GENERIC C++ IMPLEMENTATIONS OF
PAIRWISE SEQUENCE ALIGNMENT:
INSTANTIATION FOR GLOBAL
ALIGNMENT

Yan Zhang

A Major Report
In

The Department
Of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

August 2003

© Yan Zhang, 2003

National Library Bibliotheque nationale

of Canada du Canada

Acquisitions and Acquisisitons et
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Canada

Your file Votre référence
ISBN: 0-612-83924-9
Our file Notre référence
ISBN: 0-612-83924-9

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the major report prepared

By: Yan Zhang
Entitled: Generic C++4 Implementation of Pairwise Sequence

Alignment: Instantiation for Global Alignment

and submitted in partial fulfillment of the requirements for the degree of
Master of Computer Science

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining commitee:

Jﬁ@@f) AAA OALT" %)\,\/— Examiner
/% fde

roproved /- O

Chair of Department or Graduate Program Director

20

s Dr Nabil Esmail, Dean

Faculty of Engineering and Computer Science

Supervisor

1

ABSTRACT

Generic C++ Implementation of Pairwise Sequence Alignment:
instantiation for global alignment

Yan Zhang

Sequence comparison and alignment is a central problem in computational biology.
Pairwise sequence alignment of protein or nucleic acid sequences is the foundation upon
which most bioinformatics tools are built. EMBOSS has several pairwise alignment

algorithms implemented in C, but they are quite dependable on the algorithms.

Recently, generic programming has emerged as a programming paradigm capable of
providing high levels of performance and re-usability in the presence of programming
abstractions. Generic programming is about representing domains as collections of highly
gencfal and abstract components, which can be combined in vast numbers of ways to

yield very efficient concrete programs.

Pairwise alignment algorithms are optimization problems; from the view of a design, all
the pairwise alignment shares the most common entities.
This report designs and implements an application for pairwise Sequence Alignment

using a generic programming approach in C++. Object-oriented programming principles

1

are used for design; generic parameter and parameterized components mechanism in the
C++ lanuage are used for implementing this application, from which user can derive
instantiations for any pairwise alignment algorithms of interest, this part can be
considered as a framework in this application. Semi-global alignment algorithm is

instantiated in this project.

This implementation offers the possibility for the programmer to instantiate any kind of

pairwise alignment algorithm with little efforts and basic knowledge of the C++

language. The implementation provides both robustness and re-usability properties.

iii

ACKNOWLEDGEMENTS

[wish to thank all those who made the final realization of this major report possible. It is
not possible to mention all their names, however I would like to express my special

gratitude to the following contributors.

I am pleased to express my gratitude to Prof. Greg Butler, who encouraged my interest in
the subject of generic C++ implementation of Bioinformatics Algorithms, for acceptance
to be my supervisor, his technical advise, constant help and critical remarks through this
work. He patiently guided me with his knowledge about software technology for complex
software systems, especially on software architectures, object-oriented design, and

software reuse.

I am greatly indebted to my partner, Xiao Yang, in making our shared major report into
reality. Without her input, persistence, help and collaboration, this would not have been
possible. This report is dedicated to my family for their help, love and encouragement to
achieve excellence. The author’s sincere thanks are due to the support by my company,

Motorola Software Center, Montreal, Quebec, Canada.

iv

Contents

LIST OF FIGURES ... irrerrcrecnnencssesssossisssstssssssssssssssstsssssssssssssssssasssssnssssasssssnssssas VII
LIST OF TABLES ..cciitrntiiinnniicnnisnnccssnnicssnicsnsisssassssssnssssssessassssassssssssasssssssssassssassanss VIII
1 INTRODUCTION...ceniriinnicsssancsssarescssssssassssssasssssssssssessssasssaennas 1
I.1 BACKGROUND......cctiiiieeiittrretiesseasnnrerreeeeasannereeretareessasatetseartessenssesanmnnresaanaaeeearas 1
1.2 OBJECTIVE OF STUDY ...vtteiiteieitreenueimaireesetesssineesamessnnesssueessansesasssasessessnsssasensons 3
1.3 PROJECT SCOPE....cccitiiiiiiiiieeiieesiee et esiteesseeeesteeessaeasseeeesanneesanseessseasassrsessssenes 4
1.4 JOINT EFFORT ..cciiieiiiiiie ettt e e s tte e e et ve e s esnsae e e e s nsss e eaaanaaaaan sssansens 5
1.5 OUTLINE OF THE REPORTecceiieiiititieeesiaaieeeeeeeeeeeesaeaanteeeeaeeeeasesaaaamsnneaaaasaseseanans 5

