portfolios aud conditional beta single factor model
Gavernment | 108 | -0.0703 | 0.00 [0.899] 0.00 0.00 0.98
Corporate | 28 | -0.0855 | 0.00 [0.922] 0.00 0.00 _0.98
Mortgage. 21 | 0.0304 | 0.46 [0.309] 0.00 0.00- 0.50
High-Yield | 5 0.0038 | 0.98 [0.657] 0.00 0.13 0.50
All 162] -0.0401 | 0.04 [0.749] 0.00 0.00 0.96
Panel G: Equat-weighted portfolios and conditional alpha single factor model
Government | 1081 -0.0728 | 0.00 {0.863] 0.00 ] 0.80 | 0.00 | 0.00 0.98
Corporate 28 | -0.0822 { 0.00 {0.8371 0,001 042 | 0.00 | 0.00 0.97
Mortgage 21 00275 | 0.51 }0.273] 0.00 { 046 | 002 | 0.01 0.40
High-Yield | 5 | -0.0310 [ 0.87 }0.750{ 0.00 | 0.91 { 038 | 0.03 0.48
All 162] -0.0538 | 0.00 ]0.757] 0.00 | 0.83 0.00 0.00 0.97
Pancl H: Size-weighted portfolios and conditional alpha single factor model
Government | 108] -0.0694 | 0.00 J0.899] 0.00 | 0.86 | 0.00 | 0.00 0.98
Corporate 28 | -0.0840 | 0.00 10.9201 0.00 | 0.23 § 0.00 | 0.00 0.98
Mo 21 0.0273 0.50 10.316] 0.00 { 0.65 0.00 | 0.00 0.50
High-Yield 5 | -0.0272 | 0.89 {0.681]| 000 | 094 | 020 | 0.07 047
Al 1621 -0.0401 | 0.04 10.750] 0.00 | 0.90 | 0.00 | 0.00 0.96
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Table A2S, Averages of individual fund performance using the unconditional and conditional single-
and multi-factor models '

This table reports equal-weighted (EW) and size-weighted (SW) averages of individual fund performances (o in %) using
unconditional and conditional single- and multi-factor models. The models are the single market factor model, the two-factor risk
madel, the two-factor stock model, and the five-factor model. Partial conditioning refers to models with time-varying betas only and
full conditioning refers to models with both time-varying alphas and betas. All of the time-varying coefficients are linear functions in
the four instrumental variables. The instrumental variables are the iagged values of the yicld on one-month T-bills (TB1), the slope of
the term structure ( TERM), the default premium (DEF), and the real yield on long-maturity government bonds (REALG). GMM
estimation is conducted for cach fund. The alpha is the estimate of the intercept of the time-series regression. The number of funds in
each of the five groups is described in table 5.1. All represents the portfolios of performances of all individual funds. Monthly data are
used from March 1985 to February 2000, for a maximum of 180 observations per fund.

Unconditional Partial Conditional Full Conditional

FudGrow | pw & | swa |Ewa | swa | Ewa |swa
Panel A: Single market factor model
Government -0.1007 | -0.1070 | -0.1045 | -0.1191 -0.1607 | -0.1555

Corporate -0.1115 { 0.1213 | -0.1156 | -0.1323 [ -0.1735 | -0.1618
Mortgage -0.0094 | -0.0091 | -0.0096 | -0.0036 | -0.0006 | -0.0068
High-Yield 0.0782 0.0591 0.0502 0.0394 -0.5009 | -0.5277
All 00852 | -0.0912 | -0.0893 | -0.1003 | -0.1526 | -0.1347

Panel B: Two-factor risk model
Government -0.1065 | -0.1109 | -0.1068 -0.1276 -0.1899 | -0.1659

Corporate -0.1123 -0.1238 | -0.1179 | -0.1309 | -0.2389 | -0.0632
Mortgage -0.0167 | -0.0161 -0.0241 | -0.0210 | -0.0374 | -0.0040
High-Yield -0.0514 0.0261 0.0311 0.0129 -0.8623 | -0.9257
All -0.0910 -0.0957 | -0.0937 -0.1090 | -0.1993 | -0:1312

Panel C: Two-factor stock model :
Government 0.1115 | -0.1252 | -0.0941 -0.1160 -0.0928 | -0.1731
Corporate -0.1220 <0.1275- | -0.0894 -0.1087 -0.0940 | -0.1011

