Direct Computing of Entropy from Time Series

Mehran Ebrahimi Kahrizsangi

A Thesis
in
The Department
of

Mathematics and Statistics

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Science (Mathematics) at
Concordia University
Montreal, Quebec, Canada

June 2003

(©Mehran Ebrahimi Kahrizsangi, 2003

National Library Bibliotheque nationale

of Canada du Canada

Acquisitions and Acquisisitons et
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Canada

Your file Votre référence
ISBN: 0-612-83855-2
Our file Notre référence
ISBN: 0-612-83855-2

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

Abstract

Direct Computing of Entropy from Time Series
Mehran Ebrahimi Kahrizsangi

Measure Theoretic Entropy and its important properties are studied. We introduce a
method to compute entropy of a dynamical system directly from the definition. The
computational approach is discussed in detail and is presented in several sections:
1-Partitioning and Scaling Data; 2-Sequencing and Compactification; 3-Probabilities
and Information, 4-Entropy Estimation. Also, we apply the same method in two
dimensions. A model for filtering entropy based on skew products is given, and we

apply our computational results to verify this model.

iii

Acknowledgments

Many people have contributed to my education through their guidance and support
throughout my graduate school years at Concordia University. I especially want to
thank my supervisors, Professors Abraham Boyarsky and Pawel Géra who accepted
me as their student and were always there to give support.

I also acknowledge Professors Galia Dafni, Chantal David, and Robert Raphael.
Their encouragement in the first year of my graduate studies at Concordia University
served as a source of inspiration.

I would like to thank my friends Wael Bahsoun and Shafiqul Islam, who were
notable friends and colleagues, kindly offering me their advice, both scientific and
personal, throughout my graduate school years at Concordia University.

Personal friends in Canada, as well as friends who have been in touch with me
remotely from Iran and the US, provided me with stimulation and enjoyment critical
for me to maintain a healthy balance of work and play. They all continue to be
dedicated and supportive friends.

I deeply thank my parents and family for their understanding and support through-
out my entire educational process.

Finally, I am greatly thankful to Concordia University Mathematics and Statistics
Department, Concordia University Graduate Awards Office, and Institut des Sciences
Mathmatiques (ISM) for their support during my studies at Concordia University.
Their generous financial assistance made it possible for me to continue my studies in

Canada.

iv

Contents

List of Figures vii
List of Tables viii
1 Preliminaries 1
1.1 Imtroduction 1
1.2 Measure Spaces v . ot 1
1.3 Direct Product Measureo 2
1.4 Measure-Preserving Transformations 4
2 Measure-Theoretic Entropy 6
2.1 Imtroduction e 6
2.2 Entropy of a Partition 6
2.3 Conditional Entropy« ... 11
2.4 Propertiesof H(a) and H(e | 8) 12
2.5 FEntropy of a Measure Preserving Transformation 20
2.6 Properties of h(T) and h(T,a) 22
2.7 Calculation of Entropy o 27
3 Computing Entropy Directly from the Definition 31
3.1 Imtroduction 31
3.2 Entropy Computing Algorithm 32

3.3 Introducing Symbolic Representation and Considering the Algorithm 34

34 AStepByStepExample L 36
4 Computational Approach 41
4.1 Introduction 41
4.2 Partitioning and Scaling Data 0L 42
4.3 Sequencing and Compactification 43
4.4 Probabilities and Information 47
4.5 Entropy Estimation L o000 49
4.6 Computational Efficiency L 49

5 Computational Approach in Two-Dimensions and Filtering Entropy 51

51 Imtroduction o 51
5.2 Notation and Entropy of Skew Products 52
5.3 Dpynamical Entropy Estimation 54
5.4 Dynamical Entropy Computation 55
Bibliography 60
Appendix: Maple Code for Computing Entropy 62

vi

List of Figures

3.1 Graph of I,(c) for n = 1,...,15, npt = 10000, partition-size=4 . . . 39
3.2 Graph of I,(a) forn = 1,...,15, npt = 10000, and different partition-

vii

List of Tables

3.1 Results for Example 3.4.1

5.1 Results for Example 5.4.1

viii

Chapter 1

Preliminaries

1.1 Introduction

The material in this chapter consists of fundamental concepts which will be used

throughout this thesis. It is mostly taken from from [5] and [19].

1.2 Measure Spaces

Definition 1.2.1 A family B of subsets of X is called a o-algebra if and only if:
(a) X € B;
(b) for any B € B, X\B € B;

(c) if B, € Bforn=1,2,..., then | J;_, B, € B.

Elements of B are called measurable sets.
A o-algebra which is a subset of a o-algebra B is called a sub-o-algebra of B.
For a family F of subsets of X there exists a smallest o-algebra, BB, containing F.

In this case we say that F generates B and write B = o(F).

Definition 1.2.2 A function x: B — R* is called a measure on B if and only if:

1

(a) u(0) =0;

(b) for any sequence {B,} of disjoint measurable sets, B, € B,n=1,2,...,

N(U B,) = Z 1(By).

n=1 n=1

The triplet (X, B, p) is called a measure space. If p(X) = 1, we say it is a

normalized measure space or a probability space.

Definition 1.2.3 A family A of subsets of X is called an algebra if:
(a) X € A;
(b) for any A € A, X\A € A

(c) for any A;, Ay € A, A1 JA, € A

An algebra which is a subset of an algebra B is called a sub-algebra of B.
It is clear that intersection of any collection of algebras (o-algebras) is also an

algebra (o-algebra).

Definition 1.2.4 A family P of subsets of X is called a 7-system if and only if for
any A, B € P, their intersection AN B € P.

Definition 1.2.5 Let X be a topological space. Let D denotes the family of open
sets of X. Then the o-algebra B = o(D) is called the Borel o-algebra of X and its

elements are called the Borel subsets of X.

1.3 Direct Product Measure

In this section we define direct product measure.

Theorem 1.1 Hahn-Kolmogorov Eztension ([19])

Given o set X, and an algebra A of subsets of X, let u : A — R™ be a function
satisfying: w(X) = 1; w(U, 4n) = X, (An) whenever Vn A, € A,\J, 4An € A, and
the sets A, are mutually disjoint. Then there is a unigue probability measure i defined

on the sigma-algebra generated by A such that: Ti(A) = u(A) whenever A € A.

Definition 1.3.1 (Direct product measure)

Let (X;, B;, 1), © € Z be probability spaces. Their product is defined as follows:

(a‘) X = Hz?i—oo X@

(b) Let ny < ny < --- < n, be integers, and A,; € By, i =1,...,7. we define a

measurable rectangle to be a set of the form
{(z;)) e X 1z, € A, 1 <i <1}

Let A be a collection of all finite unions of measurable rectangles. A is an

algebra: (1), (3) of Definition 1.2.3 are obvious; to show (2) observe that

X\{(QJJ) l In; € Aniﬂl <t < T} = U{(:EJ) \ Tn; & Xﬂi \Am} € "47

=1
and that A is closed under finite intersections. Let B be the smallest o-algebra

generated by A.

(c) Each element of .4 can be written as a finite union of disjoint measurable

rectangles so that we define

N({(fcj) | Tn; € An;, 1 <0 < r}) = HNm(Am)

and then extend p to A in the obvious manner. The conditions of the Hahn-
Kolmogorov Theorem can be shown to be satisfied, and thus we can extend p

to B. Hence we obtain a probability space.

1.4 Measure-Preserving Transformations

Suppose (X1, By, p1), and (X3, Bs, p) are probability spaces.

Definition 1.4.1 A transformation T : X; — X, is called measurable if T71(B;) C
By, ie., if B € By = T7}(B) € By, where T-Y(B) = {z € X; : T'(z) € B}.

Definition 1.4.2 We say the measurable transformation T : X; — X, is measure-

preserving if uy (T~1(B)) = pa(B) for any B € B,.

Definition 1.4.3 Let (X, B, u) be a probability space and let: T': X — X be a
measure-preserving transformation. The quadruple (X, B, u, T') is called a dynamical

system.

In practice it would be difficult to check, using Definition 1.4.2, whether a given
transformation is measure-preserving or not since usually one does not have an explicit
knowledge of all the elements of a o-algebra B. However, we often do have an explicit
knowledge of a m-system P generating B. For example, when X is the unit interval,
the family P of all intervals is a m-system.

The following result is therefore very useful for checking whether a transformation

is measure-preserving or not.

Theorem 1.2 Let (X, B, n) be a probability space and let T : X — X be measurable.
Let P be a w-system (Definition 1.2.4) that generates B. If p(T'(A)) = u(A) for
any A € P, then T is measure-preserving. (See [5])

A few examples of measure-preserving transformations are presented below.

Example 1.4.1 The identity transformation on (X, B, i), for any measure y, is mea-

sure preserving.

Example 1.4.2 Let X = [0,1], B=Borel o-algebra of [0, 1] and A=Lebesgue measure
on [0,1]. Let T : X — X be defined by T'(z) = rz(mod 1), where r is a positive

integer greater than or equal to 2. Then T is measure-preserving.

4

Proof. Let [a,b] C [0,1] be a subinterval of [0,1]. Its preimage 7~'([a,b]) con-
sists of 7 disjoint intervals Ip,..., 1. and A(J;) = (b —a) for 4 = 1,...,7. Thus,
MT7Y([a, b)) = A([a, b]). Since the family P = {[a,b] C [0, 1]} is a 7-system generat-

ing B, Theorem 1.2 implies that T" is measure-preserving. ®

Example 1.4.3 Let (X, B, u) be as in Example 1.4.2. Define 7 : X — X be T'(z) =

T+« (mod 1), where & > 0. Then T preserves Lebesgue measure.

Proof. As in Example 1.4.2 it is enough to show that A(T"'([a,b})) = A([a, b]) for
any subinterval [a, b] C [0, 1]. The preimage T~*([a, b]) consists of one or two disjoint
intervals and A(T~'([a,b])) = A([a,b]). A more natural way to view this example is

to interpret it as a rotation of the circle. Then T-invariance of A is obvious. ®

Example 1.4.4 (Two sided (po, . - ., pr—1)-shift)
Let A = {0,...,k—1}, give measure p; to ¢ such that Zf;lpi =1 Welet X =[[7_A
together with the direct product measure we introduced in Definition 1.3.1.

Define T : X — X by T({=z;}) = {v:}, where y; = ;1. T preserves the measure
of each measurable rectangle, and thus, it preserves the measure of sets which are
finite union of disjoint measurable rectangles. Also, the set of measurable rectangles
form a m-system, therefore by Theorem 1.2, T is measure-preserving. We call T' the

two-sided (po, - . ., Pp—1)-shift.

Definition 1.4.4 Let (X,B,u) be a probability space and let: 7 : X — X be a
measure-preserving transformation. We say T is ergodic if for any B € B, such that

T'B=B, u(B)=0o0r u(X\B)=0.

Chapter 2

Measure-Theoretic Entropy

2.1 Introduction

Entropy measures the amount of uncertainty in an experiment. It also measures
the information in the experiment, or the amount one learns from the outcome of
an experiment. Loosely speaking, the entropy of a transformation is a measure of
randomness of its orbit structure. For a periodic system the entropy will be zero, it
will be a positive number for a chaotic map, and for random maps it is infinity. ([17],
[4])

In 1958 Kolmogorov [10] introduced the concept of entropy into ergodic theory.
The notion of entropy now used is slighty different from that used by Kolmogorov.
The improvement was made by Sinai [16].

In this chapter we define measure-theoretic entropy and present its useful proper-

ties and theorems, which are mostly taken from [19], [4], and [18].

