SIMULATED VALIDATION OF REAL-TIME REACTIVE
SYSTEM WITH PARAMETERIZED EVENTS

SHI Hut Liu

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
For THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

© SHI Hui Lu, 2003

National Library Bibliotheque nationale

of Canada du Canada

Acquisitions and Acquisisitons et
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Canada

Your file Votre référence
ISBN: 0-612-83912-5
Our file Notre référence
ISBN: 0-612-83912-5

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la these ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

Abstract

Simulated Validation of Real-Time Reactive System with Parameterized Events

Shi Hui Liu

This thesis addresses the problems encountered during the simulated validation of
real-time reactive systems at the design phase before the implementation. We assume
that such systems are modeled as timed labeled transition systems, following the
TROM methodology with parameterized events. In the previous work on the
simulation, the simulator’s algorithm had problems simulating some real-time reactive
systems, such as the Train-Gate-Controller and Robotics system. This thesis aims to
correct the flaws related to time conflicts in previous models, separate the Data Model
module from the Validation tool, and add support for parameterized events in the
simulator. As a system grows larger, assessing the performance of mission-critical
applications become more important. This thesis proposes an assessment of a system's
performance in terms of functionality, based on a Simulation, and illustrates its

approach using the Robotics case study.

il

To my family

iv

Acknowledgments

I would like to thank my supervisors, Dr. V.S. Alagar and Dr. O. Ormandjieva, for
their technical and financial support throughout my studies. They have guided my

work with good advice and insightful comments.

I would also like to thank my family for encouraging my pursuit of higher education.
They have always provided me with comfort and support whenever I encounter any

problems.

Contents

LISt Of FIZUIES seceiieiararsrrnnrrrcssssssinnsneseccsssssssssnccsssssssasssensessssssonssasasarssssssosssnsnsnsasesssnss ix
LISt Of TADIES.ccrvaerrseranrsassnnssssensressssssenssessenscsaserssossasaosssasssnssssnsarasssssssnsssassesssonsess xii
1 Introduction.......... tresnresssenntesssatsiessnnttressnnsresasnas sesrsssssnessannssensas 1
1.1 Real-Time Reactive SYStemSceoiiiiiiiiieieeniieinn e 1

1.2 Simulated Validation.........ccccovirmreiiinien it e e 3

1.3 Related WOTKvvviiiiei ettt 3

1.4 Major Contributionsccceviviiiiiiiiiiei i 3

1.5 Thesis OULINE ..ouvvriiiii e et e et reee e e ee e e 4

2 TROMLAB Environment — a Brief Review of Initial Designccccoceeecunecene 5
2.1 TROM FOormaliSmi....c.ucuuieriiiiiiiiiireiniieinicinerieiienne e saes e easseesssaeeensneesnen s 5
2.1.1 Data AbStraction TIer........ccccvieeerriieiiririereesirreeeesrr e e e reernres e ee s saees 6

2.1.2 TROM THET .. cveeiveeeiieeiieecitee sttt aebee et e st e ea bt e e sareeenbee e re e s s 7

2.1.3 Operational SEMANLICScocoeviviiiiiiiiiiiiee e 10

2.1.4 SubSYSIENM TIETuveereiiiiie et 12

2.2 SimulationValidation Components in TROMLABcccc.ocnveiinneen. 12
2.2.1 The INtErPreter....ccviviiirrerieeir ettt e rrneee et ee e 12

2.2.3 The Simulation Tool.......c..occiiiiie e 13

3 Time Interval Comparison AIZorithieeieiccicicrsnnennsecicissscssanasnsessssscses 16
T R\ (o A 15U) S PP 16

3.2 Train-Gate-Controller..........ooociiiviiiiiriiiiiricc s e e e rrereeese s e raes 16

3.3 Sample Simulation Event Listccccovcviiiiiiieniiien e 16

3.4 Simulation Result of the Present Simulator............ccccccieeeiiiiiiiiiirene e 17

3.4 Problem Analysis....c..cooeiioiiiiin i e 19

3.5 Time Interval Comparison Algorithm............ccoooviniciiniiine 19
3.5.1 OVETIaPS cevveeriiicrie e 21

3.5:2 MEOL c.uueeiiteir ettt ettt et ettt et e et e neaeetaeenne 21

3.5.3 BefOre. . oot s re e e aee 21

3.5:4 DUTIIE covieeiiieiie ettt rer e s e rce e e s eee e 21

3.5.5 SEATT ot e e e ae e 21

3.5.6 FINiSh .ooioiiiiciiec e 22

3.5.7 EQUAL ceoiiiiiieee et e 22

3.5.8 Simulation Result with Modified Algorithmcoccceeiiviiiiinnnnnns 22

4 Data Model Separation.......cceeccserccssaccsens teesstsessenstsssssnsaneasssnnsisesessanassasansanass 24
B Y, (oY 4 A2 Y T} | T PRSPPI 24

4.2 Previous DESIZNcoooiiiiiiiiiiiii ittt 24

4.3 A Design Pattern — Fagadecccooveeiiiiiiiiii e 25

4.4 NEW DESIZN ..ooiiiiiiiiiii ettt 26

S Parameterized EVENLS.......civveiiisiirsninsnisssnnissniessansosssncssessssssassssassessonsssenses 27
5.1 Review the Parameterized EVENtS.........cccccovviiviiiiiiiiiiceec e 27
5.1.1 Syntax of Parameterized EVents........cooceveiveniieincies e 28

5.1.2 Semantics of Parameterized Events............ccccoivviiinii i, 30

5.2 Extensions to the Parameterized Events.........cc.cccoovvviiiinvverieiiiniiiiinnnenee, 31

5.2.1 Extension to the Type of Parametercccccvvvviiiiiniiiniiinnn, 31

5.2.2 Extension to the Syntax of Simulation Event List...............coccoienict 32
5.3 Upgraded INtErPreter . ..oimiireiiieiieiiirie e st ermree e s 33
5.3.1 The Previous Design with Parameterized Events.......c..ccc.c.coeeveneis 33
5.3.2 Upgraded Interpreter.........oocvvrviiiiiieeniieiiiieieeeeine e 35
5.4 Upgraded SImulatorccocoviiiiiiiiiiiiiiii i 38
5.4.1 Previous Desighl......c.ooccviriiiiiieiriie et 38
5.4.2 New DESIZI ...ttt e e 41
5.4.3 Simulation AlgOrithmccccceiviiiiiiiniin e 44
Train-Gate-Controller Case Study......cccesveessseesssansssannsssssncsssissssassssssssssssssens 48
6.1 Problem DesCriPtion........coveviiiiieriieiie et s 48
6.2 Original TGC SYSteMl...cc..ieiiiiiieiiiiieies ettt ee e s rneeeee s 49
6.2.1 Class Diagram for TGC SyStem...........ceeiiuermmineiroiriiieennieeineene 49
6.2.2 Train Classoooiiieiiiiiiiiciccc e e 49
6.2.3 CONLroller CIaSSeeereeriiieiirecrecenrice it sieresene et esesreeseine e st e 50
6.2.4 Gate Class ...cooceviiiiiiiiiiicie et 52
6.2.5 System Configuration Specification (SCS).....cocccevrvvevriiiniinnnicnnnns 53
6.2.6 LSL traitovviiiiiiiiiiii ettt eirrr e st e a e s s ee e 54
6.3 Remodeling the TGC System with Parameterized Events................c.c...... 54
6.3.1 Class Diagram for TGC System with Parameterized Events............ 55
6.3.2 Train Class with Parameterized Eventsccccococviiiniiinicneen. 55
6.3.3 Controller Class with Parameterized Events.............ccocevrciiennennn. 56
6.3.4 Gate Class with Parameterized Eventsc.cccccoevieiniciinininnnnine 57
6.3.5 Simulation Event List with Parameterized Events...........c....cccovueee. 58
6.3.6 Simulation Result with Parameterized Eventsc..ccccccvvvienncnns 58
Robotic Assembly Case Studyccccurnicssersssnnisssneccssancssssesssansossssessssssssansecsess 60
7.1 Problem DesCription..........cccicciiiiiriiiiiiic e 60
7.2 Assumptions and Time Constraintsccccoecuieeeniieinccnneniiicn e 60
7.3 Original Modeling.........cccooviiiiiiiiiiiiiiii s 61
7.3.1 Class Diagram for Robotics System..........cccovviiieviiiiviiieiiiiec i, 61
7.3.2 Formal Problem Descriptionccoovveviciienereciiiee e eciiee e 63
7.3.3 Simulation Result ANalysis........cccccevriiiiiiiiirineeiiiiiciinieee e 72
7.3.4 Explanation of the Result..........cccccooviiiiiiiiiniiiiiniirer e 72
7.3.5 Existing Problems in the Designocccovvvvviiieenriiinin e, 72
7.3.6 Summary Of Problems.........cccorvuiiviciiiiitirieen et 75
7.4 Remodeling........coociiviiiiiiiiiiiiii e 75
7.4.1 Robotics System with a Self-controlled Usercc.ccooeiienrrnnnnen. 76
7.4.2 Robotics System with Buffered Beltccoccoveveviniciecieiiecn, 82
7.5 Remodeling with Parameterized Events..........c.cccoevvveinieniicciiesie e, 91
7.5.1 The LSL Trait — Part........c.occcooiviiiiiieiie e 91
7.5.2 Self-controlled User Modeling with Parameterized Events.............. 91
7.5.3 Buffered Belt Modeling with Parameterized Events........................ 99
Simulation-Based Measurement of System Functionality.....c..cceeveeeersvsenes 107
8.1 Functionality MEaSUIE........ccccceiiiiiiiiiieiii et e et e 107
8.2 FOrmuUIASoieiiiieiiii it 108
8.3 Illustration on the Robotics Case Studyccccceevirivreervviiieeneenie e, 109
Conclusions and Future Workceiecnneciscsnseisancasssssssssssssesseseesssneenes 111
9.1 WoOrk SYNthesiscoovieviiiriiiieiiiiiieereenieetie ettt 111
9.2 Future WOorK.....cociiiiiiiciiiic et 112
9.2.1 Parameterized EVEnts..........ccccooiiviviiiiiiiie e 112

0.2.2 SIMULATOT ..cciiiieei ettt 112

Bibliography ...ccccrvecsnnicisennisissnnsisssnsessssansess ereserarssrarsssssensennase « 115
APPENAIX A civvirsrncsssnssnnssarssnissstesnssasssnsssssssssssssssssasssssssssssansosne 117
PN 17173 110 15 G OO . 119
APPENAIX € aunerrrernrnininssiiisnsssnesssnssssssscssansssnsssssssssssnsessessasssssssssasssssessssssassssasssnass 122

viii

List of Figures

Figure 1: Architecture of TROMLAB...............c.ccccoooiiiiiiiiiiiiiiiii e 2
Figure 2: THFEE TTOFS...ccccouieieiiieiit et e 6
FiIGUIE 37 SEEIFQIE .ottt 6
Figure 4: TROM Class QRATONYcccoeiiiiiieieiriiiieiisieinccntne e ratee e 10
Figure 5: Architecture Of INtrPreter............cocccovviviviiiiriiiiiiiiiiniis e 13
Figure 6: Architecture of Validation t00l................c.cccoociiniiiiniiinniiiiiniii, 15
Figure 7: Sample Simulation Event LiSt.........c.cccccocoveirviiiiiiicneiiinceeie i, 17
Figure 8: The simulating result of present SImulatorccccoovvvcevvniiiiiinninns 18
Figure 9: Allen’s temporal predicates..............cc..ocvveviciconiimniicciiiiiiieiecceec e 20

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31
Figure 32:
Figure 33:
Figure 34.:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:

Simulating result with modified simulation algorithm............................. 23
The relation between Data-related classes in previous design................ 25
FaCAAE PALETT........oooe et 25
New design with Facade patternccccccvvceiiieiiceiriiiiiiesninen e 26
New TROM ClaSS QRATOMYc..ooeiieiiiieeeiiiieesseieeee s seaee e esieee e sneaeeeaes 30
Interpreter Class Diagram (0ld).............cccoovoviinnciiiiicniinnic e 33
Interpreter Class Diagram — Detailed (0ld)...........ccccoovvceoiiiiiiiienaaannn. 34
Interpreter Class Diagram — TROMclass (0ld).............ccoccovvceivinncnnnn. 34

Interpreter Class Diagram — SCS (0ld)...........ccoooceivviiiiioiiciiiieineccne 35
Interpreter Class Diagram (REW)coccccvvivvicianiiiiinniii e 37
Interpreter Class Diagram — Detailed (N€W)cccoveivieviciionniicneniiees 37
Interpreter Class Diagram — TROMclass (ReW)coocccevvuvrnrcceriirnnnnes 38
Simulator Class Diagram (0ld)cccccooviveeiiiciiiieecies e 39
Simulator Class Diagram — Subsystem (0ld).................ccoccvicecieiieeecnnen. 39
Simulator Class Diagram — TROM (0ld)cccoovvinviiniiiveinnainninennn. 40
Simulator Class Diagram — SimulationEvent (0ld)cc...ccoovveveeannnn... 41
Simulator Class Diagram — SimulationEvent (new)..............ccocueevecnen.nn. 42
Simulator Class Diagram — SimulationEvent (Rew).............coceeeeueeannnen. 43
TGC system class diQ@ram.............ccocvoeeoeeiiriiiiii e 49
Train TROM class — Class SpecifiCation..............ccooeecoiennieesvenennenennees 50
Train TROM class — State chart diagramccccooceivvivvevcurennnennnns 50
Train TROM class — class diagramccccccceovvueeecoieinniieniieiennncennns 50
Controller TROM class — Class specificQtion..............ccooccuvicecerinnneanennn 51
Controller TROM class — State chart diagram................c.ccocoovuveevcnecnnn 51
Controller TROM class — class diagram..................cccocovevvciiiiiveiiencnnns 52
Gate TROM class — Class SpecifiCation..............cooueeeevieeeiisiieeisecirnieen. 52
Gate TROM class — State chart diagrameevevveeereeeeneeriiiinennnn 52
Gate TROM class — class diagramcccccooeceviivieccciieiicieee i iceeeeen 53
SCS — Collaboration diagramcccceceecvveeieeciiieeiiiiven e e 53
SCS —SPECIfICATION ...ttt 54
St LSL ITQIE ..ottt e e 54
TGC system class diQQrami.............ccccoeeeecceeriieciiiieieeiee e 55
Train TROM class — class Specification.............ccccccoeveveeeiiineionneeinneanns 55
Train TROM class — state chart diagram.................coeuvevvvviiieiniinnsininnn. 56
Controller TROM class — class specification...............cccccecveeceneeennn.n, 56

X

Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:
Figure 64:
Figure 65:
Figure 66:
Figure 67:
Figure 68:
Figure 69:
Figure 70:
Figure 71:
Figure 72:
Figure 73:
Figure 74:
Figure 75:
Figure 76:
Figure 77
Figure 78:
Figure 79:
Figure 80:
Figure 81:

Figure 82:

Figure 83:
Figure 84:

Figure 85:
Figure 86:

Figure 87:

Figure 88:

Figure 89:
Figure 90:
Figure 91:
Figure 92:
Figure 93:
Figure 94:

Controller TROM class — state chart diagram................cc.cccccoovnevinnnnn 57
Gate TROM class — class specification..............coocccovvciiiiiiiniiiiinnnn, 57
Gate TROM class — state chart diAGram...........c.ccceeivvoeeeieiieaee e, 58
Sample Simulation EVent LiSt.........c.coccoiiiiiieeeiiieieeinc e 58
The Simulation Result of TGC modeling with Parameterized Events 59
Robotics System Class Diagram..............cccceeviviiiricniicimninnnisiiieeenncnne 62
User TROM class — Class Specification.............c.c.ccecevviveincncininiennnenn. 63
User TROM class — State chart diagramcccocccovvvieeennvcnncinnenenn. 63
User TROM class — Class diagramc.cccooievvceeennicinicirecnennenn 64
Vision System TROM class — Class specification....................c.ccocccuee.e. 65
Vision System TROM class — State chart diagram.....................c.cccco...... 65
Vision System TROM class — Class diagram.............c..cocoovvevvicveneranennnn. 65
Belt TROM class — Class SpecCifiCationcccoococevriueemiiureeivnensiennnnn 66
Belt TROM class — State chart diagram...............cocovvveevcerenieniriiniennnan 66
Belt TROM class — Class diQgram..............cccoovvriervicoiiiininnniennecnsninenines 66
Robot TROM class — Class specificationccocceeiieecocenniiaininennnne, 67
Robot TROM class ~ State chart diagram................ccccceevvvevvciiivnennnenn. 68
Robot TROM class — Class diagram.............cccccooeeiveiveciniccinniiinieennnenn. 68
Tray TROM class — Class SpecifiCation.............cccouuvecvveeeeeseniiaeiaenene 69
Tray TROM class — State chart diagram............ccccvveeeeeivienviiniieneenseenenn 69
Tray TROM class — Class di@gram.............cc.coveuveeieiiueerniciieaesseiee s 69
SCS — SPECIfiCAtIONccovviiiiieiiiieiiiie ettt 70
SCS — Collaboration diagramccccouveieoiiiiciiieecee e, 70
Part LSLTTQIL...........cocoiiiiiiiiiiiiii ettt s 71
QUEUE LSL TFATL.........oouveevveeeeeeeiiieeieeeeeeeeeeeeee e 71
StACK LSL TFQIEcooveeeneiiiieeiieceie ettt e e 71
Sample Simulation EVent LiSt...........cccveeeeiiviiieiiiineseeectiee e eseeee e 71
The successful simulation result of original modeling............................. 73
The failure simulation result of original modeling..............c..ccocuevevean. 74
Modified Belt TROM class — Class specificationccoovveivivveneennnnen, 77
Modified Belt TROM class — state chart diagramccc.ccccveevnnannn... 77
Modified Belt TROM class — class diagram...............ccccocouivecvnncnnannn... 77
Modified User TROM class — Class specification...............cc..ccoevvenunnnnn.. 78
Modified User TROM class — State chart diagram 78
Modified User TROM class — Class diagram..................co.ovevveuveneennnn... 78
Modified Vision System class — Class specificationccccceenn..... 79
Modified Vision System class — Class diagram...............ccoveveeviveeneaeannn. 79
Modified Vision System class — State chart diagram............................... 80
Modified Sample Simulation EVent Listcccoccvuieeeereeiieeeiiieeeieeeenne, 80
Simulation Result of Self-controlled UserModelingc...c........ 81
Class diagram for RODOICS SYSIEM.............ccueecuvercireeaeieieiieesieeesien e 83
New Belt TROM class — Class Specificationccoocuvcvecivesiunanennn. 84
New Belt TROM class ~ Class diagram................ccceccvivneeeeisaceivivnvennnn... 84
New Belt TROM class — State chart diagram.....................cc.cceuveveunnne. 85
New Vision System TROM class — Class Specification...............ccc.......... 86
New Vision System TROM class — State chart diagram 86
New Vision System TROM — class diagramccceevvvveciveivnnenn. 86
New Robot TROM class ~ Class SpecifiCationccc.c.oeceiiveeveneninenn.. 87
New Robot TROM class — Class diagrami...........cc....cccceeuvvevivicnivenvnnen... 87
New Robot TROM class — State chart diagram.............c...ccccecceveeeennnn.. 88

Figure 95: SCS — New SPeCifiCation..............cccccomvuieiiiiiiniiiiiiiiiiiiiiiniie e

Figure 96: SCS — New Collaboration diagram.....................coooevviiiinnciniinininnnnsns 89
Figure 97: Simulation Result of Buffered Belt Modelingccccccoceeiininiinin. 90
Figure 98: The PArt IrQitcccoooviiiiiiiiiiiiiiie ettt 91
Figure 99: Robotics System class DiGgram.................cccoieeviviiiiiinniiioniioninenin, 91
Figure 100: User TROM class — class Specification................cccocooviviininniieciinnnns 92
Figure 101: User TROM class — state chart diagram...............c..cccoovvneviiiinniinannen. 92
Figure 102: User TROM class — class diagramccocoovuemvveniiiniiininnens. 92
Figure 103: Belt TROM class — class Specification.................ccocoeuvniiriiiciiceninnn.. 93
Figure 104: Belt TROM class — state chart diagram...................cocovviieiniiiiiinannnn 93
Figure 105: Belt TROM class — class diagram...............c.ccoocevvveiiiiiiiiincniinnincons 93
Figure 106: Vision System TROM class — class specification................cc.oevveenn... 94
Figure 107: Vision System TROM class — class diagramcccccooeevinninnn, 94
Figure 108: Vision System TROM class — state chart diagram.......................cc........ 95
Figure 109: Robot TROM class — class Specification.................c.ccoevvcciniinniinnninn. 96
Figure 110: Robot TROM class — state chart diagram.....................cc.ooevvviviinnnnnn.n. 96
Figure 111: Robot TROM class — class diagram.................ccccoviviciiinicnnniiiiiincns 96
Figure 112: Tray TROM class — class specification................c.ccoovvvciivinnicnnnenn. 97
Figure 113: Tray TROM class — state chart specification.................c.cccoovvvvcnnnnnnn.. 97
Figure 114: Tray TROM class — class specification.............cccccoovvvvviiiiiniiiinnnnenns 97
Figure 115: Sample Simulation Event LiSt..............coccovviivniiiivininiiiiiiiiieinees 97
Figure 116: The Simulation Result of Self-controlled User modeling....................... 98
Figure 117: User TROM class — class specification..................ccccoovcevviiiniinnninnne 99
Figure 118: User TROM class — state chart diagram...........c...c.ccoccceveivviiinirccnncnn. 99
Figure 119: User TROM class — class diagramcccccovvveveeeeniniciinncineinenenneeen. 99
Figure 120: Belt TROM class — class specification..............cooecivvvceeeicniiinionncncnnn. 100
Figure 121: Belt TROM class — class di@gram............c..ccoouvcvevieenvccinienicincnannennn, 100
Figure 122: Belt TROM class — state chart diagram...............cccccovvveervceincncnnne. 101
Figure 123: Vision System TROM class — class specification...................ccvceeenn.e. 101
Figure 124: Vision System TROM class — class diagramccccooooveveene.. 101
Figure 125: Vision System TROM class — state chart diagram.................c.c.......... 102
Figure 126: Robot TROM class — class specification.................ccccocevviivciiinciinnnenn. 103
Figure 127: Robot TROM class — state chart diagram...........cccco.oeccveeivecieienncnen... 103
Figure 128: Robot TROM class — class diagram............c...ccoocuveeecmceniiicneinnnnn. 103
Figure 129: Tray TROM class — class Specification..............cccoeovvoveivnccenienniennn, 104
Figure 130: Tray TROM class — state chart diagram.............cccooovveeeeieenceenennanncen. 104
Figure 131: Tray TROM class — class diagram.............c.coccooovecvvcinencerieeinineennen. 104
Figure 132: Sample Simulation EVent LiStcccocccoveviiriiiinneiniiieiiiiencnecnneen 104
Figure 133: The Simulation Result of Buffered Belt modeling....................cc.......... 106
Figure 134: Simulation EVEent LiSt L............cccoivvveeieiieniviniieeesesesscennnnnesan s sssseneans 109
Figure 135: Simulation EVENt LiSt 2.........ccccccoiiiouiisiiieniiee e eaeseae e 109
Figure 136: Simulation EVEnt LISt 3.........cccouvviiieuieeeisvieiininereesessssisnnnnseneassssssssnsnens 109
Figure 137: Simulation EVERnt LIStccccoueeiieeiiieiiinninninreinnernnennnnnsnnennnsssennens 112
Figure 138: Simulation ReSULLouuveuiviviiiiiiiiiiiiiii e 113
Figure 139: The logical structure of the Validation tool................cccccccoeovevcniannnen. 117
Figure 140: The physical structure of the Validation toolc..cocovvevncnnn.. 118
Figure 141: The interface of the SIMULAIOYccoooeeeviiiieeiiiiiieciie e 119
Figure 142: The interface of the DeDUGEerccccocciviieicirienioriiiianiesiineeeeans 120
Figure 143: The interface of the QUETYcccceeeivveeierciiie e 120
Figure 144: The interface of the Reasoning SYSteM..............cccvvuveveeivivneeiiireneesinnne, 121

Xi

List of Tables

Table 1: Modified grammar for transition Specification...............cccccccovvevrvnnecnne. 32

Table 2: Modified grammar for SEL specification
Table 3: FC and AC values of three Robotics models

xii

Chapter 1

Introduction

1.1 Real-Time Reactive Systems

Since their invention, computers have evolved from simple calculators to extremely
complex devices, which have been entrusted with a wide range of information
processing responsibilities. Alongside with information processing, interaction has
become an increasingly crucial aspect of computer systems. For many types of
systems, this aspect is in fact the more important one. Communication protocols,
telephone switching systems and mobile robot control systems are examples of
systems, which fulfill their primary goals by interacting with other systems rather than
by processing information. The terms reactive and real-time systems often refer to

systems of the above type.

Both reactive and interactive systems respond to environmental stimuli; however,
they differ in their response mechanism. . A reactive system continuously responds to
outside stimuli at the speed of the environment. A real-time reactive system is a
reactive system whose responses are time-constrained. So, the system may receive
messages from the environment at any time, and the system should be able to
continuously respond to such stimuli within a foreseeable time frame. Examples of
real-time reactive systems include air traffic control systems and nuclear reactors. In
contrast, an interactive system runs at its own speed. It cannot promise to‘respond to
an outside stimulus within a certain time frame, or even to respond at all. For example,
a human computer interface application will offer users the ability to interact with the
computer; however, sometimes users will have to wait for a response, during which
the system may not respond to additional user inputs. Such a system is not acceptable
for safety-critical systems, such as a nuclear reactor shutdown system, which must

provide an instant response.

Accordingly, real-time reactive systems require a strict process to analyze the

system’s requirements, designs, prototypes, validation, and verification. This thesis

addresses the problem raised by automatic validation of real-time reactive systems

during the design phase before to implementation. We assume that such systems are

modeled as timed labeled transition systems, following the TROM methodology with

parameterized events. Timed Reactive Object Model (TROM) is a formalism

introduced in [Ach95] to describe the functional and timing properties of real time

reactive system using formal notations. TROMLAB framework (see Figure 1) is a

developing environment built by combining object-oriented with real-time technology

based on the TROM. The framework includes a number of tools to promote the

rigorous development of real-time reactive systems, including the Validation tool

developed to simulate the system’s behavior and uncover errors in the design

specification before the system is implemented. The simulated validation and the

Validation tool are introduced in the following section.

PN

Configure
Port Links

Object

LSL Library
Support

o o
Graphical User Interface
UML-GUI
TROMLAB-GUI UML-GUI
Rose-GRC Translator
t:ormal Specification ‘
.
[EDITOR INTERPRETER SIMULATION TOOL
TROM Class
Specs 4
Lexical
Subsystem An;‘ll;zer OBJECT MODEL
Config Specs SUPPORT
Syntax
Batch-Mode Tree Class
0 -
Semantic ot bt || Headers & SIMULATOR SIMULATION
- Analyzer Definitions TOOLSET
- Time Debugger
_ 5
LSL TRAITS/LARCH AXIOM “‘;l‘:ffi:;":‘ Manager
C++ LIBRARY GENERATOR Manager
alyzer
LSLLib SYSTEM MODEL Event -
|| emcamo |~ soreom (e
Manager MANAGER Scheduler " e
-
Instantiate
Link to PVS TROM

Figure 1: Architecture of TROMLAB

1.2 Simulated Validation

The development environment provides facilities for the modular design of TROM
classes, the modular composition of objects to build subsystems, and analytical
capabilities, which combine simulation and verification. The goal of simulated
validation is to facilitate design-time debugging and design validation against the
system requirements. Simulation exposes a system to a given scenario, and permits a
person to observe the objects and their states, events and timing within the system.
Consequently, the behavior of the system under development becomes easier to
understand as the system design evolves. Trace analysis of the simulation scenarios
provides invaluable insight into the behavior of the objects in the configuration, the
subsystems incorporated, and the reactive system as a whole. The history of event
traces allows the user to roll back the simulation clock to detect and fix faults in the
design. Incorporating a reasoning system in the simulation environment also allows
the use of deduction to verify properties of the system under development, based on
the history of computational steps. Measurement based on the simulation analysis
traces offers feedback on the system’s functional complexity, and is useful to assess
early system performance. The above-mentioned validation, verification and

measurement facilities are integrated into one toolset.

1.3 Related Work

The validation tool for developing reactive system comes from the TROM formalism
[Ach95]. The simulation improvement of this thesis is based on the simulation work
of Muthiayen [Mut96] and Haidar[Hai99]. Muthiayen implemented the simulator in

1996, and later Haidar added the reasoning system to the simulator.

1.4 Major Contributions

This thesis offers the following contributions:

e It fixes flaws that existed in previous models, so that the simulator can model the
behavior of real-time reactive systems successfully, like the Train-Gate-
Controller and Robotics system.

e Itorganizes all trait-related classes into a new module — Data Model. Applying
certain design patterns, the Data Model is separated from the simulator, and all

data-related changes are hidden.

1.5

May Haydar [Hay01] introduced Parameterized Events into the TROM
formalism and made some modifications to the interpreter. This thesis extends
the complex parameter expression, improves the interpreter, and implements the
simulation for system modeling with Parameterized Events.