Mortgage -0.0184 | -00165 | -0.0149 | -0.0105 | -0.0308 | -0.0299
High-Yieid | 0.0142 -0.0021 0.2329 0.2301 03644 | 0.4564
All -0.0973 | -0.1063 | -0.0730 | -0.0944 | -0.0709 | -0.1338

Panel D: Five-factor model
Govemment -0.1166 | -0.1194 | -0.0926 0.0820 | -0.0289 | -0.1432

Corporate 01342 | -0.1345 | -0.1246 | -0.1529 | -0.1727 | -0.1711
Mortgage -0.0211 -0.0216 | -0.0327 | -0.0275 | -0.2425 | -0.1855
High-Yield -0.0140 | -0.0323 0.1246 0.1252 -0.1549 | -0.7818
All -0.1041 -0.1043 ; -0.0834 | -0.0808 | -0.1049 [ -0.1597
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Table A26. Summary statistics for the performance estimates based on the unconditional and
conditional factor models for the fund categories based on individual fund performances

This table presents summary statistics for the performance measures based on the unconditional and the full conditional factor maodels
for each fund category and for all funds. The models are the single market factor model, the two-factor risk model, the two-factor
stock model, and the five-factor model. Full conditional models are models with time-varying alphas and betas based on four
instrumental variables. The instrumental variables are the lagged valucs of the yield on one-month T-bills (TB1), the slope of the term
structure (TERM), the default premium (DEF), and the real yield on long-maturity govemment bonds (REALG). The number of funds
in each of the five groups is described in table 5.1. All of the p-values are based on GMM estimation and are adjusted for serial
correlation and heteroskedasticity (Newey and West, 1987a). Information related to the funds with significant performance at the 5%
level and with positive significant performance is provided in the table. The Bonferroni p-values are the minimum and the maximum

one-tailed p-values from the t-distribution across all of the funds and all of the fu

nd groups, multiplied by the defined number of

funds.
. Unconditional Full Conditional
% funds | # funds Bonferroni p % funds | # funds Bonferroni p
Fund Group ‘1 Max. | Min. P<5% o0 & Max. | Min. Max. Min. p<5% o0 & Max. | Min.
p<5% <%

Panel A: Single market factor model
Government 0.961 | 0.000 58.33 2 0.000 | 0.880 | 0.981 | 0.000 43.52 5 0.000 { 0.034
Corporate 0.887 | 0.000 57.14 0 0.000 | 1.000 | 0.979 | 0.000 28.57 0 0.000 | 1.000
Mortgage 0.954 | 0.000 23.81 1 0.000 | 04651 0.797 | 0.014 9.52 2 0.694 | 0.138
High-Yield 0.887 | 0.219 0.00 0 1.000 | 0.535 | 0956 | 0.200 0.00 (1] 0.480 | 1.000
All 0.961 | 0.000 51.85 3 0.000 | 1.000 { 0981 | 0.000 35.19 7 0.000 | 0.051
Panel B: Two-factor risk model
Government 0.984 | 0.000 62.96 1 0.000 | 1.000 { 0.998 | 0.000 28.70 0 1.000 | 0.000
Corporate 0.850 | 0.000 64.29 0 0.000 { 1.000 [ 0917 | 0.004 21.43 0 1.000 | 0.031
Mortgage 0.993 | 0.000 19.05 0 0.000 | 0.677 | 0.990 | 0.003 9,52 1 0.023 | 0.119
High-Yield 0.964 1.0.223 0.00 0 1.000 | 0.542 | 0933 | 0.084 - 0.00 0 1.000 | 0.186
All 0.993 | 0.000 55.56 1 0.000 { 1.000 | 0.998 | 0.000 24.07 1- 0.177 | 0.000
Pane] C: Two-factor stock model .
Government | 0.988 | 0.000 64.81 2 0.000 | 1.000 | 0975 | 0.000 47.22 7 0.051 | 0.000
‘Corparate 0.920 | 0.000 60.71 0 0.000 | 1.000 | 0977 [ 0.000 25.00 0 1.000 | 0.000
Mortgage 0.954 [ 0.000 19.05 0 0.000 | 0.617 | 1.000 | 0.012 14.29 1 0.120 { 0.105