2.2 Entropy of a Partition
Throughout, (X, B, 1) will denote a probability space.

Definition 2.2.1 A partition of (X,B,u) is a collection of disjoint elements of B

6

whose union is X.

We are interested in finite partitions, which will be denoted by a = {A;, Aa, ..., Ax}.

Remark 2.1 If o is a finite partition of a probability space (X, B, u), then the col-
lection of all elements of 3 which are unions of elements of « is a finite sub-c-algebra
of B. Conversely if A is a finite sub-o-algebra of B, say A = {4; : i = 1,...,n},
then the non-empty sets of the form B; N --- N B, where B; = A; or X \ 4;, form
a finite partition of (X, B, u). Thus, we have a one-to-one correspondence between
finite partitions and finite sub-o-algebras of B.

Note that any finite sub-o-algebra of B is in fact a finite subalgebra of B, and vice
versa. In this text we will explain our theory based on finite partitions, though the
theorems will work in the same way if we use the corresponding finite sub-o-algebras

(or finite subalgebras), instead of finite partitions on their own.

Definition 2.2.2 Let a, 8 be two finite partitions. £ is called finer than o, denoted

by o < 3, when each element of « is a union of elements of 3.

Definition 2.2.3 Given finite partitions o = {4, Ay, ..., Ax}, 8 = {B1, By, ..., Bx}

we define their join or their least common refinement as:
aVpB={4NnB;:1<i<n,1<j<k}.

Note that a V § is again a finite partition. The join of finitely many partitions

@1, 0y, ..., 0 is defined by Vi = a1 Vag:- -V ap.

Definition 2.2.4 Suppose T : X — X is a measure-preserving transformation. If

a={A;, As, ..., Ax}, then by 77"« we mean the partition
{T™"A;, T " Ay, ..., T A}

Proposition 2.1 Let o, 8 be two finite partitions of (X,B,u). Then o < B if and
only if 6 =aV .

Proof. The result is easily proved from Definitions 2.2.3 and 2.2.2. =&

Proposition 2.2 Let a, 8 be two finite partitions of (X,B,p) and T : X — X be a

measure-preserving transformation. Then, for any positive integer n.:
(a) T""(aVvB)=T"aVvI™"g.
(b) Ifa < B, then T "a <T7"f.
Proof.
(a)

T aVvpB)=T"{ANB|Aca, Bcj}
={T™™ANB)|Aca, Be€pj}
={T"ANT "B|A€a, Bep}
=T "aVv T7"8.

(b) Let T~"(A) € T "a. Since o < § there is a collection v € J such that

A=|J{B|Benr}
Then
T"A=T"(H{BIBe"})
=\ {r"B|Be}
= J{T"B|T"BeT ™"}
Therefore, T™"a < T"B.
=

Definition 2.2.5 Let a = {4y, As,..., A,} be a finite partition of (X, B,). Then
the entropy of the partition « is defined by

Zu) log ((4:). (2.1

We use 0-log0 = 0 in the calculation if p(A4;) = 0 for some ¢. Also, by convention

log will be computed in base 2.

This means that if A, As, ..., A, denote the outcomes of an experiment, then
H () measures the uncertainty removed or the information gained by performing
the experiment. The fact that uncertainty and information should be measured by
the same function is reasonable because:
information gained=uncertainity removed.
H(a) is a measure of the uncertainty about which A; a general point of X will

belong to. The following examples will clarify this idea.

Example 2.2.1 If o = {X}, then H(a) = 0.
In this example it is certain that any z € X can only belong to X. Here ¢ represents
the outcomes of a certain experiment and therefore there is no uncertainty about the

outcome.

Example 2.2.2 Let X = {1,2,3,4,5,6} and p be the probability measure, where
p({i}) = § for 1 < i < 6. The partition o = {{1},{2},{3},{4},{5},{6}} has
maximal information, since knowing which element of o contains the outcome conveys
all the available information.

Using Equation 2.1

6

H(e) = - 3 p({i}) og(u({i}) = — Y. ¢ log(g) = loge.

i=1 i=1
Example 2.2.3 For the space defined in Example 2.2.2 if we take A; = {1,3,5} and
A, = {2,4,6}, the entropy of the partition § = {A;, Ay} is:

2

H(8) = — Y ulAi) loglu(A) = = 3 5 log(5) = log2

i=1
Entropy of this partition is smaller than log6 computed for the partition in the

previous example.

Example 2.2.4 If o = {41, Ay, ..., A,} where u(A;) = + for 1 <4 <n, then

Zu)log(u(A)) = — 3 = log(~) = logn.

Thus, we gain a lot of information if n is large, i.e., since all the elements of a have

equal measures there is much uncertainty about which A; a point will belong to.

It could be asked: “What is the intuitive idea behind the definition of entropy
given in Definition 2.2.5?”. A reasonable answer to this question can be formulated
as follows.

Suppose we have a set of possible events whose probabilities of occurrence are
D1, P2, - -, Pn. These probabilities are known but that is all we know concerning which
event will occur. Can we find a measure of how uncertain we are of an outcome?

If there is such a measure, say H,(p1,ps,.-.,Pn), defined for any positive integer

n with Y | p; = 1 it is reasonable to require of it the following properties:

(a) For any positive integer n
Hp1 (D1, - - - Py 0) = Ha(p1, - - -, Pn);

(b) continuity and symmetry: For any positive integer n, the function

H,(p1, P2, - - -, Pn) is continuous and symmetric with respect to all its arguments;

(c) extremal property: when all the events are equally likely the uncertainty must

IIIEI":(]iTL 1y ¥Mn n yrrt ;

(d) additivity: If g;; > 0, for 1 < j < mand 1 < ¢ < n, where p; = > je1 4i; and

S pi =1, the following additive property holds

Q Qi
Hnm(Qlu---:‘]nm) H pl; --,pn 'Jf'E pz “ 7;)
]

In [9] the following result is established.

10

Theorem 2.1 Let us consider the sequence of non-negative functions Hy (1),

Hy(p1,p2), . Hu(pyrs. .. pn) defined on the set {(p1,...,pn) | 2s = 0,21 pi = 1},

and assume H, satisfies the above four assumptions. Then H, is of the form:

n
Hy(pr,. .. pn) = =k Y pilogp;
where k s a positive constant.

If we assume k = 1, the quantity of the form H,(pi,...,pn) = — Y_s; p; logp; will
be provided that corresponds to Definition 2.2.5. This theorem and the assumptions
required for its proof are not necessary for the presentation of this thesis, and are

presented only to reveal the intuition behind the definitions.

2.3 Conditional Entropy

Definition 2.3.1 Let a = {41, Ay,..., Ay} and § = {Bi, Bs, ..., By} be finite par-
titions of a probability space (X, B, 1). Then the conditional entropy of the partition
o knowing 3 is defined by

p(A; N By)

Hl|8) == 3 ulan By) - o=y

), (2.2)

omitting the j-terms where u(B;)=0.
H(a | B) measures the average information obtained from performing the experiment

associated with a given the outcome of the experiment associated with 3.

Example 2.3.1 Let X be the space defined in Examples 2.2.2 and 2.2.3 and the
partitions « and § be defined by

a={{1}, {2} {3}, {4}, {5}, {6}}
ﬂ = {{17355}3{2745 6}}

then by Definition 2.3.1:

11

(A N B;) ~ 1o
wBy) T lesd

Note that knowing 3, i.e., knowmg if an unknown element of X is odd or even,

H(a|) = ZuAmB og(

reduces the uncertainty about this unknown element performing experiment «. Note
that H(« | 8) = log3 is less than H(a) = log 6 computed in Example 2.2.2 .
Also:

[II(A,L N B]>
1(A4;)

It makes sense because knovvmg f contains no information if we already know the

H(§|a)= ZuAﬂB og() =0.

result of the experiment «, therefore H(S | a) = 0.

Example 2.3.2 Let 8§ = {X} in the probability space (X, B, p). Then for any
partition o we get H(e |) = H(«). It can simply be concluded from definition as

below:

n(Ai N Bj)

H(a | B) = _S_NAQB 10%("7;@7)—“)
_ A XY log(MAi N X)

= EMAWX)I((X)

Z“ZM) log(u(A4;))
= H(a).

It can be interpreted that because 5 represents the outcome of a trivial experiment,

one gains no information from knowledge of it.

2.4 Properties of H(a) and H(a | §)

In this section we prove some useful properties of H(«) and H(« | §8).

12

Theorem 2.2 Let o, 3, and v be finite partitions of a probability space (X, B, u) and

T : X — X be a measure-preserving transformation. Then the following statements

hold.
(1) 0< H(«)
(2) H(e) <lognif a = {A;, Ag, ..., An}
(3) 0< H(a | B)
4) HavB|y)=H(a|M+H@aV7)
(5) H(avpB)=H(a)+ H(S |)
(6) if @ < B, then H(a |7) < H(B |)
(7) if & < B, then H(a) < H(f)
(8) if B <, then H(a | §) = H(a | 7)
(9) H(a|v) < H(e)
(10) H(aVB|y) < H(a|y)+H(B|7)
(11) H(aV B) < H(a) + H(B)
(12) H(T 'a | T7'8) = H(a | §)
(13) H(T'e) = H(a)
Proof.

(1) Let @ : [0,00) — R be defined by

0 ifr=20
&(z) =
zlogz if x #0.

13

For any z € [0,1], ®(z) < 0. (X, B, 1) is a probability space so p(4;) € [0, 1]
for 1 < i < n and therefore ®(u(4;)) < 0, so >, ®(u(4;)) < 0. Now by

definition:

Zu)log(u ZQ)

We first show that function ® is convex, i.e., ®(az + fy) < a®(z) + fP(y) if
z,y € [0,00), @, >0, and o+ 5 = L.

@' (r) = loge + logx

1
o' (z) = _9_5__6_ > 0 on (0, 00).

Suppose y > x; by the mean value theorem there exist z, and w such that,
®(y) — ®(ax + By) = 9'(2)a(y — z) where az + Sy < z < y and,
®(az + By) — ®(z) = ' (w)B(y — z) where z < w < oz + By.

Since ®” > 0 we have ®'(z) > ®'(w), therefore

B(2(y) — (az + By)) = ¥'(2)aB(y — z)
' (w)apb(y — z)
= a(®(az + fy) - &(z)).

Therefore ®(azx + By) < a®(z) + fP@(y) if z,y > 0, and hence, also if z,y > 0

by continuity of ®. So we proved @ is convex.

It can be seen by induction on n that for ® convex,

@(Z om;) < Z ;B () (2.3)

if 7; € [0,00),0; > 0,and > " o =1

14

Now if we put o; = + and z; = p2(4;), 1 <1 < n in Equation 2. 3, then:

n

B3 p(40) < 3 Lolu(4

=1

Z n(A)) < Zu) log((4s))
Zu) log((As))
— log(>) < - Zu) log((4.)
~log(-) > Zu)log(u(4) = H(a)
~log(~) > H(e)
— logn > H(a).

3) A, N B; C B, so by properties of probability measure:
J J

0 < u(Ai N By) < p(B;)

1(A; N By)

< HE) <1) 0

w(A; N Bj)

— H(a|B) = ZMA N B;) log(£ B

1,J

) > 0.

(4) Let a = {A;}ier , 8= {Bj}jes and v = {Cy}rex , where I, J, K are finite sets.

