A Comparative Study of Performance Analysis and Evaluation

of Oracle and DB2 on Linux

Xiuling Hu

A MAJOR REPORT
IN

THE DEPARTMENT
Of

COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

August 2003

© Xiuling Hu, 2003

National Library Bibliotheque nationale

of Canada du Canada

Acquisitions and Acquisisitons et
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Canada

Your file Votre référence
ISBN: 0-612-83902-8
Our file Notre référence
ISBN: 0-612-83902-8

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la these ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

Abstract

A Comparative Study of Performance Analysis and Evaluation

of Oracle and DB2 on Linux

Xiuling Hu

As much as each of us would like to get up every day with only a few things to focus
on, the competitive world we live in rarely allows such a luxury. Balancing
complexity with simplicity is an art, and is one that we should master. In today's
competitive information technology world, the pressure is on to stay in front of your
competition. The value and visibility of your development projects compel you to
reduce time-to-market without sacrificing quality and with lower cost. There are so
many high levels representing technologies for information system and software
engineering. With so many representing technologies, how do we choose the one that
will help us get ahead at the front line? The purpose of this project is to study the
capabilities of Oracle & DB2 in the Linux Operating System, and to compare the two
according to TPC-H benchmark. We consider system performance, price, and user

interfaces.

il

Acknowledgements

I would like to thank sincerely my supervisors, Dr. Shiri and Dr. Grahne, for their
guidance, support, encouragement and friendship. Whenever I need help, Dr. Shini is
always there. Thanks for his patience and kindness. Furthermore, thanks the system
analysts of CS Department of Concordia University for creating the experimental

environment for this report.

I am grateful to professors and staffs in Computer Science department at Concordia
University for the wonderful courses and services. | would especially like to say thanks to

Ms. Halina Monkiewicz, who was always friendly and prompt in providing assistance.

Finally, I would like to express my deep gratitude to my husband, George Wang, for his
support.

iv

Table of Contents

L. Introduction..........eeeeesescscosesssaces - - .
1.1 Problem Statement.........o.ccooiiiiiiiiiiiieeee et 1
1.2 Scope and Organization of This Report...........ccccooceiiiviiiiiniice e 2

2. A Review of TPC-H Benchmark............ 5

2.1 Database CharacCteriSTICSoovoevieurierieciecee ettt e s nanenns 6
2.2 Queries and Refresh FUNCHONSooveieiicveieccceeeee et 8
2.3 Data and Queries Generation Programscc.cocceeeoicinieeinenieceecee e 9
2.4 Database Load ...ttt 10
2.5 Power Test and Throughput Test ..o 10
2.6 EXeCUtion RUIES ...cooviiieee st 11
2.7 Performance MELIICcoovuieiee ettt v s eeeen 12

3. Experiments.. cesssessesnsassessensrssanse 15

3.1 Preparation of EXPerimentcccoooviiiireiioieneceiceee et e 15

3.1.1 Installation Of SOftWATE ..cc.coccioiiie e 15
3.1.1.1 Installing OTaclecooeiieeeeeeeeet e 15
3.1.1.2 InStalling DB2 ..ottt eaeeeea 16
3.1.2 Creation of Database.ccocee ittt e e et eaneas 17
3.1.2.1 Creating the Database in Oraclecocovviiieiieoireeieiee e 18
3.1.2.2 Creating the Database in DB2ccoiiiiiriiie e 19
3.1.3 Generation Of Data.......ooo it ere e 20
3.1.4 Generation Of (QUETIESvvveeuierrierieeeteeeereeeceee e teeeeetecereesmeeesneeeseeerseeresesnesnseesnessrneeranss 21
3.1.4.1 Generating Queries and SEqUENCEScceecerieiieerieeie et teeere e ereas 21
3.1.4.2 Generating Refresh Functionso.oocveeeeieroeiciiciccceee e ene e 22
3.1.4.3 Validating QUETIES ...co.cveieeecieeie ettt e ere e e e e en e ane 23
B2 UGHEES c..coevinieieee ettt et s et e et e ebeeesseenaennnens 24
320 LUK UHIHHES ettt ea e st bbb e s s mentes 24
3.2.2 0racle ULHHES c..covieviereieiere ettt s ee e s an s enne 25
3. 2.3 DB2 UHHHES c.ecvereeieieeieeietcrie st ece et e ter e st seeas e se e e ense s eness e e e e snnsseseeseans 25
BB TOSE et ettt te e e te e baeess e e asesbeeenrs e nreenees 26
331 10080 TS .ttt s e e ne b e e 27
3.3 2 Performance TSt ..o ettt e rene e a e rne e rean 28
3.3.2.1 Testl —~1GB Size In O1acle.. oo 29
3322 Test2 —-1GB Size N DB2...oee e 32
3.3.2.3 Test3 ~10GB Size In Oracle. oo 35
3.3.2.4 Testd —10GB Size IN DB2....c.oviiii ettt 38

4. COMPATISON.coneeervvviorsossressssassossssassanse 43

4.1 Comparing Oracle and DB2in IGBdata.................ccoooiiiiiiniiie 43
4.1.1 Comparison of Performance Metricscccevuvriieeireericeie e 43
4.1.2 Comparison of Individual Query with Default Block Size......ocoocvriiieierieieiieee 43
4.1.3 Comparison of Individual Query with 4KB Block Size ...c.oocvovieiiicivieicc e, 44

4.2 Comparing Oracle and DB2 in 10GB data..........c.ccocooviiiiiiiiiiii e, 46
4.2.1 Comparing Performance MetriCSccoveveireriermerecerereieeee st sn s ss e ees 46
4.2.2 Comparing Individual QUETYccovoiriecer et e 47

4.3 Comparing Oracle on Linux and Windowsccccccovveeiiriiienccnceene e 48
4.3.1 Comparing Performance Metrics in Oracleccocooveevvcveceieeiieeeecccccecececee e, 49

4.3.2 Comparing Individual Test in Oracle

4.3.2.1 Comparing Individual Test in Oracle for 1GB data ...
4.3.2.2 Comparing Individual Test in Oracle for 10GB datacccovveiininniiviicncrnneene

4.4 Comparing DB2 on Linux and Windows ...,
4.4.1 Comparing Performance Metrics In DB2 ... iciriiieie e

4.4.2 Comparing Individual Test in DB2...

4.4.2.1 Comparing Individual Test in DB2 for 1GB datacoooveeiviee e
4.3.2.1 Comparing Individual Test in DB2 for 10GB datacoverceenieiirnicins

5. Performance Tuning

5.1 Oracle Database Performance TURInGcc.coooveiininiiiiceeeee

5.1.1 Data Block Size ..oooooiveiiiiieee
5.1.2 Statistics Collectionccooeerveennnee.
5.1.3 Undo Table Space.......cccceveeeeeecrunneneee
5.1.4 Temporary Table Space.....cocveeeeens
5.1.5 Swap Space and Shared Memory
5.2 DB2 Database Performance Tuning
521 Page Size..oovviiiiiiie e,
5.2.2 Statistics Collectioncccoveeveeeennee.
5.2.3 Temporary Table Space......cccconnen.ce.
5.2.4 Swap Space and Shared Memory

6. Conclusions ...

References......neeisennenns

oooooooooooooooooooooooooooo

Appendices

1. Pricing Summary Report Query (Q1)....
2. Minimum Cost Supplier Query (Q2).....
3. Shipping Priority Query (Q3) ..oovveeenee.
4. Order Priority Checking Query (Q4)
5. Local Supplier Volume Query {(Q5)

6. Forecasting Revenue Change QUery (Q6)veoeveecenriiiiiecieeeeeerieaneeeseeemveeesaeensessnveneens

7. Volume Shipping Query (Q7)....coceveeneen
8. National Market Share Query (Q8)........

9. Product Type Profit Measure QUery (Q9) ...eo ettt

10. Returned Item Reporting Query (Q10)

11. Important Stock Identification Query (Q11)..ccoimnieireeceeeeeee e eeenreaes
12. Shipping Modes and Order Priority Query (QI12) .o

13. Customer Distribution Query (Q13)....
14. Promotion Effect Query (Q14)

15. Top Supplier Query (Q15).cecereivvrrene.

16. Part/Supplier Relationship Query (Q16) ..o et

17. Small-Quantity-Order Revenue Query

(o) L)

18. Large Volume Customer QUery (Q18) oot eere e e e e sreans
19. Discounted Revenue QUery (Q19)....coeiiiierieerereeeiie i ereeeeaeeeestesee s seessneasseereeeesaeans
20. Potential Part Promotion Query (Q20) «.coverreeeieeieeeeteee et e
21. Suppliers Who Kept Orders Waiting Query (Q21).e.cverveeeveeeeericreeeeeeteeineereeraeneenns

22. Global Sales Opportunity Query (Q22)

Glossary

Vi

List of Figures

FIEUIE 1. TeSES LS. oueeiitie ettt et ettt e a e e e ee et ene e e e e eanesnas 2
Figure 2. TPC-H SCREINA ...coveiiie ettt et teat s et e enenenae 7
Figure 3. Seeds fOr SITCAMIS. ..o erriece e teee et e e e e ste et e e s snees e sseraseeseesereasansenseetesnsesaseeans 22
Figure 4. Database load time for 1GB dataccoooerieiee e 27
Figure 5. Database load time for 10GB datacooeeeireiieee e 27
Figure 6. Restlt 0f teSt] oot et er et e b st se e et e 30
Figure 7. MEtriCs OF T8SI1..eouriiiiieiieeie ettt seie e e e e ssese s esnessaesbsassarsssaseresesessassssassaessnsennss 32
Figure 8. ReSUIL O tES12 ..ottt ettt ettt ss e e e 33
Figure 9. MEtriCs OF tESE2.c.nen ettt ettt sas e e e st sme e st 34
Figure 10, ReSUI OF 18513 oo e eeteeseee s e e staessaesrsesrsaesne s sresnesrassssansaesssnas 35
Figure 11. Metrics 0f test3 With 22 QUETIES «.cvoieeeniiieeeeeereee ettt 37
Figure 12. Metrics of test3 With 20 QUETIES ..ooveevieeieeieeceeeeeee e 38
Figure 13, ReSUIt OF 1881 c.voiiriiieeeee ettt eve e v v tresbesss s s be s saesssesse svsessassnssnas 39
Figure 14. Metrics of test4d With 22 QUETIES -.cooveeuioeieeeie et 41
Figure 15. Metrics of testd With 20 QUETIES .ccoevveviveier ettt 42
Figure 16. Comparison of metrics for 1GB dataoveeeeveiiniriercceee et 43
Figure 17. Comparison of powerl test for 1GB data.......c.ccoveeiiiiririecienccceecceereceeene 44
Figure 18. Comparison of 4KB block size for 1GB dataccoeeveerininirinincereer e 45
Figure 19. Comparison of metrics for 10GB datacocoeeoriiiiviiieniereeeceenere e, 46
Figure 20. Comparison of power! test forlOGB data........ooooeiiiiiiieee e 48
Figure 21. Comparison of Oracle performance metrics on Linux and Windows........cceeceeeeeeee 49
Figure 22. Comparison of Oracle performance for 1GB data on Linux and Windows................ 50
Figure 23. Comparison of Oracle performance for 10GB data on Linux and Windows.............. 50
Figure 24. Comparison of DB2 performance metrics on Linux and Windows..........c.cccoceeeeneeee. 51
Figure 25. Comparison of DB2 performance for 1GB data on Linux and Windows................... 52
Figure 26. Comparison of DB2 performance for 10GB data on Linux and Windows................. 53
Figure 27. Different block sizes in Oracle.. ... oceeieiiieniecceire st 55
Figure 28. Statistics collection i Oracle......cooiiriicen et 57
Figure 29. Undo table space in Oracle.........ccovireviioneiiiiccenecceee et 58
Figure 30. Different page sizes in DB2 oot 61
Figure 31. Statistics collection I DB2 ..ottt 63

1. Introduction

1.1 Problem Statement

Every database vendor claims, its database is fast. Consider the following two sample

announcements from IBM and Oracle:

IBM announces DB2 is the most scalable database in the world, combined with the most
scalable Unix servers reaches a new milestone in enterprise data warehousing. DB2 runs
the leading 10TB warehouse benchmark on IBM's fastest computer. It has been in the
lead across all scale factors for TPC-H (100GB, 300GB, 1TB, 3TB and 10TB), DB2 has

demonstrated sustained leadership in TPC-H over the life of the benchmark [1].

Oracle announces a record-breaking data warehousing benchmark for Oracle9i Database
Release 2 on the HP 9000 Superdome Enterprise Server. Delivering higher performance
with half the number of processors, this new world record TPC-H 3TB result outperforms
IBM DB2's best result by 29%, and costs 24% less per QphH@3000GB. Oracle9i on HP
also surpasses NCR Teradata's best 3TB result by 44% with half the number of

processors and costs 78% less per QphH@3000GB [2].

QphH@3000GB presents the performance metric of a 3000GB database. The detail information about

definition and formula is on page 11.

As we can see above, they have used different hardware platforms, different CPUs,
memory and disk drives. In the IBM’s test above, the memory size is 256GB. In reality,
we do not yet dream to work with such a huge memory. So it is difficult to compare
benchmark results for these products because of such differences. The question is: “As
database users, how do we know which DBMS is really better or worse? ““ The objective

of this project is to provide some answers to this question.

1.2 Scope and Organization of This Report

In this report, we present our TPC-H benchmark experiments for 1GB and 10GB data in
Oracle 9.0.1 and DB2 7.2, both on Red Hat Linux 7.3 environment. We report our

experiments and observations.

Possible tests on Linux are listed in Figure 1.

Size
1GB 10GB
DBMS
Oracle testl test3
DB2 test2 test4

Figure 1. Tests List

Testl 1s about 1GB data in Oracle, test2 is about 1GB data in DB2, test3 is about 10GB
data in Oracle, and test4 is about 10GB data in DB2. We compare testl with test2 and
test3 with test4. The comparison will be based on not only the performance, but also
include the price and user interface developed. With the help of this comparison, we will

be able to get an idea about which DBMS is better for a given data size and OS type. This

study also provides a guideline in order to choose a DBMS and OS that is suitable for a

particular application size and environment.

A similar study on Windows 2000 platform was done in parallel [4]. In section 4, we will

compare the results in [4] with ours on Linux.