_High-Yield 0.923 | 0.385 0.00 0 1.000 | 0.951 | 0.828 | 0.233 0.00 0 0.633 | 0.568
All 0.988 | 0.000 56.17 2 0.000 | 1.000 | 1.000 | 0.000 37.65 8 0.076 | 0.000
Panel D: Five-factor model :
Government | 0.985 | 0.000 62.96 0 0.000 | 1.000 | 0.953 | 0.000 41.35 8 0.000 [ 0.000
Corporate 0449 | 0.000 78.57 Q 0.000 | 1.000 § 1.000 | 0.001 30.77 1 0.001 { 0.000
Mortgage 0.989 | 0.000 23.81 [1] 0.000 | 0.853 | 0.882 { 0.000 38.10 0 1.000 | 0.000
High-Yield 0.950 | 0.213 0.00 0 0.519 | 0.781 | 0.930 | 0.102 0.00 0 1.000 | 0.207
All 0.989 | 0.000 58.64 Q 0.000 | 1.000 [ 1.000 | 0.000 37.82 9 0.000 [ 0.000
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Table A27. Performance and risk measures for portfolios of funds using unconditional and
conditional two-factor models

This table reports summary statistics on the performance (a in %) and risk measures for equal- and size weighted portfolios of
individual funds using unconditional and conditional versions of the two two-factor models. The two-factor risk model has the Scotia
Universe bond index and the Scotia overall MBS index as factors. The two factor stock model has the Scotia universe bond index and
the TSE 300 index (S) as factors. Partial and full conditionings refer to models with time varying betas and time-varying betas and
alphas, respectively. GMM estimation is conducted for each portfolio of funds in a time-series regression. The standard errors of these
estimates are adjusted for serial correlation and heteroskedasticity (Newey and West, 1987a). The five portfolios of funds are
described in table 5.1. All represents the performances and risks of portfolios of all individual funds. Information related to the
estimated performance, betas, p-values, and the adjusted R? is provided in the table. B(.) refers to B(MBS) for the two-factor Tisk
models, and B(S) for the two-factor stock models. W1, W2, W4, and W5 correspond to the p-values based on the Newey and West
{1987b) Wald test on the validity of the time-varying alphas, time-varying B(M), time-variation of ali betas, and time-varying alphas
and betas, respectively. Monthly data are used from March 1985 to February 2000, for a maximum of 180 observations per portfolio
of funds.