Also, without the loss of generality, assume that all elements of each of these
partitions have strictly positive measure. (Since if o = {A1, Ag, ..., Ay} with

w(A) > 0,1 <1 < rand w(A;) = 0, r < i < n, we can replace a by

15

{Al, B 7A7'—1; U?:r Az}) Note:

/,L(Az N Bj M CL) _ /,L(Az N Bj n Ck) . M(Az M Ck)
1(Cr) u(4; N Cy) #(Cr)

unless p(4; N Cy) = 0 and then the left hand side is zero. Also, directly using
Definitions 2.2.3 and 2.3.1 we get

(Ai N Bj M Ck))
w(AnCy) 7

H(B|aVvy) = -3 u(A N B; 0 Cy) log(*

3,4,k
and also

(Az n Bj N C’k)
1(Ck)

H(aVB|7) = ZuAnB N Cy) log(~).

Therefore
w(AinB; N Ck))
1#(Ck)
w(AiNB;NCy) p(AiNCy)
WANGY uC
w(A; N B; N Cy)
w(A4; N Cy))
u(A; N Cy)
#(Ck))

H(@Vvp|y) ==Y wAnB N Cy) log(E

1,9,k

= - Z /J/(.AZ N B]‘ N Ck) 10g(

i’j7k

=— Z w(A; N B; N Cy) log(

1,5,k
- Z [L(AZ N Bj N Ck) log(
1,7,k
=H(B|aVy)— Y u(AN BN Cy) log(

.5,k

=H(B|aVy) = u(A: N Cy)log(

ik

(A N C)
1(Ck)

(AN Clc))
1#(Cr)

)

=H(B|aVvy)+H(a|7)

If we put v = {X} in (4), we get:

H(aV) = H{aV 8| {X}) = H(aV 8])
=H(a|7)+ H(B|aV7)

=H(a | {X}) +H(B|aV{X})

=H(a) +H(B | a).

16

(6) Note that if o < 8, then 8 = a V 3 by Proposition 2.1. Then we use (4) as

below:
H(B|y)=H(@Vp|y)=H(a|)+H(BaVy) = Ha])
(7) If a < B by (6) H(a | y) < H(B |) so if we put v = {X}, we get:

H(o | {X}) < H(B|{X})

SO

(8) Fix 4,7 and let

in the equation
o3) < Yol

as we had in proof of (2). Therefore:

Z ,M(CkﬂBj) A ﬂCk Z C’kﬂB (AlﬂCk)

ey e) Y

Also, since g <~y

Z p(Cr N Bj) - w(A; N Cy) _ (A N By)
w(Cy) w(B;)

Therefore, by Equations 2.4, 2.5

w(Ai N B;) Z w(Cr N By) @u(AnOk

2lEy)< 2 E) u(C)

or equivalently

(A N Bj)
1(B;)

log(

(A ﬂB CkﬁB) u(A-ﬁCk
u(B;) Z WB) T

17

Thus, multiplying both sides by x(B;) we obtain

((A; N Bj)
1(B;)

Now take the sum over 4, j and get

Zu(AmBj)l “(AmB)_ZZ (Cy N By) (Amc’“))).

1(Ck)

p(A; N B;) log() <> (w(Crn B;) - &)
k

1(C)
Therefore,
Zu(AmBj)log(“(iz;f) < Z (Cx N By) - ®((‘2(2)C’f))),
and by the fact that {B;} form a partition
p(A; N B;) u(A; N Cy)
Therefore,
A B o #(Ai N B;) (AN Cy) o p(A; N Cy)
e B o) < () - e s)

and

Z“A ﬂB)log Z (A; N Cy) log(MzCk)));

which gives
p(Ai N B;) (A N Cy)
=D AN By log(= s 0) 2 = D L (u(Ai 1 G log(= Zrs=),

i, 7 ik

or

H(a|B) =2 H(a| 7).

If we take 8 = {X}, then for any partition v, § < . Therefore, by (8) we get
H(o | {X}) > H(a | 7), but H(a | {X}) = H(e) so H(a) 2 H(a | 7).

18

(10) v < aVyso by (8)
H(Blavy) <HEB|7)

Adding H(a | ¥) to both sides we obtain

H(a|v)+H@B|aVvy) <H(a|vy)+H(B | 7).

By (4) we can change the lefthand side as
H(aVvB|v) < H(a|7)+H(| 7)-
(11) If we put v = {X} in (10), we get

H(av B 1{X}) < H(a | {X}) + H(B [{X}).

Therefore,
H(av B) < H(a) + H(B).

(12) T is a measure-preserving transformation therefore

p(AiNBy), o . u(T~1(4:N By))
#(A; N Bj) 10%("77(‘373_“)“*) = u(T™"(A; N By)) log(w(T-1(B))))
Now we take the sum over ¢, j, and get
AN B,
Suran, D og(HI AN By,

wT-1(By))

and therefore by deﬁmtlon
H(a|B)=H(T a|T7'p).
(13) T is a measure-preserving transformation therefore

(A log((Ay)) = w(T A log(u(T ™1 4y)),

19

S0
Zu) log(p ZM T A;) log(u(T ™ As)),

and hence by deﬁnmon

2.5 Entropy of a Measure Preserving Transforma-
tion

Lemma 2.1 If {an}n>1 satisfies a, > 0, and Vn,m Gnim < Gt 0m, then lim, o %=

exists and equals inf,, %

Proof. Fix m > 0. For each j > 0, j = km + n where 0 < n < m. Then

a; Ant-km < Gp Qkm G, Kkt __ Op am
i n+km ~km km ~km km km m

As j — oo, then k — 00 so

: a; _a
limsup 2 < -,
i~ m

and therefore

. a; . .G
limsup - < inf —,

J m
but
inf dm, < liminf 9—7—
m
Thus, hm L exists and equals to 1nf |

Theorem 2.3 Let o be a finite partition of (X, B, u) and T be a measure-preserving

transformation. Then the limy, o 1H (V1) T™%a) exists.

20

Proof. Let a, = H(\V/!Z, T %a) > 0.
n+m—1

Uptm = H(\/ T—ia)
7=0
n+m—1

n—1
< H(\/ T a) + H(\/ T7a) (by (11) of Theorem 2.2)
1=0 i=n

m—1
= a, + H(\/ T™*a) (by (13) of Theorem 2.2)
1==0

= Ay, + Q.

We now can apply Lemma 2.1 and, therefore, lim, o0 = H (\/?;01 T~ 'q) exists. ®

Definition 2.5.1 Let a be a finite partition of (X,B,u) and T a transformation
which preserves pu. The entropy of the transformation T' with respect to the partition

« is defined by
1 1
h(T,a) = lim —~H(aVT aVv VT~ a) = lim ~H(\/ T"a).
1=0

n—oo T n=yc0 1
Note that in Theorem 2.3 we showed that this limit always exists.

This definition means that if we think of an application of T' as a passage of
one day (as a unit) of time, then \/7-, T~'c represents the combined experiment of
performing the original experiment represented by o on n consecutive days. h(T,)
is then the average of information per day that one gets from performing the original

experiment daily forever.

Definition 2.5.2 Let T be a measure-preserving transformation on (X, B, u). The
entropy of the transformation T is defined by A(T) = sup, h(T,) where the sup is
taken over all finite partitions a contained in B of (X, B,). The entropy A(T) is
called the metric entropy, measure-theoretic entropy, or Kolmogorov-Sinai entropy of

T. h(T) is sometimes denoted by h(T,).

Again if we think of an application of T as a passage of one day (as a unit) of time,
h(T) will be the maximum average information per day obtainable by performing a

finite experiment.

21

2.6 Properties of h(T) and h(T, o)

In this section we prove important properties of h(T") and h(T, c).

Theorem 2.4 Let T be a measure-preserving transformation on the probability space
(X,B, 1), and o = {Ay, Ag, ..., An}, B=1{B1,Ba,..., Bn} be finite partitions of this
space. Then the following statements hold:

(1) 0 < W(T,a) < H(e) < log(n);

(2) h(T,aV) < WT,)+ h(T,B);

(3) if @ < B, then h(T,a) < h(T, B);

(4) MT,a) < (T, B) + H(a | B);

(5) if T is invertible and m > 1, then h(T,a) = h(T, /i _,, T'a).
Proof.

(1) In (1) of Theorem 2.2 we proved 0 < H(a). Therefore, 0 < H(V;Z, ' T—ia) and
thus, 0 < lim, e 2H(\Vi T7) or 0 < A(T,).

To prove h(T,a) < H(w):
\/ T7'a) ZH (T™'a) (by (11) of Theorem 2.2)

= = ZH (by (13) of Theorem 2.2)

= H(a).
1 n—1
Therefore, lim nH \/ T %) < H(a) and thus, h(T, o) < H(o).
n—>00
1=0

The inequality H(a) < log(n) is already proved in (2) of Theorem 2.2.

22

\/ T (aV B)) \/ T av \/ T7'6)
(by (11) of Theorem 2.2.)
H(\/T" aV B)) < H(\/T“loz)+ H \/T 8.
1=={)

Therefore, dividing both sides by n

\/T*tavﬁ) < H\/T"a+ H\/T*’ﬁ

3==0
SO
1 n-—1 1 n—1 1 n-1
Jlim —H{(\/T (v 8)) < lim —H(\/T a+nlg§o H\/T '5).

=0
By the definition
WT, v B) < h(T,a) + KT,).

If @ < §, then T~ia < T8, Thus, Vi, T7a < Vi, T786.
Now, by (7) of Theorem 2.2

H(\ T70) < H(\ 779)

Then,
1 n—1 . 1 n—1 ‘
-H T'a) < —H T7'8).
(Ve < CHV 179
Thus,
1 n—1 1 n—1
lim —H(\/T"z) < lim —H(\/T—’B .
n—00 7 im0 n~»00 71, im0

Therefore, by the definition

h(T, o) < WT,).

23

(4) By (7) of Theorem 2.2, we can write

n-1 n—1 n—1
H\/ T7%) < H((\/ T" o) v (\/ T78)),
i=0 =0 =0
which by (5) of Theorem 2.2
n—1 - n—1 ‘ n—1 '
=H(\/ 778+ H(\/ T7a | \/ T7').
=0 =0 =0

Now, by (10) of Theorem 2.2

A\ T) v \/ 1p) < Y B | (\/ T79),

=0

H

which by (8) of Theorem 2.2
n—1
<D H(T | T78),
1==0
and applying (12) of Theorem 2.2

H(a |).

Thus,
n-=1 n—1
H(\/ T7a) < H(\/ T7'8) +nH(a | B).
= 3=0

Now, we divide both sides of this inequality by % and take the limit as n — oo,

and obtain
hT, o) < MT, B) + H(c | B).
(5)
WT, \/ T'a) = lim = H TJ \/TZ
i==—1m —eo k i=—m
m+k 1
*khm H T).

24

Thus, we know

m m-+k—1
h(T,.\/ T'a) = lim - H T) (2.6)
= =
On the other hand
mik-1 m+k—1
(\/ T ') = \/ T 'a vV \/ T).
i=—m [i=m
Applying (5) of Theorem 2.2
m+k 1 m+k~1 4
\/ T %) + H((\/ T7%) | (\/ T 'a)).
Now, by (13) of Theorem 2.2
m+-k—1)
\/T”za)+ H((\/ T | (\/ T7e).
j=—m i=m
Therefore, we can write
m+k—1
lim H T7') =
k—oo k =
m+k—1 '
klggo \/T a) + H Z__/mT a) | (y T-'a))). (2.7)
So, by Equations 2.6 and 2.7, we can write
m ' m+k—1 .
h(T,._*/ T'a klggo \/T) + H z\./mT o) (y T ')))
(2.8)
Now, we prove
m+k—1 .
lim = H @—_mT ') | ('\/ T ') = 0. (2.9)
In fact by (9) of Theorem 2.2
m-+k—1 1 m
T7a) T ') < —H T '),

25

and therefore Equation 2.9 holds, if we take the limit of both sides as k — oo.

