A B+-tree Index for the Know-It-All

Database Framework

Jingxue Zhou

in
The Department

of
Computer Science

Presented in Partial Fulfilment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

August 2003

©lJingxue Zhou,2003

National Library Bibliotheque nationale

of Canada du Canada

Acquisitions and Acquisisitons et
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Canada

Your file Votre référence
ISBN: 0-612-83927-3
Our file Notre référence
ISBN: 0-612-83927-3

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

ABSTRACT

A B+-tree Index for the Know-1It-All Database Framework

Jingxue Zhou

An efficient implementation of search trees is crucial for any database systems. The
B+-tree 1s one of the most widely and studied data structures and provides an efficient
index structure for databases. The Index subframework is a component of the Know-It-
All database framework. It covers tree-based indexes such as B+-tree, R-tree, X-tree and
SS-tree, including sequential queries, exact match queries, range queries, approximate
queries, and similarity queries. Our B+-tree implementation is a proof-of-concept for the
Index subframework. Our B+-tree index is designed to be a container by following the
STL style in C++ and implemented by using design patterns and generic programming
techniques. Therefore, the B+-tree index can adapt to different key types, data types,
different queries, and different database application domains, and be easy and convenient

for developers to reuse.

il

Acknowledgements

I would like to thank my supervisor, Dr. Butler Gregory, for his valuable guidance,

encouragement, patience, support and hard work throughout my study and thesis work.

I also extend my gratitude to my groupmates, Bin Nie and MinAn Zhong. Working in the

group and discussing with them are always pleasant and enjoyable.

I really would like to thank my wife, Ying Liu. It is no doubt that without her tremendous

encouragement and unfailing support, I would not have made it throughout my studies.

I dedicate this thesis to my wife Ying Liu and our soon-to-be-born son.

v

Contents

LIST OF FIGURES AND TABLES VIl
CHAPTER 1 INTRODUCTION 1
1.1 THE PROBLEM AND RELATED WORKccovviiiiiitieirieereeecreeeneeenesesneeeseessveesnseesnees 1

L 1.1 THE PFODLIEM. ...t e st e e e e eaeaeeeeereas 1

L. 1.2 RelATEA WOFK..ocovvveiaiiieeeeeciei ettt e et eeee et eeeeeaeaeeeans 2

L2 OUR WORKeioiiiiniiiieiieieiitee e e eitteeentee s steeeeaeeeeeseeesesnesesssesssbtesssaeeessnsnessntnsessnnne 2
1.3 CONTRIBUTION OF THE THESISueeruriiiiiireeireeenreeireeereeeereeensesnesssneessneesneseneesenens 4
1.4 LAYOUT OF THIS THESISuttiiitiieeiieectie e creeectee et e sateeeeneeesaneeeseseeesesaeessemenenenens 4
CHAPTER 2 BACKGROUND 5
2.1 DATABASE INDEXuiitiiiiiiiiiieieeirec ettt eteseres et e e eetes et se bt seaeeesaeeseneesnesenaenenanes 5
2.2 BH-TREE INDEX......coiitiiiitieiieiiectie ettt e ete e etee et eeeesenessenesentssneeesaeeareesanesonanesennos 6
2.201 BF@C0uueecueeeeeieeeee ettt et e e st e st e et e e e e e aaaare e 6
.12 BA1F@€ uuveeeeceeeeeeee ettt st e et e st a e e ereaeenaaan 8

2.2 TEMPLATES AND GENERIC PROGRAMMING.........cueieiuiieernieienieesereeeeraeeesseeesseeeesens 14
2.2, 1 TEMPLALES ..ottt st ere ettt 14
2.2.2 GENeric PrOramMMINGccoeoveeeievaieseeereeaeeeeeseeseeneaseesesesasesnsonessessssaaesasons 16

2.3 THE STL STYLE....ctiiiiieiiieieetee ettt ctee ettt ettt eenesaessvesenaeeeneeeeeeaeeeanaeeens 17
2.3.1 CONBQINETS .t s et e st e s e ere e e et e s et e seeeeeeeeraaanreees 19
2.3 2 TEETALOTS ettt ettt e et e e e e et e e et e e et e e seeeasenaneen 21
2.3.3 ALGOTTIIMIS ...ttt 23
2.3.4 ALLOCAIOTS .ottt sttt e et e e s e e s e eeeeereseraenanen 24

2. 3.5 AAPIOFS ..ottt ettt n et re s e e s 24
2.3.6 FUILCIOTS oottt e e e e et e e e e e ae s eeseeasaeseseeemesenans 25

2.4 WHY THE CH4 STL STYLE? ..ottt 26
2.4.1 “Standard” and “Template”cccoeueeceeeeeeiiieeeeeeeeeeeeeeeeeeeesee s ereenen 26
204.2 ROUSE .o eeee e eee ettt et s e s v s eeae e et e s eneeseetesese s s e eaeseserseeseseeenns 27
2.4.3 SIAILET COUES. ...t e e e e e e et s e e eee e e eeeeseesasen 27
2044 FLEXIDILILY. .oovveveeneeeeeeeteeeeteeeeeeeeeeeee ettt e et e e te et ese e e e eereeene e 28
2.4.5 EffICIENCY. ..ottt ettt ettt eneenans 28

2.5 WHY DESIGN PATTERNS?oouviittiiiitieeetieteetteeeeeeeeeeeeeeeeeeseeeeeesesesetesssessessesesessssens 29
2.5.1 CaSting METROA...........ccoocovieveieieriieieeeieeeeeeetee et ee s 30
2.5.2 Composite DeSign PAIIEINcc.cveeveeeeeeeeeeeeieeeeeeeeeeeeeeeereeereseeeeeee e 31
2.5.3 PFOXY .ottt ettt ettt ettt e et e et e e eeeanaans 32
2.5.4 STNGLETON ...ttt ettt ettt et eeee e er e e s reeenaen 34

2.6 CHAMELEON TECHNIQUEccvtivviitiiitieeeeitieneistteeeeeeeeeeneeseeeeesesesseesssessesesesasssssessssens 34
CHAPTER 3 B+-TREE INDEX DESIGN 36
3.1 USE CASES. ..ttt ettt ettt ettt et ev et et et et e eae et et eteseseseeses et esreses 36
3.1.1 EXpert DevelOperc.cccouovovivimiveeeeieireisesesesesssesesesse s eeeeseeneen. 37
3.1.2 Database DEVeLOPEr.............coueceveuvieereiieeereeieeeeeeeeeessee e eeree s es e, 37

3.1.3 DAtADASE AAMURISTEQLOY «...covveveeeeeeeeeeeeereeeeeeerereeeveseseesenennenasessesesassesssssesesssseses 38

Bodi CLIERE ..ottt et s st 38

3.2 RELATION BETWEEN INDEX AND DATABASE DATA......ccccocuiiiiniiiiiiiiienie e 38
3.3 B+-TREE INDEX STRUCTURE........ccoviiiiiiiiiiiiiiiniee et s 40
3.3.1 BASIC COMPONERLS.....cc..evecrireevisrireiriesieesiseesiessivesesassessseessseessessssesessesssnssesnes 40
3.3.2 Class DiQGIaMcc.oouveuerinieriiiciiiieeisieete sttt see sttt sresanas 43

3.4 GENERAL INTERFACESccuiuiiiiiiiiiiiinieiiiiesesieesie oo seeeeiessessesesseeseseessenessessessessensens 45
CHAPTER 4 B+-TREE INDEX IMPLEMENTATION 47
4.1 ISSUES ENCOUNTERED IN THE IMPLEMENTATION.........coueteteitnrererrereneerenierennnaeseenenen 47
4.1.1 Static or Dynamic PolymorphiSm?ccccoocvevoveiiiiesieesieeceeieeeieseeiree s 47
4.1.2 Interface Realization or Implicit Container Inclusion?................cccccvvevenenn.. 47
4.1.3 No Virtual Template FURCIIONccccocerviineeserieiiieeeseeseesesaesaessee s 47

4.2 THE SOLUTIONS TO B+-TREE IMPLEMENTATION........c.cetetertenuereerenierieeereneereenresennnas 49
4.2.1 B+-tree Implemented by using Composite Pattern.................ccccouecvevuennennnenn. 49
4.2.2 Alternative B+-tree Implementation using Composite Pattern....................... 51
4.2.3 An Improved Way using Composite PAIIErN.............coeerceeeeenieeiesienieesuesinsssenns 52
4.2.4 Using Chameleon Techniques to Uniform the Interface of Page..................... 55

4.3 OUR IMPLEMENTATION OF B+-TREE INDEXcccccoeueinierinieinieniieiinieenteeenerieenees 58
3.1 PAGE CLASS ...ttt ettt et sra e 60
4.3.2 Implementation of LeafPage CONIAINETccccoceeerercvrrieceerierierensesareesenes 62
4.3.3 Implementation of IndexPage CONIAINETccovureveivecuesiesieareireseeirenneerens 67
4.3.4 Implementation of B+-tree Index CONtAINET.............coceeeeeveeecveeeereereeienann. 71
4.3.5 PYOXY MECHANISHL.....c..ooveeeieeeesieie ettt et eve et ereesae s tessaesanan 81
4.3.6 USE BH-11€ INAEX........ccovieiiiiieeeeeesieeeeeeeeeeeee et eae e 90

A4 TESTING ..ottt ettt es ettt e b etk et e et senesaas e saaaas 92

4. 4.1 COTrectness TESHNGcccccccveeveeeiririeirieierteeeetese e e ssa e s ess s teeseeneeereens 93
4.4.2 Performance TESHING...........coouecvcivvinieneieienieieiesreseeseses et et ese s s 95
CHAPTER 5. CONCLUSION 100
BIBLIOGRAPHY 102

vi

List of Figures And Tables

FIGURE 2.1 B-TREE INDEX PAGE WITH M-1 SEARCH KEYS ...uvvviviiieiiriiiiiinierereierereesoniserassenns 7
FIGURE 2.2 B-TREE LEAF PAGE WITH M-1 SEARCH KEYS...uuuvttrterireireeisirorinrrnneeeeeeserisessrononns 7
FIGURE 2.3 B+-TREE WITH SEPARATE INDEX AND LEAF PARTS.cccovvvviirnrrrerenerrereeiresisennns 9
FIGURE 2.4 SAMPLE B+-TREE QUERYING PROCESS: FIND(5)....uvtvieiriiniireirirennireeesneeeesenne 10
FIGURE 2.5 SAMPLE B+-TREE INSERTING PROCESS:INSERT(S5) ...evvieviiiiirinrinrieiereseniirieeenanns 11
FIGURE 2.6 SAMPLE B+-TREE DELETING PROCESS: ERASE(9)cccooiiiiiiiiiiiiieeeccciiieeeeeens 13
FIGURE 2.7 STL COMPONENTScccovivrurtreierimriorirerereseseriiesiorssesessesssessonsssssssessesssosssisssssns 18
FIGURE 2.8 ORTHOGONAL COMPONENT STRUCTUREuvuviveieriieeeeeimiinnirrrereeresesesosnssansennns 18
FIGURE2.9 STL CONTAINERScovvtiiiireeeeeiteeeeriireeeeeeiseeeeeesisnresesnssnresesessssseseorsssssessesnnns 19
TABLE 2.1 TIME AND SPACE COMPLEXITIES OF CONTAINERScccooivivrriieininrreeeorirereeesennnns 21
FIGURE 2.10 ITERATOR ACTIVITY ..vviiiieiurreeeeirrreeeeeirreeeseeinseesesessseeessessssesesssssssessersssssesesnns 21
FIGURE 2.11 ITERATORS HIERARCHYeceieieiiiiinrierireeersieissinrersreeessessesosisssessesesesssssossssonsnes 22
TABLE 2.2 THE STL FUNDAMENTAL ALGORITHMSccovvreiiiiirreeeerirrereeennneseeessessesseesnns 23
FIGURE 2.12 CASTING METHOD DESIGN PATTERNcceouvtriiiiniereeentrireseinisreesssesssensessosnnns 30
FIGURE 2.14 PROXY CLASS DIAGRAM ...uvvieiiirireeiiiieeeeeiseeeeeeiisseesesissrressassssnsessosssnesessssnnn 32
FIGURE 2.15 PROXY OBJECT DIAGRAMcocouvieeeirrereeiiinreeeeenssneeseesisseseesssssesessonssssesssesnns 33
FIGURE 2.16 SIMPLE SMART POINTER: AUTO_PTR........ccovvveriemirereeesinnrereeeossereeseesueesesesans 34
FIGURE 2.17 INTERFACE OF VALUE CLASS ... ieuttvtrtieeireieiesissrereiesssesessosssssessesssssssssessssessons 35
FIGURE 2.18 FUNCTION VALUE() ...uvtiiieiuiiieeeiiiieeeeireeeeeeirereeeeenereeresestnrseessessesessnssssesesesons 35
FIGURE 3.1 DETAILED USE CASESoiiiiititieiiittie s et eecsetrte e e seevasesssesrseessesnnesssssssasassesss 36
FIGURE 3.2 RELATION BETWEEN THE INDEX DATA AND THE DATABASE DATAc.cvvuu...... 39
FIGURE 3.3 THE COMPONENTS LAYOUT [GAF2001]....coiiiiiiiiiiiciirie e 40
FIGURE 3.4 BASIC COMPONENTS......cccirittirerittereeianrreeeerureesessaressesssissesessossssessssssresesssssns 41
FIGURE 3.5 B+-TREE INDEX CONTAINERcovvtiiiutieiiiieeisiereeosteesoneeessosesssssesssssesssssseesennes 43
FIGURE 3.6 MAIN CLASS DIAGRAM OF THE B+-TREE INDEXcvooovvviiviiiiininreieeinnneeeeeeninns 44
FIGURE 3.7 VIEW OF MAIN INTERFACEScoiivvtiiiinteeeeenitreeseeistrieeeseiiinsessssrneeessssnssssessss 46
FIGURE 4.2 SAMPLE CODES TO USE TYPE-CASTING ...oeeeevivreeeerirereesseiireeessesssereesesnenneeesses 49
FIGURE 4.1 B+-TREE CLASS DIAGRAM USING COMPOSITE PATTERNccoovvurveeieirreereerins 50
FIGURE 4.3 SIMPLE BH-TREEccuvviiiiitiiieiiiiieeeeiiireesisinreeessssasetesssssesessssosssessssonsenesesanns 52
FIGURE 4.4 PAIRING KEY AND POINTER FOR BH-TREEccoeovouvieiiiiiieeeeereeeeeeereeeeeenenanas 53
FIGURE 4.5 A IMPROVED WAY TO IMPLEMENT B+ TREE USING COMPOSITE PATTERN........ 54
FIGURE 4.6 A SAMPLE USING CHAMELEONuvviiiviiiiiiiiiieeisieeeeeneeeesnseeessnseesssessssuserenanne 56
FIGURE 4.7 B+-TREE DIAGRAM USING CHAMELEON TECHNIQUEuveeeeeeeeeeeeeeeeeeeeneeans 57
FIGURE 4.8 B+-TREE CLASS DIAGRAM USING CASTING-METHOD AND COMPOSITE PATTERN
... 59
FIGURE 4.9 INTERFACE FOR PAGE CLASSeoiiueiiiieieeeceteeeeeeeseeteteeeeeeeeeeeseneaeeeseneeeseeaeesanns 61
FIGURE 4.10 LEAFPAGE STRUCTUREccvtiiitiiiiiieeiereeesereeesssesessssesensneesereeesessesssssssssseses 63
FIGURE 4.11 INTERFACE FOR LEAFPAGEccuvvviiiiiiiiiiiiiiiiececeiee st eeeeeeeseneenaeens 66
FIGURE 4.12 INDEXPAGE STRUCTUREccccuriveiunreeeirirereesssiiseeeseseeeaeeessaeseeeessssesssnsseees 67
FIGURE 4.13 INTERFACE FOR INDEXPAGE..........cocoiiiutieiieiitiieeeeeeeeeeeeeeeeeeeeeeieeessssessneneseas 70
FIGURE 4.14 B4-TREE STRUCTUREc..oeeovvieiieieitieeitieeireeeeinseeossessesseeeseneeessneessssnenessanes 71
FIGURE 4.15 B+-TREE ITERATOR STRUCTUREceootrieeireeerserereneeeesesreeesereesseeseesnaresesssnns 72
FIGURE 4.16 SAMPLE CODES FOR OPERATOR () ..cvvtiiiiiiiiiieieirreeeieeeeeeeaeseeeseeeseennesenes 73
FIGURE 4.17 SAMPLE CODES FOR OPERATOR —() ...vviiiutieiiiieeireeeeiireeeeineereeeeeseeaeesseneeessans 74

vii

FIGURE 4.18 SAMPLE CODES OF FIND()ccecuieiuieiieereesreeireeeisesernsessssessesesesssssessessnsesens 75

FIGURE 4.19 B+-TREE INSERT ACTIVITY ..veeeeiiuutreiiniereeeeireeeeeieiereresssnsrseesssnsnssesssssssesesesenns 76
TABLE 4.1 THE INSERT ALGORITHM FOR B4-TREEc.coovttttieemeeeeeeeeeeeeeeeeeeeeeeeeeeeenenenanns 77
FIGURE 4.20 B+-TREE ERASE ACTIVITYovvviiivviiitieieiieeeiieeeeieneeesernsessessesssssessensneseneneressnes 78
TABLE 4.2 THE ERASE ALGORITHM FOR BH-TREESccooivtirereteeeneeeeeeeeeseeeeseeesaseeessanes 79
FIGURE 4.21 INTERFACE FOR B+-TREE INDEX........uvttttieitteeesenereeeeeesseeeeesseeseeesseseanesesases 80
FIGURE 4.22 PROXY(SMART POINTER) ACTIVITY ...oouvviiuieieeeireeeneeeereeeeeeeeseneneeenererenesennes 81
FIGURE 4.23 STRUCTURE OF NON-INTRUSIVE REFERENCE COUNTING SMART POINTER 82
FIGURE 4.24 INTERFACE FOR SMARTPOINTERccovoitiieeeeiireeeaeeeereeeeeeseiresereeeeseeeesssnes 83
FIGURE 4.25 INTERFACE FOR WEAKPOINTERccoooiiiiiieeiinteeeieeeeeeeeererenesereeeneneeessenes 84
FIGURE 4.26 INTERFACE OF LEAFPAGE WITH SMARTPOINTERS......ceioeitieereeeeeeeeeeereneeeans 85
FIGURE 4.27 INTERFACE FOR CACHEcoovviiiueiieceiieeeeieeeceteeseteteseeeeseseeeesnaeesseseesesenenessans 86
FIGURE 4.28 PHYSICAL STORAGE STRUCTUREouvvtiiiieereeeeeeeeeeeeesaseeeeeesaereeeessesssseessesssns 88
FIGURE 4.29 A CLASS DIAGRAM RELATED TO SERIALIZATION ..veuveeeeveeeeeeeeeeesiseesnesensessnns 89
FIGURE 4.30 SERIALIZATION METHOD.......cuttiuieeterereeeeeeetesseereeeesesesssessesseseessssssssssessssean 90
FIGURE 4.31 INTERFACE FOR INDEX FRAMEWORKoeoieiueeirererereereseeeeeeseeeesssressssssnessenns 91
FIGURE 4.32 TESTING PATTERN........coivitiiiiuitiriteeeerterereeessoresessteesenesesssaseesseseessssessssssesssssees 92
TABLE 4.3 PERFORMANCE TESTING RESULTS USING GIST DATASETcoeoveeeeeeeeeveeeeeenn 96
TABLE 4.4 PERFORMANCE TESTING RESULTS USING A LARGER DATASETcoovvevvveeennn.. 96
FIGURE 4.33 BUFFER SIZE AND INSERTION TIMEveeimteeeteeeeeeeieeeeeeeseeeeeseeeerseeseeeesesnnns 97
FIGURE 4.34 BUFFER SIZE AND DELETION TIMEcvvtioitieteieeeeieeeeeesereeseeseressereessnsssanens 98
FIGURE 4.35 BUFFER SIZE AND SEARCH TIMEooooiuiiiteieieieeeeereeeeeesereeseeeeeeesseessessssennns 98

viii

Chapter 1 Introduction

Database indexes are the search engines for database management systems. An index
1s commonly used to enhance database performance, but an efficient and effective index
will result in a better quality, and quicker responding database.