FundGroup| N| o [pval [po[pval] BO | pval | Wt | W2 | Wd | W5 | ALK
Panel A: Equal-weighted portfolios and unconditional two-factor risk model
Government {108 [ -0.0986 | 0.00 [1.000] 0.00 | -0.125 0.01 : 0.99
Corporate 28 | -0.0942 | 0.00 |1.019 0.00 | -0.198 0.00 0.98
Mortgage 21 | 0.0095 | 0.84 {0.159] 0.11 | 0.265 0.19. 0.51
High-Yield | 5 | 0.0806 | 0.52 [0.806] 0.00 | -0.203 (.58 0.50
All 162 -0.0780 | 0.00 }0.876] 0.00 | -0.081 0.15 0.98
Panel B: Size-weighted portfolios and unconditional two-factor risk model
Government | 108 { -0.0933 | 0.00 [1.029] 0.00 | 0.132 0.01 0.99
Corporate | 28 | -0.1004 | 0.00 |1.166{ 0.00 | -0.318 0.00 0.98
Mortgage 21§ 0.0086 | 0.85 [0.269] 0.00 | 0.170 0.32 0.63
[High-Yield | 5 | 0.0657 | 0.60 0.762] 0.00 | -0.173 0.63 0.49
All 162 -0.0663 | 0.00 [0.890] 0.00 | -0.120 0.13 0.97
Panel C; Equal-weighted portfolios and unconditional two-factor stock model
Government {108 ] -0.0905 {-0.00 {0.828] 0.00 T 0.025 0.00 0.98
Corporate |28 | -0.0989 | 0.00 [0.803] 0.00 | 0.026 0.00 0.96
Mortgage 211 0.0150 { 0.71 10.225] 0.00 | 0.027 0.00 - 040
High-Yicld | 5 [ 0.0328 | 0.77 |0.615] 0.00 | 0.079 0.02 0.57
All 1621 -0.0743 | 0.00 {0.716{ 0.00 | 0.028 0.00 0.97
Panel D: Size—vﬂghted -portfolios and unconditional two-factor stock model
Government | 108 | -0.0859 | 0.00 |0.861{ 0.00 | 0.030 | -0.00" 0.98
Corporate 28 | -0.0964 | 0.00 [0.887} 0.00 { 0.021 0.00 0.97
Mortgage 21 | 0.0113 | 0.78 [0.265] 0.00 | 0.029 0.00 0.50
|High-Yield [ 5 | 00184 | 0.87 [0.586] 0.00.] 0.077 0.02 0.57
All - 11624 -0.0594 | 0.0t ]0.703] 0.00 | 0.032 0.00 : 0.96
Panel E: Equal-weighted'portlolios and partial conditional two-factor risk model
Government | 108 | -0.0856 | 0.00 [1.012] 0.00 |.-0.165 0.08 0.51 0.23 0.99
Corporate 28 | 0.0807 | 0.00 [0.994] 0.00 | 0.160.] 0.16 0.01 0.02 0.98
(Mortgage 21 | 0.0199 | 0.72 }0.165{ 0.14 | 0342 0.09 0.38 0.01 0.57
High-Yield | 5 | -0.0163 | 0.92 [0.469] 0.24 | 0.482 0.50 0.59 041 0.52
Al 1621 -0.0691 | 0.00 {0.872] 0.00 | -0.074 041 0.35 0.02 0.98
Panél F: Size-welghted 'E.': rtfalios and partial conditional two-facter risk model
Government | 108.| -0.0862. | 0.00 [1.014] 0,00 T -0.117 0.20 0.23 0.04 0.99
Corporate 28 | -0.0946 { 0.00 11.100] 0.00 | -0.246 | -0.01 0.00 | 0.00 0.99
Mortgage 21 00101 {085 [0.235] 0.02 | 0.317 0.08 047 0.01 0.67
’ﬁgh-Yield 5 1 -0.0346 { 0.82 {0.222] 0.55 | 0.820 0.22 0.30 0.19 0.51
All 162] -0.0631 ! 0.01 |0.834] 0.00 | -0.019 | 0.84 0.02 0.00 0.98
Panel G: Equal-welghted portfolios and partial conditional two-factor stock model
Government | 108 | -0.0736 | 0.00 10.847] 0.00 | 0.017 0.00 0.00 0.00 0.99
Corporate 28 | -0.0864 | 0.00 [0.821] 0.00 { 0.018 0.00 0.00 0.00 0.97
Mortgage 211 00208 | 0.64 10.243{ 0.00 | 0.023 0.04 0.00 0.01 0.41 .
High-Yield 5 0.1001 0.29 10.672] 0.00 | 0.057 Q.11 0.37 Q.00 0.63
All 1627 -0.0557 | 0.00 |0.738] 0.00 | 0.018 0.00 0.00 0.00 0.98
Panel H: Size-weighted portfolios and partial conditional two-factor stock model )
Government {108 | -0.0727 { 0.00 [0.878] 0.00 | 0.022 0.00 0.00 0.00 0.99
Corporate 28 | -0.0873 { 0.00 {0.910{ 0.00 | 0.013 0.00 0.00 0.00 0.98
Mortgage 21 | 0.0207 | 0.62 10.286] 0.00 | 0.025 0.02 0.00 0.00 0.52
High-Yield | 5 | 0.0908 | 0.33 {0.597] 0.00 | 0.074 0.03 0.37 0.00 0.64
All 162 -0.0441 | 0.01 {0.727] 0.00 | 0.022 0.00 0.00 0.00 0.97
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Table A27. Continued.

FundGroup| N | o [pval[paM)[pval] BQ | pval | Wi | W2 | Wé | W5 | Ad). B
Panel I: Equal-weighted portfolios and full conditioual two-facter risk model

Govemment | 108 -0.1005 { 0.01 [1.017] 0.00 [ -0.162 | 0.11 0.06 1038 0.01 0.99
Corporate 28 | -0.1230 | 0.01 |0.988} 0.00 { -0.130 | 0.26 | 0.16 | 0.00 0.00 0.98
Mortgage 21 | 0.0410 | 0.64 10.1831 0.13 [ 0311 | 0.21 0.49 10.39 0.02 0.56
High-Yield 5 1 0.0836 | 0.68 |0.493] 0.19 { 0.519 0.48 0.79 | 0.69 0.14 0.49
All 162} -0.0870 | 0.05 10.876} 0.00 | 0.066 | 0.52 { 0.12 [ 0.15 0.00 0.98
Panel J: Size-weighted portfolios and full conditional two-factor risk model