Now, by Equations 2.8 and 2.8

(T, :\Ti/mT = lim —H z\—/OT_Za

Therefore,
T, \/ Tia) = WT,).
In the following theorem we prove two properties of A(T).

Theorem 2.5 Let T be a measure-preserving transformation of the probability space

(X,B,). Then the following statements hold:
(1) for m > 0, K(T™) = mh(T');

(2) if T is invertible, then h(T™) = |m|h(T) Vm € Z.

Proof.
(1) We first show that
m—1
W(T™, \/ T™'e) = mh(T, @)
1=0
This holds since
k—1 km—1
lim H T-™(\/ T 'a)) = lim ———~H T ‘o) = mh(T,).
k—oo k k—oo ki,
Thus,
m—1 _
mh(T) =m sup {h(T,o)} = sup {R(T™, \/ T 'a)}
o finite a finite i=0
< sup W(T™,) = h(T™).
B
Also,
m—1
h(IT™) < WT™, \/ T7'a) = mh(T,),
i=0

26

by (3) of Theorem 2.4 and therefore, A(T™) < mh(T). The result follows from

these two inequalities.

(2) Tt suffices to show that h(T'~!) = k(7). All we need to show is that A(T"',a) =
h(T, «) for all finite partitions «, but

n—1 n—1
H(\/ T'e) = HT " \/ T'a),
=0 =0

and by (13) of Theorem 2.2

= H(\—/ T).

2.7 Calculation of Entropy

The computation of h(T') is in general a difficult task. However, the computation
becomes feasible in those cases when there exists a finite partition « for which h(T') =
h(T, a). The Kolmogorov-Sinai theorem which we will study in this section provides
a method of computing the entropy in a large number of cases.

In this section we introduce the Kolmogorov-Sinai theorem, and its corollaries.
Also we present two examples, which show how to compute the entropy by applying

these theorems.

Definition 2.7.1 If C and D are sub-o-algebras of B where (X, B, i) is a probability
space, then we write C <° D if V C € €, 3 D € D such that u(CAD) = 0. (Note
that CAD = (C - D) U(D - C).)

If both C <° D and D <° (C, then we write C = D.

Let o and A be finite partitions of (X, B, 4). Also, assume that the corresponding
sub-c-algebras of «, [are respectively A, B, in the way we introduced them in

Remark 2.1. Then we write o <° B if and only if A <° B.

27

Definition 2.7.2 If (X, B, i) is a probability space and {a,} a sequence of partitions
of this space, that are not necessarily finite, by \/, a, we mean the smallest sub-o-

algebra of B which contains | J,, om.

Theorem 2.6 (Kolmogorov-Sinai Theorem) [19]

Let T : (X,B,u) — (X,B,u) be an invertible measure-preserving transformation
and let o be a finite partition of X contained in B and \/,.__ T"o = B. Then
hT) = h(T,).

Theorem 2.7 [19] Suppose T : (X, B,) — (X, B,) is a measure-preserving trans-
formation (not necessarily invertible) and c is a finite partition of this space conlained

in B with \[o—, T = B. Then h(T') = (T, a).
Entropy can be defined for any at-most-countable partition as follows.

Definition 2.7.3 If a = {4, A,,...} is an at-most-countable partition of the space
(X, B, 1) then

Zu) log(u(A:))

which may be infinite.

Definition 2.7.4 An at-most-countable partition « of the space(X, B, 1) is called a

generator for an invertible measure-preserving transformation 7" if \/)"._ _ T"a = B.

Remark 2.2 Asin Theorem 2.6 one can prove that if « is a generator and H(«a) < oo,
then h(T') = h(T,c). (Note o is not necessarily finite as we defined the generator.)
(See [19])

Theorem 2.8 [19] In the space (X, B, 1), let {an} be an increasing sequence of finite

partitions contained in B, i.e.,
ar < oy <P <7
and \/22, an = B. Then h(T) = limy 00 T, o).

28

Example 2.7.1 The two-sided (po, . . ., pr—1)-shift has entropy — Z?:_ol p; - log p;.

Let X =1]*_{0,1,...,k — 1} and T be the shift as we introduced in 1.4.4. Let
Ai={{zp} :zo =1}, 0<i<k—1 Then a = {A,...,As_1} is a partition of X.
By definition of B, \/22__ T'a = B.

By Kolmogorov-Sinai Theorem 2.6

1
RT) = lim —H(aVvT lav.. - vT~-®Yq).

n-+00 1

A typical element of a VT taV - VT~ Hais
Aio n TwlAil N---N TN(n——l)Ain‘l = {{C(Jn} L Xg = ’ig, I = il, vy g1 = 7;”_1}
which has measure p;; - p;, ... pi,_,. Thus,

HavT 'av..-vT~ " Va)

= Z (pio - 'pin—l) : log(pio . 'pin——l)

105 emin—1€{0,1,...,k—1}

- Z (pio o 'pin—l)[logpio +oeee logpin—l]
§0yrein-1€{0,1,....k~1}

k-1
=-—n>» p;-logp:
=0

Therefore,
1 k-1
MT) = h(T,) = lim —. —n;pz log p;) = sz log p;.

Example 2.7.2 Let T : [0,1) — [0,1) be given by T(z) = 2z (mod 1). Below we
show that h(T) = log 2.

The set of dyadic rationals are dense on the unit interval. The collection of
intervals of the form [a,b) with dyadic rational end points generated the class B of
Borel sets of [0, 1].

Let o = {[0,3),[%,1)}, and let &, = /77 T~aw. Each ay, is of the form

1 1 2 2" —1
n = 07——7—:'——7"'a a]- .
o = ([0, 22): g)+ gt 1)

29

Let [a,b) be an arbitrary diadic rational interval where

S
@ om T om o
and
,_ L1 1
g T gms T T gy
Since
2713"'"1 + 2“3—112 _+_ e _+_ 1
a =
2ns
and

- DAL D! +2mk‘“m2 _|_...+1

2

[a,b) is a union of elements of ay, for n = max{my, n,}. Thus every open set in [0,1)
is an at most countable union of elements of U ,ay,. Thus B C V22, a,. Since every
element of ay, is a Borel set V&, «a, C B. Therefore Vo2, = B.

Now by Kolmogorov-Sinai Theorem 2.6 h(1T") = h(T,c). With properties of

Lebesgue measure we have,
1
\/T @) -2“—1g(2 }) = nlog2.

Then Ah(T) = h(T, a) = limy 00 +(nlog2) = log 2.

30

Chapter 3

Computing Entropy Directly from
the Definition

3.1 Introduction

As we stated earlier the computation of h(7T') is in general a difficult task. Although
the Kolmogorov-Sinai Theorem provides a computational tool to compute the entropy
in many cases, finding a generating partition is not always possible. Even if we have
a generating partition « for a system, evaluating h(T',) is not always easy.

There have also been other approaches to numerically evaluate the metric entropy
of a system. In this chapter we describe an algorithm developed in [17]. The ap-
proach is directly based on the definition of metric entropy. It includes methods of
partitioning the data, computing sequential distributions, and compactifying results
to reduce memory requirements, which will be discussed in greater depth.

Our method is even feasible when the system is not known explicitly and we just
have knowledge of a finite trajectory of a system. That is, we can compute the entropy
from time series generated from the system.

In this chapter it is always assumed that (X, B, u) is a probability space and

T : X — X is a measure-preserving transformation of this space.

31

In our computational examples we will assume that the dynamical system is one
dimensional and bounded, ie., X is a bounded subset of the real line. Later in

Chapter 5 we explain how this method can be applied in higher dimensions.

3.2 Entropy Computing Algorithm

Definition 3.2.1 The elements of a partition are called bins, and the number of
bins in a partition will be called size of the partition, or partition-size. For example

0g, a1, - . ., 051 are the bins of the partition « of size k defined below:
o= {ag,0,...,01}

First we go back to the original definition of the metric entropy to be able to
present the direct entropy computation method.
By definition, h(T) = sup, h(7, o) where the sup is taken over all finite partitions

a contained in B, so

1
MT) =sup(lim ~H(aVT 'aV--V T—=(=Yq)). (3.1)

a NN

A typical element of a VT eV + -V T-Dq is of the form
aNT o NN T_(”“l)a%l ,
where ag,a1,. .., a,-1 are (not necessarily distinct) bins of c.

Notation 3.1 For a probability space (X, B, y) with a measure-preserving transfor-
mation T of this space, and « a partition of this space, where ay,...,a, are (not

necessarily distinct) bins of a, we denote p(ag, @1, .. .,an-1) as the probability that

T € ayg T_lal n---N T—~(n~—1)an——17

32

ie.,

plag, a, ... an) =p({r € X |z €anT gy NN T Vg, 1))
=p({zeX|zca,reT ay,...,x € T Vg, 1})
=p({z e X |z €ay,T(z) €ar,....T" (z) € an-1}).

In other words, p(ag, a1, -.,a,-1) is the probability that the iterations of a point

x € X visit the bins ag, aq,...,a,_1 respectively at times 0,1,...,n — 1, iterated by

T at each discrete time interval.
Using notation (3.1) and the definition of the entropy of a partition
HavT lav---vT " g) =

— z plag, ay, . .., an—1) log(p(ag, a1, . . ., an-1)). (3.2)

Q0,31 508 —~1EQ

Therefore, by Equations 3.1, 3.2

. 1
h(T)=sup[nlggo(—ﬁ > plao,ar; . an-1)log(p(ag, as, - ., an-1)))]. (3.3)
@ 0501 50—~ 1EQ

For simplicity we define new notations which will be used throughout.
Notation 3.2 We define I,,(«) by

I(a) = — Z plag, a1, . . ., an—1)log(plag, a1, . .., an-1)). (3.4)

40,01 50 50n—1EQ

Using Notation 3.2 in Equation 3.3 we can write:

h(T) = sup] lim In(@)

a nmoo N

. (3.5)

Also, note that by this new notation we can write

h(T,«) = lim {E(—@-. (3.6)

n—roo n

Now, we are ready to summarize the method of computing entropy.

33

Algorithm 3.3 Computing Entropy by Definition.

[
|

Choose a partition o of X.

[\]
)

Compute the probabilities p(ag, ay, ..., an-1)-

w
T

Compute I,(«) using the probabilities.

4- Evaluate lim, o I"ff), ie., h(T,).

5

i

Choose some new partition « and perform steps 2 to 4 for this new partition.

6- Find the maximum of the values h(T, &) computed for each different partition,

which estimates h(T').

3.3 Introducing Symbolic Representation and Con-
sidering the Algorithm

In order to make the computation easier, it is desirable to introduce a new represen-
tation of our space called symbolic representation. We associate with each element of
a partition a symbol, e.g., an integer between 0 to k£ — 1 inclusively, for partition size
of k. In this way it is possible to represent symbolically the orbit of a point by noting
in which element of the partition it lies at each iteration of the transformation.

In our estimation we only compute a long but finite orbit of the system, i.e.,
we only know the values of z,T(z), T?(z), ..., T (z) where npt is a positive in-
teger. Therefore the entropy computing method is only based on the information
about this finite orbit. We assume that the probabilistic behavior of the finite orbit
z,T(z), T*(z),..., T 1(z) is a good estimate for the probabilistic behavior of an
infinite orbit.