To achieve this goal, a specialized handcrafted index is a good way to support a
specific database application in a specific domain using domain-specific access methods.
However, these specialized access methods are usually hand-coded from scratch. As a
result, a specialized index has generally better code efficiency and performance but the
tradeoffs are development time and cost associated with the customized implementations.
Furthermore, the effort required to implement and maintain them is high.

Another choice is to develop a framework for a family of indexes, and reuse it to
develop different indexes for different applications. A framework is a skeletal group of
software modules that may be tailored for building domain-specific applications,
typically resulting in increased productivity and faster time-to-market. Therefore, the way

to specialize an index framework can largely reduce the cost of providing a new index.

1.1 The Problem and Related Work

1.1.1 The Problem.

The Generalized Index Search Tree, GiST [HNP95] is an existing framework of a
generalized index system. It has friendly hot spots that can be adapted to different key
types and access methods. However, GiST has tried to satisfy all the possible needs of the
future members of a family of applications at a time, so it often leads to an even more
generic code that is larger and less user-friendly. In addition, the source code itself,
largely influenced by the C programming language, has poor object-oriented style.

As the framework development methodologies improve, these problems are being
recognized and addressed. The Know-It-All Framework [BCC+2002] is an object-
oriented framework for database management systems with a good potential for

improving the process of developing better quality software.

1.1.2 Related Work

The Know-It-All Project [BCC+2002] has been underway at Concordia University.
This project is investigating methodologies for the development, application and
evolution of frameworks. A concrete framework for database management systems is
being developed as a case study for the methodology research. The aims of this project
are to research methodologies and models for framework evolution, to develop a
framework for database management systems, and to apply the framework to advanced
database applications for bioinformatics. It is written in C++, with some Java for user
interfaces, and XML for communication of data between the C++ framework and the
Java tools. The user interfaces will provide a full range of query mechanisms, from icons
for canned queries, to forms, to textual queries in set comprehension languages, and
diagrammatic queries.

The KIA (short for Know-It-All) project, a framework for DBMS that supports a
variety of data models of data and knowledge, and Case study is the integration of
different paradigms and heterogeneous databases [BCC+2002]. KIA involves multiple
subframeworks that are integrated together in an adaptable DBMS context. It started by
supporting the traditional relational database model, and it is expanding to support other
types of database applications using different data models. Eventually, it will be applied
to advanced applications in bioinformatics.

The Tree Index Framework is one of KIA subprojects. It is being developed in C++
to conform to the style of the Standard Template Library (STL) design of collections and
iterators. The index subframework covers tree-based indexes such as B+-tree, R-tree, X-
tree and SS-tree, including multi-dimensional trees and similarity-based retrieval. It also
covers sequential queries, exact match queries, range queries, approximate queries, and

similarity queries.

1.2 Our Work

B+-trees are the most common dynamic index structures in database systems. The
B+-tree index structure is one of the most widely used and studied data structure because
it is height-balanced, multi-way, and has external file organization.

In his thesis titled “Design of A Framework for Database Indexes” [Gaf2001],
Ashraf Gaffar designed the indexing framework to follow the STL style. The design

separates Index, Data, and Data Reference, uses iterators to define both positions within
indexes or files, as well as to refer to a collection of information. Allocators hide the
memory management issues, such as the use of buffers for IO from disk to memory for
index pages and leaf pages. The Data Reference is a smart pointer or proxy that hides
whether the actual location is in memory or on disk.

As we know, a framework is a procduct-line architecture, plus an implementation,
plus documentation that captures the intended use of the framework for building
applications. The implementation of a framework is an important part to be reused.
However, when we implemented a B+-tree index to follow Ashraf Gaffar’s design, we
found some problems required to be addressed and improved. In his framework design,
there is no base class for index pages and leaf pages. This causes too much type-casting
in the implementation of the B+-tree index. In addition, allocators are too complicated
because they do not only take care of memory, but also control access to disk.

In our implementation, we have redesigned the B+-tree index to follow the design of
the STL containers in C++, and good object-oriented design patterns. In order to avoid
too much type-casting, we add a base Page class, use design patterns and combine static
polymorphism and dynamic polymorphism mechanism. Furthermore, we separate the
responsibilities of allocators into two parts. Allocators are only responsible for the
memory management issues, and we use Proxy to load a page from disk on demand and
maintain the reference to the loaded page.

The B+-tree Index is designed to be a container that provides an iterator to its
contents. The only way to interact with the container is through its iterator. Because we
implement the B+-tree index by using design patterns and generic programming
techniques, the B+-tree Index can be easily reused anywhere like other containers in the
STL.

1.3 Contribution of the Thesis

The work described here involves the design and implementation of a suite of C++
classes, and correctness and performance testing for a B+-tree index.
The major concerns are:

o redesigning and implementing the B+-tree index to follow the STL style

» using design patterns and generic programming

e using a proxy to load a page on demand, and to maintain the reference to the

loaded page.

1.4 Layout of This Thesis
Some background on reusable tree-based indexes is presented in Chapter 2. Then the
B+-tree design is presented in Chapter 3. Chapter 4 describes the implementation of B+-

tree and testing in details. Finally, a conclusion is made in Chapter 5.

Chapter 2 Background

In this chapter, after reviewing database index and B+-tree index, we simply
introduce the relationship between static and dynamic polymorphism, the STL style, the
chameleon technique, and the design patterns that will be used in our design and the

implementation of the B+-tree index.

2.1 Database Index

Suppose we have a textbook lying around. If we want to find all pages relating to
“database index”, the best way is to look in the index that says “database index, pages 55-
65”. We just flip straight to the appropriate pages and get the information we need. Thus
we do not have to scan the whole book, which would take a long time.

The index of a book provides a way to find a topic quickly. Such an index is a table
containing a list of topics (keys) and numbers of pages where the topic can be found (data
reference). Indexes in databases work the same way as the index of our book does. A
database is any organized collection of information. An index is an auxiliary data
structure intended to help speed up the retrieval of information in response to certain
search conditions.

An index [GDW2000] is “a data structure that allows for random access to arbitrary
data within a field, or a set of fields. In particular, an index lets us find a record without
having to look at more than a small fraction of all possible records.” From this definition,
we can see that an index [BM1972] consists of “index elements which are pairs (x,a) of
fixed size physically adjacent data items, namely a key x and some associated
information a. The key x identifies a unique element in the index, and the associated
information is typically a pointer to a record or a collection of records in a random access
file.” All indexes are based on the same basic concept—Key and Pointer.

There are many different data structures that serve as indexes [GDW2000]: simple
indexes on sorted files, secondary indexes on unsorted files, tree-based indexes and hash
tables. Many of the advantages associated with simple index and secondary index are tied
to the assumption that the index file is small enough to be loaded in memory in its
entirety. When a simple index is too large to be held in memory, we should consider
using a hash table that is another useful and important index structure, and a tree-based

index that is a commonly used way to build indexes on any file. Although a hashed

organization can improve access speed, a tree-structured index such as B-tree and B+-tree
has more flexibility in both keyed access and ordered, sequential access.

The B-tree and its variant B+-tree are efficient data structures that are widely used as
tree-based multilevel indexes in database systems. They had already become so widely
used that Comer was able to state that “the B-tree is, de facto, the standard organization
for indexes in a database system” in his survey article titled “The Ubiquitous B-Tree”
[Com1979]. However, B+-trees can support true indexed sequenctial access as virtual
trees, and possibly compress separators and potentially produce an even shallower tree
than B-trees [FZ1992], so we choose the B+-tree index to be implemented first in the
KIA framework.

2.2 B+-tree Index

Since the B-tree is the basic foundation for the B+-tree, it will be helpful to understand
the B-tree first.
2.2.1 B-tree

In 1972, R. Bayer and E. McCreight announced B-trees to the world in their article
titled “Organization and Maintenance of Large Ordered Indexes” [BM1972]. This article
describes the theoretical properties of B-trees and includes empirical results. Then
Comer’s survey in 1979 [Com1979] provides an excellent overview of some important
variations on the basis of B-trees.

In Bayer and McCreight’s article, B-trees are designed to solve how to access and
maintain efficiently an index that is too large to hold in memory, so the index itself must
be external and is organized in pages that are blocks of information transferred between
main memory and backup storage like hard disks.

A B-tree of order n [FZ21992] is a multi-way search tree of order n with the following
properities:
1. Every page has a maximum of n children
Every page except the root and the leaves has at least | n/2 |,
The root is either a leaf or has at least two children
All the leaves are on the same level.

A nonleaf page with m children contains m-1 keys.

A O i

A leaf page contains at least [n/2 |-1 keys and no more than n-1 keys.

In a B-tree, one tree node can be made to correspond to a page. Non-leaf pages are
called index pages here as shown in Figure 2.1, containing search keys and pointers to
lower-level children. Leaf pages as shown in Figure 2.2 contain search keys and

references to data items or records.

P IKi [..... K |Pi K ..o Kni1 |P
’ 1 i-1 I i 1 w
child pointer) ,))
child pointer child pointer
X< Ky Ki.1<X< K| X,>Km-1

Figure 2.1 B-tree Index Page with m-1 search keys

v v

Data reference Data reference Data reference

k| | K, |1>i Koy |P..
[

Figure 2.2 B-tree leaf page with m-1 search keys

For leaf pages in Figure 2.2, P; points to either a file record with search key value K;,
or a bucket of pointers to records with that search key value. A bucket structure is used if
the search key is not a primary key, and the file is not sorted in search key order.

For non-leaf pages, index pages form a multilevel index on leaf pages. In each index
page as shown Figure 2.1 where m<n (n is the order of the B-tree), Pi is a child pointer to
a subtree containing search key values between K; ; and K;. Pointer P, points to a subtree
containing search key values that are greater than K,.;. Pointer P; points to a subtree
containing search key values that are less than K.

Each page, except the root and leaf pages, has at least n/2child pointers but has at

most n child pointers. Within each page, keys are ordered, such that K;<K><...<K,,.;.

A pair (K;, P)) is also called an entry. The root page has at least two child pointers unless
it is the only page in the tree.
The power of B-trees lies in the following significant advantages:
1. Storage utilization is guaranteed to be at least 50% and should be considerably
better in the average [BM1972].
2. The balance is maintained dynamically at a relatively low cost. No overly long
branches exist, and random insertions and deletions are accommodated to
maintain balance [FZ1992].

2.1.2 B+-tree

One of the major drawbacks of the B-tree is the difficulty of traversing the keys
sequentially. The B+-tree is designed to compensate this shortcoming. “In a B+-tree, all
keys reside in the leaves. The upper levels, which are organized as a B-tree, consist only
of an index, a road map to enable rapid location of the index and key parts” [Com1979].

Figure 2.3 shows the logical separation of the index and leaf parts, which allows
index pages and leaf pages to have different formats or even different sizes. In particular,
leaf pages are usually linked together left-to-right. To improve the reverse traversal, we
allow leaf pages to be double linked together. The double linked list of leaves is referred
to as the sequence set. The key and record information is not in the upper-level, tree-like
portion of the B+-tree but contained in the sequence set. The leaves are linked together to
provide a sequential path for traversing the keys in the tree. Index access to this sequence
set is provided through a conceptually (though not necessarily physically) separate
structure called the index set. In a B+-tree the index set consists of copies of the keys that
represent the boundaries between sequence set blocks. These copies of keys are called
separators since they separate a sequence set block from its predecessor. Keys are

replicated in index pages to define paths for searching individual records.

root ~

>Index parts
Random search

| T T |
wead]] R R R R

Leaf parts

Figure 2.3 B+-tree with separate index and leaf parts.

Because of the implications of having an independent index and sequence set, and all
the operations for the sequence set, the B+-tree can be designed to be a STL container.
Leaf parts can be accessed through iterators but index parts are invisible for users.

Insertion and find operations in a B+-tree are processed in a way similar to insertion
and search operations in a B-tree. Find operations differ from those in a B-tree in that
searching does not stop if a key in the index equals the query value. A searching
processes from the root of a B+-tree through the index of a leaf. Since all the keys reside
in the leaves, it does not matter what values are encountered as the finding progresses as
long as the path leads to the correct leaf. Insertions into B+-tree are similar to B-tree
insertions except that when a page is split, the middle key is retained in the left half page
as well as being promoted to the parent.

The B+-tree retains the search and insertion efficiencies of the B-tree but increases
the efficiency of searching the next record in the tree from O(log N) to O(1). Instead, the
nearest right or left pointer is followed, and the search proceeds all the way to a leaf.

During the deletion in a B+-tree [Com1979], the ability to leave non-key values in
the index part as separators simplifies the operation. The key to be deleted must always
reside in a leaf so its removal is simple. As long as the leaf remains at least half full, the

index need not be changed, even if a copy of a deleted key is propagated up into it.

Queries on B+-tree
Algorithm Find finds all index records with a search key value of &, given a B+-tree
whose root is 7.
F1 [Find subtrees] If Tis not a leaf, examine keys of T to find the smallest search
key value Ki>k. For Ki, invoke Find on the corresponding pointer Pi.

F2[Find leaf node] If T'is a leaf, check keys to find the first data reference with the

key value of k.
7
N
3 5 9
// \ / \
—>
4-%2 234 2556278 291

| 1 | .
vy VYV VY v

Figure 2.4 Sample B+-tree querying process: find(5)

s

Figure 2.4 shows a querying process with the search key 5 in a B+-tree of order 3.
Finding begins with the root of the tree, and key comparisons direct to the right position
of a proper leaf. Here the thicker lines represent the search path.

In processing a query, we traverse a path from the root to a leaf page. Except for the
root, each page in a B+-tree has at least d=n/2 (n is the order of the tree) children since
there are between d and 2d keys per page. The root has at least 2 children. The height h of

a tree with s total keys is therefore h<log, (s+ly2

[Com1979]. Thus, the cost of processing
a find operation grows as the logarihm of the file size. A B+-tree of order 50 which
indexes a file of one million records can be searched with only 4 disk access in the worst

case.

10

B+-tree supports not only equality queries but also range queries efficiently. Range
queries use the forward/backward pointers in the leaf nodes to get all the records in the
requested range.

Insertion and deletion are more complicated than searching, as they may require
splitting or merging nodes to keep the tree balanced.

Insertion into B+-tree Algorithm
Algorithm Insert inserts a new entry E with the search key of £ into a B+-tree.
I1 [Find position for new entry] Find a leaf page N where search key value k should
appear.
12 [Insert entry into page] If N has room for another entry, insert E into N. Otherwise,
move half of the entries into a new page NN. This is called splitting.
I3 [Propagate changes upward] let P be the parent page of N and NN if a split was
performed. Let E be a new entry with the pointer to NN. Set N=P if N is not the
root,Repeat from I12.
14 [Grow taller] If page split propagation causes the root to split, create a new root

whoes children are the two resulting pages.

Ny

-

|/

A
/ 1P\ —— \
/NN

A DR EX il

A A

Figure 2.5 Sample B+-tree inserting process:insert(5)

9

During an insertion operation, first a search from the root is performed to locate the

proper leaf for the insertion. Then the insertion is performed and balance is restored by a

11

procedure which moves from the leaf back toward the root. Referring to Figure 2.4,
Figure 2.5 shows the tree after the key “5” was inserted. Because the appropriate leaf (the
third leaf) is already full, a split occurs: a new page (the fourth leaf) is created and a lager
half in the old page is moved into the new one. Then a copy of the middle key (the first
key of the new page) is promoted to its parent where it serves as a separator. Usually the
parent page will accommodate an addition key and insertion process terminates. But if
the parent happens to be full too, then the splitting process is applied again. However, the
primary difference between the splittings of index pages and leaf pages is that the middle
key is promoted to the parent in the index page splits. Here the boxes with the thicker
border represent new pages created during a splitting process. In the worst case, splitting

propagates all the way to the root and the tree increase in height by one level.

Deletion from B+-tree
Algorithm Erase removes index entry E from a B+-tree.
D1 [Find leaf page containing E] Find the leaf page Ncontaining E. Stop if the entry
was not found.
D2 [Erase entry] remove E from N.
D3 [Propagate changes] If N was sparse (the number of values is less then n/2, wher
n is the order of the tree), check to determine whether to borrow from its right or left
sibling. If yes, moving some into N makes it not sparse, and update the search key of
its borrowing sibling in its parent. If not, merge with a sibling NN. Let P be the parent
of NN and E be the entry of NN in P. Set N=P if N is not the root, repeat from D2.
D4 [Shorten tree] If the root page has only one child, make the child the new root.

12

./
_’
L1 L] Ll |

]
vy vy vYy vy v v

1 2 304 45,5 s, 6 &7 raff:

Figure 2.6 Sample B+-tree deleting process: erase(9)

Deletion also requires a find operation to identify the proper leaf. If the key to be
erased resides in a leaf, it can just be removed. After that, we must check if the number of
the elements in the leaf is less than half of the order. If yes, then underflow occurs and
redistribution of the keys becomes necessary. Restoring balance could be obtained by
borrowing from a neighboring leaf. Redistribution is shown in Figure 2.6 after the key
“9” is deleted. The key “8” is borrowed from the left neighbor. But if the two neighbors
are not sufficient, a merge must occur. Merge, which is the inverse of splitting, combines
two pages into one, and the other is discarded. Since only one page remains, the key
separatoring the two pages in the parent is no longer necessary and it will be deleted from
the parent. If the parent happens to be sparse too, then the same merging process is
applied again. Finally, if the children of the root are merged, they form a new root,
decreasing the height of the tree by one level.

An insert or erase operation may require additional secondary storage access
beyond the cost of a find operation. Overall, the costs are ast most doubled, so the height
of the tree still dominates the expressions for these costs. Therefore, in a B+-tree of order
n for a file of s records, insertion and erasion take time proportional to log,.S

[Com1979]. In all cases, the splits/merges are amortized over n/2 operations.

13

2.2 Templates and Generic Programming

Templates provide a generic way to reuse source code as opposed to inheritance and
composition that provide a way to reuse object code. By using templates, we can design a
single class that operates on data of many types, instead of having to create a separate
class for each type. Also called parametized types, templates provide specifications for
general-purpose classes and functions that automatically specialize themselves to new
uses. In C++, class and function templates are particularly effective mechanisms for
generic programming because they make the generalization possible without sacrificing
efficiency.

2.2.1 Templates

Templates are mechanisms for generating functions and classes based on
type parameters (templates are sometimes called "parameterized types"). With respect to
their usage, there are two basic types of templates: function templates and class
templates. A class template [DWH1997] allows the compiler to generate multiple
versions of a class type by using type parameters. A function template [DWH1997]
allows us to define a group of functions that are the same except for the types of one or
more of their arguments or objects.

Template parameters

Template parameters [VM?2002] are declared in the introductory parameterization
clause of a template declaration. There are three kinds of template parameters: type
parameters, nontype parameters, and template template parameters.

Type parameters are by far the most commonly introduced with either the keyword
typename or the keyword class (the two are entirely equivalent). Nontype parameters
stand for constant values that can be determined at compile or link time. The type of such
a parameter must be one of an integer type or enumeration type, a pointer type, and a
reference type. For example: template<int> class X2{}. Template template parameters
are placeholders for class templates. They are declared much like class templates, but the

keywords struct and union cannot be used. For example: template< template<class>
class T > X3{};

14

Template arguments

Template arguments [VM2002] are the values that are substituted for template
parameters when instantiating a template. These values can be determined using several
different mechanisms: explicit template arguments, injected class name, default template
arguments and argument deduction.

A template name can be followed by explicit template argument values enclosed in
angle brackets. The resulting name is called templated-id. For example: XI<int, char> x;
Within the scope of a class template X with template parameters P1, P2, ... the name of
that template(X) can be equivalent to the templated-id X<PI, P2,...>. Explicit template
arguments can be omitted from class template instances if default template arguments are
available. For example: template<class T, class U=char > X1{...}; X1<int> x; However,
even if all template parameters have a default value, the angle brackets must be provided.

