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Abstract

Data Modeling for Biochemical Pathway and Microarray Gene Expression

Yimin Liu

Biochemical pathways are typically thought as complex networks of chemical
compounds and reaction in the living organisms. A great amount of gene expression data
that have a bearing on pathway is created at an increasing rate by microarray technology.
The large ensemble of information that the gene expression experiments produce contains
pattern that are a reflection of pathway dynamic, and therefore can be used to deduce
pathway causal structure. Conceptual data modelling involves the development of
implementation-independent models that capture and make explicit the principal
structural properties of the data. This thesis develops and presents such a data modeling
for biochemical pathway and microarray gene expression. The conceptual data models
can be transformed in systematic ways for implementation using different platforms, e.g.
traditional database management system and visualisation pathway application. This
conceptual data model is described by widely used conceptual modelling notation: the

class diagrams of UML (unified modelling language).
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Chapter 1. Introduction

Data modeling techniques are used during the information system design and
analysis and are important kinds of techniques. Conceptual data modeling is the process
of developing a conceptual data model that is a complete and accurate representation of
an organization's data requirements (). In the thesis, I am going to develop a conceptual
data model, which can represent and describe biochemical pathway data and microarray
gene expression data. In chapter 3, I will give a detailed discussion about what is

biochemical pathway and microarray gene expression(see chapter 3 and appendix D).

Object-oriented Modeling has become the prime methodology for modern
software design'®. In the mean time, more and more attention has been paid on object-
oriented data modeling. Some approaches to conceptual data modeling advocate the use

of abstract formalisms for describing data, mostly based on the notion of class®®.

Object-orientation in software creation appears to be relatively simpler than
object-oriented data modeling, since a specific program represents one approach to a
solution, and hence one point-of-view. Data are usually shared, and participants can

hence approach the modeling from multiple points-of: view®.

In the thesis, I am fying to use object-oriented conceptual data modeling for

biochemical pathway and microarray gene expression. As we already know, using



object-oriented data modeling can give us a better understanding of the requirements,

clear designs, and more maintainable systems.

Today, the data gained is quite different from which gained in traditional biology.
Biological data are flooding in at unprecedented rate®. Before, biology is a kind of
experimental science. The knowledge biologist gained is through doing experiments.
However, the experiment is done manually by biologists, which takes too long time, so as
the data gain slowly. Since 1987, the human genome project’® has made biology into a
field overwhelmed by data. Biologists face a big challenge in computing. Automatically
Sequencing DNA and microarray technologies give a lot of data in such a short time that
there are lots of issues about data processing. This is the field of bioinformatics, which
involves at least three areas, computer science, mathematics, and statistics. It also

includes the integration and mining of the ever-expanding databases of information.

Microarray technologies monitor the combinatorial interaction of a set of
molecules, such as DNA fragments and proteins, with a predetermined library of
molecule probes. The most advanced of these technologies currently is the use of DNA
arrays, also called DNA chips, for simultaneously measuring the level of the mRNA gene

products of a living cell”). In chapter 3, I will give more detailed discussion.

A design activity may involve a combination of a design process and a modeling

language. I will use UML as my modeling language for the design activity.



1.1 Motivation

There is to be prepared for the flood of gene expression data from microarray
experiments(s). In particular, to be ready to extract knowledge about cell control and
regulation mechanism that may involve cell death. Hence, we wish to clearly model gene

expression metabolic pathway, biosynthesis pathway and regulatory mechanism.

1.1.1 The Need for Modeling Biological Data

Biological database development and maintenance are in the scope of
bioinformatics. Due to the flood and heterogeneity of biological data, database systems
today are facing the task of serving ever increasing amounts of data of ever growing
complexity to a user community that is growing nearly as fast as the data, and is getting

more and more demanding®. A sound database design is more important and costs less.

To set up biological database system (for instance, microarray gene expression
databases), we must have sound data modeling, as the system design and analysis change
cost much less than code change.

1.1.2 The Benefits of Conceptual Data Modeling

The two properties of abstraction and transparency of a conceptual data model

provide the benefits of accuracy and clarity.



Since data modeling is doing data abstraction. Lots of same instances are
abstracted into one abstract data model. Many repeated situations are modeled as a single
general situation. For instance, in a biochemical pathway, lots of different metabolites in
living organisms may be considered as one reactant A, which reacts with another reactant
B, and then the reaction produces the product C and product D under the enzyme
catalysis. The only thing different may be that the product C and D may work as new
reactants of product D and E. It will happen like this all the time recursively. So, when
we do some acts of abstraction, we will get the benefit from this abstraction, as we save

the Iabor to record all the instances.

Also, data modeling is one kind of process that classifies data into different
groups by type and groupings, which is kind of transparency property. For instance, in
biochemical pathways, there are at least six major different objects if we do data
modeling(see section 4.2 and 4.3). They are Metabolite, Cofactor, Reaction, Enzyme,
Gene, and GeneExpression. The six different objects, Metabolite, Cofactor, Enzyme and
Gene may be better considered as one similar group. In the mean time, Metabolite and
Cofactor may go further and fall into one subgroup of those four object group, as they
can be thought as a compound. Gene expression and transformation may be considered

into the other group, as gene expression and transformation object can make chemicals

changes.



Now, it is not difficult to see what the benefit is to do data modeling. It makes
your data have clarity and accuracy. I use the UML conceptual data model to do data
modeling and reach the above two goals, since these two properties belong to conceptual

data modeling.

1.1.3 Final Goal for Qur Data Models

Genome sequencing and DNA microarray gene expression analysis has become
the most widely used source of genome-scale data in the life sciences. Microarray
expression studies are producing massive quantities of data. It promises to provide key

insights into gene function and interactions within and across metabolic pathways®19.

Genome sequence data have standard formats for presentation and widely used
tools and databases. However, although many significant results have been derived from
microarray studies, one limitation has been the lack of standards for presenting and
exchanging such data. The data models described in this thesis try to seek a standard from
many potential standards to follow. In the meantime, we pursue a clear and agreed view
for recording and reporting microarray-based gene expression data, which will in turn
facilitate the establishment of biochemical pathway database or public repositories and

enable the development of biochemical pathway data analysis tools at Concordia.



In the life sciences, our Know-It-All database framework(!D provide new data
models natural to life science, enhanced operations on these data types, and optimized

performance.

1.2 Contribution of the Thesis

The principal contribution of this thesis is that it explicitly provides conceptual
data model that the data involved in regulatory metabolic pathway and gene expression in
our understanding. Not only are all kinds of objects modeled, but also, various
relationships among them are tried to dig out. This model is an object-oriented conceptual

data model and may be used for pathway visualization.

I summary the extent databases and data models for pathways and gene
expression. [ briefly review MIAME, MAGE-ML, and ArrayExpress to determine
whether they meet our needs in future, as MIAME has become the standard for the field
of microarray, which is one of the developments of suitable microarray data standards we

can follow. I also discuss some visualization tools including pathway visualization tools.

In short, we design our conceptual data model by object-oriented data modeling.
Obtaining a clear understanding of the semantics of a piece of data in life science is a real
challenge, as different people will see things in different ways, and use different features.
The situation is further complicated since life science is non-axiomatic and the views on

the same or similar concepts vary strongly among different communities. However, our



conceptual data models may be really helpful to this situation in developing, making
explicit and communicating clear and detailed descriptions of biochemical pathway data

that is available or about to be produced.

1.3 Organization of the Thesis

There are five chapters and three appendixes in the thesis.

Chapter 2: I provide a detailed description of the background that includes
introducing some basic knowledge about conceptual data models and some knowledge
about biochemical pathway and microarray gene expression technology. The information

in this chapter is quite helpful in understanding our data models in the thesis.

Chapter 3: I first give an overview of some biochemical pathway databases that
are mainly focused on metabolic pathway. I discusses basic requirements about pathway
visualization and then review some tools for pathway visualization since visualization
tools is an important requirement for the interpretation of pathway data. Finally, I present
and analyse MIAME (Minimum Information About Microarray Experiment) and MAGE-
ML (MicroArray and Gene Expression Markup Language.) as well as ArrayExrpess that
is the database system which implemented the MAGE-OM object model. Clearly
understanding them will be helpful for the design of our own microarray experiment and

data management system in future.



Chapter 4: The UML conceptual data models for metabolic regulatory pathway

are developed and presented.

Chapter 5: I conclude this thesis and check the UML data model if it meets the
pathway requirements mentioned in Chapter 2. Last, I give some suggestions for our

future work.

Appendix A is the lac operon model of E. coli.

Appendix B is MIAME (Minimum Information about Microarray Experiment)
version 1.0.

Appendix C is MicroArray Gene Expression Markup Language and MicroArray
Gene Expression Object Model.

Appendix D is a glossary of bioinformatics terms in the thesis.



Chapter 2. Background

In this chapter, I will briefly introduce some basic knowledge about data models
and some background knowledge about biochemical pathway and microarray gene

expression technology. The information in this chapter is quite helpful to get a clear

understanding our data models in the thesis.

2.1 Data Models

A data model is the collection and identification of concepts for describing data,
relationship between data and constrains on the data in an application domain. An
accurate and clear representation of a data application domain (here, biology and life
science is our application domain) is the key to successfully develop complex

bioinformatics applications.

2.2 Conceptual Data Model

In June 2001’s DAMA(Data Modeling) Chicago Meeting, Dr. Duncan Dwelle,

the president of Applied Information Science says: “the conceptual model is concerned

with the real world view and understanding of data.”

Dr. William G. Smith says: “The purpose of a Conceptual Data Model is ‘to clear

up a few things around here.” Whether the scope of the data model is the entire enterprise



or a single system project, the object is to identify and clearly define the entities (persons,
places, things, concepts and events) about which the business must keep data, and to

identify and clearly define the important associations between those entities.”

A conceptual data model (CDM) can give a notation by which the structural
properties of data (the structuring of data and their relationships) from a certain domain (a
field of knowledge such as biochemical pathway or gene expression in this thesis) can be

described in a precise but implementation-independent manner'?

The role of the conceptual data model in the design process is to allow precise
statements to be made about the data of interest in a manner that can be communicated to
others!¥. The comprehensibility of a conceptual model is important, as it is used both in
discussions with subject experts whose understanding of the relevant data is to be
described, and by the developers of software who are to construct applications. A usual
remark on conceptual data models is that they are usually much easier to read than to

construct.

Conceptual modeling considers the transformation specifications into
implementation as a subsequent stage in the design process, to denote that the emphasis is
placed on clean concepts rather than on implementation technique. Conceptual data
models make explicit the structural properties of data, and as such are useful for

capturing, refining and communicating details about the data in a database or a

10



laboratory"'?. Constructing conceptual models is considered as a challenging, often

iterative process(see Figure 1).

Requirem ents
Analysis

v

D atabase requirem ents

C oniceptual
Design

Conceptual Model

Logical
Design

Implem entation Model

Figure 1. Elmasri R. and Navathe S. propose the design process'*

In this thesis, our data models discussed will be mainly focused on the conceptual

data model (Figure 1).

11



2.2.1 Type of Model

There are many different data modeling notations, such as entity-relationship data
model'¥, object-relational data model'® | and object-oriented data model'®, although
the most well-known families are the entity-relationship (ER) data models and the object-

oriented models.

According to the profile of UMIL!® data modeling proposed by Scott W.

Ambler" ", there are four model types we can use (see Table 1).

1. Object-oriented data models allow real world data to be represented as objects and
allow new classes to be created by extending the description of the parent class.

Objects encapsulate the data and provide methods to access or manipulate it.

2. Object-relational data models are improved relation models by adding some
features from object data models. Information is represented as in relational

models.

3. Logical data models (LDMs) are used to set up either the conceptual design of a
database or the detailed data architecture of your application domain. LDMs

describe the logical data entities, typically referred to simply as data entities, the

data attributes depicting those entities, and the relationships between the entities.

12



4. Physical data models (PDMs) are used to design the internal schema of a
database, depicting the data tables, the data columns of those tables, and the

relationships between the tables.

5. Conceptual data models are typically used to explore domain concepts with

project stakeholders. Conceptual data models are often created as the precursor to

LDMs or as alternatives to LDMs.

Table 1. Stereotypes to Indicate Model Types (Core notation) by Scott W. Ambler

[{Stereotype Model Type

I<<Class Model>> ‘ Object-oriented or object-relational model
<<Conceptual Data Model>> Conceptual data model

<<Logical Data Model>> Logical data model (LDM)

<<Physical Data Model>> Physical data model (PDM)

2.2.2 Selection of Data Model

In this thesis, what I want to pursue is a kind of ‘clean’ design, which is sort of
implementation- independent. So, I will select the conceptual data model (see Figure 1) as
an approach to develop our biochemical pathway database design. I will use the UML
class diagram to represent our conceptual data model. UML is one of standards object-
oriented modeling language. The focus is on class diagrams, which are used to model the
structural aspects of data within UML. As an object-oriented modeling language, the

central notation in UML is the class diagram.