This thesis also presents a new approach, based on the simulation, to assess the

performance in terms of system functionality.

Thesis Outline

This thesis presents the work as follows:

Chapter 2 briefly reviews the TROMLAB environment.

Chapter 3 discusses some pitfalls in the simulation algorithm from previous
models and proposes a new solution.

Chapter 4 presents the current class diagram of the simulator, and the redesign of
it to separate the Data Model from the simulator.

Chapter 5 introduces the previous design of the interpreter and discusses some
shortcomings in May Haydar’s implementation of the interpreter. Following, it
discusses the reengineering of both the interpreter and the simulator.

Chapter 6 describes the Train-Gate-Controller case study and its modeling with
Parameterized events.

Chapter 7 presents the Robotics case study, including its remodeling with
Parameterized Events.

Chapter 8 introduces and illustrates the functionality measurement of a system
based on the simulation.

Chapter 9 offers the conclusions of our work and the research directions.

Chapter 2

TROMILAB Environment — a Brief Review of Initial Design

This chapter describes the development environment for real-time reactive systems.
The TROMLAB development environment is an integrated facility based on the
Timed Reactive Object Model (TROM) formalism [Ach95] for modeling, analyzing,
and developing real-time reactive systems. The process model in TROMLAB

supports the iterative development approach, which provides the following benefits:
° Reduces risks by exposing them early in the development process.
o Gives importance to the architecture of the system’s configuration.

. Designs modules for large-scale software reuses.

The following sections present the TROM formalism and features of the TROMLAB.

2.1 TROM Formalism

The TROM formalism is a three-tier formal model illustrated in Figure 2. As a
layered model, each lower tier communicates only with its immediate upper tier. The
independence between the tiers makes the modularity, reuse, encapsulation, and
hierarchical decomposition possible. The three-tier structure describes the system
configuration, reactive classes, and relative Abstract Data Type. The upper-most tier
is the subsystem configuration specification. It specifies the object definition, their
collaboration, and the port links, which regulate the communication tunnels between
objects. The middle tier is the TROM class, which is a Generic Reactive Class and is
included in the subsystem. TROM class is a hierarchical finite state machine
augmented with ports, attributes, logical assertions on the attributes, and time
constraints. The lowest tier is the Larch Shared Language (LSL) trait that represents
Abstract Data Type used in the TROM classes. The following sections detail the tiers.

Animation

Tool

Validation

Reqguirements specification in
Allen’s Temporal Logic(ATL)

Larch
Prover

2.1.1 Data Abstraction Tier

Subsystem
Computations

TROM

Timed Reactive

Computations

Formal Verification

|

|

[}

i

System Configuratior !
Specification '

)

System Theory:
Synch. Axioms in ATL

TROM theory:

Object Model

Larch Shared

Axioms in ATL

Data Model

Operational Semantics

Language (L.SL)

R

Tiered Design
Specification

Figure 2: Three Tiers

First order
Logic

Logical Semantics

The Data Abstract Tier encapsulates the Abstract Data Type. This tier uses the LSL

trait to define all data types used in the middle tier except for primitive data types,

such as Integer, Boolean, String, and Real etc. The Larch [GH93] provides a two-tier

approach to the specification:

The Larch Interface Language (LIL) describes the semantics of a program

module.

The Larch Shared Language (LSL) specifies mathematical abstractions referred

to in any LIL specification.

The following is a sample of an LSL trait for the Set data type:

Trait: Set(e, S)
Includes: Integer, Boolean
Introduce:
insert : e, S ->S;
delete :e,S->S;

size

: S

-> Int;

member : e, S -> Bool;

isEmpty : S

-> Bool;

belongto: e, S -> Bool,

end

Figure 3: Set trait

2.1.2 TROM Tier

A TROM models a Generic Reactive Class (GRC). A GRC is an augmented finite
state machine with port types, attributes, hierarchical states, events triggering
transitions and future events constrained by strict time intervals. A state with its
attributes is an abstraction denoting environmental information or system information
during a certain interval of time. A port type defines one or more ports between
TROM classes for sending or receiving messages, as well as the messages passed on
them. Different TROM classes need to define different port types to establish
communications. Different instantiates of a port type are used to communicate with
different instantiates of a TROM class. An event denotes an instantaneous signal or
message. Events are classified into three types: Input, Output, and Internal. The Port
Link synchronizes all Input and Output events, and combines with two ports ended at
two TROM classes to define the communication channel between TROM classes. In
addition, issue of an event may result in other events that are triggered in some strict
time intervals. Thus, a GRC is a class parameterized with port types, and encapsulates
behavior of all TROM objects that can be instantiated from it. In summary, a TROM

has the following elements:
® A set of events partitioned in three sets: input, output, and internal events.
® A set of states. A state can have substates.

® A set of typed attributes. The attributes can be one of the following:
- primitive data types,
- abstract data types, or

- port reference types.

® An attribute function which defines the mapping of the set of attributes to the set

of states.

® A set of transition specifications. Each transition specification describes the
computational step associated with the occurrence of an event. The transition
specification has three assertions: a pre- and post-condition, as in Hoare logic,
and the port-condition specifying the port at which the event can occur.

® A set of time-constraints. Each time constraint specifies the reaction associated
with a transition. A reaction can fire an output or an internal event within a

defined time period, and is associated with a set of disabling states. An enabled

reaction is disabled when an object enters any of the disabling states of the

reaction.

A formal definition of a generic reactive object, as given by Achuthan [Ach95], is an

8-tuple (P, €,0, X, L, @, A, Y) such that:

P represents a finite set of port-types. A distinguished port-type is the null-type

P, whose only port is the null port o .

& represents a finite set of events and includes the silent-event tick. The set € -

{tick} is divided into two disjoint subsets: &€ . represents the set of external
events, and & ;, represents the set of internal events. The set € ;, = {e? |e € € .}
represents the set of input events, and the set £ ,,, = {e! | e € € .} represents

the set of output events. Each e € (€ n U & ,u), is associated with a unique port-

typep € P-{P. }.
® represents a finite set of states. 6, € O, is the initial state.

X represents a finite set of typed attributes.

&L represents a finite set of LSL traits introducing the abstract data types used in

X

@ represents a function-vector(®s, ®,) where,

- @ associates with each state 6 a set of states, possibly empty, called substates.
A state 0 is simple, if ©s(0) = @. By definition, the initial state 0, is atomic.

- @, associates with each state 6 a set of attributes, possibly empty, called

active attribute set. At each state 6, the set @y = X - ®,(6) is called the

dormant attribute set of 6.
A represents a finite set of transition specifications including A;,;. A transition
specification X € A — { A}, is a three-tuple: < €8,) ; e(Wpord); Wen = Wyost >
where:

- 0, & € O are the source and destination states of the transition;

- e(WYporr) where event e € & labels the transition; Wpore 18 an assertion on a
reserved variable pid, where pid is the identifier of the port at which an
interaction associated with the transition can occur. If e € & ,; U {tick}, then

the assertion Y, is absent and assumed to occur at the null port o .
= Wen = Wpos, Where W, is the enabling condition and Y, is the post-condition

of the transition. ., is an assertion on the attributes in X and an assertion of
the parameters in ¥, specifying the condition under which the transition is
enabled. Y, is an assertion on the attributes in X and the parameters in ¥,

primed attributes in ®,(6") and the variable pid specifying the data

computation associated with the transition.

® Y represents a finite set of time-constraints of the form (A;, e,-’, [, u], ®;) where:

A; is a transition specification,

e € (€ iU € L) is the constrained event,

[/, u] defines the minimum and maximum response times, and

- 0O; S 0O is the set of states wherein the timing constraint will be ignored.

The Figure 4 shows the anatomy of a TROM class.

Stimulns |

pidd Incoming

I——% Interaction

Attributes | Al Fuw States
o L

T

Port
Condition [€=- Transition
W port

nput

fventy

{uiput

Fnuble Time-Counstrained Pl
""""" ischio
> Reactions Y T

£ gn Cilavbad wloek

pidd Qutgoing
Interaction

Response

Figure 4: TROM class anatomy
2.1.3 Operational Semantics

The TROM’s status captures its state at that instant. The assignment vector reflects
the value of the TROM’s attributes at that instant, and the reaction vector specifies
the TROM’s timing behavior. The reaction vector associates a set of reaction
windows with each time constraint, where a reaction window represents an
outstanding timing requirement to be satisfied by the output event or the internal
event associated with the time constraint. When the reaction vector is null, the TROM
is in a stable status.

The status of a TROM may be changed by an interaction with the environment or by
an internal transition. The current state of a TROM, its assignment vector, and its
reaction vector can only be modified by an incoming message, by an outgoing
message, or by an internal signal. The status of a TROM is thus encapsulated, and

cannot be modified in any other way.

10

A computational step [Ach95] of a TROM is an atomic step, which takes the TROM
from one status to its succeeding status, as defined by the transition specifications.
Every computational step of a TROM is associated with a transition in the TROM,
and every transition is associated with either an interaction signal, an internal signal,
or a silent signal. A computational step occurs when the TROM receives a signal and
a transition specification exists that satisfies the following conditions: the triggering
event for the transition causes the signal; the TROM is in the source state or a substate
of the source state of the transition specification; the port-condition is satisfied if the
signal is an interaction; and the assignment vector satisfies the enabling condition.
These are effects of the computational step: the TROM enters the destination state;
the assignment vector is modified to satisfy the post condition; and the reaction vector
is modified to reflect the firing, disabling, and enabling of reactions.

A computational step causes time-constrained responses to be activated or deactivated.
If the constraining event of the outstanding reaction is the event associated with the
transition, and the time the event associated with the transition occurred within the
reaction window of the outstanding reaction, then the reaction is fired. If the
destination state of the transition associated with the computational step is a disabling
state for an outstanding reaction, then the reaction is disabled. Whenever a reaction is
time-constrained by the transition associated with the computational step, the reaction
is enabled. The operational semantics ensures that the time cannot advance past the
reaction window without either firing or disabling the associated outstanding reaction.

The following factors determines whether a TROM is well-formed:

® At least one transition leaves every state, thus barring the TROM from having a

final terminating state.

¢ If more than one transition leaves a state, then the enabling conditions of the
transitions should be mutually exclusive.

e Before a TROM starts executing, the values of only the active attributes in the
initial state are specified; the values of the dormant attributes are undefined. An
attribute will acquire a value only when it reaches the first state in which it is
active. Therefore, an attribute that is dormant in the initial state must become

active in some later state before the attribute is used.

¢ Every computational step in a TROM results in some computation of the TROM.

11

2.1.4 Subsystem Tier

The subsystem configuration is specified in the subsystem tier. The Include section
indicates imported subsystems. The Instantiate section defines the composite objects
included in the subsystem and the port instantiations owned by each object. The
Configure section defines the port links between objects. A port link is an abstraction

of a communication tunnel between two TROM objects.

2.2 SimulationValidation Components in TROMLAB

The interpreter [Sri99] and simulator [Hai99] are two components of TROMLAB for
the automatic validation of real-time reactive systems. This section will briefly review

them.

2.2.1 The Interpreter

Tao [Ta096] engineered the interpreter, which was the first tool implemented in
TROMLAB, in C++. Haidar [Hai99] and Sriniva [Sri99] reengineered the interpreter
implementation in Java. The interpreter takes the TROM specifications as inputs to
check the syntax, analyze the semantics, and report error messages. Finally, it creates
an Abstract Syntax Tree as the input passed into the simulator for further handling.

The interpreter consists of two components and Figure 5 shows the architecture:

e Parser
The parser is implemented in JavaCC and JJTree. Java Compiler Compiler is a
parser generator for use with Java applications that produces Java code. JITree is
a preprocessor for JavaCC that inserts in JavaCC source actions for parse tree
building. There exist separate parsers for LSL trait, TROM class specification,

system configuration specification (SCS), and initial simulation event list.

® Semantics Analyzer
The Semantic Analzyer analyzes the class specification and subsystem

configuration.

12

User Input
File

Build the AST “
uses\\

~. uses
~e

N -

{ Abstract Syntax Tree (AST) Generate -“uses
4 i
K
uses ¢
; s Generate
Semantic Validation !
‘\
uses >,
\\
I Semantic analyser } - —{ Error messages 1
Generate

Figure 5: Architecture of interpreter

The above two tools perform the following tasks:

® Syntactic analysis
Syntactic analysis ensures that all input specifications comply with the TROM

grammar.

® Semantics analysis

Semantics analysis performs the following jobs:

Verify states of a TROM have different names,

Verify an LSL trait is used after being declared,

Verify every transition has an outgoing and incoming state,

Verify transition specifications are well-formed logical formulas

® Internal structure
A Abstract Syntax Tree is created based on the above syntax and semantic

analysis.

2.2.3 The Simulation Tool

Muthiayen [Mut96] first implemented the simulation tool, which was later
reengineered by Haidar [Hai99] with Java. Figure 6 illustrates the simulator

architecture, which has two working modes:

13

® Debugger mode: In this mode, the simulator runs step-by-step. With the
debugger, users may query run-time variables, and roll back as well as inject new

events at each step.

® Normal mode: The simulator runs uninterrupted in this mode until it reaches a
stable state. Whether the result is or is not correct then depends on the
correctness of the specification.

The Simulation tool consists of the following components:

® (Consistency checker: This ensures the continuous flow of interactions by

checking deadlocked configurations.

® Simulator: This consists of an event handler, a reaction window manager, and an
event scheduler.
- The event handler handles events according to the transition definition.
- The reaction window manager activates the computational step, which fires,
disables or enables the transition-causing events.
- The event scheduler schedules an event and causes it to occur at a random

time within the corresponding reaction window.

® Validation tool: This consists of a debugger, a trace analyzer, and a query
handler.

- The debugger allows the user to to analyze the running status of the evaluated
system. The user can also inject new events and roll back the system
simulation.

- The trace analyzer allows the user to analyze of the simulation scenario. It
gives feedback on the evolution of the status of the objects in the system, and
the outcome of the simulation event.

- The query handler allows the user to examine the data in the AST for the
TROM class to which the object belongs, and supporting analysis of the static

components during simulation.

14

OBJECT MODEL
SUPPORT

Port Type
Definition

Class header
&
Definition

SUBSYSTEM MODEL
SUPPORT

Consistency
checker

Instantiate
TROM
Objects

Configure
Port links

Figure 6: Architecture of Validation tool

VALIDATION
SIMULATOR TOOLSET
Interactive/Bach
Mode
Event Handler Debugger
Time
Manager
Reaction Trace
Window analyzer
Manager y
Event Scheduler Query handler

One of the goals of this thesis is to correct flaws related to time conflicts in the

previous simulation model. The following chapter introduces the Time Interval

Comparison algorithm and illustrates it correctness on a Train-Gate-Controller case

study.

15

Chapter 3

Time Interval Comparison Algorithm

3.1 Motivation

Muthiayen [Mut96] designed and implemented the previous validation tool in C++.
Haidar [Hai99] and Sriniva [Sri99] reengineered it in Java and added reasoning
capabilities. Haydar [HayO1] then introduced parameterized events to the TROM
formalism. However, the previous simulation algorithm contained a flaw that
prevented the successful simulation of a system’s behavior. The following sections
will analyze the above-mentioned problem in the simulation results of the Train-Gate-
Controller case study. Next, we will present an algorithm for the time interval
comparison, which solves the above-mentioned problem. Finally, we will illustrate
the improved simulation algorithm on the case study.

The inputs into the validation tool are the Train-Gate-Controller formal model and the

initial simulation event list, as described below.

3.2 Train-Gate-Controller

In the non-parameterized version of Train-Gate-Controller model (See Section 6.2),
three trains pass through two gates coordinated by two controllers. In the system, the
trains communicate with the controllers by sending messages, and the controllers
control the gates by issuing commands. When a train approaches a gate, it sends the
message Near to the controller of that gate. The controller then instructs the gate to
close. The controller commands the gate to open after it receives a message from the
train that has departed. Section 6.2 describes the case study formal model (TROM

classes specifications, LSL traits and system configuration specification (SCS)).

33 Sample Simulation Event List
The event list provides a timeline of external stimuli used in the Train-Gate-Controller

simulation, and consists of six Near events involving train objects that are instantiated

16

in the SCS. These events simulate a scenario involving two trains passing through two
gates sequentially, while a third train passes through these same two gates in the

opposing direction.

SEL: TCG
Near, tl, @Cl, 3;
Near, t2, @C2, 5;
Near, t3, @Cl, 7;
Near, tl, @C2, 10;
Near, t2, @Cl, 12;
Near, t3, @C2, 1l4;

end

Figure 7: Sample Simulation Event List

34 Simulation Result of the Present Simulator

Figure 8 provides the simulation results from the TGC system. In the output table, the
first column displays the time during which an object (i.e., train, gate or controller)

4"”

sends or receives a signal, followed by the event type, with “!” denoting an output
event, “?”” denoting an input event, and no symbol denoting an internal event. The
remaining columns, starting from column t1 moving left to right, show the state of
train 1 (t1), train 2 (t2), train 3(t3), controller 1 (c1), controller 2 (c2), gate (gl), and
gate 2 (g2), respectively, at the time of each event. For example, the first row shows
that at 0 time unit — the initial state of the system— t1, t2, t3, c1, and ¢2 are in an idle
state, while gl and g2 are in an opened state. The second row shows that t1 enters a
toCross state after t1 sends an output signal at the 3™ time unit

The following section will analyze the flaws in the algorithm on the simulation result

exposed in figure 8.

17

i) . g2
idle idle idle idle opened opened
toCross idle idle idle idle opened opened
toCross idle idle activate idle opened opened
idie idle maonhitor idle opened opened
idle idle manitor idle toClose opened
idle idle maonitot idle closed opened
- AL toCross idle monitor idle closed opened
¢? 8, Neat (toCross ftoCross idle monitor activate closed opened
¢2, 8 Lowet itoCrass }tocross idle manhitor manitor closed opened
g2 5 Lower toCross toCross idle manitor monitor closed toClose
: 8 itoCross idle monitor monitar closed closed
toCross idle monitor manitor closed cinsed
‘oCross idle maonitor manitor closed closed
toCross idle manitor monitor closed closed
toCross toCross monitor monitor closed closed
toCross toCross monitor maonitar closed closed
crass toCross manitor monitor closed closed
leave toCross maonitar monitor closed ciosed
leave toCross monitor monitor closed closed
leave toCross monitor monitor closed closed
leave 10Cross monitor monitor closed closed
leave cross monitor monitar closed closed
leave leave maonitor monitor closed closed
leave leave maonitar manitor closed closed
leave leave monhitor monitor closed closed
leave idle maonitor maonitor closed closed
leave idle manitor monitar closed closed
leave toCross monitor monitar closed closed
leave toCross monitor monitar clased clased
leave cross maonitor monitar closed closed
leave leave manitor monitor closed closed
leave idle manitor monitor tiosed closed
leave idle monitor monitor closed closed

Figure 8: The simulating result of present Simulator

18

3.4 Problem Analysis

In the event indicated by the first black arrow, controller 1 received an Exir signal at
the 6th time unit. According to the Figure 31, train t1 should have sent this signalto
controller 1 at the 6th time unit. But, the Exif signal from t1 disappeared from the
results, meaning that train t1 did not issue the Exit signal because its pre-condition or
port-condition was unsatisfied. Here, the pre-condition of transition R3 of Train
TROM class is unsatisfied because the current state of t1 is “toCross,” not “leave.”
The area marked by the second black arrow includes two events — Following the Exit
event, train t1 issues an /n and an Out signals at the 6th time unit. These events
themselves have no problems, but the order of the triggering events — Exit, In, and Out
— are incorrect. The right order should be In, Out, and Exit, as presented in the Figure
30. This problem derives from a flaw in the current simulation algorithm. When an
event triggers a transition, the simulator will check whether a time constraint is
associated with this transition. If an event that is time-constrained by this transition
exists, the simulator will schedule this event based only on the period defined by the
event’s time interval, i.e. the simulator randomly generates a triggering time for this
event from the event’s time interval without considering other factors. Therefore, train
tl may issue an Exit signal before it issues an In signal because their time intervals
overlap. As long as the generated occurrence time for the Exir event is later than that
for the In event, this problem will occur. Therefore, it is necessary to find a way to
regulate the event triggering order in addition to their triggering time. The following

presented algorithm is used to reach this goal.

3.5 Time Interval Comparison Algorithm

There are two kinds of transitions: concurrent and sequential. Concurrent transitions
are those transitions that are issued from same source states. These are further divided
into two types: radical and parallel. Radical transitions have different destination
states, while parallel transitions have the same destination states. In contrast, the
sequential transitions have different source states.

In Page 24 [Hai99], Haidar stated that a well-formed TROM should have the
following properties: “If there is more than one transition leaving a state, then the

enabling conditions of transitions should be mutually exclusive.” Therefore, the

19

Simulator will evaluate the enabling conditions of concurrent transitions to determine
which event will be issued.

The Time Interval Comparison Algorithm focuses just on the sequential transitions
and depends on the time interval of the constrained events to determine their order. To
do this, we distinguish an event’s time intervals with different cases and set a Base
Time for each TROM object. The Base Time records the triggering time of the last-
issued event of the TROM object. Then, the next constrained event will be triggered
sometime during interval between the upper bound of the time interval and either the
base time or the lower bound of the time interval, which ever occurs later. For
distinguishing all kinds of time interval cases, we borrow from Allen’s logic [Al184]
the predicates, which also are used by Achuthan [Ach95], to express temporal
relationships between time intervals. There are seven temporal relationships between
time intervals: Before, Meet, Overlaps, Equal, During, Starts, and Finishes. We will

discuss each of them in the next subsections.

T1
Overlaps L

L T2 |
Meet T1 T2
Before LT T2
Tl
During ™
Start -
L T2 |
T1
Finish)
Tl
Equal ™

Figure 9: Allen’s temporal predicates

O(T) = {x| u<x <v, T =[u, v]}, variable O means time during which an event occurs
T1 =[ul, v1], vl > ul

20

T2 =[u2, v2], v2 > u2
T1 denotes the time interval of the event that should occur first, and T2 stands for the

time interval of the subsequent constrained event.

3.5.1 Overlaps

Overlaps(T1, T2) 2 ul <u2 <vl <v2

Comparing upper bound: An event with a smaller upper bound will occur before that

of the event with larger upper bound.
3.5.2 Meet

Meet(T1, T2) 2 vl =u2
Comparing upper bound: An event with a smaller upper bound will occur before that

of the event with larger upper bound.

3.5.3 Before

Before(T1,T2) £ vl <u2

Comparing upper bound: An event with a smaller upper bound will occur before that

of the event with larger upper bound.

3.5.4 During

During(T1,T2) 2 u2 <ul A vl <v2

Comparing upper bound: An event with a smaller upper bound will occur before that

of the event with larger upper bound.

3.5.5 Start

Start(T1,T2) 2 u2 =ul A vl <v2

Comparing upper bound: An event with a smaller upper bound will occur before that

of the event with larger upper bound.

21

3.5.6 Finish

Finish(T1,T2) 2 ul <u2 A vl =v2
Comparing lower bound: An event with a smaller lower bound will occur before that

of the event with larger lower bound.

3.5.7 Equal

Equal(T1,T2) £ u2=ul A vl=v2

When transitions occur concurrently, the simulator will evaluate the enabling
conditions of the concurrent transitions to determine which events will be issued in
our system. Otherwise, the translator should avoid this case by transforming it into a

different temporal relationship.

With this new algorithm, the validation tool can now handle the TGC system.

3.5.8 Simulation Result with Modified Algorithm

The Figure 10 displays the simulation results after the modified algorithm is
implemented in the simulator. After the system converges to a stable state, all objects
go to their initial states. The successful simulation results demonstrate that the

modified algorithm iscorrect.

22

5i1u1ator 0 s \ ..a..lgjﬁﬂ

idle idle idle idle apened opened -
idle idle idle idle opened opened
idle idle activate idle opened opened
idle idle monitor idle opened opened
idle idle monitor idle toClose opened |-
idle idle monitor idle closed opened
toCross idie monitor idle closed opened
toCross idie manitar activate closed opened
toCross idle monitor monitor closed opened
toCross idle monitor monitor closed toClose
toCross idle monitor manitor closed closed
toCross idle monitor monitor closed closed ;
toCross idle monitor maonitor closed closed i
toCross toCross maonitor monitor closed closed]
toCross toCross monitor maonitor closed closed 1
Cross toCross monitor manitor closed closed]
leave toCross monitor ronitor closed closed
leave toCross maonitor monitar closed closed g
leave toCross monitor monitor closed closed
idle toCross monitor monitor ctlosed closed
idle toCross monitor deactivate :closed closed
idle Cross monitor deactivats tlosed closed
idle leave monitor deactivate !closed tlosed
idle leave monitor idle closed closed
idle leave monitor idle closed toOpen]
idle leave rmonitor idle closed toOpen
idle leave maonitor activate closed toOpen
idle leave monitor actlvate closed opened
idle leave maonitor monitor closed cpened
toCross idle |leave monitor monitor tlosed 1oClose
toCross idle leave monitor monitor closed closed
toCross idle idle monitor monitar closed ctlosed
idle idle deactivate monitor closed closed
idlg idle idle monitor closed closed
idie idle idle monitar toOpen closed
. Nestl toCross toCross idle idle manitor toOpen closed
12, Near? [tloCross toCross idle activate monitor toOpen closed
Crass toCross idle activate monitor toOpen clossd
leave toCross idle activate monitor toOpen closed
idle toCross idle activate monitor toOpen closed]
taCross idle activate deactivate itoOpen closed i
toCross idle activate deactivate ‘opened closed
toCross idle monitar deactivate lopened closed
toCross idle monitor deactivate toCiose closed
toCrass idle monitor idle toClose closed
toCross idle monitor idle toClose toOpen
toCross idle monitor idle closed toOpen
toCross idle monitor idle closed opened
taCross toCross monitar idle closed opened
taCross toCross monitar activate closed opened
toCross toCross monitar monitar closed opened ;
toCross toCross monitor monitor closed toClose i
toCross toCrass manitor monitor closed closed
Cross toCross monitor manitor closed closed
leave toCross manitor monitor closed closed
idle toCross monitor monifor closed closed
idle toCross deactivate ‘monitor closed closed
idle toCross idle maonitor closed closed
idle taCross idle rmonitor toOpen closed |
idie 1oCross idle monitor opened closed !
idle Cross idle maonitor opened closed
idle leave idle menitor opened closed i
idle idle Idie monitor opened ciosed
idie idle idle deactivate opened closed
idle idla idle idle openad closed
idle idle idle idle opened t00pen
g2 20, Up lidle idle idle idle idle opened opened -

Figure 10: Simulating result with modified simulation algorithm

By fixing the flaws of the simulator, we have developed a workable simulation system.
However, a good system should not only work, but also have an extensible structure.
So, the next chapter will describe the separation of the data-related classes from the

simulation algorithm-related classes.

23

Chapter 4

Data Model Separation

In the three-tier structure of the object-oriented methodology introduced by Achuthan
[Ach95], the Data Model is the lowest tier in the TROM model and defines all
abstract data types throughout the TROMLAB. In the previous implementation, all
LSL trait-related classes were implemented in the simulator, thereby reducing the
simulator’s flexibility in handling case studies with different abstract data types. This
chapter explains the separation of the data model from the simulation algorithm-

related classes.

4.1 Motivation

Data-related classes coupled cohesively with the simulation algorithm implementation
classes, which are irrelative to traits handling. If the system required the introduction
of new data types for future extensions, the whole simulator would have to be
analyzed and changed carefully. The maintenance and error checking would also be
difficult. Therefore, if the trait-related classes were extracted from the interpreter and
the simulator modules, we would obtain the following benefits:

(1) Isolation of the trait-related changes from other modules,

(2) Increased extensibility for introducing new data types.

4.2 Previous Design

In the previous design, all LSL trait-related classes were implemented in simulator.
The LSLLibraryManager is the factory class for LSL trait object creation. The
LSLLibrarySupport provides the function calls defined in LSL trait classes. The
ObjectModelSupport evaluates logical assertions included in transition specifications.
The LSLLibraryManager and the LSLLibrarySupport classes interact with various

trait classes directly. In each simulation computational step, the ObjectModelSupport

24

will be invoked to evaluate the port-condition, pre-condition, and post-condition.

Meanwhile, it will invoke the LSLLibrarySupport class to evaluate expressions.