Function template arguments that are not explicitly specified may be deduced from
the types of the function call arguments in a call. If all the template arguments can be
deduced, no angle brackets need to be specified after the name of the function template.
Template specialization

Template specialization lets templates deal with special cases. Template
specialization is a very powerful feature that approximates overloading. The template
parameters are specified in the angle bracket enclosed list that immediately follows the
template keyword.

For example, if the template is SmartPtr<T>, it can be specialized in a concrete type
like SmartPtr<int>. This gives you good granularity in customizing behavior.

A template can also be partially specialized with multiple parameters. Partial template
specialization gives us the ability to specialize a class template for only some of its
arguments. For example, template <class T, class U> class SmartPtr{...}; we can
specialize SmartPtr<T,U> for integer and any other type, with the following syntax:
Template <class U> class SmartPtr<int, U> {...}

The compile-time and combinatorial nature of templates makes them very attractive
for creating design artifacts, but it is easy to stumble on some problems that are not self-
evident [VM2002]. The structure of a class (its data members) cannot be specialized by

using template alone. Specialization of member functions does not scale. The functions of

15

a class with one template parameter can be specialized, but individual member functions

for templates with multiple template parameters may cause problems.

2.2.2 Generic Programming

In the context of C++, generic programming is sometimes defined as programming
with templates. In this sense, any use of templates could be thought of as an instance of
generic programming. Templates can be also used to implement polymorphism (Static
polymorphism).

Polymorphism [VM2002] is the ability to associate different specific behaviors with a
single generic notation. The polymorphic behaviors are implemented through inheritance
or templates. A polymorphism supported mainly via inheritance, which is handled at run
time, is usually thought of as dynamic polymorphism. The different specific behaviors
handled via templates at compile time are referred to as static polymorphism.

Dynamic polymorphism in C++ exhibits a lot of strengths such as heterogeneous
collections handled elegantly and smaller executable code size potentially. In contrast,
static polymorphism [VM2002] has such merits as implementing collections of built-in
type easily and potentially faster generated code, etc. Static polymorphism is often
regarded as type safer than dynamic polymorphism because all the bindings are checked
at compile time.

Static polymorphism leads to the concept of generic programming. Although there is
no one universally agreed-on definition of generic programming, generic programming is
practical exactly because it relies on static polymorphism, which resolves interfaces at
compile time.

According to [CE2000], Generic programming is about representing domains as
collections of highly general and abstract components, which can be combined in vast
numbers of ways to yield very efficient concrete programs. The term generic
programming has at least four different meanings:

1. Programming with generic parameters

2. Programming by abstracting from concrete types

3. Programming with parameterized components

4. Programming method based on finding the most abstract representation of

efficient algorithms.

16

The first meaning is the most common: generic parameters are type or value
parameters. With generic parameters, code duplication can be avoided in statically typed
languages.

The Standard Template Library (STL) is a general-purpose C++ library of algorithms
and data structures, originated by Alexander Stepanov and Meng Lee. The STL, based on
generic programming, is part of the standard ANSI/ISO C++ library. The STL is
implemented by means of the C++ template mechanism and provides a powerful set of

components for generic programming.

2.3 The STL Style

The Standard Template Library (STL) [SL1995], is a template-based C++ library of
generic data structures and algorithms that work together in an efficient and flexible
fashion. As the authors state in the STL specification: “The Standard Template Library
provides a set of well-structured generic C++ components that work together in a
seamless way. Special care has been taken to ensure that all the template algorithms
work not only on the data structure in the library, but also on built-in C++ data
structures.”

There are six components as shown in Figure 2.7 in the STL organization. Three
components, in particular, can be considered the core components of the library:
template-based container classes, iterators and generic algorithms (template functions).
The remaining three components of the STL are also fundamental to the library and
contribute to its flexibility and portability: allocators, adapters and functors (function
objects). Figure 2.7 shows that the relations among STL components. Generic algorithms
assisted with function objects use iterators to access the elements in containers, and they
can be used in different containers that use different allocators to manage and control

memory.

17

STL

supports

lterators access Containers Luse Allocators

apply to

Generic
algorithms

Functor
Objects

Figure 2.7 STL components

An STL data structure or container, unlike traditional ones, does not contain many
member functions. STL containers contain a minimal set of operations for creating,
copying, and destroying the container along with operations for adding and removing
elements. Instead, algorithms such as functions for examining or sorting the elements in a
container have been decoupled from the container and can only interact with a container

via traversal by an iterator. This orthogonal component structure is illustrated in Figure
2.8

AN

iterator

NV

Figure 2.8 Orthogonal component structure

Container Algorithm

18

2.3.1 Containers

Containers [SL.1995] are objects that store other objects and are responsible for the
allocation and deallocation of those objects through constructors, destructors, insert and
erase operations. Elements are stored in containers as whole objects; no pointers are used

to access the elements in a container. This results in containers that are type safe and

efficient.
Container
Sequence Associative
vector deque list set multiset map mulitimap

i
B T I [EJ

= %Eé

1T
4

i

]

—

Figure2.9 STL containers
The STL provides two categories of containers as shown in Figure 2.9.
Sequence containers
Sequence containers store elements in sequential order. These containers group a
finite set of elements in a linear arrangement. The STL includes class templates for
vectors, lists, and deques:
vector<T> provides array-like random access to a sequence of varying length, with

constant time insertions and deletions at the end.

19

deque<T> provides random access to a sequence of varying length, with constant
time insertions and deletions at both ends.

list<T> provides linear time access to a sequence of varying length, with constant
time insertions and deletions anywhere.
Associative containers

Associative containers store elements based on a key value. Implemented as red-
black trees, they provide efficient retrieval of elements based on their key. The STL
provides class templates for maps, multimaps, sets, and multisets. Maps and multimaps
allow arbitrary data to be associated with each key. Also, maps and sets only allow
elements with unique keys, whereas multimaps and multisets may contain elements with
duplicate keys.

set<Key, Compare> supports unique keys (contains at most one of each key value)

and provides for fast retrieval of the keys themselves.

multiset<Key, Compare> (the number in boxes means times repeated) supports

duplicate keys (possibly contains multiple copies of the same key value) and

provides for fast retrieval of the keys themselves.

map<Key, T, Compare> supports unique keys (contains at most one of each key

value) and provides for fast retrieval of another type T based on the keys

multimap<Key, T, Compare> supports duplicate keys (possibly contains multiple

copies of the same key value) and provides for fast retrieval of another type T based

on the keys.

Containers have different time and space complexities for their different operations:

set, multiset,
C array vector deque list

map, multimap
Insert/erase at start n/a O(n) o(1) O(1) O(logN)
Insert/erase at end n/a o) o) o) O(ogN)
Insert/erase in middle n/a O(n) O(n) o(1) O(logN)
Access first element o) o) o) O(1) O(ogN)
Access last element o) o) o(1) o) O(logN)

20

Access middle element O(1) o) o) O(n) O(logN)

Overhead none low medium high high

O(1) means constant time, O(n) means linear time, O(logN) means logarithmic time.

Table 2.1 Time and space complexities of containers

2.3.2 lterators

Containers, by themselves, do not provide access to their elements. Instead, iterators
are used to traverse the elements within a container. Iterators [SL.1995] are very similar to
smart pointers and have increment and dereferencing operations. By generalizing access
to containers through iterators, the STL makes it possible to interact with containers in a
uniform manner.

Iterators are a generalization of pointers that allow a programmer to work with
different data structures (containers) in a uniform manner. An iterator can be thought of
as an object, which can point to any value in the container. It may either point to an
element of this container, or beyond it, using the special past-the-end value as shown in
Figure 2.10.

range
® [first,last] T

P elament

Container
Figure 2.10 iterator activity
Iterators are the cornerstone of the STL design and give the STL most flexibility.
Iterators are the glue that connects algorithms to containers. Instead of developing
algorithms for a specific container, they are developed for a specific iterator category.
This strategy makes it possible to use the same algorithm with a variety of different

containers.

21

Iterators [SL.1995] are classified into five categories: forward, bidirectional, random
access, input, and output. The Iterator hierarchy is shown in Figure 2.11. Each category
forms a set of requirements that must be met by concrete iterator types within that
category. Requirements for a given iterator category are specified by a set of valid
expressions for iterators in that category as well as precise semantics describing their
usage. In addition, iterators in the STL must satisfy complexity requirements. These
requirements ensure that algorithms written in terms of iterators will work correctly and

efficiently.

Random aceess iterator

Bidirectinnal iterator

Forward iterator

Input tevator Output iterator

Figure 2.11 Iterators hierarchy

* A Random access iterator is the most powerful one. It can be used to store and
retrieve values, provide for bidirectional traversal, and supports the following
operations: ++, --, +, - . It can also be indexed via the [] operator.

e A Bidirectional iterator provides for traversal in both directions. It can store and
retrieve values and supports ++ and --, but not + or -

e A Forward iterator provides for one-directional traversal of a sequence. It can
store and retrieve values and supports ++.

o An Input iterator can obtain values but not alter them. It can move in a forward

direction only and support ++.

22

e An Output iterator can store values, but not obtain them. It can move in a forward
direction only and support ++.

The categories of iterators provided by each STL container type are:

» vector<T>:iterator and deque<T>::iterator are random access iterator types

o list<T>::iterator is a bidirectional iterator type

o All the iterator types of the associative containers are bidirectional
2.3.3 Algorithms

The STL algorithms offer functionality not provided by the containers. Container

member functions and iterators between them provide the fundamental means for
accessing elements of containers. More powerful operations are implemented using
standard library algorithms. These are template functions that act on containers through
iterators. According to [SL1995], the STL provides many fundamental algorithms are in

five categories:

Categories

Operations

Examples

Non-Mutating

Sequence Algorithms

Inspect rather than modify the container

elements on which they operate.

count, search,min

Mutating Sequence

Modify the container elements on which

copy, reverse, swap

Algorithms they operate.
Modify the container elements on which

Sorting Algorithms they operate by rearranging their positions | sort, partial_sort
based on sorting criteria

Sorting related Operations on sorted ranges such as set merge, set_union,

Algorithms and heap operations make_heap
Modify containers that are comprised of accumulate,

Generalized numeric

Algorithms

data elements which can be modified in

the same way as numbers.

inner_product,

partial_sum

Table 2.2 The STL fundamental algorithms
Because algorithms are written to work on iterators rather than components, the
software development effort is drastically reduced. For example, an algorithm that uses

Inputlterators can be used with any container that works with Inputlterators or any of the

23

iterator categories above it in the iterator hierarchy. The pointer-like semantics of STL
algorithms guarantee that there is an efficient implementation for them, often resulting in

code that is nearly as efficient as hand-written assembly code.

2.3.4 Allocators

Any package provided by the Standard C++ Library must be portable to many
different machine architectures. Portability is one of the strengths of C++ and the
standards process helps to ensure that all compiler vendors have a common base to
address this need.

One of the main problems to address in portability is the memory model of the
machine. The memory model contains information about pointer types, the type of the
difference between two pointers, the size of objects and also which primitives are used to
allocate and deallocate raw memory. The STL encapsulates this information in a special
class called an allocator. Allocators separate the STL from the dependencies of the
underlying memory model of the machine architecture.

Each container is given an allocator when it is constructed. Whenever a container
inserts or removes an element, it uses its allocator to allocate and deallocate the memory
for the object. The container does not know anything about the memory model of
computers, so it relies on the allocator for all of its memory needs.

2.3.5 Adaptors

Adaptors are template classes that provide an existing class with a new interface
(interface mapping [SL1995]). Adaptors can be used to create new interfaces for
containers or iterators. The STL provides container adaptors, some which change the
behavior of an underlying container, some which allow a non-STL data structure to be
used in STL algorithms.

Container Adaptors

Often it is desirable to create a specialized container from an existing, more general
container. The operations of the new container are implemented using the underlying
operations of the existing containers. Container adaptors are used to create a new
container by mapping the interface of an existing container to that of the new container.
This allows new containers to be created without much additional effort, since most of

the functionality is already provided by the existing containers.

24

The STL p'rovides three container adaptors:

. stack<C0ntainer>';

¢ queue<Container>;

e priority_queue<Container> ;

iterator adaptors
Adaptors can also be used to extend the functionality of an existing iterator. The STL
provides three iterator adaptors:

e Reverse iterators. By applying the reverse_iterator adaptor to either a random
access iterator or a bi-directional iterator an iterator is obtained that will traverse
the same container in the reverse direction.

e Insert iterators. Iterators behave a lot like pointers. Sometimes, it is desirable to be
able to insert a new element at that location in the container.

e Raw storage iterators. Raw storage iterators allow algorithms to use raw,
uninitialized memory during their execution. The raw_storage_iterator is used by
several internal algorithms for partitioning and merging elements in a container.

2.3.6 Functors

Functors [SL1995] (function objects) are classes that define operator(). Using
function objects rather than function pointers allows the STL to generate more efficient
and more flexible code. They contain no data members or constructors/destructors
(except the default ones provided by the compiler). Function objects can be passed to
template functions in much the same way as pointers to functions are passed to C
functions. However, because there is no pointer indirection and because they can often be
expanded inline, they are much more efficient.

Suppose we wish to remove all of the ints that are a multiple of 3 from our list. We

can use the STL remove_if function and supply our own predicate, called three_mult, as a
function object. The actual checking of the multiple goes in the body of operator(), which

returns a bool:

struct three_mult {
bool operator() (int& v) { return (v % 3 == 0);}
1

A new list, m, is created as the predicate is applied to each element of the list by

remove_copy_if:

25

remove_copy_if (L.begin(), l.end(), back_inserter(m), three_mult());

The STL provides many function objects that are used by STL algorithms, but may
also be used by users in their code. The STL provides function objects for arithmetic
operators (e.g., times, divides, and modulus), comparison operators (e.g., greater, less,

and less_equal), and logical operators (e.g., logical_and, logical_or, and logical_not).

2.4 Why the C++ STL Style?
We adopt the STL style to design and implement B+-tree index because the STL

supports good programming practices and addresses several problems with previous C++

container libraries in a new and innovative way. There are a number of advantages to

using the STL.:

“Standard” and “template”

e Reuse

o Smaller codes

o Flexibility

o Efficiency ,
2.4.1 “Standard” and “Template”

The STL is not just another C++ library among many libraries available today; it is a
rather important addition to the C++ programming community. One reason is in the word
“Standard”. Another technical reason is in the word “Template”.

The STL is made up of “standard components”. Each of them has a clear standard
interface and a well-defined functionality. This makes all the components easy to
understand and to reuse. Also new components may be added with the same look as
standard ones. Because STL has a completely modular system design, the programmers
modifying the system focus on the modules to be changed without the need to understand
the details of the whole system. The STL is using the template mechanism of C++ and
extends it to new dimensions by using interoperable components concept.

Programming with “templates” is a compiler-supported mechanism to take generic
data structures, such as arrays and lists, and generic algorithms, such as sort and binary
search, and write them so we can reuse them without retyping them. With the STL's tools,

we can solve complex programming tasks more quickly, using less code than with other

26

methods. Our programs will likely run faster with the STL components than if we had

written our own version because the algorithms in the STL are efficient.

2.4.2 Reuse

The STL supports the generic programming paradigm, whose goal is to design
algorithms so they are fundamentally independent from the types they act upon. The STL
provides reusable components to achieve code reuse based on templates, rather than class
inheritance. A large number of components already exist with a complete implementation
on hand. This dramatically reduces the time needed for the implementation for many
large systems where a great percentage of the code is simply imported from the STL.

The STL [Nel1995] represents a significant step forward in the development of C++
because it gives C++ programmers a framework of carefully designed generic data
structures and algorithms that finally bring to C++ the long-promised dream of reusable

software components.

2.4.3 Smaller Codes.

The STL is easy-to-learn structure because the library is quite small owing to the
high degree of generality. Some have claimed that template-based containers cause code
bloat, but template-based containers will actually make codes smaller because we will not
have to have an entirely different set of code for different types of lists. If we are still
concerned about code bloat, use the STL containers to store pointers instead of object
copies.

There are approximately 50 different algorithms in the STL, and about a dozen
major data structures. The separation of algorithms and data structures has the effect of
reducing the size of source code, and decreasing some of the risk that the similar
activities will have dissimilar interfaces. Without this separation, each of the algorithms
would have to be reimplemented in each of the different data structures, requiring several

hundred more member functions than are found in the present scheme.

27

2.4.4 Flexibility.

The use of generic algorithms allows algorithms to be applied to many different
structures. Furthermore, the STL’s generic algorithms work on native C++ data structures
such as strings and arrays.

All containers follow the same conventions, so if we decide that maybe a deque will
provide better performance than a list, the container can easily be changed. If we use
typedefs, it can be as easy as changing one line of code. We also get the advantage of
dozens of predefined algorithms for searching and sorting that work for any STL
container.

The STL framework has a flexible design by adopting a complete component
replacement policy. No component is made mandatory to the design. In other words all
the components that make up the system are replaceable. This gives the designer the
freedom to isolate and replace any one or more of these components with no- or minimal
impact on the system. The design can be adapted to the needs of any application by
simply changing some of the components. This was made easy since the building
components are highly decoupled.

The STL allows for new components to be written and put into work with the
existing ones, thus emphasizing flexibility and extendibility. This makes the STL
particularly adaptive to different programming contexts including algorithms, data

structures, and data types.

2.4.5 Efficiency.

The STL is efficient because “Much effort has been spent to verify that every
template component in the library has a generic implementation that performs within a
few percentage points of the efficiency of the corresponding hand coded routine” as
described by Alexander Stepanov and Meng Lee in the STL specification. STL
containers are very close to the efficiency of hand-coded, type-specific containers. The
STL has been already written, debugged, and tested. No guarantees, but better than
starting from scratch.

All the STL building blocks used are written with the most efficient implementation
possible, therefore allowing the system itself to be efficient. The efficiency, as a

fundamental issue in any new system, is addressed as a design goal of the STL.

28

The STL in particular, and the Standard C++ Library in general, provide a low-level,
“nuts and bolts” approach to developing C++ applications. This low-level approach can
be useful when specific programs require an emphasis on efficient coding and speed of
execution.

Therefore, The STL is a standard library of high quality and efficiency with great
emphasis on code reuse. Furthermore, The STL allows for new components to be written
and put into work with the existing ones, thus emphasizing flexibility and extendibility.
This makes the STL particularly adaptive to different programming contexts including

algorithms, data structures, and data types.

2.5 Why Design Patterns?

A pattern is a way of doing something, or a way of pursuing an intent. This idea
applies to cooking, making fireworks, developing software, and to any other craft. In any
craft that is mature or that is starting to mature, you can find common, effective methods
for achieving aims and solving problems in various contexts. The community of people
who practice a craft usually invent jargon that helps them talk about their craft. This
jargon often refers to patterns, or standardized ways of achieving certain aims. Writers
document these patterns, helping to standardize the jargon. Writers also ensure that the
accumulated wisdom of a craft is available to future generations of practitioners.

As Christopher Alexander describes, "Each pattern describes a problem which occurs
over and over again ... and then describes the core of the solution to that problem, in such
a way that you can use this solution a million times over, without doing it the same way
twice."

“Design patterns are descriptions of communicating objects and classes that are
customized to solve a general design problem in a particular context" [GOF1994]

The purposes of design pattern are mainly to reuse solutions and establish common
terminology. Patterns are an attempt to describe successful solutions to common software
problems by experts in software architecture and design. By reusing already established
designs, people can get a head start on their own problems and avoid gotchas. Not only
do patterns teach useful techniques, they help people communicate better, and they help

people reason about what they do and why. Communication and teamwork require a

29

common base of vocabulary and a common viewpoint of the problem. Design patterns
provide a common point of reference during the analysis and design phase of a project.

We simply introduce to the following design patterns associated with our design and
implementation of the B+-tree index.