13



2.3 Overview of Microarray and Gene Expression

2.3.1. Gene Expression Analysis Technologies

Genome-wide expression information 1is principally generated by three
technologies: c¢DNA  microarrays!'®,  GeneChips'” (also called high-density
oligonucleotide arrays) and SAGE?Y (serial analysis of gene expression). These

technologies are all new and rapidly evolving.

GeneChips and SAGE measure the absolute gene expression levels, which is
mRNA level in living organisms. Since the technology itself reasons, cDNA microarray
primarily measure the relative level of gene expression, which yield an ‘expression ratio’.

From data analysis view, there are major two widely used gene analysis measures in
bioinformatics.

In the thesis, I focus on the microarray technology itself, which is used to measure
all gene expression in the living organisms and get ‘casual’ information of biochemical
pathway*®. Some biology and bioinformatics terms can be found in Appendix D.

2.3.2 Microarray Technology

Microarray technologies monitor the combinatorial interaction of a set of

molecules, such as DNA fragments and proteins, with a predetermined library of

14



molecular probes. The current widely used implications are DNA arrays, also called

DNA chips.

The advent of microarray technology will allow the analysis of gene expression of
thousands of genes simultaneously, so it creates a comprehensive transcriptional profile
of condition studies. Computational biologists use them in order to compare these
profiles taken from organisms under control condition and an alternative (e.g.,
pathogenic) condition, or compare these gene expression profiles between two systems
under one or several conditions. For the first time, investigators can relatively quickly
measure the expression of a complete genome across a large number of environmental
stimuli. This awe- inspiring technological breakthrough has the potential to impact some
previously intractable scientific realms and aid in the elucidation of complex models and

systems(21) .

2.3.3 Biological Assumptions for Microarray Technology

Gene expression information is very important to the understanding of many
aspects of cellular and organism function. Regardless of the gene expression technology
to be adopted, all of them have the following three general and fundamental biological

assumptions®?.

* There is a close correspondence between mRNA transcription and its

associated protein translation. As mentioned by Brown and Botstein®", one

15



would ideally like to measure the final products of every gene, such as
proteins, or even better, the biochemical activity of these products, which are
directly related to biological functionality. Such quantity would provide a link
between chemical DNA bases at microscopic levels with biological aspects
that are manifest at macroscopic scales such as phenotype and physiology.

All mRNA transcripts have identical life span. There are several well-known
exceptions. For instance, the length of 3’ poly-A tail of an mRNA appears to
be related to its stability.

All cellular activities and responses are entirely programmed by
transcriptional events. There is also a much larger class of biological
processes that do not primarily operate at the transcriptional level. These
include muscular contraction, nerve excitation, and hormonal release, but the
pattern of gene expression would probably not reveal the control process that

govern then at the sub- genomic time scale.

2.3.4 GeneChips

GeneChips''? (Affymetrix GeneChip) technology provides an array of 250,000

probes, each probe containing a set of oligonucleotides of approximately 25 base pairs

each representing a region of interest within a gene. The array is exposed to cDNA

developed from a cell in which it is hypothesized these genes are expressed. The cDNA

then hybridizes (attaches) to complementary sequences on the array. As with other

microarray technologies, the strategy is to identify which genes in the cell are expressed,

16



and to what degree, based on the extent of hybridization observed at each probe.
Fluorescent molecules attached to the cDNA create an intensity of light that corresponds

to the degree of hybridization.

2.3.5 ¢cDNA Microarrays

A second technology is cDNA microarrays, namely, the robotically spotted cDNA
glass slide, where the mechanical deposition of entire cDNA onto an array is done by

using carefully designed metal pen nibs controlled by a robotic arm.

The array is exposed to equal amounts of green and red fluorescent dyed samples,
corresponding to normal and affected cells, respectively. The color at each site indicates
the relative amount of hybridization corresponding to the relative expression in the two
cells of the cDNA at that site. That is, yellow indicates expression in both cells; black in

neither; red in only the affected cell; green only in the normal cell.

This technology was introduced into common use at Stanford University and first

described by Mark Schena®® et al. in 1995. They are also known as cDNA microarray.

In making the array, a robotic spotter mechanically picks up specific ¢cDNA
sequences, which are amplified from vectors in bacterial clones using PCR(see Appendix
D), from separate physical containers and deposits them in specific locations in the grid

on the glass slide to create specific probes. Each cDNA drop should ideally be equal in

17



quantity. This fabrication approach epitomizes the do-it-yourself tendency in microarray
measurement, even though there are several commercial ready-to-use versions available.
The frequently home-grown quality of these arrays has led to do the production of highly
localized and customized microarrays which pose specific signal amplification during

subsequent data analysis stages.?"

2.4 Biochemical Pathways and Regulation

The behavior of an organism depends not only on the nature of the proteins that
are expressed, but also on the extent to which they are expressed and the environmental
conditions under which this expression occurs. Of course, some housekeeping proteins
that build cell architecture must be made all the time. The ability to synthesize materials
only as needed, therefore, would make sense for economy and adaptation. In general, the
synthesis of particular gene products is controlled by mechanisms that are collectively
called “gene regulation.” Regulation of gene expression not only exists, but also makes

cellular adaptation, variation, differentiation, and development possible‘Z%).

2.4.1 Biochemical Pathway Introduction

Biochemical pathways are bioprocess structures that researchers use to describe
the dependencies and consequences of a system of bio-molecular interactions, thereby

providing insight into the significance and purpose of a pathway. These constructs often

18



begin as a sequence of biochemical steps that either process material or transduce

information, and then eventually increase in complexity as more knowledge is obtained.

In living organism, cells function as organized chemical engines carrying out a
large number of transformations, called bio-reactions or biochemical reactions, in a
coordinated manner. These reactions are catalyzed by enzymes and exhibit great
specificity and rates much higher than the rates of norn-enzymatic reactions. Enzymes are
neither transformed nor consumed, but they facilitate the underlying reactions by their
presence. The coordination of the extensive network of biochemical reactions is achieved
through regulation of the concentrations and the specific activities of enzymes. Single
enzyme catalyzed steps in succession form long chains, called biochemical pathways,

achieving the overall transformation of substrates to far the removed products.

From an artificial intelligence researcher, Michael L. Mavrovouniotis’ point of
view®?, biochemical pathways are often described in symbolic terms, as a succession of
transformations of one set of molecules (called reactants) into another set (called
products); reactants and products are collectively referred to as metabolites. In the
construction of metabolic pathways one uses enzyme-catalyzed bio-reactions as building
blocks, to assemble pathways that meet imposed specifications. A class of specifications
can be formulated by clssifying each available building block, i.e., each metabolite and
each bio-reaction, according to the role it can play in the synthesized pathways. For

example, a set of specifications may include some metabolites designated as required
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final products of the pathways, other metabolites as allowed reactants or by-products, and

some bio-reactions as prohibited from participating in the pathways.

2.4.2 Regulation

The regulatory systems of prokaryotes and eukaryotes are somewhat different.
For convenience, I will briefly discuss on the basic model in bacteria, as it is one of the
best-understood regulatory mechanisms. In bacterial systems, when several enzymes act
in sequence in a single metabolic pathway, usually either all or none of these enzymes are
produced. This phenomenon, coordinated regulation, results from control of the synthesis
of a single polycistronic mRNA molecule that encodes all the gene products. So, I will be

focus on transcriptional regulation.

There are several mechanisms for regulation of transcriptio®®. The particular
one used often depends on whether the enzymes being regulated act in degradative or
synthetic metabolic pathways. That is, does the action of the enzymes in question break
down a substance into a more useful compound (degradative), or is the desired molecule
being “built”? In a multi-step degradative system, the availability of the molecule to be
degraded frequently determines whether or not the enzymes involved in the pathway will
be synthesized. In contrast, in a biosynthetic pathway the final product is often the
regulatory molecule. The molecular mechanisms for each of the two regulatory patterns
very widely, but usually fall into one of two major categories: negative or positive

regulation.
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In negatively regulated systems, a specific protein (called a repressor protein) that
inhibits transcription of a specific gene may be present in the cell. In some cases the
repressor alone acts to prevent transcription, and a molecule (called an inducer) that is an
antagonist of the repressor is needed to allow transcription. In other instances of negative
regulation, the repressor on its own does not inhibit transcription—it does so only when
combined with a specific signal molecule. In a positively regulated system, a protein
called an activator works to increase the frequency of an operon®® (see Appendix A). In
the thesis, I have an appendix for The Lac Operon model and its regulation to give more

detailed information about transcriptional regulation.

2.4.3 Metabolic Regulatory Pathway Case Study

2.4.3.1 Metabolic Regulation: Proline Biosynthesis in E. coli

The example used in Figure 2 is proline biosynthesis in E. coli, which involves a chain of
generated protein shown. One of the final products of the chain, proline, inhibits the
initial reaction (see Figure 2), which has started the whole process. This “feedback
inhibition” pattern is highly typical to metabolic pathways and genetic networks, and
serves to regulate the process execution rate. This example tries to give you an overview
of biochemical pathway. There are two major parts. On the left part is kind of regulation
part, for instance, proB gene codes for gamma-glutamyl kinase, which specifically

catalyzes the reaction 2.7.2.11. The right part is kind of the whole proline synthesis
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pathway. Glutamate is transformed into gamma- glutamyl phosphate and along with ATP
is transformed into ADP. And, the next reaction 1.2.1.41 will transform gamma-glutamyl
phosphate into 1-pyrroline-carboxylate. Similarly, it happens in same time that NADPH
is transformed into NADP. This character is typical of biochemical pathway. One
metabolite is transformed into anther. Another one then will become the third different

metabolite.
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Figure 2. An overview of a metabolic pathway: Proline Biosynthesis

2.4.3.2 Enzyme catalysis and its regulation in metabolic pathway
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This example used in Figure 3 is the catalysis of the phosphorylation of glutamate
by y-glutamyl kinase, which is regulated by proline. The final product, proline, in the
proline synthesis metabolic pathway inhibits y-glutamyl kinase activity(the initial
reaction). The catalyzed reaction is indicated by EC number (2.7.2.11). The compound

names are marked as labels.

Glutamate ATP

substrey
catalyzes
gamma-glutamyl kinase * o 2.7.2.11
F 3
inhibits ! product " » p
proline gamma-glutamyl phosphate

Figure 3. Enzymatic catalysis and its regulation

2.4.4 Gene Expression in Regulating Biochemical Pathways

Figure 4 depicts gene expression and its role in catalyzing certain chemical
reactions in metabolic pathways. The proB gene is being expressed into y-glutamyl
kinase protein, which catalyzes a reaction involving glutamate and ATP, which produces
y-glutamyl phosphate and ADP compounds. This example tries to give you closely look
at how reaction happen between two compounds. The reaction 2.7.2.11 will be catalyzed
by gamma-glutamyl kinase. This kinase is coded by proB gene in Ecoli. ProB gene

expression has a very close connection with proline synthesis pathway. So, if proB gene
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is lowly expressed, this kinase would have a tiny amount left in the living Ecoli, proline

synthesis will be greatly effective so as proline will become lowly produced in Ecoli.

Glutamate ATP

substrey
expresses catalyzes

proB gene ———» gamma-glutamyl kinase — % 2.7.2.11

Eroduct 8 Dp
gamma-glutamyl phosphate

Figure 4. The role of gene expression in regulating metabolic pathway

24



Chapter 3. The State-of-the Art

The understanding of the interplay of gene and gene products is the new challenge
in functional genomics study. From various kinds of interactions (protein- gene, protein-
protein), causal, regulated networks of biochemical pathway arise. Such networks are
responsible for the development, maintenance, and responsiveness of all living systems.
The collection and organization of pathway information is critical and needs to be

effectively addressed.

In this chapter, I will briefly overview some biochemical pathway databases and
mainly I will focus on metabolic pathway. Also, I will discuss basic requirements about
metabolic pathway visualization and then review some tools for pathway visualization
since visualization tools is an important requirement for the interpretation of pathway
data. Finally, I will briefly introduce and discuss Minimum Information About a
Microarray Experiment (MIAME) and Microarray Gene Expression Markup Language
(MAGE-ML) as microarray gene expression data is a source of pathway ‘casual’
information, which promise to provide a key insight into gene function and interaction

within and across metabolic pathway.

3.1 Biochemical Pathway Databases

Databases developed can be classified into different categories, including genome

database, protein databases, enzyme databases, pathway databases, literature databases
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and some very specific databases. This classification of databases is based on their
biological content. Although the content of the database is mostly restricted to specific

biochemical compounds or functions, a lot of overlap occurs®®.

Enzyme databases mainly contain information about enzymes and their
properties. On the other hand pathway databases reflect information about reaction and
pathway in general, data related to organismespecific information about genes, their
related gene products, protein functions, expression data, data about enzymatic activities,

kinetic data, etc.

Pathway databases can also be sub-classified into databases containing metabolic
pathways, signaling pathways and gene regulatory pathway. In the thesis, I will mainly

focus on metabolic pathway database.