Government | 108 | -0.1119 ] 0.01 [1017] 000 | -0.106 | 029 0.23 | 0.16 0.03. 0.99
Corporate 28 | -0.1010 {1 0.02 {1.103| 0.00 | -0.245 | 0.02 | 0.70 | 0.00 0.00 0.9
Mortgage 21} 0.0401 1062 ]0.255{ 0021 0278 | 022 | 0.55 [ 044 0.02 0.67
High-Yield | 5 { -0.1141 { 0.58 [0.274] 043 | 6819 | 024 | 0.78 | 045 0.14 0.48
All - 162| -0.0755 { 0.09 [0.842] 0.00 | -0.021 | 0.84 0.15 | 0.00 0.00 0.98
Panel K: Equal-weighted: portfolios and full conditional two-factor stock model

Govemment | 108] 0.0735 | 0.00 10847} 0.00 | 0017 | 000 | 074 | 0.00 0.00 0.99
Corporate 28 | -0.0862 | 0.00 10.820] 0.00 | 0.018 { 0.00 | 0.58 | 0.00 0.00 0.97
Mortgage 21} 0.0210 | 063 102521 0.00 { 0.021 | 007 | 066 ] 0.00 0.04 0.41
High-Yield | 5 | -0.1550 | 0.28 [0.746] 0.00 | 0.069 | 0.07 | 036 | 0.45 0.00 0.61
All 162 -0.0555 | 0.00 10.740{ 0.00 { 0.018 | 0.00 | 0.93 | 0.00 0.00 0.98
Panel L: Size-weighted portfolios and full conditional two-factor stock model

Govemment | 108 | -0.0728 | 0.00 [0.878{ 0.00 | 0.023 | 0.00 | 0.53 | 0.00 -0.00 0.99
Corporate 28 | -0.0871 { 0,00 j0.907] 0.00 | 0.014 | 0.00 | 0.51 {0.00 0.00 0.98
Mortgage 21 | 00207 | 062 ]0294] 000} 0023 | 002 | 079 |0.00 0.00 0.51
High-Yield | 5 | -0.1723 | 0.22 {0.672] 0.00 | 0.086 | 0.01 025 | 045 0.00 0.62
All 162] -0.0441 | 0.01 |0.729] 0.00 | 0.022 | 0.00 | 0.87 | 0.00 0.00 0.97
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Table A29. Survivorship biases and average excess returns

This table reports the average excess returns (in %) for equal- and size-weighted portfolios of surviving and non-
surviving funds grouped by investment objectives and estimates of the survivorship bias. The survivorship bias is the
difference between the portfolio retumns of all funds and of only surviving funds. All represents the equal- or size-
weighted portfolios of all funds. Size is defined as the total net asset value of the fund. Monthly data are from March
1985 through February 2000.