2.5.1 Casting Method

The intent of Casting-method pattern [Mey1992] is to represent an operation to

dynamically and quickly obtain a type-safe reference to a subclass in an inheritance
hierarchy

Client element Elemeont e -
- +getElementi() : RealElementi® |-~~~ RSN
; roperation() +getElementN(} : RealElementN* \\\
/ lr)
f
! return O;
!
!\
Y RealElement1 RealElementN
s\
\\ +getElement1() : RealElement1™| +getElementN() : RealElementN’;
\\ +doAction1() N +doActionN() J/
\\& \\ /I
RealElement1 *r1; 5 \ /
RealElementN *rN; | //
ri=element->getElement1(); i L,
if(r11=0) / e
E r'd
/ P
r1->doAction1(); Pl
yelse { Pt
rN=element->getElementN(); ‘ -
. ¥ 1 t .
if(rNI=0) return this;
riN->doActionN();
}
}

Figure 2.12 Casting method design pattern

The Casting method pattern uses inheritance to allow subclasses to return references

to themselves. This pattern is applicable when there is a need to obtain a downcasted

30

class reference from a base class and when real-time constraints require the faster and
safest solution possible.

The Casting method pattern is rather simple and easy to understand. Furthermore, it
has faster execution than any other technique except static cast. However, it is difficult to
add new elements because every time a new element is added, the base class must be
modified to add a new GetElement...() method and all users of any classes derived from
the base class must be recompiled. Therefore, this pattern has better applicability for the

cases that the number of subclasses is small and stable.

2.5.2 Composite Design Pattern
The intent of the composite pattern [GOF1994] in Figure 2.13 is to compose objects
into tree structures to represent whole-part hierarchies in a manner that lets clients treat

objects and compositions uniformly.

Component
«USes»
___________ }+Add(in Component)
+Remove(in Component)]
+getChild(in identifier)
+Operation()
Leaf Composite
- *
+QOperation()| +Add(in Component) 1

+Remove(in Component)
+getChild(in identifier)
+Operation()

FIGURE 2.13 COMPOSITE DESIGN PATTERN

Implementing the Composite pattern is easy. Create an abstract Component class to

define the interface of all tree objects and implements default common behavior. A

31

concrete Composite class implements behavior for storing and accessing child
Component objects.

The Composite Design Pattern enables the Client to treat composite structures as
well as leaf structures as if they are the same thing. As a consequence this simplifies the
Client and makes changes or the additions to the component very simple. The Composite
pattern makes it easier to add new types of components, newly defined Composite of
Leaf subclasses will work automatically with current structures.

The composite Design Pattern may violate Liskov Substitution Rule due to possible
client calls to the Add, Remove and GetChild methods for a Leaf object. If a client calls
these functions in a leaf object, an error may result. Thus the client might need to

implement special processing.

2.5.3 Proxy

The intent of the Proxy design pattern [GOF1994] in Figure 2.14 is to provide a

surrogate or placeholder to control access to an object as shown in Figure 2.15.

HLESES» Sﬂbf ect
e S S
+request()
+...{)
[RealSubject Proxy
realSubject
+request() +request() -7 T~
+...0) +. () A

|
realSubject->request(}); [ﬁ

Figure 2.14 Proxy class diagram

32

aClient aProxy aRealSubect
&realSubject

Figure 2.15 Proxy object diagram
In the Proxy design pattern, realSubject and Proxy implement the same interface, so
that Proxy can handle some or all requests to the realSubject. Proxies provide a level of
indirection to specific properties of objects, so they can restrict, enhance or alter these
properties. Proxy is applicable whenever there is a need for a versatile or sophisticated
reference to an object than a simple pointer. A proxy can be used in many ways:

» A remote proxy provides a local representative for an object in a different address
space.

e A virtual proxy creates expensive objects on demand.

» A protection proxy controls access to the original object.

e A smart reference (smart pointer) replaces an ordinary pointer and performs
additional actions when an object is accessed, e.g.: reference counting, loading a
persistent object into memory when it’s first referenced, and ensuring mutual
exclusion

Smart pointers [Alex2001] are objects that look and feel like pointers, but are
smarter. It is an application of the Proxy design pattern.

To look and feel like pointers, smart pointers need to have the same interface that
pointers do: they need to support pointer operations like dereferencing (operator *) and
indirection (operator ->). To be smarter than regular pointers, smart pointers need to do
things that regular pointers do not. Probably the most common bugs in C++ (and C) are
related to pointers and memory management: dangling pointers, memory leaks, allocation
failures, locking and others.

The simplest example of a smart pointer is auto_ptr, which is included in the

standard C++ library. We can find it in the header<memory>. Here is part of auto_ptr's

implementation, to illustrate what it does:

33

template <class T> class auto_ptr

{
T* ptr;
public:
explicit auto_ptr(T* p = 0) : ptr(p) {}
~auto_ptr() {delete ptr;}
Té& operator*() {return *ptr;}
T* operator->() {return ptr; }
/...

b

Figure 2.16 Simple smart pointer: auto_ptr

As we can see in Figure 2.16, auto_ptr is a simple wrapper around a regular pointer.
It forwards all meaningful operations to this pointer (dereferencing and indirection). Its

smartness rests in the destructor: the destructor takes care of deleting the pointer.

2.5.4 Singleton

The intent of the Singleton design pattern [Alex2001] is to ensure a class has only
one instance and provide a global point of access.

The Singleton class hides the operation that creates the instance behind a static
member function. This member function, traditionally called Instance(), returns a pointer
to the sole instance. Clients access the singleton by calling the static instance function to

get a reference to the single instance and then using it to call other methods.

2.6 Chameleon technique

Chameleon is a technique for building generic, but unparameterized, classes, which
are able to store arbitrary typed objects and still maintain type safety. A chameleon class
[Sim2000] is a kind of new wrapper class called Value. An arbitrary variable v of type T
can be assigned to an instance of Value, and thereafter the Value object itself can be
assigned to any instance of type T, just as if it were v itself. If the caller tries to assign a
Value object to a variable of a type other than T, it will throw an exception.

The class Value itself is defined as follows:

34

class Value {
private:
enum Action { SET, GET };
template <class T> T& value(T t = T(), Action action = GET)
throw (Incompatible_Type_Exception&);
public:
Value() {} // Default constructor
template <class T> Value(const T&) { value(t, SET); } // Generic constructor
template <class T> operator T() const throw (Incompatible_Type_Exception&) {
return const_cast<Value*>(this)->template value<T>();// const_cast is safe

}

template <class T> T& operator=(const T &t) { return value(t, SET); }

|5

Figure 2.17 interface of Value class

Value itself, as shown in Figure 2.17, is not a template class, but it heavily uses
parameterization. All of its methods, including the constructor, are template functions.

value() seems to contain all the magic of Value class:

template <class T>
T& Value::value(T t, Action action) throw (Incompatible_Type_Exception&) {
static map<Value*, T > values;
switch(action) {
case SET : {
values[this] = t;
return t;
}
case GET : {
if (values.count(this)) return values[this];
else throw Incompatible_Type_Exception(typeid(T).name());

}
}
};

Figure 2.18 Function value()

The function value() in Figure 2.18 contains the static local variable values, which is
of type map<Value*, T> . Since this function is instantiated by the compiler once for
every data type T we use in conjunction with Value objects, there will be a separate
variable called values for each type T. Each Value object consumes one slot in the map
corresponding to its actual internal type. Because these maps are static, they will be
created before the start of our program, and because read/write operations to maps are
guaranteed only to need logarithmic time, we can at least expect logarithmic time for our

Value class, too

35

Chapter 3 B+-tree Index Design
The B+-tree index design is mainly based on ASHRAF GAFFAR ‘s thesis titled “Design
of A Framework for Database Indexes”[Gaf2001], but we address some problems of his
design and develop it further. Finally we implement our design to follow the C++ STL
style.
3.1 Use Cases
We will consider a B+-tree index as a part of the database with the following properties:
e Built as a balanced tree structure
¢ Be customized to suit different applications
e Be used to lookup data in the database (read-only access)

e Be used to insert or delete data in the database (read-write access)

X

Expert Developer

Design Implement
Modify index
Structure)\ Define scheme
\ N
Provide new query .
Database Build index
Indexes
\
DBA

Provide new data / \\ '
types Build data
Database Developer references
Setindex -
paramelers Dynamically
Erase

fine-tune
Find T

Client

Figure 3.1 Detailed Use Cases

36

Use cases [BCC+2002] capture the functionality of a system. A use case defines a
goal-oriented set of interactions between external actors and the system under
consideration. Figure 3.1 shows actors do what (interaction) with the system, for what
purpose (goal), without dealing with system internals.

3.1.1 Expert Developer

The expert developer is an experienced programmer who designs the database index
system to satisfy domain experts needs and then implements the design using a
programming language.

The design for a database index system needs to meet not only the functional need of
database domain experts but also the nonfunctional needs like storage, retrieval issues,
and platform mounting.

Implementation of the design includes all details such as the physical access details

and the platform-dependent details.

3.1.2 Database Developer

The Database developer is a knowledge domain expert, responsible for customizing
an existing database system by modifying some of its parts (components) or by replacing
some parts with others to be able to support a new data or query type, or support a
completely new index structure with new access method.

The Database developer is also responsible for setting the index parameters such as
the tree order, the page minimum fill factor, and the page size, to suit the system platform
and the application variables.

The database developer defines a new data type by writing an index implementation
to produce a new index capable of handling the data type used by a new application. This
includes defining suitable keys to describe the data partitions, and defining ways to
compare them, setting a suitable layout for the pages and a page policy for adding or
deleting this new data type keys inside them.

The database developer defines a new method to traverse the index by replacing
some parts of an existing index in order to produce a new index that is using a new access

method

37

3.1.3 Database Administrator

The Database administrator (DBA) is the person responsible for building the
Database system, which includes determining the scheme, the physical tables and the
indexes used to access them.

The DBA will build the index by insertions of the pairs of key, data reference (data’s
physical location) into an empty index file (bulk loading the data reference file). A
successful bulk loading operation will yield a complete index to the data.

After the database system is up and running, the DBA needs to dynamically fine-tune
it by adjusting its parameters to achieve the optimal performance under typical

workloads.

3.1.4 Client

Client is the application that is using the system to search for, insert or delete data
from the index.

The application will connect to the database index and search for some data. An
index will be used to lookup data. The index will return the matching data in the form of
references to their physical locations. The references will then be used to access the data.

For an insertion, the search use case runs first to find a suitable insertion position. The
position is then used to insert the element, and the index structure is adjusted if necessary
to reflect the changes to the element.

For a delete use case, the search use case runs first to locate the matching element to
be deleted. Then the candidate data is deleted. The index structure is adjusted if

necessary.

3.2 Relation between Index and Database data

Each index is built from the physical data indirectly, through a data reference file
called index file. The index file is composed of key/data reference pairs, and constitutes
the data level of each index (see Figure 3.2). This separation between physical data and
data references allows for building multiple indexes on the same data set (data is not
included in the index) and for the ability to change physical data formats without

affecting the existing indexes.

38

The index does not directly provide us data, but information about where the data is.
This means that the data stored in the index is different from the typical database
information (tables, records, etc).

Depending on some system characteristics (like access time constraints, and system
volatility) different binding mechanisms are applied. The mechanism used must
guarantee that changes in the record physical locations will still allow for all associated

indices to access them correctly.

Database

N

Scheme Describe Data Access Index

(Meta Data)
L Records w
0gs Tuples t
(System Data) (Tuples) Data
? Reference

Key
Attributes
(Fields) Abstract

Figure 3.2 relation between the index data and the database data

From Figure3.2 we can see that index data references physical data. We start

querying the index using a certain key. With some comparison criteria, we try to find our

way through the index down to the index leaf level, where the index data is stored. This

will bring the index responsibility to an end. We should then refer to the physical
database access mechanism to get the real data we are looking for.

Implementing an index goes the opposite way. We start with physical database data

that we want to build an index for, build the index file, and then build the index using the

index file.

39

3.3 B+-tree Index Structure

3.3.1 Basic Components
The B+-tree index will be built using the STL components. These components will

provide the necessary index structure, and manage the access and storage of the index.

Pair <key. data reference>

oo :
default
\ e
{ ;,:Df\llocmar yfmemors
/
g
Page
A
find € } : TN
resuft++ : 4
resultt+ | // J
<(; ,x:;spu‘inlizcd
y Allocator Hard Disk
) /
algorithm iterator \\9/
l] e index

Application
Program

Figure 3.3 The components layout [Gaf2001]

In Gaffar’s design as shown in Figure 3.3, the B+-tree Index container will be an
index of pages, so the elements that the index stores are of type page. The index iterator
is therefore iterating through pages, one page at a time. The Index container will use a
specialized allocator that takes the responsibility of retrieving the page from the storage
(like a hard disk or other mass storage media) into memory for access and controlling the
different objects accessing the same page simultaneously. A default, in-memory allocator

is provided for simple applications where the whole index can fit in memory at one time.

40

It is up to the system designer to use it or override it by providing a storage dependent
specialized allocator.

However, there are several problems we found in his design. A B+-tree index
contains index pages and leaf pages, but they are invisible for users. What users can
operate on are not pages but pairs in pages. Therefore, the index iterator does not iterate
over pages but pairs in leaf pages. In addition, we follow the STL to let allocators to take
the responsibility of the management of memory, and use a Proxy to control access to

pages from the storage like a hard disk or other mass media.

LeafPage
Application iterator
\
iterator
Proxy

find

insert

erase

Index _ / ,
iterator Hard Disk

IndexPage

Figure 3.4 Basic components

The B+-tree index will be built on leaf and index page components shown in Figure
3.4. These components will provide the necessary index structure, and manage the access
and storage of the index through a proxy mechanism.

The B+-tree index shown in Figure 3.5 is designed to be an associative container like
multimap in the C++ STL. The index container will be composed of pairs (Key,data/data
reference). Pairs are divided into interlinked subcontainers (leaf page containers). The
Key type and data type are passed to the index as a template type. This makes the index
work with any key and data type. The index provides an iterator to its contents (pairs).
The only way to interact with the container is through its iterator, which provides

controlled access to the elements of the container.

41

The index and leaf page are also containers on a smaller scale. Because the keys in
them are ordered, index and leaf pages are associative containers. While a B+ index
typically resides on hard disk, a page is small enough to fit in memory. Whenever a page
is needed, it is retrieved from the hard disk into memory through a proxy. At this point
the page can perform its tasks of searching for a key in its contents, accepting new
entries, deleting some existing ones, etc. This design produces a simple system structure
without affecting its complexity or extensibility.

The elements of a leaf page container shown in Figure 3.5 is a kind of pair which is
entries of the form (Key, Data reference) where Key refers to a sorting key or field in the
database, and Data Reference is the physical reference to a tuple in the tables.

An index page shown in Figure 3.5 is also a container that has entries of the form
(separator, child-pointer) where a child-pointer is the address of a lower page and a
separator provides information about the boundaries between the two pages in the
sequence set of a B+-tree, so child-pointers have one more than separators. A separator
may be a prefix from page key or an exact copy of the page key of the lower page that the
child pointer points to. In our design, the page key of a leaf page is the first key but the
page key of an index page is the page key of the leftmost leaf page if the child pointer is
treated as the root of a subtree.

The B+-tree index will be built as a tree. To save disk access and storage overhead
of disk, we restrict the number of elements in leaf and index page containers. However,
the index is completely dynamic: inserts and deletes can be intermixed with searches, so
inserting and erasing may cause pages to split and merge with their neighbor. The
splitting and merging may result in reorganizing the tree.

Concurrency will be developed to control the different objects accessing the same
page simultaneously. This will ensure data integrity by applying a suitable access and
locking policy (pinning the page). After the pages have been modified, they also need to
be updated in the physical storage (flushing the page) by the proxy

42

root

Key | Key |Key IndexPage
N\
& Invisible
< Key | Key |Key Key | Key |Key for
N N clients
Key | Key |Key Key | Key |Key Key | Key |Key

Key | Key [Key Key | Key |Key

4

Key lIKey |Key —> Key | Key |Key
<

tv

—~—

iterator B+-tree index container

Figure 3.5 B+-tree index container

3.3.2 Class Diagram

Figure 3.6 shows a class diagram of the B+-tree index in our design. Because
Bplustree, IndexPage, and LeafPage classes are designed to be STL-like containers, they
must follow STL styles. To handle inhomogeneous collections of page objects and make
our implementation safer and more elegant, a page class is added as a base class of
IndexPage and LeafPage. In practical application the index exists permanently on non-
volatile storage, like a hard disk or other mass storage media since it is normally too large

to fit entirely in memory. This means that the container will use a proxy (smart pointer)

that takes the responsibility of retrieving the page from the storage into memory for

access.
BplusTree
<> \
Proxy
algorithm functor iterator
Page DlSk
| |
Indexpage Leafpage
—> ﬁ>_
Algorithm Container(STL/ Container(STL/ Algorithm
Iterator other user-defined) other user-defined) Iterator
Functor <P —<F Functor
Algorithm Algorithm
Iterator Iterator
Functor Functor

Figure 3.6 Main class diagram of the B+-tree Index

44

3.4 General Interfaces

The reason that the STL's components [Aus1999] are interoperable and extensible,
and the reason that we can add new algorithms and new containers and can be confident
that the new pieces and the old can be used together, is that all the STL components are
written to conform to precisely specified requirements. An abstract concept can be
thought of as a list of type requirements or a set of types. Defining abstract concepts and
writing algorithms and data structures in terms of abstract concepts is the essence of
generic programming.

It is important for BplusTree, Page, IndexPage, and Leafpage containers shown in
Figure 3.7 to conform to a set of abstract concepts provided by the STL. Also, IndexPage
and LeafPage should have some specific functions for special operations on them. In
addition, these two classes are derived from a base class of Page, so they are needed to
implement interfaces inherited from the base class.

To understand our design, it is necessary to recognize that inheritance, modeling and
refinement are useful for different things. Inheritance is a relationship between two types,
modeling is a relationship between a type and a set of types (a concept) and refinement is
a relationship between two sets of types (concepts). They are completely separate
relationships and any methodology that tries to make do with only one of them is
incomplete. This is why we combine inheritance and generic programming in B+-tree

index.

45

<<interface>> <<interface>> <<interface>>
Iterator Container Algorithm

value_type value_type
reference reference
const_reference const_reference find()
pointer pointer find_if()
const_pointer const_pointer insert()
difference_type iterator erase()
iterator_category const_iterator

difference_type

size_type
operator *()
operator ->()
operator ++() begin()
operator - () end()
operator ++(int) size()
operator - -(int) max_size()

empty()

Page

BPlusTree
container

46

"

JAN

IndexPage
Container

LeafPage
Containter

Figure 3.7 View of main interfaces

Chapter 4 B+-tree Index implementation
4.1 Issues Encountered in the Implementation

4.1.1 Static or Dynamic Polymorphism?

In principle, functions such as a STL-like approach could be implemented with
dynamic polymorphism. In practice, however, it would be of limited use because the
iterator concept is too lightweight compared with the virtual function call mechanism.
Adding an interface layer based on virtual functions would most likely slow down our
operations by an order of magnitude.

As a rule of thumb, we try to use a static model when we can, and rely on a dynamic
model when needed. Therefore, sometimes we may combine both forms of inheritance in

B+-tree index design.

4.1.2 Interface Realization or Implicit Container Inclusion?

The B+-tree, including index and leaf pages, is designed as a container that follows
the STL style. However, containers can be implemented using one of two implementation
criteria: Interface realization or Implicit container inclusion.

Interface realization is implemented by inheriting the public container interface from
a STL container class and implementing the class methods completely. This will provide
a more specialized code that is still conformant with the design. This is particularly useful
when special time or space restrictions might apply.

For efficient implementation, the containers can be built on top of an existing STL
container. They will work as a wrapper class that has a STL container class as one of its
data members (an implicit container). This will allow for masking the unneeded member
functions in the STL class, and will save a lot of implementation time. This will give a
more generic code.

In our implementation of the B+-tree index, we always use implicit container
inclusion to implement these STL-like containers.

4.1.3 No Virtual Template Function

Member function templates cannot be declared virtual in C++. This constraint is

imposed because the usual implementation the virtual function call mechanism uses a

fixed-size table with one entry per virtual function. However, the number of instantiations

47

of a member function template is not fixed until the entire program has been translated.
Hence, supporting virtual member function templates would require support for a whole
new kind of mechanism in C++ compilers and linkers.

In contrast, the ordinary members of class templates can be virtual because their
number is fixed when a class is instantiated.

There are two common solutions: One is that if we know the number of possible data
types, we need to write a specialized function for every type. The second solution is to
use only a void* as data type, and cast the pointer according to the desired result. That
means it may cause too many type casts. Moreover, we have no guarantee of the
correctness of the cast.