3.1.1 Metabolic Pathway Database

Metabolic pathway databases are a new kind of bioinformatics resource with a
wide variety of potential uses in academia and in industry. These databases can serve as
online resources. It makes biochemical pathway information readily accessible via the

Internet. Metabolic pathway databases can also let scientists who study metabolism to

pose new questions about metabolic networks®>).
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3.1.2 Contents of Metabolic Pathway Databases

Collections of enzymes, reactions and biochemical pathways are typically used to
describe metabolic pathway databases. Software usually is coupled with these databases
to query and visualize metabolic pathway data information. Metabolic databases can
describe either the biochemistry of a single organism or many organisms. Some
metabolic pathway databases provide a more approximate collection of pathway data
information that is not specific to any organism. Some databases are either derived from,
and tightly linked to the primary bio-medical literature or derived from secondary
sources. Each collection of actual data varies significantly. Enzymes, pathways and
chemical substrates, which also include genomic information are described in the most
comprehensive databases. They also tightly link the data to the primary literature,
providing citations for most information. Other metabolic databases provide only a subset
of this information. Computer algorithms produce automatically graphical drawings in
these databases. There are also some hand drawings of pathway diagrams. The
visualizations may include pathways, reactions, substrate structures and entire metabolic
networks. Some metabolic databases, but not all, can contain Inks to other biological

databases, such as to the SWISS-PROT protein sequence database®.

Generally, metabolic pathway databases use EC numbers(see chapter 2.4.3). It
consist of 4-digit number. EC stands for Enzyme Commission. The Nomenclature
Committee of the International Union of Biochemistry and Molecular Biology (IUBMB)

devises the enzyme nomenclature system. For instance, enzymes that catalyze the
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reaction O + oxalate = O, + CO; have the EC number 1.2.3.4, which designates an
oxidoreductase (class 1) that acts on the aldehyde or oxo groups of donors (subclass 1.2)
with an oxygen as acceptor (subsubclass 1.2.3). The number 4 is designated for the fourth
reaction in this class®. A strong advantage of EC numbers is that they provide unique

identifiers for enzyme functions, no matter what confusing name is used for that enzyme

in different organisms.

Currently, the most commonly used metabolic pathway databases are those listed

in Table 2.

Table 2. Metabolic Pathway Databases and URL
Database name URL
BBID http//BBID.GRC.NIANIH.GOVY
BIND hitp// WWW BIND.CA
BioCarta htip://WWW BIOCARTA .COM
BioCyc http://WWW BIOCYC.ORG
BRITE hitp:// WWW GENOME.AD IP/BRITE
CSNDB htip://GEQ.NIHS GO JP/CSNDB
EcoCyc/MetaCyc http://ecocyc.pangeasystems.com/ecocyc/
ExPASy-Biochemical Pathway hitp://expasy proteome.org.au/cgi-bin/search-biochem-index
GeneNet hitp://WWWMGS BIONET.NSC.RU/MGS/SYSTEMS/GENENET/
KEGG http://www.genome.ad.ip/kege/kege html
Metabolic Database hitn://CGSC.BIOLOGY. YAHLE. EDU/METAB.HEML
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Metabolic Pathways of Biochemistry hitp://WWW.GWU . EDU/~MPB/

PathDB http://www negr.org/software/pathdb/
UM-BBD http://www.labmed. umn.cduw/umbbd/index html
SPAD bttp:/fwww.grt. kyushu-u.ac jp/spad
WIT http://wit.mes anl.gov/wit2/

One major advantage of pathway databases over other biological databases is the
possibility of providing several types of information in the context of the graphical
representation of pathways. For example pathway database are able to represent the high
complexity of all of biochemical reactions within a single cell or a complete organism.

There are different ways to show a graphic view of a pathway.

3.1.3 KEGG

KEGG (Kyoto Encyclopedia of Gene and Genomes) contains all known
metabolic pathways and a limited number of regulatory pathways and transport
mechanisms®?. The KEGG system consists of three main databases which are tightly
connected: LIGAND, with information about compounds, enzymes and reactions stored
in flat files®"; PATHWAY, which contains the graphical representations of the pathways
and lists of enzymes and reactions within the pathways; and GENES, which contains
organismrelated genome and gene information and lists of genes within an organism and
pathway. Furthermore, KEGG provides many links to other databases that are integrated

within the DBGET integrated database retrieval system?.
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Pathways in KEGG are classified according to the chemical structures of their
main compounds, e.g. carbohydrates, lipids, amino acids. All specific pathway diagrams
and overviews are manually drawn pictures where pathway maps consist of links to
specific information about compounds, enzymes and genes. There are all known
reactions catalyzed by proteins/enzymes derived from gene products in the pathway
maps. Reactions within the pathway maps do not represent side compounds, eg ATP
(adenosine triphosphate) or NADH (reduced nicotinamide adenine dinucleotide). Also,
there are links to some other related pathways in the pathway maps connected by their
contributing compounds. This allows the users to get an overview about connections to
other pathways®®. From the user’s point view, either graphical diagrams or hierarchical

texts represent the KEGG’s data.

Users can use EC numbers for enzymes to search the KEGG pathways, by
compound numbers for chemical compounds, and by gene accessions for specific genes.
The KEGG pathways can also be searched by sequence similarity. This is especially
useful for identifying orthologues and reconstructing pathways from the gene catalogue.
For instance, by taking the E. coli pathways as references, the user can check if a
functional unit can be formed from the gene catalogue of a specific organism.
Alternatively, the user can search against a KEGG orthologue table that contains a
multiple alignment of gene orders in the pathway, as well as in the genome (operon), for

predictions of ABC transporters®®, bacterial two-component systems®* and others.
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The pathway query result shows all pathways containing a given enzyme or a
given compound®® but offer no graphical representation. Organismespecific information
is also not available within such queries. Searching for a pathway by selecting a specific
organism does not provide information about the enzymes available but only links to the
gene information related to that organism. A comparison of pathways of two or more
organisms cannot be implemented. Based on binary relations, two algorithms
(Dyjkstra/Floyd) are used to find the shortest pathway between two compounds. In such a
case that the reaction has two or more substrates, the implementation is not able to
distinguish between different substrates and their correlating products or compartments
and transport mechanisms. The pathway created based on one main substrate pays no
attention to side substrates or products, compounds/enzyme locations and cofactors.

Results of the pathway creation contain only the compound ID and EC numbers.

From data model concept, KEGG may consist of three interconnected sections:
pathways, genes, and molecules, which are also linked to a number of existing databases
through DBGET (Fig. 5). In KEGG, binary relations, hierarchies, and pathways represent

functional aspects of genes and moleculest®>.

Recently, KEGG announced the release of KEGG 23.0, and Kanchisa®® et al.
presented a detailed description of the database. The primary objective of KEGG is to
computerize the current knowledge of molecular interactions, namely metabolic

pathways, regulatory pathways and molecular assemblies. At the same time, KEGG

maintains gene catalogues for all the organisms that have been sequenced and links each
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gene product to a component on the pathway. It currently represents most of the known
metabolic pathways and some of the known regulatory pathways in about 100 graphical
diagrams and 60 orthologue group tables. The database is cross-linking with WIT (see
below), an interacting metabolic reconstruction in the web, which provides a more
detailed picture of the metabolic pathways. In contrast, KEGG attempts to cover a wider
range of biochemical pathways at a higher level of abstraction. Matching the enzyme
gene in the gene catalogue with enzymes on the reference pathway diagrams generates

organismrspecific pathways.

l Pathways '

KEGG Binary relations

Hierarchies

Maolecules

LIGAND _,_,_—<

Genome OMIM DBGET CAS
Databases

DNAProtein Databases

Medline

Figure 5. The data model concept of KEGG and its relation to DBGET(®*
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There are two versions of KEGG. One is the Internet version, the other is the CD
(local copy) version. A Web browser, such as Netscape Navigator or Microsoft Internet

Explorer can browse both of them.

3.1.4 EcoCyc/MetaCyc

EcoCyc is a metabolic pathway database that describes the genome and the
biochemistry of Escherichia coli based on information from EcoGene database®?,
SWISS-PROT and the scientific literature®®. The database consists of all sequences and
functional annotations of E. coli genes. Pathways of E. coli and its reactions and enzymes
are annotated with references to the literature. The query interface of EcoCyc provides
search options for E. coli genes, proteins, reactions, compounds and pathways by names,
sub-string, classification hierarchy, EC number or chemical structure. The EcoCyc

overview is a bird’s-eye view of the complete E. coli biochemical pathways©®).

The EcoCyc data are stored within a frame knowledge representation
system(FRS) called Ocelot. FRSs use an object-oriented data modef®®. They organize
information within classes. The EcoCyc schema is based on the class hierarchy shown in
Figure 6. Each EcoCyc frame contains slozs that describe attributes of the biological
object that the frame represents, or that encode a relationship between that object and

other objects.
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Figure 6. The top of the class hierarchy for EcoCyc Database®®

Pathway diagrams are drawn automatically using graph-drawing algorithms. Also,
its size may be adjusted. There are different levels of data information provided by the
graphical representation of pathways. The lowest level contains only the major reactions
of a given pathway. Information about enzymes and genes, etc. is not available. In the
more detailed level, all enzymes with their corresponding EC numbers and corresponding
genes are given. Some pathways show chemical structures of the reactants on that level,
but this feature is not consistent. Some pathways also include green arrows that indicate

regulatory mechanisms (solid lines). In the graphical representation of pathways, the
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inhibitors and activators of reactions are represented, but detailed compound information
is not accessible. More data about the enzyme are given by connecting to the EXPASy-
ENZYME database. It also includes reactions that can be catalyzed by more than one

enzyme. A linkage of the enzyme to the related gene and vice versa is implemented®® .

In addition, MetaCyc describes pathways, reactions and enzymes of a variety of
organisms, with a microbial focus. But MetaCyc does not contain organism-specific
genome or protein information such as genomic maps or sequences. MetaCyc uses the
same database schema and visualization software as EcoCyc“?. In contrast to EcoCyc,
the MetaCyc query interface only offers searching for pathways, reactions and
compounds. Proteins or genes can be selected for querying but no matches will be found

by searching. MetaCyc offers no general pathway overview.

3.1.5 WIT (What Is There?)

The WIT system(41) connects data about genes and genomes, enzymes, reactions
and pathways. The Enzyme and Metabolic Pathways (EMP) database is currently
embedded within WIT. It offers a general functional overview as one possible starting
point represented as a classification table of pathways. The ‘View Annotation’ window
gives names, EC number and functional description of an enzyme. Graphical

representations contain comments and information on the compartments where the

reaction occurs and links to information about the enzyme. The descriptive page of
enzyme 1s linked to KEGG, EMP and Medline. The link to the EMP database allows the

retrieval of literature-related and organismrspecific enzyme information. The ‘Diagram
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Data’ window contains detailed information on the overall balance of the reaction, every
compound involved in the reaction and the location or compartment of the cell where the
reaction occurs. These data are used for the graphical representation of pathways that are
represented in the “Diagram Picture’ view. The ‘Assertions Table’ contains information
about existing enzymes of a given pathway in complete sequenced organisms. WIT

system has no graphic representation for all pathways overview®®.

3.2 Biochemical Pathway Visualization

In this section, I will discuss basic requirements about metabolic pathway
visualization and then review some tools for pathway visualization since visualization

tools 1s an important requirement for the interpretation of pathway data.

3.2.1 Biochemical Pathway Requirement Analysis

The physiological functions of an organism are accomplished through the
coordinated regulation of the expression of a large of number of genes. The functional
elements of a gene network and pathway may have the following biology conceptual

requirementst*?:

— A gene ensemble interacting when certain biological functions are performed.
-~ Protein expressed by these genes. To ensure the performance of an appropriate
function, the protein can be modified (phosphorylated or glycosylated), or can

form different complexes*>*¥
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— Biochemical pathways providing gene activation in response to an external

stimulus
— A set of positive and negative feedback stabilizing the parameters of the
pathway or providing a transition to a new functional state!*>.

— External signal, hormone and metabolites that trigger the pathway or correct

its operation in response to the changes in physiological parameters.

3.2.2 Representation Levels of Pathway

Compartmentalization is a characteristic feature of the processes occurring in the
real biological gene network. The components of the gere network are scattered through
organs, tissues, cells, and cell compartments. So, in the description of the pathway three

hierarchical levels“? are considered in the representation of pathway.

1. Organism level: organs, tissue, and particular types of cell

2. Cell level: compartment locations in single-cell

intercellular space

— cell membrane

cytoplasm
— nucleus

3. Gene level: the regulation of gene transcription
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3.2.3 Construction of Pathway Diagram

Metabolic pathways can be modeled as directed graphs, which are a collection of

interconnected biochemical reactions. The diagram of the pathways is a graph with nodes
corresponding to entities and arrows representing relationships between the pathway
components. It typically consists of nodes and arrows (links). Main reactants and
products (metabolites) are represented as nodes and the reactions as arrow edges of the
graph. Usually the enzymes catalyzing the reaction are displayed as edge labels. Side
substrates (low-molecular weight compounds) are drawn near the arrow edge, connected
to the edge by curved arcs. The arrows represent interactions between the nodes. You
may see my conceptual data model generate proline pathway (see section 5.3). In real
pathway, those nodes also have hypertext links between the diagram and molecular data.

Thus, the problem of visualizing pathways can be formulated as a graph layout problem.