In order to compare between Oracle and DB2, same hardware was used in this
experiment. We used DELL PC with one 1.7 GHZ CPU, 256 MB RAM and two 40GB
hard disks; We even used the same system setup, for instance, the swap space was 500
KB, the Linux kernel parameter shmmax was 33,554,432 B; We used the same TPC-H
parameters, for example, we used the same seeds to generate data and queries, so that the
data and queries were the same for Oracle and DB2. Some concepts of Oracle and DB2
are similar, some of them are different. For instance, block size in Oracle is called page
size in DB2. Both Oracle and DB2 have system and temporary table spaces. Oracle has
undo table space, but DB2 does not. Due to these kinds of difference, it is not possible for
these two DBMS to have exactly the same setup. However, we could allocate same
amount of total table spaces for both DBMS, such as 3.3GB for 1G data test, and 35GB
for 10GB data test. We used the default values for all other DBMS parameters setup. We
assume the default values of DBMS parameters are the best for general cases. Also, in
order to avoid caching data and SQL in RAM, we reboot the computer before starting a

test.

The rest of this report is organized as follows: In section 2, we give an overview of TPC
benchmark with special emphasis on TPC-H. In section 3, we present our experiments of

TPC-H benchmark test for 1GB and 10GB data in Oracle 9.0.1 and DB2 7.2 on Red Hat

Linux 7.3, the results, metrics, problems and comments. In section 4, we compare the
performance between Oracle and DB2 on Linux. In addition to this, we compare the
Oracle/DB2 performance on Linux and Window 2000. Performance tuning is discussed

in section 5. Finally, section 6 provides the concluding remarks.

2. A Review of TPC-H Benchmark

In this section, we review TPC benchmark in general, and TPC-H in particular. These

introduction materials are borrowed from [3].

The TPC (Transaction Processing Performance Council) is a non-profit corporation
founded to define transaction processing and database benchmarks and to disseminate
objective, verifiable TPC performance data to the industry. The TPC recognizes that
different types of applications have different processing requirements. The TPC-C
benchmark is developed for online transaction processing (OLTP) benchmarks, and
attempts to simulate real world OLTP database applications. It is in fact the de facto
standard for OLTP. The TPC-W benchmark for Web-based systems. The TPC-R and
TPC-H (formerly TPC-DS) benchmarks are developed for data warehouses and decision

support systems.

The TPC Benchmark™H (TPC-H) is a decision support benchmark. It consists of a suite
of business oriented ad-hoc queries and concurrent data modifications. The queries and
the data populating the database have been chosen to have broad industry-wide relevance.
This benchmark illustrates decision support systems that examine large volumes of data,
execute queries with a high degree of complexity, and give answers to critical business
questions [3]. The TPC-H consists of a set of business queries designed to exercise
system functionalities in a manner representative of complex business analysis
applications. These queries have been given a realistic context, portraying the activity of

a wholesale supplier to help the reader relate intuitively to the components of the

benchmark [3]. TPC-H does not represent the activity of any particular business segment,
but rather any industry which must manage, sell, or distribute a product worldwide (e.g.,
car rental, food distribution, parts, suppliers, etc.). TPC-H does not attempt to be a model

of how to build an actual information analysis application.

2.1 Database Characteristics

Although the emphasis is on information analysis, the benchmark recognizes the need to
periodically refresh the database. The database is not a one-time snapshot of a business
operations database, nor is it a database where OLTP applications are running
concurrently. The database is able to support queries and refresh functions against all

tables on a 7 day by 24 hour (7 x 24) basis.

The component of the TPC-H database consists of eight base tables. The schemas of

these tables and the relationships between these tables are illustrated in Figure2.

region

r_regionkey: NUMBER(32)

r_namea: CHAR(25)
r_comment VARCHAR2(152)

nation

n_nationkey: NUMBER(32)

n_name: CHAR(25)
n_regionkey: INTEGER
n_comment: VARCHAR2(125)

Ho—— —— —c}q s_address: VARCHAR2(44)

i

|
|
|
|
customer ?

¢_custkey: NUMBER(32)

¢_name: VARCHAR2(25)
¢_address: VARCHAR2(40)
¢_nationkey: NUMBER(32)
c_phone: CHAR(15)
¢_acctbal: NUMBER(10,2)
c_mktsagmant: CHAR(10)
¢_comment: VARCHAR2(117)

H— —— —Gd o_orderstatus: CHAR(1)

partsupp
ps_partkey: NUMBER(32)
ps_suppkey: NUMBER(32)

~

art
p_parkey: NUMBER(32)

p_name: VARCHAR(E5)
p.migr: CHAR(25)

ps_availgty: INTEGER
Ps_supplycost: NUMBER(10,2)
ps_comment: VARCHAR2(199)

o)

~]r—
supplier
S_suppkey: NUMBER(32)

s_name: CHAR(25)

s_nationkey: INTEGER
s_phone: CHAR(1S)
s_acctbal: NUMBER(10,2)
s_commant. VARCHAR2(101)

f

AP

p_brand: CHAR(10)

p_type: VARCHAR2(25)
p_size: INTEGER
p_container: CHAR{10)
p_retailprice: NUMBER(10.2)
p_comment: VARCHARZ2(23)

i

tineitern

(1_orderkey: NUMBER(32)
i_linenumber: INTEGER

I_partkey: NUMBER(32)
i_suppkey: NUMBER(32)
I_quantity: NUMBER(10,2)
1_sxtendedprice: NUMBER(10.2)
i_discount: NUMBER(10,2)
i_tax: NUMBER(10.2)
i_returnflag: CHAR(1)
i_finestatus: CHAR(1)
|_shipdate: DATE
{_commitdate: DATE
i_receiptdate: DATE

orders

o_orderkey: NUMBER(32)
o_custkey: NUMBER(32)

o_totalprice: NUMBER(10,2)
o_orderdate: DATE
o_ordermpriority: CHAR(15)
o_clark: CHAR(15)
o_shippriority: INTEGER
o_comment: VARCHAR2(79)

Figure 2. TPC-H Schema

|_shipinstruct: CHAR(25)
I_shipmode: CHAR(10)

|_comment: VARCHAR(44)
.

2.2 Queries and Refresh Functions

The purpose of TPC-H benchmark is to reduce the diversity of operations found in an
information analysis application, while retaining the application’s essential performance
characteristics [3]. There are twenty-two different queries which have a high degree of
complexity. Appendices illustrate these queries. Many of the queries are not of primary
interest for performance analysis because of the length of time the queries run, the system
resources they use, and the frequency of their execution [3]. The queries considered in
this benchmark exhibit the following characteristics:

e They have a high degree of complexity;

e They use various access methods;

e They are ad hoc in nature;

e They examine a large percentage of the available data;

e They all differ from each other;

e They contain query parameters that change across query executions.

While the benchmark models a business environment in which refresh functions are an
integral part of data maintenance, the refresh functions used in the benchmark do not
attempt to model this aspect of the business environment [3]. The refresh functions
demonstrate update functionality for the DBMS, while assessing an appropriate
performance cost to the maintenance of the auxiliary data structure. There are two

refresh functions (RF) used in this benchmark as follows:

e RF1: add sales information to the DB

e RF2: remove sales information from the DB

2.3 Data and Queries Generation Programs

QGEN and DBGEN are C programs, which can be downloaded from TCP-H web page:

http://www.tpc.org/tpch/default.asp. QGEN program is used to generate the executable

query text and DBGEN program is used to generate the data. According to the concrete
syntax of the database system under test, these queries should be modified to run on the
specific database. However, modifications are limited for only syntax matching. Any
other modifications such as speeding up etc. are not allowed. A parameter seed to the
random number is used to generate substitute parameters. The selection of seed should

follow the rules below:

e An initial seed (seed0) is first selected as the time stamp of the end of the database
load time expressed in the format mmddhhmmss, where mm is the month, dd is the
day, hh is the hour, mm is the minutes, and ss is the seconds. This seed is used to

seed the power test of Runl.

e Other seeds (for the throughput test are chosen as seed0 + 1, seed0 + 2, ..., seed0

+n, where n is the number of throughput streams selected by the vendor.

e Sponsor decides whether Run2 should use the same seeds as the Runl, but

method of selecting seeds should be the same.

Runl and Run2: a performance test consists of two runs. The detail mformation is in section 2.6 on

page 11

2.4 Database Load

The process of building the test database is known as database load. Database load

consists of timed and untimed components.

The total elapsed time to prepare the test database for the execution of the performance
test is called the database load time. This includes the elapsed time to create the tables,
load data, create indices, define and validate constraints, and gather statistics for the test

database.

The population of the test database consists of two logical phases:

e Generation: the process of using DBGEN to create data in a format suitable for

presentation to the DBMS load facility.

e Ioading: the process of storing the generated data into the database tables.

2.5 Power Test and Throughput Test

A power test is to measure the raw query execution power of the system when connected
with a single active user. In this test, a single pair of refresh functions are executed
exclusively by a separate refresh stream and scheduled before and after execution of the
queries [3]. The power test consists of three execution streams in order: refresh functionl
stream, power test queries stream, and refresh function2 stream. Timing intervals for each
query and for both refresh functions are collected and reported for the performance

calculation.

10

The sequence of queries in a power test is as follows:

StreamO: 14, 2, 9, 20, 6, 17, 18, §, 21, 13, 3, 22,16, 4,11, 15, 1, 10, 19, 5, 7, 12.

A throughput test is to measure the ability of the system to process most queries in the
least amount of time [3]. The throughput test is where test sponsors can demonstrate the
performance of their systems against a multi-user workload. A throughput test consists of
S number of query streams, remaining constant during the whole measurement interval.
In addition, another refresh stream should be parallel to those S streams. The S is an
integer number, and is decided by the size of the testing database. When the database size

is 1GB, S is 2. When the database size is 10GB, S 1s 3.

The sequence of queries in a throughput test as follows:
Streaml: 21,3, 18, 5,11, 7,6, 20,17, 12,16, 15, 13, 10, 2, 8, 14, 19,9, 22, 1, 4.
Stream?2: 6, 17, 14, 16, 19,10, 9,2, 15,8,5,22,12,7,13, 18, 1, 4, 20, 3, 11, 21.

Stream3: 8, 5,4,6,17,7,1, 18,22, 14,9, 10, 15, 11, 20, 2, 21, 19, 13, 16, 12, 3.

2.6 Execution Rules

The benchmark is defined as the execution of the load test followed by the performance
test. The load test begins with the creation of the database tables and includes all activity
required to bring the system under test to the configuration that immediately precedes the
beginning of the performance test. The load test does not include the execution of any

queries in the performance test or similar query.

11

The performance test consists of two runs. A run consists of one execution of the Power
test and one execution of the Throughput test. Throughput test must follow, one and only
one, power test. No activity that improves the system performance is allowed between the
power test and the throughput test. Runl follows the data load and Run2 follows Runl. If
Runl fails, the benchmark must be restarted with a new load test. If Run2 fails, it may be

restarted without a reload.

All sessions supporting the execution of a query stream have been initialized in exactly
the same way. The initialization of the session supporting the execution of the refresh

stream may be different than that of the query streams.

2.7 Performance Metric

The performance metric reported by TPC-H is called the TPC-H Composite Query-per-
Hour Performance Metric (QphH@Size). It reflects multiple aspects of the capability of
the system to process queries, including the selected database size against which the
queries are executed, the query processing power when queries are submitted by a single
stream, and the query throughput when queries are submitted by multiple concurrent

users. The TPC-H Price/Performance metric is expressed as Price($) /QphH@Size.

e The TPC-H Composite Query-per-Hour Performance Metric

The numerical quantities of “power” and “throughput” are combined as follows to

form the TPC-H composite query-per-hour performance metric:

QphH@size = // Power@size * Throughput@size

12

The unit of QphH@Size is Queries per hour* Scale-Factor, reported to one digit after

the decimal point.

e The TPC-H Price/Performance Metric

The TPC-H Price/performance metric at the chosen database size, TPC-H Price-per-

QphH@Size, is computed using the performance metric QphH@Size as follows:

TPC-H Price-per-QphH@Size = Price ($) / QphH@size

Where:
$ is the total system price, in the reported currency.
QphH@Size is the composite query-per-hour performance metric.

Size is the database size chosen for the measurement.

Furthermore, the formulas for calculating power metric and throughput metric are as

follows.

=22 j=2
TPC-H Power@Size = (3600 * SF) /. ,4 / (I1 QI(,0) * I RI(,0))

=1 j=1
TPC-H Througthput@Size = (S * 22 * 3600) * SF / T

Where:

Size is the database size chosen for the measurement and SF is corresponding
scale factor. For example, if Size=10GB, then SF=10.

S is the number of query streams used in throughout test.

13

QI(1,0) is the timing interval, in seconds, of query Q; within the single query

stream of the power test

Ts represents the execution time of the throughput test. It is defined as follows:

e It starts either when the first character of the executable query text of the first
query of the first query stream is submitted by the driver, or when the first
character requesting the execution of the first refresh function is submitted by
the driver, whichever happens first.

e It ends either when the last character of output data from the last query of the
last query stream is received by the driver, or when the last transaction of the
last refresh function has been completely and successfully committed and a

success message has been received by the driver, whichever happens last.

The TPC-H performance test consists of two runs: Runl and Run2. The reported
performance metric must be for the run with the lower TPC-H Composite Query-Per-
Hour Performance Metric because the TPC-H metrics reported for a given system must
represent a conservative evaluation of the system’s level of performance. Each of these
includes a power test and a throughput test. The former measures the raw query execution
power of the system when connected with a single active user, whereas the later measures

the ability of the system to process most of queries in the least amount of time.

14

3. Experiments

In our experiment of TPC-H benchmark, we use Oracle 9.0.1 and DB2 7.2 on Red Hat
Linux 7.3 on DELL PC with one 1.7 GHZ CPU, 256 MB RAM and two 40GB hard
disks. There are four tests. Testl is with 1GB data in Oracle, test2 is with 1GB data in

DB2, test3 is with 10GB data in Oracle, and test4 is with 10GB data in DB2.

3.1 Preparation of Experiment

Before we start a test, we need to install Oracle and DB2 software, create the database
schemas, and prepare data that will populate the databases and queries that will be used to

evaluate the performance.
3.1.1 Installation of software

The installation of Oracle and DB2 on Linux is more difficult than on Windows. We have

experienced some difficulties during the installation.
3.1.1.1 Installing Oracle

Oracle provides Oracle9i Installation Guide Release 1 (9.0.1) for UNIX Systems: AIX-
Based Systems, Compaq Tru64 UNIX, HP 9000 Series HP-UX, Linux Intel and Sun
SPARC Solaris, which supports many platforms. After reading the whole document, we
stall do not understand how to install Oracle on Linux. For instance, we do not know
whether JDK should be installed separately, or it is instalied automatically during Oracle
installation. Also the document asks user to check swap space, shared memory, but does

not say how. We found a useful article on internet [5], this article provides an step-by-

15

step installation guide of Oracle 9i. For example, it describes how to check swap space,
shared memory, development packages and disk space, how to add temporary swap
space, how to temporarily increase shared memory, how to install JDK, and so on. It also
includes a list of Oracle 91 (9.0.1 & 9.2.0) installation problems that the author has
experienced or have been posted by others. For some reason, we had to install Oracle
9.0.1 3 times, we experienced the different problems every time, most problems were
listed in that article, and we got the solutions there. In our third attempt to install Oracle,
the "Oracle Net Configuration Assistant” hung for 5 hours when runlnstaller started to
configure the tools ("Configuration Tools"). For that, we had to stop the Configuration
Assistant, and manually launched Net Configuration Assistant (NETCA) and Database

Configuration Assistant (DBCA).