2 PAIRWISE SEQUENCE ALIGNMENT. cesasresscnstnsassnenns 6
2.1 SEQUENCE COMPARISON FUNDAMENTALSuuiiiiiiniiiiiiiniisieseisieeeaeeeaeisaeaneeeeeenns 6
2.1.1 TREFOGUCTION.cccovvveeeeeeeeeeeceriee e sttt eeeesctre e e e e s e e e e ssrabe e e et enesseesanan 6
2.1.2 Sequence Alignment vs. Similarity Searching...........cc.ccccooeevevvecveicvneenennn 7
2.1.3 Homology vs. SImIlarity...........cccoooiviiiiiiiiiiiiiiieceeee e scia e 7
2.1.4 Similarity vS. DISIANCEccoooueeveeiiiiiiieiieiiiiseeieeeseveaneesraasiaasnnsae e anse s 8

2.2 WEIGHT MATRICES FOR SEQUENCE SIMILARITY SCORINGcoceceviniieaecnnnnnenn. 9
2.2.1 The Scoring Model..............cccoouvuveioieiiiieiriiiesineesiieaaseee e et eaesvaesnes 9
2.2.2 The SUBSHIULION MALTICESeveveeeeeeeeeeeeeeeeeeeeeeeeeeeee e e s sreeesesereras 10

2.3 REALISTIC GAP MODELSotiiiiiiiiiiieiie ettt e eeeieve e sttee e e ere e e eeve e eamareae e 14
2.4 DYNAMIC PROGRAMMINGcvvvieiiiiiiiraareinsaesnereeaansnneeesanerneaesensnreesasareeesesesonns 16
24.1 Overview of Dynamic Programmingccccceececeveriseseieesiunesssenenanne 16
242 Characteristics of Dynamic Programming Problems................c.............. 18

2.5 VARIATIONS OF PAIRWISE ALIGNMENTuuvviiiriiiteeeieiieieieeeteeeeeeeeeeeseeeeneeeeneeaens 19
2.5.1 Pairwise Alignment AIGOFItRIM.c.ccociviievveeciieeiieriieeeee e, 19
2.5.2 Global Alignment: Needleman — Wunsch algorithmc...c.......... 20
2.5.3 Semi-global Alignment Algorithm implemented in the report.................. 24

3 GENERIC PROGRAMMING ...ccorvenvannsanccercsssessascsonssossessassonse 26
3.1 GENERIC PROGRAMMING AND STL......ccociiiiiiiiiiiiiiiiiniiecin e e 26
3.1.1 ALGOTTIIAIMS ...ttt se st e st s e st ere s sreesaneeaeen 27
3.1.2 Y [722 47 1] o SR SO UPPPPROPRRR 27
3.1.3 AAPDIOTS ..ottt ettt s s te s sasts e teenteene e 29
3.14 FURCIOTS oottt te e e sta e e e eae e saaa s erte e e s e aneas 29

3.2 GENERICITY AND POLYMORPHISM ...evviviiiieiiiiinieeetetseeeeeeeeeeeeeeeeeeeeesaneseasssaneseeses 29
3.2.1 Parametric polymorphismccccovveeviiieeoniinnniiirieee e, 29
3.2.2 Subtype polymoOrpRISHL............cccooiiiiviiiiiiiiiiiieit et ceveesea et e e annes 30
3.2.3 C++ support for both polymOPRISHL............ccoreeiivieaiieeicrieereeeeeeeeeeene 31