There are two major ways to show a graphical view of a pathway. One is
graphical representation of the pathways that are drawn manually, which is visualized in
a static and non-dynamic way (like KEGG, WIT see section 3.1). Pathway diagrams are
manually drawn and stored as bitmap image files. These diagrams are displayed as
interactive image maps with links to additional information on enzymes and to adjacent

pathways. The others are produced automatically on demand and are user-dependent

(PathDB, EcoCyc see section 3.1).
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For a user-dependent interaction, flexible representations will be more and more
important because they enable different levels of information to be represented. To avoid
information overload, but on the other hand to be able to differentiate between general
overviews and detailed representation or reactions or pathways containing structural
formulas of chemical compounds, users should be able to zoom into their specific level of
interest. A real challenge of pathways representation is to combine a flexible drawing of
pathways, with the content behind all the elements within that given pathway without

loosing clarity.

3.2.4 Pathway Visualization Tools

3.2.4.1 GeneMAPP

GeneMAPP (Gene MicroArray Pathway Profiler)*® is a new computer software
that is helping genomic researchers to make sense of the reams of data—a massive
collection of numbers and decimals—that result from using DNA microarrays (see
Chapter 2.3). It is one kind of program that displays the gene expression data in the
context of known biological pathways. So, scientists can see how their results fit in with
real life data examples. The flood of sequences from various genome-sequencing projects
has paved the way for large-scale experiments to study gene expression. Just one

experiment can yield information from thousands of genes. GenMAPP organizes the
results by biological process, allowing researchers to see coordinated changes in gene

expression that would be difficult to see when looking at all the data at once™”.
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3.2.4.2 The Pathway Tools

P. Karp ®et al developed the pathway tools, which is a software environment for
creating a type of modelorganism database (MOD) called a Pathway/Genome
Database(PDGB). These tools integrate information about the genes, proteins, metabolic
pathway, and genetic network of an organism. The pathway tools in this software can
provide two different modalities for interacting with a PGDB. First, it provides a
graphical environment that allows users to visualize the contents of a PGDB and to
interactively update a PGDB; and then, it provides a sophisticated ontology and database
API that allow programs to perform complex queries, symbolic computations, and data

mining on the contents of PGDBB.

3.2.4.3 JDIP, a protein network visualization tool

JDIP at first provides the means for a fast, visual evaluation of protein’s
interaction environment, represented as a static graph. Now, it is developed as a tool
providing means of protein-network oriented data retrieval, visualization and analysis %,
which is a stand-alone Java application that provides a generic framework for integration
of heterogeneous data from other biological databases. It is a graphic display of protein
interaction network such as protein expression level, focused on any given protein

contained in DIP®?, the database of interacting proteins. JDIP tool is an applet available

within the web interface and an independent, cross-platform java application.
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In addition, after installation as a browser ‘helper’ application, JDIP can be fully
integrated with DIP web interface by providing two-directional queries between the DIP
server and JDIP. XML files using JIN (Java Interaction Network) syntax specified as

XML schema ©V fulfill the data exchanged between the DIP database and JDIP.

3.3 Microarray Gene Expression Data Standard and MAGE-ML

Microarray technology is a high-throughput functional genomics method for
obtaining gene expression data from thousands of genes simultaneously®?), allowing
biologists potentially to study the transcription of an entire set of genes for a species.
Data from various kinds of experiments that have a bearing on pathway are being created
at an increasing rate. The large ensemble of information they produce contains patterns
that are reflection of pathway dynamics, and therefore can be used to deduce pathway
causal structures. Microarray gene expression data is a source of pathway ‘causal’
information®, which promise to provide a key insight into gene function and
interactions within and across metabolic pathway. To help illustrate these functional
relationships, researchers are applying a wide range of approaches to analyzing
microarray. There are lots of computational approaches involved, but there are serious
challenges emerging to these approaches. Microarray data is being produced by many
independent organizations, is defined and described in a variety of ways, and is being

stored and displayed in multiple locations using a variety of technologies. In addition,
microarrays do not measure gene expression levels in any objective units. Data

communication is one of most significant challenge microarray present.
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Microarray data requires data structures that are both multidimensional and
varied, and no natural or standard ways to move results between research groups yet
exist. This applies to both underlying gene expression data and the descriptive biological
annotations that provide context for the gene expression measurements®>. Recently, the
microarray gene expression data group®) (MGED) has published a specification
describing MIAME, the minimal information for the annotation of a microarray

experiment.®?

In this section, I will briefly introduce and discuss MIAME and MAGE-ML as
well as ArrayExpress that is the database system which implemented the MAGE-OM
object model. Clearly understanding them will be helpful for the design of our own

microarray data management system in future.

3.3.1 Minimum Information about a Microarray Experiment - MIAME

3.3.1.1 Introduction

Although every experiment may be different, MIAME aims to define the core that

is common to most microarray experiments. MIAME is not a formal specification, but a

set of guidelines®?.

A major objective of MIAME is to guide the development of microarray
databases and data management software. A standard microarray data model and

exchange format MAGE,®® which is able to capture information specified by MIAME,
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has been submitted by European Bioinformatics Institute (EBI) for MGED and Rosetta
Biosoftware and recently became an adopted specification of the OMG standards

25, Many organizations, including Agilent, Affymetrix, and Iobion, have

group
contributed ideas to MAGE. Links to software tools supporting the MIAME information

capture and management are available.

MIAME trys to define the minimum information that must be reported, to ensure
the interpretability of the experimental results generated using microarrays as well as
their potential independent verification. Although MIAME concentrates on the content of
the information and should not be confused with a data format, it also tries to provide a
conceptual structure for microarray experiment descriptions. It is focused on microarray-
based gene expression data, which will facilitate the establishment and usefulness of

microarray databases®?.

MIAME is platformrindependent but includes essential evidence about how the
gene expression level measuremerts have been obtained (see appendix B). It should be
noted that MIAME does not specify the format in which the information should be

provided, but only its content.

3.3.1.2 Gene expression conceptual model

Collections of gene expression data can be abstractly viewed as a table with rows
representing genes, columns representing various samples and each position in the table

describing the measurement for a particular gene in a particular sample, which is called a
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gene expression matrix in MIAME. The information described for a microarray
experiment can be conceptually divided into three logical parts: gene annotation, sample
annotation and a gene expression matrix. In addition, not only the final gene expression
matrix needs to be recorded, but also a detailed description of how the expression values
obtained is necessary. So, if the data verification is to be ensured, the nature of the data

recorded may become more complex.

Sample annotations recorded the information about the context of the particular
biological sample and the exact conditions under which the samples were taken. Gene
annotation should provide a full and detailed description of each gene element on the

array.

There are three levels of data relevant to a microarray experiment:

1. The scanned images (raw data)
2. The quantitative outputs from the image analysis procedure (microarray
quantitation matrices)

3. The derived measurements (gene expression data matrix)

3.3.1.3 MIAME Experiment design

Brazma et al*¥ propose the data and annotations from microarray experiment

should meet the following requirements:



1. The recorded information about each experiment should be sufficient to
interpret the experiment and should be detailed enough to enable comparisons
to similar experiments and permit replication of experiments.

2. The information should be structured in a way that enables useful querying as

well as automated data analysis and mining.

The first requirement may imply that a detailed annotation of the sample and
other experimental conditions should be recorded and its reliability should be given. The
second one may imply some necessities for controlled vocabularies or ontologies to

represent data as well as the need to limit free- format text only.

3.3.1.4 MIAME components

MIAME defines six main components (see Figure 7) for minimum information

about a published microarray-based gene expression experiment. They are as follows:

1. Experimental design: the set of hybridization experiments as a whole

2. Array design: each array used and each element (spot, feature) on the array
3. Samples (targets): samples used, extract preparation and labeling

4. Hybridization: procedures and parameters

5. Normalization control: types, values and specifications

6. Measurements: images, quantification and specifications
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Each of these components contains information provided using controlled

vocabularies or free-text format.

3.3.1.4.1 Experimental design

The minimal information in this part is as follows:

— Experiment type: normal versus-diseased comparison, time course, dose
response and so on.

— Experimental variable: parameters or conditions tested (time, dose, genetic
variation or response to a treatment or compound)

— QGeneral quality-related indicators: usage and types of replicates

~ Quality-control steps: nonspecific hybridization

— Experimental relationship to: array and sample entities (which samples and

arrays were used in each hybridization assay)

3.3.1.4.2 Array design

This entity will provide information about a systematic definition of all arrays

used in the experiment, including the genes represented and their physical layout on the

array. There are two parts in the entity as follows:
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Figure 7. Six MIAME components®®

1. A list of the physical array: unique ID and a simple description

2. Array-type definition:

— A description of array as a whole: platform type, provider, and surface
type
— A description of each type of element or spot used: synthesized oligo-

nucleotides or PCR products from cDNA clones

— A description of the specific properties of each element: DNA sequence or

quality control indicators
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3.3.1.4.3 Samples

Sample entity represents the biological materials for which the gene expression
profile is being established. It describes the source of the original sample (such as
organism taxonomy and cell type) and any biological in vivo or in vitro treatments

applied, the technical extraction of the nucleic acids and their subsequent labeling.

3.3.1.4.4 Hybridization

Hybridization entity defines the laboratory conditions under which hybridization
was carried out, other than a free-text description of hybridization protocol. The critical

hybridization parameters are specified as follows:

— Choice of hybridization solution

— Nature of the blocking agent

— Wash procedure

— Quantity of labeled target used

— Hybridization time, volume, and temperature

- Description of hybridization equipment

3.3.1.4.5 Normalization controls
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The aim of microarray experiment is to identify relative changes in expression
levels, identify differentially expressed genes, and identify classes of genes or samples
with similar patterns of expression after analysis of the data from multiple samples.
Hybridization intensity derived from image processing must first be normalized to get a

comparison. MIAME proposes the standard that include four parts as follows:

1. The normalization strategy: spiking, housekeeping genes, total array, other
approaches

2. The normalization and quality control algorithm used

3. The identities and location of the array elements serving as controls as well as
their type

4. Hybridization extract preparation

3.3.1.4.6 Measurements

It defines the actual experimental results processing from raw to processed data,

which consists of three parts as follows:

1. The original scans of the array (images)

2. The microatray quantification matrices based on image analysis

3. The final gene expression matrix
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Image data should be given as raw scanner files, accompanied by scanning
information that includes relevant scan parameters and laboratory protocols. Storing the
primary image files may need a significant quantity of disk space. For each experimental
image, a microarray quantification matrix contains the complete image analysis output as
directly generated by the image analysis software. This is a 2D matrix for given image
files, where array elements (spots or features) constitute one dimension and quantification
types (such as mean and median intensity, mean or median background intensity) are the

second dimensions.

The gene expression matrix consists of sets of gene expression levels for each
sample. The microarray quantification matrices can be considered as spot/image centric

and the gene expression matrix is gene/sample centric.

3.3.2 MAGE-ML

MAGE-ML stands for MicroArray and Gene Expression Markup Language.
Briefly, MAGE-ML is a language designed to described and communicate information
about microarray-based experiments. MAGE-ML is based on XML and can describe
microarray design, microarray manufacturing information, microarray experiment set up
and execution information, gene expression data and data analysis results. In fact,

MAGE-ML is XML representation of MAGE-Object Model. As MAGE-ML data can be
expressed in XML, it is both humanreadable and machine-readable with their

relationships in a pre-defined DTD. Full MAGE specification can be found at
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(http://cgi.ome.ore/cgi-bin/doclifesci/01-10-01). MAGE-ML Document Type Definition (DTD)

1s at (http:/cgi.omg.org/cei-bin/doc?lifesci/01-11-02).

There is a detailed introduction to MAGE-ML and MAGE-OM in the Appendix C
of the thesis, in which MAGE-OM is expressed in UML. A few rules were used to

translate MAGE-OM into the DTD named MAGE-ML as follows:

1. Each class in the object model is represented as an element with an attribute
list matching the attributes of the class

2. For each association of that class, a daughter element having the role’s name
with ‘assn’ appended

3. If'the association is by reference, ‘ref’ is appended and if the cardinality of the

association is greater than one ‘list’ is appended

So, MAGE-ML is predictable and the future addition and extensions to MAGE-
ML will be compatible. It is a standard format for exchanging data among microarray

databases and data analysis tools.

To make it as easy as possible for researchers to be MIAME compliant,
Microarray Gene Expression Data Society (MGED) has developed a mark-up language,
MAGE-ML, for communicating MIAME-compliant data. MAGE-ML makes it easier to

transfer MIAME-compliant data between microarray applications. In addition, EBI
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(57)

(European Bioinformatics Institute) has developed ArrayExpress® "’ as a database schema

to allow MIAME/MAGE-ML — compliant data to be stored in database repositories.

MAGE-ML is set to become the de facto standard for exchanging microarray data
between applications. If data not either in MAGE-ML’s format or capable of being
converted to MAGE-ML, it will prove very difficult to analyze or combine with other
forms of data. Some of software packages, such as MaxD®¥or GeneX®*®, are now

available that allow MIAME-compliant data to be stored in database.