In symbolic terms the finite orbit z,T(z), T%(x),...,T™" () is in fact a finite

sequence of length npt of integer numbers, each of them between 0 to k-1 inclu-

34

sively. From now on by main sequence we mean the finite sequence of numbers
x,T(zx), T*(z), ..., T () represented symbolically.

As we said before p(ag, a1, . . . , an—1) is the probability that the iterations of a point
x € X visit the bins ag, a1, . .., a,_1 respectively at times 0,1,...,n — 1, iterated by
T at each discrete time interval. In symbolical terms this probability is equivalent
to the appearance of the sequence ag, a1, ..., a,—1 in the main sequence. Therefore
plag, a1, ... ,an_1) (also denoted by p(aoa; .. .an—1)) can be computed as the fraction:

number of times the sequence ag, a4, ..., a,-1 appears in the main sequence
npt —n+1

(3.7)

Note that npt —n+1 is the number of all possible appearance times of a sequence

of length 7 in a main-sequence of length npt.

Definition 3.3.1 For main sequence z, T'(z), T%(z), ..., T !(z) and a positive in-
teger n, the sepdmtz’on level (of sequences of length n) is defined by the fraction:

number of distinct sequences of length n, that appear in the main sequence

total possible number of sequences of length n in the main sequence
which is equal to

number of distinct sequences of length n, that appear in the main sequence

npt —n+1
The following must be noted about the Algorithm 3.3.

(a) We use the symbolic representation to implement this algorithm as we discussed.

(b) It may be asked: What will be the best choice of a partition « for which we get
better estimates for h(T)? As we discussed earlier finding a generating partition
is not always possible. In absence of any knowledge of the availability of a
generating partition for a dynamical system, we can only take finer partitions
to better approximate the generating partition. As was pointed out in [17], the
use of finer partitions improves the accuracy of the entropy estimation. It must

be noted that for a partition of k£ bins, the maximum possible entropy computed

will be log k.

35

(¢) To compute I,(a) we need to compute the probabilities p(agai .. .an-1) using
the symbolic representation and formula of the Equation 3.7, for all combi-
nations of ag,ds, ..., 0,1 from the set of symbols 0,1,...,k — 1. Therefore
we are required to compute k™ different probability vectors, and it is evident
that a memory overflow would occur as n grows. In Chapter 5, we introduce a

computational approach called sequencing to prevent this overflow problem.

I, (a)
n

(d) To estimate the entropy we need to compute lim,_, oo for each partition a.

In practice we only can compute Iﬁ%‘—) up to a finite integer. The entropy in our
case will be estimated by the slope of the line asymptotic to the data on the
graph of information I,(a) against n. Theoretically, for an infinite amount of
data, such a line exists. In practice, with a finite amount of data, after a certain
number of steps the information I,(c) approaches its maximum information for
the number of sequences under consideration. Therefore, we need to estimate
the entropy by determining a linear region on the information graph. It will
be discussed that the best region will be after the initial rise and before 0.2
separation-level (of sequences of length n)(See Definition 3.3.1) is reached in

the graph of I,,(a) against n.

In Chapter 5 we will discuss these facts in greater depth.

3.4 A Step By Step Example

Before we explain any further details about our method, we present an example.

Example 3.4.1 Consider T(z) = 2z (mod 1) on the space of the ([0,1), B, 1) where
11 is the Lebesgue measure and B is the o-algebra of the Lebesgue measurable sets on
[0,1). As we showed in Example 2.7.2, h(T) = log2. In this example we show how
one can implement the Algorithm 3.3 to evaluate h(T).

1) Sample of computing I, () with main-sequence length of 50 and Partition-

size 4

36

First we divide [0,1) into 4 bins of equal size,

1, .12 .23, .3
a={[0,7), 137 ol [D
Now we begin from a partition which symbolically is represented as {0,1,2,3} and
number of bins=4.
For example we start with a main-sequence of length 50. We choose a random
point in [0,1] and perform 49 iterations of T', i.e., npt = 50 and at each step find the
corresponding partition element in which the iterations lie in. For a random starting

point we have got the following main-sequence of length 50 as a result of computation
12132000132120012001321213320133212132012132001201

Next, we calculate the I,(a) for n =1,2,...,6 using Equation (3.7).

To compute [1(04) we compute the following probabilities.

p(0) =2 ,p(1) = 2 p(2)= 22, and p(3) = 5. Therefore,

Li(a) =~ plao)log(p(ao)) ~ 1.974752133.

ag€a
Similarly to compute I(c), we need to compute p(agai) for all ag,a1 € o, The
partition size is 4 in this case, and there are two variables ao, and a; so totally there
will be 42 probabilities to be computed. We use Equation 3.7, and compute the
probabilities p(aga;). The nonzero probabilities are as below.
p(00) = &, p(01) = 35, p(12) = 5, p(13) = 5,
p(20) = 55, p(21) = 5, p(32) = %, p(33) =

Now, we use Equation 3.4 and compute IQ(a):

Lia)=~ Y plaga)log(p(aar)) ~ 2.9306857860.

20,01 €0

The separation level (see Definition 3.3.1) of sequences of length n = 2 will be

7185 = (0.1632653061.

37

Table 3.1: Results for Example 3.4.1

n I,(a) separation level
1| 1.999792548 0.0004000000
2 | 2.999621310 | 0.0008000800
3 | 3.999218215 | 0.0016003200
4 1 4.998433746 | 0.0032009602
5 | 5.996722438 | 0.0064025610
6 | 6.992898709 | 0.0128064032
7 | 7.983791036 | 0.0256153692
8 | 8.965941542 0.0512358651
9 | 9.926743303 | 0.1024819856
10 | 10.848083900 | 0.2041837654
11 | 11.668770160 | 0.3748748749
12 1 12.301696270 | 0.5740314346
13 | 12.735451060 | 0.7456948338
14 1 12.991958510 | 0.8594172424
151 13.135091170 | 0.9261966753

2) Increasing main-sequence length to 10000, and computing /,(a) and
separation level

To get a better estimate of the entropy h(7T) we increase the length of main-
sequence from 50 to 10000 and perform the same computations. It means we start
from a longer finite orbit. In Table 3.1 we have computed I, («) and separation level
for n from 1 to 15. Note that we are still working with the initial partition-size= 4.

Figure 3.1 shows the values of I,(a) plotted against n. It can be seen that the
slope of the graph is falling off after n = 9 starting at which the separation-level

exceeds 0.2.

38

0T 6 8 10 12 14 16
n

Figure 3.1: Graph of I,(a) for n=1,...,15, npt = 10000, partition-size= 4

To estimate entropy h(T,) we find the slope of the best line fit to data as an
estimate of Entropy. If we use least squares method to find the slope of the best fit
line to the points on the graph of Figure 3.1 with separation level< 0.2, i.e., (I.(a),n)
forn=1,...,9, we get the

slope of the best fitting line to data = .9928395725.

Therefore, we estimated h(7T,) = .9928395725.
3) Computing over different partition sizes, and entropy estimation.

At this step we perform the same computation as in the previous part we used
to find h(T,«), for different partitions . The new partitions will be of the size
2,8,16,64. Similar to the case we studies in the previous part of this example, for
each partition-size k, we partition the interval [0, 1] into & disjoints parts of the same
size. In Figure 3.2, we have plotted [,,(«) against the sequence-size of n, for these
different partitions. Each partition size represents a new partition . Note that again
we work with a main sequence of length of 10000.

To compute h(T, o) again we have to find the slope of the best line fitting the data
in the linear region of the graph. This region, as we said, could be seen in part of the
graph where separation-level is less than 0.2. For each partition size we compute its

corresponding slope and we get the following results:

39

L 4
o

046 8 10 12 14 18

...... bins
©0¢0%0 4binsg
------ 8bins

Figure 3.2: Graph of I,,(a) forn = 1,...,15, npt = 10000, and different partition-sizes

In cases where « is a partition of size:
2 bins, (T, o) = 0.9939654661;
4 bins, h(T, a) = 0.9928395725;
8 bins, AT, o) = 0.9913716708;
16 bins, h(T, o) = 0.9894412532;
64 bins, h(T,) = 0.9832916560.

The entropy h(T) is the maximum of the computed values h(T,).
The maximum over these values is .9939654661. If we compare it to log2, (the
value of h(T) computed theoretically), we get log2 — 0.9939654661 = 0.0060345339.

As we see in this case the method gives a very good approximation of A(T').

40

Chapter 4

Computational Approach

4.1 Introduction

The calculation of the entropy presents several difficulties for numerical studies. These
can be attributed to problems associated with partitioning of the data and keep-
ing track of the sequences. For a point that goes through the sequence of bins
ag, @1, ..., 0,1, the sequence can be considered as a point in the Euclidean space
of n dimensions by using the bin labels to create an n-vector. Then for an initial
partition of size k bins, there are k™ boxes in the equivalent n dimensional space.

For fine partitions it is evident that as n grows a memory overflow would occur even
in a large computer if every n dimensional box were stored, so it becomes imperative
that some compactification scheme should be used. In fact we have used this scheme
in parts (2) and (3) of Example 3.4.1 to compute I, () for different values of n when
we increased the value of npt from 50 to 10000, though we did not explain how we
had performed the computations.

Below we set out our approach in several sections: 1-Partitioning and Scaling
Data; 2-Sequencing and Compactification; 3-Probabilities and Information, 4-Entropy
Estimation.

We will use the Maple instructions to explain our algorithms in these sections.

41

From now on we write the variables with the new font to make our Maple codes more
readable, e.g., we write k, npt, and n respectively for, k, npt, and n. For arrays (or
vectors) the convention has been chosen that when a Greek index is used, e.g., Alal,
we are referring to the array itself, and when a Latin index is used, e.g., A[i], we are

referring to a particular element of Ala].

4.2 Partitioning and Scaling Data

For computational efficiency, it is imperative that the partitioning of data be accom-
plished quickly and efficiently. We assume that a trajectory of a dynamical system,
ie., z, T(z), ..., T"P""! is stored in a vector x[o] of length npt. So elements of
x[a] are x[i] (0 < i < npt).

We must convert the data into a representation of integer values. Since our systems
are assumed to be bounded, the data lies in the interval [x_min,x_max]. We first
shift the data to interval [0,x_max-x_min] by subtracting x_min from every element
of x{a]. The Maple code corresponding to the shifting process is simply written in
the following way:

for i from 0 to npt-1 do
x[i}:= x[i]-x_min:

od:
length_of_domain:=x_max-x_min:

for i from O to npt-1 do
x[i]:= x[i]/length_of _domain:
od:

Now we partition the data into a partition of size k. In other words we assign
an integer from 0 to k-1 inclusive to each element of the array x[a]. To do so we
take an array bin[a] of size npt, which elements (bin[i], 0 < i < npt) are integers

from 0 to k-1 inclusively. This scaling can be implemented in the following way using

42

Maple’s floor function which returns the greatest integer less than or equal to a
number.
for i from O to npt-1 do
bin[i]:= floor(x[il*k):
od:

Array bin[a] exhibits the same relative properties as the initial input data. Con-
versely, any partition of the original data is equivalent to a partition of the data in
bin[a] simply by scaling the partition in the same manner as the original data was
scaled.

It is evident that this process has no effect on the calculation of the entropy, since
the entropy depends solely on the sequence of bins through which a point moved,
and this is equivalent under the identification of the original data with the scaled
data. The identification gives an isomorphism between the initial data and the initial
partition, and the scaled data in bin[a] and the scaled partition; and the entropy is
invariant under isomorphism.