EventHandler
oms : ObjectModelSupport

Simulator

dbg_mode : boolean

eh : EventHandier

oms : ObjectModel Support
sms : SubsystemModetSupport

1
SubsystemModeliSupport

Iim : LSLUibraryManager

AssignmeriVeolor ObjectModelSupport
e agsignment_list : AssignmentList 1<~ lls : LSLLibrarySupport
im : LSLLibraryManager asgn_vector : AssignmentVector -
Assignment L_,__ _____________ — T .
attr_type : int X
attr_name : String [~ <ZInstantiate>>
N
\\
™~ LSLLibraryManager trom_abel : Sting
class _label : String
------------- LSLLibraryManager() <1 pot _list_list : PortsList
Trait IntSet new_ls]_trait(} asgn_vect : AssignmentVedt or ‘—~—y-_.w.
lsi_trait_type ; String set_card : int copy_lsl_trait() reac_vect : ReactionVector || LSLLibrarySupport
Ist_trait_name : String cur_stat : state . R
. history : SimutationEveniList
<<lnstantiate>> lm : LSLUbraryManager
4& <<Instantiate>>
I [I Int_Sim
Stack Set Part oms : Obj o
Stack_cand : int| |set_card : int -| |part : String lm : LSl LibraryManager
{ls : LSLLibrary Support
sim : Simulator <<Instantiate>>
ZIX A] Integr sms : SubsystemModelSupport
1 PartStack | | PortSet l | PartQueue integ - Intoger
i |t ol ! |
L L H I —
Figure 11: The relation between Data-related classes in previous design
.
4.3 A Design Pattern — Facade

The Facade pattern [GOF94] customizes a unified interface for a subsystem.

Therefore, it isolates the outside from changes in the subsystem.

The goal of Facade pattern is to reduce the dependencies between subsystems by

defining a higher-level component that contains and centralizes complex interactions

between lower-level components. It also decouples lower-level components from one

another, making designs more flexible and comprehensible. Generally, It works by

providing an additional reusable object that hides most of the complexity of working

with the other classes from client classes.

Eulpevaiem classes

I fecoda |
Facade

25

Figure 12: Fagade pattern

4.4

New Design

We designed a unified interface IDataSupport realized by a class DataSupport. The

interface defines all functions that the DataModel subsystem provides to the outside.

The class DataSupport just implements the functions by transferring messages to

corresponding functions of the behind-the-scene classes. Accordingly, as long as the

interface isn’t changed, the behind-the-scene classes can be changed arbitrarily

without affecting the outside, and even the whole implementation of the interface

IDataSupport can be replaced by a different class to change the behaviors of the

subsystem completely. By changing the behind-the-scene classes, we can change the

behavior of the system without touching the outside classes.

<<Interface>>
IDataSupport

new_isl_trait{) : Trait2
copy_ls|_trait() : Trait2
evduate_; ion()

1

1
v
g. I
o
Pmd 1
Q) 1
— !
o |
=

DataSupport
lim : LSt LibraryManager
oms : ObjectModelSupport

new_is|_trait() : Trait2
copy_lsl_trait() : Trait2
evaluate_assertion() : boolean

?

LSLLibraryManager

1
ObjectModelSupport

new._Isi_trait() : Trait2
copy_is|_trait() : Trat2

omsi : ObjectModelSupportimpl

luate_assertion()

scanner

T

PPOIN B1ed

precedence() : boolean
calculate() : int
evaluate() : double
preorder()

LSLLibrarySupport

evaluate_function_call(} : Object

evaluate_arithm_expr() : int

—=>|trait_ast() : LSLtrait

opeq() : boolean
opne() : boolean

[

Queue

Set Stack

invoke()

invoke() invoke(}

A

1
Part

invoke()

I PartQueus I | PortSet | | PartStack

boT

[
[

I
I

b

Figure 13: New design with Fagade pattern

Separating the data model from the simulator results in the following benefits:

(1)
(2)
(3)
module;
(4) High extensibility.

Makes the interfacebetween classes more manageable;

Decouples the relationship between DataModel and IntSim modules;

Hides all changes related to data behind the interface of the DataModel

We have successfully tested the improved, well-structured simulator on the Train-

Gate-Controller. Chapter 5 discusses the extension of the validation tool’s capabilities

by implementing the Parameterized Events grammar.

26

Chapter 5

Parameterized Events

This Chapter reviews the parameterized events introduced by Haydar [HayOl1] to
TROM formalism, and extends the syntax of the parameterized events to the
simulation event list. Later on, it revises the interpreter and simulator to accommodate

the new syntax.

5.1 Review the Parameterized Events

Some large applications have complex state machines with many states and

transitions. In the transitions of the state machines, some similar transitions with same

events only differ in the values to be exchanged between the components affected by

them. Using parameters in these events is like using function parameters. A

parameterized event represents a family of events that are distinguished by the values

that can be assigned to its parameters.

Introducing parameterized events to TROM will derive the following benefits:

e Parameters reduce the complexity of comprehension and avoid the state
explosion of a system.

e Parameters add expressiveness to TROM formalism.

¢ Parameters may transport data between objects in a subsystem.

27

5.1.1 Syntax of Parameterized Events

The formal definition of TROM defined by Achuthan [Ach95] and extended to cover

parameterized events by Haydar [Hay01], is as follows:

A generic reactive object is an 9-tuple (P, £, 0, X, ¥, £, @, A, Y) such that:

Prepresents a finite set of port-types. A distinguished port-type is the null-type
P, whose only port is the null port o .

& represents a finite set of events and includes the silent-event tick. The set £ -
{tick} is divided into two disjoint subsets: &€ ., represents the set of external

events, and & ;, represents the set of internal events. The set € j, = {€? | e € & o}
represents the set of input events, and the set € ., = {e! | e € € ..} represents
the set of output events. Each e € (€ ;, U & ,u), is associated with a unique port-

typep € P-{P. }.
® represents a finite set of states. £, € @, is the initial state.

Xrepresents a finite set of typed attributes.

Y represents a finite set of typed parameters. The set ¥ = ¥, U ¥, which ¥,is a

set of dynamic parameters, and Y is a set of static parameters.

&L represents a finite set of LSL traits introducing the abstract data types used in
X

@ represents a function-vector (@, @y, ®p) where,

- @ associates with each state 6 a set of states, possibly empty, called
substates. A state 4 is simple, if @ (6) = @. By definition, the initial state 0, is

atomic.

- @, associates with each state 6 a set of attributes, possibly empty, called
active attribute set. At each state 4, the se@t = X - ®y(0) is called the
dormant attribute set of 6.

- @, associates with each state ¢ a set of parameters, possibly empty, called
active parameter set. At each state 6, the set?p =Y - ®,(0) is called the

dormant parameter set of 6.

28

® A represents a finite set of transition specifications including ;.. A transition
specification L € A — {A;,;}, is a three-tuple:
< 46,6 ; el Wparm) Wpor); Wen = Wpost >
where:
- 0, & € O are the source and destination states of the transition;

- e[Wparm](Wporr) where event e € € labels the transition; Wpam is an assertion on

the parameters in ¥, that can be absent if ¥, is empty; W, is an assertion on a
reserved variable pid. pid is the identifier of the port at which an interaction

associated with the transition can occur. If e € € ;,; U {tick}, then the

assertion Y, is absent and assumed to occur at the null port » .
= Wen = Ypos, Where Y., represents the enabling condition and), represents

the post-condition of the transition. ., represents an assertion on the

attributes in X' and an assertion of the parameters in ¥ specifying the

condition under which the transition is enabled. W, represents an assertion

on the attributes in X and the parameters in ¥, primed attributes in ®,(6")
and the variable pid specifying the data computation associated with the

transition.
® Y represents a finite set of time-constraints of the form (A;, ei, I, u], ©,) where:
- A; represents a transition specification,
- ¢ €(E U & ,u) represents the constrained event,
- [I, u] defines the minimum and maximum response times, and

- 0; S O represents the set of states wherein the timing constraint v; will be

ignored.

The modified anatomy of TROM class is show below:

29

Srimulu.\'
pid e

] Incoming
e | Parm. Fune ’—B Interaction
[3
H \1" : Prar I :
H Parameters Antribures | AN, Funel Swates L,
i Y X @ e ;
[] M H
[] -
: y 1 v T P ;
b !
Port i

Ceilg}iﬁon Transition

pwit

A

Internal

Enable Time~Constrained isab
OSSR .2 05 Reactions Y Disabld

Fvﬁifr ol ploek

pid Outgoing
Tateraction

Response
Figure 14: New TROM class anatomy

5.1.2 Semantics of Parameterized Events

TROM formalism contains two kinds of parameters: constants and variables. A
constant parameter may be a constant value of the following types: integer, char, or
string. An object in the system may not change the constant parameter’s value. In
contrast, , the value of a variable may be changed at running time. There two kinds of
variables: static and dynamic. A “$” symbol precedes a static variable, which has a
global scope. In contrast, the scope of a dynamic variable is the TROM object that
defines it. Since TROM formalism does not support global declarations, parameters
have to be declared in all classes that will use them.

Constant and variable parameters behave similarly to attributes, with some subtle
differences. First, parameters differ in the way that they associate with states of an
object. For each state, the parameter function defines a subset of parameters that are
active in the state. Parameters that will be associated with a state are identified from
incoming and outgoing transitions of the state. The parameters that appear in the post-

condition of the incoming transitions are associated with the state. However, the

30

parameters that appear onthe parameter list of the outgoing transitions are also
associated with the state. Second, the usage of parameters throughout the behavior of
the TROM is different from the behavior of the attributes. A parameter list may
appear in any transition and may update the values of the parameters to affect the

enabling condition and post-condition of the transition.

5.2 Extensions to the Parameterized Events

Haydar’s extension to parameterized events [Hay01] limited parameters to one of the
following primitive types: nat, integer, string, or boolean. These primitive types are
not sufficient for a complex system to exchange data. Fox example, in the robotics
case (see Chapter 7), the type of parameter is trait Part and the assignment to the
parameter will be obtained from a function. Therefore, both the type of the parameter
and the value of the expression need to be extended as follows:

o First, the parameter must be able to be of trait type; and

e Second, the value must be able to be obtained not only from a mathematical

expression but also from the return value of a function.

In addition, because Haydar [HayO1] did not define the syntax of the simulation event

list, we have to extend its syntax to accommodate parameterized events.

5.2.1 Extension to the Type of Parameter

Because the syntax of the parameter expression is changed, the syntax of the

transition specification needs to be redefined as follows:

Trans_specs --= | Transition-Specifications: NL <tran_spec_list>

tran_spec_list 1= | <tran_spec> | <tran_spec> <tran_spec_list>

tran_spec = | <tran_spec_name>: <state_pairs> <trig_event>
<assertion>—<assertion>; NL

state_pairs 1= | <state_pair>; | <state_pair>; <state_pairs>;

state_pair = | (<state_name>, <state_name>)

trig_event = | <event_name> <parm_list> (<assertion>)

parm_list ::= | NIL | [<parm_expression > <more_parm_entries>]

parm_expression :i= | <parm_name> | <parm_name> = <value>

more_parm_entries NIL |, <parm_expression> <more_parm_expression>

parm_name = | String

value ::= | Nat | Integer | String | Boolean | Trait

31

assertion <simple_exp> | <simple_exp> <b_op> <simple_exp>

b_op =|#1>12]=]<

simple_exp <term> | <term> <OR> <term>

term <factor> | <factor> <AND> <factor>

factor <NOT> <factor> | pid | <att_name’> | <att_name> | true |
false | <LSL_term> | (<assertion>)

LSL_term <LSL_func_name> (<arg_list>)

arg_list <arg> | <arg>, <arg_list>

arg Pid | <att_name> | <LSL_term>

att_name’ String

att_name String

state_name String

event_name String

LSL_func_name String

OR |

AND &

NOT !

Table 1: Modified grammar for transition specification

5.2.2 Extension to the Syntax of Simulation Event List

The Simulation Event List (SEL) defines sample environmental events of the system

forsimulation. As a part of the extension to parameterized events, its grammar also

should be redefined.

SEL_spec SEL:<subsystemname> NL {<eventlist>}n end

subsystemname String

eventlist <event>, <trom_obj_name>, < port_type_name>,
< occur_time >; NL

event <event_name>[<valuelist>]

event_name String

valuelist NIL | <parm_expression> | < parm_expression >,

<valuelist>

parm_expression

<parm_name> = <value>

parm_name String

value Nat | String | Integer | Boolean | Trait
trom_obj_name String

port_type_name @String

occur_time Integer

32

53

Table 2: Modified grammar for SEL specification

Upgraded Interpreter

To accommodate the extended new grammar, the Interpreter needed to be updated.

The following presents the previous design [HayO1] and shows the new design.

5.3.1 The Previous Design with Parameterized Events

Haydar’s design [HayO1] changed the following parameters to reflect the new

formalism:

Abstract Syntax Tree structure: only TROMclass and event class were changed.
One class—Trans_parmlist—was added into class TROMclass to store parameters
and their possible values in each transition, and another class — Parmlist— was
added into class event to store all parameters that can be carried by the event in a
TROM class.

TROM class parser: the TROM class parser was changed to enable the parsing
of the Parameter-Specifications section and argument list of the triggering event
in each transition. It allows the appearance of simple mathematical expressions
in the parameter expressions.

Semantic Checks: It checks that all parameters in the Parameter-Specifications
section and the argument list of triggering event of transitions are defined in the

Auntributes section.

TROMclasslist

O
Q

| |

SCSlist SCSSimEv
SCS SimEv

I T

Q

I
[Parmlist }—"“<>| event |

I]
[port |[state | | [attribute] —<instantiate include

I card_validate | [conﬂgure I

|—<>1 trans_spec time_constraint att_func

Trans_Parmlist

Figure 15: Interpreter Class Diagram (old)

33

AST

LSL_traitlist

Tromclasslist

SCS

SCSname : String
cardinality_validate_list : card_validatelist
include_list : includelist

instantiatelist : instantiatelist
configurelist : configurelist

i

TROMCclass

class_name : String

event_list : eventlist

state_list : statelist

trans_speclist : trans_speclist

att_list : attributelist
time_constraint_list ; time_constraintlist
Isl_trait_list : LSLtraitlist

att_func_list : att_funclist

port_type_list : portlist

R S
SCSSImEv

scsname : String
simev_list : SimEist

|

SimEMist

SimEv

| LSL_trait

T

trait_name : String
;elementlist : List
includes_list : List
func_list : Func_Des_list

event_name : String
trom_obj_name : String
port_name : String
occur_time : int

Figure 16: Interpreter Class Diagram — Detailed (old)

TROMctass
Slass_name - 8iring
ewent_list : eventlist
state_list : statelist
trans_speclist : trans_spaclist
att_Jist : attribuf it
time_constraint_list : time_constraintlist
(s)_trait_list : LSLtraitlist
att_func_list © att_funclist
port_type_list : portlist

9

i attributelist |
1
{) [1

! I ?

[eventist | [tmns_speciist |
[I

R I J]
alt_funolist [statelist | [time_constraintiist | [LsLtraitist |
P — } | I | |
- !] i 1 !

[T

swnt attribute

event_name : String att_name : Sing

porl_type_name : String at_type_name : String

state (L
state_name : String

¢

LSLtait

at st atirbutelistl e i) state boolean

time_constraint

trait_name : Sting
trait_type_name : Sting

slate._ramo : state substate_list : statelist

i

ovent_type : String i att_type © int
|
|

trans_spec
transition_fabel : Sting

if_initiat_transition : boolean

< triggering_svent : event

source_stale : state
destination_state : state
pori_condition : ASTStart
enabling_condition : ASTStart
post_condition ; ASTStart
parm_and_vatue_list : Trans_Pamlist

pamn_entry : Objoot

time_const_jabel : String
lower_bound : int
Jowar_type : String
upper_bound : int
upper_type : ing
disable_state_list : statelist
trans_spec_labsl : trans_spec
constrained_svent : event

Figure 17: Interpreter Class Diagram — TROMclass (old)

34

SCs

SCSname : String

include_list : includelist
instantiatelist : instantiatelist
configurelist : configurelist

cardinality_validate_list : card_\alidatelist

?

instantiatelist

|

|

confgurelist

card_validatelist

includelist

{

{

instantiate configure card_validate
obj_label : String obj_label1 : String obj : String
trom_classname : TROMclass port_label1 : String| |porttype : String
cardinality_validate_list : card_validatelist| (port_typel: String | |card : int
obj_label2 : String port_list : List

port_label2 : String
port_type2 : String

Figure 18: Interpreter Class Diagram — SCS (old)

5.3.2 Upgraded Interpreter

In the new design, some classes need to be added and some components need to be

upgraded. JJTree is the preprocessor of JavaCC for parsing complex expressions and

building a parse tree. Class ASTStart is a production of JJTree for representing

complex expressions. The JITree parser is embedded into JavaCC to parse the

parameter expressions. The following discusses the changes.

Class ParmValueList: A new class ParmValueList was added into the Interpreter

module to store the parameter expressions. Its elements are of type class

ASTStart, which is a syntax tree that represents the complex parameter

expression. For example, the value of the parameter may be a Boolean

expression consisting of functions.

Abstract Syntax Tree structure: class SimEV was changed to reflect the new

grammar in the Simulation Event List (SEL). Class Trans_Parmlist was changed

to enable storage of complex parameter expressions.

- To compile complex parameter expressions, class ParmValueList replaced

the parameter list in the class TROMclass of type class Trans_Parmlist.

35

- A parameter list, of type class ParmValueList, was added into class SimEv to
store the parameter expression in the argument list from theSimulation Event
List’s environmental event.

JITree parser: the JJTree parser was upgraded to parse port-, pre-, and post-

conditions, as well as complex parameter expressions.

TROM class parser: the TROM class parser was changed to parse complex

parameter expressions in the argument list of the triggering event. Each

parameter expression is parsed into a class ASTStart and added into the
parameter list, of type class ParmValueList.

SEL parser: the parser of SEL was upgraded to parse the argument list of the

environmental event. Each parameter expression is parsed into a class ASTStart

and added into the parameter list, of type class ParmValueList.

LSL Trait parser: According to the TROM formalism, the name space of the

functions in the LSL Trait is divided into two spaces: one is in the local

namespace of a trait; the other is in the global namespace. Functions with at least
one argument are in the distinct local namespace of a trait because the arguments
are a part of a function’s signature for distinguishing from other functions.

Functions without any arguments are in the global namespace. The class

ConstTable was created in the LSL Trait parser to record the functions without

arguments, and their function names must be unique in the class ConstTable. The

class ConstTable only has a single instance and an attribute of ConstTableMap
class type for storing the functions.

Semantic Checks: new semantics were added after the complex parameter

expression was introduced and SEL parser was upgraded.

- All parameters in the Parameter-Specifications section and the argument list
of triggering event of transitions should be defined in the A#tributes section.

- In SEL, the number and order of parameters in the argument list of the
environmental event should be equal to that of the same event in the
corresponding transition.

- The value should be true or false if the data type of the parameter is Boolean,
and the value should be digital if the data type of the parameter is Integer.

- If the data type of the parameter is Trait, the value will be obtained from the

return value of a function. Then, the interperter will check that the return type

36

of the function is identical to the type of parameter. In addition, it will check
that the function name appears in the corresponding trait definition, and that

the number of its arguments should be the same.

O TROMCclasslist
[LSL_trait }—-————)| ConstTable 1| Y

SCSSimEv
¢

TROMclass

ConstTableMap

I [I
[Parmlist |—f\<>| event || [port][Sstae

1
[Cattribute |

instantiate ’ | include |

I card_validate | l configure }

trans§ spec | | t1me_co|nstramt| att_func

| ParmValueList 1

Figure 19: Interpreter Class Diagram (new)

AST
SCSlist LSL_traitlist Tromclass list SCSSimEv
scsname ; String

? ? simev_list : SimEist

$CS TROMclass —*“Z} """""""""""""""""
SCSname : String class_name : String
cardinality_validate_list : card_validatelist event_list : eventlist SimEuist
include_list : includelist state_list : statelist
instantiatelist : instantiatelist trans_speclist ; trans_speclist
configurelist : configurelist att_list : attributelist <>
time_constraint_list : time_constraintlist |
Isl_trait_list : LSLtraitlist SimEv
s::ﬁmt;;;hsli; ?28:1":?;"3' event_name : String
IR trom_obj_name : String
port_name : String

LSL_trait occur_time : int
¥ parmValueList : Parmlist

ConstTable trait_name : String
—__lelementlist : List
T : S X . .
funcTypeMap : ConstTableMap << includes_list - List Q
func_list : Func_Des_list |
? ASTStar ParmValueList
ConstTableMap

Figure 20: Interpreter Class Diagram — Detailed (new)

37

TROMclass
olass_name : String
event_list : eventliat
state_list : statelist
trans_speolist : rans_speclist
att_list : attrbutelist
time_constraint_list : ime_constiintist
sl _trait_list : LSLiraitlist
att_unc_list : att_funclist
port_type_list : portist

I I

[t it |
C 1

i { statelist | [time_constraintist | [LsLtmitiist |
r 1 L 1 s]
" 1 [5 | {] [| ! ? 1
t 5 L "

- B‘B"S" attribute att_unc e Bs LSLait
event_name : String - —— state_name : String - {rait_name : Strin
event_typs : String :::‘;“p':?,nsl'"“g att st : attri ~~{if_initial_state : boolean time_conatraint trait_type_name ;gsw\g
port_type_name : String ottty o narm : St state_name ; state substate list : statelist | |time_oonst iabal : String b
parameter_list : Pamlist -ty pa_t : Strng tower_bound : int

lower_type : String
upper_bound : int
trans_spec upper_type : String
transition_label : String disable_state_list ; statelist
t_initial_transition : baciean trans_spec_label : trana_spec
triggering_event : event constrained_evenl : event
source_state : state

|destination_state : state
lport_condition : ASTStart

Pammiist onabling_condition : ASTStart
post_condition : ASTStart
pam_and_velue_list : Trans_Pamlist

PamValueList

parm_entry : Object

Figure 21: Interpreter Class Diagram — TROMclass (new)

5.4 Upgraded Simulator

After parameterized events were introduced into the TROM formalism, not only were
some new classes added, but the simulation algorithm also had to be changed. The
following subsections discuss the simulator’s previous design and show the new

design and updated simulation algorithm.

5.4.1 Previous Design

After the interpreter compiled the TROM specifications, it generated an internal
representation Abstract Syntax Tree (AST), which was inputted to the simulator. The
AST recorded all static information about the TROM specifications. The simulator
used the AST to create a set of classes headed by class Subsystem, which represented
dynamic information while performing the simulation. The class Subsystem records
the runtime information about a whole system; in contrast, the class TROM records
the runtime information about a TROM object in the subsystems.

Figure 23 shows the structure of class Susbystem. It consists of a set of included
subsystems, a set of TROM classes, and a set of port links that represent the
configuration between the TROM objects. The class SubsystemObjectSupport is used
to initialize all subsystems and their included components at the beginning of the

simulation.

38

Simulator

EventHanfiler

——! ReactionWindowManager |

SubsystemList

O

TromPortTuple] | PortLink '

I
l ReactionVector] [state |

[ReactionSubVectorList]

AssignmentList

I ReactionSubVector l
O IDataSupport
| ReactionWindowList |
] ReactionWindow I

Figure 22: Simulator Class Diagram (old)

SubsystemList

0

Subsystem
system_name : String [>———
trom_list
portlink_list
include_list

9

[1
TromList PortLinkList

¢

Trom

trom_label : String
class_label : Stiing

port_list_list : PortsList Tmmp(;n‘ruple PortLink
asgn_wect : AssignmentVector|(~ ... | SR tUpled
reac_vect : ReactionVector tpt_trom <>tp_tuplez
cur_stat : state

history : SimulationEwentList
llm : LSLLibraryManager

Figure 23: Simulator Class Diagram — Subsystem (old)

The TROM class comprises of a port link, current state, assignment vector, and

reaction vector. All these classes together record the dynamic data of a TROM object.

39

Trom
{trom_label : String
iclass_label : String
iport_list_list : PortsList
{asgn_wect : Assi Vector
Ireac,\ecl : ReactionVector
curr_stat : state
history : SimuiationEventList
lim : LSLLibraryManager

T

—

[| , 1
{l PortsList | : Assi nmentVector Reactio]nVector state
L . e st : A Mhist L ReactionSubVeotorList state_name : String
m : LSLLibraryManager if_initial_state : boolean
substate_list : statelist
Ports Q
port_card : int _ReacticnSubVectorList :
]

port_typ : String SimulationEventList

ports_tried : int AssignmentList ‘—-7;——1 size - int
port_list : PortsList

IO]

ReactionSubVector
nw_list : ReactionWindowlList ?
) lationEvent | E—
Portlist Daas occur_t :int
ataSupport f o - cause : SimulationEvent
e ReactionWindowList . fez—-
l—eaf—'g——Low S . rendez_vous_se : SimulationEvent
- | trom_o : Trom [t
port_o : Port
: ev_history : EventHisto
Port ReactionWindow event o r.yevem i
p_id : String ILT;V :ivi:t“
port_type_name : String se : SimulationEvent o ? L—
L]

EventHistory event
event_outcome : String event_name : String
event_conseq : ReactionHistoryList event‘type : String
asgnv_prior_to_trans : AssignmentVector port t‘ype n'ame' String

ReactionHistory

r_outc : String

Figure 24: Simulator Class Diagram — TROM (old)

The class SimulationEvent represents a computational step of the simulation.

40

SimulationEvent
occur_t : int
cause : SimulationEvent
rendez_wous_se : SimulationEvent
trom_o : Trom
port_o : Port
ev_history : EventHistory

ewent_o : event

| H

Trom EventHistory

event
trom_label : String ewent_outcome : String event_name : String
class_label : String event_conseq : ReactionHistoryList event_type : String
port_list_list : PortsList asgnv_prior_to_trans : AssignmentVector port_type_name : String
asgn_vect : AssignmentVector
reac_vect : ReactionVector Q
curr_stat : state ! !
history : SimulationEventList — - P
fim : LSLLibraryManager ReactionHistoryList AssignmentVector
assignment_list : AssignmentList
<> lim : LSLLibraryManager
ReactionHistory (?
r_outc ; String N N
AssignmentList

9

Assignment
attr_type : int
attr_name : String

Figure 25: Simulator Class Diagram — SimulationEvent (old)

5.4.2 New Design

Once parameterized events were introduced, classes were needed to handle the new
information. In the original design without parameters, the TROM objects did not
share attribute values. In the new design with parameterized events, all TROM class
may view the static parameters. The dynamic parameters and the values they carry
need to be passed between TROM objects. We also need to change the simulation
algorithm to enable the swapping of the dynamic parameters’ values. The following
discusses them from two aspects.
e To simulate system modeling with parameterized events, some new classes were
added to the simulator to work with the new algorithm.

- A parameter update list was added into the class SimulationEvent to store a
list of parameter expressions for updating parameters. These parameter
expressions may come from the argument list of the environmental events in
the Simulation Event List (SEL) or the argument list of the triggering events in

the transition specifications.

41

- The scope of dynamic parameters is in the TROM object that defines the
parameters. When a parameterized output event of a TROM object is issued, it
will transfer the dynamic parameters and their values to the corresponding
parameterized input event of another TROM object. To finish the
transportation of parameters between TROM objects, class TempVarSwapList
was introduced into the simulator to swap parameters. It only has a single
instance and its only attribute is of class AssignmentList, which is used to store
swapped parameters.

- For enabling defining static parameter, a new class StaticVarList is introduced
into the Simulator. The class StaticVarList only has a single instance and its
only attribute is of type of class AssignmentList used for storing global
variable. The parameters in the class StaticVarList are shared by all TROM

objects in the system.

Simulator

I EventHandler l ~~~~~~ [—>l TempVarSwapLisﬂ | StaticVarList !
N

— ReactionWindowManager | SubsystemList
’ il
EventScheduler [Subsystem >
Q Q

O

TromPortTuple] BortLink |

[I] i |
SimulationEventList‘ ‘ PortsList || AssignmentVector I [ReactionVectorJ L state J

L

Ports | ReactionSubVectorList |
<> SimulationEvent 5 (AssignmentList ’
‘ B

ParmValuel.ist PortList Reactlon(S?ubVector I

Y 0
IDataSupport ___L :
kel [ReactionWindowList
ASTStart Q
| ReactionWindow !

Figure 26: Simulator Class Diagram — SimulationEvent (new)

SimulationEvent
occur_t :int %
cause : SimulationEvent Causge
rendez_wous_se : SimulationEvent <<
trom_o : Trom

port_o : Port _

ev_history : EventHistory rendze_vous

event_o : event

updateList : ParmValuelist

I l I
Trom EventHistory event
trom_label : String event_outcome : String event_name : Sf”“Q
class_tabel : String event_conseq : ReactionHistoryList event_type : String
port_list_list : PortsList asgnv_prior_to_trans : AssignmentVector port_type_name : String
asgn_vect : AssignmentVector parameter_list : Parmlist
reac_vect : ReactionVector Q]
curr_stat : state I
history : SimulationEventList el - |
lim : LSLLibraryManager ReactionHistoryList AssignmentVector
assignment_list ; AssignmentList
Q lIm : LSLLibraryManager
ParmValueList ReactionHistory
r_outc : String __<i>
? AssignmentList
| 9
ASTStart Assignment
e attr_type : int

attr_name : String

Figure 27: Simulator Class Diagram — SimulationEvent (new)

e The following describes the parameter-related algorithm, including parameter
swap between TROM objects:

- The parameter values of the internal event from the initial state are null

- When a transition occurs, other events could be scheduled if some time
constraints indicate that the transition will enable these events.

- Each event has a parameter update list that includes some assignment
expressions that will update the parameters’ values. These parameter
expressions may come from the argument list of the environmental events in
Simulation Event List or from the argument list of the triggering event in the
transition specification.

- Output event handling: the output event will assign parameters and their
values to the Temporary Variable Swap List if the parameters are dynamic.
1) Get transition corresponding to this event.