3.3.3 ArrayExpress, A Public Repository for Gene Expression Data

ArrayExpress ©®7 is an international public repository for microarray gene
expression, whose data are based at the EBI. It aims to store and provide access to well-
annotated data from microarray experiments. It is an Oracle implementation of the

MAGE-OM object model (see appendix C).

There are four major components in ArrayExpress:

1. The database itself

2. A web-based query interface

3. A data submission and annotation tool called MIAMExpress

4. An online data analysis tool called Expression Profile
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MIAMExpressis the EBI's MIAME compliant web-based annotation tool and data
submission tool for ArrayExpress. MIAMExpress is a generic array-platform independent
tool that allows users to submit experiments, array descriptions and protocols. The tool is
based on the MIAME questionnaire and is used for bench biologists who is wishing to
submit data. Data is stored in a MySQL database during the submission process and is
parsed to MAGE-ML after curation by the ArrayExpress database staff prior to loading
into ArrayExpress. MIAMExpress uses MGED ontology terms in order to limit free text
within the submissions, this might speeds up submissions and is designed to allow
automated data mining. The definitions for the terms can be found in the MGED
ontology, developed by the MGED ontology-working group and full contextual help is

provided within the toof*”,

ArrayExpress has publicly available data sets loaded that can be queried, and is
accepting submissions in the MAGE-OM derived MAGE-ML data exchange format and
via MIAMExpress. The ArrayExpress staffs are establishing MAGE-ML pipelines with
major microarray producers and experimenters, including the Sanger Institute,
Affymetrix, TIGR and MIMR. Data can be exported from ArrayExpress to Expression
Profiler, an integrated set of web-based tools for the analysis and visualization of
functional genomics data, loosely with powerful data selection and filtering mechanisms,

and numerous clustering and pattern discovery algorithms (hierarchical, K-means).

ArrayExpress supports the microarray community standards MIAME and MAGE-

ML. Its data submissions are divided to into three parts: Experiment, Protocol and Array.
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Each is given an accession number so that an Array or Protocol can be referenced by
many Experiments. ArrayExpress can be downloaded freely to analyze publicly available

microarray data locally, or to store your own experimental data.

All the data are stored in the central ArrayExpress database, from which they can
be accessed using a web-based query tool. The data can be imported directly into
Expression Profiler for analysis, or you can export data to analyze them locally using

other your own tools.
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Chapter 4. Conceptual Data Models of Metabolic

Pathway

To understand the molecular logic of cells, we must be able to analyze metabolic
processes in qualitative and quantitative terms. Therefore, data modeling is one of the
most important methods. In this chapter, I will develop and present a conceptual data

model for biochemical pathway in my understanding.

4.1 Developing a Data Model for Biochemical Pathways

Our data model is based on the dea that there exist a relatively small number of
fundamentally important classes of biological objects that tend to resist major schematics
variation: e.g. genes, proteins, enzymes, pathways, and reactions. Along with their core
attributes, these classes form a common denominator for biological databases, with

differences among schemas tending to occur in less essential details.

4.2 The Possible Scopes and Constraints in our Conceptual Data Model

There is one assumption for our conceptual data models. As mentioned before,
our data model is a conceptual data model (section 2.2). This is one dimension in our
database design. Another dimension is what is the system architecture in our database
design. Is it the distributed database system? No. So, here I will assume that our database
management system is the traditional standard system architecture that is the three-

schema ANSI/SPARC (American National Standards Institute/Standards Planning and
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Requirements Committee)® *”. ANSI/SPARC divided database-centric systems into

three models: the internal, conceptual, and external.
Since our data models belong to conceptual data model, the scope of it may be

hard to be given at this stage. So, I just give the possible scope and constraints for our

pathway element conceptual data model (see Figure 8).

Compound
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Figure 8. Pathway Data Model Scope

4.2.1 Compound Object

This is one big object where there are two sub-objects under it, metabolite and

Cofactor. These two objects are specifically involved in metabolic pathway. In compound
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object, it may contain some compound ID outside the databases for user to link to other

compound databases(see figure 8). The core attributes are listed in the data model.
4.2.2 Enzyme Object

It contains enzyme information in the metabolic pathway. Some enzymes that are
not involved in metabolic pathway will not be encompassed in this object. Each enzyme
can involve more than one chemical reaction. In this object, it may contain some enzyme

ID outside our system that hyperlinks to other enzyme databases (figure 8).

4.2.3 Reaction Object

This object defines chemical reaction that involves in cell metabolic pathway.
Typically, each reaction is constrained by EC number. It has a one-to-one relationship

with EC number.

4.2.4 Gene Object

This object defines the gene in cells that has a direct connection in the metabolic
pathway. Some genes that involve other cell process but not in metabolic pathway can
not be described with this object, for instance, actine gene. This means that gene in gene
object is specifically defined for metabolic pathway. However, some genes in this object

may have other databases gene ID for instance, GenBank®? (see Figure 8).
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4.2.5 GeneExpression Object

Here, GeneExpression object is specifically defined Dr the data from microarray
gene expression experiment. We do not consider other gene expression data from non
microarray gene expression experiment such as SAGE (see 3.3.1). From this object, we
can do microarray gene expression data analysis to get some information about metabolic
pathways in organisms. As we know, MIAME (see chapter 3.3) has become one accepted
microarray gene expression data standard, this object may have a link to specific

microarray gene expression databases (see figure 8).

4.3 UML Model for Metabolic Pathway Components

The UML model provided in Figure 9 is used to describe metabolic pathway
element information. As shown in Figure 9 under the PathwayElement class, two main
classes of objects are defined. The first class, BiochemicalEntity, represents structural
units. Here, I try to classify biochemical entity into compound, protein, enzyme, and
gene. So, these can be defined as objects like compound, protein, gene, and enzyme.
These objects have core attributes, which describe their physical characteristics (chemical
formula, structural formula, molecular weight, sequence, gene and so on). In pathway
visualization, it could be displayed as nodes. The second class, Interaction, represents
interactions between those biochemical entities. There are two kinds of intefaction that I
can classify them, which are transformation and regulation. The interactions objects
considered here are not simple links between entities as in many databases, but are

objects in their own rights.
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Figure 9. Pathway element conceptual data model

A list of inputs and a list of outputs characterize each interaction object. Here I

make some kind of abstraction. That the metabolites in pathway are transformed into

others can be considered as a list of inputs that are transformed into a list of outputs
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through transformation object. In addition, it may have a rich collection of attributes,
which describe the properties of the interaction. An interaction can be a Reaction, which
converts a set of substrates (the input) into a set of products (the output). Another

example is Expression, which has a gene as input and an enzyme as output.

The interaction (in Figure 9) object has the fact that both their inputs and outputs
are sets of entities. Also, our pathway database should describe all the intervening steps
for metabolic pathway. It can be represented as using MetabolicRegulatoryPathway.
Each such object refers to the entities and interactions of all its intervening steps. Not
only have the Interaction objects entities as input/output, but also can have other
interactions as output. This is exactly the case for the Inhibition and Activation in Figure
9. This 1s the case for the object Catalysis that represents the action of Enzyme in
accelerating a chemical reaction under Regulatory object. Regulatory object is the effect

of an entity (it may be regarded as a catalyst or inhibitor) on certain reaction.

Since gene expression data is a source of pathway “casual” information*® | we
may use microarray gene expression data to analyze metabolic pathways in organisms.
Our conceptual data model should cover gene expression in metabolic pathway
components. Therefore, there is another subclass GeneExpression under the Interaction
class. If in future we would like to know the detailed transcriptional regulation
information, we can still extend this object under Interaction class. Finally, I define one

class called as state to represent time or process dependent pathway situation to model a
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dynamic pathway. In this data model, some core attributes are listed. This is still a

conceptual data model, whose design process is iterative to validate attributes.

4.4 UML Model for Biochemical Pathway Classification

The structure of biochemical pathway _classiﬁcation is important at least for two
reasons. First, we can think of the classification as providing definitions of biological
terms. Second, the classification of biochemical pathway is important because it
influences the ease with which users can query the database system. As user queries often
refer to the class hierarchy. Our biochemical pathway classification is such a kind of

classification to guide our users to do query.

The UML diagram is given in Figure 10. The model includes primary, secondary
and tertiary structure information. The topmost class in Figure 10 is
BiochemicalPathway, of which all other classes are either directly or indirectly

components. All the relationships between classes in Figure 10 are either aggregation or

generalization relationships.

A BiochemicalPathway object has three subclasses that are SignalTransduction,
GeneRegulatory, MetabolicRegulatory, which represent three major kinds of biochemical
pathways available at present in molecular biology®®. I will mainly focus a modeling
metabolic pathway. In MetabolicRegulatory object, there are five properties to define

this class, which are as follow:

*  Sys_pathway_name: to define the organism, tissue or cell name
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*

PathwayID: to identify the pathway in the system

* Initial_substrate: to define the first component in the pathway
*  Final_product: to define the final component in the pathway
*

Length: to give the component number in the pathway

Metabolic regulatory pathways typically consist of four kinds of metabolic
pathway*®. So, a MetabolicRegulatory are composed by four subclasses. They are
Biosynthesis, Degradation, Energy, and OtherIntermediaryMetablism. They are actually
an abstract class, which should have been depicted in the diagram. An abstract class is
one for which no diect instance objects are ever created, but which can play a useful

organizational role in the diagram.

There are five sub-classes under Biosynthesis and four sub-classes under
Degradation classes. Since we know there are five kinds of biosynthesis, they are
classified into amino acid, carbohydrate, cell structure, fatty acid and lipids, and
nucleotide. So, we define five subclasses as Aminoacid, Carbohydrate, CellStructure,
FattyAcidLipid, and Nucleotides under a Biosynthesis class. It is quite similar that there
are Aminoacid, Carbolism, FattyAcid, and OtherDegradation four subclasses under a

Degradation class.
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Figure 10. Biochemical pathway classification conceptual data model

63




Chapter 5. Discussion and Conclusion

The modeling process is just the start of design. Once we have a conceptual data
model, the next step is to relate the model back to needs, then move to forward to adding
the structures that support both reuse and system function. In this chapter, I will briefly
discuss our future work about our data models and give some conclusions about the

thesis.

5.1 The Construction of Data Model is an Iterative Process

During a conceptual data model construction, some issues on data model need to
be clarified by revisiting the tasks to support or the sources of information to be
described. In the design process, the role of conceptual data model is to allow precise
statements to be made about the data of interest in a manner that can be communicated to
others. The extensibility of a conceptual data model is very important, as it is used both in
discussions with experts or scientists whose understanding of the relevant data is to be
described, and by the developers of software that makes use of the data. Elmasri and
Navathe!!” give a more detailed description on the design process that involves a

combination of a design process and a modeling language.

The conceptual data models for biochemical pathway are built up in the thesis. I
go back to double check if the data model describe the data identified in requirement

analysis(see next section). Also, we still need to identify the needs of application and



sources of information that the modeling activity seeks to support are completely met and
described in the conceptual data model. In section 5.2, I use the conceptual data model to
describe the Figure 2 to see if that UML data model can model Proline Biosynthesis

Pathway or not. It is displayed in the Figure 11.

5.2 The UML Data Model Describes the Data in Biochemical Pathway

In the Figure 11, it uses the data in Figure 2 to check if the UML conceptual data
model can describe the proline synthesis pathway or not. We can see the following
objects clearly in the data model.

1. BiochemicalEntity: C] Metabolite, Cofactor, Enzyme, and Gene

2. Transformation: l:l Reaction and GeneExpression

3. Regulation: -==-%  Catalysis and Inhibition

As I mentioned in Figure 9, metabolite and cofactor objects are used as input and
output for interaction object. When they are modeled as list of input for reaction object,
they are the substrates of enzyme object. They will be the products of the reaction when
they are modeled as output of reaction object. For instance, in Figure 9, Glutamate and
ATP are the instances BiochemicalEntity object, as a list of input of Reaction. EC
2.7.2.11 is an instance of reaction object. The reaction is catalyzed by Enzyme, 7-
glutamyl kinase which is an instance of Enzyme object. The products of that reaction are
a list of output of the Reaction 2.7.2.11, which are ?-glutamyl phosphate and ADP,
respectively, an instance of Metabolite and Cofactor. Therefore, the UML data model can

describe the data in Proline biosynthesis pathway very well.

65



Glutamate ATP

[ Metabolite ] [Cq'acforl

pom e mmm e e e dphibit
' ingut{substr ate)
1
¥ ...
pt 0B Y-glutam v kinase h A
Expression
output(product)
Y-glutamyl phosphate W ADP
[ letabolite ] [ Cofactor
Y-glutam ¥l phosphate NADPH; H*
[ Metabolife ] [Cofacfor]
input(substt ate)
prod Y-glutam viphosphate 1eductase b
Expression
output(product)

glutamate Y-semialdehyde ¥ NADP; Pi

[Memboh'fe J [C’ofwfor

¥
Reaction spontaneous

hJ
1-pyrroline-carbox ylate NADPH

input(substr ate)
pr o l-pyrraline-5- carbox viate reductase ¥
Gere autput Bnzypme catalyze' Reaction (1312
Expression o
output(pr oduct)

proline W NADP

""""""""""""""""""""""""""" ‘[ Mesabolite ] [C‘ofacfor]

Figure 11. Proline biosynthesis pathway are displayed with UML conceptual data model
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On the other hand, the biochemical pathway data models I designed and proposed
in Chapter 4 can be used as the basis for an implementation using an object database. In
fact, UML models are independent of the implementation platform to be used. In
practice, mapping UML models, including class diagrams, onto object-oriented
implementation platforms is more straightforward and intuitive than mapping onto non
object-based platforms. However, this is not to say that it cannot apply a relational data
storage engine for an object-oriented data model. It also has the similar situation of
implementing from ER model to relational database system. Blaha and Premerlani®"
provide a comprehensive description of how to map class diagrams onto relational tables.
This process is along the similar lines as the implementing process for ER models, but no
key in UML models and the tendency for inheritance to be used more widely in object

models, often makes the mapping process more involved.