The elements of bin[a] are all taken to be starting points of sequences, so it
is clear that to determine the sequence of bins followed by a particular point, it is
necessary is to look at the elements of binl[a] following that starting point. To
calculate a sequence of probability p(ag, a1, ..., an-1), we count the number of times
the particular sequence of numbers ag, a1, ..., a,—1 appears in bin[aJ. This is not
as simple as it appears, since it requires keeping track of £" data points, which soon
overwhelms the memory of a computer. The resolution of this problem is discussed

below in section 4.3.

4.3 Sequencing and Compactification

For a given partition into k bins, it was mentioned above that a particular sequence

of bins ag,a1,...,0,-1 can be represented by a point in an Euclidean space of n

43

dimensions, i.e., on an integral grid kx k x ...x k, where the product is taken
n times. This simply means that if p is a point on the n-dimensional grid with
coordinates (ag,ay,- .., an-1), then ag,ay,...,a,-3 represents a possible sequence of
bins through which a point on the space might move in n time steps.

Consequently, it would be a simple matter to tabulate all the sequences of length
n on the space, if we could create an n-dimensional array with each dimension of
length k and use the elements of bin[a] to index the array and increment the proper
positions. Let such array be called Hist[ag, as, ... @,], with n arguments, i.e., each
of its elements is in the form Hist[ag,as, ..., Gn-1], where each a; could vary from 0
to k-1 inclusively.

Then the tabulation is given by incrementing
Hist[bin[i] ,bin[i+1],...,bin[i+(n-1)]], where i varies over all starting points,
which would be from 0 to npt-n inclusively. In other words, in the algorithm, for i
from 0 to npt-n we perform the following increment

Hist[bin[il,bin[i+1],...,binli+(-1)]]:=

Hist[bin[i],bin[i+1],...,bin[i+(n~-1)]1]+1

The problem of course is that this requires k to power of n memory positions.
Luckily, many of these positions have zero entries (corresponding to no such sequence
occurring); in fact, the maximum number of non-zero entries is npt-n+1. This allows
us to compactify the information of the array at each stage of computation to minimize
the memory requirements.

We will now describe a simple algorithm for compactifying the sequencing in-
formation stored in Hist[aq,@s,...q,]. While there are probably more efficient
approaches, this one has two important benefits. First, it requires no more than a
fixed amount of memory and only a two dimensional array with a maximum size of
npt X k. Second, it does not lose the sequencing information, whereas any algorithm
which utilized a sorting routine would have to overcome the problem of re-ordering

and the subsequent loss of sequences.

44

The algorithm will be described using a two dimensional histogram array
histogram[3,]. To begin the sequencing process, create a new vector compress [a]
of size npt, and initialize it so that compress[i]=bin[i], for i from O to npt-1.

for i from 0 to npt-1 do
compress[i]l:= bin[il:
od:

We also need another variable to keep track of non-zero positions in
histogram[3,+]; call it newcount. Initially we set newcount=k. Note that k was
the number of bins. The histogram[3,v] array can be either dynamically allocated
to its working size k*newcount or set to the maximum size of k*npt. The first step
is to increment histogram[3,~] for two-sequences (where we introduce the term

n-sequence to mean a sequence of length n) according to the following

histogram[bin[i+1],compress[i]]:=histogram[bin[i+1],compress[i]]+1
(4.1)
where 0 < i < (npt-2) is the range of i. Every two-sequence increments a particular
position in histogram[$,], and identical two-sequences increment the same position
in histogram[,~], so the histogram[/3,~] array represents the distribution of two-
sequences.

We now make use of the possibility of interpreting a two-dimensional array as a
one-dimensional vector (as is generally done in most computers when storing arrays
in memory) by concatenating either over rows or columns.

For example, if A[a] is an sxt array, then a position in A[a] may be labeled by
Afi,jl for 0 < i < s, 0 < j <t,or by concatenating over columns as A[j*s+i],
or by rows as A[i*t+j]. This property will be used to set up a correspondence
between two-sequences and positions in the histogram[3,v] array where we replace
the starting points in compress[a] by their relative positions in histogram[(5,~],

labelled by concatenation over rows. To do this, simply make the replacement
compress[i] :=compress[i]l+newcount*bin[i+1] (4.2)

45

for all i in the range 0 < i < (mpt-2). No information is lost in this process,
since all unique two-sequences produce unique values for the associated elements
in compress[al. When this is completed, compress[i] contains the position in
histogram[3,y] corresponding to the two-sequences starting at the associated point
bin[i]. Note that none of the zero entries in histogram[f,~] are reflected in
compress[a], so the numbers in compressl[al do not, in general, come from a
contiguous interval of integers. In order to minimize the memory requirements, it
is necessary to renumber the values of compress[al, so that if there are p unique
values, they will be renumbered from 0 to p-1, with their order maintained.

The compression process is fairly simple. First designate a variable, newcount, to
count the number of nonzero entries in histogram[3,v]. Then in one pass through
histogram[4,~], replace the old value of histogram[i, j] with the current value of
newcount and then increment newcount.

rowlength:=newcount:
newcount:=0:
for i from 0 to k-1 do
for j from 0 to rowlength-1 do
if histogram[i,jl>0 then
histogram[i,j]:=newcount:
newcount :=newcount+1:
fi:
od:
od:

At the end of this step, the nonzero entries in histogram[f3,y] represent their
relative orders of appearance in histogram[3,~].

Now the compression can begin. The numbers in compress[o] represent the
old bin numbers previously in histogram[$,~], but we now replace them with the

ordered numbers places in histogram[/3,~] in the last step.

46

for i from O to npt-2 do
column:= (compress[i] mod rowlength):
row:= floor(compress[i]/rowlength):
compress[i] :=histogram[row,column]:
od:

which results in the elements of compress[a] being numbered from 0 to
newcount-1.

At the next stage of the calculation, when we want to consider three-sequences,
the working size of histogram[$3,~] need only be k xnewcount. The compress[al
vector again holds the correct numbers to allow for use of the histogram[3,~] incre-
menting routine (4.1), where the next value in the sequence is selected from bin[a],
i.e., bin[i+2]. This process continues recursively, where for n-sequences we use
bin[i+(n-1)] and change the range of i to 0 < i < (npt-n) in (4.1) and (4.2), and
in the above compression codes.

Note that if the allocation of histogram[f,v] is dynamic within the sequencing
loop, it is necessary to free the reserved memory space before going on to the next
step.

The complete Maple code related to sequencing and compactification is given in

the Appendix.

4.4 Probabilities and Information

After going through the n-sequence compression loop, the compress[a] vector con-
tains values that uniquely identify the n-sequences followed by the starting points.
Consequently, to calculate sequential probabilities all that must be done is to tabulate
the relative frequencies of occurrence of the different sequences. This can be done
simply by using the elements of compress[«a] as indices to increment positions in a

probability vector. So we create a vector, probability[a], of length newcount (since

47

that is the number of unique values in compress[a] and increment the elements as
below:
for i from 0 to npt-n do
probability[compress[i]]:=probability[compress[i]]+1:
od:
When the incrementing is completed, it is necessary to normalize the probabilities
so the total sum is 1. The normalization will be performed as below:
for i from O to newcount-1 do
probability[i] :=probability[il/(apt-n+1):
od:
Once the probabilities are computed, it is an easy task to compute the information.
The calculation of the information of n-sequences following from the original def-
inition of entropy, will be given in a loop by
information:=0:
for i from 0 to newcount-1 do
information:= information+probability[i]*1n(probability[i]):
od:
where information is the variable representing information. From the definition
of entropy it is evident that the result of the loop calculation above must be multiplied
by (-1), so the last step is to take
information:=(-1)* information:
At this stage the information content of n-sequences has been computed. It is
now possible to continue on to calculate the information content in n+1 sequences
by keeping compress[a] and the value of newcount, clearing histogram[4,~], and

looping back through the operations in the last two Sections.

48

4.5 Entropy Estimation

All the above calculations were done for a given partition. From the information
computations described above, it is possible to plot a graph of information vs sequence
length. In theory, for an amount of infinite data, this graph should be asymptotic to
a line, the slope of which corresponds to the entropy. However, with finite amounts of
data this is not the case and the information graph begins to approach the maximum
information state for the number of sequences under consideration. This causes the
graph to fall off from the line defining the entropy, approaching the slope=0 state near
the maximum information. In certain situations, notably difference equations, there
tends to be a noticeable linear region before the falloff toward maximum information.

It has been considered in [17] that the region before 0.2 separation-level is reached
will give good experimental results. So in this case we will simply plot a best-fit line

through the points in the linear region to estimate the entropy. This corresponds to

In ()

limy, 00 n

. For some systems, where there is not such a distinctive linear region,
we use lim, o Ini1(a) — In(a) to estimate the entropy. In fact in this case we find
the difference I, 11 () — I,(), for the maximum value of n for which the separation
level < 0.2.

A sample code of entropy estimation using least-squares method is attached in

the Appendix.

4.6 Computational Efficiency

The computational requirements of this approach can be calculated easily. Subtract-
ing the minimum of data and the scaling data requires O(npt) operations. The one-
dimensional histogramming requires just one pass trough the data, so it is also O(npt).
Incrementing the two-dimensional array histogram[f,~] is likewise accomplished
in O(npt) operations. Then renumbering compress[a] requires one pass through

histogram{3,v] which has k newcount elements, where k is fixed by the choice of

49

the number of initial bins and newcount can never grow larger than npt, although
the calculation should be cut off soon after newcount> 0.20xnpt. For k<<npt, the
renumbering is O(npt), or for larger k, O(kxnpt). Incrementing probability[a]
required npt operations and calculating information requires 3 xnewcount opera-
tions. Consequently, this implementation is accomplished in O(npt) or O(kxnpt)
operations.

The memory requirements involve only one large array histogram[g, 71, all others
being vectors of length <npt. The working size of histogram[f3,] is kxnewcount
and can not grow beyond its maximum size of nxnpt; actually if the calculation
is cut off soon after the 20% separation level has been reached, then the size of

histogram[3,~] is <kxnptxA, for A=0.2.

50

Chapter 5

Computational Approach in
Two-Dimensions and Filtering

Entropy

5.1 Introduction

When dealing with a system modelled by a discrete time, nonlinear difference equa-
tion,

Tni1 = T(z,), (5.1)

the method described in Chapters 3, 4 provides an algorithm for computing metric

entropy. However, when the system is contaminated by noise,
Tna1 = T(23) + &n, (5.2)

its entropy, in general, is infinite, while that of the underlying deterministic source
system is finite. To extract the entropy of the dynamical system from the noisy data,
computational techniques have been developed [1], but these are often difficult to
implement and their accuracy cannot easily be verified. In [11], there is a conjecture

that the metric entropy of the deterministic dynamical system is the difference be-

51

tween the entropy of the noisy system and the entropy of the noise itself. The basic
assumption is that the large (often infinite) entropies of the noisy system and the
noise itself will cancel to reveal the entropy of the chaotic system. However, there are
no proofs in [11] and it is not clear under what conditions, if any, the method applies.
Furthermore, the proposed method assumes a special structure for the noise. In [3] a
model is proposed in which this conjecture is true in a fairly general setting.

We describe this model below and give examples in which we have implemented
the algorithm of [17]. In fact we explained this algorithm in Chapters 3, 4 in the
one-dimensional case. In this chapter we need to implement it in the two-dimensional
case.

In Section 5.2 we state the notation and formulate the problem with the aid of
a skew product representation. Also, it contains the formula for the entropy of the
skew product which in this special setting is similar to Adler’s natural formula . In
Section 5.3, using the entropy formula of Section 5.2, we state that the entropy of the
chaotic map T can be filtered from the data of the noisy system. In Section 5.4 we
present the method for computing the dynamical entropy from observed data, and

we present a computational example that verifies our method.