2) Check transition and update the parameter update list with parameter

expressions in the argument list of the triggering event.

43

3) Update the parameters in TROM objects or StaticVarList by calculating
the parameter expressions in the parameter update list.

4) Evaluate post-condition.

5) Clone all dynamic parameters, which appear in the argument list of the
triggering event, with their values and insert them to the Temporary
Variable Swap List.

6) Schedule all events constrained by this event.

7) Schedule corresponding input events.

- Input event handling: the input event will read parameters and their values
from the Temporary Variable Swap List and clear the list after that.

1) Get parameter values from the Temporary Variable Swap List and update
the parameters.

2) Clear the Temporary Variable Swap List

3) Get the transition corresponding to this event

4) Evaluate the post-condition

5) Schedule all events constrained by this event

The next section shows the new simulation algorithm.

5.4.3 Simulation Algorithm

begin /* simulation algorithm */
type-check TROM class and subsystem specifications
preprocess TROM classes to be used in simulation
get label of Subsystem s to simulate
instantiate Subsystem s
instantiate TROM objects for each Subsystem
create PortList for each PortType for each TROM object according to port cardinality
initialize current state and assignment vectore of each TROM object
configure PortLinks for each Subsystem
initialize SimulationClock
for each object trom of a subsystem
begin /* sort constrained-output events of an GRC to make them issued orderly based on the time
interval of their TimeConstraint */
get TimeConstraintList el associated with the TROM object trom
for all TimeConstraint in TimeConstraintlist zcl
begin
get first TimeConstrait rc from TimeConstraintl.ist z¢/ and insert it into a temporary
TimeConstraintList 7/
remove TimeConstrait ¢ from TimeConstraintList ¢/
for all remaining TimeConstraints in TimeConstraintL.ist #c/
begin
it TimeConstraint r#c has same transition label as the TimeConstraint 7¢ in temporary
TimeConstraintList #/
begin /* insert TimeConstraint ric into temporary TimeConstraintList tl by
comparing their time interval */

44

for all TimeConstraints in temporary TimeConstraintl.ist #/
begin
get TimeConstraint z¢ from temporary TimeConstraintList #/
if the upper bound of TimeConstraint rc is less than that of TimeConstraint
tc
begin
insert TimeConstraint réc at the beginning of the temporary
TimeConstraintlist #
end
else if lower bound of TimeConstraint +fc is less than that of TimeConstraint
tc and their upper bounds are equal
begin
insert TimeConstraint rz¢ immediate before TimeConstraint f¢
end
else add TimeConstraint rfc at the end of the temporary TimeConstraintList
)
end
end
remove TimeConstraint rtc from TimeConstraintList ¢c/
end
insert all TimeConstraint f¢ in temporary TimeConstraintList #/ into a new
TimeConstraintList nt/
end
end
schedule all outpur-and-unconstrained events and put the parameter expressions getting {from
the initial Simulation Event List into the UpdateValueList parmList
schedule unconstrained internal events from initial state for each TROM object with a nuli
UpdateValueList parmList
for all SimulationEvent se in SimulationEventList sel
begin /* at this stage SimulationClock can be frozen and debugger activated */
While SimulationClock < occur time of SimulationEvent se
begin
increment SimulationClock /* using machine clock®/
end
While exists SimulationEvent se and SimulationClock==occur time of se
begin /* handle SimulationEvent se */
get TROM object trom accetping SimulationEvent se from Subsystem s
/* get parameter values from the temporary value swap list ¥/
if event is an input event
begin
for all parameters in the TempVarSwapl.ist tvs]
begin
get parameter parm with its value v
get parameter parm from the AssignmentList al in the Trom trom
update the parameter with value v
end
end
get TransitionSpec ts triggered by SimulationEvent se
/* update parameter with assignment expression in the UpdateValueList */
if exist any assignment expressions SimpleNode n in the ParmValueList
transParmValuelList of transition specification
begin
for all assignment expressions SimpleNode n exist in the transition specification
begin
get SimpleNode »n from the ParmValueList transParmValueList in the
transition specification
insert SimpleNode n into the UpdateValueL.ist selParmValueList
end
for all assignment expressions SimpleNode n UpdateValueList
selParmValueList

45

begin
update parameters in the AssignmentList al through calculating SimpleNode
n
end
if event is an output event
begin
for all parameters p in the Parmlist p/ of the event
begin
if parameter p is not static variable
begin
obtain parameter value pv from the AssignmentList al in the Trom
trom
clone a new value npv for pv
add the new value npv to the TempVarSwapList tvs/
end
end
end
end
/* update history of SimulationEvent se */
save current state of TROM object trom in EventHistory of se
save assignment vector of TROM object trom in EventHistory of se
/* update status of TROM object trom */
change current state of TROM object trom to destination of TransitionSpec ts or to
entry state of destination state of TransitionSpec ts if a complex state
change assignment vector of TROM object trom accordeing to postcondition of ts
/* handle transition specified by TransitionSpec ts */
for all TimeConstraint tc in list of TimeConstraints for TROM object trom

begin
if constrained event of TimeConstraint tc==label of SimulationEvent se
begin
for each ReactionWindow rw in reactoin subvector associated with tc
begin
if SimulationEvent se occurs within ReactionWindow rw
begin /* fire reaction according to TimeConstraint tc */
remove ReactionWindow rw from reaction subvector associated
with ¢
insert ReactionHistory 4 in EventHistory of se according to rw
end
end
end

if current state of TROM object trom is in set of disabling states of #c
begin /* disable reaction according to TimeConstraint tc */
for all ReactionWindows rw in reaction subvector associated with ¢c
begin
remove ReactionWindow rw from reaction subvector associated with tc
insert ReactionHistory rh in EventHistory of se according to rw
unschedule disabled SimulationEvent in SimulationEventList sel
if constrained event of TimeConstraint tc is an output event
begin
remove disabled SimulationEvent scheduled for synchronization
end
end
end
if label of TransitionSpec ts == transition label of TimeConstraint tc
begin /* enable reaction according to TimeConstraint */
insert new ReactionWindow rw in reaction subvector associated with tc
based on the InternalClock baseTime of TROM object trom
insert ReactionHistory rh in EventHistory of se according to rw
insert new SimulationEvent se2 in SimulationEventList sel using LRU port
of PortType of constrained event of tc and random time within

46

ReactionWindow rw and parameter-value map of SimulationEvent
se
set the InternalClock baseTime of TROM object trom as the due running
time of the new SimulationEvent se2
end
end
schedule unconstrained internal event from current state for TROM object trom and
reset all values in parameter value list to null
if constrained event of TimeConstraint tc is an output event
begin /* identify linked TROM object for synchronization */
get PortLink pl from Subsystem s linking the two TROM objects
get parameter-value map pvm from the output SimulationEvent se
insert new SimulationEvent se3 in SimulationEventList sel, using PortLink pl
and parameter-value map pvm, for synchronization
end
get next SimulationEvent se from SimulationEventList sel
end
end
end
end

After the parameterized events were implemented in the validation tool, we used it to
analyze the Train-Gate-Controller and Robotics case studies with parameterized
events. The original case studies, their remodeling with parameterized events and the

results from the simulation are described in the next two chapters.

47

Chapter 6

Train-Gate-Controller Case Study

This chapter introduces the Train-Gate-Controller (TGC) problem, a benchmark case

study adopted by the real-time research community.

6.1 Problem Description

In our TGC model, three trains pass through two gates by coordinating with two
controllers. The trains communicate with the controllers by sending messages, and the
controllers control the gates by issuing commands. When a train approaches a gate, it
sends a message to the controller of that gate. The controller, in turn, instructs the gate
to close. After the train has passed through the gate, it sends another message to the
controller, who then commands the gate to open.

The following time constraints must be obeyed:

® A train should enter the gate between 2 to 4 time units after it had sent an initial

message informing the controller of its arrival.

e A train should leave the gate within 6 time units after it had sent an initial

message informing the controller of its arrival.

® The controller should instruct the gate to lower its arm within 1 time unit after

receiving a signal from the train that it will be arriving.

® The controller should instruct the gate to raise its arm within 1 time unit after

receiving a signal from the train that it is leaving.

® The gate must lower its arm within 1 time unit after receiving the lowering

message from the controller.

® The Gate must raise its arm within 1 time unit after receiving the raising message

from the controller.

48

The following subsections show the formal specifications of the TGC system for the
original version with non-parameterized events (Section 6.2) and the remodeled TGC

system with parameterized events (Section 6.3).

6.2 Original TGC System

6.2.1 Class Diagram for TGC System

1) Train TROM class is an aggregate of port types @C.
2) Gate TROM class is an aggregate of port types @S
3) Controller TROM class is an aggregate of port types @P and @G

<<GRC>> <<PortTy pe>>
Train e — @cC
<<PortType>> cr: @C events : Set = {Near!,Exit!}
<<PortTy pe>> <<GRC>> <<PortTy pe>>
@G o Controller > @P
events : Set = {Lower!,Raise!} <<DataType>> inSet : Set[@P,PSet] events : Set = {Near?,Exit?}
<<PortTy pe>> <«<GRC>>

@s S— Gate

events : Set = {Lower?, Raise?}

Figure 28: TGC system class diagram

The link between the port type @C of the train and the port type @P of the controller

means that the train uses port @C to communicate with the controller through its port
@P.

The link between the port type @G of the controller and the port type @S of the gate

means that the controller uses port @G to communicate with the gate through its port
@S.

6.2.2 Train Class

The Train is the environmental class in the system, and all its output events cannot be
constrained. As the train approaches a gate, it sends a Near message to the controller

of the gate. Once the train leaves the gate, it sends an Exit message to the controller

49

of the gate. The port attribute cr identifies a train, and is set to the port that transmits

the events of the train.

Class Train[@C]
Events: Near!@C, Out, Exit!€C, In
States: *idle, cross, leave, toCross
Attributes: cr:@C
Traits: Attribute-Function: idle -> {};cross -> {};leave ->
{};toCross -> {cr};
Transition-Specifications:
Rl: <idle, toCross>; Near(true); true => cr'=pid;
R2: <cross,leave>; Out; true => true;
R3: <leave,idle>; Exit(pid=cr); true => true;
R4: <toCross,cross>; In; true => true;
Time-Constraints:
TCvar2: R1l, Exit, [0, 61, {};
TCvarl: R1, In, [2, 4], {};
end

Figure 29: Train TROM class — Class specification

[idle 1 Near/ cr'=pid && TCvar1=0 & TCvare=0 _ (toCross

N L

Exit] pid=cr && true &8& TCvar2<=6] In[true 8& true && TCvar>z2 & TCvari<=4]

N P \
[leave L Out | cross
,,,,,,,,,,,) L J

Figure 30: Train TROM class — State chart diagram

<<GRGC>> <<PortType>>
Train < @c
<<PorntType>>cr: @C events: Set = {Near!,Exitl}

Figure 31: Train TROM class — class diagram

6.2.3 Controller Class

The Controller can communicate with several trains simultaneously and identify them
by storing their port value into its attribute inSet. When a trainarrives, it sends a Near

message with its port id pid to the controller. The controller then stores the pid into

50

the inSet and instructs the gate to lower. After the train leaves, the controller will

receive an Exit message from the train and remove the train’s pid from the inSet.

Class Controller [€@P, @QG]
Events: Lower!@G, Near?@P, Raise!@G, Exit?@P
States: *idle, activate, deactivate, monitor
Attributes: inSet:PSet
Traits: Set[@P, PSet]
Attribute-Function: activate -> {inSet};deactivate ->
{inSet};monitor -> {inSet};idle -> {};
Transition-Specifications:
Rl: <activate,monitor>; Lower{true); true => true;
R2: <activate,activate>; Near (! (member (pid,inSet))); true
=> inSet'=insert (pid, inSet);
R3: <deactivate,idle>; Raise(true); true => true;
R4: <monitor,deactivate>; Exit (member (pid, inSet)};
size (inSet)=1 => inSet'=delete(pid, inSet);
R5: <monitor,monitor>; Near (! (member (pid, inSet))); true =>
inSet'=insert (pid, inSet) ;
R6: <monitor,monitor>; Exit (member (pid, inSet));
size(inSet)>1 => inSet'=delete(pid, inSet);
R7: <idle,activate>; Near (true); true =>
inSet'=insert (pid, inSet) ;
Time-Constraints:
TCvarl: R7, Lower, [0, 11, {(};
TCvar2: R4, Raise, [0, 11, {};
end

Figure 32: Controller TROM class — Class specification

Near[({{memberfpid,inSet))) && tm;{? iNSet'=insert(pid,inSe t

idle] Near/ inSet'=insert(pid,inSet) &&TCvar1=0 activate \

5|

_ N

Lower true && true && TCvar1>=0 & TCvari<=1]

Raise[true & true && T Cvar2>=0 & TCvar <=1

Near ({(member(pid,inSet})) && true]/ inSet' = insert(pid,inSet)

{ /
. i \
deactivate monitor Lo

Exitf member(pid,inSet) && size(inSet)=1]/ L J
""""""""""""""""""""""" — inSet' = delete(pid,inSet) &8 TCvar2 = 0 B

inSet =delete{pid,inSet)

Figure 33: Controller TROM class — State chart diagram

51

<<PortType>> <<GRC>> <<PortType>>

@P I Controller P — @G .
events: Set = (Nean,Exn?}j <<DataType>> inSet: Set{@P,PSet] events: Set = {Lower!,Raise!}

Figure 34: Controller TROM class — class diagram

6.2.4 Gate Class

The controller raises or lowers the gate by sending it various messages. The gate
lowers after it receives a Lower message from the controller as the train arrives at the
gate, and the gate rises after it receives a Raise message from from the controller after

the train leaves the gate.

Class Gate [€8]
Events: Lower?@S, Down, Up, Raise?@S
States: *opened, toClose, toOpen, closed
Attributes:
Traits:
Attribute-Function:
Transition-Specifications:
Rl: <opened, toClose>; Lower(true); true => true;
R2: <toClose,closed>; Down; true => true;
R3: <toOpen, opened>; Up; true => true;
R4: <closed, toOpen>; Raise(true); true => true;
Time-Constraints:
TCvar2: R4, Up, [1, 21, {};
TCvarl: R1, Down, [0, 1], {closed};
end

Figure 35: Gate TROM class ~ Class specification

opened W Lower/ true && TCvar1=0 \ (Close

S— — N -

Up[true && true && T Cvar2 >=1 & TCvar2<= 2}

Down[true && true && TCvar1>=0|& TCvarl <=1]

.. . e
(oOpen W Raise / true && TCvar2=0 closed

Figure 36: Gate TROM class — State chart diagram

52

<<GRC>> <<PortType>>
Gate @ — | @S

events: Set = {Lower?,Raise?}

Figure 37: Gate TROM class — class diagram

6.2.5 System Configuration Specification (SCS)

A System Configuration Specification provides the specification for a system or a
subsystem by composing reactive classes. A subsystem specification consists of three
sections: Includes, Instantiate and Configure. The Include section imports other
systems. The Instantiate section defines objects by parametric substitutions to the
cardinality of ports for each port type. The Configure section defines the
configuration of the system’s architecture by composing the specified objects. The
composition operator <-> sets up a communication link between compatible ports of

interacting objects.

I
~_
\><\ ~
|@o1:@c] \@cz:@c‘ }M[]@04:@0‘ l@cs:@c! "@ce:@ci
’,@P1:@P_)]@Pz:@Pi ﬁﬂ E@P1:@Pl [@P1:@P] ‘@Pa:@Pi
Ny | '
| /
c1: Controller €2 ;: Controller
‘@si:es|
T
gl : Gate g2 : Gate

Figure 38: SCS — Collaboration diagram

53

SCS TCG

Includes:

Instantiate:
tl::Train[@C:2];
t2::Train[@C:2];
£3::Trainf[@C:27;
cl::Controller[@P:3,@G:1];
c2::Controller[€@P:3,6@G:1];
gl::Gate[@S:1];
g2::Gate[@S:1];

Configure:
£1.@C1l:@C <-> cl.@pl:@p;
£1.@C2:6C <-> ¢2.@P1:@P;
t2.@C1l:@C <-> ¢l1.@P2:@P;
t2.@QC2:@C <-> c2.€@P2:@P;
£3.@C1l:@QC <-> ¢l.@P3:@P;
£3.@C2:@C <-> c2.@P3:@P;
cl.@Gl:@G <-> gl.@S1:@S;
c2.@Gl:8G <-> g2.@51:@S;
end

Figure 39: SCS —Specification

6.2.6 LSL trait

The system uses one trait — Set. The controller uses the trait Sef to store the ports that

sent the trains’ messages, and to identify the trains.

Trait: Set(e, S)
Includes: Integer, Boolean

Introduce:
create : -> 5;
insert : e, S -> S;
delete : e, S -> S;
size : S -> Int;
member : e, S -> Bool;
igEmpty : S -> Bool;

belongto: e, S -> Bool;
end

Figure 40: Set LSL trait

6.3 Remodeling the TGC System with Parameterized Events

In the original model of the TGC system, the controller identifies a train by the port
used to transmit the Near message. After we revised the model, the parameter 71D,
which is of type Integer, now is used to validate the identification of a train. When a
train sends an output message to the controller, the parameter 77D will accompany
this message and will be used by the controller to identify the train. The following

will show the modified specifications and the simulation results.

54

6.3.1 Class Diagram for TGC System with Parameterized Events

The class Train defines the parameter TID instead of the attribute port. Similarly, the

set inSet in the Controller is also changed to store Integer variables.

<<GRC>> <<PortType>>
Train - @c
<<Parameter>> TID : Integer events : Set = {Near! Exitl}
i <<PortTy pe>> E;i?rfll)s)r <<PortTy pe>>
| ec - . - ar
ovents TSel C{lowari Raied] <<DataType>> inSet : Sel{Intager,TSal] v ents Sl = [Nears, EXitA]
1 <<Parameter>> TID : Integer

<<PortType>> <<GRC>>
@s > = Gate

events : Set = {Lowar?,Raise?}

Figure 41: TGC system class diagram

6.3.2 Train Class with Parameterized Events

The Train TROM class includes a parameter 71D, which is used to identify the objects

which are communicating with the controller.

Class Train [@C]
Events: Near!@C, Out, Exit!@C, In
States: *idle, cross, leave, toCross
Attributes: TID:Integer
Traits:
Attribute-Function: idle -> {TID};cross -> {};leave ->
{TID};toCross -> {};
Parameter-Specifications:
Exit: TID;
Near: TID;
Transition-Specifications:
R1l: <idle, toCross>; Near[TID] (true); true => true;
R2: <cross,leave>; Out[] (true); true => true;
R3: <leave,idle>; Exit[TID] (true); true => true;
R4: <toCross,cross>; In{]{(true); true => true;
Time-Constraints:
TCvar2: R1l, Exit, [0, 6], {};
TCvarl: R1, In, (2, 4], {};
end

Figure 42: Train TROM class - class specification

55

W Near(TID }/ true && TCvar1=0 & TCvar=0_ toCross J

Exit(TID)| true && true && TCvar2<=6]

In[true && true && TCvarl>=2 & TCvari<=4]

Figure 43: Train TROM class — state chart diagram

6.3.3 Controller Class with Parameterized Events

The controller contains a set inSet for storing the TIDs. It uses these TIDs to

distinguish between different trains and their events.

Class Controller [@G, @P]
Events: Lower!@G, Near?@P, Raise!@G, Exit?@P
States: *idle, activate, deactivate, monitor
Attributes: inSet:TSet;TID:Integer
Traits: Set[Integer, TSet]
Attribute-Function: activate -> {inSet, TID};deactivate ->
{inSet};monitor -> {inSet, TID};idle -> {TID};
Parameter-Specifications:
Exit: TID;
Near: TID;
Transition-Specifications:
R1l: <activate,monitor>; Lower[] (true); true => true;
R2: <activate,activate>; Near [TID] (! (member (TID, inSet)));
true => inSet'=insert(TID, inSet);
R3: <deactivate,idle>; Raise[] (true); true => true;
R4: <monitor,deactivate>; Exit[TID] (member (TID, inSet));
size(inSet)=1 => inSet'=delete(TID, inSet);
R5: <monitor,monitor>; Exit[TID] (member (TID,inSet));
size(inSet)>1 => inSet'=delete(TID, inSet);
R6: <monitor,monitor>; Near [TID] (! (member (TID, inSet)));
true => inSet'=insert (TID, inSet);
R7: <idle,activate>; Near[TID] (true); true =>
inSet'=insert (TID, inSet) ;
Time-Constraints:
TCvarl: R7, Lower, [0, 11, {};
TCvar2: R4, Raise, [0, 1], {};
end

Figure 44: Controller TROM class — class specification

56

Near(TID) true && (/(member(TID,inSet)))
&& true 1/ inSet':insedﬂD,inSet)

Near(TID)/ inSet'=insert(TID,inSet)

,,, A
[idle 1 &&TCvart=0 (activate
o J I }

Lower| true && trup &&
TCvari>=0 & TCvafi<=1]

Raise[|true && true &&
TCvar2>=0 & TCvar2 <= 1]

Near(TID)[true && ({(member(TID,inSet)))

&& true |/ in7ﬁ>'\nsen(ﬂo,in5et)

A

monitor

deactivate

L " Exit{ TID)[true && member(TID,inSet) &

size(inSet) = 1]/inSet' = delete(TID,inSet) &&
TCvar2 =0

P

|
|
Exit(TI '“)‘[“‘1f1‘;|é‘"’&'&"’""""J
member(TID,inSet) &
size(inSet) > 1]/inSet'=
delete(TID,inSet)

Figure 45: Controller TROM class — state chart diagram

6.3.4 Gate Class with Parameterized Events

Because the class Gate does not need to know which train is crossing, it does not

define the parameter 7ID.

Class Gate [@S]

Events: Lower?@S, Down, Up, Raise?@S

States: *opened, toClose, toOpen, closed

Attributes:

Traits:

Attribute-Function: opened -> {};toClose -> {};toOpen ->
{};closed -> {};

Parameter-Specifications:

Transition-Specifications:
R1l: <opened, toClose>; Lower![]} (true); true => true;
R2: <toClose,closed>; Downl] (true); true => true;
R3: <toOpen, opened>; Upl] (true); true => true;
R4: <closed, toOpen>; Raise[] {true); true => true;
Time-Constraints:
TCvarl: R1, Down, [0, 11, {};
TCvar2: R4, Up, [1, 21, {};
end

Figure 46: Gate TROM class — class specification

57

AV

Lower / true && TCvar1=0
L opened

)

Up[true &8 true && TCvar2 >=1 & TCvar2<=2]

Down|[true && true && TCvar1>=Q & TCvarl <=1]

/tOOpen VVVVVVVVVVVVVVVV \] Raise / true && TCvar2=0
J ~

Figure 47: Gate TROM class — state chart diagram

6.3.5 Simulation Event List with Parameterized Events

We use the same events list as in Section 3.3, except that the argument of the event

Near carries the identification of the trains.

SEL: TCG
tl, Near[TID=1], @Cl, 1;
t2, Near[TID=2], @C2, 3;
t3, Near[TID=3], @Cl, 4;
tl, Near{TID=1l], @C2, 8;
£2, Near[TID= 2], @cl, 10;
t3, Near[TID=3], @cCc2, 11;

end

Figure 48: Sample Simulation Event List

6.3.6 Simulation Result with Parameterized Events

Figure 49 displays the simulation results with parameterized events. The simulator
successfully modeled the entire interaction between several TROM objects, and it also
verified that the revised Train-Gate-Controller model with parameterized events is

correct.

58

: 1 2 B 5 g2

0. idle idle idle “‘“m idle opened openad il
#1,1 Mearl | ltoCross idle idle idle idle opened opened
| el Nearp | itoCross idle idle activate idle opened opened
~ 1.0 Lowsd itoCross idle idle monitor idle opened opened
LG toCross idle idle monitor idle toClose opened
L . toCross idle idle monitor Idle closed opened .
32@,»@4_9;;5;; taCrass toCross idle monitor idle closed opened i
£2 3 Neard ltoCross toCrass igle monitar activale closed opened i
rass 0Cross idle monitor activate closed opened i
leave 0Cross idle monitor activate closed opened 3
toCross idle manitor activate closed opened i
aCross idie deactivate ‘activate clased opened it
loCross idie deactivate imonitar closed opened b
0Cross idie i monitor closed toClose i
0Cross idle idle monitay closed toClose -
oCrass idte idle monitor taOpen toClosa §
t0Cross idle idie maonitor toOpen closed 1
toCrgss toCrass idle monitor toOpen closed |
toCraoss toCross activate manitor toOpen closed
toCrass toCross activate maonitor opened tlosed
taCross toCross monltor monitar opened closed
taCross toCross manitor monitor toClose closed |
toCross toCross manitor monitor closed closed 3
Cross toCross manitor monitar closed closed §
leave toCross menitor monitor ¢losed closed §
idle toCross manitor monitor closed ciosed
idie toCross monitor i closed closed i
idle Cr0ss manitor deactivate ‘tlosed closed |
idle leave manitor deactivate iclosed closed i
idle idie manitor deactivale closed closed i
idle idte i closed closad 4
idle idie 4 idle closed clased
927 Rale? idle idle idle idle tlosed toOpen
17 Ralge | tdle idle idle idle idle tlosed toOpen i
4T Rs}g;} idle idle idle idle idle toOpen toOpen
A1 Mg Nead lioCross idle idle idle idle toOpen toOpen {
82,8 Nears | fioCross idle idie idle activate toOpen toOpen ji
“gsws»‘..':j?m ltoCross idle idle idle activate itoOpen opened b
41,8 U toCross idle idle idle activate opened opened E
| lfoCross idle idle idle monitar. opened opened i
oCross idle idle idle monitor opened toClose]
| 928 0pwn itoCross idle idle idle monitor opened ctosed H
. 2igNew t0Cross idis idle monitor apened closed]
- oL Nea? toCross idls activate monitor opaned clased
toCross idle activate monitor opened closed
toCrass idle activate monitor apened closed
toCrass idle activate monitor opened closed
toCross idle activate deactivate opened closed
toCross idle monitar deactivate jopened closed
taCross idle monitar deaclivate toCiose closed
toCross ivle monitor idle taClose closed
toCross idle monitor idle toClose toOpen
toCross idle monitor idle closed toOpen
toCrass. toCross monitor idle closed taOpen H
toCross toCross monitor activate closed toOpen i
10Cross toCrass moniter activate tlosed gpened
{oCross toCross maonitor monitor closed opened
ftoCross 1oCrass monitor monitor closed toClose
10Cross toCross monitor maonitor closed closed
€rass toCrass monitor monitor closed closed
leave toCross monitor monitoy closed closad
idie toCrass monitor manitor closed closed
idie toCrass deactivate imanitor closed closed
idle Cross i manitor closed closed
idle leave deactivate monitor closed closed
idle leave idle monitor closed closed
idle leave idle monitar toOpen closed
idle idle idle monitor toOpen closed
idle idle idle deactivate taOpen closed
idle idle idle opened closed
idie idie idie idle opened closed
idie idle idle idle opened foOpen
idle idle idle idle opened opened

Figure 49: The Simulation Result of TGC modeling with Parameterized Events

59

Chapter 7

Robotic Assembly Case Study

This chapter reviews the design of the robotics case. We will simulate the robotics
system with our upgraded validation tool and expose the flaws in the design. Later,
we will offer two solutions based on our analysis, which demonstrates the power of
the validation tool. Finally, we will model the robotics system with parameterized

events.

7.1 Problem Description

An assembly unit consists of a user, a conveyor belt, a vision system, a robot with two
arms, and a tray for assembling. The user will place two kinds of parts, a dish and a
cup, onto the conveyor belt. The belt will convey the parts towards the vision system.
Whenever a part enters the sensor zone, the vision system will detect it and inform the
belt to stop immediately. Next, the vision system will recognize the type of the part
and communicate that to the robot, so that the robot can pick it up from the stopped
conveyor belt. After the robot picks up a part, the belt resumes moving. An assembly
will be finished when a dish and a cup are separately placed in the tray by two arms of

the robot.

7.2 Assumptions and Time Constraints

The underlying assumptions are as follows:

® Both robotic arms share identical mechanical characteristics, including speed and

angle.

® The algorithms for parts recognition, collision-free motion of the robotic arms,

gripping, holding, and placement work in real-time.

® The conveyor belt, on which the parts are placed in sequence, moves at a

constant speed. The parts on the conveyor belt will not collide with each other.

60

The vision system has a sensor for detecting parts on the conveyor belt.

The entire assembly procedure must obey the following time constraints:

7.3

Once a part enters the sensor zone, the sensor must detect the part within 2 time

units.

After the sensor has detected the part, the vision system must recognize the part
and communicate the part type to the robot within 5 time units.

Next, the robot must pick up the part from the conveyor belt within 2 time units
of receiving the part type signal from the vision system.

To complete an assembly, the right robotic arm should place the part it is holding
onto the tray between 1 to 2 time units after it had picked up the part from the

conveyor belt.

Finally, after assembly has been completed, the assembled part must be removed

from the tray between 1 to 2 time units.

Original Modeling

The assembly unit is abstracted as the following components: user, belt, vision system,

robot, and tray. Figure 50 shows the TROM classes with relative port types and data

types in the robotics system. Each component is modeled as a GRC with port types

and attributes.