In addition, class diagrams are not targeted at any specific category of application.
Mapping of these diagrams onto implementation pltforms can be less direct or
systematic than in the narrower context within which ER is used, but it is often
straightforward to map class diagrams onto object-oriented implementation platforms. As
mentioned above, the conceptual data model can be implemented into relational database
management system, but the necessary overhead for the assembly/disassembly process
for objects and the separation of data and functions should be taken into consideration.

This may limit the usage of this approach.
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5.3 The UML Data Model Can Generate Pathway Diagram

Most of metabolic pathway databases have interactive diagrams that are drawn
manually, which is in a static way to visualize the pathway (mentioned in Chapter 3.2.3).
Automated construction of diagrams from formalized information appears to be a
promising direction, which the visualization process is performed dynamically at runtime
based on the information provided by the database. EcoCyc was the first convincing
demonstration of the efficiency of automated generation of diagrams for metabolic

pathway 2.

Static visualization has many server disadvantages. Whenever the data has been
updated, the corresponding images have to be edited manually to reflect the changes.
Furthermore, there is no way to specify the mount of detail to be displayed or to hide
parts of the pathway. Last, when it comes to visualizing user defined or novel pathways,

static visualization is not applicable at all®¥.

Automated construction of diagrams is based on object-oriented data model. The
UML conceptual data model in the thesis can display biochemical pathway as directed
graphs(see Figure 12). It is illustrated that Proline biosynthesis pathway can be visualized
as directed graphs by using the conceptual data model very well. The problem of
dynamically drawing a pathway is a graph layout problem. The UML conceptual data
model in the thesis (Chapter 4.2) can be used to develop such a dynamic visualization

pathway application or pathway drawing editor. Given as input a combinatorial
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description of graph, a graph layout algorithm should compute geometric positions for

the graph elements according to a set of rules.
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Figure 12. Proline biosynthesis pathway is visualized as directed graphs with the UML
data model
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Karp et al® devised an algorithm for drawing metabolic pathways automatically
that breaks the graph into cyclic, linear and tree-structured components and then applies
different layout methods to each of these individually. The algorithm has been
implemented in EcoCyc system*?(see section 3.1.4), which allows biologists to visualize

a collection of biochemical information dynamically.

Dynamic visualization in contrast to static visualization provides high flexibility,
which is necessary for complex queries and the construction of novel pathways. One of
the advantages of this approach is the possibility of automated diagram updated when
new data are obtained. This is quite helpful for biologists to analyze the gene experiments
since computer does some computation tasks for human. So, we need to pay the price.
The problem of dynamically drawing a pathway is a graph layout problem. So, we may

use the UML data model and plus the robust algorithm to do dynamic visualization in

future.

5.4 The UML Data Model are Different from KEGG and EcoCyc Data

Model

If we compare our UML conceptual data model with possible KEGG and EcoCyc
data model, it may conclude that the UML data model is quite different others. Here, I
assume KEGG has one abstract data model as in Figure 5 and EcoCyc has one abstract

data model as in Figure 6. The comparisons of these data models are illustrated in table 3.
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Table 3. Comparison of UML Conceptual, KEGG, and EcoCyc Data Model

Data Model Object-Oriented Relationship Knowledge
among Data Representation
KEGG No binary No
EcoCyc Yes hierarchy and generalization Yes
UML conceptual Yes hierarchy, generalization, aggregation kind of

It is hard to make a conclusion and say that our UML model is better or not, as
our data model is just conceptual data model. What we can tell at this moment is the

differences among them in table 3.

5.5 More Standards for Nomenclature Are Needed

A comparison of data of pathway database is relatively complicated because of
different classification of compounds, genes, proteins, pathways and gene/protein
functions. For instance, EcoCyc classified compounds into macromolecules and small
molecules, so proteins, genes, and polypeptides under the macromolecules. That’s quite
different from KEGG and what I am doing in pathway data model construction (see
chapter 3). The good thing is the classification of enzymes recommended by the IUBUB
(International Union of Biochemistry and Molecular Biology) that is used as a standard.
That makes it really easy and simple to define enzyme data structure. One suggestion
would be to have more standards for nomenclature. In database development, a

standardization of data structures and file formats would make further applications more

powerful.

71




Therefore, having data standards would be ideal, but it is unrealistic to expect
them soon. The key technical challenge toward this goal is to develop standardized
semantics. Due to the complexity of biological data, its mpidly evolving nature, and
problems with synonymy (different names with the same meaning) and polysemy (the
same name for different concepts), standards tend to be several steps behind. For this
reason, it is concluded that using temporary standards or continuing efforts would be
important in merging standards among multiple groups with such similar domains as

metabolic pathways and networks.

5.6 MIAME and MAGE are Useful

MIAME requires information on experiment design, sample preparation and
labeling, hybridization procedures and parameters, measurement data and specifications,
and array design — dozens of bits of information. It facilitates the interpretation and
verification of microarray results. MIAME tries to ensure that all the relevant information

is captured in a principled way.

The MIAME standards define a benchmark for the minimum standard for the type
of information that needs to be recorded during the microarray process. If some of the
MIAME data is missing, the experimental data will be regarded as being of insufficient
quality to be entered into the public repositories. In addition, most of the main chip-

manufacturing and microarray-software vendors are supporting this standard activity. If
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data is to be useful and usable in new systems, MIAME compliance needs to be

addressed now.
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Appendix A: LAC OPERON MODEL “*

1. The Lac Operon

The lac operon of E. coli i1s a genetic unit that encodes the biochemical pathway
that allows the bacterium to utilize lactose as a carbon-source. Lactose is a disaccharide

made up of a galactose and a glucose linked in a beta-1,4 glycosidic linkage.

The enzyme beta-galactosidase, encoded by the gene lac Z cleaves the beta-1,4
glycosidic linkage to release the sugars galactose and glucose. In E. coli, the transport of
lactose across the cell membrane requires a second gene - lac Y - which encodes the
permease. A third function transacetylase - is encoded by lac A. These three proteins

constitute the biochemical pathway for lactose utilization.

The term, operon, refers to a set of structural regions (usually encoding proteins)
which are clustered together and whose expression is under the control of a single

regulatory region. The overall structure of the lac operon is illustrated below:

Common
Regulatory
. Reglon

—

lacz facy lac A
ji~Galactosidase Permease Transacetylase
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In ‘standard’ terminology, each protein coding unit is called a cistron
Since the entire operon is expressed as a single mRNA from a common regulatory region,
the primary transcript encodes three separate proteins. Such a message is called
polycistronic. What is the rationale for the operon organization of multiple coding
regions under the control of a common regulatory region? Two rationales are commonly

offered.

The first emphasizes the coordinate regulation of multiple functions required for a
single biochemical pathway. Since all three functions are required, its makes energetic

sense to express all three from a single mRNA.

The second rationale emphasizes recent evidence for the lateral transmission of
heritable information between individuals. This rationale suggests that the three functions
are clustered together to facilitate their transfer as a complete unit rather than as
individual units. This allows the transfer of a complete functional biochemical pathway

rather than those of individual functions that are ineffective in isolation.

The initiation of transcription by RNA polymerase involves the binding of the
polymerase to specific template sequences called the promoter. The structure of the
promoter was originally revealed by comparing the DNA sequences’ upstream of many
different transcription initiation sites. Two blocks of highly conserved sequence were
identified centered 10 bp and 35 bp upstream of position +1 - the first nucleotide of the

transcript.
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These two 'promoter' sequences were subsequently shown to interact directly with

RNA polymerase during the initiation phase.

2.Basic Features of the Promoter

While the alpha (2) beta - beta-prime complex is the active polymerase during the
elongation phase, it is unable to recognize the promoter sequence on its own. To initiate,
the polymerase must interact with an initiation factor called sigma. This polymerase

complex is then capable of recognizing and binding to the promoter as shown below

az ﬁ’ o

The lac repressor, coded for by the lac I gene, is a sequence specific DNA binding
protein. The specific sequence recognized by the lac repressor is located just downstream

of the lac promoter. Binding of the lac repressor to this recognition sequence (called an
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operator as it operates on the adjacent promoter) negatively regulates the initiation phase
of the transcription process by sterically blocking access of the RNA polymerase to the

adjacent promoter.

+1

Operator

E coli expresses the lac I gene constitutively - there is always lac repressor
running around the cell. So how do we turn on transcription of the lac operon when we
need it? Activation of the lac operon requires the presence of the substrate of the
biochemical pathway it encodes - lactose. A metabolic derivative of galactose -
allolactose - is the inducer of the operon. Allolactose binds to the lac repressor, causing a
conformational shift in the protein that results in the loss of its sequence specific DNA
binding ability (allosteric regulation). Thus, in the presence of the inducer, the repressor
no longer binds to the operator - thus freeing the promoter that is now accessible to the

RNA polymerase + sigma factor and transcription can initiate as discussed previously.

This mechanism for the negative regulation of transcription initiation by steric

interference with RNA polymerase - promoter interactions is very common in
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prokaryotes. In addition to this steric blockage mode of negative regulation, prokaryotes
also have mechanisms that positively regulate the initiation of transcription. For the lac
operon, positive regulation involves a second regulatory protein - the cAMP-CAP
(Catabolic Activation Protein) (a sequence specific DNA binding protein) and its target
binding sites. The diagram below shows how the various regulatory sequence elements

are organized in the lac operon regulatory region.

The binding of cAMP-CAP to its target sequence(s) increases the frequency with
which RNA polymerase initiates at the adjacent promoter. This enhanced frequency of
initiation is due to the affinity of the cAMP-CAP for RNA polymerase itself (via protein-
protein interaction). This affinity for the transcription enzyme results in an increase in the
local RNA polymerase concentration in the immediate viscinity of the lac promoter. This
increase in local concentration increases the frequency with which transcription initiates

from this promoter.
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Appendix B MIAME VERSION 1.0

The MIAME structure

MIAME recommendations include sections that will usually be provided in a free text
format, along with information that are recommended to be given by maximum use of
controlled vocabularies or external ontologies (such as species taxonomy, cell types,
anatomy terms, chemical compound nomenclature). The use of controlled vocabularies is
needed to enable database queries and automated data analysis. Since few controlled
vocabularies have been fully developed, MIAME encourages the users, if necessary, to
provide their own qualifiers and values identifying the source of the terminology. This is

achieved through the use of

(qualifier, value, source)

triplets, for instance,

(qualifier: 'cell type', value: ‘epithelial', source: 'Gray's anatomy, 38" ed.",

which are recommended instead or in addition to free text format descriptions wherever
possible. This will allow the community to build up a knowledge base of the most useful

controlled vocabularies for describing microarray experiments. The MGED group is
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developing an ontology for microarray experiment description, and where the ontology is

sufficiently mature, the MIAME document recommends its use.

Microarrays are often manufactured independently of particular experiments and
their design description can be given separately. Therefore MIAME has two major

sections

(1) array design description;

(2) gene expression experiment description.

Another potentially reusable part of the experiment description is laboratory
protocols, including data processing methods (e.g., normalization). MIAME encourages
the user to assign unique identifiers to all reusable parts of experiment description and to
reference these when the respective parts are reused (possibly indicating the deviations).
A standard for the description of protocols, including the data transformation protocols is

being developed by MGED.

1. Array design description

The array design specification consists of the description of the common features

of the array as the whole and the description of each array design elements (e.g., each

spot). Following terminology used in MAGE, we distinguish between three levels of

array design elements:
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feature - the location on the array,
reporter - the nucleotide sequence present in a particular location on the array,
composite sequence - a set of reporters used collectively to measure an expression

of a particular gene, exon, or splice-variant.

The details that should be given of each of them are described below.