5.2 Notation and Entropy of Skew Products

Definition 5.2.1 Let (X, A4,0,7) be a dynamical system and let (Z, B, ¢y, ltz)zex
be a family of dynamical systems such that the function ¢, is X x Z measurable. A

skew product of o and {¢,}zex is a transformation F': X x Z — X x Z defined by

F(z,z) = (0(z), 92(2)),
reX,z€e 2.

In [2], Adler remarked that the natural conjecture for the formula of the entropy

52

of a skew product is:

h(F,v) = h{o,7) + /);h(gbx,pz)dﬂ(w), (5.3)

where h(F,v), h(o,m) and h(¢,, 1) are the entropies of F, o, ¢, respectively.

Now, we define the skew product we will use in the sequel.

Definition 5.2.2 Let ([0,1],4, 7, A) be an ergodic dynamical system, where A is the
Lebesgue measure. Let ([0,1], B,T,) be an ergodic dynamical system. We assume

that both 7 and T are piecewise C'. We consider the following perturbation of T
Tp(z) = T(2) + g(z) (mod 1),

where ¢ is piecewise C! and |¢'| < M, M < oco. Consider the family of dynamical
systems, ([0, 1], B, T}, Jzepp,j- We assume that |7'| > sup,sup, |[T;(2)|]. The skew

product of T and T} is the transformation
S :10,1] x [0,1] — [0, 1] x [0, 1]
defined by
S(z,z) = (7(z), To(2)).

We assume that S preserves the two dimensional measure ¥ = A X ug and that
the system ([0,1] x [0,1},./A x B,S,v) is ergodic. Then, ug satisfies the equation
pr(A) = fol pr(T;H(A))dA(z), for any measurable set A C [0,1]. In particular, this

holds if all T, preserve the same measure jg.
For the second iterate S* we have:
S?(z, 2) = (72(2), Ty(z) © T(2))
= (1%(2), T(T(2) + g(z)) + g(7(z))-

In general,

S™(x, z) = (1"(z), R"(2)), (5.5)

53

where

RM(2) = Tyn-1(zy 0+ - 0 Ty 0 Ty (2).
The skew product S is our model for a random map
R = T,(z) with probability A,

i.e., z is chosen according to Lebesgue measure.
The following Theorem, proved in [3], gives a formula similar to Equation (5.3)

for this skew product.

Theorem 5.1 [3] h(S,v) = h(r, A) +f01 fol log | T (2)|dpr(2)dX\(z). If all T, preserve
the same measure pg, then h(S,v) = h(r, X) + fol Ty, pr)dA(z).

5.3 Dynamical Entropy Estimation

In this section, we describe a method to filter the entropy of the chaotic map T' from
the total entropy of the noisy system. The second component of the skew product

S(z, z) is what we observe as a data contaminated with noise
S™(x,z) = (T™(x), Tyn-1(g) © -+ 0 Tr(zy © Ty(2)). (5.6)
Let us define a new skew product whose second component represents only the noise:

Definition 5.3.1 Let Q(z,2) be a transformation from [0, 1] x [0, 1] to itself given
by

Q(z,2) = (7(2), L.(2)),
where

I(2) = 1(z) + g(z) (mod 1),
and I is the identity map from the unit interval [0, 1] to itself. Then,
Q™(z,2) = (t"(&), Lrn-1() 0 - - - 0 () © Ip(2)). (5.7)

54

Proposition 5.1 A{(Q, A X) = A(r, A).
Proof. Using Theorem 5.1, we have

RO\ % A) = hir, \) + /0 /0 log|Z.(2)|dA(2)d\ (z). (5.8)

Observe that I'(z) = I'(z) = 1. Thus, the double integral is equal to 0 and h(Q, A x
A)=h{r,A). m

Definition 5.3.2 We define the entropy of the noisy system by hypar = h(S,v), the
entropy of the noise by Ayose = A(Q, A X A) and the dynamical entropy as the difference

between the total entropy of the noisy system and the entropy of the noise; i.e.,
hdyn = htotal - hnoise - h(S’, V) - h(Q: A X)‘)

1 g1 / (5.9)
= [[rorimildunt1in).

This definition of the dynamical entropy is based on the definition in [11]. The

following Proposition states that that the main conjecture of [11] holds for our model.

Proposition 5.2 [3] Suppose that T(z) is a piecewise monotonic map which is even-

tually expanding. Then

hdy'n - h(T) N‘) as sup !g(m)l — 0.

5.4 Dynamical Entropy Computation

In general, the entropy of a noisy system and the entropy of the noise itself are very
large. We now present an example where we compute the entropy of a chaotic map
T and the dynamical entropy hqgyy of 7' contaminated by noise. Since, by Proposition
5.1, Angise = h(Q, X X A) = h(r, A}, we calculate h(r, A) rather than h(Q, A x A). We
use our algorithm discussed in Chapters 3,4 to compute h(S,v) and h(7, A) and then

5]

we find hayn = h(S,v) — (1, A). To compute h(S,v) and h(r,\), we consider the
time series

Wny1 = T(wy) + g(z,) (mod 1), (5.10)

where
Tni1 = T{Tn). (5.11)

h(r,) is computed using time series (5.11), and to compute h(S,v) we evaluate the
entropy of the two-dimensional time series (z,,w,) as defined above. In our example
we verify that

hagn &~ h(T, 1) as sup lg(z)| — 0,

i.e., hayn ~ h(T, p) if the effect of the noise on the data is sufficiently small. Note
that in the following example we could compute h(S,v) and h(, A) directly using the
definitions of functions T and 7, but we actually use the time series (5.10) and (5.11)
to compute the entropy. We chose this method since in real-world problems T and
7 are not necessarily determined explicitly, and we only know the time series (5.10)
and (5.11).

A few small changes should be applied to the program in the Appendix to compute
h(S,v) using the entropy of the two-dimensional time series (z,,w,). Before we

present our example, we clarify what changes have to be made in the code.

(a) In map definition code we also define definitions of g,7. For example:

> fkrkkkpkkkkockkkkMap Definitionksksokiokodokkdkiokiskdr ki
> t:= x -> frac(2#x):

> x_max:=1:

> x_min:=0:
> randomval:=evalf(rand(1..10710)/10710):
> startx:=randomval(): #random point to start with#

> #***#

56

> g:=x -> x:
> taw:= x -> epsilon*(frac(13/epsilon(x+epsilon/2))-0.5):

> kR skokkok ok ok ok sk sk ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok st ok ok sk ok sk ok skesk ok skokokokok ok ok okok

A\

randomval :=evalf(rand(1..10710)/10710):

> startw:=randomval(): #random point to start withi#

In the partitioning code, when we are iterating data, we compute both of time

series w[i] and x[il.

> fekkkkkrkkkkk[erat ingiokkkokkksokkk kb kR R KRR KRR
> for i from O to npt-1 do

> wlil:=startw:

> x[i]:=startx:

> startw:=evalf(frac(frac(t(startw)+g(startx))+1)):
> startx:=evalf(taw(startx)):

> od:

D Fokoskok ok skokook sk sk ok s ke sk sk sk ok ok sk sk ke ok sk ook ok Sk sk ok ok sk ok sk sk ok ok ok sk ok sk kok skok ok ok sk okokok ok ok i

We partition the intervals of each dimension into k bins. Therefore, we will have
kxk bins in 2-dimensional case. This makes it necessary for us to change the
part of the code, related to symbolic representation of data. In two-dimensional
case we take bin[i] as two-dimensional state of a point p at each iteration.
Therefore bin[i] can take k"2 different states from 0 to k"2-1. The following

code shows how we have simply made the appropriate changes.

> #xkkkkxxxxSymbolic Representation of Dataxssxxkkkkkx#f

> for i from O to npt-1 do:

\Y

binl[i] :=min(floor(wlil#*k) ,k-1)+k*min(floor (x[i]*k) ,k-1);

> od:

v

k:=k"2:

o7

> ok okskok R okok R kKRR Kok sk ook sk ok ok sk sk ok slok ok ok kb sk sk sk ok sk okokok ok
> for i from 0 to npt-1 do

> compress[il:= bin[i]:

> od:

> fhkskckrskokok ok ok KRR Rk Kok skdeok Rk sk sk skok R sk stk kR sk sk skok ok sk ok ok sk ok

> newcount :=k:

S fkok sk skok ok ok ok ok ok ok sk ok 3k ok ok ok ok ok 3k ok ok ok ok ok sk ok sk ok ok ok ok ok ok ok ok ok sk ok ok sk sk sk ok ook ook ok

The rest of the code in sequencing and compactification and entropy computing

remains the same.
Example 5.4.1 In this example we verify that
h'dyn ~ h(T7 N) as sup Ig(x)i - 0:

i.e., hayn ~ h(T,p) if the effect of the noise on the data is sufficiently small. We
use the algorithm we discussed to compute the entropy of the noisy system and the
entropy of the noise itself from the time series.

We consider the piecewise linear transformation,
T(z) = 2z (modl).

As the noise generator we use the map z +> 13z (mod 1), scaled and shifted to act

on the interval [—¢/2,¢/2]:

r(z) = e(lf-(x +5) (mod 1)) -

NN

Let g(z) = z. Using the algorithms we discussed, from time series (5.10) and (5.11)
we compute values h(S,v) and h(7, A), for different values of e close to zero. Note
that —£ < 2, < § and if e = 0, sup, |g(x)| = sup, |z| — 0. Therefore for small values
of € we should have hqy, ~ log2. Table 5.1 shows the results of our computation for

different values of €. As expected (see Proposition 5.2) hayn — h(T,) = 0 for small

58

values of €. The values of h(S) and h(7) in Table 5.1 are estimated by considering
time series containing 100000 iterations. We use initial partition size of 15 bins to
compute h(7,) in one dimension, and 15 x 15 = 225 bins of the initial partition size
to compute A(S) in the two dimensional case. To evaluate each entropy value, we
compute the slope of the best fit line by using the first (at most 15) points (before the

20% separation limit is reached) on the plot of information against sequence length.

Table 5.1: Results for Example 5.4.1

€ h(S) h(r) By hayn — h(T, 1)
0.2 4.998999137 | 3.699403629 | 1.299595508 | 0.2995955076
0.1 5.034553762 | 3.699403629 | 1.335150133 | 0.3351501325
0.06 4.982158785 | 3.699403629 | 1.282755156 | 0.2827551564
0.05 4.958605763 | 3.609403629 | 1.259202134 | 0.2592021341
0.005 | 4711355661 | 3.699403629 | 1.011952032 | 0.0119520321
0.00001 | 4.659583006 | 3.699403629 | .9601794665 | -0.0276014906
0.0000001 | 4.658729063 | 3.699403629 | .9593254343 | -0.0406745658
0.000000001 | 4.658131143 | 3.699403629 | .9587275137 | -0.0412724864

We check the precision of our computations at e = 0.000000001, with respect to
log2 = 1. hgy, calculated by this method is equal to 0.9587275137. The percentage

error is equal to

0.9587275137 — log 2

12
log2 (5:12)

| | = 0.0412724863 ~ 4%.

29

Bibliography

[1] Abarbanel, H.D.I., Analysis of Observed Chaotic Data, Springer-Verlag, 1996.

[2] Adler, R., A note on the entropy of skew product transformations, Proc. Amer.

Math. Soc., (1962), pp. 665-669.

[3] Bahsoun, W., Géra, P., Boyarsky, A., and Ebrahimi, M., Filtering Entropy, To
Appear in Physica D, (2003).