In the B+-tree implementation, the Page class is designed to be a base class for
Indexpage and LeafPage container classes. Although most of the functions in these two
subclasses have the same conceptual interface, they have actually different signatures.
We take an example of insert(value_type&) in both IndexPage and LeafPage classes. The
parameter value_type& of insert operation has different types and meanings in the two
classes. The type value_type is referred to as a pair of key and data reference in a leaf
page, but is not the pair in an index page. Therefore, in the Page interface, we should add
two functions like insert(IndexPage::value_type) and insert(Leafpage::value_type).

The disadvantage of this solution is the high amount of code that must be written for
every derived class, even for types that class is not actually used.

We can use a chameleon technique referring to section in Background or casting-

method design pattern to solve this problem.

48

4.2 The Solutions to B+-tree Implementation.

On the basis of our design, we had tried some solutions to implement the B+-tree
index. These ways could work, but there would still be limitations about efficiency,
extensibility and reusability of interfaces and compilers. From our experiments, we

finally got a better way to implement the B+-tree index.

4.2.1 B+-tree Implemented by using Composite Pattern

According to the design of the B+-tree index, it is natural for us to use a composite
design pattern to implement it. Figure 4.1 shows a class diagram for the B+-tree index
using a composite design pattern. The Page class is an interface that declares common
virtual functions. For every function in the Page interface, the IndexPage and LeafPage
class implements it respectively in their own class.

The IndexPage class maintains a container of separators (keys) and page pointers.
Typically, IndexPage functions are implemented by iterating over that container and
invoking the appropriate function for each element in the container.

The LeafPage class is designed to be a container of pairs of key and data reference.
The only way to interact with the container is through its iterator, which provides
controlled access to the elements of the container.

This class diagram does illustrate one problem with the pattern: we must distinguish
between leaf pages and index pages when a pointer points to a page, and we must invoke
an IndexPage-specific or a LeafPage-specific function, such as insert(value_type& v). We
typically fulfill that requirement by adding a method, such as isLeaf{), to the Page class.
That method returns false for IndexPage object and true for LeafPage object.
Additionally, we must also cast the page pointer to an IndexPage or LeafPage pointer.

Figure 4.2 shows sample codes how to cast a page pointer to a leaf page pointer.

if(page->isLeaf())

{
LeafPage* 1Page = static_cast<LeafPage*>(page);
[Page->insert(v);

}

Figure 4.2 Sample codes to use type-casting

49

st

BplasTree

' Key, DataRef, Compare, IndexPage, LeafPage |

~root ; Page*

+empty() 1 bool

+size() : size_type

+hegin) : iterator

+end() : iterator

Hind(in k : Key) : iterator

+insert(in v : value_type) : iterator
+erase(in k 1 Key) : void
+Hlower_bound(in kK : Key) : iterator
+upper_bound(in k : Key) : iterator
~adjust(in k : Key, in p : Page*) : void
~condense(in p : Page®) : void
FupdateKey(in k @ Key, inp : Page®) : void
wen{ i1 10r}

«UsSesy

v g e e o o e St

+isLeaf() : bool

+isFull() : bool
+isSparse() : bool
Hempty() : bool

+size() : bool
AN

LeafPage

~entries : Container<Key, T,Compare>
-parent : IndexPage*

-rLink : LeafPage*

-lLink : LeafPage*

+isLeaf() : baol

+isFull() : bool

HisSparse() : bool

+empty() : bool

+begind) : iterator

Hend() @ iterator

Hfind(in k ; Key) : iterator

+size() @ size_type

Hinsert(in v : value type) : iterator
+erase(in k : Key) : void
Hlower_bound(in k : Key) : iterator
Hupper_boand{in k ; Key) iterator
HgetParent() : IndexPage*
+setParent(in p : IndexPage®) : void
+getrLink() : LeafPage*®
+getlLink() « LealPage™
HsetrLink(in p : LeafPage*) ; void
HsetL Link(in p : LeafPage*) : void
+etPageKey() @ Key

+split() : pair<Key,LeafPage™>
Hmerge(in p : *LeafPage) : bool
+horrow() : pair<State,LeafPage*>

S ————

[P

IndexPage

-keys ¢ Container<Key>

~children : Container<Page*>
~parent ; IndexPage*

Hisl.eaf() : bool

+isFull() : bool

+isSparse() : bool

+empty() : bool

+heging) : iterator

Fend{) ¢ iterator

Hind(in k : Key) : iterator

+size() @ size_type

insert(in v : value_type) : iterator
+erase(in k 1 Key) : void
Hower_bound(in k : Key) ¢ iterator
+upper_bound(in k : Key) : iterator
+getParent() : IndexPage*
+setParent(in p : IndexPage*) : void
tgetPageKey() : Key

Hsplit() : pair<Key,IndexPage™>
Hmerge(in p ¢ IndexPage®) : bool
+borrow() : pair<State IndexPage*>

Key, Compare, Coptainer |

-

Figure 4.1 B+-tree class diagram using composite pattern

50

The implementation of the B+-tree by using type-casting is ugly, and results in a lot of
useless code which makes the useful code hard to read. In addition, type-casting is not

very safe and efficient.

4.2.2 Alternative B+-tree Implementation using Composite Pattern

If we want to avoid too much casting, another choice to implement the B+-tree using
Composite design pattern is to put “everything” into the Page class. All the functions of
its subclasses are declared in the Page interface. Thus it is not necessary to cast a page to
an indexPage or LeafPage. However, this causes another problem: function overloading.

The functions with different return types but the same parameters cannot be
overloaded in C++. Although iterators of the IndexPage and LeafPage class have the
same conceptual name, they are completely different types essentially. An iterator in
LeafPage points to a pair of Key and Data Deference, but an iterator in IndexPage should
not. IndexPage and LeafPage classes are containers that follow the STL style, there must
be a lot of functions such as IndexPage:: iterator begin() and LeafPage::iterator begin(),
which are the same conceptual name but different meanings and types. If they are
declared in the base class together, that would cause overloading problems. There are two
ways to solve overloading ambiguity:

I. Changing function names to make them different. For example, begin() of
IndexPage can be changed into index_begin(), and begin() of LeafPage can be
like leaf_begin().

2. Using empty tag classes to solve overloading problems. We can define two tag
classes like:
struct Bplustree_indexPage_tag{ };
struct Bplustree_leafPage_tag{};

Because these two tag classes are empty, their cost is very little. But they help us to
resolve the overloading problems in the declaration of the Page class. For example,
IndexPage::begin() can be declared as begin(Bplustree_indexPage_tag) in the Page class,
and LeafPage::begin() can be changed into begin(Bplustree_leafPage_tag).

Although this approach can be used to implement the B+ tree index, it breaks the STL

concepts and it is not easy to understand and not convenient for a STL developer to use

51

them. This is mainly because IndexPage and LeafPage have different iterator types. If we
can unify the iterators, the interface for Page class will become easier to use.
4.2.3 An Improved Way using Composite Pattern

Because IndexPage and LeafPage have small differences in their structure, they
should be uniform if there are only small changes. In order to generalize these two pages,
we have to change some of index page structures.
Generalize Index page and Leaf page

Notice that index pages of B+-trees have structures <P1,KI, P2,K2, ..., Kn-1, Pn>.
In order to generalize the B+-tree with other tree structures, one more key, Kn is added at
the end to pair a key and a pointer in each index node without affecting the original
structure and property of a tree page. In this case, each page now has the structure
<Pl,KI, P2,K2, ..., Kn-1, Pn, Kn>. If the leaf keys are in ascending order from left to
right, then each key Ki is greater than or equal to every key value in the subtree pointed
by Pi. That is, every key is the biggest value of its subtree. If the leaf keys are in

descending order from left to right, then each key Ki is the smallest value in its subtree.

iN|

/2\4 \/rls\

N TR !

2

]
\/ v

Data Reference

Figure 4.3 Simple B+-tree
Figure 4.3 shows a simple B+-tree with integer key values. The key values in the
tree are from 1 to 9. This range is divided into two parts by the key in the root, 6. Every

key value in the left subtree, including its left children and subtrees rooted at them, is less

52

than or equal to 6. Key values in the right subtree are greater than 6. The range in the left
subtree, 1 to 6, is then subdivided by keys 2 and 4. The same happens in the right subtree.
Key values in the left subtree of 2 are less than or equal to 2, while values in the left
subtree of 4 are less than or equal to 4.

The simple B+-tree in Figure 4.3 is redrawn in Figure 4.4 with the modified index
structure. Every index page is added the biggest key of its subtree. For example, 9 is

added into the root page (an index page) because 9 is the biggest key of the tree.

T
H—

Data Reference

v

5 6

T

Av

7

W

Av
v

Figure 4.4 Pairing Key and Pointer for B+-tree

Through the generalization, index pages have the same number of keys as that of
child pointers like leaf pages. Thus, an index page contains pairs of key and child pointer
and a leaf page has pairs of key and data reference. Through a key position in an index
page, we can get a child pointer responding to this key position. The same thing also
happens to a leaf page. A data reference in a leaf page can be found by computing its key
position. Therefore, we can use two implicit containers such as vectors to store keys and
child pointers of an index page respectively. Keys and data references of a leaf page are

also stored into two separate implicit containers.

53

BplusTree

~root; Page*

+empty() § bool

+sizel) : size_type

+hegin() : iterater

+end() : Herator

Hind(in k : Key) ; iterator

+insertlin v : value_type): iterator
+erase(in k : Key) : void

+erase(in i : iterator) ; void
Hower_bound(in k : Key) : iferator
+upper_bound(in k : Key) ¢ iterator
+getPageKey() : Key

~split(in p 1 Page*) : pair<Key Page®>
~-merge(in {p : Page*®, in tp : Page*) : hool
~borrow(in p : Page*) : pair<State,Page*>
~adjust(in K : Key, in p : Page*) : void
~condense(in p : Page*) 1 void
~updateKey(in k : Key, in p : Page”) ; void
iR o)

Page

-keys ¢ Container<Key>
-parent : Page*

«USES»
R ¥

{
i
|

LeafPage

e o -
Key, DataRef, Compare, Container | ?

Fdatarefs : Container<DataRef>
-rLink 1 Page*
SlLink : Page*

HisLeaf() : boot

+getDataRef{in i : iterator) @ Key
+iskull() : bool

+isSparse() : hool

Hempty() : bool

Hbegin) : iterator

Hend() : iterator

Hind(in k ; Key) : iterator

H-size() : size_type

Hinsert(in v : value_type) : iterator

rerase(in k ; Key) : void

Herase(in i 3 fterator) ; void
HgetrLink() : LeatPage®
+getiLink() : LeafPage®
HsetrLink(in p : LeafPage*®) : void
rtsetLLink{in p : LeafPage*).: void
Hlower_bound(in k : Key) : iterator
tupper_bound(in k : Key) riterator

Hiasert(in k : Key, in d : DataRef) : iterator

+isLeaf() : bool
+uetChild(in i @ iterator) : Page*

+aetDataRef{in i : iterator) ; DataRef
+isFull{) : bool

+isSparse() : bool

+empiy() ¢ bool

+hegin() ¢ iterator

+end() @ iterator

+tind(in k : Key) : iterator

Finsert(in k : Key, in p : Page*) : iterator
insert(in k : Key, in d : DataRel) ¢ iterator
erase{in i @ iterator) : void

H+erase() : void

+size() : size_type

+lower_bound(in k: Key) : iterator
Fupper_bound(in k : Key) ¢ iterator
+getParent() : Page*

tsetParent(in p : Page*) : void
Fgetrlink() : Page®

+sefrLink(in p : Page*) : void
HaetlLink() : Page*

r+setiLink(in p @ Page*): void

IndexPage

-children : Container<Page*>
-parent : Page*

+isleal() : bool

HgetChild(in i : Hterator) : Page*
risFull() : bool

+isSparse() : beol

+empty() : bool

+hegin() : iterator

Hend() 1 iterator

ind(in k: Key) s iterator

Hsize() : size_type

Hinsert{in v : value_type) : iterator
Hinsert(in k : Key, in p : Page®) : iterator
+erase(in k : Key) @ void

Herase(in i 2 iterator) : Herator
Hlower_bound(in k : Key) : iterator
Hupper_bound(in k : Key) ; iterator

Figure 4.5 A improved way to implement B+ tree using Composite Pattern

54

In order to get the same iterator type, both index pages and leaf pages use the
iterator provided by the containers to store keys as their external iterators. They have
their own internal iterators to access their own elements. Using this way, we get the same
external iterator type, so we can uniform the index page and leaf page into a common
base class.

Figure 4.5 shows a class diagram for B+ tree index using Composite Pattern. Page is
a base class that declares all the functions of IndexPage and LeafPage classes. Page,
IndexPage, and LeafPage classes use the iterator provided by the container of keys as
their external iterator, so they have the same type of iterators. This makes the interface of
Page simpler and easier to use. This way reduces the number of functions declared in the
base class, but all the functions are also needed to put in the Page class. All the changes
in the subclasses will affect the base class. In addition, there are two special functions
that must be declared in the base class and implemented in its subclasses respectively:
getChild(iterator i) and getDataRef(iterator i). Given an iterator i in the key container,
these two functions return the child pointer and the data reference responding to the
position i.

In fact, there are many shortcomings in this way such as changing the original data
structure of B+-tree, and changing the original meanings of iterators.

The ways to use Composite design pattern can work for the B+-tree implementation,
but they do not follow the STL style completely or cause too much type-casting. Can we

find a better way to conform to the STL concepts and avoid downcasting?

4.2.4 Using Chameleon Techniques to Uniform the Interface of Page
Another better way to implement the B+-tree is to unify index and leaf pages. Index
pages and Leaf pages have different types of elements and virtual functions that cannot
be parameterized. Thus uniforming would become more difficult to achieve.
However, a technique called chameleon [Sim2000] can help us to get a solution. The
main idea of a chameleon is to define a simple and elegant wrapper class which can hold
arbitrary data types and can be used to pass these objects between different program units

while maintaining type safety.

55

Through the generalization above, a leaf page consists of pairs of key and data
reference and an index page contains pairs of separator (key) and child pointer. The Key
type of the index and leaf page is identical, but child pointer and data reference are
different types. If a child pointer and data reference were the same type, the index and
leaf pages would be implemented by using the same implicit container. Thus iterators
should be the same type, so it would be easier to be uniformed into a common base class.

Chameleon can be used to be unify the data reference and child pointer.

Value p(a child pointer);

Value d(a data reference object);
Childpointer pl=p;
DataReference d1=p;

DataReference d1=d;
Figure 4.6 a sample using chameleon

As shown in Figure 4.6, in the first line, p, is initialized with a child pointer.
Therefore, “childpointer pI=p” can work well. However, "dI=p" will throw an
Incompatible_Type_Exception because p is of type child pointer at the time of the
assignment. But “d]=d” can work well because d is of type Data reference.

Because child pointers and data references can be uniformed into one class type by
using chameleon technique, index page and leaf page container have the same type of
iterator. Thus they can be implemented by using the same implicit container. A class
diagram using Chameleon technique and Composite Pattern is shown in Figure 4.7. An
index page and a leaf page have almost common structures except that there are more two
links with its right and leaf siblings in the leaf page. Therefore, it is not necessary to have
an abtract common class for these two pages. Just let LeafPage class inherit from
IndexPage class that functions as a base Page class.

Although the chameleon technique can be used to implement the B+-tree index very
well, now it can only work on Edison Design Group for their compiler front end. Neither

Microsoft VC++ nor g++ work at present time.

56

I'Key, DataRef, Compare, Page |

BplusTree
mmmmmmmmmmmmmmmm ,
-root : Page* :rKcy, T, Compare, Container |
z:;? ESV(;l’:il pe Page(indexPage)
Fhegin() : iterator -eniries : Container<Key, T.Compare>
Hend() : iterator -parent : Page*
Hind(in k ; Key) : iterafor HisLeaf() : bool
Hinsert(in v : value_type) : iterator HgetPageKey(() : Key
Herase(in k¢ Key) : void +isFull() : bool
+Hower_bownd(in k ; Key) : iterator HisSparse() @ bool
tupper_bound(in k : Key) : iterator Hempty() : bool
+getPageKey() : Key Hbegin() : iterator
-split(in p : Page®) @ pair<Key,Page*> Hend() : iterator

rmerge(in fp : Page®, intp : Page®) : Page™ Lopnd(in k : Key) : iterator
-horrow(in p : Page*) : pair<State,Page*> size() : size_type

-adjust(in k : Key, in p : Page*) : void Hinsert(in v : value_type) : iterator

-condense(in p ; Page*) 1 void Herase(in k @ Key) ¢ void
rupdateKey(in k : Key, inp : Page*) : void | Ljower_bound(in k : Key) : iterator
---(in) +upper_bound(in k : Key) : iterator

| +getParent() : Page*

| «usesy +setParent(in p : Page*) : void

i

—————————————— 3 HgetrLink() : Page*
+HoetlLink() ; Page®
HsetrLink(in p : Page*) : void
+setLLink(in p : Page*) : void

[Key, T, Compare, Container |
LeafPage

~-rLink : Page*

-1Link : Page*

+isLeaf(y : bool

HisFuall() : bool

+isSparse() : bool
+getrLink() : Page*®
+getiLink() : Page®
+setrLink(in p : Page®) : void
+setL.Link(in p : Page®) : void

Figure 4.7 B+-tree diagram using chameleon technique

57

4.3 Our Implementation of B+-tree Index

Can we find a way to implement B+-tree index to follow the STL style, avoid
downcasting and run with popular compilers like VC and g++?

As we know, the child pointers in index pages may point to another index page or a
leaf page in its lower level. In order to avoid typecasting, we use dynamic polymorphism.
Thus a Page class is added as a base class of index pages and leaf page. The index page
and leaf page are designed as containers based on the STL style and generic
programming. Although these two kinds of pages have almost the same interfaces, the
interfaces are not programming but conceptual interfaces. If we try to unify them, that
leads to the problems discussed before.

One solution will be proposed in this thesis by combining the composite pattern with
the casting-method pattern. This solution does not only avoid downcasting by using
casting method, but it does follow the STL style and work with any standard compiler.

Figure 4.8 shows the class diagram of the main classes of one B+-tree
implementation. Inheritance leads to Page being an abstract class, and provides a
potential use of polymorphism. Page defines virtual functions which act as an interface
for its subclasses: IndexPage and LeafPage. This base class cannot only take on
polymorphic behavior, but it can also obtain a type-safe reference to a subclass by using
casting methods. As a result, BplusTree only holds a pointer to a page but it can get
references to the index page and leaf page through this page, and then can invoke the
class-specific functions such as begin(), end() and insert() through these references.
IndexPage and LeafPage are designed to be template container classes in the spirit of the
STL, so they must conform to all STL interface characteristics. All containers provide
their own public functions (built-in algorithms like find()). They also provide public
iterators and type definitions to allow for interaction with external STL algorithms like

find_if () or any new user defined algorithm.

58

.Kcy, {)ataRcf Compare, IndexPage, Leafl’age

e e L

BplusTyee |
Key, DataRef, Compare |

wroot s Page* | e g
+heging) ; iterator Page
+end() : iterator
+size() ¢ size_type +HsLeaf() : bool [R -
+Hind(in k : Key&) : iterator «uses» rgetindexPage() : IndexPage*” ~~T7 7=~ RN
+Hinsert(in v : value_type&) : iterator [~ trgetLeafPage() : LeafPage* RN
Herase(in k : Key&) : void +isFullf) : bool \\\
+lower _bound(in k ;: Key&) : iterator HsSparse() : bool ’ »
upper_bound(in k : Key&) : iterator +HgetPageKey() : Key
-adjust(in K : Key, in p : Page*) : void H+getParent() : IndexPage* return 0
-condense(in p : Page®) : void +setParent(in p : IndexPage*) : void
-updateKey(in k : Key, in p : Page*) A
-(in)

LeafPage B B !