7.3.1 Class Diagram for Robotics System

1) Vision System TROM class is an aggregate of port types @U, @S, @Q
2) User TROM class is an aggregate of port types @VS

3) Belt TROM class is an aggregate of port types @R, @V

4) Robot TROM class is an aggregate of port types @C, @D, @E

5) Tray TROM class is an aggregate of port types @ W

61

<<GRC>> <<PortType>> <<PoitType>>
eu

User g @vs
events : Set = {PutCl,PutD!} events : Set = {PutC?,PuD?}
<<GRC>>

VisionSystem

<<DataType>> P : Part[PART]
<<DataType>> inQueus : Queus{PART,PQueue]

" T

T <<GRC>> e
<<PorfType>> Tray <<PortTypess
@Q @s
ewents : Set = {SensedCl,SensedDY events - Set = {RecCl,RecDI}
<<PortType>> ‘
ew
<<PortType>> <<PortType>>
av events : Set = {LeftPlace? RightPlace?} ac
events : Set = {SensedC?,SensedD?} ; events : Set = {RecC?,RecD?)}
) t <<GRC>>
<<GRC>> <<PortType>> Robot
Belt GE _.—p|<<DataType>> rPrt : Pait[PART]
events : Set = {RightPlace! LetPlacel} <<DataType>> IPrt : Pat[PART]
<<DataType>> inStack : Stack[PART,PStack]
<<PortType>> <<PortType>>
@R @D
ewents : Set = {LeftPick?,RightPick?} events : Set = {LeftPick! RightPick!}

Figure 50: Robotics System Class Diagram

The link between the port type @VS of the user and the port type @U of the vision
system means that the user uses port @ VS to communicate with Vision System
through its port @U.

The link between the port type @Q of the vision system and the port type @V ofthe
belt means that the vision system uses port @Q to communicate with the belt through
its port @V.

The link between the port type @S of the vision system and the port type @C of the
robot means that vision system uses port @S to communicate with tobot through its
port @C.

The link between the port type @D of the robot and the port type @R of the belt
means that the robot uses port @D to communicate with the belt through its port @R.
The link between the port type @E of the robot and the port type @W of the tray
means that the robot uses port @E to communicate with the tray through its port @W.
The vision system has two attributes: P is a type of trait Part, and inQueue is a type of
trait Queue. These two types are defined as LSL traits: Part and Queue have a

parameter of Part type.

62

The robot has three attributes. Two of them are rPrt and 1Prt that are a type of trait
Part. The last one is inStack of trait Stack.

7.3.2 Formal Problem Description

Each class abstracted from the problem will be described with a state chart diagram, a
class specification generated by the translator and used by the interpreter, and a class
diagram. All abstract data types used in the robotics system will be defined as LSL
traits, and all instantiations as well as communications among them are defined in the

subsystem configuration specification (SCS).

User Class

The user is the only environmental class in the system, and all its output events cannot
be constrained. This means that the user may place parts on the conveyor belt at any
time, and the robotics system should have the capability to handle arbitrary events

from the user.

Class User [@VS]

Events: Next, PutD!@VS, PutC!@VS, Resume

States: *idle, ready, place

Attributes:

Traits:

Attribute-Function: idle -> {};ready -> {};place -> {};

Transition-Specifications:
Rl: <idle,ready>; Next(true); true => true;
R2: <ready,place>; PutD(true); true => true;
R3: <ready,place>; PutC(true); true => true;
R4: <place,idle>; Resume(true); true => true;

Time-Constraints:

end

Figure 51: User TROM class — Class specification

®
N

[idle \w Next (ready
S /i

— e

iﬁfume

Figure 52: User TROM class — State chart diagram

63

<<GRC>> <<PortType>>
User - @Vvs
events : Set = {PutC!,PutD}}

Figure 53: User TROM class — Class diagram

The Vision System Class

The user sends a message to the vision system when it places a part on the conveyor
belt. Once the vision system receives the message from the user, the vision system
records this event information in a Queue by inserting the part into the inQueue.
Within a certain time frame, the vision system will will sense the part and inform the
belt to stop, upon which the vision system will start recognizing the part. Once the
vision system has recognized the part, it will signal the robot to pick it up. The belt
will not resume moving until the robot has picks up the part and inform the belt. The
vision system will record all messages from user into the queue during the entire

assembly procedure.

Class VisionSystem [QU, @QQ, @S]
Events: PutD?@QU, PutC?@U, SensedD!@Q, SensedC!@Q, RecD!@S,
RecC!@S
States: *Monitor, active, identify
Attributes: P:PART; inQueue:PQueue
Traits: Part[PART], Queue[PART, PQueue]
Attribute-Function: Monitor -> {inQueue};active ->
{inQueue};identify -> {inQueue};
Transition-Specifications:
R1l: <Monitor,active>; PutD(true); true =>
inQueue'=append{dish (), inQueue);
R2: <Monitor,active>; PutC(true); true =>
inQueue'=append (cup (), inQueue) ;
R3: <active,active>; PutC(true); true =>
inQueue' =append (cup (), inQueue) ;
R4: <active,identify>; SensedD(true); head(inQueue)=dish()
=> true;
R5: <active,identify>; SensedC(true); head{inQueue)=cup ()
=> true;
R6: <active,active>; PutD(true); true =>
inQueue'=append(dish (), inQueue) ;
R7: <identify,active>; RecD(true); len(inQueue)>1 =>
inQueue'=tail (inQueue) ;

R8: <identify,active>; RecC(true); len(inQueue)>1 =>
inQueue'=tail (inQueue) ;

R9: <identify,Monitor>; RecC(true); len(inQueue)=1 =>
inQueue'=tail (inQueue) ;

R10: <identify,Monitor>; RecD{(true); len(inQueue)=1 =>

inQueue'=tail (inQueue) ;
R11l: <identify,identify>; PutD(true); true =>
inQueue' =append(dish (), inQueue) ;

64

R12: <identify,identify>; PutC(true); true =>
inQueue'=append(cup ()., inQueue) ;

Time-Constraints:
TCVarl: R1, SensedD, [0, 2], {};
TCVar7: R7, SensedD, [0, 2], {};
TCVar8: R8, SensedD, [0, 21, {};
TCVar2: R2, SensedC, [0, 2], {}:
TCVar9: R7, SensedC, [0, 21, {};
TCVarl0O: R8, SensedC, [0, 21, {};
TCVar3: R4, RecD, [0, 51, {};
TCVard4: R5, RecC, [0, 51, {};
TCVar6: R5, RecC, [0, 51, {}:
TCvVar5: R4, RecD, [0, 5], {};

end

Figure 54: Vision System TROM class — Class specification

PutD / inQueue'=append(dish(),inQueus)

e i ' i
\ / PutD7 inQueue'zappend(dish(),inQueus) && TCVar1=0 PutC/ inQupws =appand(cup(),inQueue)
PR
N / ~~~~~~~~~~~~~~
[\\ = > active i

\

identify F ” -

Figure 55: Vision System TROM class — State chart diagram

<<PortType>>
@Q
ewents : Set = {SensedC!,SensedD!}

‘

<<GRC>>
<<PortType>> VisionSystem <<P0%T&/pe>>
@s <>
<<DataType>> P : Pant[PART] , _
events : Set = {RecC!,RecDl} <<DataType>> inQueue : Queue[PART,PQueue] events : Set = (PuIC?,PutD?)
Figure 56: Vision System TROM class — Class diagram
The Belt Class

The belt is controlled by the vision system and the robot. The belt stops whenever the
vision system senses a part, and resumes moving whenever the robot picks up a part

from the belt.

65

Class Belt [@V, @GR]

Events: SensedC?@V, SensedD?@V, RightPick?@R, LeftPick?@R

States: *active, stop

Attributes:

Traits:

Attribute-Function: active -> {};stop -> (};

Transition-Specifications:
Rl: <active,stop>; SensedC(true); true => true;
R2: <active, stop>; SensedD(true); true => true;
R3: <stop,active>; RightPick(true); true => true;
R4: <stop,active>; LeftPick(true); true => true;

Time-Constraints:

end
Figure 57: Belt TROM class — Class specification
. SensedD
,,,,,, N
(active
Figure 58: Belt TROM class —~ State chart diagram
<<PortType>> <<GRC>> <<PortType>>
ev Py Belt @R
events : Set = {SensedC?,SensedD?}i events : Set = {LeftPick?,RightPick?}
Figure 59: Belt TROM class — Class diagram
The Robot Class

The Robot has two arms: a left and a right arm. Whenever an arm picks up a part from
the conveyor belt, the robot will signal the belt to resume moving. Whenever the robot
receives a message from the vision system that a part is coming, the left arm, if it is
empty, will pick up the part. If the left arm is full, the right arm will pick up the part.
If the two robot arms are holding the same type of parts, the right arm will place the
part it is holding onto the stack and wait for the next part on the belt. If both arms are
holding different types of parts, the left arm will first place the part it is holding onto
the tray. Next, the left arm will pick up a part from the stack, if the stack is not empty,

or wait for the next part on the belt. Afterwards, the right arm will place the part that it

66

is holding onto the tray to finish the assembly. If the stack contains no parts, the two

arms will be free after the assembly; otherwise, only the right arm will be free.

Class Robot [@D, @C, QE]

Events: RecC?@C, RecD?@C, LeftPick!@D, RightPick!@D, Insert,
LeftPlace!@E, RightPlace!@E, LPopStack, FreeRight,
Remove

States: *81, S2, S3, S4, S5, 86, S7, S8, S9

Attributes: rPrt:PART;1Prt:PART;inStack:PStack

Traits: Part[PART],Stack[PART, PStack]

Attribute-Function: S1 -> {rPrt};S2 -> {1Prt};S3 -> {rPrt};sd -
> {rPrt};S85 -> {};S6 -> {1lPrt};S7 -> {inStack};S8 ->
{inStack};S9 -> {1lPrt};

Transition-Specifications:

R1l: <81,82>; RecC(true); true => 1lPrt'=cupl();

R2: <S81,82>; RecD(true); true => 1Prt'=dish();

R3: <82,83>; LeftPick(true); true => true;

R4: <S83,84>; RecC(true); true => rPrt'=cupl():

R5: <83,84>; RecD(true); true => rPrt'=dish{();

R6: <S4,85>; RightPick{true); true => true;

R7: <85,88>; Insert(true); rPrt=1Prt =>
inStack'=push(rPrt, inStack) ;

R8: <85,586>; LeftPlace(true); ! (lPrt=rPrt) =>
1Prt'=nullpart();

R9: <S86,81>; RightPlace(true); isEmpty(inStack) =>
rPrt'=nullpart();;

R10: <86,89>; LPopStack(true); ! (isEmpty(inStack)) =>
1Prt'=top(inStack);

R11l: <S7,83>; RightPlace(true); true => rPrt'=nullpart();

R12: <88,83>; FreeRight(true); true => rPrt'=nullpart();

R13: <89,87>; Remove(true); true => inStack'=pop(inStack) ;

Time-Constraints:

TCVarl: R1, LeftPick, [0, 21, {};

TCVar2: R2, LeftPick, [0, 21, {}:

TCVar3: R5, RightPick, [0, 21, {}:

TCVar6: R4, RightPick, [0, 2], {};

TCVar7: R6, LeftPlace, [0, 1], {};:

TCVar4: R6, RightPlace, [1, 2], {};

TCVar5: R6, RightPlace, (1, 21, {};

end

Figure 60: Robot TROM class — Class specification

67

RightPlace[true&&isEmpty(inStack)&&TCVard>=1&TCVard<=2 | / rPrt'=nullpant() “S6
i

LPopStack| lrue&&!(isEmp(y(ir@amﬁ/ IPrt*=top(inStack)
///
/

RecC / P

RecD / IPrt=dish (&& TCVar2=0

LeftPlace[trusd&!(IPri=rPr)&& TCVar7<=1 | / |Prt'=nuil part(}
T

\~\
—
Hemo\reijpitac k'=pop(inStack)

-—*.__.__‘,__*Mi__‘__jrseRighl / rPrt'=nullpart()

e

Insen[true&&rPrt=IPrt | / inStac k'=push(rP1t,inStack)

‘ﬁzightpiok[true& &true&& TCVard<=2 & TCVar6<=2 | / uue&&TCVar4=o&TCVar5=o&T<:Var7=P’ """"""" 85 }

S1 — Both arms are free

S2 — Left arm is ready to pick, right arm is free

S3 — Left arm is not free, right arm is free

S4 — Right arm is ready to pick, left arm is not free

S5 — Right arm is not free, left arm is not free

S6 — Left arm is free, right arm is not free

S7 — Right arm is ready to place, left arm is not free

S8 — Right arm is inserting into Stack, left arm is not free
S9 — Left arm removing from Stack, right arm is not free

Figure 61: Robot TROM class — State chart diagram

<<PortType>>
@E

ewnts : Set = {RightPlace!,LeftPlace!}

<<GRC>>
<<PoriType>> Robot <<PortType>>
@c @|<<DataType>> rPrt : Pat[PART) >— @b
ewents : Set = {RecC?,RecD?)} <<DataType>> IPrt : Part{PART] events : Set = {LeftPick!, RightPick!}
<<DataType>> inStack : Stack{PART,PStack]

Figure 62: Robot TROM class — Class diagram

The Tray Class

The tray assembles the parts after the robot places a set of different type of parts onto
it.

Class Tray [@W]

Events: LeftPlace?@W, RightPlace?@W, Trash

States: *idle, wait, loading
Attributes:

68

Traits:
Attribute-Function: idle -> {}:;wait -> {}:;loading -> {};
Transition-Specifications:
R1l: <idle,wait>; LeftPlace(true); true => true;
R2: <wailt,loading>; RightPlace(true); true => true;
R3: <loading,idle>; Trash(true); true => true;
Time-Constraints:
TCVarl: R2, Trash, [1, 2], {}:
end

Figure 63: Tray TROM class — Class specification

E idle W‘ LeftPlace - (wait J
|
___________________________________ J

Trash[true && true && TCVar1>=1 & TCVari<

[“loading \‘
|

Figure 64: Tray TROM class — State chart diagram

<<GRC>> <<PortType>>
Tray P ew
ewents : Set = {LeftPlace? RightPlace?}

Figure 65: Tray TROM class — Class diagram

The Subsystem Configuration Specification (SCS)

The simulator will model a system that consists of one user, one belt, one vision
system, one robot, and one tray. Figures 66 and 67 shows the system configuration
specifications and collaboration diagram. These describe the specific instantiations

and their communications in the instantiation of the Robotics system.

SCS BasicRobot

Includes:

Instantiate:
Ul::User[@VSs:1];
V1::VisionSystem[@U:1, @Q:1, @S:11;
Bl::Belt[@V:1, @R:1];
R1l::Robot[@D:1, @C:1, @GE:1];
Tl::Tray[@W:1];

Configure:

69

Vv1.QU1l:@QU <-> Ul.@QvS1l:@QVS;
B1.@V1:8V <-> V1.@Q1:@Q;
R1.68C1:@C <-> V1.@81:@S8;
R1.QE1:Q@E <-> T1.@W1l:@W;
B1.@R1:@R <-> R1.@D1:@D;
end
Figure 66: SCS — Specification
@Vs1: @Vvs U1: User
@ul: @u
V1 : VisionSystem
—————y T //‘/‘// \\\\\\
851:05 | T~
, T Ty @ql: @Q 1
@vi: ev
@ci:ec
ewl: ew
B1 : Belt
R1 : Robot @E1: @E
@R1: @R

Figure 67: SCS — Collaboration diagram

LSL Traits

The system uses three LSL traits: part, queue, and stack. The vision system and the

robot use the part trait. The vision system uses the queue trait to store events about

coming parts on the belt. The robot uses the stack trait to store parts when the two

hands are holding the same type of parts. Figures 68, 69, and 70 show the class

specification of the three traits — part, queue, and stack.

Trait:

Part (P)
Includes:

Boolean

70

Introduce:

cup -> P;
dish : -> P;
free : -> P;

end

Figure 68: Part LSL Trait

Trait: Queuel(e, Q)

Includes: Integer, Boolean
Introduce:
insert: e, Q -> Q;
delete: Q -> Q;
head: Q -> e;
size: Q -> Int;
end

Figure 69: Queue LSL Trait

Trait: Stack(e, 8)

Includes: Boolean
Introduce:
isEmpty: S -> Bool;
push: e, S -> S;
pop: S -> 5;
top: S -> e;
end

Figure 70: Stack LSL Trait

Sample Simulation Event List

This event list is used to simulate the external events of the robotics system. Four
events, namely PutD, PutD, PutC and PutC of the User object, are instantiated in the

SCS. All subsequent events are the responseto these stimuli.

SEL: BasicRobot
PutD, Ul, @vsl,
PutD, Ul, @Vsl,
PutC, Ul, @vsl,
Putc, Ul, @vsl,

W JOoWw

end

Figure 71: Sample Simulation Event List

71

7.3.3 Simulation Result Analysis

When we simulated the robotics in the simulator, we obtained amazing results. The
simulator sometimes succeeded, such as in Figure 72; however, it sometimes failed,

such as in Figure 73.

7.3.4 Explanation of the Result

In the table of Figure 72, the first column lists an object, the time at which it sent or

4"”

received a message, and the event type, with “!” denoting an output event, “?”
denoting an input event, and no symbol present denoting an internal event. The
remaining columns, starting from the second column and going from left to right,
display the state of the user object (U1), the vision system object (V1), the robot
object (R1), the belt object (B1), and the tray object (T1), respectively, at the time
specified in the first column. For example, the first row shows that when the system
was initialized at O time unit, Ul was in an idle state, V1 was in a monitor state, B1
was in active state, R1 was in an S1 state, and T1 was in an idle state. The second row
shows that when U1 issued a Next signal - an internal event — at O time units, Ul
moved to a ready state. The third row shows that at the 3" time unit, when U1 sent a
PutD signal, meaning that it placed a dish on the belt, Ul moved to a place state. The
sixth row shows that V1 moves to an active state after it receives the event — PutD

from the User at the 3rd time unit. The seventh row shows that V1 sends the event

SensedD and moves to the identity state at the 4™ time unit.

7.3.5 Existing Problems in the Design

A careful analysis of Figure 73 uncovers some design problems. The next subsections

will discuss them.

72

B \ T
Monitor active 51 idle
Monitor active S1 idle
Monitor active 81 idle
Monitor active S1 idle
Monitar active g1 idle
active active S1 idle
identify active S1 idle
identify stap 31 idle
Manitor stop S1 idie
Monitar stap 52 idie
Manitor stop S2 idle
Monitor stop 52 idle
Monitor stop 52 idle
active stop 52 idle
active stop 83 idle
active active §3 idle
identify active S3 idle
identify stap 33 idle
Manitor stop 83 idle
Manitor stop S4 idle
Monitor stop S5 idle
Monitor stop S8 idle
Monitor stop 53 idle
Manitor active S3 idle
Manitor active 53 idle
Monitor active S3 idle
Monitor active S3 idle
active active 83 idle
ready identify active 83 idle
ready identify stop 33 idle
Monitor stop S3 idle
Monitor stap S4 idle
Monitor stop S5 idle
Monitar active 55 idle
Monitor active SB idle
Monitor active 59 idle
Monitor active 87 idle
Monitar active 87 vy ait
Monitor active 83 vyt
Monitor active 53 loading]
Monitor active 83 loading
Monitor active S3 loading
Monitor active 53 laading
active active S3 loading
active active S3 idle
identify active 53 idla
identify stop 53 idle
Manitor stop 83 idle
Manitor stop S4 idle
Manitor stap 85 idle
Monitor active S5 idle
ready Maonitor active 56 idle
 [ready Monitor active S6 wait
! Iready Monitor active 1 walit
ready Maonitor active S1 loading
iready Monitor active S1 idle

Figure 72: The successful simulation result of original modeling

73

User puts parts onto the Belt when the Belt stops

In Figure 73, refer to the first cell marked by a black arrow. Here, Ul sends a PutD

event at the 5™ time unit, meaning that U1 placed a dish on the belt. However, the belt

is in a stop state at this time and cannot accept any more parts.

idle Monitor active idie
ready Manitor active idle
place Monitar active 51 idle
idle Monitor active S1 idle
ready Monitaor active 51 idle
ready active active 51 idle
ready identify active 51 idle
identify stop 51 idle
identify stap S1 idle
identify stap S1 idle
identify stap S1 idle
identify stop S1 idle
active stop 1 idle
active stop S2 idle
identify stop 52 idle
identify stop S3 idle
ready identify active S3 idle
ready Monitor active 53 idle
ready Monitor active 5S4 idle
ready Maonitor active 85 idle
ready Monitor active 88 idle
ready Monitor active S3 idie
Manitor active S3 idle
Monitor active 83 idle
Monitar active 53 idle
active active 33 idle
ready identify active [Sk] idle
ready identify stop 33 idle
place identify stop 83 idle
idie identify stop 53 idie
identify stop S3 idle
identify stop 53 idle
active stop 83 idle
active stop 354 idle
identify stop S84 idie
identify stop 85 idle
identify active 85 idie
identify active 36 idle
identify active S9 idle
identify active S7 idle
identify active 57 wail
Manitor active S7 wail
Muonitor active S3 wait

Monitar active 33 loading
y onitor active idle

Figure 73: The failure simulation result of original modeling

The cell marked by the second black arrow shows that V1 issued a SensedD message

at the 5™ time unit, meaning that the vision system sensed the dish that U1 placed on

74

the belt at the 5™ time unit. The belt (B1) should then receive this event and stop;
however, because the belt is already in a stop state, there is no transition, which is
defined in the state machine of the belt, corresponding to the SensedD event in the

stop state.

The Robot loses some events coming from the Vision System

The cell marked by the third black arrow shows that V1 issued a RecC message at the
13™ time unit, meaning that the visualizing system finished the recognizing stage and
told the robot to pick up the part. But, the expected event — R1, 13, RecC? - did not
occur because the robot was in an S7 state, which means that the Robot just picked up
the part and was going to place the part from its left hand to the tray. The event —
RecC or RecD — did not trigger a transition in this state. In fact, when the robot placed
parts onto the tray, it may have spent some time in states S4, S5, S6, and S7, whose
outgoing transitions are triggered by output events. In the meantime, it is possible that

the vision system senses and recognizes a part and sends an event to it.

7.3.6 Summary of problems

(1) The belt cannot accept an arbitrary number of parts at any time. When the belt
is stopped, it cannot accept more parts; however, the user must be able to place
parts on the belt at any time.

(2) The robot cannot accept messages when it is placing parts onto the tray.
Because the belt will move again after the robot picks up a part, it is possible
that the robot will receive a message about the next part while the robot is

placing parts onto the tray.

74 Remodeling

The user’s requirement that it be able to place parts on the belt at any time conflicted
with the belt’s limitation that it can only accept parts while it is moving. This tension
caused the original design problems. To remedy this, two aspects of the system may
be remodeled — the environment and the system itself. If the user is predictable, i.e.,
the User will place parts at a well-controlled speed, the system just needs a subtle
change. However, if the user is unpredictable, the system must be good enough to

adapt to this rigorous environment. Here are the two solutions.

75

7.4.1 Robotics System with a Self-controlled User

Assume that the system exists in an ideal environment. The only environmental object
— the user - is a self-controlled worker, who will place a part on the belt only while
the belt is active. Before remodeling, we need to calculate two time values. One is the
amount of time units that the Belt is in stop state, i.e. from the instant the vision
system senses a part and directs the belt to stop to the instant that the robot picks up
the part and directs the belt to resume. The vision system will recognize this part
within 5 time units after sensing it. The Robot will pick it up within 2 time units. So
the maximum time units are 7 time units. Another calculation is the amount of time
units between two RecC or RecD. In this period, the robot must finish all actions after
receiving a RecC/RecD event and go back to S1 or S3 state (Figure 61). The robot
will pick up a cup or dish within 2 time units after it receives a RecC or RecD event.
Subsequently, if the right arm is holding the same type of part held in the left arm, the
right arm will place this part onto the stack within 1 time unit. Alternatively, if the
right arm picked up a different type of part than that held in the left arm, the robot will
place both of them onto the tray within 2 time units. Therefore, the maximum is 4
time units, which consists of the right arm picking up a part (i.e., 2 time units) and
both arms placing the parts that they are holding in the tray (i.e., another 2 time units).
For solving the two problems mentioned in section 1.4.3, we make the following
changes:

(1) From the moment the user places a part on the belt to moment the robot picks

it up and instructs the belt to stop, a maximum of 7 time units may have

elapsed.
- Change the time interval of SEL to 7 or more time units

(2) The vision system takes 4 to 5 time units to recognize a part to avoid sending a
message during the robot placing parts and the tray handling them.

- Change the time constraint Rec to the a window of 4 to 5 time units

As aresult, the User, the Belt, and the Vision System classes need to be changed.

The Modified Belt Class

We added an indicator, like a traffic light, to signal the user when it could place

additional parts on the belt.

76

Class Belt [@V, @R, @H]
Events: SensedC?@V, SensedD?@V, LeftPick?@R, RightPick?@R,

Start!@H
States: *active, stop, toActive
Attributes:

Traits:
Attribute-Function: active -> {};stop -> {};toActive -> {};
Transition-Specifications:
Rl: <active, stop>; SensedC(true); true => true;
R2: <active, stop>; SensedD(true); true => true;
R3: <stop, toActive>; LeftPick(true); true => true;
R4: <stop, toActive>; RightPick(true); true => true;
R5: <toActive,active>; Start(true); true => true;
Time-Constraints:
TCVarl: R3, Start, [0, 11, {};
TCVar2: R4, Start, [0, 11, {}:
end

Figure 74: Modified Belt TROM class — Class specification

SensedD

e

/ ~.
\\\

actie } """""""""""" R —— “stop ﬁ}
TCVar1=\)

T~

toActive

Figure 75: Modified Belt TROM class — state chart diagram

<<PortType>>
@R

ewnts : Set = {LeftPick?,RightPick?}

'

<<PortType>> <<GRC>> <<PortType>>
eV - @ Bt @ —— | eH
events : Set = {SensedC?, SensedD?} ewents : Set = {Start!}

Figure 76: Modified Belt TROM class — class diagram

77

The Modified User Class

After the user places the first part on the belt, the user cannot place additional parts on

the belt until it receives a signal from the belt that such is permissible.

Class User [@VS, @QF]

Events: Next, PutD!@VS, PutC!@VS, Resume, Start?@F

States: *idle, ready, place, wait

Attributes:

Traits:

Attribute-Function: idle -> {};ready -> {};place -> {};wait ->

{};

Transition-Specifications:
Rl: <idle,ready>; Next(true); true => true;
R2: <ready,place>; PutD(true); true => true;
R3: <ready,place>; PutC(true); true => true;
R4: <place,walt>; Start(true); true => true;
R5: <wait,idle>; Resume(true); true => true;

Time-Constraints:

end

Figure 77: Modified User TROM class — Class specification

idle W Next
. J

Rasume
[wait]) Start

-

Figure 78: Modified User TROM class — State chart diagram

<<PortType>> <<GRC>> <<PortType>>
@vs I User @ @F
ewents : Set = PutC!, PutD!} ewents : Set = {Start?)}

Figure 79: Modified User TROM class — Class diagram

The Modified Vision System Class

The time constraint of events RecC and RecD were changed for the vision system to
the range [4, S]. This avoids sending a recognition message to the robot during the

robot placing parts onto the tray and the tray handling them.