33 USING GENERIC PROGRAMMING FOR APPLICATION DEVELOPMENT................... 31

4 GENERIC C++ IMPLEMENTATION 37
4.1 SYSTEM DESIGN INUMLooiiiiiiiiiiiie e 38
4.2 DESIGN AND C4++ IMPLEMENTATIONoctviiiiiireeetieeeneeeeeneeeeeaieeeeereeeeseeenneeenns 39

4.3 AN INSTANTIATION: SEMI-GLOBAL ALIGNMENT ALGORITHM.......cccuieiivivnnnirnnnnen 42

5§ EXPERIMENTAL RESULTS.oceereceecsvsvnnsrsassass .. 45
5.1 QUTLINE OF THE EXPERIMENTS ..ceetviiiiitieeieiiietetiterteeeeeeesteeeeseerenressnnannsnnnensnsenens 45
52 EXPERIMENT DATA ..ottt ettt et et eae s et et tee st eraseeeseetrbaneeeaasaereanaaaaees 45
53 RESULT PRESENTATIONvvvettteeetee et eeee e e et eeeeteeeeetet e e e e e e ea e e e teeeteteeeaeeeeeaaeesnnnnns 46

5.3.1 Output: Hba_human and Hba_Ruman....................cccoovviiininvnniinnnnn. 46
5.3.2 Output: Rattus and CYDPFIRUScccooiiviioeiciiiiiiiiiiiiiiciiicnc e 47
5.3.3 Output: Didelphis and DaSYPUS............cccccoceuevveiiiiiieniiniiineiieniineceienas 47
54 RESULT COMPARISON WITH NEEDLE APPLICATION INEMBOSS ... 49
54.1 Output: Hba_human and Hba_human....................ccccccoovviiiininniinnnnnn, 49
54.2 Output: Rattus and CYPIIRUSc..ccceeeveiiiiiiiiiiniianieininenieeiie e 49
54.3 Output: Didelphis and DaSYPUS...........c.ccoeeviieveviiinciiiieinieiieniienenaneenne 50

6 USER MANUAL . w52
6.1 FUNCTION USAGE ...ttt a e neaa s 52

7 CONCLUSIONS AND RECOMMENDATIONcvrerreresssvssrasesesseesasssassassasance 54
7.1 CONCLUSION. ... eetveeeeeee e e eeeteteet et aresaoaesssseeseusasaresssesrttrstannsasssessrnaaessseesseannenesens 54
7.2 RECOMMENDATIONS FOR FUTURE WORKS: ...oveiiiiiiiiiieiieee e eeeevm e 55

REFERENCES . .citttteetetctseereeststsensansssssssssssssssssssassssasssssssssesssasssssesssssassesssssssassssssssssssssasane 57

vi

LIST OF FIGURES

FIGURE 1: FINDING THE SCORE OF EACH CELL IN THE MATRIXuuuveeeeeeeeeeeeeeeeeeeiaeaeesaanans 21
FIGURE 2: AN EXAMPLE OF NEEDLEMAN — WUNSCH ALGORITHM........cvevvveeeeeeeeeeeeesenenns 22
FIGURE 3: DESIGN AN APPLICATION AS A GENERIC PROGRAMuuuiveeeeesceiireseeeeseeeseeeenns 33
FIGURE 4: DESIGN AN APPLICATION AS AN OBJECT-ORIENTED PROGRAM THAT USE THE
GENERIC COMPONENTS (2A) ..ccitttiiuieienieeniireniresiiseeessnresseneseinssesssnsneeesesessseeseensness 35
FIGURE 5: DESIGN AN APPLICATION AS AN OBJECT-ORIENTED PROGRAM THAT USE THE
GENERIC COMPONENTS (2B) ..cccuvttiittiniiariinreaireiinseeeasreesereseseoeseeeseeessoseeessneesennnees 36
FIGURE 6: CLASS DIAGRAM IN UMLL.......oiiiiiiiiiiicc e a e e e an 38
FIGURE 7: A SAMPLE OUTPUT FROM NEEDLE APPLICATION INEMBOSScovvooevee. 49
FIGURE 8: A SAMPLE SESSION WITH NEEDLEMAN-WUNSCH ALGORITHMceoorveeeeennnn.. 52