-pareat : IndexPage* | 122 iR el
-rLink : LeafPage*® IndexPage
rILink : LeafPage* -parent : IndexPage*
-enfries : multimap<Key,DataRef,Compare> Lkeys : vector<Key>
+isLeat() : bool -children : vector<Page*>
+getleafPage() » LeafPageX isLeal() : bool o
+isFull() : bool \ +getindexPage() : Index Page* 1
FHisSparse() : hool \‘ +isFuall() : bool

+heging) : iterator 4 +isSparse() : bool \
rrend() : iterator \ Hbegin() 1 iterator \
Fsize() : size_type \ Hend() : iterator !
+Hind(in k : Key&) : iterator x +size() : size type

Hinsert(in v : value_type&) : iterator Hind(in k : Key&) : iterator
+erase(in k : Key&) : void % .
+ower_bound(in k : Key&) : itekator
Fupper_bound{in k : Key&) : iter\qwr
+getParent() : Page* Y
+setParent(in p ; Page*) : void %
+setrLink(in p : Page*®) : void \

-

1
Finsert(io : Key&, in : Page*) : iferator
+erase(in k : Key&) : void !
+lower_bound(in k : Key&): iterator
Hupper_bound(in k : Key&) : lterator

+oetParent() : Page* ,

setlLink(in p : Page*) : void \ +setParent(in p : Ir’age*) tvoid !
+getrLink() : Page* N\ +getPflgeK_c YO : Key - /I
getlLink() : Page® \ +ke3f(m i: 1t_f:rat9r) s Kev& . ¢
+getPageKey() : Key N[O :~palr<»l(ey’lﬂndexf aget
+key(in i : it;eratof) : Key& > merge(in p : i'n dexPage®) : hhol *
+spiit0 :paiNKev.,LeafPage%) i—borrow() - pmr<State,]ndc;;fPage -
Hmergein p @ LeafPage®) : bool AN /

Hborrew() : pair<State,LeafPage> A <] v
<y retarn this;

Figure 4.8 B+-tree class diagram using casting-method and composite pattern

59

The elements in a page are stored in a sequential order. The key part of the elements
is at least Less-Than Comparable, meaning that it must be possible to compare two
objects of the key type using the operator < and the operator < must define a consistent
order [Aus1999], so it can be at least partially ordered. For example, for two elements A
and B, we can decide which one is less than the other through their keys, and store them
in their order. If we cannot decide, they are said to be equivalent and we store them in the
same order as one group. Ordering here can be done only partially but at least between
groups, so there exists a complete order. No two groups can be equivalent unless they are
the same group.

In case of a group result, the beginning of the group is sufficient to give the
necessary element. Since elements are ordered, the rest of the group can be easily located.
This mandates a small addition to the generic page concept: Each leaf page should be
physically connected to the next leaf page. Even pages are not necessarily physically
ordered, it is easy to find the logical order of leaf pages regarding their contents. Then it
is easy to link each page with the page that has the immediately next sequence of data. In
the design, each leaf page will therefore have a reference to the page that follows it in the
sequence. Acting like a linked list data structure, inserting a new page between two pages
requires some modifications to keep the logical sequence in order. Linking each page to
the previous page as well can make a further addition. It will then act like a doubly-
linked list.

4.3.1 Page class

In the B+-tree, there are two kinds of pages: index pages and leaf pages. If the order of
the tree is n, an index page contains n keys and n+1 child pointers but a leaf page has n
pairs of key and data reference. Every child pointer may point to an index page or a leaf
page. Therefore, there is a need for a base class or interface to implement this kind of
polymorphism.

The Page class shown in Figure 4.9 is an abstract class (interface) that only declares
common functions such as isLeaf{), isFull(), and isSparse() in both IndexPage and
LeafPage classes and two special virtual functions: getlndexPage() and getLeafPage().

These two special virtual functions are declared in the Page class but implemented in

60

IndexPage and LeafPage respectively. The function getIndexPage() returns a reference to
the current index page and getLeafpage() returns a reference to the current leaf page.
From a page, we can obtain an IndexPage or LeafPage object references by calling
getindexPage() or getLeafPage(). Once we get a reference from a derived class, we can
call its specific methods directly by using this reference. Thus we can avoid downcasting

a page to a leaf page or an index page.

template<class Key,class DataRef,class Compare>
class Page
{
public:
typedef Key key_type;
typedef Compare compare_type;
typedef Page<Key,DataRef,Compare> page;
typedef IndexPage<Key,DataRef,Compare> indexPage;
typedef LeafPage<Key,DataRef,Compare> leafPage;
typedef page* PagePtr_t;
typedef indexPage* iPagePtr_t;
typedef leafPage* 1PagePtr_t;
public:
virtual ~Page(){ };
virtual bool isLeaf()=0;
virtual iPagePtr_t getIndexPage(){ return 0;}
virtual 1PagePtr_t getLeafPage(){return 0;}
virtual bool isFull()=0;
virtual bool isSparse()=0;
virtual key_type getPageKey()=0;
virtual iPagePtr_t getParent()=0;
virtual void setParent(iPagePtr_t p)=0;

}; /lend of page

Figure 4.9 Interface for Page class

61

4.3.2 Implementation of LeafPage Container

The LeafPage class is implemented to be an associative container like a multimap. It
can support multiple keys, which means that a leaf page may contain elements with
duplicate keys.

Furthermore, associative containers are optimized for the operations of lookup,
insertion and removal. The member functions that explicitly support these operations are
efficient, performing them in a time that is on average proportional to the logarithm of the
number of elements in the container. Inserting elements invalidates no iterators, and
removing elements invalidates only those iterators that had specifically pointed at the
removed elements.

Like the STL multimap, the LeafPage container has at least three explicit template
parameters: Key (key_type), Data Reference (mapped_type), and Compare (functor).

A data record in databases, once available, is prepared for the indexes by extracting
suitable attributes to be used as keys in each index (primary / secondary) along with the
corresponding physical location references (called data reference).

Compare is the functor used when searching objects to decide on the matching keys.
The default values allow for simply using the built-in comparison methods as built-in
queries, or adding external functors as new user-defined queries new matching criteria.

Each leaf page, as shown in Figure 4.10, stores at most n but at least n/2 of pairs of
key and data reference if the order of the B+-tree is n. Also, a leaf page keeps a pointer
to its parent page if depth first with no stack were used as traversal method or for tree
maintenance purpose. In order to support sequential access, a leaf page will have pointers

to both its left and right siblings as well.

62

parent

|
end()

begin(}

Key Key Key . .
left l N i 1o right
sibling Data/ Data/ Datar | Unused space » Sibling
Reference | Reference Reference

begin()+1 end()-1

|

Figure 4.10 LeafPage Structure

Many STL containers can be used as an implicit container, but we consider
multimap to be one of the most suitable ones for the following reasons:

1. It supports the efficient retrieval of element values based on an associated key value.

2. Its elements are ordered by key values within the container in accordance with a
specified comparison function.

3. Itis multiple, because its elements do not need to have a unique key, so that one key
value may have many element data values associated with it.

4. It provides bidirectional iterators to access its elements.

Associative vector container is another good choice to be used as an implicit
container. Originally it was written in The Loki Library by Andrei Alexandrescu
[Alex2001], but it can be implemented with the unique key like std::map on the basic of
vector and sort algorithm. Our implementation of the B+ tree index is based on multiple
keys, so we must change that original associative vector into a syntactic drop-in
replacement for std::multimap but it does not respect all multimap's guarantees. The most
important things are: iterators are invalidated by insert and erase operations; the
complexity of insert/erase is O(N) not O(logN) value_type is std::pair<K, V> not
std::pair<const K, V>; iterators are random.

The LeafPage container uses its implicit container’s iterator as its external iterator.
Therefore, the iterator may be a pointer to a pair of (key, data reference). If the container

is implemented by using multimap, the iterator of leaf page should be bidirectional

63

iterator because the iterator provided by the multimap is a bidirectional iterator. If
LeafPage is realized by using associative vector, the iterator is a random access iterator.

The LeafPage class shown in Figure 4.11 provides its built-in set of functions, type
definitions and iterators to its contents to interact with external algorithms and external
iterators. As an associative container, Leaf page container also needs to conform to the
STL interface for containers. So it should have the following standard functions:

begin() returns an iterator addressing the first pair of (key, data reference) in the leaf

page container by calling its implicit container’s begin function.

end() returns an iterator that addresses the location succeeding the last pair in a leaf

page container by calling its implicit container’s end function.

find(k) returns an iterator addressing the first location of a pair in a leaf page

container that has a key equivalent to the specified key k by invoking its implicit

container’s find(k).

insert() inserts a pair or a range of pairs into a leaf page container by invoking its

implicit container’s insert function.

erase() removes a pair or a range of pairs in a leaf page container from specified

positions or removes pairs that match a specified key by invoking its implicit

container’s erase function.

lower_bound(k) returns an iterator to the first pair in a leaf page container that with a

key that is equal to or greater than a specified key k by invoking its implicit

container’s lower_bound(k).

upper_bound(k) returns an iterator to the first pair in a leaf page container that with a

key that is greater than a specified key k by invoking its implicit container’s

upper_bound(k) function.

Other standard built-in functions are implemented the same way as functions above.
The LeafPage class needs to implement all the functions in the base class and some
important functions will be used by its own or the B+-tree index’s algorithms:

getleafPage() returns a pointer to the current leaf page itself is returned.

IsLeaf{) returns true.

IsFull() will returns true if the size of a leaf page is greater than the order of the tree,

otherwise it will return false.

64

Similarly, isSparse() will return true if the size of a leaf page is less than half the
order of the tree, otherwise it will return false.

getPageKey() returns the key of first element in the leafpage.

getParent() returns the pointer to its parent and setparent() assigns a pointer to be its
parent.

getrLink() and setrLink() are used to deal with its right link in the double linked leaf
pages. The same things happen to getlLink() and setlLink() but they are used to
process on its left link.

merge() removes all the elements of that merged sibling and move them into the
current leaf page.

split() creates a new page and move half all the elements of current page into the new
one, and return a pair of the middle key of the old leaf page and the reference to the
new one.

borrow() first checks if it can borrow from its left or right sibling, if yes, it returns a
pair of State:SUCCESS and the reference of the borrowed sibling. Otherwise, if it has
a sparse right sibling, it returns a pair of State:RIGHT and the reference of its right
sibling. If not, a pair of State:LEFT and its left sibling will be returned.(State is an
enum type like enum State { SUCCESS,RIGHT,LEFT})

template<class Key,class DataRef,class Compare=less<Key> >
class LeafPage: public Page<Key,DataRef,Compare>
{
public:
typedef Key key_type;
typedef Compare compare_type;

typedef Page<Key,DataRef,Compare> page;

typedef IndexPage<Key,DataRef,Compare> indexPage;
typedef LeafPage<Key,DataRef,Compare> leafPage;
typedef page* PagePtr_t;

typedef indexPage* iPagePtr_t;

typedef leafPage* 1PagePtr_t;

typedef AssocVector<Key,DataRef,Compare> Container;

typedef typename Container::value_type value_type;
typedef typename Container::iterator iterator;
typedef typename Container::difference_type difference_type;
typedef typename Container::size_type size_type;

65

protected:
iPagePtr_t parent;
[PagePtr_t rLink;
|PagePtr_t ILink;
Container entries;

public:
LeafPage;
LeafPage(iPagePtr_t p,IPagePtr_t rl,1PagePtr_t 1l,Container e);
LeafPage(LeafPage& x) ;
template<class Inputlterator>
LeafPage(Inputlterator f,Inputlterator 1);
virtual ~LeafPage(){ };
bool empty();
size_type size();
size_type count(const key_type& k);
iterator find(const value_type& v);
iterator find(const key_type& k);
iterator begin();
iterator end();
iterator insert(const value_type& v);
iterator insert(iterator pos,const value_type& v);
template<class Inputlterator>
void insert(Inputlterator f, Inputlterator 1);
void erase(iterator pos);
void erase(iterator f,iterator 1);
virtual size_type erase(const key_type& k);
size_type max_size() const ;
iterator lower_bound(const key_type& k);
iterator upper_bound(const key_type& k);
std::pair<iterator,iterator> equal_range(const key_type& k);
virtual bool isLeaf();
virtual 1PagePtr_t getLeafPage();
virtual key_type& getPageKey();
key_type& key(iterator i);
virtual bool isFull();
virtual bool isSparse();
virtual iPagePtr_t getParent();
virtual void setParent(iPagePtr_t ip);
void setrLink(IPagePtr_t Ip);
void setlLink(IPagePtr_t Ip);
1PagePtr_t getrLink();
[PagePtr_t getlLink();
1PagePtr_t getrSibling();
1PagePtr_t getlSibling();
bool merge(1PagePtr_t p);
std::pair<key_type,|PagePtr_t> split();
std::pair<State,|PagePtr> borrow() ;

}; /lend of LeafPage
Figure 4.11 Interface for LeafPage

66

4.3.3 Implementation of IndexPage Container

An index page is also designed to be an associative container. The IndexPage
container is invisible to applications. It is created and managed by the tree index
container. Because child pointers have one more than separators (keys), the IndexPage
container will be a special associative container

Like LeafPage container, the IndexPage container should have at least two explicit
template parameters: Key (key_type) and Compare (functor), and another explicit
parameter Data Reference is also needed here just because of inheritance. Child pointer is
a reference to another index page or a leaf page. Child pointer is mapped_type for Key,
but it is not necessary to be a template parameter. Key, Data reference and Compare have
the same meanings as those in LeafPage container.

The IndexPage class shown in Figure 4.12 stores n separators (keys) and n+1 child
pointers if the order of the tree is n. Separators (keys) are ordered in an index page. Each
index page keeps a reference to its parent page for traversal method or tree maintenance
purpose.

Although many STL containers can be used an implicit container for IndexPage
container, we think vector to be one of the most suitable. The vector provides its built-in
set of functions that can be used easily. In addition, by reserving space as the size of the
order of the tree, that eliminates reallocating cost. The iterator provided by vectors is
random access iterator, so we can get better efficiency. In our implementation, two
vectors are needed: one for keys (also called key container), and the other for child

pointers (also called child pointer container).

parent ‘ l
Key.begind) Key.ead()
Key.begin{)+1 Keyaend()-1
‘ Key Key .. Key
Unused space
child child child L child P

pointer pointer pointer painter

i | [1
begin() begin)+1 end()-1 end()

Figure 4.12 IndexPage structure

67

There are two kinds of iterators provided by two vectors respectively but the index
page container uses the iterator of the child pointer container as its external iterator. The
iterator of the key container is only used as an internal iterator. From Figure 4.12, we can
see that every child has a key called its PageKey in the key container except the first
child. The distance between the positions of a child pointer and its PageKey is 1.
Therefore, given an iterator i to a child pointer in the child pointer container, we can get
the iterator to its PageKey in the key container by computing like
Key.begin()+(std::distance(begin(),i)-1). If the index page is implemented by using
implicit containers like two vectors with a random access iterator, then this computation
just takes a constant time O(1). The PageKey of the first child is the first key of its
leafmost leaf page if the child pointer is treated as the root of a subtree, so it can be gotten
by using a function of getPageKey().

Figure 4.13 shows the interface of the IndexPage container, including declaration of
built-in standard functions, type definitions and iterators to its contents to interact with
external algorithms. Following the STL style, the IndexPage container must provide the
following standard functions:

begin() and end() return the child pointer container’s begin() and end().
find(k) returns an iterator addressing the first location of a child pointer in a index
page that has a page key equivalent to the specified key k. This function first get the
iterator i by invoking Key.lower_bound(k) of the key container, and then return the
iterator to the first child pointer that has PageKey k& by computing like
begin()+(std::distance(Key.begin(),i) +1).

insert() inserts a child pointer or a range of child pointers into the child pointer

container and the page keys of the inserting child pointers into the key container in a

index page. If the first one is inserted, its PageKey will be ignored.

erase() removes an child pointer or a range of child pointers in a index page from

specified positions or removes child pointers that match a specified key. At the same

time, it also needs to remove the keys corresponding to those erasing child pointers in
the key container.

lower_bound(k) returns an iterator to the first child pointer in a index page that with a

page key that is equal to or greater than a specified key k. It can be implemented the

same way as find(k).

68

upper_bound(k) returns an iterator to the first child pointer in a index page that with a

page key that is greater than a specified key k.

Other standard built-in functions are implemented the same way as functions above.
Similar to the LeafPage, the IndexPage container also must implement all the functions in
the Page class and other functions to be used by B+-tree index:

getlndexPage() returns a pointer to the current index page itself is returned.

IsLeaf{) returns false.

IsFull() will return true if the size of a leaf page is greater than the order of the tree

plus one, otherwise it will return false. Similarly, isSparse() will return true if the size

of a leaf page is less than half the order of the tree plus one, otherwise it will return
false.

getPageKey() returns the PageKey of first child pointer in the index page.

getParent() returns the pointer to its parent and setparent() assigns a pointer to be its

parent.

merge() combines that merged sibling with the current index page.

split() creates a new page and move half all the elements of current page into the new

one, and returns a pair of the middle key of the old index page and the reference to

the new one.

borrow() is similar to the borrow function of a leaf page but returns a pair of State

and the related pointer to an index pointer.

template<class Key,class DataRef,class Compare=less<Key> >
class IndexPage:public Page<Key,DataRef,Compare>

{

public:
typedef Key key_type;
typedef Compare key_compare;
typedef std::vector<Key> Key_Container;

typedef std::vector<PagePtr_t> Container;
typedef Container::value_type value_type;
typedef Key_Container::iterator ~ key_iterator;

typedef Container::iterator iterator;

typedef Container::difference_type difference_type;

typedef Container::size_type size_type;
protected:

iPagePtr_t parent;

Key_Container keys;

69

Container children;
public:
IndexPage();
IndexPage(iPagePtr_t p,Key_Container k,Container c);
template<class Inputlterator>
IndexPage(Inputlterator {,Inputlterator 1);
virtual ~IndexPage(){ };
IndexPage& operator=(const IndexPage&);
virtual bool empty();
virtual size_type size();
virtual size_type count(const key_type& k);
iterator find(const value_type& v);
iterator find(const key_type& k);
iterator begin();
iterator end();
iterator insert(const value_type& v);
iterator insert(key_type& k, const value_type& v);
iterator insert(iterator pos.key_type&k, const value_type& v);
void insert(Inputlterator f, Inputlterator 1);
void erase(iterator pos);
void erase(iterator f,iterator 1);
size_type erase(const key_type& k);
iterator lower_bound(const key_type& k);
iterator upper_bound(const key_type& k);
std::pair<iterator,iterator> equal_range(const key_type& k);
virtual bool isLeaf();
virtual iPagePtr_t getIndexPage();
virtual key_type& getPageKey();
key_type& key(iterator i),
virtual iPagePtr_t getParent();
virtual void setParent(iPagePtr_t ip);
virtual bool isFull();
iPagePtr_t getrSibling();
iPagePtr_t getlSibling();
bool merge(iPagePtr_t p);
std::pair<key_tpe,iPagePtr_t> split();
std::pair<State, iPagePtr> borrow();

}; end of Index Page
Figure 4.13 Interface for IndexPage

70

4.3.4 Implementation of B+-tree Index Container

The implementation of the B+-tree index container shown in Figure 4.14 is based on
Leaf Page and Index Page containers. The B+-tree index is initialized from an empty
Leafpage container. However, the index will dynamically grow or condense with
insertions or deletions. The B+-tree index container is designed and implemented to be an

associative container, so it supports equality and range-searches efficiently.

Key

Key .o Key

.....

T

/ /'

..........

./f Kuy LR Koy / key .. Koy
L 9 "V D W W SN VU P —] A
Data/ L Data/ g > I Data/ o Dats/f
Ref Ref Ref Ref
end{}-1

begin() \ end()
Figure 4.14 B+-tree structure
The B+-tree index container has at least five template parameters: Key(key_type),

Data reference(mapped_type), = Compare(functor), LeafPageContainter, and

IndexPageContainer. The first three parameters are the same as those in LeafPage and
IndexPage. LeafPageContainer and IndexPageContainer make B+-tree index container

more flexible because they can be replaced with other or user-defined page containers.

71

The B+-tree index container must provide a set of standard STL types that are
internally translated to the equivalent container-specific types with typedef statements.
This allow for the container to be easily integrated with other STL components.

The B+-tree index container only holds a pointer to a root page. In the operations of
B+-tree index, the required pages are loaded on demand through a proxy mechanism.