3.1.1.2 Installing DB2

It was not quite clear from the document “Installing and Configuring DB2 Universal
Database on Linux” how to install DB2 Universal Database Enterprise Edition
Version7.2 for Linux. Luckily, we found [6] to be a useful guide for the installation

procedure.

After we installed DB2 successfully, we got errors when we tried to launch DB2 control
center (db2cc), because our localhost and hostname were different. DB2 on Linux
requires these two names to be identical. This, however, was not found in the formal
documents. After we changed localhost and hostname to the same and re-installed DB2,

we were able to start db2cc successfully.

16

Compared to Oracle, installation of DB2 is easier and faster with less problems. But the
user interface of installation of Oracle is much better than DB2. The corresponding user

interface of DB2 looks as if the software was developed 2 decade ago.

3.1.2 Creation of Database

After Installation of Oracle and DB2 software, we are not ready for experiments yet.
Before we start a test, we need to create databases, tables and indices, and generate the

quertes and data.

A database is a collection of data, consists of one or more data files. A data file consists
of one or more table spaces. A table space is a set of segments. A segment is a set of
extents. An extent is a number of contiguous data blocks. A data block is the smallest unit
of /O used by a database. This data block size should be a multiple of the operating

system's block size which is 4KB in Linux.

During creating a database, we can customize initial parameters or simply accept their
default values. Most parameter can be changed after the database is created. But, there
are a few parameters which cannot be changed once the database is created, such as data

block size.

In our TPC-H benchmark experiment, we used the default values for all parameters setup.
For instance, the default data block size is 8KB in Oracle, and the default page size is
4KB in DB2. Besides the benchmark experiments, we also did other experiments for
performance tuning purpose. For instance, we did some experiments to see how data

block sizes, statistics information, undo table space, and temporary table space affect

17

database performance. Collecting or deleting statistics, changing the size of undo table
space or temporary table space can be done after the database is created. But the block

size can not be changed once the database is created.

3.1.2.1 Creating the Database in Oracle

In Oracle, we created three databases. Their data block sizes were 4KB, 8KB, and 16KB
respectively. Other initial parameters were the same. 8KB-block-size database was for

the TPC-H benchmark experiment, others were for performance tuning,.

We have two options for creating our Oracle database: use the Oracle Database
Configuration Assistant (DBCA) which is a graphical user interface (GUI) tool, or create
the database manually from a script which is based on an existing database or a sample

Oracle provides.

e Database with 8KB data block size

We used DBCA to create the database for our TPC-H benchmark experiment. All initial
parameters were the default values that DBCA provided, such as data block size is 8KB

by default. After the database was created, we changed the size of table spaces to hold

1GB or 10GB data.

e Database with 4KB and 16KB data block size

In order to see how block size inferences database performance, we need to create the

databases with 4KB and 16KB data block sizes. At first, we tried to use DBCA to create

18

them, we got error message “ORA-00058: DB BLOCK SIZE must be 8192 to mount
this database”. We generated a script based on 8KB-data-block database, and changed
the block size from 8KB to 4KB and 16KB. Then we created the databases using SQL*

Plus manually.

3.1.2.2 Creating the Database in DB2

In DB2, data block is called page. DB2 Control Center utility provides graphic user
interface to create databases. There are three kinds of table spaces: system, user, and

temporary table spaces in a database.

e Database with 4KB page size

The initial page size is 4KB by default in DB2. One system table space, one temporary
table space, and one user table space were created by default when we created the
database using DB2 Control Center utility. We used this database with all default initial

values as our TPC-H benchmark database.

e Database with 8KB page size

In order to see how block size inferences the performance, we need to have a database
with 8KB block size to compare the performance with 4KB-block-size database. There is
no way to create a system or temporary table space with 8KB block size in DB2.
However, we can create a user table space with 8KB page size and drop the original 4k-
page-size user table space. In this case, the page sizes of system and temporary table

spaces have to be 4k. So, in our 8KB-block-size database in DB2, actually only the user

19

table space has 8KB page size. The page sizes of system and temporary table spaces were

still 4KB.

3.1.3 Generation of Data

DBGEN, which is provided by TPC, is used to generate qualified data. However, the
original standard C program did not work on Linux; there were compiling errors. We had
to modify this program so that it could run on Linux. The modified program is in the

enclosed CD.

In order to generate 1GB data for all tables of TPC-H database, the command “dbgen —s
I” was used. In order to generate 10GB data for all tables of TPC-H database, the
command “dbgen —s 10” is supposed to be used. In doing so, we got error message “File
size limit exceeded”. This is because Red Hat Linux 7.3 has a bug that limits file size to
2G. However, the size of table lineitems is about 7GB. We had to use additional
parameters to generate data for every table individually and generate 5 pieces for the

biggest table lineitem to avoid 2G limit. The following commands are used to achieve

this:
dbgen s 10-T¢ to generate data for table customer
dbgen-s 10-T's to generate data for table supplier
dbgen—s 10 -Tn to generate data for table nation
dbgen —s 10 -Tr to generate data for table region
dbgen—s 10-T O to generate data for table order
dbgen-s 10-TP to generate data for table part
dbgen —s 10-T S to generate data for table partsup

dbgen s 10-S1-C5 -TL to generate the first part for table lineitem

20

dbgen—s 10-S2-C5 —TL to generate the second part for table lineitem
dbgen-s 10-S2—-C5 -TL to generate the third part for table lineitem
dbgen—s 10-S2-C5 -TL to generate the forth part for the table lineitem

dbgen-s 10-S2-C5 —TL to generate the fifth part for table lineitem

Five data files for table /ineitem have been generated as above. These data files contain
raw data which will be populated to the databases during load tests. There is no
difference between one raw data file and five raw data files once all data is populated to

databases. It does not affect databases performance at all.

3.1.4 Generation of Queries

3.1.4.1 Generating Queries and Sequences

The 22 queries used in the experiment are generated by QGEN, provided by the TPC-H.
Since there were compiling errors, we had to modify this program so that it could run on

Linux. The modified program is in the enclosed CD.

As discussed in Section 2.2.3, we used the seed to generate the random number for the

parameters substituted in the original queries.

The required minimum number of query streams for throughput is 2 for 1GB size and 3
for 10GB. For 1GB data, stream] and stream?2 are used for runl and run2, whereas for
10Gdata, streaml, stream2, and stream3 are used for runl and run2. In our project, runl
and run2 use different seeds. All seeds used to generate query sequences are shown as

Figure 3:

21

Seed un Runl Run2
Stream

StreamO(power) 807140330 807210122
Stream1(thronghput) 807140331 807210123
Stream2(throughput) 807140332 807210124
Stream3(throughput) 807140333 807210125

Figure 3. Seeds for streams

3.1.4.2 Generating Refresh Functions

A Refresh function includes a sequence of Insert refresh function (RF1) and Delete

refresh function (RF2).

DBGEN can be used to generate raw data for RF1 and RF2 using specified parameters.
Furthermore, the parameter —S n should be given for the specified database scale factor.

For example, for the 1GB database, we used the following command line:

dbgen -S 1 U6

For the 10GB database, we used the following command line:

dbgen -S 10 -U8

The result of each of the above command line is the raw data, instead of SQL statements.
In order to get the refresh functions with SQL statement, we developed two programs
using Perl to generate the sequence of RF1 and RF2 automatically. The Perl programs

(rf1.pl and rf2.pl) are in the enclosed CD.

22

3.1.4.3 Validating Queries

After having generated the queries, query validation must be done. Query validation
describes how to validate the query against qualification database. Each query has one or
more substitution parameters. When generating executable query text, a value is supplied
for each substitution parameter of that query. These values are used to complete the
executable query text. These substitution parameters are expressed as names in uppercase
and enclosed in square brackets. According to the concrete syntax of Oracle and DB2,
some queries had to be modified to run on the specific database. However, we did only
modification to match syntax, we did not do any other modification which whould speed

up the process.

The functional query definition uses the following minor modification on each DBMS

respectively:

Oracle

e Date fields use Oracle date function. For example, to_date(date ‘1998-03-21")

e The standard Oracle date syntax is used for the date arithmetic. For example,

to_date(date ‘1996-02-21" + interval ‘5’ days)

e Queries 2, 3, 10, 13, and 21 were modified in order to fetch the given number of
the query result. the rownum < n is used in the where clause of those queries,

where 7 is an integer, denoting the number of rows in the query output.

23

DbB2

e The standard IBM date syntax is used for the date arithmetic. For example, date

(‘1996-02-21°)+5 days

e Queries 2, 3, 10, 13, and 21 were modified in order to fetch the given number of
the query result. The “fetch last n rows” is used in where clause of those queries,

where n is an integer, denoting the number of rows in the query output.

3.2 Utilities

There are many utilities in Oracle, DB2 and Linux, some of which are used to carry out
our experiment and make it easier. Below is the list of the utilities we use in this

experiment.

3.2.1 Linux Utilities

e crontab

A cron is a utility that allows the tasks to run automatically in the background at
regular intervals by use of the cron daemon. Crontab is a file which contains the
schedule of cron entries to be run and at what times they are to be run. This was quite
useful in our experiment. For example, in Oracle runl test with 10G data, loading
data and updating statistics took about 4 hours, refreshl of power test took about 10
minutes, executing 22 queries took about 3 hours, refresh2 took about 10 minutes;
whole test took nearly 12 hours. Because of crontab utility, we did not have to stay in

the lab and wait for the whole lengthy period of experiment. We used crontab to

24

schedule the tasks to run automatically, after completing runl test, We rebooted the

computer and change crontab for run2 test.

3.2.2 Oracle Utilities

runinstaller

To install Oracle.

e Net Configuration Assistant (NETCA)
To setup Net*8 connection.

e Database Configuration Assistant (DBCA)
To create databases.

e Oracle Enterprise Manager to create data
To manage databases.

e SQL Plus

To execute SQL commands.

3.2.3 DB2 Utilities
e db2setup
To install DB2.

e db2sart & db2stop
To start & stop a DB2 instance.
e db2admin start & db2admin stop
To start & stop the DB2 Administrative Server.

e dbjstrt

25

To start the JDBC listener process.
e db2cc &6789

To launch db2 control center using the default port 6789.
e db2batch

To launch batch file for executing DB2 commands.

From DB2 commands above, we can see that there is no space between db2 and start in
db2Zstart; there is a space between dbZadmin and start in db2admin start; there is no
space and using strt instead of start in db2jstrt. These commands do not meet the same

name convention.
3.3 Test

A test consists of two parts: load test and performance test. The load test contains
database schema creation, data load, and statistics collection. The performance test
consists of two runs. A run consists of one execution of the Power test followed by
execution of the Throughput test. We reboot the computer every time before we start a
test to make sure there is no caching data and SQL in RAM. This is to ensure that all tests
have exactly the same initial status. The procedures are as follows:
e Reboot the computer
e Load test
o Create database schemas
o Load data and collect statistics
e Performance test

o Runl

= Power test (refreshl1, query stream1, refresh12 serially)

26

» Throughput test (refreshl, streamll, stream12, streaml3 in
parallel)
o Reboot the computer
o Run2
= Power test (refresh21, query stream?2, refresh2?2 serially)
= Throughput test (refresh2, stream2l1, stream22, stream23 in

parallel)

3.3.1 Load Test

The total elapsed time to prepare the test database for the execution of the performance
test is called database load time. Since the elapsed time to create the tables and indices,
define and validate constraints is less than 1 second, it is ignored in our experiments. The
database load time only includes the elapsed time to load data and gather statistics for the

test database. The database load time is given below:

Database
seconds Oracle DB2
block size
4KB 1545 1386
8KB 1252 1316

Figure 4. Database load time for 1GB data

Database Oracle DB2
Load Time(seconds) 10841 11380

Figure 5. Database load time for 10GB data

As mentioned earlier, the default block size is 8KB in Oracle and 4KB in DB2. From the

above Figure 4, we can see that in 1GB load test, Oracle is faster than DB2 with 8KB

27

block size. However, DB2 is faster than Oracle with 4KB block size. From the above
Figure 5, we can see that the load test of Oracle is faster than that of DB2 for 10GB data
size. In 10GB test, we used the default block size, which is 8KB in Oracle, and 4KB in
DB2. In addition, all time intervals were recorded by system automatically in Oracle
because Oracle provides commands to count time for loading data and gathering
statistics. In DB2, the time intervals for loading data were recorded by the system
automatically, however, the time intervals for gathering statistics were recorded
manually. We used the computer clock, and noticed the time when the gathering statistics
process started and stopped. It was not an easy task, and the results were not quite

accurate.

3.3.2 Performance Test

As mentioned earlier, a TPC-H performance test consists of two runs: Runl and Run2. A
run consists of one execution of the Power test and one execution of the Throughput test.
The power test contains a pair of refresh function and 22 queries which run serially. The
execution time of these functions and queries are recorded for the purpose of calculating
TPC-H power metric. The throughput test follows the power test. There is no rebooting
action between the power test and the throughput test. A throughput test contains a set of
query streams and a refresh stream which run concurrently. For 1GB size database, the

number of streams in throughput test is 2, and for 10GB size database, this number is 3.

The run with the lower TPC-H Composite Query-Per-Hour Performance Metric should
be adopted as reported performance metric. The price is also a contribution to calculate

performance metrics. The price of the computer system that we use to do experiment is

28

about $4,000. The price of Oracle 9i is about $63,348, and the price of DB2 7.2 is about
$43,686. So the total price in Oracle test is $67,348, and the total price in DB2 test is

$47,686.

3.3.2.1 Testl —1GB Size In Oracle

Testl involves 1GB data in Oracle. In this test, the user table space is 1600MB, the
system table space is 500MB, the undo table space is 20MB, the temporary table space is
1000MB, and the size of total table spaces is 2.3GB. All other database parameters used
are the default values. For instance, the value of db_block size is 8KB by default. The
following Figure 6 shows the execution timing intervals, in seconds, which are used to

calculate the Performance Metrics.