vii

LIiST OF TABLES

TABLE | THE LOG ODDS MATRIX FOR PAM250 (MULTIPLIED BY 10) .ccooooiiiiiiiiiiiiece,
TABLE 2 THE LOG ODDS MATRIX FOR BLOSUMG2cccviiiiiiiiiiie e

viil

. Introduction

1.1 Background

Bioinformatics has never been as popular as today. The genomic revolution is closely
linked with advances in computer science. Each genome project results in a rapid
collection of data in digital form, whose meaning is left for later interpretation.
Computers not only store the data, but also are essential for their interpretation. Problems
such as gene identification and expression, RNA and protein folding and structure

determination, and metabolic pathway analysis carry their own computational demands

9]

Today bioinformatics is an applied science. We use computer programs to make
inferences from the data archives of modern molecular biology, to make connections

among them, and to derive useful and interesting predictions.

Finding differences between sequences is often equivalent to finding similarities between
these sequences. For example, if edit operations are limited to insertions and deletions
(no substitutions), the edit distance problem is equivalent to the Longest Common
Subsequence (LCS) Problem. Although the LCS Problem captures most algorithmic
aspects of sequence comparison, biologists prefer using alignments for DNA and protein

sequence comparison [17].

Sequence alignment is a method to inferring homology and function. In a very real sense,
any alignment between two or more nucleotide or amino acid sequences represents an
explicit hypothesis regarding the evolutionary history of those sequences. As a direct
result, comparisons of related protein and nucleotide sequences have facilitated many
recent advances in the understanding of the information content and function of genetic
sequences. For this reason, techniques for aligning and comparing sequences, and for
searching sequence databases for similar sequences, have become cornerstones of

bioinformatics [12].

In the early papers on sequence alignment, scientists attempted to find the similarity
between entire strings V and W, i.e., global alignment. Needleman and Wunsch [15]
developed the most basic algorithm to align two sequences in 1970. The algorithm is a
simple and beautiful way to find an alignment that maximizes a particular score. This is
meaningful for comparisons between members of the same protein family. In many
biological applications, the score of alignment between sub-strings of V and W may be
larger than the score of alignment between the entire strings. This problem is known as
the local alignment problem. Smith and Waterman [18] proposed a clever modification of

dynamic programming that solves the local alignment problem.

A wide range of software including both programs directly related to compute sequence
alignments of biological sequences and utility programs is developed in recent years and
available on the Internet. Many suites of software are now available that present

integrated sets of tools for sequence analysis. GCG is used by molecular biologists

worldwide for comprehensive sequence analysis, which is based on published algorithms
from the fields of mathematical and computational biology. But GCG is commercial and
very expensive. Alternative software to GCG, EMBOSS (The European Molecular
Biology Open Software Suite) is a new, free Open Source software analysis package
specially developed for the needs of the molecular biology user community. The software
automatically copes with data in a variety of formats and even allows for transparent
retrieval of sequence data from the web. Also, as extensive libraries are provided with the
package, it is a platform to allow other scientists to develop and release software in the
true open source spirit. EMBOSS also integrates a range of currently available packages
and tools for sequence analysis into a seamless whole. EMBOSS breaks the historical

trend towards commercial software packages.

1.2 Objective of Study

Although, there are already several pairwise alignment algorithm have been implemented
in C in EMBOSS, all of them are quite dependable on the algorithm. These approaches
have, at least two drawbacks. First, one has to implement method from scratch for any
pairwise alignment algorithm of interest. Second, it is difficult to introduce even small

changes in the code since it would require the modification of most of the

implementation.

This project designs and implements a generic framework in C++ for pairwise
alignments. The motivation for this project is two fold: first, to enable the user to
instantiate this framework for any kind of pairwise alignment algorithm with little efforts
by re-using several components, second, to give flexibility at implementing the methods.
To achieve this property, this application is carefully designed by identifying the
common entities of pairwise alignment method and, of course, due to generic

programming technology.