78

Class VisionSystem [@QU, @Q, @S]

Events: PutD?@QU, PutC?@U, SensedD!@Q, Sens
RecC!@S

States: *Monitor, active, identify

Attributes: P:PART;inQueue:PQueue

Traits: Part[PART], Queue[PART, PQueue]

edC1@Q, RecD!@S,

Attribute-Function: Monitor -> {inQueue};active ->

{inQueue};identify -> {inQueue};
Transition-Specifications:

R1l: <Monitor,active>; PutD(true); true =>
inQueue'=append(dish (), inQueue) ;

R2: <Monitor,active>; PutC(true); true =>
inQueue ' =append(cup (), inQueue) ;

R3: <active,active>; PutC(true); true =>
inQueue'=append(cup (), inQueue) ;

R4: <active,identify>; SensedD(true); head(inQueue)=dish()
=> true;

R5: <active,identify>; SensedC(true); head{inQueue)=cup/()
=> true;

R6: <active,active>; PutD{true); true =>
inQueue'=append(dish (), inQueue) ;

R7: <identify,active>; RecD(true); len(inQueue)>1 =>

inQueue'=tail (inQueue) ;

R8: <identify,active>; RecC(true); le
inQueue'=tail {inQueue) ;

R9: <identify,Monitor>; RecC{true); 1
inQueue’'=tail (inQueue) ;

R10: <identify,Monitor>; RecD(true);
inQueue'=tail (inQueue) ;

R11l: <identify,identify>; PutD(true);
inQueue ' =append(dish (), inQueue) ;
R12: <identify,identify>; PutC(true);
inQueue'=append(cup (), inQueue) ;

Time-Constraints:
TCVarl: R1l, SensedD, [0, 21, {}:
TCvVar7: R7, SensedD, [0, 2], {};
TCVar8: R8, SensedD, [0, 2], {};
TCVar2: R2, SensedC, [0, 2], {};
TCVar9: R7, SensedC, [0, 2], {};
TCVarlO: R8, SensedC, [0, 21, {};
TCVar3: R4, RecD, [4, 51, {};
TCVar4: R5, RecC, [4, 51, {};
TCVar6: R5, RecC, [4, 51, {};
TCVar5: R4, RecD, [4, 5], {};

end

n{inQueue)>1 =>
en (inQueue)=1 =>
len{inQueue)=1 =>
true =>

true =>

Figure 80: Modified Vision System class — Class specification

<<PortType>>
aQ
events : Set = {SensedC!, SensedD!}

<<GRC>>
<<PortType>> VisionSystem

@s & &

<<PorntType>>
au

events : Set = [RecCl,RecDl] <<DataType>> P : Part{PART]

<<DataType>> inQueue : Queue[PART,PQueue]

events : Set = {PutC?,PutD?}

Figure 81: Modified Vision System class — Class diagram

79

\\ ___________ PutD / inQueue'=append(dish(),inQueue)}
\ Pu‘tb‘rrnaueue'_amnd(dish(),houeue) &8 TCVarl=0 PutC / inQugue/=append(cup(),inQueue)

RecD] true && len(inQueue)>18&TCVard>=4&TC\H3<=5] / ipQusue'=tail(inQueus)& & TCVar7=0& TCVarg=0
\ RecC[true&& len(inQueue)> 188 TCVar4»£48TCVard<=5] / inQueue'=tail(inQueus)& & TCVar8=0&TCVari 0=

\

\

Jﬁue‘:append(e upl,i
'=append(digh(),j

== GBRS6dC] true &head(inQueue)=cup() 88 TCVar2<=28TCVard<=28TCVari0<=2]/ trye8 & TCVard20 & TCVare=0

Figure 82: Modified Vision System class — State chart diagram

The Sample Simulation Event List

The interval of events was extended to 12 time units, so that one part will not be

placed onto the belt until the previous one has been handled.

SEL: BasicRobot
PutD, Ul, @vsl, 3;
PutD, Ul, @vsl, 10;
PutC, Ul, @vsl, 17;
PutC, Ul, @vsl, 24;
end

Figure 83: Modified Sample Simulation Event List

The Simulation Result for the Modified Design

The simulator validated that this design is correct. Now, the User won’t place parts
when the belt stops, and the vision system won’t send recognition messages when the

robot is in S4, S5, S6, and S7 states. Figure 84 displays the simulation results.

80

Monitor active idle
Monitor active idle
active active idle
identify active idle
identify stop idle
Monitor stop idle
Manitor stop idle
Monitor stop idle
Monitor toActive idle
Monitar active idle
Manitor active idle
Monitor active idle
Manitor active idle
Manitor active idle
active aclive idie
identify aclive idle
identify stop idle
Monitor stop idle
Monitor stap idle
Maonitor stop idle
Monitar stop idle
Monitor stop idle
Monitor toActive idle
Manitor active idle
Maonitor active idle
Monitor active idle
Maonitar active idle
Manitor active idle
active active idle
identify active idle
identify stop idle
Monitar stop idle
‘Monitor stop idle
Manitor stop idle
Monitar toActive idle
Monitor toActive idle
Monitor toActive idle
Monitor toActive idle
Monitor toActive wait
Monitar active wait
Monitor active wait
Manitor active wait
Manitor active wait
Manitor active wait
Monitor active loading
Monitar active loading
active active loading
active active idle
identify active idle
identify stop idle
Monitor stop idle
Monitor stop idle
R1 28 Right Monitor stop idle
Bl 29 Rig Monitor toActive idle
Manitor toActive idle
Monitor toActive wait
Monitor active wait
Maonitor active walt
Monitor active wait
Monitar active walit
Manitor active wait
mMonitor active loading
Monitor active idle

Figure 84: Simulation Result of Self-controlled UserModeling

81

7.4.2 Robotics System with Buffered Belt

The user and belt, vision system and robot, and robot and tray have a sender and
receiver-type relationship in a network transmission environment. If a sender
transmits a signal at a lower speed than that which a receiver can handle, the receiver
does not have to set-up a buffer; otherwise, the receiver must have a buffer to store
the data which it could not handle at the time of the transmission. Similarly, if a user
places parts on the belt at a rate faster than the belt can handle, the belt should have a
buffer-like accessory to store these overflow parts. Likewise, the robot requires a
buffer to store messages coming from the vision system while the robot is placing
parts and cannot handle any messages. In addition, because the tray cannot handle
more than one assembly at the same time, the robot only needs to adjust its time
constraint to avoid placing too many parts in a short time. The new design alters the
interaction between user, belt, and vision system. The user will send messages to the
belt instead of the vision system, and the belt will send sensing messages to the vision
system through its sensor. So, the vision system will not have to queue messages
coming from the user because the vision system will handle only one part at any time.
The new design includes the following modifications:
(1) Change port links among user, belt, and vision system.
(2) Add aqueue to the belt to store overflow parts that placed by the user.
(3) Add aqueue to the robot to store RecC/RecD events coming from the vision
system
(4) The left arm of the Robot should place on the assembly pad the part it is
holding within a 2 to 3 time units of picking up the part from the belt.
(5) The right arm of the robot should place on the assembly pad the part it is
holding within 3 to 4 time units of picking up the part from the belt.
(6) Remove the queue from the vision system
As aresult, the system collaboration, the belt, the vision system, and the robot classes

need to be changed.

New Class Diagram for Robotics Diagram

Because the interactions have been changed, the port definitions are modified as

follows:

1) Vision System TROM class is an aggregate of port types @U, @S

82

2) User TROM class is an aggregate of port types @VS

3) Belt TROM class is an aggregate of port types @G, @K, @B
4) Robot TROM class is an aggregate of port types @C, @D, @E
5) Tray TROM class is an aggregate of port types @W

<<ParTypex> <<PoriTypes> <<GRC>>
@a au <
vonts : Sel = (SensedCl,SensedDl) events : Sel = {SensedC?,SensedD?} <<DataTypex> P : Par(PART]
l <<QAC>>
pyrmr— <<gﬂc» Try
P eit
v <<DataType>> P : Par[PART]
events : Sot = (PuIG?, PutD?) <<DataType>> sQueue : Queue[PART,PQueus] ?
<<PorType>>
aw
events - Sef = {Lok Place? RightPlace?]
<<PortType>> <<PortType>>
avs I @s
et <<PortTypes> | o
events : Set = {(PutCl,PutDI} @gpﬁ ey ovents : Set = {RecCl,RecDl)
‘ wwenta - St = UakPiok?, Right jok] 8E
] events : Set = {RightPlacel, LefiPiacel]
<<QRC>>
User T
<<GRO»>
Robot =
<<PortType>> <<DataTypes> P - Pan[PART] < °g ype>>
@D <<DataType>> rPit : Part[PART] > - >
ovents : Set = {LeftPickl,RightPiokl} <<DataType>> [Pt : Pan[PART] jovents : Sel = (RecG?,ReoD7)}
<<DataType>> inStack : Stack{PART,PStack]
<<DataType>> inQueus : Queus{PART,PQueus]

Figure 85: Class diagram for Robotics system

The user uses port @VS to communicate with the belt through its port @K.

The vision system uses port @U to communicate with the belt through its port @G.
The vision system uses port @S to communicate with the robot through its port @C.
The robot uses port @D to communicate with the belt through its port @B and uses
port @E to communicate with the tray through its port @W.

The belt has two attributes. One is P that is type of trait Part, and another one is
sQueue that is a type of trait Queue.

The vision system has one attribute. It is P that is a type of trait Part.

The robot has five attributes. Three of them are rPrt, 1Prt, and P, and are types of trait

Part. One of others is inStack of trait Stack, and the last one is inQueue of trait Queue.

The Belt Class

The belt consists of a conveyor belt and a buffer. Previously, the vision system’s
sensor detected a part and recognized it. The new design incorporates a sensor in the
belt, and is located near the vision system. So, the belt will sense when a part has
moved into the sensor zone, and inform the vision system. Now, the belt also can
accept parts at any time, even when it is in a stop state. The buffer will load parts onto

the belt at an even rate whenever the belt is moving. When a part moves into the

83

sensor zone and the belt’s sensor detects it, the buffer will stop placing parts onto the
belt, but it can still accept parts from the user. The belt can adjust to different speeds

between the user and the system accordingly.

Class Belt [@K, @G, @B]
Events: PutC?@K, PutD?@K, SensedC!@G, SensedD!@G, LeftPick?@B,
RightPick?@B
States: *moving, transporting, stop
Attributes: P:PART;sQueue:PQueue
Traits: Part[PART],Queue[PART, PQueuel
Attribute-Function: moving -> {};transporting -> {sQueue};stop
-> {sQueue};
Transition-Specifications:
R1l: <moving, transporting>; PutC(true); true =>
sQueue ' =append{cup (), sQueue) ;
R2: <moving, transporting>; PutD(true); true =>
sQueue '=append (dish (), sQueue) ;
R3: <transporting, stop>; SensedC(true); head(sQueue)=cup()
=> sQueue'=tail (sQueue);
R4: <transporting, stop>; SensedD(true);
head(sQueue)=dish() => sQueue'=tail (sQueue) ;
R5: <transporting, transporting>; PutC(true); true =>
sQueue '=append{cup(), sQueue) ;
R6: <transporting, transporting>; PutD(true); true =>
sQueue ' =append(dish (), sQueue) ;
R7: <stop, transporting>; LeftPick(true); len(sQueue)>0 =>
true;
R8: <stop, stop>; PutC(true); true =>
sQueue'=append (cup (), sQueue) ;
R9: <stop,stop>; PutD(true); true =>
sQueue ' =append (dish{), sQueue) ;
R10: <stop,moving>; RightPick(true); len(sQueue)=0 =>

true;

R11l: <stop, transporting>; RightPick(true); len(sQueue)>0
=> true;

R12: <stop,moving>; LeftPick(true); len(sQueue)=0 => true;

Time-Constraints:
TCVarl: R1, SensedC, [2, 3], {};
TCVar3: R7, SensedC, [0, 11, {};
TCVar5: R11, SensedC, [0, 11, {}:
TCVar2: R2, SensedD, [2, 31, {};
TCVar4: R7, SensedD, [0, 11, {};
TCVar6: R11l, SensedD, [0, 1], {};

end

Figure 86: New Belt TROM class — Class specification

<<PortType>>
@G

events : Set = {SensedC!,SensedD}

'

<<PortType>> <<GRC>>
@K Belt
" <<DataType>> P : Part{PART]
ts = ?, ?)
ewnts : Set = {PulC?,PutD?} <<DataType>> sQueue : Queue[PART,PQueue]

<<PortType>>
@B

events : Set = {LeftPick?,RightPick?}

Figure 87: New Belt TROM class — Class diagram

84

PutC / sQueue'=append(cup(), sQueus)

PutD / sQueue'= nd(dish(), sQueue)
. PutC / sQueue‘=append{cup(), sQueue) && TCVar1=0 r \

<[tansporting
!

|
|
]

r3<=1&TCVarb<=1]/ sQueue'=tail(sQueus)
ard<=1&TCVarb<=31/ sQueue'=tail(sQuaue)

P

[true & head(sQueue)=cup() && TCVar1<=3&TCVarl>=2&T
e && head(sQueue)=dish() &&/TCYar2<=34TCVar2>=2&

PutC / sQueue'= PP {cup(}, sQueue)
PutD / sQueue'=append(dish(}, sQueue)

Figure 88: New Belt TROM class — State chart diagram

New Time Constraints for The Belt

(1) The belt will sense the part within 2 time units after the user has placed it onto
the belt.

(2) The next part moves into the sensor zone within 1 time unit after the previous
one is picked up by the robot.

The first time constraint means that a part will move into the sensor zone in 2 time
units if both the convey belt and the buffer are empty. The second time constraint
means that if the conveyor belt or the buffer contains more than one part, the next part
will move into the sensor zone in 1 time unit after the previous one was picked up by
the robot. This mechanism guarantees that parts can be handled continuously.

The Vision System Class

Because the vision system will only handle one part at any time, we removed the
Queue data structure from it.

Class VisionSystem [@S, QU]

Events: SensedC?@U, SensedD?@U, RecC!@S, RecD!@S

States: *idle, identify

Attributes: P:PART

Traits: Part[PART]

Attribute-Function: idle -> {};identify -> {};

Transition-Specifications:
R1l: <idle,identify>; SensedC(true); true => true;
R2: <idle,identify>; SensedD(true); true => true;
R3: <identify,idle>; RecC(true); true => true;
R4: <identify,idle>; RecD(true); true => true;

85

Time-Constraints:
TCVarl: R1, RecC, [0, 51, {}:
TCVar2: R2, RecD, [0, 51, {};
end

Figure 89: New Vision System TROM class — Class Specification

SensedC-/frue && TCVar1=0
—SensedD / true &&~FCVar=0

Figure 90: New Vision System TROM class — State chart diagram

[]

<<PortType>> <<GRC>> <<PorType>>
@S < VisionSystem Qu
events : Set = {RecC!,RecDl} <<DataType>> P : Part[PART] events : Set = {SensedC?,SensedD?}

Figure 91: New Vision System TROM — class diagram

The Robot Class

The belt will resume moving after the robot has picked up a part. The vision system
may send another recognizing event when it performs placing actions. So, we added a
queue into the robot to store this kind of event information and add some more

transitions into states, S4, S5, S6, and S7 to describe this situation.

Class Robot [@D, @C, @GE]
Events: RecC?@C, RecD?@C, LeftPick!@D, RightPick!@D, Insert,
LeftPlace!@E, RightPlace!@E, LPopStack, FreeRight
States: *S1, S2, 83, S84, S5, S6
Attributes: P:PART; rPrt:PART; 1Prt:PART; inStack:PStack;
inQueue: PQueue
Traits: Part[PART], Stack[PART, PStack],Queue[PART, PQueue]
Attribute-Function: S1 -> {inQueue, rPrt};S2 -> {1Prt, inQueue,
rPrt};S83 -> {rPrt, inQueue};S4 -> {1Prt, inQueue};S5 ->
{1Prt, inStack, inQueue};S6 -> {inStack};
Transition-Specifications:
Rl: <81,S81>; RecC(true); true =>
inQueue'=append(cup (), inQueue) ;
R2: <81,81>; RecD(true); true =>
inQueue'=append{dish (), inQueue) ;
R3: <81,82>; LeftPick(true); len(inQueue)>0 =>
1Prt'=head(inQueue) &inQueue'=tail {inQueue) ;
R4: <S52,83>; RightPick(true); len(inQueue)>0 =>
rPrt'=head(inQueue) &inQueue'=tail (inQueue) ;
R5: <82,82>; RecC(true); true =>
inQueue ' =append(cup (), inQueue) ;

86

R6: <S2,82>; RecD{true); true =>
inQueue'=append(dish (), inQueue) :

R7: <S83,86>; Insert(true); rPrt=1Prt =>
inStack'=push(rPrt, inStack) ;

R8: <S83,584>; LeftPlace(true); ! {(lPrt=rPrt) =>
1Prt'=nullpart();

R9: <S83,83>; RecC(true); true =>
inQueue'=append(cup{), inQueue) ;

R10: <S83,83>; RecD(true); true =>
inQueue'=append (dish (), inQueue) ;

R11l: <S4,S1>; RightPlace(true); isEmpty(inStack) =>
rPrt'=nullpart();

R12: <S4,S5>; LPopStack(true); ! (isEmpty(inStack)) =>
1Prt'=top(inStack)&inStack'=pop (inStack) ;

R13: <S4,S84>; RecC(true); true =>
inQueue ' =append(cup (), inQueue) ;

R14: <S4,S84>; RecD(true); true =>
inQueue'=append(dish (), inQueue) ;

R15: <S85,S82>; RightPlace(true); true => rPrt'=nullpart();

R16: <S85,55>; RecC{(true); true =>
inQueue ' =append (cup (), inQueue) ;

R17: <S85,85>; RecD{(true); true =>
inQueue'=append(dish (), inQueue) ;

R18: <S86,S82>; FreeRight(true); true => rPrt'=nullpart():

Time-Constraints:

TCVarl: R1, LeftPick, [0, 21, {};

TCVar2: R2, LeftpPick, [0, 21, {};

TCVar9: R11, LeftPick, [0, 1], {};

TCVar3: R6, RightPick, [0, 21, {};

TCVar4: R5, RightPick, [0, 21, {};

TCVar8: R15, RightPick, [0, 11, {};

TCVar7: R4, LeftPlace, [2, 31, {};

TCVar6: R4, RightPlace, [3, 41, {};

TCVar5: R4, RightPlace, [3, 41, {};

end

Figure 92: New Robot TROM class — Class specification

<<PortType>>
@E
ewents : Set = {RightPlace!, LeftPlacel}
T
<<GRC>>
Robot

<<PortType>> <<DataType>> P : Part[PART] <<PortType>>
@D @ <<Datalype>> rPrt : Pat[PART] @c

ewents : Set = {LeftPick!, RightPick!} <<Datalype>> IPtt : Par{ PART] events : Set = {RecC?,RecD?}

<<DataType>> inStack : Stack[PART,PStack]
<<DataType>> inQueue : Queue[PART,PQueue]

Figure 93: New Robot TROM class — Class diagram

87

RecC / inQueu.

‘=append(cup(),inQueus)&& TCVari=0 RecC / inQueue=appord{cup(), inQueus)

RecD/InOY ue'cappend(dish()inQuoue)d& TCVar2=0 ReoD / inQueue'wagpend(dich(), InCueus)
.\\[Y FightPlace| true&&isEm pty(inStack) 8&TCVar6>=3&TCVarS<=4] / Pi'=nullpart() && TCVar9=0 (s
LPopStack true&&1(i K)) /1Pt / K
LeftPick trued&len(nQuenls)>0&& TCVart <=2 & TCVar2<=2 &TCVar<=1 |/ IPH" inQueue)& inQueue'=tailinQueue) ABcC /inQueus'=appendup() inQueue)

RecD/ inQueug’=append@ish(), inQueus)

=nullpan()

RecC / mou:L ;.]ppend(cup(y inQueue)&& TCVard=0
ReoD/ inQudue’=append(dish(, inQueue) & & TCVar3=0

Insort{ true&&rPr=iPr] / inStack=push(rP,inStack)
RightPicK tue&&len(inQueue)>0&&TCVar3<=24TCVard <=2&TCVar8<=1] / Prt=head(inQueus)&inQueus'=tailinQueus)a&T CVar5=04T CVar6=0&T CVar7=0

N
- J

RecC / InQ ueuse&qy_;}d(nupu inQueue)

RecD/ inQueue'=append{dish(), inQueus)

S1 - Both arms are free

S2 - Left arm is not free, right arm is free

S3 - Right arm is not free, left arm is not free

S4 - Left arm is free, right arm is not free

S5 - Left arm removing from Stack and not free, right arm is
not free

S6 - Right arm is inserting into Stack, left arm is not free

Figure 94: New Robot TROM class — State chart diagram

The Subsystem Configuration Specification (SCS)

Because the interactions among the user, belt, and vision system have been changed,

the collaboration diagram should be changed too.

SCS BasicRobot
Includes:
Instantiate:
Ul: :User[@VS:1];

end

V1::VisionSystem[@S:1, QU:1];
Rl::Robot[@D:1, @C:1, QGE:1];
Tl::Tray[@W:1];
Bl::Belt[@K:1, @G:1, @B:1];
Configure:
B1l.@K1:@K <-> Ul.@VS1l:Q@QVS;
Bl1.@Gl:@G <-> V1.@QUl:@QU;
R1.@C1:@C <-> Vv1.@81:@S;
R1.@QE1:@E <-> T1.@W1l:@W;
B1.@Bl:@B <-> R1.@D1:@D;

Figure 95: SCS — New specification

88

V1 : VisionSystem @u: au @Gl: @G Ut : User

@s1: @s X
T1: Tray | @Vs1: @Vvs
@Cl.@C B1: Belt @K1 : @K
@Wi1: @w
R1 : Robot @E1: @E
@D1; @D @B1: @B

Figure 96: SCS — New Collaboration diagram

The Simulation Result

Figure 97 displays the simulation results. It shows that the assembly was successful.
Regardless of which state the belt is in, it still can accept parts that the user places on
it. For example, the first four putting events marked by black arrows are triggered in
the moving, transporting, and stop states of the belt respectively. Also, the robot can
store messages when it performs placing actions. For instance, the event marked by
last black arrow shows that the robot received eventRecC while the robot was in state

S6 where it was in the process of placing the part held in the right arm onto the tray.

89

il
U1,0, Newt

U1, 3 Resum

B1, 3. Pub?

U1

U1, 3 PUtDI place

Ut 8. Medt | ready

V1 5, 8ensedD? iready

71,18 Trash

RightPlace? iready

L : 408
Hidle idle idle maving
[ready idle idle maving
idle idle moving
B lidle idle idle maoving
idle idle maving
ready idle idle transporting
place idle idle transporting
idle idle idle transparting
iready idle idle transporting
Iready idle idle transporting
idle idle stop
identify idle stop
place identify idle stop
lidle identify idle stop
ready identify idle stop
ready identify idle stop
idle idle stop
idle idle stop
idle idle stop
ready idle idle transparting
ready idle idle stop
ready identify idle stop
place identify idle stop
lidle identify idle stop
ready identify idle stop
‘ready identify idle stop
| ready idle idle stop
_lready idle idle stop
 iready idle idle stop
ready idle idle stop
ready idle idle stop
ready idle idie transporting
ready idle idle stop
ready identify idle stop
ready idle idle stop
ready idle idle stop
ready idle idle stap
ready idle idle transporting
ready idle idle stap
ready identify idle stop
ready identify idle stop
ready identify idle stop
| iready identify idie stop
e? lready identify wait stop
ready idle wait stop
ready idle walit stop
cel iready idle wait stop
87 iready idle loading stop
idle loading stop
idle loading maving
ready idle idle maving
idle idle maving
idle wait maving
tPlacel iready idle wait rmaving
idle loading moving
ready ~idle » idle moving

Figure 97. Simulation Result of Buffered Belt Modeling

90

7.5 Remodeling with Parameterized Events

In this section, we will use the modified versions of the self-controlled user and
buffered belt as prototypes to remodel the system with parameterized events. The
remodeling also demonstrates that the simulator is ready to acceptparameterized

events.

7.5.1 The LSL Trait - Part

For remodeling the system with parameterized events, we defined the LSL trait as

follows:

Trait: Part(P)
Includes: Boolean
Introduce:

cup : -> P;
dish : -> P;
nullpart : -> P;

end

Figure 98: The Part trait

7.5.2 Self-controlled User Modeling with Parameterized Events

Class Diagram for Robotics System

All classes except class tray have a parameter prt for storing the part information. The

number of events decreases too.

<<GRC>> <<PoriType>> <<PortType>> [
User @eu H
<<Parameter>> prt : Par{PART] avents : set = {Putl} events : set = {Put?}
b
<<GRC>>

VisionSystem
<<DataType>> inQusue : Queus[PART,PQueus]
<<Parameter>> prt : Part[PART]

/' “\‘\

<<PartType>>
@F

ewonts : Set = {Stant?)

<<GRC>>
<<PoitType>> Tray R <<PortType>>
Q@Q @s
events : set = {Sensed!} T ovents - set = {Recl)
<<PonType>>

<<PortTypes>> aw <<PogTépe)>

_—__—_@V - events : set = {LeftPlace?,RightPlace?} Svnis 581 = [Hec?]
ovents : set = {Sensed?} e i

<<GRC>>
<<PoriType>> <<GRAC>> <<PortType>> Robot
@H N Belt @E <<DataType>> 1Pt : Part[PART)
events : Set = {Start!} <<Parameter>> pri ; Pad[PART] ovents : set = {RightPlacel,LeftPlace!) <<DataType>> IPrt ;. Part{PART]
<<DataType>> inStack : Stack[PART,PStack]
P > prt : Part{PART]

!

<<PortType>> <<PortType>>
@R @D

ovents : set = {LeitPick?,RightPick?} events : set = {LeftPick!,RightPickl}

Figure 99: Robotics System class Diagram

91

The User Class with Parameterized Events

The user class has a parameter prt to represent the types of parts that are placed onto
the conveyor belt. This information about the part type is passed to the belt through

the argument of the event Put.

Class User [@VS, @F]

Events: Next, Put!@VS, Start?@F, Resume

States: *idle, ready, place, wait

Attributes: prt:PART

Traits: Part [PART]

Attribute-Function: idle -> {};ready -> {prt};place -> {};wait

-> {};
Parameter-Specifications:
Put: prt;

Transition-Specifications:
Rl: <idle,ready>; Next[] (true); true => true;
R2: <ready,place>; Put([prt](true); true => true;
R3: <place,wait>; Start(] (true); true => true;
R4: <wait,idle>; Resumel[] (true); true => true;
Time-Constraints:

end

Figure 100: User TROM class — class specification

Next [ready]

Put(prt)
e
Stant
Figure 101: User TROM class — state chart diagram
<<PortType>> <<GRC>> <<PortType>>
@vs @ User P @F
ewents : set = {Putl} <<Parameter>> prt : Part[PART] ewvents : Set = {Start?}

Figure 102: User TROM class — class diagram

92

The Belt Class with Parameterized Events

The belt has a parameter prt, but it is not used in the transitions. All events having

parameters are input events. They just receive parameters from the output events of

other TROM objects.

Class Belt [@V, @R, @H]
Events: Sensed?@V, RightPick?@R, LeftPick?@R, Start!@H
States: *active, stop, toActive
Attributes: prt:PART
Traits: Part[PART]
Attribute-Function: active -> {prt};stop -> {prt};toActive ->
{};
Parameter-Specifications:
LeftPick: prt;
RightPick: prt;
Sensed: prt;
Transition-Specifications:
Rl: <active, stop>; Sensed[prt] (true); true => true;
R2: <stop, toActive>; RightPick[prt] (true); true => true;
R3: <stop,toActive>; LeftPick[prt] (true); true => true;
R4: <toActive,active>; Start[] (true); true => true;
Time-Constraints:
TCVarl: R2, Start, [0, 1], {};
TCVar2: R3, Start, [0, 11, {};

end
Figure 103: Belt TROM class — class specification
l«__
[active | Sensed(prt)
|
RightPick(prt) / true/ && TCVar1=0
Star[true true && TCVar1<=1&TCVar2<=1]
tPick(prt) / true && TEVar2=0
’////
L toActive [/»:"’//
Figure 104: Belt TROM class — state chart diagram
<<PortType>>
@R
events : set = {LeftPick?,RightPick?}
<<PortType>> <<GRC>> <<PortType>>
@V e Belt @H
events : set = (Sensed?) <<Parameter>> prt : Part[PART] ewents : Set = {Start!}

Figure 105: Belt TROM class — class diagram

93

The Vision System Class with Parameterized Events

The vision system stores the parameter prt into the queue inQueue. Later on, it

recognizes parts from the elements in the queue.

Class VisionSystem [@QU, €@Q, @S]
Events: Put?@U, Sensed!@Q, Rec!@S
States: *Monitor, active, identify
Attributes: inQueue:PQueue;prt:PART
Traits: Queue{PART, PQueue], Part [PART]
Attribute-Function: Monitor -> {inQueue, prt};active ->
{inQueue, prt};identify -> {inQueue, prt};
Parameter-Specifications:
Put: prt;
Rec: prt;
Sensed: prt;
Transition-Specifications:
R1l: <Monitor,active>; Put[prt] (true); true =>
inQueue'=append({prt, inQueue) ;
R2: <active,active>; Put[prt] (true); true =>
inQueue'=append (prt, inQueue) ;
R3: <active,identify>; Sensed[prt=head(inQueue)] (true);
true => true;
R4: <identify,active>; Rec[prt](true); len(inQueue)>1 =>
inQueue'=tail (inQueue) ;
R5: <identify,Monitor>; Recliprt] (true); len(inQueue)=1 =>
inQueue'=tail (inQueue) ;
R6: <identify,identify>; Put(prt] (true); true =>
inQueue'=append (prt, inQueue) ;
Time-Constraints:
TCVarl: R1l, Sensed, [0, 21, {};
TCVar4: R4, Sensed, [0, 21, {};
TCVar2: R3, Rec, [4, 5], {};
TCVar3: R3, Rec, [4, 5], {};
end

Figure 106: Vision System TROM class — class specification

<<PortType>>
@Q

events : set = {Sensedl}

‘

<<PortType>> Vi: ;ﬁg&i;m <<PortType>>

@s P P @u
ewents : set = {Rec!}

<<DataType>> inQueue : Queue[PART,P Queue] R PEE—
<<Parameter>> prt : Pat{PART)]

Figure 107: Vision System TROM class — class diagram

94

. Put(prt)/ inQueue':ﬁend(pn,inQueue)

Monitor) Put(prt) / inQueue'=append(prt,inQueue)& & TCVarl =0

_J

Rec(prt)[trueg&len(inQueue)=18&TCVar3>=4&TCVar3<=5 | / inQueue'=tail(inQueue)

Rec(pit)[true && len(inQueue)>1&& TCVar2»><4&TCVar2<=>5 } / inQueue'=tail(inQueue)&& TCVar4=0

Put(prt)/ inQ/uu\eEappend(pn i
,,,,,,,,, Ly

[identity | Sensed(prt = head(inQueue)) tue &8 true 8&TCVarl<=28TCVar4<=2] / true&&8T(Var=0 & TCVard=0

J\:

Figure 108: Vision System TROM class — state chart diagram

The Robot Class with Parameterized Events

The robot class waits for any recognized parts and saves this information carried by

the parameter into a queue for later identification.