Roughly speaking, an iterator is a small, light-weight object, which is associated with
B+-tree index container. It is the only way to allow access to elements within B+-tree
index containers. The Iterator is a nested class defined within B+-tree index container
class and is a friend to this container. B+-tree index container is a double link list of leaf
pages, but the elements that B+-tree iterators shown in Figure 4.15 are iterating over are
pairs of key and data reference. Therefore, a B+-tree iterator should point to a pair that is
determined by the position of this pair. If we want the place of the pair, a leaf page
pointer where the pair is stored and the leaf page iterator that points to this pair must be
provided.

The iterator had to be integrated with the STL, and that's why it is derived from a
standard Iterator tag class like std::iterator<std::random_access_iterator_tag, T>. Iterator
tags are an ingenious mechanism that allows some STL algorithms to be tailored to the
specific capabilities of each iterator type. This derivation tells the client algorithms that
the class just introduced is an iterator that supports random access (i.e., indexed access,
like pointers) and accesses elements of type T. In the iterator of B+-tree index container,

T should be pair of (key, Data reference).

parent
l Key Key v Key .
left link <4——@ Data/ Data/ N Data/ | &% rightlink
Reference | Reference Reference

23
o
S feaf page

?&Q%%t iterator
A \

AN B+ tree index
iterator

Figure 4.15 B+-tree iterator structure

72

The Iterator class must implement the following main operations below:
operator* dereference the leaf page iterator (returning a reference to a pair of key
and data reference).
operator++ () shown in Figure 4.16 advances the iterator to the next element using
in-order traversal. This function is the heart of the class. Suppose p to be the current leaf

pointer and i to be the current leaf page iterator in this leaf page.

iterator& operator++ ()
{
if (i!l=p->end())
{
if((++)==p->end() && ((p->getrLink())!=NullPtr))
{
p=p->getrLink();
i=p->begin();
}
}else{
if((p->getrLink())!=NullPtr)
{
p=p->getrLink();
i=p->begin();
}
}
return *this;
}
Figure 4.16 Sample codes for operator ++()

In Figure 4.16, we can see first the current leaf iterator i performs a ++ operation.
After that, if i has not reached the end() of the current leaf page p, ++ operation is
completed. Otherwise, p will move to its right link and i also moves to the begin() of the
page the link points to if the link is not null pointer.

operator-- () shown in Figure 4.17 advances the iterator to the next element using
in-order reversal traversal. The process of -- operation is similar to ++ operation. The
difference between them is that p goes to its leaf link and i goes to the position next to the

end() of the left link when the begin() of the current leaf page p is reached

73

iterator& operator-- ()
{
if (il=p->begin()) --i;
else{
if(p->getlLink()!=NullPtr)
{
p=p->getlLink();
i=--(p->end());
}
}
return *this;
B
Figure 4.17 Sample codes for operator —()

operator==() compares two iterators for equality, not the elements they refer to. If
the leaf page pointers and leaf page iterators of these two iterators are equal, true will be
returned. Otherwise, false will be returned.

operator!=() compares two iterators for inequality, not the elements they refer to.
This operator is implemented by using operator = =.

If iterator class is designed to be a random access iterator, operator+(int n),
operator —(int n), operator <(iterator) and other functions related to the requirements of
random access iterator type are required. Iterator must also have a default constructor,
copy constructor, assignment operator and destructor, but the implementation of all of
these can be not very complicated.

As an associative container, the B+ tree index container also needs to conform to the
STL interface for containers. Therefore it has the following main standard functions:

begin() always begins at the root page and follows the first child pointer of the page
from page to page until the first leaf page is arrived. begin() returns an iterator addressing
the first pair of (key, data reference) in the first leaf page container.

end() always begins at the root page and follows the last child pointer of the page
from page to page until the last leaf page is arrived. end() returns an iterator that
addresses the location succeeding the last pair in the last leaf page container.

find is the fundamental operation in using the index. The application uses the index
to locate data by searching its contents to find where the physical data resides. As
mentioned before, the index does not provide the data we are looking for, but tells us

where it is stored, so the data returned by the index is typically a reference to a location.

74

find by a key is the most basic form. It uses the internal comparison operator (the built-in

functor) inside the index to find the first data entry whose key matches the searched key.

iterator find(const key_type& k)
{
PagePtr_t pPtr=root;
iPagePtr_t iPtr;
1PagePtr_t IPtr;

// Tteratively traverse children to the leaf page
while(pPtr!=NullPtr && !pPtr->isLeaf())
{
iPtr=pPtr->getIndexPage();
pPtr=*(iPtr->lower_bound(k));
}
//searching in the leafpages
if(!pPtr && pPtr->isLeaf()) IPtr=pPtr->getLeafPage();
leaf_iterator i=1Ptr->find(k);
if(i==IPtr->end())

{
if(IPtr->getrLink()!=NullPtr)
{
1Ptr=IPtr->getrLink();
i=IPtr->find(k);
if(i==IPtr->end()) return end();
}else return end();
}

return iterator(IPtr,i);
} //end of find()
Figure 4.18 sample codes of find()

As shown in Figure 4.18, searching a B+-tree for a key k always begins at the root
page. If the root page is not a leaf page, the root page will first be cast to the index page
by invoking the function of getIndexPage(). Then the child pointer to a page in the lower
level will be obtained by deferencing the index page iterator returned by lower_bound(k)
against the searched key k in this index page. This process will be recursive till a leaf
page is reached. By invoking getLeafPage(), a reference to this leaf page will be returned.
Then call the find(k) of this leaf page, and a leaf page iterator i will be achieved. If i has
not reached the end of this leaf page, a tree iterator that is made up of the leaf page
pointer and the leaf page iterator i. If i is end() of this page, the right leaf page of this
page has the same process if it is not null pointer. Otherwise, the end() of the tree will be

returned.

75

insert(pair) (as shown in Figure 4.19) first chooses a correct leaf page and insert a
pair of (key and data reference) into this leaf page. Insertion may cause splits. In a case,
splits increase the width of the tree. Root split increases its height

Like the find operation, choosing the correct leaf page begins at the root page and
invokes the upper_bound function against the key of the inserted pair. By dereferencing
the iterator returned by the upper_bound to get the child pointer to a page in the next
level, choosing function follows this process from page to page recursively until a leaf

page is reached.

! BplusTree::insert{pair)
}@hoosel.eaf(pair.first))

|
! Page found

1\Pa£isfull}
Ses insert pair into age]—%@

(split and keep one half, move the other half into new onej

[The inserting key is less than the Page key of new one]

I Yes
¢ insert this pair into old one)

INO

|

ﬁnsert this pair into new one)

(u;:date the key of old one]

v

(make a new entry of pair(new Page key, new Page addressD

Qind the parent of the old onej

Figure 4.19 B+-tree insert activity

76

When we insert a pair into a B+-tree, each scenario causes a different action in the

insert algorithm. The scenarios are shown in Table 4.1:

The insert algorithm for B+-tree

Keys > middle key go to the right index page.

Leaf Page : Index Page
Action
Full Full
NO NO Place the pair in sorted position in the appropriate leaf page
1. Split the leaf page
2. Place a copy of Middle Key in the index page in sorted
order.
3. Left leaf page contains pairs with keys below the middle
YES NO key.
4. Right leaf page contains pairs with keys equal to or greater
than the middle key.
1. Split the leaf page.
2. Pairs with keys < middle key go to the left leaf page.
3. Pairs with keys >= middle key go to the right leaf page.
4. Split the index page.
YES YES 5. Keys < middle key go to the left index page.
6.
7.

The middle key goes to the next (higher level) index.
IF the next level index page is full, continue splitting the
index pages.

Table 4.1 The insert algorithm for B+-tree

erase(iterator) (as shown in Figure 4.20) takes an iterator as a parameter and returns

a void. erase first chooses a correct leaf page and remove the pair that the iterator points

to from this leaf page. Deletion may cause borrowingss and merges. If a borrowing

happened, an entry has to be moved from its borrowed sibling. If a merge occurred, one

must delete the entry of its merged sibling from its parent. A merge could propagate to

the root, possibly decreasing height of the tree. Borrowings and merges may cause to

update PageKeys of some pages. If the PageKey of a page is changed, one entry

responding to this page in its parent may be updated. If this entry is also the PageKey of

its parent, the key updating will be recursive till the root is reached.

77

! erasef(iterator} P
@ >{get Page pointer and Page iterator)

|

G:’age: :erase(iteraior))

Page is Sparse

{ NO

N
/1 YES

Vi

@orrow from its siblings)

1Y
éé——{update page keys of both pages ES
INO

(merge with its proper sibling)

@pdate the page ke‘,a

@elete merged sibling)

(ﬁx parent page by removing the entry of deleted page)—

Figure 4.20 B+-tree erase activity

When we erase a record from a B+-tree, each scenario causes a different action in

the erase algorithm. The scenarios are shown in Table 4.2:

78

The erase algorithm for B+-trees

Leaf Page | Index Page
Action
Sparse Sparse
NO NO delete the pairs from the leaf page.
1. Check if the leaf page can borrow from its right or left
sibling. If yes, borrow.
YES NO 2. If not, merge the leaf page with its sibling.
3. Adjust the index page to reflect the change.
4. Check if the leaf page can borrow from its right or left
sibling. If yes, borrow.
5. If not, merge the leaf page with its sibling.
6. Adjust the index page to reflect the change.
7. Check if the index page can borrow from its right or left
YES YES sibling. If yes, borrow.
8. If not, merge the index page with its sibling.
9. Continue combining index pages until you reach a page
with no sparse or you reach the root page.

Table 4.2 The erase algorithm for B+-trees

template <cla
cla

ss Key,
ss DataRef,

class Compare=std::less<Key>,

class IndexPageContainter=IndexPage<Key,DataRef,Compare>,

class LeafPageContainer=LeafPage<Key,DataRef,Compare> >
class BplusTreeIndex

{

public:
typedef Key key_type;
typedef Compare key_compare;
typedef Page<Key,DataRef,Compare> page;
typedef IndexPage<Key,DataRef,Compare> indexPage;
typedef LeafPage<Key,DataRef,Compare> leafPage;
typedef page::PagePir_t PagePtr_t;
typedef page::iPagePtr_t iPagePtr_t;
typedef page::1PagePtr_t 1PagePtr_t;
typedef leafPage::value_type value_type;
typedef value_type* pointer;

79

typedef value_type& reference;
typedef size_t size_type;
typedef ptrdiff_t difference_type;

protected:
PagePtr_t root;

public:
BplusTreelndex(PagePtr_t p):root(p){ };
BplusTreelndex();
BplusTreelndex(BplusTreeIndex& x);
template<class Inputlterator>
BplusTreelndex(Inputlterator f,Inputlterator 1);
virtual ~BplusTreelndex();
class iterator:public

std::iterator<std::random_access_iterator_tag,value_type,difference_type>;
iterator begin();
iterator end();
size_type size();
iterator find(const key_type& k);
iterator lower_bound(const key_type& k);
iterator upper_bound(const key_type& k);
std::pair<iterator,iterator> equal_range(const key_type& k);
iterator insert(const value_type& aPair) ;
template <class Inputlterator>
void insert(Inputlterator f,Inputlterator 1);
void erase(iterator pos);
void erase(iterator f,iterator 1);
size_type erase(const key_type& k);
size_type max_size();
void clear();

private:
1PagePtr_t chooseLeaf(const key_type& k);
void adjustTree(const key_type& k, PagePtr_t page);
void condenseTree(PagePtr_t page);
void updateKey(PagePtr_t p,const key_type& k);

}; end of Bplustree

Figure 4.21 Interface for B+-tree index

80

4.3.5 Proxy Mechanism

The Index page or Leaf page container is meant to be small enough to easily fit into
memory. However, the B+-tree index container does not have to fit completely in the
memory and typically it will not. The B+-tree index uses a Proxy mechanism to manage
controlled access to the storage of the index.
Smart Pointer

Figure 4.22 shows the Proxy (smart pointer) activities. Only the root of a B+-tree is
loaded initially, and resides in memory until the B+-tree is destroyed. Each access to a
non-root page checks if the page is in memory. If yes, the Proxy returns a smart pointer to

the tree algorithm. Otherwise, the Proxy will check if Cache has a reference to the page.

Tree Algorithms SmartPointer<T> Cache Storage

Use

Check if T in Memory

P o o = = ———

smartpointer{T) (true) (false} Read
é——

Check if T in Cache
smartpointer{T) T {true) (false) Read T
N S N R 01 P S GG
smartpointer(T) T Push T into Cache
Sl e i R G e e e e e e e e o —

Figure 4.22 Proxy(smart pointer) activity
If the page reference is in Cache, the tree algorithm also can quickly get a smart pointer

to the page. If not, the Proxy needs to read the page object from the storage.

81

In the B+-tree implementation, a smart pointer can be used for many purposes such
as garbage collection, exchanges between memory pointers and disk pointers, and
locking mechanism. A smart pointer is like a bridge between memory and physical
storage. It is important for STL-like containers to consider the specific garbage collection
scheme used. A Non-intrusive reference counting smart pointer in Figure 4.23 is suited
for the B+-tree implementation with the STL style. The number of object references is
stored in a counter that maintains a count of the smart pointers that point to the same
object. The smart pointer will delete the object when this count becomes zero. The
diskPointer holds an offset to a page in the index files, and a memoryPointer maintains a
reference to a loaded page in memory. Reference counting smart pointer requires using

locks if the pointers are used by more than one thread of execution.

Smarl painter
Smart pointer
courter
Smart painter diskPointer
mamoryPointer o Object

Figure 4.23 Structure of non-intrusive reference counting smart pointer

Figure 4.24 shows the interface of SmartPointer class. Template parameters T and
Cache stand for a reference object type and cache type. By using smart pointers, a page
is only loaded on demand. Actually, the need of loading a page is determined by using *
and -> operations with a smart pointer. If the page is loaded already in the cache, these
operations just cost a memory access only. If not, the cache manager will be responsible
for loading the page from the storage using a read operation and put it into the cache. If
the page is changed and become dirty, it will be written back to the storage by invoking

write function. It will take a disk access time.

82

struct RefCounter
{
RefCounter () : totalRefs__ (0), strongRefs_ (0),dirty_(false){ }
bool dirty_;
long totalRefs_;
long strongRefs_;

b

template<class T, class Cache>
class SmartPointer
{
public:
SmartPointer();
SmartPointer(const T* x);
~SmartPointer();
template<class U>
SmartPointer(const SmartPointer<U,Cache>& x);
template<class U>
SmartPointer& operator=(SmartPointer<U,Cache>& x);
template<class U>
SmartPointer(const WeakPointer<U,Cache>& x);
template<class U>
SmartPointer& operator=(WeakPointer<U,Cache>& x);
Té& operator*() const
T* operator->() const
RefCounter& getCounter();
T& get();
setID();
getID();
void read(id);
void write(id);
bool dirty();
private:
RefCounter counter;
T* pRefered;
long id;
void release();

}

Figure 4.24 Interface for SmartPointer

However, the problem with smart pointers is the use of circular references. If object A
has a smart pointer that points at object B which has a smart pointer that points back at A,
then neither object will ever be destroyed since their reference counters will never reach
zero. It can be difficult to prevent such circular references. One approach to fixing this

problem is to use another smart pointer type often used for a weak pointer that does not

83

increment or decrement the reference counter. This weak pointer, as shown in Figure 4.25,
can cooperate with the smart pointer so that when the object is deleted, the weak pointer

will be automatically set to Null pointer, thus preventing dangling pointers.

template<class T, class Cache>

class WeakPointer

{

public:
WeakPointer();
WeakPointer(const T* x);
~WeakPointer();

template<class U>
WeakPointer(const WeakPointer<U,Cache>& x);
template<class U>
WeakPointer& operator=(SmartPointer<U,Cache>& x);
template<class U>
WeakPointer(const WeakPointer<U,Cache>& x);
template<class U>
WeakPointer& operator=(SmartPointer<U,Cache>& x);

see Figure 4.24

Figure 4.25 Interface for WeakPointer

The former implementation of B+-tree index can work in memory, but if we want to
let the B+ tree index connect with the storage, one thing needed to do is that all the raw
pointers are simply replaced with smart pointers. Furthermore, because we use template
and generic programming to implement B+-tree index, we need to change some type
definitions in our programs and do not need to change other parts. We take LeafPage
class in Figure 4.11 as an examples to show how to change some type definitions in the
LeafPage class. If a page class has data members that are pointers to its parent, rLink, or

ILink, these pointers are needed to be replaced with WeakPointers that are used to fix

circular references.

84

template<class Key,class DataRef,class Compare=less<Key> >
class LeafPage: public Page<Key,DataRef,Compare>

{

public:
typedef Key key_type;
typedef Compare compare_type;
typedef Page<Key,DataRef,Compare> page;
typedef IndexPage<Key,DataRef,Compare> indexPage;
typedef LeafPage<Key,DataRef,Compare> leafPage;
typedef Cache<long, Storage> CacheType;
typedef SmartPointer<page,CacheType> PagePtr_t;
typedef SmartPointer<indexPage,CacheType> iPagePtr_t;
typedef SmartPointer<leafPage,CacheType> IPagePtr_t;

protected:

WeakPointer<indexPage,CacheType> parent;
WeakPointer<leafPage,CacheType> rLink;

WeakPointer<leafPage,CacheType> 1Link;

Container entries;

This part is not changed, and please see Figure 4.11

Figure 4.26 Interface of LeafPage with SmartPointers

Cache

The use of a main-memory buffer (also called a Cache shown in Figure 4.27) is a
good way to increase the speed of an index system. The global cache management
consists of two processing components [HS1999]: allocation and replacement. Allocation
distributes global buffer space among concurrent transaction and replacement is
responsible for accessing of the global buffer and page replacement operations. Cache
allocation appears more important when there is contention for the globe buffer, so we
use the Singleton design pattern [Alex2001] to manage Cache instances. A Singleton is
used when there must be exactly one instance of a class, and it must be accessible to
clients from a well-known access point. This ensures the Cache has only one instance and
provides a global point of access. If the number of the pages becomes too big to entirely
fit in the cache, a replacement strategy is needed. The life span of a page, except the root,
in memory depends on the replacement strategy of Cache. When a page is removed from
the cache, it will be destroyed in the memory heap. In our B+-tree index, we use a Least

Recently Used (LRU) [HS1999] replacement strategy. That means the least recently used

85

page will be replaced with a new page when the cache is full. The LRU methods keeps
track of the actual requests for pages. Since the root is requested on every search, it
seldom, if ever, is selected for replacement. The page to be replaced is the one that has
gone the longest time without a request for use. Thus, frequently accessed parts of the
tree will remain in memory and the memory protection mechanism isolates other users

through demand paging technique.

template <class T, class Storage> class Cache
{
public:
typedef SingletonHolder<Cache> CacheType;
typedef SmartPointer<T,CacheType> SmartPtr_t;
typedef WeakPointer<T,CacheType> WeakPtr_t;
typedef multimap<long,SmartPtr_t> Buffer_t;
typedef multimap<int,long> Count_t;
typedef typename container_type::iterator iterator;
private:
Buffer_t container;
long length;
Storage storage;
Count_t times;
public:
Cache(long 1);
~Cache(){ };
iterator begin();
iterator end();
size_type size() ;
bool empty() ;
SmartPtr_t getPointer(long id);
void insert(long id, SmartPtr_t ptr);
SmartPtr_t createNew(PageType)
void deleteObject(long id);
long getRootID();
bool isRoot(SmartPtr_t root);
SmartPtr_t getRoot();
void setRoot(SmartPtr_t root)
bool hasRoot()
void erase(iterator pos);
void clear();
Storage* getStorage();
Void setStorage(Storage*);

Figure 4.27 Interface for Cache

86

Storage

In order to rebuild a B+-tree index from index files, we need to maintain a copy of
the B+-tree structure on disk shown in Figure 4.28. In our implementation, the index page
and leaf page are mingled within the same file to avoid seeking between two separate
files while accessing the tree, but they have different Page Types.