Averages of Excess Returns for the Year/Period:
1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 11999 | 2000 [1985-2000
Panel A: Equal-weighted portfolios of all funds. ‘ ' . -
Government | 0.7168 | 0.1229 | 0.8132 | -0.8607 | 0.7388 | 0.4336 0.3444 | 0.1964 { -0.5552-] 0.3946 | 0.1417
Corporate 0.6848 | 0.1014 | 0.7933 | -0.7895 | 0.7597 | 0.4321 | 0.3532 | 0.1668 -0.5423 | 0.3810 | 0.1465
Mortgage 0.3929 | 0.1218 | 0.4584 | -0.4251 | 0.3231 | 0.3012 | 0.0340 | 0.0401 | -0.2725 -0.0184 | 0.0726
High-Yield - - - -0.5205 | 0.8776 | 0.6793 | 0.6476 | -0.3015 | -0.0035 | 0.0802 | 0.3424
All : 0.6502 | 0.1186 | 0.7373 | -0.7631 | 0.7044 | 0.4177 | 0.3072 | 0.1550 -0.4979 | 0.3272 | 0.1264
Panel B: Equal-weighted portfolios of surviving funds .
Government | 0.7049 | 0.1004 | 0.8173 | -0.8609 | 0.8284 | 0.4407 | 0.3630 0.1985 | -0.5606 | 0.4206 { 0.1576
Corporate 0.6890 | 0.0858 | 0.7937 | -0.7759 | 0.7737 | 0.4506 | 0.4085 | 0.1700 | -0.5336 04113 | 0.1424
Mortgage | 0.4063 | 0.1405 | 0.4743 | -0.3830 | 0.3751 | 0.3435 0.0671 | 0.0973 | -0.2907 | -0.0003 | 0.0911
{High-Yield - - - -0.5205 | 0.8776 | 0.6793 | 0.6487 | -0.3059 | 0.0178 | 0.3575 | 0.3544
All 0.6583 | 0.1666 | 0.7559 | -0.7673 | 0.7498 | 0.4364 | 0.3436 | 0.1649 -0.5031 | 0.3625 | 0.1429
Papel C: Equal-weighted portfolios and survivorship bias )
Government | -0.0118 | 0.0675 [ 0.0041 | -0.0002 | 0.0396 ] 0.0071 | 0.0236 0.0021 | -0.0055 | 0.0260 | 0.0159
Corporate 0.0042 | -0.0156 | 0.0004 | 0.0135 | 0.0140 | 0.0186 | 0.0553 | 0.0032 | 0.0087 0.0303 | -0.0041
Mortgage 0.0134 | 0.0187 | 0.0158 | 0.0411 | 0.0520 | 0.0423 | 0.0331 | 0.0572 | -0.01 83 | 0.0180 | 0.0185
High-Yield - - - 0.0000 | 0.0000 | 0.0000 | 0.0011 |-0.0044 | 0.0212 | 0.2773 | 0.0120
All 0.0081 | 0.0481 | 0.0186 | -0.0042 | 0.0455 | 0.0187 | 0.0364 | 0.0099 -0.0052 | 0.0353 | 0.0165
Panel D: Size-welghted portfolios of all funds :
Government | 0.7367 | 0.1714 | 0.8568 | -0.8825 | 0.8347 .0.4956' | 0.3909 | 0.1891 [ -0.5538 | 04143 | 0.1712
Corporate 0.7126 1 0.0704 | 0.8393 | -0.8572 | 0.8898 04412 | 0.4336 | 0.2714 | -0.6434 | 0.4939 | 0.1641
Mortgage 0.4476 | 0.1209 | 0.4567 | -0.4376 [ 0.3907 | 0.3345 | 0.1124 | 0.1088 | -0.3319 0.0801 | 0.0889
High-Yield - - - 1.-0.5755 | 0.7997 | 0.6890 | 0.6262 [ -0.3165 | -0.0078 | 0.3150 | 0.3276
Al 0.6497 | 0.1494 | 0.7408 | -0.7450 [ 0.7324 | 0.4586 | 0.345] | 0.1831 -0.5214 | 03635 | 0.1491
Pauel E: Size-weighted portfolios of surviving funds
Government | 0.7307 | 0.1861 | 0.8641 | -0.8781 ] 0.8387 0.4986 | 0.3954 | 0.1878 | -0.5569 | 0.4195 | 0.1736
Corporate 0.7087 | 0.0624 | 0.8575 | -0.8437 | 0.8829 [ 0.4511 | 0.4569 | 0.2754 | -0.6350 | 6.4910 0.1666
-|Mortgage 0.4670 | 0.1339 | 0.4813 | -0.4217 [ 0.4288 | 0.3571 | 0.1381 | 0.1173 | -0.3428 0.0887 | 0.0999
High-Yield - - - -0.5755 | 0.7997 | 0.6890 | 0.6264 | -0.3158 { -0.0077 | 0.3156 | 0.3278
All 0.6584 | 0.1595 | 0.7674 | -0.7535 | 0.7520 | 0.4691 | 0.3588 | 0.1836 | <0.5247 0.3690 | 0.1556
Panel F: Size-weighted portfolios and survivorship bias . '
Government | -0.0060 | 0.0087 [ 0.0073 | 0.6045 | 0.0040 | 0.0030 | 0.0045 -0.0013 | -0.0031 | 0.0052 | 0.0024
Corporate -0.0039.1 -0.0080 | 0.0182 | 0.0134 -0.0069 | 0.0099 | 0.0233 | 0.0040 | 0.0083 |-0.0029 | 0.0025
Mortgage 0.0195 | 0.0130 [ 0.0246 | 0.0159 | 0.0381 | 0.0226 | 0.0257 0.0084 [ -0.0109 | 0,0086 | 0.0110.
High-Yield - -1 - ~ " 1.0.0000 | 0.0000 | 0.0000 | 0.0002 0.0007 | 0.0000 | 0.0006 | 0.0002
All - { 0.0087 | 0.0101 | 0.0266 | -0.0086 | 0.0196 | 0.0105 | 0.0138 | 0.0005 -0.0032 ] 0.0055 | 0.0065