29

runi {seconds) run2 (seconds)
query | power1 throughput1 power?2 thoughtpui2
stream11 | stream12 | refreshi stream?21 | stream22 | refresh2
Q01 48 56 79 48 113 64
Q02 16 9 38 20 24 88
Q03 9 18 8 7 16 49
Q04 30 35 218 30 56 30
Q05 8 111 87 71 125 57
Q06 26 65 50 20 36 43
Q07 55 124 74 53 120 386
Q08 34 40 34 29 57 29
009 53 165 100 92 213 120
Q10 32 56 68 31 82 74
Q11 7 17 7 7 20 198
Q12 27 336 276 26 79 25
Q13 28 68 82 26 125 6l
Q14 34 28 44 45 39 205
QL5 46 54 76 48 90 97
Qle 11 24 26 7 56 73
Q17 45 6l 78 41 121 90
Q18 34 118 115 32 145 43
gld 27 45 80 29 59 39
q20 33 55 29 26 38 16
q21 33 287 98 94 234 12
qg22 9 12 12 9 25 149
rfl 46 25
rf2 17 17
sum 708 1784 1679 795 833 1873 1948 1419
Figure 6. Result of testl
Where:

the first column is the query sequence, rfl and rf2 are the refresh functions used in the power test,

powerl is the power test of runl,

stream11 and stream12 are the query streams of runi,

refreshl is the refresh function of runl,

power? is the test of run2,

stream?21 and stream?2?2 are the query streams of run2,

refresh? is the refresh function of runl,

30

sum shows the summary for each column,

From Figure 6, we can see: in runl, power test took 708 seconds; throughput test took
1784 seconds in streaml, and 1679 seconds in stream?2; refresh function took 795
seconds. In run2, power test took 833 seconds; throughput took 1873 seconds in streaml,

and 1948 seconds in stream?2; refresh function took 1419 seconds.

Performance Metrics

Using the formulas described in section 2.2.7, we can get the following performance

meftrics:
S=2, SF=1, Price=$ 67348, Ts=1784 in runl, Ts=1873 in run2.

Runl

TPC-H Power@1GB = 143.3 (query-per-hour)
TPC-H Throughput@1GB = 88.69 (query-per-hour)
QphH@1GB = 112.7 (query-per-hour)

TPC-H Price-per-QphH@1GB = Price ($) / QphH@1GB = 597.27 $§
Run2

TPC-H Power@1GB = 131.38 (query-per-hour)

TPC-H Throughput@1GB = 81.31 (query-per-hour)

QphH@1GB = 103.3 (query-per-hour)

TPC-H Price-per-QphH@1GB = Price (§) / QphH@1GB = 651.59 §

The QphH@1GB in Run?2 is less than that in Runl. According to section 2.7, the result of

Run2 is considered as the final result of 1GB DB2 test as Figure 7.

31

QphH@1GB 103.3 query-per-hour
TPC-H Price-per-QphH@1GB 651.59 5%

Figure 7. Metrics of test]

3.3.2.2 Test2 -1GB Size In DB2

Test2 involves 1GB data in DB2. In this test, the user tables pace is 1600MB, the system
table space is 500MB, the temporary table space is 200MB, and the size of total table
spaces is 2.3GB as well. All other database parameters used are the default values. For
instance, the page size is 4KB by default. The following Figure 8 shows the execution

timing intervals, in seconds, which are used to calculate the Performance Metrics.

32

runt (seconds) run2 {seconds)
query | power1 throughput1 power?2 thoughtput2
stream11 | stream12 | refresh1 stream?21 | stream22 | refresh2

q01 112 113 242 115 129 243
q02 6 28 231 6 35 222
q03 90 550 159 91 558 157
q04 52 10273 893 52 8424 943
g05 71 142 105 72 4462 188
q06 74 47 304 33 51 296
g07 82 115 118 80 118 182
q08 86 167 160 86 173 145
q09 1009 1135 10298 890 1129 9445
q10 66 166 219 69 131 185
q11 38 57 64 39 55 64
qi2 50 127 97 58 80 79
q13 78 143 190 78 119 127
q14 65 147 148 50 87 130
q15 55 107 3271 53 48 3133
q16 9 25 23 9 30 17
ql? 4905 8797 5062 4316 6474 5162
q18 77 4706 129 44 286 80
q19 61 55 1254 61 182 135
g20 8798 7087 10372 7063 6492 8448
g21 187 190 195 181 200 280
q22 60 141 175 60 104 89
rf1 90 87

rf2 37 32

sum 16158 32318 33709 32906 | 13725 29367 29750 30103

Figure 8. Result of test2
Where:

the first column is the query sequence, rfl and rf2 are the refresh functions used in the power test.

powerl is the power test of runl.

streaml] and stream12 are the query streams of runl.

refreshl is the refresh function of runl.

power?2 is the power test of ran2.

stream?21 and stream?2?2 are the query streams of run2

refresh? is the refresh function of runl

sum shows the summary for each column.

33

From Figure 8, we can see: in runl, power test took 16158 seconds; throughput test took
32318 seconds in streaml, and 33709 seconds in stream?2; refresh function took 32906
seconds. In run2, power test took 13725 seconds; throughput took 29367 seconds in

stream1, and 29750 seconds in stream?2; refresh function took 30103 seconds.

Performance Metrics

As in the test1 case, we use the formulas described in section 2.2.7 to get the performance

metrics as follows:
S=2, SF=1, Price=$ 47686, Ts=33709 in runl, Ts=30103 in run2.

Runl
TPC-H Power@1GB = 37.96 (query-per-hour)
TPC-H Throughput@1GB = 4.7 (query-per-hour)
QphH@1GB = 13.3 (query-per-hour)
TPC-H Price-per-QphH@1GB = Price ($) / QphH@1GB = 3569.3 §

Run?
TPC-H Power@1GB = 41.26 (query-per-hour)
TPC-H Throughput@1GB = = 5.26 (query-per-hour)
QphH@1GB = 14.7 (query-per-hour)
TPC-H Price-per-QphH@1GB = Price () / QphH@1GB = 3237.34 §

The QphH@1GB in Runl is less than that in Run2. According to section 2.7, the result of

Runl is considered as the final result of 1GB DB2 test as Figure 9.

QphH@1GB 13.3 query-per-hour

TPC-H Price-per-QphH@1GB 3569.3 $

Figure 9. Metrics of test2

34

3.3.2.3 Test3 ~10GB Size In Oracle

Test3 involves 10GB data in Oracle. In this test, user table space is 16GB, system table
space is 1GB, undo table space is 4GB, temporary table space is 14GB, size of total table
spaces is 35GB. All other database parameters used are the default ones. For instance, the
value of db_block size is 8KB by default. The following Figure 10 shows the execution

timing intervals, in seconds, which are used to calculate the Performance Metrics.

runl(seconds) nmn?2(seconds)

query | powerl throughput] power2 thoughtput2

streamll | streaml2 | streaml3 | refreshi stream?21 stream22 | stream23 | refresh2
qO1 472 853 1741 867 470 809 1782 1333
q02 134 342 911 462 138 753 890 810
q03 688 3609 1883 739 641 4432 2437 1012
q04 380 1857 4763 1960 384 978 918 1473
q05 680 1518 1699 2591 666 2694 2766 2862
q06 248 632 907 547 267 1031 793 1480
q07 672 2202 1507 1962 645 3608 3663 3110
q08 370 1100 652 1653 369 1467 1326 1961
q09 1594 8008 6553 8306 1598 9078 11847 12279
ql0 521 1368 1586 1919 521 3345 3130 2428
qll 75 341 151 107 75 466 270 300
ql2 496 4977 6176 6753 510 1120 1613 631
ql3 1012 4593 2768 4877 1090 6706 7490 3993
ql4 297 413 680 565 321 999 1021 981
qls 542 1041 1641 854 543 2269 1893 2272
qlé 169 576 509 755 187 1022 858 322
ql7 519 1472 1668 1267 523 1726 1612 2297
ql8 338 1047 1357 1022 339 2627 2067 2080
ql9 784 1950 1305 1798 751 3120 2698 2620
q20 313 628 667 407 318 1023 719 896
q21 1381 4342 3877 4311 1390 7486 3968 10465
q22 125 257 214 249 133 251 403 316
rfl 210 213
2 169 177
sum 12189 43126 43215 43971 2046 12269 57010 54164 55921 2120

Figure 10. Result of test3

Where:

the first column is the query sequence, rfl and rf2 are the refresh functions used in the power test.

35

power! is power the test of runl.

stream11, stream12 and stream13 the are query streams of runl.
refreshi is the refresh function of runl.

power?2 is the power test of run2.

stream21, stream22 and stream?23 are the query streams of run2
refresh? is the refresh function of runl

sum shows the summary for each column.

From Figure 10, we can see: in runl, power test took 12189 seconds; throughput test took

43126 seconds in streaml, 43215 seconds in stream2 and 43971 seconds in stream3;

refresh function took 2046 seconds. In run2, power test took 12269 seconds; throughput

took 57010 seconds in streaml, 54164 seconds in stream2, and 55921 seconds in stream;

refresh function took 2120 seconds.

Performance Metrics for 22 Queries

As in the testl case, we use the formulas described in section 2.2.7 to get the performance

metrics as follows:

S=3, SF=10, Price=$ 67348, Ts=43226 in runl, Ts=36100 in run2.

Runl

Run2

TPC-H Power@10GB = 92.25 (query-per-hour)

TPC-H Throughput@10GB = 54.04 (query-per-hour)

QphH@10GB = 70.6 (query-per-hour)

TPC-H Price-per-QpbH@10GB = Price (§) / QphH@1GB = 953.94 §

TPC-H Power@10GB = 90.84 (query-per-hour)
TPC-H Throughput@10GB = 41.68 (query-per-hour)
QphH@10GB = 61.5 (query-per-hour)

36

TPC-H Price-per-QphH@10GB = Price ($)/ QphH@1GB = 1094.56 $

The QphH@10GB in Run? is less than that in Runl. According to section 2.7, result of

Run? as Figure 11 is considered as the final result of 10GB Oracle test for 22 queries.

QphH@10GB 61.5 query-per-hour
TPC-H Price-per-QphH@10GB 1094.56 §

Figure 11. Metrics of test3 with 22 queries

Performance Metrics for 20 Queries

Since there are problems with query 17 and 20 in DB2, we only calculate 20 queries in

following metrics for further comparison.

=16 =19 k=22 1=2
TPC-H Power@Size = (3600 * SF)/ »/(T1.QIG,0)* [T QI(1,0)* T QI(1,0)* T1RIG,0))
=1 =18 k=21 =1

TPC-H Througthput@Szie = (S * 20 * 3600) * SF / T,

QphH@size = // Power@size * Throughput@size

TPC-H Price-per-QphH@Size = $ / QphH@size
S=3, SF=10, price=$67348 Ts= 42297 in runl, Ts= 54261 in run2.

Runl
TPC-H Power@10GB = 92.54 (query-per-hour)
TPC-H Throughput@10GB = 51.07 (query-per-hour)
QphH@10GB = 68.7 (query-per-hour)
TPC-H Price-per-QphH@10GB = Price ($) / QphH@1GB =980.32 §

Run2
TPC-H Power@10GB = 91.07 (query-per-hour)
TPC-H Throughput@10GB = 39.8 (query-per-hour)

37

QphH@10GB = 60.2 (query-per-hour)
TPC-H Price-per-QphH@10GB = Price ($)/ QphH@1GB =1118.74 §

The QphH@10GB in Run? is less than that in Runl. According to section 2.7, result of

Run2 as Figure 12 is considered as the final result of 10GB Oracle test for 20 queries.

QphH@10GB 60.2 query-per-hour
TPC-H Price-per-QphH@10GB 1118.84 %

Figure 12. Metrics of test3 with 20 queries

3.3.2.4 Test4 —10GB Size In DB2

Test4 involves 10GB data in DB2. In this test, we created user table space 16GB, system
table space 3GB, temporary table space 16GB, size of total table spaces is 35GB as well.
All other database parameters used are the default ones. For instance, page size is 4KB by
default. The following Figure 13 shows the execution timing intervals, in seconds, which

are used to calculate the Performance Metrics.

From the table shown in Figure 13, we can see that the power test in runl took 1,750,895
seconds (about 20 days). Recall that power test contains 22 queries and 2 refresh
functions. Query 20 took 1,191,487 seconds (about 14 days), query 17 took 533,956
seconds (about 6 days). A query takes definitely longer time in the throughput test than in
the power test. For instance, the throughput test took 1.5 times of the power test in test2
(1GB Size in DB2). We estimated the total consuming time of runl and run2 would be
about 100 days. It is not necessary to wait 100 days to get the exact result, since our
purpose 1s to compare two DBMS Oracle and DB2, not the exact query processing time.

From the result of the power test in runl, we can see that the performance of DB2 is

38

certainly worse than the performance of Oracle. So, during the throughput test of runl,

and the power test and throughput test of run2, we removed query 20 and query 17, and

assumed they took the same time with the power test in runl in the following Figure 13.

So query 20 took 1,191,487 seconds, and query 17 took 533,956 seconds in all tests; they

are marked with *.

runl{seconds) run2(seconds)
query | powerl throughput | power2 thoughtput2
streamll | streaml2 | streaml3 | refreshl stream2] | stream22 | stream23 | refresh?
q01 1122 2027 2555 2804 1147 2041 3604 2548
q02 243 1282 1233 1124 182 1362 2238 788
q03 1004 3809 4023 5051 883 3352 2442 1991
q04 616 2952 6829 7837 582 3620 4194 9476
q05 784 6264 5893 2948 745 3156 1524 2990
q06 591 927 1729 1104 515 718 1017 840
q07 1371 3694 3723 3888 1174 6500 3552 3707
q08 963 7103 6922 6344 901 3721 3025 5711
q09 7844 14291 4923 7879 5369 14649 7964 15414
ql0 767 1757 2320 3047 683 2630 2560 2438
qli 593 2268 1920 1630 427 972 1281 686
ql2 706 2869 3029 1763 661 1261 2429 1578
qi3 568 1684 1720 1664 406 1867 1071 841
ql4 776 1185 2020 2339 601 1178 3938 2382
ql5 678 2098 2710 2853 547 1200 2831 1459
ql6 112 528 518 317 89 707 238 220
ql7 533956 | 533956* | 533956* | 533956* 533956* | 533956* | 533956* | 533956+
ql8 501 3050 3740 3063 535 820 14629 3275
ql9 698 1057 1392 1675 614 726 1208 1513
q20 1191487 | 1191487* | 1191487* | 1191487* 1191487* | 1191487* | 1191487* | 1191487*
q21 3009 4194 6392 8936 2508 3482 3771 3431
q22 740 2293 2399 1791 580 1086 1654 2056
rl 1014 932
2 752 324
sum 1750895 | 1790775 | 1791433 | 1793500 71715 | 1745848 | 1780491 1790613 | 1788787 68733
Figure 13. Result of test4
Where:

the first column is the query sequence, rfl and rf2 are the refresh functions used in the power test.

powerl is the power test of runl.