1) Array related information

- array design name

- platform type: in situ synthesized, spotted or other

- surface and coating specification

- physical dimensions of array support (e.g. of slide)

- number of features on the array

- availability (e.g., for commercial arrays) or production protocol for custom made

arrays

2a) For each reporter type

- the type of the reporter: synthetic oligo-nucleotides, PCR products, plasmids,

colonies, other

- single or double stranded
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2b) For each reporter

- sequence or PCR primer information:
o sequence or a reference sequence (e.g., for oligonucleotides), if known
o sequence accession number in DDBJ/EMBL/GenBank, if exists
o primer pair information, if relevant

- approximate lengths if exact sequence not known

- clone information, if relevant (clone ID, clone provider, date, availability)

- element generation protocol that includes sufficient information to reproduce the

element for custommade arrays that are not generally available

3a) For each feature type

- dimensions

- attachment (covalent/ionic/other)

3b) For each feature

- which reporter and the location on the array

4) For each composite sequence

- which reporters it contains

- the reference sequence
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- gene name and links to appropriate databases (e.g., SWISS-PROT, or organism

specific databases), if known and relevant

5) Control elements on the array

- position of the feature (the abstract coordinate on the array)
- control type (spiking, normalization, negative, positive)

- control qualifier (endogenous, exogenous)

For each array that is not generally available (e.g., commercially available), the provided

information should be sufficient to reproduce the array and all its design features.

2. Experiment description

By experiment we understand a set of one or more hybridizations that are in some
way related (e.g., related to the same publication). The minimum information includes a

description of the following four parts.

1. Experimental design
2. Samples used, extract preparation and labeling
3. Hybridization procedures and parameters

4. Measurement data and specifications of data processing
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MIAME recommends the following details on each of these sections.

(1) Experimental design

This section that is common to all the hybridizations done in the experiment, such

as the goal, brief description, experimental factors tested. It includes the following.

1) Authors, laboratory, contact

2) Type of the experiment, for instance,

- normal vs. diseased comparison

- treated vs. untreated comparison

- time course

- dose response

- effect of gene knock-out

- effect of gene knock-in (transgenics)

(multiple types possible)

3) Experimental factors, i.e. parameters or conditions tested, for instance,

- time

- dose

- genetic variation
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- response to a treatment or compound

(also, see http://www.mged.org/ontology)

4) How many hybridizations in the experiment?
5) If a common reference is used for all the hybridizations?

6) Quality control steps taken:

- if any replicates done (yes/no), what type of replicates, description?
- whether dye swap is used (only for two channel platforms)?

- other (e.g., polyA tails, low complexity regions, unspecific binding)

7) A brief description of the experiment and its goal and a link to a publication if
exists

8) Links (URL), citations

(2) Samples used, extract preparation and labeling

By a sample we understand the biological material (biomaterial), from which the
nucleic acids have been extracted for subsequent labeling and hybridization. In this
section all steps that precedes the hybridization with the array are described. We can
usually distinguish between the source of the sample (bio-source, €.g., organism, cell type

or line), its treatment, the extract preparation, and its labeling. MGED is developing an
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ontology for sample description (see http://www.mged.org/ontology) the use of which is

encouraged. Here we list the most essential items that are usually needed.

1) Bio-source properties
- organism (NCBI taxonomy)
- contact details for safnple

- descriptors relevant to the particular sample, such as

0 sex

0 age

o development stage

0 organism part (tissue)

o cell type

o0 animal/plant strain or line

0 genetic variation (e.g., gene knockout, transgenic variation)

o individual genetic characteristics (e.g., disease alleles,
polymorphisms)

o disease state or normal

o is additional clinical information available (link)

o the individual (for interrelation of the samples in the experiment)

2) Bio-material manipulations: laboratory protocol, including relevant parameters,

e.g.,
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- growth conditions

- in vivo treatments (organism or individual treatments)

* in vitro treatments (cell culture conditions)

- treatment type (e.g., small molecule, heat shock, cold shock, food
deprivation)

- compound

- separation technique (e.g., none, trimming, microdissection, FACS)

For recommendations for controlled vocabularies that can be used see

http://www.meged.org/ontology

3) Hybridization extract preparation protocol for each extract prepared from the

sample, including

- extraction method
- whether total RNA, mRNA, or genomic DNA is extracted

- amplification (RNA polymerases, PCR)

4) Labeling protocol for each labeling prepared from the extract, including

- amount of nucleic acids labeled

- label used (e.g., A-Cy3, G-CyS5, 33P, ....)

- label incorporation method
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5) External controls added to hybridization extract(s) (spiking controls)

- element on array expected to hybridize to spiking control

- spike type (e.g., oligonucleotide, plasmid DNA, transcript)

- spike qualifier (e.g., concentration, expected ratio, labelling methods if
different

than that of the extract)

(3) Hybridization procedures and parameters

Each hybridization description should include

1) information about which labeled extract (related to which sample, which extract)

and which array (e.g., array design, batch and serial number) has been used in the

experiment; and

2) the hybridization protocol, normally including

- the solution (e.g., concentration of solutes)

- blocking agent

- wash procedure

- quantity of labeled target used

- time, concentration, volume, temperature
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- description of the hybridization instruments

(4) Measurement data and specifications of data processing

We distinguish between three levels of data processing - raw data (images), image
quantitations and gene expression data matrix. Each hybridization has at least one image,
each image has a corresponding image quantitation table, where a row represents an array
design element and a column to a different quantitation types, such as mean or median
pixel intensity. Several quantitation tables can be combined using data processing metrics

to obtain the 'final' gene expression measurement table associated with the experiment.

1) Raw data description should include
- for each scan laboratory protocol for scanning, including scanning
hardware and software, scan parameters, including laser power, spatial

resolution, pixel space, PMT voltage;

- scanned images;

It should be noted that MGED does not have consensus whether the provision of

images is a part of MIAME.

2) Image analysis and quantitation
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- image analysis software specification and version, availability, and the
description or identification of the algorithm and all the parameters used
- for each image the complete image analysis output (of the particular

image analysis software)

3) Normalized and summarized data - gene expression data matrix

- data processing protocol, including normalization algorithm (for detailed

recommendations, see http://www.meed.org/normalization)

- gene expression data table(s) derived from the experiment as the whole,

o derived measurement value summarizing related elements and
replicates as used by the author (this may constitute replicates of
the element on the same or different arrays or hybridizations, as
well as different elements related to the same entity e.g., gene)

o providing a reliability indicator for each datapoint (e.g., standard

deviation) is encouraged

This ends the experiment description. The document is based on the earlier
version MIAME 1.0 and discussions at MGED 4 meeting. The more detailed information
about MIAME array design and description as well as gene expression experiment

description can be found at (27).
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Appendix C: MAGE-ML and MAGE-OM

MicroArray Gene Expression Markup Language and MicroArray Gene

Expression Object Model

Microarray Gene Expression Markup Language (MAGE-ML) is a language
designed to describe and communicate information about microarray based experiments.
MAGE-ML is based on XML and can describe microarray designs, microarray
manufacturing information, microarray experiment setup and execution information, gene

expression data and data analysis results.

MAGE-ML has been automatically derived from Microarray Gene Expression
Object Model (MAGE-OM), which is developed and described using the Unified
Modelling Language (UML) — a standard language for describing object models.
Descriptions using UML have an advantage over direct XML document type definitions
(DTDs), in many réspects. First they use graphical representation depicting the
relationships between different entities in a way which is much easier to follow than
DTDs. Second, the UML diagrams are primarily meant for humans, while DTDs are
meant for computers. Therefore MAGE-OM should be considered as the primary model,
and MAGE-ML will be explained by providing simplified fragments of MAGE-OM,

rather then XML DTD or XML Schema.
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MAGE-OM is a bit two large to be represented on a single diagram in a readable
way. In order to structure the model the UML notion of packages is used. Related classes
are grouped together into packages, and quite often represented on the same diagrams.
MAGE-OM will be explained package-by-package; a tool able to export MAGE-ML will
probably have separate modules and/or user interface sections for separate packages, e.g.,
you can enter information about array designs in one Ul section and information about
steps of your microarray experiment using another Ul section. On diagrams classes
belonging to the package under discussion are coloured yellow, while classes belonging
to other packages, therefore detailed elsewhere, but drawn on the current diagram for the

purposes of showing inter-package relationships, are coloured grey.

Experiment

This package is for describing a microarray experiment as a unit. Note two
parallel branches on the diagram. On the right-hand side we have experiment blueprint
information — experiment design and one or more experimental factors that are changed
in the course of the experiment to explore whether and how gene expression levels
change (e.g., time or drug concentration). On the left-hand side there is experiment
execution information. An experiment consists of one or more bioassays (experiment
steps), and each bioassay can test for gene expression with one or more experimental

factor values fixed (e.g., time = 30min, drug concentration = 15ug/ml).
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Experiment

e o

Bluﬁgsag“ ExperimentDesign
FactorValue ExperimentalFactor
BioAssay

A bioassay is a single step within a microarray experiment. There are 3 types of
bioassays. A physical bioassay corresponds to wet-lab microarray experimental step. A
measured bioassay corresponds to a situation after feature extraction has been performed.

A derived bioassay corresponds to data processing experimental steps.

A physical bioassay is created by applying some amount of some biomaterial to a
microarray. Bioassay treatment events (e.g., wash, apply blocking agent etc.) transform

physical bioassays into new physical bioassays. A particular type of bioassay treatment is

image acquisition.

Measured bioassays can have corresponding MeasuredBioAssayData objects (raw

data). Derived bioassays are obtained by data transformations, they are linked by

BioAssayMap objects.
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ArrayDesign

An array design consists of design element groups as well as information about
element zone layout. Physical array design has been made as a subclass of array design,
to allow “virtual” array designs with element groups but no zone layout information; such
“virtual” designs can be used, e.g., to define different reporter-composite sequence
mappings for the same physical array design. Zones can be grouped together to form
zone groups; zones within the same zone group would have the same spacing between
them, whereas zones from different zone groups can have different spacing. Zones/zone

groups sometimes are referred to as blocks/metablocks.
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There are three types of design elements. A feature has a position on the array
(within some zone), it can be a control feature for other features or controlled by other
features. A reporter corresponds to the physical substance synthesized/printed on the
array, it can be characterized by one or more biosequence objects which in turn can be
characterized by database entries. There can be many features for the same reporter, and
features can have one or several mismatches compared to reporter’s reference sequence.
The third, most abstract kind of design element is a composite sequence. It can have more
than one reporter on the same array (e.g., different splice variants) and is characterized by
biological characteristics, which are actually again sequences with corresponding
database entries. The mapping between reporters and composite sequences is not shown
on this diagram, but this is similar to the model of feature-reporter mapping. Also,
composite sequences can be aggregated into more abstract composite sequences (also not

shown here), e.g., genes of the same functional group etc.
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BioMaterial

BioMaterial is an abstraction of various states of biology-based materials used in
various stages of the microarray experiment. Biosource refers to the initial source of
material used in hybridization (e.g., cell line or tissue). Biosample is what is extracted
from the biosource, and labeled extract is the last state of the biomaterial before
hybridization. A biomaterial can be a result of a chain of treatments, each treatment
involving one or more biomaterials in some amounts. A special kind of treatment is

treatment with some amount of a compound. A simple way to model compounds
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consisting of other compounds is provided.
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One of the central principles of MAGE is that data objects are regarded as 3
dimensional matrices, where there are bioassays (experimental steps or conditions) along
one dimension, design elements (spots) along the other dimension and quantitation types
(e.g., signal intensity, background intensity) along the 3™ dimension. Bioassay data
objects can be represented in one of two ways: as a set of vectors in the form (value,
dimensionl, dimension2, dimension3) (useful for small amounts of data), or as a 3D
matrix (BioDataCube). Transformations (e.g., filtering, normalization) can be applied to
one or more bioassay data objects, resulting in derived data objects. A transformation
involves computing values of the resulting 3-D matrix from the values of source matrices,
and it also transforms dimensions. On this diagram just the mapping of quantitation types

into new quantitation types has been shown; DesignElementMapping and

105



BioAssayMapping are modeled similarly. A quantitation type mapping transforms a list
of quantitation types into another list of quantitation types, and it consists of maps that

deal with single target quantitation types.

DerivedBioAssayData
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QuartitationType: BioAssayDatum

QuantitationType

A quantitation type can be either a standard quantitation type (a list of these is

provided within MAGE) or a specialized quantitation type that should be described in

detail. A quantitation type may reference a channel (e.g., Cy3 green signal intensity).
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Array

An array is a physical array that corresponds to some array design. There are three
types of information that can be captured about individual arrays and array production
process. An individual array can have deviations from the design, either zone defects
(e.g., a whole zone of spots is shifted) or individual feature defects. An array group can
consist of more than one array printed on the same slide, and fiducials (markings on the
surface of the slide that can be used to identify arrays’ origins) can be printed to facilitate
feature detection software accuracy. Array manufacture information also can refer to
more than one individual array (sometimes referred to as an array batch), and it can
contain protocol information (how the arrays were manufactured) as well as some limited

LIMS information (what was printed on the array, on a feature-by- feature basis).
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This diagram is provided to summarize what kinds of events are possible to
describe in MAGE. Each event can have a sequence of protocol applications. On the left-
hand side there are pysical events (biomaterial treatment, bioassay creation as a
generalization for hybridization, and bioassay treatment and image acquisition as a
special case), while on the right-hand side there are information processing events

(feature extraction, data transformation, maps of data dimensions).
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Protocol

There are two parts for this package. On the upper part there are Protocol,
Hardware and Software classes, representing abstract entities. All the “parameterizable”
objects can hawe parameters, a protocol can involve usage of specific hardware and
software, specific hardware might be needed to run some software, and software objects
can be composed of other software objects (modules). On the lower part there are classes

representing application of abstract entities at a given time point, with parameters filled in

by some parameter values.
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A contact can be either an organization or a person. A person can work for an

organization, and an organization can consist of other sub-organizations.