Fund Group
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Table A30. Survivorship biases and risk-adjusted performance

This table reports the performance measures (¢ in %) per investment objective category for size-weighted portfolios of
surviving and non-surviving funds and estimates of the survivorship bias using twelve unconditional and conditional
benchmark models. The survivorship bias in % per year is the difference between the risk-adjusted performance of the
size-weighted portfolios of all funds and of surviving funds only. The estimation is conducted using the GMM method.
All represents the equal-or size-weighted average of all funds. The standard errors of the estimates are adjusted for
serial correlation and heteroskedasticity (Newey and West, 1987a). Size is defined as the total net asset value of the
fund. Monthly data are from March 1985 through February 2000,

Size-weighted portfolios of surviving and non-surviving funds

Fund Unconditional Partial Conditional Full Conditional

Group - . a | p-val [Surv.Bias| o | p-val | Surv. Bias a | p-val | Surv. Bias

Panel A: Single market factor model

Government | -0.0815 | 0.00 | 0.0408 | -0.0740 | 0.00 0.0444 -0.0732 | 0.00 0.0456

Corporate [ -0.0931| 0.00 | 0.0240 | -0.0875 | 0.00 0.0240 -0.0860 [ 0.00 0.0240

Mortgage 0.0111 | 0.79 | 0.0924 | 0.0213 | 0.61 0.1092 0.0178 | 0.67 0.1140

High Yield | 0.0664 | 0.59 | 0.0024 | 0.0036 { 0.98 0.0028 -0.0271 | 0.89 -0.0012

All -0.0514 1 0.02 | 0.0012 | -0.0395 | 0.05 -0.0072 | -0.0397 | 0.05 -0.0048

Panel B: Two-factor risk model

Government | -0.0964 | 0.00- | 0.0372 | -0.0890 | 0.00 0.0336 -0.1141 | 0.01 0.0264

Corporate | -0.1064 | 0.00 | 0.0720 | -0.1010 [ 0.00 0.0768 -0.0966 | 0.03 -0.0528

Mortgage {-0.0037| 0.94 | 0.1465 | 0.0016 | 0.98 0.1016 0.0327 | 0.69 0.0888

iHigh Yield | 0.0655 | 0.60 | 0.0024 [ -0.0347 | 0.82 0.0012 -0.1151 | 0.58 0.0120

All -0.0682 | 0.00 | 0.0228 | -0.0650 | 0.01 0.0228 -0.0748 | 0.10 -0.0084

Panel C: Two-factor stock model

Government { -0.0890 | 0.00 | 0.0372 | -0.0773 | 0.00 0.0552 -0.0774 | 0.00 0.0552

Corporate | -0.0980| 0.00 | 0.0192 | -0.0879 | 0.00 0.0072 -0.0877 | 0.00 0.0072

Mortgage 0.0040 | 0.92 | 0.0881 | 0.0107 | 0.80 0.1200 0.0108 { 0.80 0.1188

High Yield | 0.0183 | 0.87 | 0.0012 | 0.0903 | 0.33 0.0060 -0.1726 | 0.22 0.0036

All -0.0594 1 0.01 | 0.0000 | -0.0443 | 0.02 0.0024 -0.0443 | 0.02 0.0024

Panel D: Five-factor model

Government | -0.1148 | 0.00 | 0.0204 | -0.0935 | 0.00 0.0480 -0.1654 | 0.00 0.0024

Corporate -0.133 1 0.00 | 0.0624 | -0.1115 | 0.00 0.0540 -0.1006 | 0.00 -0.0816

Mortgage 1-0.01741 0.73 | 0.1324 | -0.0126 { 0.84 | 0.0721 -0.1059 | 0.26 -0.0084

High Yield {-0.0271} 0.77 { 0.0000 | 0.0087 | 0.91 -0.0012 | -0.5771 | 0.08 -0.0156