The most critical feature of secondary storage devices is that they take a relatively
long time to seek to a specific location, but once the read head is positioned and ready,
reading or writing a stream of contiguous bytes proceeds rapidly. This combination of
slow seek and fast transfer leads naturally to the notion of index paging. To reduce the
number of seeks associated with any search, a B+-tree index is divided into and then each
page is stored in a block of contiguous location on disk. The size of a block is usually
determined by many factors such as the characteristics of the disk drive, and the amount
of memory available. In general, the size of a page is that of a block

Storage class is mainly responsible for manging and controlling accesses to the index
files on disk. In B+-tree index, a block is the basic unit for /O operation. When a new
page object is needed to wirte into the index files, Storage allocates a block for it on the
physical storage. When a page object is deleted from the files, Storage collects the block
used by the page and reallocate it.

87

{: Root Page Address
Page Type (Index Page) S
Key
Child Page Address

Key
Child Page Address

Page Type (Leaf Page)

Key
Child Page Address

Key
Child Page Address

Parent page address
Leaf link
Right link

oooooo

oooooo

—
...... <_

Figure 4.28 Physical Storage Structure

88

Serialization

In our B+-tree index, serialization is used to read or write a page to or from the
index files. The basic idea of serialization is that a page should be able to write its current
state, usually indicated by the value of its member variables, to persistent storage. Later,
the page object can be re-created by reading, or deserializing, the object's state from the
disk. Thus, for a page class to be serializable, it must implement the basic serialization

operations in the page.

Serializable

Hid : fong

Htypeid : long

~-changed : bool

-deleted : bool

+Serializable(in ¢ 2 bool, in d : bool)
Hserialize(in in : Streamable&) : void
Hcdeserialize(in oul : Streamabled:)
HeettD{nid : long) : void

HgetlDO) : long

Hset Typel D(in id @ long) : void

et TypelDO) : long

Hchanged()

+isChanged() : bool

+deleted()

+isDeleted() : bool

T

Page

T

Cearvess

IndexPage eafPage

Figure 4.29 a class diagram related to serialization

Figure 4.29 shows a class diagram related to serialization. In order to add this

functionality to B+-tree index, we let the base class Page inherit from the Serializable

89

class that declares serialize, deserialize and other related methods. Template parameter in
Serializable class provides an efficient conduit to persistent storage. Instead of directly
reading and writing the file, we serialize data to and from Streamable that is hooked up to
the index files. Streamable uses overloaded insertion (<<) and extraction (>>) operators
to perform writing and reading operations. IndexPage and LeafPage must implement
these two methods: serialize(Streamable& in) and deserialize(Streamable & out). We take

the serialize operation shown in Figure 4.30 of LeafPage as example:

void serialize(Streamable& out>
{
Serializable<Streamable>::serialize(out);
out<<parent;
out<<rLink;
out<<|Link;
out<<entries;

}

Figure 4.30 serialization method

4.3.6 Use B+-tree Index

The B+-tree index will be used in tree-based index framework shown in Figure 4.31.
Because the B+-tree index is implemented to be a STL-like container, it can be easily
replaced with other search trees such as R-tree and SS-tree in the framework. When the
B+-tree index as a template parameter is passed to the framework, the Treelndex can
invoke all the functions provided by the B+-tree container through its reference. The

iterator of the B+-tree index container provides controlled access to its elements.

90

template<
class Key, class DataRef, class Compare=less<Key> >
class SearchTree = BplusTree<Key, DataRef,Compare>
>
class Treelndex
{
public:
typedef Key key_type;
typedef SearchTree::iterator iterator;
typedef SearchTree::value_type value_type;

iterator find(key_type& k)
{

return searchtree.find(k);

}

iterator insert(const value_type& aPair)

{
return searchtree.insert(aPair);
}s
void erase(key_type& k)
{

return searchtree.erase(k);

private:
SearchTree searchtree;
}; //end of Treelndex
Figure 4.31 Interface for index framework

91

4.4 Testing

Testing is a major consideration in the development and maintenance of B+-tree
index. “Testing is the process of executing a program with the intent of finding errors.”
[Mye1979] and it involves any activity aimed at evaluating an attribute or capability of a
program or system and determining that it meets its required results [Het1988]. Testing is
more than just debugging. The purpose of testing can be quality assurance, verification
and validation, or reliability estimation. Testing can be used as a generic metric as well.

Figure 4.32 shows a test pattern. Tests are performed and all outcomes considered,
test results are compared with expected results. When erroneous data is identified error is
implied, debugging begins. Debugging is performed heavily to find out design defects by
programmers. The imperfection of human nature makes it almost impossible to make a
moderately complex program correct the first time. Finding the problems and getting
them fixed [Kan1988], is the purpose of debugging in programming phase. An “error”
that indicates a discrepancy of 0.01 percent between the expected and the actual results
can take hours, days or months to identify and correct. It is the uncertainty in debugging
that causes testing to be difficult to schedule reliability. The debugging procedure is the

most unpredictable element of the testing procedure.

Software configuration

Error rate
\ Test Results
/‘ Errors
Expected results Deb
Test configuration P e

Corrections

Figure 4.32 testing pattern

Correctness testing and performance testing are two major areas of our testing.

92

4.4.1 Correctness Testing

Correctness testing is to test whether B+-tree index does what it is supposed to do.
Correctness is the minimum requirement of software or system, the essential purpose of
testing. Being correct, the minimum requirement of quality, means performing as
required under specified circumstances.

Correctness testing will need some type of oracle, to tell the right behavior from the
wrong one. The tester may or may not know the inside details of the module under test.
Therefore, either a white-box point of view or black-box point of view can be taken in

testing.

Black-box testing

The black-box approach is a testing method in which test data are derived from the
specified functional requirements without regard to the final program structure [Per1992].
It is also termed data-driven, input/output driven [Myel979], or requirements-based
[Het1988] testing. Because only the functionality of the software module is of concern,
black-box testing also mainly refers to functional testing [How1987] which is a testing
method emphasized on executing the functions and examination of their input and output
data. In this type of test, the tester knows the inputs and what the expected outcomes
should be, but not necessarily how the program arrived at them. The test cases for black
box testing are normally devised as soon as the program specifications are complete. The
test cases are based on equivalence classes. Black-box testing treats the system as a
"black-box", so it doesn't explicitly use knowledge of the internal structure and no
implementation details of the code are considered.

The research in black-box testing mainly focuses on how to maximize the
effectiveness of testing with minimum cost, usually the number of test cases. It is not
possible to exhaust the input space, but it is possible to exhaustively test a subset of the
input space. In our B+-tree index testing, the lower-level components are first built and
tested by using a ‘test harness’ with the selected values. After that, the higher-level
components are tested on the basis of the lower-level components and by using the same
way as before.

For the B+-tree index testing, we should mainly focus on testing insert, erase and

find operations. We use Tcl for creating test harnesses to test our programs because Tcl

93

can be easier quickly create a user interface that can run on multiple platforms. In fact,
there are many test suites such as Berkeley DB [OBM1999] test suite that is currently
available. Berkeley DB test suite is a complete test suite, written in Tcl. It allows users
who download and build the software to be sure that it is operating correctly. In this test
suite, there are some existing test cases for B-tree index testing. We can take most of
them as our test cases to test our B+-tree index. In addition, we also create some special
test cases such as illegal inputs, large inputs, and with values smaller or larger than the
specified range.

A good testing plan will not only contain black-box testing, but also white-box
approaches, and combinations of the two.

White-box testing

Contrary to black-box testing, White-box testing requires the intimate knowledge of
program internals, while black box testing is based solely on the knowledge of the system
requirements. System is viewed as a white-box, or glass-box in white-box testing, as the
structure and flow of the system under test are visible to the tester. Testing plans are
made according to the details of the system implementation, such as programming
language, logic, and styles. Test cases are derived from the program structure. White-box
testing is also called glass-box testing, logic-driven testing [Mye1979] or design-based
testing [Het1988].

In white-box testing, test cases are carefully selected based on the criterion that all
the nodes or paths are covered or traversed at least once. By doing so we may discover
unnecessary "dead" code -- code that is of no use, or never get executed at all, which
cannot be discovered by functional testing. Control-flow testing, loop testing, and data-
flow testing, all maps the corresponding flow structure of the software into a directed
graph.

The B+-tree index is implemented by using the STL style. The STL components are
meant to be largely independent of each other. They have different types, and a
component of one type can connect and work correctly with other component of the
same- or different types. The B+-tree index follows the STL style, so we can have unit
tests easily. In our white-box tests, we mainly test a function or a code segment is tested
individually. The lower-level components such as index page container, leaf page

container, smart pointer, cache, and storage are tested independently. That guarantees

94

these components can work well. For every component, we plan some test cases to try all
boundary conditions. For example, a leaf page is a STL-like container, so all the standard
built-in functions of the container such as insert, erase, and find operations should be
tested on different template parameters and sizes. At the same time, testing the functions
for the higher-level components, eg. split, merge, etc. is necessary. After finishing all the
tests of the lower-level components, we move to the tests for the higher-level components

in the same ways.

4.4.2 Performance Testing
Performance has always been a great concern about Database Index systems.
Performance evaluation of an index system usually includes the following:
1. Access Types -- types of access that are supported efficiently, e.g., value-
based search or range search.
2. Search Time -- time to find a particular data item or set of items.
3. Insertion Time -- time taken to insert a new data item or set of items
(includes time to find the right place to insert).
4. Deletion Time -- time to delete an item or set of items (includes time taken
to find item, as well as to update the index structure).
5. Space Overhead -- additional space occupied by an index structure.

The goal of performance testing can be performance bottleneck identification,
performance comparison and evaluation, etc. The typical method of doing performance
testing is using a benchmark -- a program, workload or trace designed to be
representative of the typical system usage. [VW1998]

We did the performance testing on a computer, with the operating system of
Solaris 9, a 4G memory, 2 UltraSparc-III+ CPUs and the compiler of GNU g++ 3.2. We
used a dataset provided by Gist. The dataset contains 10,000 integers as keys that are
random. To do the test, we first set the size of a page to be 8kb that is the size of a block
of the testing computer and the buffer (cache) can hold at most 16 pages, and then
recompiled Gist v1.0 and our KIA B+ tree index system. Therefore, a page will contain at
least 500 keys and at most 1000 keys if Data Reference is treated as an integer. The B+

tree should have at least 21 pages in two levels. The following operations were involved

in the test:

95

1. Insert all the integers of the dataset as keys into the B+ trees

2. Find the first position with key>=20000

3. Delete all the element where key<20000
Table 4.3 shows the test results that are the average time (microseconds) of 10 tests
under the same conditions. From the table, we can see our B+ tree index has gotten better

performance in the insertion, access, and deletion than Gist B+ tree.

Operation Time KIA B+ tree index | Gist B+ tree index | Comparison(KIA/Gist)
Insertion Time 260,385.9 626,468.4 04

Search Time 25.3 64.5 0.4
Deletion Time 7344 2,389.1 0.3

Table 4.3 Performance Testing Results using Gist Dataset

To test further, we use a larger dataset that contains 100,000 integers as keys that
are generated randomly in the range between O and 32767. At the same time, we set a
buffer that can hold at most 128 pages. A page has the same size as before, but the B+-
tree has at least 201 pages. Table 4.4 shows the test results that the average time
(microseconds) of 10 tests under the same conditions when all the operations are
performed as before. From the table, we can also see our B+-tree index has gotter much

better performance than Gist B+-tree in the insertion and searching, but Gist B+-tree has

better deletion performance than that of KIA B+-tree.

Operation Time KIA B+ tree index | Gist B+ tree index | Comparison(KIA/Gist)
Insertion Time 2,250,000 223,362,386 0.1

Search Time 35 4,095 0.008
Deletion Time 2,270,000 297,000 7

Table 4.4 Performance Testing Results using a larger Dataset

96

Our B+-tree index can adapt to more access types easily than Gist because it uses a
template mechanism but Gist extends its access types by means of inheritance.

In addition, the buffer size is another important factor that affects the performance of
B+ trees. Figure 4.33 shows the relationship between the buffer size and Insertion Time
when 10,000 integers as keys are inserted. Inserting performance of Gist B+-tree is not
affected signifcantly by the buffer size. However, the slowdown of KIA B+ tree at
roughtly 16 happens as the buffer size is decreased.

—o— KIA B+tree
-~ Gist B+tree

Insertion Time in seconds

8 16 32 64
Buffer Size

Figure 4.33 Buffer size and Insertion Time

Figure 4.34 shows the relationship between the buffer size and Deletion Time when
all the elements where key<=20000 are deleted after the insertion of 10,000 elements. As
the buffer size increases, the performance of deletion in both Gist and KIA B+-tree is

improved but our B+-tree index can get faster and greater than that of Gist.

97

icroseconds

ime inm

Deletion T

3000

2500

2000

—e— KIA B+-tree
1500 .
- Gist B+tree

1000

500

8 16 32 64
Buffer Size

Figure 4.34 Buffer size and Deletion Time

icroseconds

imeinm

Search T

120

100

80

—o— KIA B+-free
—— Gist B+tree

60

40

20

8 16 32 64

Buffer Size

Figure 4.35 Buffer size and Search Time

98

Figure 4.35 show the relationship between the buffer size and Search Time when a
search with key=20,000 is performed after the insertion of 10,000 integers as keys. The
searching time of Gist and KIA B+-tree is not greatly influenced by the buffer size.

Testing is also a trade-off between budget, time and quality. To guarantee
correctness, all the possible values need to be tested and verified, but complete testing is
infeasible. The optimistic stopping rule is to stop testing when either reliability meets the

requirement, or the benefit from continuing testing cannot justify the testing cost.

99

Chapter 5. Conclusion

In this thesis we describe how to build a template for a B+-tree indexing
component that can easily handle arbitrary key and data references by using the STL style
and design patterns. We investigated several ways to implement our B+-tree index, but
we chose the best one among them as our solution to implement the B+-tree index. Our
B+-tree implementation is a proof of concept for the Index subframework of the Know-
It-All project.

The adoption of STL approach promotes code reusing, increases readability and
user friendliness, and reduces time and money overheads incurred during the application
development process. Design patterns can simplify the design complexity by separating
design concerns at the micro-architecture level, and constitute a reusable base of
experience for building reusable software. The combination of the STL style and design
patterns makes our B+ tree index more general and reusable. In our design and
implementation, we always tried to go with a static model when we can, and relied on a
dynamic model when we must in the whole implementation. Therefore, we combined
both forms of static and dynamic model in B+-tree index design. Several design patterns
such as Composite, Casting method, Proxy, and Singleton were used because they
provided a model of how to solve our design issues, many of which dealt with
introducing extensibility into the design in order to make it more reusable

Our B+-tree index is designed to be a container built with index pages and leaf
pages that are invisible for users. The only way to interact with elements in the B+-tree
index container is through its iterator. Because the B+-tree index container conforms to
the standard interfaces of STL components, it is easy to be reused. An index page and
leaf page are also containers that are small enough to fit in memory. However, the B+-
tree index container does not have to fit completely in the memory. Therefore, a copy of
the B+-tree structure is maintained on disk. The B+-tree index uses a proxy mechanism
(smart pointer) to manage and control accesses to the physical storage. Only the root of
the B+-tree is loaded initially, and resides in memory until the B+-tree is destroyed.
Through the proxy mechanism, a non-root page is loaded into memory on demand. This

improves the efficiency of the tree greatly.

100

To guarantee correctness and improve quality and reliability of our index system, we
paid a great deal of attention to testing in the development and maintenance of B+-tree
index.

In the whole development of the index system, we followed the STL style and
design patterns, so our B+ tree index should have the following characteristics:

1. Codes are reused easily, readable, and user-friendly.
2. Implementation is based on independent components.

3. Efficiency, flexibility, and extensibility are sustained.

Future Work

Our goal is to build an index system to handle any type of data, key, query or access
method in a real database application. One important issue in database is concurrency and
locking mechanisms to allow for multiple accesses to the same piece of information
while guaranteeing data integrity. To monitor the size and performance of indexes in
order to help people design indexes for new applications, an index Mixin may be
required. This issues need to be addressed according to the classes suggested in the
design.

The design and implementation started with B+-tree indexes and we see that it has a
potential to handle other index types such as R-tree index, SS-tree index, and other
indexes. These types of indexes deserve further investigations, and we hope to see the

design extended to cover them as well.

101

Bibliography

[Alex2001] Andrei Alexandrescu. Modern C++ Design: Generic Programming and

Design Patterns Applied. Addison Wesley Professional, 2001.

[Aok98] P. M. Aoki. Generalizing “Search” in Generalized Search Trees. Proceedings
of the 14th IEEE International Conference on Data Engineering, Orlando, FL, Feb. 1998,
pp. 380-389.

[Aus1999] Matthew H. Austern. Generic Programming and the STL. Addison-Wesley,
1999.

[BCC+2002] Greg Butler, Ling Chen, Xuede Chen, Ashraf Gaffar, Jinmiao Li, Lugang
Xu. The Know-It-All Project: A Case Study in Framework Development and
Evolution, Domain Oriented Systems Development: Perspectives and Practices,
Kiyoshi Itoh, Satoshi Kumagai, T. Hirota (eds), Taylor and Francis Publishers, UK, 2002.

[BM1972] R.Bayer, E.McCreight Organization and Maintenance of Large Ordered
Indexes. Acta Informatica, Vol. 1, Fasc. 3, 1972, pp. 173-189.

[CE2000] Krzysztof Czarnecki, Ulrich W. Eisenecker. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley, 2000.

[Com1979] Douglas Comer. The Ubiquitous B-Tree. Computing Surveys, Vol. 11, No.
2, 1979, pp. 121-137.

[DWH1997] Nell Dale, Chip Weems, Mark Headington. Programming and problem
solving with C++ . Sudbury, Mass. : Jones and Bartlett, 1997.

[FZ1992] Michael J. Folk, Bill Zoellick File Structures. Addison Wesley, 1992.

[Gaf2001] Ashraf Gaffar. Design of a framework for database indexes. Master Thesis,

Department of Computer Science, Concordia University, 2001.

102

[GDW2000] Hector Garcia-Molina, Jeffrey D.Ullman, Jennifer Widom. Database

system implementation. Prentice-Hall, 2000

[GOF1994] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[Het1988] William C. Hetzel. The Complete Guide to Software Testing. Wellesley,
1988.

[HNP1995] Joseph M. Hellerstein, Jeffrey F. Naughton and Avi Pfeffer. Generalized
Search Trees for Database Systems. Proceedings of the 21st International Conference

on Very Large Data Bases, Zurich, September, 1995.

[How1987] William E. Howden. Functional program Testing and Analysis. McGraw-
Hill, 1987.

[HS1990] Jiandong Huang, John A. Stankovic. Buffer Management in Real-Time
Databases. COINS technical Report 90-65, University of Massachusetts, 1990.

[Kan1988] Cem Kaner. Testing Computer Software. TAB BOOKS Inc. 1988.

[Li1998] Steven Li. Reengineering a B-tree Implementation Using Design Patterns.

Master Thesis, Department of Computer Science, Concordia University, 1998.

[Mey1992] Scott Meyers. Effective C++. Addison-Wesley, 1992.
[Myel979] Glenford J. Myers. The art of software testing. Wiley, New York 1979.

[Nel1995] Mark Nelson. C++ Programmer’s Guide to the Standard Template
Library. IDG Books Worldwide, Foster City, CA, 1995.

103

[OBM1999] Michael A. Olson, Keith Bostic, and Margo Seltze. Berkeley DB.
Proceedings of the FREENIX Track:1999 USENIX Annual Technical Conference
Monterey, California, USA, 1999

[Per1992] William E. Perry. A standard for testing application software. Auerbach
Publishers, Boston 1992.

[Sim2000] Volker Simonis. Chameleon Objects, or how to write a generic type safe

wrapper class. C++ Report Jan. 2000, SIGS Publications.

[SL1995] Alexander Stepanov, Meng Lee. The Standard Template Library. Hewlett-
Packard Company, Palo Alto, 1995.

[VM2002] David Vandevoorde, Nicolai M.Josuttis. C++ templates: the complete guide.
Pearson Education, 2002.

[VW1998] Filippos 1.Vokolos, Elaine J.Weyuker. Performance testing of software.
systems. Proceedings of the first international workshop on Software and performance,
1998, Pages 80 - 87

104