Class Robot [@D, @C, @QE]

Events: Rec?@C, LeftPick!@D, RightPick!@D, Insert,
LeftPlace!@E, RightPlace!@E, LPopStack, FreeRight,
Remove

States: *S1, S2, S3, sS4, s5, s6, Ss7, S8, S9

Attributes: rPrt:PART;1Prt:PART;inStack:PStack;prt:PART

Traits: Part[PART], Stack[PART, PStack]

Attribute-Function: S1 -> {rPrt, prt};S2 -> {prt};sS3 -> {1lPrt,
rPrt, prt};S4 -> {prt};S5 -> {rPrt};S6 -> {1lPrt};s7 -
> {inStack};S8 -> {inStack};S9 -> {1Prt};

Parameter-Specifications:

LeftPick: prt;

Rec: prt;

RightPick: prt;

Transition-Specifications:

R1l: <81,82>; Rec|prt] (true); true => true;

R2: <82,83>; LeftPick[prt] (true); true => 1Prt'=prt;

R3: <83,84>; Reclprt] (true); true => true;

R4: <S4,S5>; RightPickl[prt] (true); true => rPrt'=prt;

R5: <85,58>; Imsert[] (true); rPrt=1Prt =>
inStack'=push(rPrt, inStack);

R6: <85,86>; LeftPlacel] (true); ! (lPrt=rPrt) =>
1Prt'=nullpart();

R7: <S6,S81>; RightPlace[] (true); isEmpty(inStack) =>
rPrt’'=nullpart();

R8: <S6,89>; LPopStack|] (true); ! (isEmpty(inStack)) =>
1Prt'=top(inStack) ;

R9: <87,83>; RightPlace[] (true); true => rPrt'=nullpart();

95

R10: <S8,83>; FreeRight[] (true); true => rPrt'=nullpart();
R11l: <89,87>; Removel] (true); true =>
inStack'=pop (inStack) ;
Time-Constraints:
TCVarl: R1, LeftPick, [0, 21, {};
TCVar2: R3, RightPick, [0, 21, {};
TCVar3: R4, LeftPlace, [0, 11, {};
TCVard: R4, RightPlace, [1, 2], {}:
TCVar5: R4, RightPlace, [1, 21, {};
end

Figure 109: Robot TROM class — class specification

i [S$1 \ﬁi ghtPlace[true&&isEmpty(inStack)&&TCVard>=18&TCVard<=2]/ rPrt=nullpart() S6

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, J LT

Rec(prt }/tiue && TCVar1=0
LeftPlace{ rued&!(IPr=rPit)& &TCVar3>=0&TCVar3<=1] / IPrtEnulpart()

Raove.L_inStack'=pop(inStack)

N \
S2 i T
| —
= S7
LefPick(prt)[true&8trued& TCVar1<=2]/ IPt=prt P

Rec(prt)/ trhie && TCVar2=0
Insert[true&&rPrt=IPrt] / inStack'=push(rP1t,inStack)

54 '“ RightPick(ptt)[rue&true&& TCVar2<=2]/ rPrt=prt &&TCValG:O&TCVa'4=0&TCVar5=Q ‘(S5

L

Figure 110: Robot TROM class — state chart diagram

<<PortType>>
@E

ewents : set = {RightPlace!, LeftPlace!}

‘

<<GRC>>
<<PortType>> Robot <<PortType>>
@c <<DataType>> rPrt : Part[PART} @D

<<DataType>> IPrt . Part[PART]
<<DataType>> inStack : Stack[PART,PStack}
<<Parameter>> prt : Part[PART]

events : set = {Rec?} ewents : set = {LeftPick!,RightPick!}

Figure 111: Robot TROM class — class diagram

The Tray Class with Parameterized Events

The tray class does not define parameters.

Class Tray [@W]

Events: LeftPlace?@W, RightPlace?@W, Trash
States: *idle, wait, loading

Attributes:

96

Traits:
Attribute-Function: idle -> {};wait -> {};loading -> {};
Parameter-Specifications:

Transition-Specifications:
R1l: <idle,wait>; LeftPlacel[] (true); true => true;
R2: <wait,loading>; RightPlace(] (true); true => true;
R3: <loading,idle>; Trashl[] (true); true => true;
Time-Constraints:
TCVarl: R2, Trash, [1, 2], {};
end

Figure 112: Tray TROM class — class specification

o
\&
[—" """ﬂ;’v*} LeftPlace m@
__________) L

\\ RightPlace7 true && TCVar1=0

loading

Figure 113: Tray TROM class — state chart specification

<<GRC>> <<PortType>>

Tray P ew
jevents : set = {LeftPlace?, RightPlace?}
{

Figure 114: Tray TROM class — class specification

The Sample Simulation Event List

The Simulation Event List simulates the same information as the above models to the
system except that the part identification is passed by parameter expression instead of

the event itself.

SEL: BasicRobot

Ul, Putlprt=dish()], evsl, 1;
Ul, Putlprt=dish()], @vsl, 8;
Ul, Putlprt=cup()], €vsl, 15;
Ul, Putlprt=cup()], @vsSl, 22;

end
Figure 115: Sample Simulation Event List
The Simulation Result of Self-controlled User Modeling

Figure 116 displays the successful simulation results of the self-controlled user model.

97

B1, 6, Bensed? |

M1 02 Reel

cinck pace

o

Heliaieg

o ready

RighiPlac. ready

1.22,Pull | \place

Monitor active 51 -

Monitor active S1

Manitor active S1

active active S1

identify active 81

identify stop S1

Manitor stop S1

Monitor stop S2 idie

Monitor stop 83 idie i

Manitor itoActive S3 idle

Monitor active 53 idle l

Monitor active 53 idie

Maonitor active S3 idle

Monitor active S3 idle i

Monitor active 83 idle

active active 33 idle ! ‘

identify active S3 idle

identify stop 33 idle

Monitor stop 33 idle

Monitor stop S4 idle

Monitor stop 85 idle 1

Monitor stop 58 idle

Monitor stop S3 idle

Monitor 10Active 83 idle

Monitor active g3 idle

Monitor active S3 idle

Monitor active S3 idle

Monitor active 83 idle

Monitor active 83 idle

active active 53 idle

identify active S3 idle

identify stap 33 idle

Monitor stap 33 idle

Monitor stop S4 idle

Monitor stop 85 idle

Monitor 10Active 35 idle

Manitor t0Active 1] idle

Manitor toActive 59 idle

Monitar toActive g7 idle

Monitor toActive S7 wait

Monitar active S7 wait

Maonitor active 87 wait
idle Manitor active S7 'wait

Maonitor active 87 wait

Monitar active S3 wait

Monitor active 83 loading

Maonitor active 83 loading
place active active S3 loading ‘ .

_ |place active active 83 idle]

place identify active 53 idle .
place identify stop 353 idle

Monitor stop 33 idle

Manitor stop 54 idle

Manitor stap S5 idle

Monitor ltoActive 35 idle

Monitor toActive =13} idle

Monitor toActive S8 wait

Manitor active 56 wait

Monitar active 36 wait

Monitor active S6 wait

Monitor active SB wait

Maonitor active S1 wait

Monitar active S1 loading

Monitar active S1 idle

Figure 116: The Simulation Result of Self-controlled User modeling

98

7.5.3 Buffered Belt Modeling with Parameterized Events

The User Class with Parameterized Events

The User class has a parameter prt to represent the types of parts that are placed on to
the conveyor belt. This part types data is passed to the belt through the argument of

the event Put.

Class User [@VS]
Events: Next, Put!@VS, Resume
States: *idle, ready, place
Attributes: prt:PART
Traits: Part[PART]
Attribute-Function: idle -> {};ready -> {prt};place -> {};
Parameter-Specifications:
Put: prt;
Transition-Specifications:
Rl: <idle,ready>; Next[] (true); true => true;
R2: <ready,place>; Put|[prt] (true); true => true;
R3: <place,idle>; Resumel[] (true); true => true;
Time-Constraints:

end
Figure 117: User TROM class — class specification
Figure 118: User TROM class — state chart diagram
<<GRC>> <<PortType>>
User P @Vs
<<Parameter>> prt ; Part[PART] ewents : Set = {Put!}

Figure 119: User TROM class — class diagram

99

The Belt Class with Parameterized Events

Now, the belt class has a parameter prt to represent the parts passing on it. The input
event Pur will pass the type of part through the parameter prt to the belt from the user
class, and then the belt will pass the value to the vision system through the argument
of event Sensed. The Belt class uses a queue to save the information about parts

carried by the parameters.

Class Belt [@K, @G, @B]
Events: Put?@K, Sensed!@G, LeftPick?@B, RightPick?@B
States: *moving, transporting, stop
Attributes: sQueue:PQueue;prt:PART
Traits: Queue[PART, PQueue], Part [PART]
Attribute-Function: moving -> {prt};transporting -> {sQueue,
prt};stop -> {prt, sQueue};
Parameter-Specifications:
Put: prt;
Sensed: prt;
Transition-Specifications:
R1l: <moving, transporting>; Put[prt] (true); true =>
sQueue ' =append (prt, sQueue) ;
R2: <transporting, stop>; Sensed|[prt=head(sQueue)] (true);
true => sQueue'=tail (sQueue);
R3: <transporting, transporting>; Put[prt] (true); true =>
sQueue ' =append (prt, sQueue) ;
R4: <stop, transporting>; LeftPick[] (true); len(sQueue)>0
=> true;
R5: <stop,stop>; Putlprt](true); true =>
sQueue ' =append(prt, sQueue) ;
R6: <stop,moving>; RightPick[] (true); len(sQueue)=0 =>

true;

R7: <stop, transporting>; RightPick[] (true); len(sQueue)>0
=> true;

R8: <stop,moving>; LeftPick[] (true); len(sQueue)=0 =>
true;

Time-Constraints:
TCVarl: R1l, Sensed, [2, 31, {};
TCVar3: R4, Sensed, [0, 1], {};
TCVard: R7, Sensed, [0, 1], {};

end
Figure 120: Belt TROM class — class specification
<<PortType>>
@G
ewents : Set = {Sensed!}
<<PortType>> «GBIZI?» <<PortType>>
@K @B

<<DataType>> sQueue : Queue[PART,PQueue]

- - P - - - - ’
ewents : Set = {Put?} <<Parameters> pit : Par[PART] events : Set = {LeftPick?, RightPick?}

Figure 121: Belt TROM class — class diagram

100

Put{ prt) / sQueue=append(prt, sQueue)
L ? d
N

[(g
L J Put{ prt) / sQueue'=append(prt, sQueue) &&TCVari=0

LePick{ true && len(sQueyd)>0]/ tue

RightPick(true && len(gQueue);

1/ true &3 TCVard=0

i rue && len(sQueue)=0 |
RightPick[true && len eue)=0]

.

=18TCVard<=1]}/ sQueue'=tail{sQueue)

Figure 122: Belt TROM class - state chart diagram

The Vision System Class with Parameterized Events

After the vision system recognizes the part, it will transfer the part information to the

robot.
Class VisionSystem [@S, QU]
Events: Sensed?@U, Rec!@S
States: *idle, identify
Attributes: prt:PART
Traits: Part[PART]
Attribute-Function: idle -> {prt};identify -> {prt};
Parameter-Specifications:
Rec: prt;
Sensed: prt;
Transition-Specifications:
Rl: <idle,identify>; Sensed[prtl] (true); true => true;
R2: <identify,idle>; Rec[prt]{true); true => true;
Time-Constraints:
TCVarl: R1, Rec, [0, 51, {};
end
Figure 123: Vision System TROM class — class specification
<<PortType>> <<GRC>> <<PortType>>
@s L VisionSystem - | @u
events : Set = {Recl} <<Parameter>> ptt : Part{ PART] events : Set = {Sensed?}

Figure 124: Vision System TROM class — class diagram

101

Sensed(prt)/ true && TCVar1=0

—. P

——

\ -
Rec(prt)[trUe&& true && TCVarl<=5]

Figure 125: Vision System TROM class — state chart diagram

The Robot Class with Parameterized Events

The robot class waits until the vision system has recognized a part, and then saves the

information carried by the parameter into a queue for later identification.

Class Robot [@D, @C, GE]
Events: Rec?@C, LeftPick!@D, RightPick!@D, Insert,
LeftPlace!@E, RightPlace!@E, LPopStack, FreeRight
States: *381, S2, S3, sS4, S5, S6
Attributes: rPrt:PART; 1Prt:PART; inStack:PStack;
inQueue:PQueue; prt:PART
Traits: Part[PART], Stack[PART, PStack],Queue [PART, PQueue]
Attribute-Function: S1 -> {inQueue, rPrt, prt};S2 -> {lPrt,
inQueue, rPrt, prt};S3 -> {rPrt, inQueue, prt};S4 ->
{1Prt, inQueue, prt};S5 -> {1Prt, inStack, inQueue,
prt};S6 -> {inStack}:
Parameter-Specifications:
Rec: prt;
Transition-Specifications:
Rl: <S81,81>; Rec[prt]{true); true =>
inQueue' =append (prt, inQueue) ;
R2: <81,82>; LeftPick([] (true); len(inQueue)>0 =>
1Prt'=head(inQueue) &inQueue'=tail (inQueue) ;
R3: <S2,83>; RightPick[] (true); len{inQueue)>0 =>
rPrt'=head(inQueue)&inQueue’'=tail (inQueue) ;
R4: <S2,82>; Rec[prt]{true); true =>
inQueue'=append(prt, inQueue) ;
R5: <83,86>; Insert[](true); rPrt=1Prt =>
inStack'=push(rPrt, inStack) ;
R6: <S83,84>; LeftPlacel[] (true); !'{lPrt=rPrt) =>
1Prt'=nullpart();
R7: <83,83>; Rec|[prt]{true); true =>
inQueue'=append{prt, inQueue) ;
R8: <S4,S81>; RightPlacel] (true); isEmpty(inStack) =>
rPrt'=nullpart();
R9: <S4,85>; LPopStack[] (true); ! (isEmpty(inStack)) =>
1Prt'=top(inStack) &inStack'=pop (inStack) ;
R10: <S84,84>; Rec[prt](true); true =>
inQueue'=append (prt, inQueue) ;
R11: <85,82>; RightPlace(](true); true =>
rPrt'=nullpart();
R12: <85,85>; Rec[prt] (true); true =>
inQueue'=append(prt, inQueue) ;
R13: <56,82>; FreeRight{] (true); true => rPrt'=nullpart();
Time-Constraints:
TCVarl: R1l, LeftPick, [0, 2], {};
TCVar6: R8, LeftPick, [0, 1], {};:

102

TCVar2: R4, RightPick, [0, 2], {};

TCVar7: R11l, RightPick, [0, 11, {}:

TCVar5: R3, LeftPlace, [2, 31, {};

TCVard: R3, RightPlace, [3, 41, {};

TCVar3: R3, RightPlace, [3, 41, {};
end

Figure 126: Robot TROM class — class specification

Rac(prt)/ i ue'=appand(prt,inQueue)&& TCVari=0 Rec(prt }/ inQueu?zYvd(pr(. inQueus)

.T:1] RightPlace| true&&isEmpty(inStack) &4 TCVard>=3&TCVard<=4 | / Prt'=nullpart() && TCVaré=0 (“ S4]
{ Wir i

LPopStack(trued&!(is Empty(inStack))] / tPrt'=top

{

———————————————————— Q

RightPlace[true&&true&&TCVard>=8&TCVaBc=4}-+Pri=filllpart () && TCVar7=0

Rec{ prt) / inQueue'£append(prt, inQueue)
LeftPick| true&§len(inQueue)>08& TCVari <=2 &TCVar6<=1]/ IPi'=head(inQueus)& inQueue'=tailinQueue)
A
58

s2 S
S LeftPlace(true&&|(IPH=rPrt)&& TCVar5>=2& TCVar5<=3 | / IPrt=nilipart()

=append(prt, InQuoue)s& TCVar2=0 T {Tse]

Insert] true&rPrt=IPtt j|/ inStack’=push{rPrt,|nStack)

RightPick{ true&8llen{inQueue)>08&TCVar2<=2& TCVar7<=1 | / Prt'=head(inQueue)&inQueue'=tail(inQueue) & & TCVar3=0&TCVar4=08TCVar5=0

| -

Rec{ptt)/ inQue&L:;Zend(pn. inQueue)

Figure 127: Robot TROM class — state chart diagram

<<PortType>>
@D

ewents : Set = {LeftPick!,RightPick!}
<<GRC>>
Robot

<<PortType>> <<DataType>> rPrt : Part{PART] <<PortType>>
@c ————®|<<DataType>> IPrt : Part[PART) @E

ewents : Set = {Rec?} <<DataType>> inStack : Stack[PART,PStack] events : Set = {RightPlace!,LeftPlace!}
<<DataType>> inQueue : Queue[PART,PQueue]

<<Parameter>> prt : Part[PART]

Figure 128: Robot TROM class — class diagram

The Tray Class with Parameterized Events

The tray class does not define the parameter prt since the robot ensures that the two

parts placed on the tray are of different types. The tray only assembles the parts.

Class Tray [@W]
Events: LeftPlace?@W, RightPlace?@W, Trash

103

States: *idle, wait, loading

Attributes:

Traits:

Attribute-Function: idle -> {};wait -> {};loading -> {};
Parameter-Specifications:

Transition-Specifications:
R1l: <idle,wait>; LeftPlacel[] (true); true => true;
R2: <wait,loading>; RightPlacel[] (true); true => true;
R3: <loading,idle>; Trash[] (true); true => true;
Time-Constraints:
TCVarl: R2, Trash, [1, 2], {};
end

Figure 129: Tray TROM class — class specification

LetPlace - / wait h

RightPlace / tr
Trash[true && true && TC\(qr1>=1 & TCVari<=2]

~ loading)
|
R

Figure 130: Tray TROM class — state chart diagram

&& TCVart1=0

<<GRC>> <<PortType>>
Tray P ew

ewvents : Set = {LeftPlace?,RightPlace?}

Figure 131: Tray TROM class — class diagram

The Sample Simulation Event List with Parameterized Events

The following is the sample simulation event list. It sends the same information as the

above self-controlled user model to the system.

SEL: BasicRobot

Ul, Put[prt=dish()], @vsl, 3;
Ul, Put[prt=dish()], @vsl, 5;
Ul, Put[prt=cup()], @vsl, 7;
Ul, Putlprt=cup()], @vsl, 9;

end

Figure 132: Sample Simulation Event List

104

The Simulation Result with Parameterized Events

Figure 133 displays the simulation results of the buffered belt model. The successful
simulation result and the successful simulation of the self-controlled model
demonstrate that the revised robotics model with parameterized events is correct, and

that the simulator can successfully model with Parameterized Events.

This chapter described two well-designed models for the robotics system. The models
provided the base data for comparing different design solutions in terms of a system’s
functional complexity. The next chapter will describe the functionality measurement

of the simulation results from two models without parameterized events.

105

Tl

eps:
i5Pul

U1 5 Resuma |idle
15, ready

M

Rt 6 LeflPickl lready

B1 5 LefiPick? iready

Ri 8 Bighipickd

R1 8 Ineent

Vi
idle 51 idle maoving
idle 51 idle moving
idle St idle maving
idle 31 idle maving
idle 51 idle moving
idle S1 idie itransporting
idle 51 idle itransporting
idle g1 idle transpoiting
idle 51 idle itransporting
idle 31 idle itranspotting
idle 1 idle stop
identify 51 idle stop
identify S1 idle stop
identify S1 idle stop
identify 51 idle stop
ready identify 51 idle stop
ready idle S1 idle stop
ready idle S1 idle stop
idle S2 idle stop
idle S2 idle transporting
idle 32 idle stop
identify 52 idle stap
identify 52 idle stap
identify S2 idle stop
identify 52 idle stop
identify 52 idle stop
idle 52 idle stop
idle 52 idle stop
idie 83 idle stop
idle S6 idle stop
idle 52 idle stop
idle 52 idie transporting
idle 52 idle stop
identify 82 idle stap
idle 82 idle stop
idle 52 idle stop
idle 53 idie stop
idle S3 idle transporting
idle S3 idle stop
identify S3 idle stop
idle 83 idle stop
idle g3 idle stop
idle S4 idle stop
idle S5 idle stop
ready idle S5 wait stop
agalready idle 82 wait stop
. Iready idle 52 loading stop
ready idie S3 loading stop
ready idle S3 loading maoving
idle S3 idle moving
idie S4 idle moving
idle S4 wait moving
idle s1 wait moving
idle 81 loading maoving
_idle 51 idle moving

Figure 133: The Simulation Result of Buffered Belt modeling

106

Chapter 8

Simulation-Based Measurement of System Functionality

This chapter measures the functional complexity of real-time reactive systems based
on design animation. Software measurement quantifies the attributes of software in
order to characterize them by clearly defined rules. The proposed measurement of
functionality quantifies the design’s attribute functional complexity in terms of the
amount of information interchanged during the system’s simulation. Our goal is to
compare the functional complexity of different design solutions based on the

measurement data.

8.1 Functionality Measure

The functionality measure FC is defined as the information content of the interactions
in one scenario. Information theory based software measurement is used to quantify
objectively the software functionality in terms of the amount of information
interchanged between software objects. The information content of the interactions is
synonymous with the complexity of the product’s functionality, so measuring the
amount of information assesses the performance of the software system.

Let S be a subsystem consisting of Oy, ... Oyreactive objects. Let Comp(S) be a set of

all computations in one period of time (i.e., the time between two consecutive initial

states). Let SQ’(S) be the projection of Comp(S) on the signals (O, ... Oy).

For functional complexity measurement purposes, we need the projection of SQ’(S)
on the sequence of events Events(S) = {ey, ... ey }. These events present the functions
needed to perform the work in the specified period of time, and the sequence
preserves their order in time.

The functional complexity in a time period is defined as an average amount of
information in the corresponding sequence Events(S). We apply the concepts of
information theory to measure the amount of work performed in a time slice by the
system in terms of the amount of information in the Events(S) sequence. We use the

excess-entropy information theory’s measure C to quantify the amount of information.

107

8.2 Formulas

We based our version of the excess-entropy measure on the empirical distribution of

events within a sequence. The probability p; of the " occurring event is equal to the

I

percentage of total event occurrences. The probability p;is calculated as —
where f; is the number of occurrences of the ™ event and NE is the total number of
events in the sequence. The classical excess-entropy calculation is given by the
formula C = Y H; - H, where H =) p;log, p; is the entropy for the system, and H;is the
entropy calculated locally for each one of the participating objects.

Let E be the number of different events that happen in the system in a specific time

interval T, E,; be the number of those events related to the object O; (in T), and f,-Oj be

the frequency of the event i € Ep;. We set T to be the response time for a scenario.

We define our measure of the functional complexity FC as a difference between the

sum of the objects’ entropy and the system’s entropy:

n
FC:ZHOj-H
ji=1

Where
£ foj 0j
HOj = -Z ! 10g2 ft
i=1 NEg; NE,;

H = i i log, Ji
i=1 NE N.

The FC measure is intended to be used on an ordinal scale. The first step in an ordinal
measurement’s procedure is to determine an ordering relation for the objects. The
second is to assign a number sequence that preserves the order of the objects; i.e., the
FC measure is intended to order the performance of real-time reactive systems in a
time period in relation to their functional complexity. From our empirical
understanding, the performance of a system §; whose functional complexity indicates
higher average information content in a time interval ¢ than the system S; should, on
the whole, be more complex than another with a lower average information content.

Formally, the ordinal scale property can be expressed as follows:

S1x=8 < FC(Sl) 2 FC(Sz)

The functionality measurement has been empirically validated on the Robotics case

study.

108

8.3 Illustration on the Robotics Case Study

In this section, the results from the empirical validation of the functionality
measurement are reported and analyzed. The empirical validation is a process of
establishing the accuracy of the software measurement by empirical means. In case of
the comparison measurement, the empirical validation identifies the extent to which a

measure characterizes a stated attribute by a simple test against reality.

SEL: BasicRobot
PutD, Ul, @evsl, 1;
PutC, Ul, @vsl, 8;
end

Figure 134: Simulation Event List 1

SEL: BasicRobot
PutD, Ul, @vsl, 1;
PutD, Ul, @vsl, 8;
putC, Ul, @vsl, 15;
PutC, Ul, @vsl, 22;
end

Figure 135: Simulation Event List 2

SEL: BasicRobot
PutD, Ul, @vsl, 1;
PutD, Ul, @vsl, 8;
pPutD, Ul, @vsl, 15;
putC, Ul, @vsl, 22;
PutC, Ul, @vVSsl, 29;
PutC, Ul, @vsl, 36;

end

Figure 136: Simulation Event List 3

We have calculated the functionality measure FC for each one of the Robotics models,
and for each one of the system events lists SEL1, SEL2, SEL3 designed to gradually
increase in functionality. We have also considered the structural complexity of the
designs, as described in [Orm02]. The static architectural complexity (AC) indicates
the level of external coupling within a given architecture. Measuring AC would give
an objective base for comparing different design models in terms of their FC values.

The following table reports the FC and AC values:

109

SEL1 | SEL2 | SEL3 | AC

Original 7.96 8.01 8.16 0.35
Selft-controlled User(Non-parameterized 807 | 811 | 834 0.38
Events)

Buffered Belt(Non-parameterized Events) 7.96 | 8.01 8.14 0.35

Selft-controlled User(parameterized Events) | 6.86 | 7.26 | 7.20 0.38

Buffered Belt(parameterized Events) 591 6.19 | 6.13 0.35

Table 3: FC and AC values of three Robotics models

For a given design, the increasing complexity of SEL files corresponds to the
increasing values of FC. From the other side, for a given SEL file, the higher
behavioral and structural complexity of the GRCs in the self-controlled user model
results in higher F'C values. Based on the reported results, the design Buffered Belt
model delivered the best performance results because its structural and behavioral
complexities are lower than in the self-controlled user model. The reported results
were expected from our empirical understanding, and therefore prove experimentally

the validity of the measures.

110

Chapter 9

Conclusions and Future Work

The present thesis addresses the problem of automatic validation of real-time reactive
systems at the design phase before the implementation. We assume that such systems
are modeled as timed labeled transition systems, following the TROM methodology
with parameterized events. In the previous work on the simulation, there existed
some problems in the simulator algorithm, which result in Train-Gate-Controller and
Robotics system case study to be simulated unsuccessfully. The goal of this thesis is
to improve flaws related to time conflicts in previous models, separate the data model
module from the validation tool, and add support to parameterized events into the
simulator. As system gets larger, the performance assessment for mission critical
applications is more important than ever. This thesis proposes a performance
assessment of systems in terms to their functionality, based on simulation. We have

illustrated our approach on the Robotics case study.

9.1 Work Synthesis

In this thesis, we discussed the time conflict existing in the previous simulator
implementation and improved the simulation algorithm. We analyzed all possible
situations to ensure that our algorithm was correct. After we fixed the algorithm, the
validation tool was ready for working. We verified the correctness of the validation
tool through the Train-Gate-Controller case study.

Next, to provide more extensibility and flexibility to the validation tool, we re-
organized the structure by applying the Facade Pattern for separating the data model
from the interpreter and Simulator modules.

After we fixed the internal flaws and adjusted the global structure, we start to extend
the Validation tool’s ability to support simulation for real-time reactive system

modeling based on TROM formalism [Ach95] with parameterized events. We

111

reengineered the interpreter, upgraded the simulator, and verified the new validation
tool by simulating the TGC model with Parameterized Events.

So far, we finished upgrading the Validation tool. We took advantage of it to remodel
the Robotics system. Through the simulation result, we found out the problems in the
original modeling, gave two solutions, and verified our solutions by the Validation
tool.

Finally, we proposed a new functionality measurement in real-time reactive systems
based on design simulation [ALOSO03]. Through gathering measurement data based
on their simulation results, we can reach the goal of early functional complexity

predication, and compare design solutions in terms of their functionality.

9.2 Future Work

9.2.1 Parameterized Events

After the Parameterized Events were introduced into the Interpreter and Simulator, the

Debugger, Query, and Reasoning System need to be upgraded in the future.

9.2.2 Simulator

After this thesis work, the Simulator is upgraded to allow simulating TGC and
Robotics systems. However, there is a known limitation to the new Simulator when it
simulates the TGC system. When a train comes out a gate, it is unable for the train to
start a new session immediately, i.e., if a train needs to pass through two gates, the
train must have exited the first gate before it approachs the second gate. Formally, the
train cannot exit the first gate and send Near messasge to the second gate at same
time.

We will use the specification of TGC system showed in the Chapter 6 to explain the
case. Figure 137 is the SEL to expose the problem.