Contact
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T
Description
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Many MAGE objects can be further chracterized by attaching Descriptions to
them, if there is some important information that cannot be recorded using provided
attributes and relations. A Description can consist of a piece of free text, references to
database entries, references to ontology entries (annotations) and one or more
bibliographic references. A generic NameValueType class also is provided, objects of

which can be attached to every MAGE object if even the Description functionality is not

sufficient.
Description
R it
DatabaseEntry A Y.
NOEHIONS BibliographicReference
Database OntologyEntry
HigherLevelAnalysis

Experimental data (BioAssayData) can be clustered, obtaining one or more top
level clusters. Each cluster consists of nodes, where each node in turn can contain
subnodes (in the case of hierarchical clustering). A node can be characterized by its
values (e.g., some metric of cluster quality), and a node groups together design elements

(e.g., spots, genes) or bioassays (i.e., experimental conditions). BioAssayDimension is
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just an ordered list of bioassays, and DesignElementDimension is an ordered list of

design elements.
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APPENDIX D: GLOSSARY IN BIOLOGY AND

BIOINFORMATICS®?

Amino acid: An a-amino carboxylic acid of the general form H;N-CHR-COQ'. There are
20 common amino acids, defined by the R group on the alpha-carbon (A listing of

common amino acids is available), that are used to build proteins and peptides.

Base: One of five molecules that are assembled, along with a ribose and a phosphate, to
form nucleotides Adenine (A), guanine (G), cytosine (C), and thymine (T) are found in
DNA while RNA is made from adenine (A), guanine (G), cytosine (C), and uracil (U).
Base pair (BP): The complementary bases on opposite strands of DNA which are held
together by hydrogen bonding. The atomic structure of these bases pre-select the pairing
of adenine with thymine and the pairing of guanine with cytosine (or uracil in RNA).
Cell: The smallest functional structural unit of living matter. Cells are classed as either
procaryotic or eucaryotic.

c¢DNA (complementary DNA): An artificial piece of DNA that is synthesized from an
mRNA (messenger RNA) template and is created using reverse transcriptase. The single
stranded form of cDNA is frequently used as a probe in the preparation of a physical map
of a genome. cDNA is preferred for sequence analysis because the introns found in DNA
are removed in translation from DNA ----> mRNA ----> cDNA.

Chromosome: A collection of DNA and protein which organizes the human genome.
Each human cell contains 23 sets of chromosomes; 22 pairs of autosomes (non sex

determining chromosomes) and one pair of sex determining chromosomes. The human
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genome within the 23 sets of chromosomes is made of approximately 30,000 to 100,000
genes which are built from over 3 billion base pairs. While eukaryotic chromosomes are
complex sets of proteins and DNA, prokaryotic chromosomal DNA 1is circular with the
entire genome on a single chromosomne.

Complementarity: The sequence-specific or shape-specific recognition that occurs when
two or more molecules bind together. DNA forms double stranded helixes because the
complementary orientation of the bases in each strand facilitates the formation of the
hydrogen bonds that hold the strands together.

Computational biology: See bioinformatics

Deoxyribose: A five carbon sugar lacking a hydroxyl group on position 2 (beta-d-2-
deoxyribose) which is used in the construction of DNA

DNA (deoxyribonucleic acid): A double stranded molecule made of a linear assembly of
nucleotides (See Figure 3). DNA holds the genetic code for an organism in the
arrangement of the bases. The double strand of DNA results from the hydrogen bonds
formed between bases when two polynucleotide chains, identical, but running in opposite
directions, associate.

DNA polymerase: The enzyme that assembles DNA into a double helix by adding
complementary bases to a single strand of DNA. Linkages are formed by adding
nucleotides at the 5' hydroxyl group to the phosphate group located on the 3' hydroxyl.
Enzyme: A protein which catalyzes (or speeds the rate of reaction for) biochemical
processes, but which does not alter the nature or direction of the reaction.

Eukaryote: An organism whose genomic INA is organized as multiple chromosomes

within a separate organelle -- the cell nucleus.
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Exon: The region of DNA that encodes proteins. These regions are usually found
scattered throughout a given strand of DNA. During transcription of DNA to RNA, the
separate exons are joined to form a continuous coding region.

Gene: A section of DNA at a specific position on a particular chromosome that specifies
the amino acid sequence for a protein.

GenBank: The NIH genetic sequence database. An annotated collection of all publicly

available DNA sequences which is located at http:/www.ncbi.nlm.nih.gov. There are

approximately 2,162,000,000 bases in 3,044,000 sequence records as of December 1998.
GenBank is part of the International Nucleotide Sequence Database Collaboration, which
is comprised of the DNA DataBank of Japan (DDBJ), the European Molecular Biology
Laboratory (EMBL), and GenBank at NCBI. These three organizations exchange data on
a daily basis.

Gene expression: The conversion of the information encoded in a gene to messenger
RNA that is in turn converted to protein.

Genome: The total genetic material of a given organism.

Genomics: The mapping, sequencing, and analysis of an organism's genome.

Hybrides (or hybride molecular complexes): The formation of a compliementary
complex between a probe molecule and a target molecule. This complex is generally
tagged with a radioactive label on the probe molecule so that the complex can be located
and isolated for further study. Hybrid molecular complexes of the type DNA-DNA,
DNA-RNA, and Protein-Protein are frequently used in genetic analysis. Since
hybridization reactions are specific, they can be used to locate one DNA, RNA, or protein

molecule within complex mixtures of similar molecules.
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Hybridization: The formation of a double stranded DNA, RNA, or DNA/RNA from two
complementary oligonucleotide strands.

Hydrogen bond: A dipole-dipole attraction in which a hydrogen atom bridges two
electronegative atoms. One half of the hydrogen bond is a covalent bond and the other is
an electrostatic bond.

Induction: The switching of cells between pathways under the influence of an adjacent
group of cells. It is possible to generate several different cells through a series of
inductions between a limited number of cell types.

Intron: The portion of a DNA sequence which interrupts the protein coding sequences of
the gene. Most introns begin with the nucleotides GT and end with the nucleotides AG.
Kilobase (kb): A length of DNA equal to 1,000 nucleotides.

Microarray: DNA that has been anchored to a chip as an array of microscopic dots, each
one of which represents a gene. Messenger RNA that encodes for known proteins is
added and will hybridize with its complementary DNA on the chip. The result will be a
fluorescent signal indicating that the specific gene has been activated.

Motifs: A pattern of DNA sequence that is similar for genes of similar function. Also a
pattern for protein primary structure (sequence motifs) and tertiary structure that is the
same across proteins of similar families.

mRNA (messenger RNA): RNA that is used as the template for protein synthesis. The
first codon in a messenger RNA sequence is almost always AUG

NCBI: The National Center for Biotechnology Information

(http://www.ncgi.nlm.nih.gov), a division of the NIH, is the home of the BLAST and

Entrez servers.
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Nucleotide (nt): A molecule which contains three components: a sugar (deoxyribose in
DNA, ribose in RNA), a phosphate group, and a heterocyclic base.

Oligos (Oligonucleotides): A chain of nucleotides.

Operon: The group of contiguous genes in a bacterial chromosome that are transcribed
into an mRNA molecule.

PCR (polymerase chain reaction; in vitro DNA amplification): The laboratory
technique for duplicating (or replicating) DNA using the bacterium Thermus aquaticus, a
heat stable bacterium from the hot springs of Yellowstone. As with the polymerase
reaction that occurs in cells, there are three stages of a PCR process: separation of the
DNA double helix, addition of the primer to the section of the DNA strand which is to be
copied, and synthesis of the new DNA. Since PCR is run in a single reaction vessel, the
reactor contains all of the components necessary for replication: the target DNA,
nucleotides, the primer, and the bacterial DNA polymerase. PCR is initiated by heating
the reaction vessel to 90° which causes the DNA chains to separate. The tempature is
lowered to 55° to allow the primers to bind to the section of the DNA that they were
designed to recognize. Replication is then initiated by heating the vessel to 75°. The
process is repeated until the quantity of new DNA desired in obtained. Thirty cycles of
PCR can produce over 1 million copies of a target DNA.

PDB (Protein Data Bank): An international repository for the results of macromolecular
studies using NMR, X-ray crystallography, or homology methods. The results of
structural studies of proteins, RNA, DNA, viruses, and polysaccharides are presently
available. The term PDB also defines a standard file format for publishing protein and

nucleotide structures for use in computer programs.
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Peptide: A small chain of amino acids (see protein).

Polymerase: The process of copying DNA in each chromosome during cell division. In
the first step the two DNA chains of the double helix unwind and separate into separate
strands. Each strand then serves as a template for the DNA polymerase to make a copy of
each strand starting at the 3' end of the chain.

Polypeptide: A linear chain of amino acids joined head to tail via a peptide bond
between the carboxylic acid group of one amino acid and the amino group of the next
amino acid.

Post translational modification: Changes that occur to a protein after translation from
mRNA. Modifications can include cleavage of a small number of residues, the addition
of carbohydrates, phosphorylation of hydroxyl groups, acetylation, etc.

Primer: The short sequence of nucleotides (usually eight) which serve to prime the DNA
polymerase process during cell division. Primers are produced by the enzyme primase.
Primers also can be customized to 'isolate' specific sections of DNA for replication using
PCR.

Probe: A radiolabeled or fluorescent oligonucleotide used to locate complementary
sequences in a hybridization experiment.

Prokaryote: An organism whose DNA is not enclosed in a separate organelle.

Promoter: The short sequence on nucleotides on DNA that start the transcription of
RNA by RNA polymerase.

Protein: A linear chain of variable length that is constructed from the 20 basic amino
acids (also referred to as a peptide or as a polypeptide). The linear arrangement of the

amino acids is known as the protein's primary structure. The local three-dimensional
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arrangement (or folding pattern) of the main portion of the chain (the polypeptide
backbone) is known as the protein's secondary structure. The overall three-dimensional
arrangement of all atoms in a single chain in the protein is termed the protein's tertiary
structure. The three dimensional shape, in conjunction with with the chemical properties
of the amino acids contained in the protein, determines the protein's function.

Proteome: The full compliment of proteins produced by a particular genome.
Proteomics: The study of protein expression, structure, and function, and the interactions
of all proteins of a specific organism.

Reading frame (also open reading frame): The stretch of triplet sequence of DNA that
encodes a protein. The reading frame is designated by the initiation or start codon and is
terminated by a stop codon. DNA (through RNA) uses a triplet code to specify the amino
acid for a given protein. As can be seen above, a given strand of DNA has three possible
starting points (position [or reading frame] one, two, or three). Since both strands of
DNA can be translated into RNA and then into protein, a sequence of double helical
DNA can specify six different reading frames.

Recombinant DNA: Partial strands of DNA from different sources that are joined
outside of a cell.

Recombination: The exchange of regions of DNA on chromosomes via cross over
during meiosis (see crossover).

Regulatory region: The segment of DNA that controls whether and to what degree, a
gene will be expressed.

Restriction enzyme: A protein that recognizes specific sites on nucleotides or proteins

and hydrolyzes the nucleotide or protein at these points.
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Ribonucleic acid (RNA): Nucleotide made from a ribose, a base [adenine (A), guanine
(G), cytosine (C), and uracil (U)], and a phosphate group. RNA is generally found in the
cell nucleus or cytoplasm.

Ribose: A five carbon sugar (b-d-ribose) which is used in the construction of RNA.
Ribosome: Cellular components made of ribosomal RNA and proteins that are the site of
protein synthesis (translation).

Sequencing: Determining the order of nucleotides in a gene or the order of amino acids
in a protein.

Structural genomics: The prediction of the 3-D structure of proteins encoded by genes
using both experimental and computational techniques.

SWISS-PROT: An annotated protein sequence database established in 1986 and
maintained collaboratively, since 1987, by the Department of Medical Biochemistry of
the University of Geneva and the EMBL Data Library (now the EMBL Outstation - The
European Bioinformatics Institute (EBI)). The SWISS-PROT protein sequence data bank
consists of sequence entries. Sequence entries are composed of different line-types, each
with their own format. For standardization purposes the format of SWISS-PROT follows
as closely as possible that of the EMBL Nucleotide Sequence Database.

TrEMBL: The supplement of SWISS-PROT that contains all the translations of EMBL
nucleotide sequence entries not yet integrated in SWISS-PROT.

Transcription: The process of copying a strand of DNA to yield a complementary strand

of RNA

Transcription Factors: The class of proteins that bind to DNA and promote or inhibit

the initiation of transcription.
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Transfection: Introduction of a foreign DNA molecule into a eucaryotic cell and
‘subsequent expression of the genes of the new DNA.

Transfer RNA (tRNA): Specialized RNA that transfers single amino acids to a growing
protein chain. tRNA has a complementary codon to the codon on the mRNA.
Translation: The process of sequentially converting the codons on mRNA into amino

acids that are then linked to form a protein.
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