39

streaml1, stream12 and stream13 are the query streams of runl.
refreshl is the refresh function of runl.

power? is the power test of run2.

stream?21, stream22 and stream?23 are the query streams of run?
refresh? is the refresh function of runl

sum shows the summary for each column.

all data with mark * mean inaccurate.

From Figure 10, we can see: in runl, power test took 1750895seconds; throughput test
took 1790775seconds in streaml, 1791433 seconds in stream2, and 1793500 seconds in
stream3; refresh function took 71715 seconds. In run2, power test took 1745848 seconds;
throughput took 1780491 seconds in stream1, 1790613 seconds in stream2, and 1788787

seconds in stream3; refresh function took 68733 seconds.

Performance Metrics for 22 Queries

As in the test] case, we use the formulas described in section 2.2.7 to get the performance

metrics as follows:
S=3, SF=10, Price=$47686, Ts=71715 in runl, Ts=68733 in run2.

Runi

TPC-H Power@10GB = 25.69 (query-per-hour)

TPC-H Throughput @10GB = 1.32* (query-per-hour)

QphH@10GB = 5.8* (query-per-hour)

TPC-H Price-per-QphH@10GB = Price ($)/ QphH@1GB = 8193.47* §

Run2

TPC-H Power@10GB = 30.60* (query-per-hour)
TPC-H Throughput@10GB = 1.32* (query-per-hour)

40

QphH@10GB = 6.3* (query-per-hour)
TPC-H Price-per-QphH@10GB = Price ($) / QphH@1GB = 7509.6* §

Where: the number with * means that it is inaccurate.

The QphH@10GB in Runl is less than that in Run2. According to section 2.7, the result

of Runl as Figure 14 is considered as the final result of IOGB DB2 test for 22 queries.

QphH@10GB 5.8 query-per-hour

TPC-H Price-per-QphH@10GB 8193.47§

Figure 14. Metrics of test4 with 22 queries

Performance Metrics for 20 Queries

Since there are problems with query 17 and 20 in DB2, we only calculate 20 queries in

following metrics for further comparison.
S=3, SF=10, Price=$47686, Ts= 42297 in runl, Ts= 54261 in run2.

Runi

TPC-H Power@10GB = 45.77 (query-per-hour)

TPC-H Throughput @10GB = 31.74 (query-per-hour)

QphH@10GB = 38.1 (query-per-hour)

TPC-H Price-per-QphH@10GB = Price ($) / QphH@1GB = 1251.27 §

Run2

TPC-H Power@10GB = 55.36 (query-per-hour)

TPC-H Throughput@10GB = 31.43 (query-per-hour)

QphH@10GB = 41.7 (query-per-hour)

TPC-H Price-per-QphH@10GB = Price (§)/ QphH@1GB =1143.27§

4]

The QphH@10GB in Runl is less than that in Run2. According to section 2.7, the result

of Runl as Figure 15 is considered as the final result of 10GB DB2 test for 20 queries.

QphH@10GB

38.1 query-per-hour

TPC-H Price-per-QphH@10GB

1251.27 §

Figure 15. Metrics of test4 with 20 queries

42

4. Comparison

4.1 Comparing Oracle and DB2 in 1GB data

4.1.1 Comparison of Performance Metrics

From testl and test2, we got that the value of QphH@1GB for Oracle is 103.3 query-per-
hour, whereas it is 13.3 for DB2. Oracle outperforms DB2 by 7.8 times with 1GB data on
Red Hat Linux 7.3. Even when we consider the price factor, where Oracle price is about
1.5 times of DB2’s, the value of TPC-H Price-per-QphH@1GB for Oracle is 651.59,
whereas it is for DB2 is 3569.3. That is, DB2 costs 5.5 times per QphH@1GB. The

comparison of the performance metrics for 1GB data is summarized in Figure 16.

Metrics Oracle DB2
QphH@1GB 103.3 13.3
TPC-H Price-per-QphH@1GB (8) 651.59 3569.3

Figure 16. Comparison of metrics for 1GB data

4.1.2 Comparison of Individual Query with Default Block Size

Figure 17 shows the timing intervals for the power test in runl with 1GB data for both
Oracle and DB2. We can see, the power test of runl for 1GB data took 708 seconds in
Oracle, and 16158 seconds in DB2. Both of refresh functions in Oracle are faster than in
DB2. Except for query 2 and query 16, other 20 queries were executed faster in Oracle
than in DB2. In particular, query 17 and query 20 are extremely slower in DB2. Query 20

took 33 seconds in Oracle, however it took 8,798 seconds in DB2. Query 17 took 45

43

seconds in Oracle, however it took 4,905 seconds in DB2. Compared with the largest

value (8,798 seconds), the times measured for Oracle are very small, so most of bars in

the chart are very small.

Q22 |
q21 |
q20 |

q19

q18 §
qi7 ¥

q16

q15
Q4 |

q13

qt1
q10

Execution Time (seconds)

q08
q05

qo04

qo3
qo02
qo01

q12

q09 |
q08 §
Q07 }

1000

e

2000

3000

il

4000 5000 6000 7000 8000 9000

Query

Figure 17. Comparison of powerl test for 1GB data

Oracl DB2
a0l 48 112
a2 i6 6
a3 9 90
al4 30 52
als 8 71
a6 26 74
a7 55 82
a(8 34 86
a09 53 1009
all 32 66
all 7 38
alz 27 50
al3 28 78
al4d 34 65
als 46 55
ale 11 9
al7 45 4905
als 34 77
al9 27 61
az0 33 8798
a2l 33 187
a22 g 60
rfl 46 a0
rf2 17 37
sum 708 16158

4.1.3 Comparison of Individual Query with 4KB Block Size

As mentioned earlier, we used default setup in our benchmark experiments. For example,

the default block size is 8KB in Oracle and 4KB in DB2. Figure 18 shows the timing

intervals for the power test in runl with 1GB data and the block size for both Oracle and

44

DB2 is 4KB. We can see, the power test of runl for 1GB data took 1470 seconds in

Oracle, and 16158 seconds in DB2. Both of refresh functions in Oracle are faster than in

DB2. Except for query 2,4,5,7 and 16, other 17 queries were executed faster in Oracle

than in DB2. In particular, query 17 and query 20 are extremely slower in DB2. Query 20

took 47 seconds in Oracle, however it took 8,798 seconds in DB2. Query 17 took 75

seconds in Oracle, however it took 4,905 seconds in DB2. Compared with the largest

value (8,798 seconds), the times measured for Oracle are very small, so most of bars in

the chart are very small.

Oracl DB2
a01 53 112
a2 11 6
a3 13 90
a04 55 52
a05 91 71
a06 37 74
a7 84 82
a(8 51 86
g09% 183 1009
all 53 66
all 11 38
al2 48 50
al3 162 78
ald 46 65
alb 82 55
gl6 15 g
gl7 75 4905
al8 49 77
ald 45 61
a20 47 8798
a2l 154 187
az22 13 80

0 rfl 49 ag
i o Exeigt(:gnTime (:c(a)ggnds) 2o 1090 <o 28 37
sum 1470 16158

Figure 18. Comparison of 4KB block size for 1GB data

45

4.2 Comparing Oracle and DB2 in 10GB data

4.2.1 Comparing Performance Metrics

From test3 and test4, we got the summary results as Figure 19. With 22 queries, the value
of QphH@10GB for Oracle is 61.5 query-per-hour, whereas it is 5.8 in DB2. As the
section 3.3.2.4 described, we assumed that the query 20 and query 17 in all DB2 tests
took the same time with the power test in runl, actually they certainly would take more
time in the throughput test than in the power test. As a result, Oracle outperforms DB2 by
10.6 times on Red Hat Linux 7.3. Considering again the price factor, the value of TPC-H
Price-per-QphH@10GB in Oracle is 1094.56, whereas it is more than 8193.47 in DB2. In

this case, DB2 costs at least 7.5 times per QphH@10GB.

If we removed those two queries, which caused problems in DB2 experiment, then we
calculated the metrics as Figure 19 shown. The value of QphH@10GB for Oracle is 60.2
query-per-hour, whereas it is 38.1 in DB2. Oracle still outperforms DB2 by 1.6 times on
Red Hat Linux 7.3. Considering again the price factor, the value of TPC-H Price-per-
QphH@10GB in Oracle is 1118.84, whereas it is more than 1251.27 in DB2. DB2 still

costs 12% more per QphH@10GB.

of Queries & DBMS 22 Queries 20 Queries
Metrics | Oracle | DB2 | Oracle | DB2

QphH@10GB 61.5 5.8 60.2 38.1
TPC-H Price-per-QphH@10GB ($) |1094.56 18193.47 1 1118.84 | 1251.27

Figure 19. Comparison of metrics for 10GB data

46

4.2.2 Comparing Individual Query

Figure 20 shows the timing intervals of the power test in runl for 10GB data in Oracle
and DB2. We can see the power test of runl for 10GB data took 12,189 seconds (about
3.4 hours) in Oracle, 1,750,895 seconds (about 20 days) in DB2. Both of refresh
functions in Oracle are faster than in DB2, refresh function 1 took 210 seconds in Oracle
and 1014 seconds in DB2; refresh function 2 took 169 seconds in Oracle and 752 seconds
in DB2. All 22 queries in Oracle were executed faster than in DB2. Especially query 17
and query 20 were extremely slower in DB2. Query 20 took 1,191,487 seconds (about
13.8 days) in DB2, however it took 313 seconds (5.2 minutes) in Oracle. Query 17 took
533,956 seconds (about 6 days) in DB2, however it took 519 seconds (8.6 minutes) in
Oracle. Compared with the largest value (1,191,487 seconds), the times measured for

Oracle are very small, so we can see only a few large values for DB2 in this chart.

47

Oracle DB2

a0l 472 1122
a02 134 243
a03 688 1004
a4 380 616
a05 680 784
ad6 248 591
a07 672 1371
a8 370 963
al9 1594 7844
al0 521 767
all 75 503
ai2 496 708
al3 1012 568
ald 297 776
als 542 678
alé 169 112
al’7 519 533956
alg 338 501
al9 784 698
az0 313 1191487
a2l 1381 3009
az22 125 740
0 200000 400000 600000 800000 1000000 1200000 i 210 1014
Execution Time {seconds) 2 169 52
 sum 12189 1750895

Figure 20. Comparison of power] test for10GB data

4.3 Comparing Oracle on Linux and Windows

Our TPC-H benchmark experiment was done on Red Hat Linux 7.3 operating system. A

similar study on Windows 2000 platform was done in parallel [4].

48

4.3.1 Comparing Performance Metrics in Oracle

From our Oracle experiment results on Linux presented in section 3 and the results on
Windows 2000 [4], we summarize the performance metrics for Oracle 1GB and 10GB

data on Linux and Windows as Figure 21.

The value of QphH@1GB on Linux is 103.3 (query-per-hour), whereas it 1s 28.4 on
Windows; the value of QphH@10GB on Linux is 61.5, whereas it is 19.7 on Windows.
The performance of Oracle for both 1GB and 10GB data on Linux is better than on
Windows. For 1GB data, Oracle outperforms 3.6 times on Linux than Windows. For

10GB data, Oracle outperforms 3.1 times on Linux than Windows.

IMetrics Linux Windows
lQphH@1GB 1033 284
TPC-H Price-per-QphH@1GB ($) 651 2371
QphH@10GB 61.5 19.7
TPC-H Price-per-QphH@10GB (3) 1094 3419

Figure 21. Comparison of Oracle performance metrics on Linux and Windows

4.3.2 Comparing Individual Test in Oracle

4.3.2.1 Comparing Individual Test in Oracle for 1GB data

Figure 22 illustrates a summary result of individual Oracle test for 1GB data on Linux
and Windows. For example, in runl, the power test took 708 seconds on Linux, whereas
1499 seconds on Windows; the stream] took 1,784 seconds on Linux, whereas 16,279
seconds on Windows; the stream?2 took 1,679 seconds on Linux, whereas 15,277 seconds

on Windows; refresh function took 795 seconds on Linux, whereas 80 seconds on

49

Windows. We can see all queries streams on Linux are faster than on Windows, but

refresh functions on Windows are faster than on Linux.

Oracle runi (seconds) run2 (seconds)
(1GB) power1 throughput1 power2 thoughtput2
stream11 | stream12| refresh1 stream21 | stream?22 | refresh2
Linux 708 1784 1679 795 833 1873 1948 1419
Windows | 1499 16279 15277 80 1486 15123 15275 74

Figure 22. Comparison of Oracle performance for 1GB data on Linux and Windows

4.3.2.2 Comparing Individual Test in Oracle for 10GB data

Figure 23 illustrates a summary result of individual Oracle test for 10GB data on Linux
and Windows. For example, in runl, the power test took 12,189 seconds on Linux,
whereas 21,823 seconds on Windows; the streaml took 43,126 seconds on Linux,
whereas 304,918 seconds on Windows; the stream?2 took 43,215 seconds on Linux,
whereas 334,313 seconds on Windows; the stream3 took 43,971 seconds on Linux,
whereas 309,864 seconds on Windows; the refresh function took 2,046 seconds on Linux,
whereas 1,534 seconds on Windows. We can see all queries streams on Linux are faster

than on Windows, but refresh functions on Windows are faster than on Linux.

Oracle runi{seconds) run2(seconds)
(10GB) |power1 throughput1 power2 thoughtput2
stream11|stream12istream13lrefresh stream21|stream22/stream23refresh?2

Linux |12189] 43126 | 43215 | 43971 | 2046 |12269| 57010 | 54164 | 55921 | 2120
Windows| 21823 | 304918 | 334313 | 309864 | 15634 21494 333217 | 339696 | 334083 | 1570

Figure 23. Comparison of Oracle performance for 10GB data on Linux and Windows

50

4.4 Comparing DB2 on Linux and Windows

4.4.1 Comparing Performance Metrics in DB2

Figure 24 illustrates the performance metrics for DB2 1GB and 10GB data on Linux and
Windows. The value of QphH@1GB on Linux is 13.3 (query-per-hour), whereas it is

10.4 on Windows. DB2 for 1GB data on Linux outperforms on Windows by 28%.