All -0.0906 | 0.00 | 0.0168 | -0.0743 | 0.00 0.0300 -0.1307 | 0.00 -0.0600
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Table A31. The relationship between risk-adjusted performance and mutual fund attributes

This table reports the cross-sectional regression statistics of the relationship between risk-adjusted p erformance and mutual fund
attributes. Thirteen risk-adjusted performance measures and six fund characteristics are selected for the tests using the GMM method.
MI, M2, M3, M4, and MS5 are unconditional measures based on the single market factor model, the single specific factor model, the
two-factor risk model, the two-factor stock model, and the five-factor model, respectively. M6, M7, M8, and M9 are partial
conditional measures based on the same models, respectively. M10, M11, M12, and M13 are the full conditional measutes based on
the same models, respectively. The fund attributes are: the MER (management expense ratio), MGF (management fees), the log of the
age of the fund in years, the log of the size of the fund in millions, and two dummy variables indicating if the fund is a load fund
(LOAD), and if the fund has optionat sales charges (OPTLO). The risk-adjusted performance measures are estimated using monthly
observations over the period March 1985 to February 2000. The fund characteristic variables are measured at the end of the sampling
period. Information related to the estimated coefficients, p-values, and the adjusted R* values is provided in the table. 162 observations
are used, which represents the total number of surviving funds. The last two rows provide information on the number of regressions
where each coefficient is significant at the levels of 5% and 10%, and where the adjusted R? is greater than 5% and 10%.

[Performance : Agj.
Measure Constant |p-vall MER _|p-val| MGF |p-val{ Ln (AGE) |p-val| Ln (SIZE) |p-val| LOAD |p-val] OPTLO |p-val] K

M1 <0.0009 {0.23} -0.0319 |0.05}-0.0316|0.12| 0.0002 [0.06] 0.0001 |0.36|-0.0004]0.04]-0.0001 {0.46 {0212
M2 -0.0016 10.00 -0.0431 [0.00{-0.0233/0.22] 0.0002 [0.01} 0.0001 [0.05-0.00030.10}-0.0002 |0.270.277
M3 -0.0008 10.25| -0.0430 10.001-0.0269|0.08] 0.0002 [0.05| 0.0001 }0.28-0.00030.04 [ -0.0001 {0.41]0.238
M4 -0.0008 {0.25( -0.0293 10.11 |-0.034310.14] 0.0002 |0.01| 0.0000 {0.61]-0.00040.04|-0.0002 }0.25]/0.242
M5 <0.0012 10.05] -0.0629 |0.00 {-0.0149|0.30} .0.0001 |0.57} 0.0001 {0.05]-0.0003|0.06 -0.0001 10.680.196
M6 -0.0008 10.22{ -0.0068 {0.78 |-0.0574/0.04{ 0.0003 {0.01| 0.0000 |0.65]|-0.0004[0.06]-0.0003 10.16|0.22¢4
M7 -0.0004 10.64 -0.0005 |0.01{-0.00020.18] 0.0003 |0.00{ -0.0000 {0.86-0.00030.07 | -0.0003 {0.120.245
M3 0.0002 {0.84| 0.0002 [0.57-0.0008}0.03| 0.0001 {0.76| -0.0000 |0.92-0.0005]0.06|-0.0003 |0.24]0.114
MO -0.0011 10.341 -0.0007 }0.0110.0001 {0.74] -0.0001 ]0.68} 0.0001 ]0.33{-0.0002]0.32! 0.0000 {0.98}0.026
M10 -0.0003 10.94] 0.2202 10.41 {-0.2998|0.34] 0.0003 ]0.69{ 0.0000 {0.99|-0.0006}0.44 |-0.0024 | 0.06]0.028
M1 -0.0037 [0.34; -0.0007 |0.73 | 0.0001 10.97] 0.0010 |0.19{ 0.0001 |0.70}0.0002 {0.85]-0.0016 {0.20]0.017
M12 0.0068 10.08] -0.0001 |0.86 | 0.0004 {0.74]| -0.0004 {0.47| -0.0005 {0.15[-0.0008|0.26 | -0.0013 |0.13 {-0.004
M13 0.0058 10.51f -0.0006 |0.75| 0.0018 {0.53| -0.0004 [0.69| -0.0006 [0.47(-0.0012]0.68 | -0.0024 [0.37 |-0.025
Significance (5%) 1 6 1 5 0 3 0 8

Significance (10%) 3 6 2 6 2 7 1 8
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