[4] Billingsly, P. , Ergodic Theory and Information, Wiley, New York, (1965).

[5] Boyarsky, A. and Géra, P., Laws of Chaos: Invariant Measures and Dynamical
Systems in One Dimension, Brikhauser, New York, (1997).

[6] Crutchfield, J.P. and Packard, N.H., Symbolic Dynamics of Noisy Chaos, Physica
D, Vol. 7, (1983), No. 1-3, pp. 201-223.

[7] Curry, J. H., On Compupting the Entropy of the Henon Attractor, Journal of
Statistical Physics, Vol. 26, No. 4, (1981).

(8] Denker, M. and Grillenberger, C.,Ergodic Theory on Compact Spaces , Lecture
Notes in Mathematics, No. 527, Springer-Verlag, Berlin, (1976).

[9] Guiasu, S., Information Theory with Applications, McGraw-Hill, (1977).

[10] Kolmogorov, A. N., A New Metric Transient Dynamical System and Automor-
phisms of Lebesgue Spaces, Doklady Akademii Nauk SSSR, Vol. 119, pp. 861-864,
(1958); english summary, Math Rev. 21, 386 (1960).

60

[11] Ostruszka, A., Pakonski, P., Stomczyniski, W., Zyczkowski K., Dynamical En-
tropy for Systems with Stochastic Perturbation, Phys. Rev. E, Vol.62, (2000),
No. 2, pp. 2018-2029

[12] Peterson, K. E., Introductory Ergodic Theory, Lecture Notes, Department of
Mathematics, Unversity of North Carolina, (1971).

[13] Reza, F. N., An Introduction to Information Theory, McGraw-Hill, (1961).

[14] Rokhlin, V. A., Lectures on the Entropy Theory of Measure-Preserving Transfor-
mations, Khumsan State Institute of Mathematics of the Academy of Sciences

UzSSR, (1965).
[15] Rudin, W., Real and Complez Analysis, McGraw-Hill, New York, (1974).

[16] Sinai, Ja. G., On the Concept of Entropy of a Dynamical System, Doklady
Akademii Nauk SSSR, Vol. 124, pp. 768-771, (1959); English Summary, Math
Rev. 21, 386 (1960).

[17] Short, K. M., Direct Calculation of Metric Entropy from Time Series, J. Comp.
Phy., Vol. 104, (1993), No. 1, pp. 162-172.

[18] Shanon, C. E. and Weaver,W., Mathematical Theory of Comunication, The Uni-
versity of Illinois Press, Urbana, (1964).

[19] Walters, P., An Introduction to Ergodic Theory, Springer-Verlag, New York,
(1982).

61

Appendix: Maple Code for
Computing Entropy

S Fhskokokok skokok ok ok sk s skok ok ok ok ok sk ok sk sk ok sk ok sk ok ok ok ok ok ok sk ok sk ko skok ok ok ok ok skok sk ko
> # Preferences

> Hokokokok ook skok ook ok ok ok ok ook ok ok ok ok ok ok ok 3ok sk ok koK ko ok kok ok sk sk ok okok
> hckkorkkkkkrkkkkxMap Definitiomsksckiorkoktkickiorkkkiortorkf
> t:= x -> frac(2*x):

> x_max:=1:

0:

> x_min:
> randomval:=evalf(rand(1..10710)/10710):
> startx:=randomval(): #random point to start with#

S fhkokok ok ko kKoK skok sk ok ok ko okokskok ok ok sk sk ko sk ok sk skl sk sk ok ok ok Rk ok kK
> fkkkkkkkkkkkkkknumber of iterationsikkkkskokkkkkkkkkkit

> npt:=10000:

> #akkkkxikkPartitions Preferenceskskkkskkskiskkkkidokkokkkf
> partition_size_list:=[2,8,64]:

> lengt_of_partition_size_list:=3:

> #**xxSequencing Preferencesi kst kkdokfokskokkkokskkokkokkokokkokok

> # pointstarting to find the best fit line

62

initial_rise_point:=1:

Steps that sequencing process is at most done

maximum_sequence_length:=10;

#xkxPrecision Preferenceskskkkskiotdok ks kdokkokddokkkkkokok
#precision

Digits:=10;

#xxxP1lot Preferencesk ikskkkskkksikihicksokiorkhkiokiokk skl

maximum_information:=15:

style_array[0] :=point:

style_array[1]:=diamond:

style_array[2] :=box:

style_array[3]:=cross:

style_array[4]:=circle:

kxR okkCONS T AN Sk koksk ok sk kb koo ok ook ok ok koK ok ok 3
plotcount:=0:

entropies_array_index:=1:
points_of_graph_array:=array(0..1000):
compress:=array(0..900000) :
histogram:=array(0..10200,0..900000) :
probability:=array(0..900000) :
information_array:=array(0..20000):
entropies_array:=array(0..200):

S ok ks kR ok sk ko ok KRR R R Rk Rk kR kR Rk ok KRR R Kk

Partitioning and Iterating

#***#

63

ok kooooRkok [T erat ANk kkkskk kK kk sk ok A Ak Kok A
for i from 0 to npt-1 do

x[i] :=startx:

startx:=evalf (t(startx)):

od:

for i from O to npt-1 do
x[i]:= x[i]-x_min:

od:

length_of_domain:=x_max-x_min:

for i from O to npt-1 do
x[i]:= x[i]l/1length_of _domain:
od:

for partition_index from 1 to
lengt_of_partition_size_list do
k:=partition_size_list[partition_index]:

unassign(’information_array’):

#rrkkxkkxSymbolic Representation of Dataxikickiikid
for i from 0 to npt-1 do:

bin[i] :=floor(x[il*k);

od:

sk ok ok sk ks sk ok ok ok ok oKk ok sk R KoK sk kR sk skt ok ik sk ok kKRR Ok sk ok ok R

for i from O to npt-1 do

64

A\

compress{i]:= bin[i]:
od:
Fkok ok ok skok sk ok skok sk Rk ko sk koo kR RSk kR sk K sk ok ko kR ki

newcount :=k:

otk okok ok ok ok KK KoK KKK R kR R ok ok stk kR R R ok ok sk sk sk kR ok kokoR kR ok
Sequencing and Compactification
Fokok ook o ok ok ok KoKk KRR KR K sk sk stk skok koo koK sk kR ok kKoo kR

for n from 1 to maximum_sequence_length do

for i from O to (npt) do
probability[il:= 0;
od:

for i from 0 to npt-n do
if type(histogram[bin[i+n-1],compress[i]],integer)
then
histogram[bin[i+n-1],compress[i]]:=
histogram[bin[i+n-1],compress[il]+1:
else
histogram[bin[i+n-1],compress[i]]:=1:
fi:
od:
ko sk ok sko kR Kok sk ok sk ok sk ok kK OK K Kok kR kR ok sk stk ko stk ok K
for i from O to npt-n do
compress[i] :=compress [i]+newcount*bin[i+n-1]:

od:

65

\4

v

rowlength:=newcount:

newcount :=0:

for i from 0 to k-1 do
for j from O to rowlength-1 do
if type(histogram[i,j],integer) then
histogram{i, jl:=newcount:
newcount :=newcount+1:
fi:
od:
od:

for i from O to mpt-n do

column:= (compress[i] mod rowlength):
row:= floor(compress[i]/rowlength):
compress [i] :=histogram[row,column]:

od:

unassign(’histogram’):

kK sk ook ko sk ok ok bRk ok Rk KRRtk ok ko sk ok kR KRRk ok ok
Probabilities and Information

Sk ok ok sk ko skok kR R ok ook KRk K sk kKR sk sk ok skt ok ok kR KR KRk KRk
for i from 0 to npt-n do

if type(probability[compress[i]],integer) then
probability[compress[i]]:=probability[compress[i]]+1:
else

probability[compress[i]]:=1:

66

fi:
od:

for i from O to newcount-1 do

probability[i] :=probability[il/(apt-n+1):

od:

Bk skt sk sk sk ok ok ok ok ok koK oKk sk skok kR ks Rk sk skl sk ko ok R ok ok Kok kB
information:=0:

for i from O to newcount-1 do

information:=
information+probability[i]*1n(probability[il)/In(2):
od:

information:=-information:

Fhokowok ok ok ok ok ok KRR KRR KR Kok kK sk ok kR kR kR Rk Rk ko ok ok Kok B
information_array[n]:=evalf (information):
separation_level:=evalf (newcount/ (npt-n+1)):

print ("Information I_n(alpha):", information_array[n]
," Sequence_length n:", n,

" Separation level:", separation_level):

if (separation_level <0.2) then fall_off_point:=n:
fi:

od:

ook sk ok ok ks Kok KoKk oK KR sk Rk R sk ok sk ko skt ko ko sk ok ok ok ok ok
points_of_graph_array[k]:=[[m,information_array[m]]
$m=1..maximum_sequence_lengthl;

separationtable[k] :=fall_off_point;

print("Fall of point happens at:",fall_off_point,

" npt=",npt, "Partition-size k=", k);

67

evaluating_points_arraylk] :=
[[m,information_array[m]]l$m=1..fall off_point]:

print ("Array of points of the graph used to evaluate
the entropy:", evaluating_points_arraylkl);
unassign(’entropy_slope’) :unassign(’t’):

ook okok ok ok kKR K kKRR kKRR Kk kKRR kR kR sk Rtk stk kR ok ok g
rkorrokrkkkkkkkLeast Squares Methodkkwkkwkkkkokkkdkxxf

E := (entropy_slope,t)->

sum(((entropy_slope*evaluating_points_array[k] [q] [1]1+t)-
evaluating_points_array[k][q][2])~2,g=
initial_rise_point..fall_off_point):
assign(solve ({diff (E(entropy_slope,t), entropy_slope)=0,
diff(E(entropy_slope,t), t)=0})):

print ("Entropy slope:",entropy_slope," Fall off point:",
fall_off_point, " Partition size:", Kk,

" Number of points used to evaluate the

entropy slope:", fall_off_point-initial_rise_point+1);
entropies_array[entropies_array_index] :=entropy_slope:
entropies_array_index:=entropies_array_index+1:

Print ("sskskskssksokkokkkokkkkkok ok kdkkkokk) ;
unassign(’entropy_slope’) :unassign(’t’):
unassign(’evaluating_points_array’):

od:

Fsckok sk ok ok kR ok sk ok ok ok ok Kok KRk ok ok ok sk sk ok sk ko sk skokok ok ok

Plotting Information Graphs

$k sk sk ok sk ok ok sk kR KRR R KRRk Kk K R ko ok sk i skok sk ko sk ok ok ko ok g

for i from 1 to lengt_of_partition_size_list do:

68

plil:=
[plot([points_of_graph_array[partition_size_list[il]]
,style=point, symbol=style_array[i mod 5],
color=black,view=[0..maximum_sequence_length,
0..maximum_information],labels=["n", "I_n"],
scaling=constrained,legend=
[convert(partition_size_list[i],string)])]:
od:plot_vector:=[[plcount] [1]]
$count=1..lengt_of_partition_size_list]:

with(plots) :display([plot_vector[count] [1]1]
$count=1..lengt_of _partition_size list);

ok ko ok ko ok ok kb ok ok ko KR KK SRR sk ok sk ks bRk ok ok ok ok ok sk Rk ok
Printing Entropy Computed

S ok ok ok ok ok ok ok sk ok KRk Kk Rk Rk Kk Kk ko sk Rk ko oko kR R ok ok
print ("Entropy of the map is the maximum of all
entropy-slopes=",max (entropies_array/[hl

$h=1..lengt_of _partition_size list));

69