With 22 queries, value of QphH@10GB on Linux is 5.8, whereas it is 4.7 on Windows.
DB2 for 10GB data on Linux outperforms on windows by 23%. As mentioned earlier, we
experienced difficulty to execute query 17 and 20 for 10G data on both Windows and
Linux. We use 533,956 seconds (148 hours) for Query 17 and 1,191,487 seconds (330
hour) for query 20 in all queries streams on Linux and Windows to calculate these

metrics.

If we remove queries 17 and 20, which caused problems in both Linux and Windows
environment, to calculate the metrics, then the value of QphH@10GB is 38.1 query-per-

hour on Linux, whereas it is 18.7 on Windows. DB2 outperforms 2 times on Linux.

of Queries & OS 22 Queries 20 Queries
Metrics Windows, Linux |Windows Linux
QphH@1GB 10.4 13.3
TPC-H Price-per-QphH@I1GB (§) | 4585 3569
QphH@10GB 4.7 5.8 18.7 38.1
TPC-H Price-per-QphH@10GB (8)] 10146 8193 2542 1251

Figure 24. Comparison of DB2 performance metrics on Linux and Windows

51

4.4.2 Comparing Individual Test in DB2

4.4.2.1 Comparing Individual Test in DB2 for 1GB data

Figure 25 illustrates a summary result of individual DB?2 test for 1GB data on Linux and
Windows. For example, in runl, power test took 16158 seconds on Linux, whereas 20557
seconds on Windows; stream1 took 32318 seconds on Linux, whereas 41096 seconds on
Windows; stream?2 took 33709 seconds on Linux, whereas 38587 seconds on Windows;
the refresh function took 32906 seconds on Linux, whereas 1185 seconds on Windows.
We can see all queries streams in DB2 for 1GB data on Linux are faster than on

Windows, but refresh functions on Windows are faster than on Linux.

DB2 runt (seconds) run2 (seconds)
(1GB) | powert throughput1 power2 thoughtput2
stream11 | stream12| refresh1 stream?21 | stream22 | refresh2

Linux 16158 32318 33709 32906 13725 29367 29750 30103
Windows | 20557 41096 38587 1185 18129 41477 38338 1044

Figure 25. Comparison of DB2 performance for 1GB data on Linux and Windows

4.3.2.1 Comparing Individual Test in DB2 for 10GB data

Figure 26 illustrates a summary result of individual DB2 test for 10GB data on Linux and
Windows. As mentioned earlier, we experienced difficulty to execute query 17 and query
20 in DB2 for 10GB data on both Linux and Windows. In this comparison, we removed
those two queries, so only 20 queries and 2 refresh functions are calculated in Figure 26.
For example, in runl, the power test contains 20 queries and 2 refresh functions took
25,452 seconds on Linux, whereas 43,095 seconds on Windows; stream1 took 65,332
seconds on Linux, whereas 191112 seconds on Windows; stream2 took 65,990 seconds

on Linux, whereas 174,844 seconds on Windows; stream3 took 68,057 seconds on Linux,

52

whereas 189,704 seconds on Windows; refresh function took 71,715seconds on Linux,
whereas 193,079 seconds on Windows. We can see that every individual test in DB2 for

10GB data on Linux is faster than on Windows.

DB2 runi{seconds) run2(seconds)
(10GB) |power1 throughput1 power2 thoughtput2
stream11|stream12|stream13jrefresh1 stream21|stream?22istream23|refresh2

Linux | 25452 | 65332 | 65990 | 68057 | 71715 {20405| 55048 | 65170 | 63344 | 68733
Windows| 43095 | 191112 | 174844 | 189704 | 193079 | 50071 | 184303 | 189690 | 177230 | 190536

Figure 26. Comparison of DB2 performance for 10GB data on Linux and Windows

53

5. Performance Tuning

There are many factors that affect database performance, for instance, hardware,
operating system, and the different setup parameters of operating system and the database
management system. It is not difficult to understand how the performance would be
affected by hardware, for example, a computer with more CPUs and more memories is
definitely faster. Using the same hardware, performance‘ is different with the different
Operating Systems. From section 4, we already know that the performance of both Oracle
and DB?2 is better on Linux than on Windows 2000 for. Here, we just describe how the
database performance is affected by the different setup parameters of operating systems,
such as swap space and shared memory, and by different setup parameters of database
system, such as, data block size, statistics collection, size of undo table space, and size of

temporary table space.

5.1 Oracle Database Performance Tuning

5.1.1 Data Block Size

The DB BLOCK SIZE initialization parameter specifies the standard block size for the
database. This block size is used for the system table space and by default in other table
spaces [9]. The database block size must be a multiple of the operating system's block

size [7]. In Red Hat Linux 7.3, the operating system's block size is 4K.

A larger data block size provides greater efficiency in disk and memory /O (access and

storage of data). How large a database block size should be is application dependent.

54

Usually a lager data block size is good for a larger OLAP database, and a smaller data
block size is good for a small OLTP database. Also the block size cannot be changed

after the database is created, except by re-creating the database.

We test three different block sizes, 4KB, 8KB and 16KB with 1GB data size. Figure 27
shows the timing intervals, in seconds. The timing intervals for load test contain loading
data and updating statistics. Powerl is the power test in runl. Streaml, stream?2 and
refresh are the query streams and refresh functions in runl. From Figure 27, we can see
how data block size affects the performance. 8KB data block size provides the best
performance in our 1GB database for load test, power test and throughput test. 16KB data
block size is better than 4KB data block size. Especially refresh functions in throughput
test, a pair of refresh functions took 75 seconds with 8KB data block size, 723 seconds

with 4KB data block size, and 735 seconds with 16KB data block size.

Execution Time (seconds
N
[on)
(=]
(]

Load

stream

stream?2

power1 refresh
1252 708 1784 1679 75
1545 1439 3231 3655 723
16k | 1507 1281 2709 2756 735

Figure 27. Different block sizes in Oracle

55

5.1.2 Statistics Collection

To execute a SQL statement, Oracle may have to perform many steps. Each of these steps
either retrieves rows of data physically from the database or prepares them in some way
for the user issuing the statement. The combination of the steps Oracle uses to execute a
statement is called an execution plan [7]. Many different execution plans to execute a
SQL statement often exist, for example, by varying the order in which tables or indexes
are accessed [9]. However, how does Oracle determine which execution plan should be
used for a given SQL? The cost-based optimizer (CBO) uses statistics to estimate the
number of disk /O, CPU time, and memory are required to execute the query using a
particular execution plan and determines which execution plan is most efficient by
considering available access paths and the statistics for the schema objects (tables or
indexes) accessed by the SQL query [7]. The statistics are stored in the data dictionary

and can be generated with the DBMS STATS package.

We have done two power tests to see how much statistics collection improves
performance in our 1GB database. After loading the data, if the statistics information was
collected, the power test in runl took 708 seconds; if no statistics was collected, the
power test in runl took 1,779 seconds as shown in Figure 28. The power test with
statistics collection outperforms by 2.5 times. So, with the statistics collection, Oracle can

choose a better execution plans.

56

2000
1800
1600

—
Y
[
[ae]

1200
1000
800
600
400
200

Executeion Time (seconds}

no-stats with-stats

Figure 28. Statistics collection in Oracle

5.1.3 Undo Table Space

Oracle91 provides automatic undo management to replace rollback segment. Database
Administrators (DBA) often have a hard time to manually tune the rollback segments.
Automatic undo management completely automates the management of undo data and
significantly simplifies database management and removes the need for any manual
tuning of undo (rollback) segments [7]. A database running in automatic undo
management mode transparently creates and manages undo segments [8]. However, how
large undo table space should be? It really depends on the specific database application.
For example, how many transactions are running at the same time? How much data are
accessed at the same time? If undo table space is too small, we may get error message
“snapshot is too old” since the records to keep read consistence in unto table space are
overwritten. With the smaller undo table space, even through we may not get any error

message, it may have an impact on the performance.

57

Figure 29 illustrates the performance with 2GB and 6GB undo table space in our 10GB
test database. We can see the performance with 6GB undo table space is better than that
with 2GB table space. However, undo table space does not affect the performance as

much as the block size and statistics do.

18000
16000
14000
12000
10000
8000
6000
4000
2000

Execution Time (seconds)

Load power1

B8 undo=2G 16025 13215
Cundo=6G 13160 12189

Figure 29. Undo table space in Oracle

5.1.4 Temporary Table Space

When processing queries, Oracle often requires temporary workspace for intermediate
stages of queries parsing and execution. Typically, Oracle requires a temporary segment
as a work area for sorting [7]. Oracle does not create a segment if the sorting operation
can be done in memory or if Oracle finds some other way to perform the operation using
indexes. Also, when collecting statistics, Oracle uses temporary table space for
intermediate stages. The size of temporary table space may not affect the performance,

however, we may get error message with a small temporary table space.

58

At the beginning, we created S00MB temporary table space for 1GB database. When
loading data and starting collecting statistics, we got the error message: “ORA-01652:
unable to extend temp segment by 128 in table space TEMP”. After we changed the

temporary table space to 1000MB, it worked well.

5.1.5 Swap Space and Shared Memory

With 10GB data, power test was completed smoothly, but we experienced problems in
the throughput test when we have 4 sessions running at the same time. The error message
was "ORA-00601: cleanup lock conflict” and the database server was down. Unlike what
the above error message indicates, there should not be any locks since the session that
refresh data was already done successfully, we just had "select” queries and no
transactions changing the database state. We repeated this test 3 times, and it always
failed with the same error message. When we ran those three streams which contained 22
queries separately, there was no error. When we removed 2 queries from 4 streams, it
worked fine as well. However, problem happened only when we concurrently ran 4

streams containing 22 queries.

We tried to find help from Oracle website or Oracle forums. There are some similar
problems reported, but not for Oracle 9.0.1 on Linux. There are lots of patches for Oracle

9.0.1 on Linux, but none for this particular problem.

Finally we found that the Linux system we used had too small swap space and shared
memory. The swap space was 514,072 bytes. We increased the temporary swap space

899,992 bytes. The shared memory was 33,554,432 bytes, which we temporarily

59

increased the Linux system kemel parameter shmmax to 1,073,741,824. After these

changes, the Linux system worked fine. Here are the commands that we used to do these:

As root:

cat /proc/swaps //Check swap space

Filename Type Size Used Priority
/dev/hda2 partition 514072 0 -1

#dd 1f=/dev/zero of=tmpswap bs=1k count=900000
#chmod 600 tmpswap

#mkswap tmpswap

#swapon tmpswap

#cat /proc/swaps

Filename Type Size Used Priority
/dev/hda2 partition 514072 0 -1
/root/tmpswap file 899992 0 -2

cat /proc/sys/kernel/shmmax

33554432

echo “expr 1024 * 1024 * 1024 > /proc/sys/kernel/shmmax
cat /proc/sys/kernel/shmmax

1073741824
5.2 DB2 Database Performance Tuning

5.2.1 Page Size

When we created the test database in DB2, there were three table spaces by default: one

catalog table space, one user table space, and one system temporary table space. The

60

page size for every table space was 4KB, by default. We could not change the page size
for any table space after they had been created except for recreating database. Also we
could not drop catalog table space and system temporary table space. However we could

drop user table space and re-created it with different page size.

Figure 30 illustrates the performance with 4KB and 8KB page sizes. We can see that the
performance of 4KB page size is better than the 8KB page size for both power test and
throughput test. The database load time is almost the same. But, as mentioned earlier,
database load timing is inaccurate since timing for checking integrity constraints and
gathering statistics was recorded manually, as it was not supported by the system. In the
4KB page size test, the page sizes for all table spaces were 4KB. However, in the 8KB
page size experiment, the page size for the user table space was 8KB, the page sizes for
the catalog table space and system temporary table space was 4KB. In addition, we were

not able to test 2ZKB page size because the minimum page size is 4KB.

Execution Time (seconds)

Load powerl | stream1 | stream2 | refresh
1386 16158 32318 33709 32906
1316 17465 39862 41002 40012

Figure 30. Different page sizes in DB2

61

5.2.2 Statistics Collection

Statistics 1s very important for query optimization in database systems to improve system
performance. Many different execution plans to execute a SQL statement often exist, for
example, by varying the order in which tables or indexes are accessed. However, how
does DB2 determine which execution plan should be used for a specific SQL? DB2
optimizer uses statistics to estimate the number of disk I/O, CPU time, and memory
required to execute a SQL statement using a particular execution plan and determines
which execution plan is most efficient by considering available access paths and by
factoring in information based on statistics for the schema objects (tables or indexes)
accessed by the SQL statement. If the statistics information is not up-to-date, DB2 may

choose a worse execution plan.

Figure 31 illustrates the comparison of the power test with 1GB data. We have done two
power tests to see how much statistics collection improves performance in our 1GB
database. After loading the data, if the statistics information was collected, power test in
runl took 16158 seconds; if no statistics was collected, power test in runl took 19389
seconds as shown in Figure 31. The power test with statistics collection outperforms by
20%. So, with the statistics collection, DB2 can choose a better execution plans.
Compared to Oracle, in which power test with statistics collection outperforms by 2.5

times, the statistics information affects less.

62

20000

19000

18000

17000

16000

Execution Time (seconds)

15000

14000

no-stats w ith-stats

Figure 31. Statistics collection in DB2

5.2.3 Temporary Table Space

A system temporary table space is used to store system temporary tables. When a
database is created, one of the three of default table spaces defined is a system temporary
table space. A user temporary table space is used to store declared temporary tables.
Declared temporary tables are stored in system temporary tables if there is no user

temporary table spaces created. By default, no user temporary table spaces are created.

At the beginning, we created S00MB system temporary table space for 1GB database.
There was no problem for loading data, but we got error message “SQL0289N Unable to
allocate new pages in table TEMP space SQLSTATE=57011" during the power test. We
then changed the system temporary table space to 1000MB; then, it worked well. Like
Oracle, the size of temporary table space may not affect the performance, however, we

may get error message with a small temporary table space.

63

5.2.4 Swap Space and Shared Memeory

With 10GB database test, there are problems with queries 17 and 20. In the power test,
query 17 took about 6 days, and query 20 took about 14 days. It is definitely not normal.
We tried to increase the swap space and the shared memory, as we did in our Oracle

experiment, but this did not help in our DB2 experiment.

64

6. Conclusions

In our TPC-H benchmark experiment, Oracle demonstrated better performance than DB2
on our desktop computer on Red Hat Linux 7.3, irrespective of whether it has a 1GB or

10GB data size.

e With 1GB data, Oracle outperforms DB2 by 7.8 times, and DB2 costs 5.5 times per
QphH@1GB. Every individual query and refresh function except for query 2 and 16
is faster in Oracle than in DB2.

e With 10GB data and 22 queries, Oracle outperforms DB2 by 10.6 times, and DB2
costs 7.5 times per QphH@10GB. Every individual query and refresh function is

faster in Oracle than in DB2.

e With 10GB data and 20 queries, Oracle outperforms DB2 by 1.6 times, and DB2

costs 12% more per QphH@10GB.