SEL: TCG
tl, Near, @C1,
t2, Near, €C2,
t3, Near, @C1,
tl, Near, €C2,
t2, Near, @€C1,
t3, Near, @C2,

W W Tk bW

end

Figure 137: Simulation Event List

112

Figure 138 shows the Simulation Result. The train t1 approachs gate 1 at time 3 by

sending Near to controller 1. It exits gatel at time 7 (the Exif event is marked by the

balck arrow). From the SEL, we know train t1 will send Near message at time 7, but it

is not handled by the simulator.

Simulator

04, 4 Near?

13,4, Neail

£1.4 Neak?
wetl

g Exitl

S

3.8 Extl

42, 4, Lower?
g1,9 Down
12,9 Down
gl
2.1 ou

Figure 138: Simulation Result

113

ed

i 8 o , I

idle idle idle idle opened opened

idle idle idla idle opened opened

idle idle activate idle opened opened]

idle idle manitor idle opened opened

idie idle monitor idle toClose opened]
toCross idle idle manitor idie closed opened
toCross toCrass idie manitor idle closed opened
toCross toCross idle maonitor activate closed opened
toCross toCross toCross maonitor activate closed opened
toCross toCross toCross monitor activate closed opened

toCross toCross mohitor monitor closed opened

taCross toCrogs manitor monitor closed toClose |

toCross toCrogs monitor monitar tlosed closed |

toCross toCross maonitor monitor closed closed |

toCross toCross maonitor monitor closed closed

cross toCross monitor maonitor closed closed

leave toCross monitor monitor closed closed

leave Lross monitor maonitor closed ctlosed

leave leave maonitor monitor closed tlosed

leave leave monitor monitor closed closed

leave leave moanitar monitor closed closed

idle leave monitor manitar closed closed

idle leave monitor deactivate iclosed closed

idle idle monitor deactivate jclosed closed

idle idle deactivate deactivate |closed closed

idle idle deactivate idle ciosed closed

idle idle deactivale idle ciosed toOpen

idle idle idie idle closed toOpen

idie idle idle idle toOpen toQpen

1oCross idle idle idle toOpen toOpen

t0Cross idle activate idle toOpen toQpen

toCross toCross activate idle toOpen toOpen

toCrass toCross activate activate toOpen toOpen

toCross toCross activate activate toOpen opened

toCross toCross tivat tivat opened opened

toCross toCross manitar activate opened opened

toCross toCross manitor activate toClose opsned

toCross toCross maonitar monitor toClose opened

toCross toCross monitor manitar toClase toClose

toCross toCross monitor monitor closed toClose

toCross toCross monitor manitor closed closed

cross toCrass monitor monitor tlosed closed

leave toCross monitor monitar closed closed

leave Cross manitor monitor closed tlosed

leave leave monitor monitor closed tlosed

idle leave manitor monitor closed closed

idle leave deactivate :monitor closed closed

idie idle deactivate monitar closed closed

idle idle deactivate :deactivate iclosed closed

idle idle idle deactivate iclosed closed

idle idle idle deactivate toOpen closed

idie idle idie idle toOpen clased

idle idle idle idie toOpen toOpen

idle idle idle idle apened toOpen

ol id| idle i

Creating the internal simulation event list in the simulator posed a problem. When the
simulator began, it created an initial internal simulation event list with an
environmental event list, as described by the SEL. Later, the simulator created new
events, which were inserted into the internal simulation event list according to the
specification. If the event is internal, it will be inserted into the internal simulation
event list as the first issuing event at the specified time. If the event is an input or an
output event, it will be appended to the tail of those events that will be issued at the
specified time. For this case, event EI — t1, near, c¢2, 7 will be scheduled prior to the
event E2 —tl, exit, ¢I, 7 in the internal simulation event list. However, before E2 is
issued, the state of t1 changes to leave. Therefore, according to the specification, EJ
will not be issued. This problem can be solved by modifying the insertion method of

events and will be left to the future work.

114

Bibliography

[AAMIS]

[Ach95]

[Al184]

[ALOSO03]

[GH93]

[GOF9%4]

[Hai99]

[Hay01]

[Mut96]

V. S. Alagar, R. Achuthan, and D. Muthianyen. TROMLAB: A software
development environment for real-time reactive system. Submitted for
publication in ACM Transactions on Software Engineering and
Methodology (First version 1996, revised 2001), submitted for
publication

R. Achuthan, A Formal Model for Object-Oriented Development of Real-
Time Reactive Systems. PhD. thesis, Department of Computer Science,
Concordia University, Montreal, Canada, October 1995

J. Allen. Towards a general theory of action and time. Artificial
intelligence(23), 1984.

V. S. Alagar, S. H. Liu, O. Ormandjieva, J. Shen. Performance
Assessment in Real-Time Reactive Systems. In the proceedings of the 7™
IASTED International Conference on Software Engineering and
Applications (SEA 2003)

J.V. Guttag and J.J. Horning. Larch: Languages and Tools for Formal
Specifications. Springer-Verlag, 1993.

E. Gamma, R. Helm, R. Jhonson, J. Vlissides. Design Patterns. August,
1994

G. Haidar. Reasoning System for Real-Time Reactive Systems. Master
Thesis, Department of Computer Science, Concordia University,
Montreal, Canada, December 1999

M. Haydar. Parameterized Events for Designing Real-Time Reactive
Systems. Master Thesis, Department of Computer Science, Concordia
University, Montreal, Canada, February 2001

D.Muthiayen. Animation and Formal Verification of Real-Time Reactive
Systems in an Object-Oriented Environment. Master Thesis, Department

of Computer Science, Concordia University, Montreal, Canada, October
1996

115

[OrmO02]

[Sri99]

[Ta096]

O. Ormandjieva, Deriving New Measurements for Real-Time Reactive
Systems. PhD. Thesis, Department of Computer Science, Concordia
University, Montreal, Canada, 2002

V. Srinivasan. Graphical User Interface for TROMLIB Environment.
Master Thesis, Department of Computer Science, Concordia University,
Montreal, Canada, December 1999.

H. Tao. Static Analyzer: A Design Tool for TROM. Master Thesis,
Department of Computer Science, Concordia University, Montreal,

Canada, August 1996

116

Appendix A

Code Optimization

The project originally had three directories: Gui, Interpreter, and IntSim, and the
corresponding source files were in these directories. Although files are in different
directories, they were not organized into different packages, i.e., they were in the
same global namespace. The previous workflow was: first, compiled the source code
in their directories; second, copied the class file to the Gui directory; third, run the
program in the Gui directory. It made the project difficult to manage and there was
name conflict in the project files, too. For example, there were Portlist.class and
portlist.class in Gui directory. Because the original development environment was
Unix, there was no problem. But it caused problems in the Windows operation system
because file name in Windows was not case sensitive. That is, it is operation system-
dependent. Therefore, it is necessary to optimize the code to get a real platform-
independent project. Organizing them into different Java packages to make them exist
in their own name space is a good choice. The following figure is the new structure of

the Validation tool.

Gui _ Interpreter
{ /’7
v /
R / ———
IntSim | DataModel
bt e— __\7'
E

Figure 139: The logical structure of the Validation tool

117

; Tromlab ;

Interpreter

Gui

DataModel

IntSim

Figure 140: The physical structure of the Validation tool

118

Appendix B

New Graphical User Interface

Because the output areas of the Debugger, Reasoning System are too small, we re-
design the graphical user interface of the Simulator. The new GUI larger output area,

and user-friendly interface. The following are the new user interfaces of the Simulator.

moving
moving
moving
moving
moving .
transporting
stop
identify sto

B

Figure 141: The interface of the Simulator

119

: £ simulator

Subsystem status:
Subsystem label: BasicRobot
Trom Status . Trom-label : U1 Trom-ctass :User Current-state: ready
Assighmentvector :

Reaction Vector

«Trom Status : Trom-labet: Vi
Assignmentvector:

iReaction Vector :
Reaction SubVector:
Time - Constraint: TCVar1
{5,10]

Reaction SubVector :
Time - Constraint : TCvar2

Trom-class : VisionSystem Current-state: i

Trom Status . Trom-label:R1 Trom-class : Robot Current-state: 51
AssignmentVector ;

Reaction Vector :
| Reaction SubVector:

=i Time - Constraint: TCVari
Reatction SuhbVector .
Time - Constraint : TCVar2
Reaction SubVectar :
Time - Constraint: TCVarg
Reaction Subvectar:
Time - Constraint: TCVar3
Reaction Subvector :
Time - Canstraint : TCVard

Reaction SubVector :
PER

TROM class hame
Part List:

Events List:
Eventname :PutC
Eventiype :Input
Porttype name : K
Parameters List:

Eventname : PulD
Eventiype input
Porttype name . K
Parameters List:

Eventname :SensedC
Eventtype Qutput
Porttype name : G
Parameters List:

Eventname :SensedD
Eventtype : Output
Porttype name : G
Parameters List:

Event nam LeftPic

Figure 143: The interface of the Query

120

rtram : U1
eaction Vector
for tram 11
‘{Reaction Vector :
Reaction SubVector :
Time - Constraint: TCVar1
Reaction SubVector :
Time - Constraint : TCVar2

eaction Vector :
Reaction SubVector:
Time - Constraint: TCvar1
Reaction SubVector :
Time - Constraint: TCVar2
4 Reaction Subvector
Time - Caonstraint: TCVar9
Reaction SubVector:
Time - Constraint : TCVar3
Reaction SubVector :
Time - Constraint: TCVar4
Reaction SubVector :
Time - Constraint: TCVar8
Reaction SubVector:
Time - Canstraint: TCvar?
| Reaction SubVector
i} Time - Constraint : TCVarG
Reaction SubVector :
i Time - Constraint: TCVars
or trom : Tt
eaction Vector

Figure 144: The interface of the Reasoning System

121

Appendix C

Software Document

Because there was no software document for this system in the past, it is time-
consumed for newcomers to grasp the structure of the system. This software
document tries to record some main classes in the Validation tool to assist subsequent
researchers to understand the system. It still needs future researchers to continue this

work.

Class AssignmentVector: To model the value of attributes of the Trom class
defined in .trom file.

AssignmentList |assignment_list

attributelist | attribute_asts
LSLLibraryManager |llm

AssignmentVector(TROMclass statics,
LSLLibraryManager Isl_lmgr)

Constructor. Construct the assignmentlist with
attributelsit. It traverse the attribute list of statics, and for each
attribute, construct a new assignment that may be a Port type
or a kind of Trait type. If it’s a kind of trait type, Isi_Imgr will
be responsible for creating the trait object of corresponding
type.

AssignmentVector(AssignmentVector av)
Copy constructor.

Assignment | get_assignment(String assignment_name)
Traverse the assignment list to find and return the
assignment naming assignment_name

void |set_assignment(Assignment assign)
Update the assignment in the assignment list

Class EventHandler: The most important class in the Simulator. It is responsible for
handling outstanding events in the SimulationEventList

Subsystem | ss

122

SimulationEventList | sel

TimeManager | tm

EventScheduler |es

ReactionWindowManager {rwm

IDataSupport |ds

EventHandler()

Default constructor

EventHandler(Subsystem subsys, SimulationEventList selist,

TimeManager tmgr, EventScheduler esched,

ReactionWindowManager rwmgr, IDataSupport ids)
Constructor

void

handle_event(SimulationEvent se)

Handle outstanding event in the SimulationEventList sel,
including saving history, passing parameters, evaluating port-,
pre- and post-condition, handling reaction window, and
scheduling new events.

trans_spec

get_transition_spec(SimulationEvent se)
Get transition specification corresponding to se.

123

Class EventScheduler: The scheduler of simulating events. It controls the time order

P

Attributes

of when and what events should be fired. It is one of core classes of Simulator module.

Subsystem | ss

SimulationEventList | sel

TimeManager | tm

Tromclasslist | Trom_asts

SCSSimEv

Se_asts

EventScheduler()
Default constructor

EventScheduler(Subsystem subsys, SimulationEventList
selist, TimeManager tmgr, Tromclasslist trom_ast_list,
SCSSimEyv simev_ast_list)

Constructor

void

schedule_batchmode_events()

Only “Output” and not constrained events can be scheduled in
batch mode; others will be ignored.

It traverses the SimEvList to extract events, which is type of
“Output” and not constrained, to create SimulationEvent objects
and insert SimulationEventList. Finally, invoke
schedule_rendez_vous(...) to add events relative to these events
to SimulationEventList.

void

schedule_rendez_vous(SimulationEvent se)

It searchs all events associated with se and insert them into
SimulationEventL.ist.

Get TromPortTuple object associated with se, and then obtain the
corresponding TromPortTuple objects from link sdefined by
PortLink objects. Create new SimulationEvent objects with these
TromPortTuple objecs and same event, and then insert these
SimulationEvent objects into SimulationEventList object.

void

schedule_unconstrained_internal_events_from_initial_state()

It transfers the invocation to the internal function call:
schedule_unconstrained_internal_events_from_initial_state(Subs
ystem subsys)

void

schedule_unconstrained_internal_events_from_initial_state(S
ubsystem subsys)

Traverse Subsystem list. For each Subsytem object, traverse
all Trom objects and invoke the mothed
schedule_unconstrained_internal_events_from_initial_state(Tro
m trom) for each Trom object.

124

void [schedule_unconstrained_internal_events_from_initial_state(
Trom trom)

At the beginning of the system running, get all
unconstrained internal events, whose states are same as the
current state of trom, from TROMclass object; afterwards, create
SimulationEvent objects with them and insert into
SimulationEventList.

void | schedule_unconstrained_internal_event(Trom trom)

Get all unconstrained internal events such as “Out” event,
which fire the state same as the current state of trom, from
TROMclass object; afterwards, create SimulationEvent objects
with them and insert into SimulationEventList.

Class Int_Sim: Get AST and initialize all relative classes, then start the simulator

Subsystem |ss;

SimulationEventList | sel

TimeManager | tm

Simulator | sim
LSLLibraryManager | llm
LSLLibrarySupport {1ls
ObjectModelSupport | oms

SubsystemModelSupport | sms

ConsistencyChecker |cc

QueryHandler {gh

TraceAnalyzer |ta

Debugger | dbg

AxiomGenerator |ag

Reasoning_system {1s

Int_Sim()
To initialize all data members to null.

void | Start(AST ast, SimulatorPane sPane, String d, String c, int
)

To create various objects by using AST object and
construct a new object of class Simulator with these objects, and
then execute the run() of this Simulator object to start the
simulation.

125

Class LSLLibraryManager: To create instances of Traits defined in LSL library.
{Attributes . ‘ o -

Trait| Trait new_lIsl_trait(LSLtrait trait_ast, attribute
attribute_ast)

Object creation method. It creates a kind of trait object
according to the name described in trait_ast.

Trait | copy_Isl_trait(Trait Isl_trait)
Trait object copy constructor. It creates a new trait
object from an existing trait object.

Class LSLLibrarySupport: To implement function call defined in traits’ definition.

object |evaluate_function_call(SimpleNode expr, Port pid,
AssignmentVector asgn_vect)

To assert which trait object should receive this function
call and then invoking corresponding following functions.

object |evaluate_function_call_set(Trait tr, SimpleNode expr, Port
pid, AssignmentVector asgn_vect)
Make a function call to Set object and return the result.

object | evaluate_function_call_queue(Trait tr, SimpleNode expr,
Part p, AssignmentVector asgn_vect)

Make a function call to Queue object and return the
result.

object |Object evaluate_function_call_stack(Trait tr, SimpleNode
expr, Part p, AssignmentVector asgn_vect)

Make a function call to Stack object and return the
result.

object| Object evaluate_function_call_part(Trait tr, SimpleNode
expr, Port pid, AssignmentVector asgn_vect)
Make a function call to Part object and return the result.

Class ObjectModelSupport: To support the evaluation of logical assertions included
in the transitions of the specification of TROM classes. Its functions will invoke
functions of LSLLibrarySupport.

Subsystem | ss

Tromclasslist | trom_ asts
SCSlist|Scs_asts

126

—

LSLLibrarySupport |lIs

Port | pid

AssignmentVector jasgn_vector

ObjectModelSupport(Subsystem subsys, Tromclasslist
trom_ast_list, SCSlist scs_ast_list, LSLLibrarySupport
Isl_lsup)

Constructor.

boolean | evaluate_assertion(SimpleNode expr, attributelist al, Port
p_id , AssignmentVector asgn_vect)
Invoke evaluate_bool_expr(expr.get_children(), al)

boolean |evaluate_bool_expr(SimpleNode expr, attributelist al)

Assert whether it is unary or binary bool expression. It will
invoke evaluate_binary_bool_expr(expr, al) for binary bool
expression and evaluate_unary_bool_expr(expr, al) for unary
bool expression

boolean | evaluate_binary_bool_expr(SimpleNode expr, attributelist al)
Evaluate binary bool expression.

boolean |evaluate_unary_bool_expr(SimpleNode expr, attributelist al)
Evaluate unary bool expression.

boolean |evaluate_inequality_expr(SimpleNode expr, attributelist al)
Evaluate inequality expression.

boolean | evaluate_equality_expr(SimpleNode expr, attributelist al)
Evaluate equality expression.

int|evaluate_unary_int_expr(SimpleNode expr, attributelist al)
Evaluate unary integer expression such as len(x).

Port |evaluate_unary_port_expr(SimpleNode expr, attributelist al)
Evaluate unary port expression.

Trait {evaluate_unary_trait_expr(SimpleNode expr, attributelist al)
Evaluate unary trait expression.

Class PortLink: To model the link between two objects defined in Configure section
of SCS file.
i‘?gtes‘ “

TromPortTuple | tp_tuplel

TromPortTuple | tp_tuple2

PortLink(Trom t1, Port p1, Trom t2, Port p2)
To establish the link between (t1, pl) <-> (12, p2)

127

Att

TromPortTple

Class PortLinkList: List of PortLinkList objects.

p_tuplel

TromPortTuple

tp_tuple2

PortLinkList()
Default constructor

List

PortLinkList(PortLink pl)
Constructor

As the collection of PortLink objects.

Class Ports:

To implement Round-bin algorithm.

Attribut ‘
int{port_card
String | port_typ
SimPortlist | port_lst
Node {lru_port_node

int

int

ports_tried

:

trial_count()
Get ports_tried.

void

init_trial_count()
Initialize the variable ports_tried to 0.

void

increment_trial_count()
Increment ports_tried

Node

Iru_port()
Get the least recently used port in all usable link ports for a

given port according to the System Configuration Specification —
SCS file.

Port

get_port(String p_id)
Get the port that names p_id.

128

Class ReactionWin

dow: To represent a timing requirement in a time constraint. It is

described by the lower and upper bound of time constraint as well as the

Attr

nt

corresponding SimulationEvent object

low

int

up

SimulationEvent

Se

ReactionWindow()
Default constructor

ReactionWindow(int 1, int u)
Constructor

ReactionWindow(int 1, int u, SimulationEvent simev)

Constructor

int

lower()
Return the lower bound - lower

int

upper()
Return the upper bound - up

SimulationEvent

get_scheduled_reaction()
Return the SimulationEvent object — se constrained by the
indicated time range.

boolean

within_window(int t)
To determine whether ¢ is in the range [low, up]

boolean

opeq(ReactionWindow w)
To determine whether it is equal to the ReactionWindow
object - w

void

display(PrintStream out)

void

display()

Class ReactionWindowManager: Manage the ReactionWindow when events and

transitions issue.

Subsystem

S8

TimeManager

tm

EventScheduler

void

€S

handle_transition(SimulationEvent se, trans_spec ts_ast)
To handle the transition relative to the SimulationEvent se.

129

It fires outstanding reactions, disables reactions associated with a
time constraint when the TROM enters a disabling state, or
enables reactions time-constrained by a transition.

void

fire_reactions(SimulationEvent se, time_constraint tc_ast)
Create a ReactionHistory object to store historical state and
maintain the ReactionWindow list.

void

disable_reactions(SimulationEvent se, time_constraint tc_ast)
Disable reactions associated with a constraint when the
TROM enters a disabling state.

void

enable_reaction(SimulationEvent se, time_constraint tc_ast)
Create a ReactionHistory object to store historical state and

invoke schedule_enabled_event() to schedule events constrained

by time constraints that involves this transition as the start time.

Class ReactionVector: To model the timing behavier of the Trom class defined
in .trom file. It encapsulates all reactions of a trom through maintaining a

v

butes

i ReactionSubVectorList | rsvl

ReactionSubVectorList object.

ReactionVector(TROMCclass statics)
Constructor. Create ReactionSubVector for each time
constraint and add them into ReactionSubVector list.

ReactionWindowList | get_reaction_windows(time_constraint tc_ast)

Traverse rsvl to find and return the ReactionWindowList
object corresponding to the time constraint fc_ast

Class ReactionSubVector: To encapsulate some reaction information extracted from

Attributes

time constraint for dynamically handliqg. o

time_constraint

tc_ast

ReactionWindowList {rw_list

time_constraint] time_constrain()

Get encapsulated time constraint

ReactionWindowList | reaction_windows()

Get the Reaction Window List corresponds to the time
constraint

Class Simulator: Simulator is the core class of the simulator module. It really
executes the simulating function.

130

Subsystem | ss;

SimulationEventList | sel

TimeManager | tm

SimulatorPane | simPane;

boolean dbg_mode

Trom |temp_trom

ObjectModelSupport joms

SubsystemModelSupport | sms

ConsistencyChecker | cc

instantiatelist|temp_il

Node | temp_nptr

Debugger, dbg

AxiomGenerator jag

Reasoning_system |rs

EventHandler|eh

ReactionWindowManager {rwm

Tromclasslist| Trom_asts

SCSlist|Scs_asts

SCSSimEv | Se_asts

EventScheduler es

String j value(]

Simulator ()
Default constructor. Initialize all data members to null.

Simulator(Reasoning_system resy, Subsystem subsys,
SimulationEventList selist, TimeManager tmgr,
ObjectModelSupport objms, SubsystemModelSupport
subsysms, ConsistencyChecker cchk, Debugger dbger,
AxiomGenerator axgen, Tromclasslist trom_ast_list,
SCSlist scs_ast_list, SCSSimEv simev_ast_list,
SimulatorPane sPane)

Initialize data members with input values.

void

initialise_sim(String d, String c, int t)

It invoke the initialize_subsystem() of class
SubsystemModelSupport to intilize all subsystems and their
included subsystems with the information in the AST. It
performs the Time Interval Comparison algorithm and
schedules all unconstrained output events as well as

131

unconstrained internal events from initial state.

void

handle_sim_debug_mode()

Traverse the Simulation Event List and handle each event
one by one, which is done by invoking handle_event(). At
same time, schedule unconstrained internal events that go out
the current state of each trom object. Finally, output the events
and Trom states to the screen.

void

run()
It invokes handle_sim_debug_mode() or handle_sim() to
handle events in Debug mode or Non-debug mode.

void

handle_sim()
It is same as handle_sim_debug_mode() other than doing
so continuously.

Subsystem

get_ss()
Get the subsytem

TimeManager

get_tm()
Get the time manager

SimulationEventList

get_sel()
Get the Simulation Event List

Debugger

get_debugger()
Get the debugger

Boolean

debugger_mode()
To determin if it is in the debug mode

void

set_debugger_mode(String d)
Set debug mode according the value of String d

void

resortTimeConstraint(Trom trom)
Perform the Time Interval Comparison algorithm to sort
the time-constrained events based on their time interval.

void

insertByTimelInterval(time_constraint

timeConstraintNode, LinkedList targetList)

It is used by the resortTimeConstraint() to perform Time
Interval Comparison algorithm.It inserts timeConstraintNode
to targetList according to the order of their time interval.

SimulatorPane(Mainwindow mw)

To construct the simulator user interface.

132

StartAction | Action listen of button “Start”. Fired to execute start() of class

Class Subsystem:

Model subsystem defined in the SCS.

1utes

String |system_name;

SubsystemList |include_list

TromList | trom_list

PortLinkList | portlink_list

PortLinkList | portlinks()
return portlink_list

TromPortTuple |get_linked_tromport_tuple(TromPortTuple tpt)

To get the TromPortTuple object corresponding to ¢pt. This
TromPortTuple object is searched in the PortLink objects that is
in the portlink_list

Class SubsystemList: List of Subs

ystem objects.

SubsystemList()
Default constructor

SubsystemList (Subsytem s)
Constructor

:

As the collection of Subsystem objects.

Class trans_spec: To model the transition, including source state, destination state,
condition, and trigger event etc.

String | transition_label

boolean |if_initial_transition

state | source_state

state | destination_state

133

event

triggering_event

Trans_Parmlist

parms_and_values

ASTStart

port_condition

ASTStart

enabling_condition

ASTStart

post_condition

trans_spec(String tl, boolean ins, state ss, state ds, event te,
Trans_Parmlist pv, ASTStart pc, ASTStart ec, ASTStart
poc)

Constructor

trans_spec()
Default Constructor

void

set_trans_label(String tl)
Set the name of the transition as #l.

String

get_trans_label()
Get the transition name

boolean

get_if_initial_state()
To determine whether this transition is going out from
initial state.

void

set_if initial_state(boolean ins)
Set true if this transition is going out from initial state.

void

set_source_state(state ss)
Set the source state as ss.

state

get_source_state()
Get the source state

void

set_destination_state(state ds)
Set the destination state as ds.

state

get_destination_state()
Get the destination state.

void

set_triggering event(event te)
Set the triggering event as te.

event

get_triggering_event()
Get the triggering event.

void

set_parms_and_values(Trans_Parmlist pv)
Set the parameter expression list as pv.

Trans_Parmlist

get_parms_and_values()
Get the parameter expression list

void

set_port_condition(ASTStart pc)
Set the port condition as pc.

ASTStart

get_port_condition()

134

Get the port condition.

void

set_enabling_condition(ASTStart ec)
Set the enabling condition as ec.

ASTStart

get_enabling_condition()
Get the enabling condition.

void

set_post_condition(ASTStart pc)
Set the post condition as pc.

ASTStart

get_post_condition()
Get the post condition.

void

display(PrintStream out)
Display all information corresponding to this transition

void

display_labels(PrintStream out)
Display all labels such as state name, event name etc.

Class Trom: To mo

state and event list et

String

del the trom object defined in the SCS file, including its dynamic

trom_label

String

class_label

PortsList

port_list_list

state

curr_stat

AssignmentVector

asgn_vect

ReactionVector

reac_vect

TROMCclass

statics

SimulationEventList

history

P

Ports

SLLibraryManager

Ilm

get_port_list(String port_type_name)

Traverse the port_list_list to find and return the Ports
object whose port type name is same as the port_type_name;
otherwise, return null.

String | label()
Get Trom name - trom_label
String | trom_class()
Get Class name - class_label
state | current_state()
Get the current state of Trom object - curr_stat
TROMclass | ast()

135

Get the TROMclass - statics

lass TROMCclass:

String

Model the TROM classes defined in .trom files.

class_name

portlist

port_type_list

eventlist

event_list

statelist

state_list

attributelist

att_list

LSLtraitlist

Isl_trait_list

att_funclist

att_func_list

trans_speclist

trans_spec_list

time_constraintlist

boolean

is_a_constrained_event(event e)

To determine whether an event is a constrained event.
Input event is not a constrained event. It also searches
time_constraint_list to find whether this event is encapsulated in
this list.

eventlist

get_unconstrained_internal_event(state s)
To find all events that is internal and not constrained and
their states are same as s.

void

set_classname(String s)
Set the TROM class name as s

String

get_classname()
Get the TROM class name

void

set_portlist(portlist pl)
Set the port list as pl. The port list is the list following the
TROM class name in the definition of the TROM class.

portlist

get_portlist()
Get the port list

void

set_eventlist(eventlist el)
Set the event list as el. The event list corresponds to the list
defined in the Events section of the TROM class.

eventlist

get_eventlist()
Get the eventlist

void

set_statelist(statelist sl)
Set the state list as sl. The state list corresponds to the list
defined in the States section of the TROM class.

136

statelist

get_statelist()
Get the statelist

void

set_attribute_list(attributelist al)
Set the attribute list as al. The attribute list corresponds to
the list defined in the Attributes section of the TROM class.

attributelist

get_attributelist()
Get the attribute Isit

void

set_LSLtraitlist(LSLtraitlist Isl)
Set the LSL trait list as Isl. The L.SL trait list is the list of
trait defined in the Traits section of the TROM class.

LSLtraitlist

get_LSLtraitlist()
Set the LSL trait list

void

set_att_func_list(att_funclist afl)

Set the attribute fuction list as afl. The attribute fuction list is
the list defined in the Attribute-Function section of the TROM
class.

att_funclist

get_att_func_list()
Get the attribute fuction list

void

set_trans_speclist(trans_speclist tsl)

Set the transition specification list as zs/. The transition
specification list corresponds to the transition list defined in the
Transition-Specifications section of the TROM class.

trans_speclist

get_trans_speclist()
Get the transition specification list

void

set_time_constraintlist(time_constraintlist tcl)

Set the time constraint list as zcl. The time constraint list
corresponds to the time variable list defined in the Time-
Constraints section of the TROM class.

time_constraintlist

get_time_constraintlist()
Get the time constraint list

tes

Trom

Class TromPortTuple: To model the link between objects such as (t1, pl).

tpt_trom

Port

Me

TromPortTuple()

tpt_port

Default constructor

TromPortTuple(Trom trom, Port port)

Constructor

137

boolean |opeq(TromPortTuple tpt)
To determine whether two TromPortTuple objects are
same.

138