Both Oracle and DB2 show better performance on Red Hat Linux 7.3 than on

Windows2000 operating system.

e With 1GB data, Oracle outperforms 3.6 times on Linux than Windows.

e With 10GB data, Oracle outperforms 3.1 times on Linux than Windows.

e In Oracle, all queries streams on Linux are faster than on Windows, but refresh
functions on Windows are faster than on Linux for both 1GB and 10GB data.

e DB2 for 1GB data on Linux outperforms on Windows by 28%.

e With 22 queries, DB2 for 10GB data on Linux outperforms on windows by 23%.

e With 20 queries, DB2 for 10GB data on Linux outperforms on windows by 2 times.

65

e In DB2, all queries streams on Linux are faster than on Windows, but refresh

functions on Windows are faster than on Linux for 1GB database.

e In DB2, all queries streams and refresh functions on Linux are faster than on

Windows for 10GB database.

On database performance tuning, we can get the following conclusions:

e Both Oracle and DB2, the default data block or page size demonstrates the best
performance in 1GB database. In Oracle, the default data block size is 8KB. In DB2,
the default page size is 4KB.

e Statistics information can improve the performance of Oracle and DB2. In Oracle
1GB database, the power test with statistics collection outperforms by 2.5 times. In
DB2 1GB database, the power test with statistics collection outperforms by 20%.

e The size of temporary table space may not affect the performance, however, we may

get error message with a small temporary table space.

The user interface of Oracle is friendlier than that of DB2 on both Linux and Windows.
The installation of DB2 was easier and faster than that of Oracle on Linux. The

installation of Oracle and DB2 software on Windows is easier and faster than on Linux.

The price of Oracle 9i is about $63,348, and the price of DB2 7.2 is about $43,686. The

price of Windows 2000 is about $200, and Red Hat 7.3 is free.

What we can learn from this Project

From this project, we learned a few important lessons.

66

First, we learned how to install and manipulate the commercial DBMS: DB2
Universal Database 7.2 and Oracle 91 and utilities provided by them. For example, we
can use Oracle Database Configuration Assistant to create a database, whereas we
can use DB2 control center to create a new user table space with a different page size.
Second, we leamned how to use Linux crontab to schedule the tasks to run
automatically in the background of the system. Also, we learned how to add a second
hard drive in Linux operating system [5].

Third, we learned how to tune DBMS performance. For example, the project can help
us realize how data block sizes, statistics information, undo table spaces and
temporary table spaces affect DBMS performance.

Finally, this project can help us realize which DBMS has better performance over
which operating systems. The decision about choosing appropriate DBMS on certain
operating systems can be made. Oracle9i is better than DB2 7.3. Linux7.3 is better

than Windows 2000.

67

References

[11 IBM, IBM announces the world’s first 10 terabyte TPC-H benchmark result

December 2002, http://www-3.ibm.com/software/data/highlights/db2leads-tpch.html

[2] Oracle Corporation, Oracle Announces New World Record 3-Terabyte TPC-H
Benchmark, Demonstrates Oracle9i Database Leadership In Running Very Large

Databases, August 2002, http://biz.yahoo.cony/iw/020827/045880.htmi .

[3] TPC Organization, TPC BenchMark™H (decision support) Standard Specification

Reversion 1.5.0, July 2002.

[4] Jing Zhou, Concordia University, Master major repot, Database Performance
Analysis and Tuning: A Comparative Study of TPC-H Benchmark on Oracle and DB2,

March 2003.

[5] Werner Puschitz, 9i Installation on Red Hat Linux 7.1, 7.2, .3 8.0, and on Red Hat

Advanced Server 2.1 http://www.puschitz.com/OracleOnLinux.shtmi#12 .

[6] Kevin Czap and Ian Shields, How to install and configure DB2 for Linux and the Java

Runtime Environment. http://www-106.ibm.com/developerworks/library/l-ss-db2/ .

[7] Oracle Corporation, Oracle9i Database Concepts Release 2 (9.2) March 2002.

[8] Oracle Corporation, Oracle9i Database Administrator's Guide Release 2 (9.2), March

2002.

68

[9] Oracle Corporation, Database Performance Tuning Guide and Reference Release 2

(9.2), October 2002.

[10] Mendel Leo Cooper, Adding a Second IDE Hard Drive to Your System

http://www . linuxgazette.com/issue3&/cooper.himl .

69

Appendices

1. Pricing Summary Report Query (Q1)

This query reports the amount of business that was billed, shipped, and returned.

Business Question

The Pricing Summary Report Query provides a summary pricing report for all lineitems shipped as of a
given date. The date is within 60-120 days of the greatest ship date contained in the database. The query
lists totals for extended price, discounted extended price, discounted extended price plus tax, average
quantity, average extended price, and average discount. These aggregates are grouped be RETURNFALG
and LINESTATUS, and listed in ascending order of RETURNFLAG and LINESTATUS. A count of the
number of linetems in each group is included.

Functional Query Definition

select
1 returnflag,
I linestatus,
sum(l quantity) as sum_qty,
sum(]_extendedprice) as sum_base _price,
sum(l_extendedprice * (1 -1 discount)) as sum_disc_price,
sum(!l_extendedprice * (1 - 1_discount) * (1 +1 tax)) as sum_charge,
avg(l_quantity) as avg_qty,
avg(l extendedprice) as avg_price,
avg(l_discount) as avg_disc,
count(*) as count_order
from
lineitem
where
1 shipdate <= to_date(date '1998-12-01' - interval '104' day (3))
group by
1 returnflag,
1 linestatus
order by
! returnflag,
1 linestatus;

70

2. Minimum Cost Supplier Query (Q2)

This query finds which supplier should be selected to place an order for a given part in a given region.
Business Question

The Minimum Cost Supplier Query finds, in a given region, for each part of a certain type and size, the
supplier who can supply it at minimum cost. If server suppliers in that region offer the desired part type and
size at the same (minimum) cost, the query lists the parts from suppliers with the 100 highest account
balances. For each supplier, the query lists the supplier’s account balance, name and nation; the part’s
number and manufacturer; the supplier’s address, phone number and comment information.

Functional Query Definition
select

s_acctbal,

§ name,

n_name,

p_partkey,

p_mfer,
s address,

s phone,
s_comment
from
part7
supplier,
partsupp,
nation,
region
where
p_partkey = ps_partkey
and s_suppkey = ps_suppkey
and p_size=6
and p_type like '%TIN'
and s_nationkey = n_nationkey
and n_regionkey =r_regionkey
and r name ="'MIDDLE EAST'
and ps_supplycost = (
select
min{ps_supplycost)
from
partsupp,
supplier,
nation,
region
where
p_partkey = ps_partkey
and s _suppkey = ps_suppkey
and s nationkey = n_nationkey
and n_regionkey = r_regionkey
and r pame = 'MIDDLE EAST'
)
and rownum < 101
order by
s _acctbal desc, n name, s name, p partkey;

71

3. Shipping Priority Query (Q3)
This query retrieves the 10 unshipped orders with the highest value.
Business Question

Shipping Priority Query retrieves the shipping priority and potential revenue, defined as the sum of
1 extendedprice * (1-1 discount), of the orders having the largest revenue among those that had not been
shipped as of a given date. Orders are listed in decreasing order of revenue. If more than 10 unshipped
orders exist, only the 10 orders with the largest revenue are listed.

Functional Query Definition

select
1 orderkey,
sum(l_extendedprice * (1 -1 _discount)) as revenue,
o_orderdate,
o_shippriority
from
customer,
orders,
lineitem
where
¢ mktsegment = MACHINERY'
and c¢_custkey = o_custkey
and 1 orderkey = o orderkey
and o_orderdate < to_date (date '1995-03-26")
and | shipdate > to_date (date '1995-03-26")
and rownum < 11
group by
1 orderkey,
o orderdate,
o_shippriority
order by
revenue desc,
o_orderdate;

72

4. Order Priority Checking Query (Q4)

This query determines how well the order priority system is working and gives an assessment of customer
satisfaction.

Business Question

The Order Priority Checking Query counts the number of orders ordered in a given quarter of a given year
in which at least one lineitem was received by the customer later than its committed date. The query lists
the count of such orders for each order priority sorted in ascending priority order.

Functional Query Definition

select
o_orderpriority,
count(*) as order _count
from
orders
where
o_orderdate >= to_date (date '1997-01-01")
and o_orderdate < to_date (date '1997-01-01" + interval '3' month)
and exists (
select
*
from
lineitem
where
1 orderkey = o_orderkey
and] commitdate <1 receiptdate
)
group by
o_orderpriority
order by
o_orderpriority;

73

5. Local Supplier Volume Query (Q5)

This query lists the revenue volume done through local suppliers.

Business Question

Local Supplier Volume Query lists for each nation in a region the revenue volume that resulted from
lineitem transaction in which the customer ordering parts and the supplier filling them were both within
that nation. The query is run in order to determine whether to institute local distribution centers in a given
region. The query considers only parts ordered in a given year. The query displays the nations and revenue
volume in descending order by revenue. Revenue volume for all qualifying lineitems in a particular nation
is defined as sum(l_extendedprice * (1 -1 discount)).

Functional Query Definition

select

n_narme,

sum(l_extendedprice * (1 - 1_discount)) as revenue
from

customer,

orders,

lineitem,

supplier,

nation,

region
where

¢ _custkey = o _custkey

and | orderkey = o_orderkey

and 1 suppkey = s _suppkey

and ¢_nationkey = s_nationkey

and s_nationkey = n_nationkey

and n_regionkey = r_regionkey

and r_name = 'MIDDLE EAST'

and o_orderdate >= to_date (date '1993-01-01")

and o_orderdate < to_date (date '1993-01-01' + interval '1’ year)
group by

n_name
order by

revemie desc;

74

6. Forecasting Revenue Change Query ((6)

This query quantifies the amount of revenue increase that would have resulted from eliminating certain
company wide discounts in a given percentage range in a given year. Asking this type of “what if” query
can be used to look for ways to increase revenues.

Business Question

Forecasting Revenue Change Query considers all the lineitems shipped in a given year with discounts
between DISCOUNT-0.01 and DISCOUNT=+0.01. The query lists the amount by which the total revenue
would have increased if these increase is equal to the sum of (1 extendedprice * 1 discount) for all
lineitems with discounts and quantities in the qualifying range.

Functional Query Definition

select
sum(l extendedprice * 1 discount) as revenue
from
lineitem
where
1 shipdate >=to_date (date '1993-01-01")
and 1 shipdate <to_date (date '1993-01-01' + interval 'l' year)
and] discount between 0.06 - 0.01 and 0.06 + 0.01
and | quantity < 24;

75

7. Volume Shipping Query (Q7)

This query determines the value of goods shipped between certain nations to help in the re-negotiation of
shipping contracts.

Business Question

Volume Shipping Query finds, for two given nations, the gross discounted revenues derived from lineitems
in which parts were shipped from a supplier in either nation to a customer in the other nation during 1995
and 1996. The query lists the supplier nation, the customer nation, the year, and the revenue from
shipments that took place in that year. The query orders the answer by Supplier nation, Customer nation,
and year (all ascending).

Functional Query Definition
select
supp_nation,
cust_nation,
1 year,
sum(volume) as revenue
from
(
select
nl.n_name as supp_nation,
n2.n name as cust_nation,
extract(year from 1 shipdate) as | year,
1 extendedprice * (1 - 1 _discount) as volume
from
supplier,
lineitem,
orders,
customer,
nation nl,
nation n2
where
s suppkey =1 suppkey
and o_orderkey =1 orderkey
and ¢ _custkey = o_custkey
and s nationkey = nl.n_nationkey
and ¢ nationkey = n2.n_nationkey
and (
(nl.n_name ="'KENYA'and n2.n_name ="EGYPT')
or
(nl.n_name ="EGYPT and n2.n_name = 'KENYA')

)
and 1 shipdate between to_date (date '1995-01-01") and to_date (date '1996-12-31")
) shipping
group by
supp_nation,
cust_nation,
1 year
order by
supp_nation,
cust_nation,
1 year;

76

8. National Market Share Query (Q8)

This query determines how the market share of a given nation within a given region has changed over two
years for a given part type.

Business Question

The market share for a given nation within a given region is defined as the fraction of the revenue, the sum
of [l extendedprice * (1 - 1 discount)], from the products of a specified type in that region that was
supplied by suppliers from the given nation. The query determines this for the years 1995 and 1996
presented in this year.

Functional Query Definition

select
o_year,
sum(case
when nation = 'EGYPT’ then volume
else 0
end) / sum(volume) as mkt_share
from
(
select
extract(year from o_orderdate) as o_year,
1 extendedprice * (1 - 1 discount) as volume,
n2.n name as nation
from
pa‘rt:
supplier,
lineitem,
orders,
customer,
nationnl,
nation n2,
region
where
p_partkey = 1 partkey
and s_suppkey =1 suppkey
and 1 orderkey = o_orderkey
and o_custkey = ¢_custkey
and ¢_nationkey = nl.n_nationkey
and nl.n_regionkey =r regionkey
and r_name = 'MIDDLE EAST'
and s nationkey = n2.n_nationkey
and o_orderdate between to_date (date '1995-01-01") and to_date (date '1996-12-31")
and p_type = MEDIUM BRUSHED NICKEL'
) all_nations
group by
o_year
order by
o _year;

77

9. Product Type Profit Measure Query (Q9)

This Query determines how much profit is made on a given line of parts, broken out by supplier nation and
year.

Business Question

Product Type Profit Measure Query finds, for each nation and each year, the profit for all parts ordered in
that year that contain a specified substring in their names and that were filled by a supplier in that nation.
The profit is defined as the sum of [1_extendedprice * (1 - 1_discount) - ps_supplycost * 1 _quantity] for all
lineitems describing part in the specified line. The query lists the nations in ascending alphabetical order
and, for each nation, the year and profit in descending order by year (most recent first).

Functional Query Definition

select
nation,
0 _year,
sum{amount) as sum_profit
from
(
select
n_name as nation,
extract(year from o_orderdate) as o_year,
1 extendedprice * (1 -1 discount) - ps_supplycost * 1 quantity as amount
from
part’
supplier,
lineitem,
partsupp,
orders,
nation
where
s _suppkey =1 suppkey
and ps_suppkey =1 _suppkey
and ps_partkey =1 partkey
and p_partkey =1 partkey
and o_orderkey = | orderkey
and s_nationkey = n_nationkey
and p_name like "%light%'
) profit
group by
nation,
0_year
order by
nation,
o_year desc;

78

10. Returned Item Reporting Query (Q10)

The query identifies customers who might be having problems with the parts that are shipped to them.
Business Question

Returned Item Reporting Query finds the top 20 customers, in terms of their effect on lost revenue for a
given quarter, who have returned part. The query considers only parts that were ordered in the specified
quarter. The query lists the customer’s name, address, nation, phone number, account balance, comment
information and revenue lost. The customers are listed in descending order or lost revenue. Revenue lost is
defined as sum(l_extendedprice * (1 -1 discount)) for all qualifying lineitems.

Functional Query Definition

select
¢_custkey,
c_name,
sum(l_extendedprice * (1 -1 discount)) as revenue,
¢_acctbal,
n_name,
¢_address,
¢_phone,
¢ _comment
from
customer,
orders,
lineitem,
nation
where
¢ _custkey = o_custkey
and] orderkey= o orderkey
and o_orderdate >= to_date(date '1993-11-01")
and o_orderdate < to_date(date '1993-11-01" + interval '3' month)
and ! returnflag = 'R’
and ¢_nationkey = n_nationkey
and rownum < 21
group by
c_custkey,
¢_name,
¢_acctbal,
¢ _phone,
n_name,
¢_address,
¢ _comment
order by
revenue desc;

79

11. Important Stock Identification Query (Q11)

This query finds the most important subset of suppliers’ stock in a given nation.
Business Question

Important Stock Identification Query finds, from scanning the available stock of suppliers in a given nation,
all the parts that represent a significant percentage of the total value of all available parts. The query
displays the part number and the value of those part in descending order of value.

Functional Query Definition

select

ps_partkey,

sum(ps_supplycost * ps_availqty) as value
from

partsupp,

supplier,

nation
where

ps_suppkey = s_suppkey

and s _nationkey = n_nationkey

and n_name = 'UNITED KINGDOM'

group by
ps_partkey having
sum(ps_supplycost * ps_availqty) > (
select
sum(ps_supplycost * ps_availqty) * 0.0001000000
from
partsupp,
supplier,
nation
where
ps_suppkey = s_suppkey
and s _nationkey = n_nationkey
and n_name = "UNITED KINGDOM'
)
order by
value desc;

80

12. Shipping Modes and Order Priority Query (Q12)

This query determines whether selecting less expensive modes of shipping is negatively affecting the
critical-priority orders by causing more parts to be received by customers after the committed date.

Business Question

Shipping Modes and Order Priority Query counts, by ship mode, for lineitems actually received by
customers in a given year, the number of lineitems belonging to orders for which the 1 receiptdate exceeds
the 1 commitdate for tow different specified ship modes. Only lineitems that were actually shipped before
the 1 commitdate are considered. The late lineitems are partitioned into tow groups, those with priority
URGENT or HIGH, and those with a priority other than URGENT or HIGH.

Functional Query Definition

select
1 shipmode,
sum(case
when o_orderpriority = '1-URGENT’
or o_orderpriority = "2-HIGH'
then 1
else 0
end) as high line count,
sum{case
when o_orderpriority <> '1-URGENT'
and o_orderpriority <> "2-HIGH'
then 1
else 0
end) as low line count
from
orders,
lineitem
where
o_orderkey =1 orderkey
and 1_shipmode in (MAIL', 'FOB")
and I commitdate <1 receiptdate
and 1 shipdate <1 commitdate
and 1 receiptdate >= to_date (date '1997-01-01")
and 1 receiptdate <to_date (date '1997-01-01' + interval 'l’ year)
group by
1 shipmode
order by
1 shipmode;

81

13. Customer Distribution Query (Q13)

This query seeks relationships between customers and the size of their orders.
Business Question

Customer Distribution Query determines the distribution of customers by the number of orders they have
made, including customers who have no record of orders, past or present. It counts and reports how many
customers have no orders, how many have 1, 2, 3, etc. A check is made to ensure that the orders counted do
not fall into one of several special categories of orders. Special categories are identified in the order
comment column by looking for a particular pattern.

Functional Query Definition

select
¢ _count,
count(*) as custdist
from
(
select
¢ _custkey,
count(o_orderkey) as ¢_count
from
customer, orders -- left outer join orders on
where
c_custkey(+) = o_custkey
and o_comment not like 'Younusual%deposits%'
group by
¢_custkey
) -- ¢_orders (c_custkey, ¢_count)
group by
¢ _count
order by

custdist desc,
¢_count desc;

82

14. Promotion Effect Query (Q14)

This query monitors the market response to a promotion such as TV advertisements or a special campaign.

Business Question

Promotion Effect Query determines what percentage of the revenue in a given year and month was derived
from promotional parts. The query considers only parts actually shipped in that month and gives the
percentage. Revenue is defined as (I extendedprice * (1 -1 discount)).

Functional Query Definition

select
100.00 * sum(case
when p_type like PROMO%'
then ! extendedprice * (1 - 1_discount)
else 0
end) / sum(l extendedprice * (1 - 1 _discount)) as promo_revenue
from
lineitem,
part
where
1 partkey = p_partkey
and 1 shipdate >=to_date (date '1996-11-01")
and ! shipdate <to date (date '1996-11-01' + interval 'l' monthy);

83

15. Top Supplier Query (Q15)

This query determines the top supplier so it can be rewarded, given more business, or identified for special
recognition.

Business Question

Top Supplier Query finds the supplier who contributed the most to the overall revenue for parts shipped
during a given quarter of a given year. In case of a tie, the query lists all suppliers whose contribution was
equal to the maximum, presented in supplier number order.

Functional Query Definition

create view revenue0 (supplier no, total revenue) as

select

1 suppkey,

sum(l_extendedprice * (1 - 1_discount))
from

lineitem
where

1 shipdate >=to_date (date '1997-03-01")

and | shipdate < to_date (datc '1997-03-01' + interval '3' month)
group by

1 suppkey;

-- 'cauxitools\out\appendix\stream\15.0'
select

s_suppkey,

s_name,

s_address,

s_phone,

total revenue
from

supplier,

revenueQ
where

s_suppkey = supplier no

and total revenue = (

select
max(total_revenue)
from
revenueQ

)
order by

s_suppkey;

drop view revenue(;

84

16. Part/Supplier Relationship Query (Q16)

This query finds out how many suppliers can supply parts with given attributes. It might be used, for
example, to determine whether there is a sufficient number of suppliers for heavily ordered parts.

Business Question

Part/Supplier Relationship Query counts the number of suppliers who can supply parts that satisfy a
particular customer’s requirements. The customer is interested in parts of eight different sizes as long as
they are not of a given type, not of a given brand, and not from a supplier who has had complaints
registered at the Better Business Bureau. Results must be presented in descending count and ascending
band, type, and size.

Functional Query Definition

select
p_brand,
p_type,
p_size,
couni(distinct ps_suppkey) as supplier cnt
from
partsupp,
part
where
p_partkey = ps_partkey
and p_brand <> 'Brand#23'
and p_type not like ' PROMO BURNISHED%'
and p sizein (33,9, 35, 38,20, 13,22, 14)
and ps_suppkey not in (
select
s_suppkey
from
supplier
where
s comment like '%Customer%Complaints%'
)
group by
p_brand,
p_type,
p_size
order by
supplier_cnt desc,
p_brand,
p_type,

p_size;

85

17. Small-Quantity-Order Revenue Query (Q17)

This query determines how much average yearly revenue would be lost if orders were no longer filled for
small quantities of certain parts. This may reduce overhead expenses by concentrating sales on larger
shipments.

Business Question

Small-Quantity-Order Revenue Query considers parts of a given brand and with a given container type and
determines the average lineitem quantity of such parts ordered for all orders (past and pending) in the 7-
year database. What would be the average yearly gross (undiscounted) loss in revenue if orders for these
parts with a quantity of less than 20% of this average were no longer taken?

Functienal Query Definition

select
sum(l extendedprice) / 7.0 as avg_yearly
from
lineitem,
part
where
p_partkey =1 partkey
and p_brand = 'Brand#35'
and p_contamer = "JUMBO BOX'
and 1 quantity < (
select
0.2 * avg(l_quantity)
from
lineitem
where
1 partkey = p_partkey

86

18. Large Volume Customer Query (Q18)

This query ranks customers based on their having placed a large quantity order. Large quantity orders are
defined as those orders whose total quantity 1s above a certain level.

Business Question

Large Volume Customer Query fids a list of the top 100 customers who have ever placed large quantity

orders. The query lists customer name, customer key, the order key, date and total price and the quantity for
the order.

Functional Query Definition

select
¢ _name,
c_custkey,
o_orderkey,
o_orderdate,
o_totalprice,
sum(l quantity)
from
customer,
orders,
lineitem
where
o_orderkey in (
select
1 orderkey
from
lineitem
group by
1 orderkey having
sum(l_quantity) > 315
)
and ¢_custkey = o_custkey
and o_orderkey =1 orderkey
and rownum < 101
group by
¢_name,
c_custkey,
o_orderkey,
o_orderdate,
o totalprice
order by
o_totalprice desc,
o_orderdate;

87

19. Discounted Revenue Query (Q19)

Discounted Revenue Query reports the gross discounted revenue attributed to the sale of selected parts
handled in a particular manner. This query is an example of code such as might be produced
programmatically be a data mining tool.

Business Question
Discounted Revenue Query finds the gross discounted revenue for all orders for three different types of
parts that were shipped by air or delivered in person. Parts are selected based on the combination of specific

brands, a list of container, and a range of sizes.

Functional Query Definition

select
sum(]l_extendedprice® (1 - 1 _discount)) as revenue
from
lineitem,
part
where
(
p partkey =1 partkey
and p_brand = Brand#41'
and p_container in ('SM CASE, 'SM BOX', 'SM PACK', 'SM PKG")
and 1 quantity >= 5 and 1 quantity <=5+ 10
and p_size between 1 and 5
and 1_shipmode in (AIR', 'AIR REG")
and 1_shipinstruct = 'DELIVER IN PERSON'
)
or
(
p_partkey =1 partkey
and p_brand = Brand#45'
and p_container in (MED BAG', ' MED BOX', 'MED PKG', MED PACK)
and 1 guantity >= 13 and 1 quantity <= 13 + 10
and p_size between 1 and 10
and] shipmode in (AIR’, 'AIR REG")
and 1_shipinstruct = 'DELIVER IN PERSON'
)
or
(
p_partkey = 1 partkey
and p_brand = 'Brand#22'
and p_container in (LG CASE', LG BOX', 'LG PACK!, .G PKG")
and] quantity >= 20 and 1 quantity <= 20+ 10
and p_size between 1 and 15
and 1_shipmode in (AIR’, 'AIR REG")
and 1 shipinstruct = "DELIVER IN PERSON'
);

88

20. Potential Part Promotion Query (Q20)

Potential Part Promotion Query identifies suppliers in a particular nation having selected parts that may be
candidates for a promotional offer.

Business Question
Potential Part Promotion Query identifies suppliers who have an excess of a given part available; an excess
is defined to be more than 50% of the parts like the given part that the supplier shipped in a given year for a

given nation. Only parts whose names share a certain naming convention are considered.

Functional Query Definition

select
$_name,
s address
from
supplier,
nation
where
s_suppkey in (
select
ps_suppkey
from
partsupp
where
ps_partkey in (
select
p_partkey
from
part
where
p_name like 'cornflower%'
)
and ps_availgty > (
select
0.5 * sum({l quantity)
from
lineitem
where
1 partkey = ps_partkey
and 1 _suppkey = ps_suppkey
and 1 shipdate >=to_date (date '1996-01-01")
and 1 shipdate <to_date (date '1996-01-01' + interval '1' year)
)
)

and s_nationkey = n_nationkey

and o _name = "VIETNAM'
order by

$_name;

89

21. Suppliers Who Kept Orders Waiting Query (Q21)

This query identifies certain suppliers who were not able to ship required parts in a timely manner.
Business Question

Suppliers Who Kept Orders Waiting Query identifies suppliers, for a given nation, whose product was part
of a multi-supplier order (with current status of ‘F”) where they were the only supplier who failed to meet
the committed delivery date.

Funetional Query Definition

select
$ name,
count(*) as numwait
from
supplier,
lineitem 11,
orders,
nation
where
s suppkey = 11.1 suppkey
and o_orderkey =11.1 orderkey
and o_orderstatus = 'F
and 11.1 receiptdate >11.1 commitdate
and exists (
select
%
from
lineitem 12
where
12.1 orderkey = 11.1 orderkey
and 12.1 suppkey <>11.1 suppkey
)
and not exists (
select
£
from
lineitem 13
where
13.1 orderkey=11.1 orderkey
and 13.1 suppkey <> 11.1 suppkey
and 13.1_receiptdate > 13.1_commitdate
)
and s_nationkey = n_nationkey
and n_name = "PERU'
and rownum < 101
group by
S _name
order by
numwait desc,
§_name;

90

22. Global Sales Opportunity Query (Q22)

Global Sales Opportunity Query identifies geographies where there are customers who may be likely to
make a purchase.

Business Question

Global Sales Opportunity Query counts how many customers within a specific range of country codes have
not placed orders for 7 years but who have a greater than average “positive” account balance. It also
reflects the magnitude of that balance. Country code is defined as the first two characters of ¢_phone.

Functional Query Definition

select
cntrycode,
count(*) as numcust,
sum(c_acctbal) as totacctbal

from
(
select
substr(c_phone, 1, 2) as cntrycode,
¢ _acctbal
from
customer
where
substr(c_phone, 1, 2) in
('15','19','16', 20", '14", 22", '10Y)
and ¢_acctbal > (
select
avg(c_acctbal)
from
customer
where
c¢_acctbal > 0.00
and substr{c_phone, 1, 2) in
('15','19°, '16', 20", '14','22','10")
)
and not exists (
select
*
from
orders
where
o custkey = ¢ _custkey
)
) custsale
group by
cntrycode
order by
cntrycode;

91

Glossary

TPC: The TPC is a non-profit corporation founded to define transaction processing and
database benchmarks and to disseminate objective, verifiable TPC performance data to

the industry.

TPC-H : TPC-H is an ad-hoc, decision support benchmark.
RF: Refresh Function.

DBMS: Database Management System.

RDBMS: Relational Database Management System.
DBA: Database Administrator.

DBCA: Database Configuration Assistant.

GUI: graphical user interface.

SQL: Structure Query Language.

OLTP: Online Transaction Processing.

OLAP: Online Analytical Processing.

OS: Operating System.

RAM: Random Access Memory.

92