1.3 Project Scope

Prof. G. Butler supervised the research work for this project. The work-study was started
in September 2002. The procedure to develop this project is structured in the following
way:
1. What is bioinformatics? Especially in understanding the basic concepts of this
new applied science.
2. Focus on Pairwise sequence alignment algorithms. Searching and reading papers
and books on this area.
3. Understanding the generic programming.
4. Analyze and refine the basic requirement for this project. Exploring the EMBOSS
libraries.
5. Project design, source coding in C++ by using template to with special emphasis
on generic library classes.

6. Integrate the program and do system testing.

7. Benchmark testing and result analysis.

8. A deliverable project package with manual, sample protein sequence file and test
results.

9. Make a conclusion for this research work and provide recommendations for future

works.

1.4 Joint Effort

This project is a joint project, is completed by cooperating with Xiao Yang. We share the
understanding of Biochemistic domain technology and discussion on the methodology of
object-oriented programming and generic programming. We worked together in
following components of this project:

Framework design and implementation

Objective function common interface design
Following contents may overlap in our major report:

Design and implementation of Framework

Experiment data

Part of conclusion and recommendation for the future job

We implement global alignment algorithm and local alignment separately.

1.5 Outline of the report

The organization of this report is as follows: Chapter 2 reviews the Pairwise Sequence

Alignment. Chapter 3 describes the Generic Programming mechanism used in this report.

.

Chapter 4 covers design and implementation of this application with object-oriented

design methods and C++ generic mechanisms. Chapter 5 presents the experimental
results. Chapter 6 briefly describes this application function usage. Finally, Chapter 7

presents the conclusion of the report and suggests future works.

2 Pairwise Sequence Alignment

2.1 Sequence Comparison Fundamentals

2.1.1 Introduction

In molecular biology, proteins and DNA can be similar with respect to their function,
their structure, or their primary sequence of amino or nucleic acids. The general rule is
that sequence determines shape, and shape determines function. So when we study
sequence similarity, we eventually hope to 1) discover or validate similarity in shape and
function (assign functions to unknown proteins), 2) determine relatedness of organisms,
3) identify structurally, functionally, and evolutionally similarities and 4) make
predictions about the 3D structure. Since similarity may be an indicator of homology, it

provides some insight into function or gene identification.

Sequence comparison and alignment is a central problem in computational biology. The
most basic sequence analysis task is to ask if two sequences are related. For example, it’s
generally accepted that if two sequences are in alignment, part or the entire pattern of
nucleotides or amino acids match, then they are similar and may be homologous. Another
heuristic is that if the sequence of a protein or other molecule significantly matches the
sequence of a protein with a known structure and function, then the molecules may share

structure and function.

2.1.2 Sequence Alignment vs. Similarity Searching

Sequence alignment and similarity searching are widely employed in the sequence
analysis task, but they focus on the different aspects of sequence analysis. An alignment
between two sequences is simply a pairwise match between the characters of each
sequence. A true alignment of nucleotides or amino acid sequences is one that reflects the
evolutionary relationship between two or more sequences that share a common ancestor.
So Sequence alignment is a search for a consensus sequence. As a result, it produces a
score, but the desired result is the sequence. On the other hand, similarity searching such
as BLAST, FASTA and SSEARCH, is to search for homologies in order to elucidate the
function of an unknown protein. At the end, it produces alignments, but the desired result

is the score.

2.1.3 Homology vs. Similarity

All of the patterns we are trying to find in biology domain are based on evolution. The
molecular sequences we are studying and those we find in the database that provide
useful information are related to each other by having a common ancestor in the genomes
in some ancient organism. Molecular sequences that share a common ancestral molecular
sequence are referred to as homologous. Homology is not directly observable. It is
inferred from the observation of sequence identity, or similarity. Therefore, homology is

a conclusion drawn that the two genes share a common evolutionary history.

Similarity is an observable quantity that may be expressed as degrees of identity or some

other measure. Similarity has both a quantitative and a qualitative aspect: A similarity

measure gives a quantitative answer, saying that two sequences show a certain degree of

similarity. Sequence similarity is a repeatable and objective measurement.

Homology is not a matter of degree, at any given position in an alignment, sequences and
individual positions either share a common ancestor or they do not. In contrast, the
overall similarity between two sequences can be described as a fractional value. We also
want the sequence similarity measurement to contribute to homology; the sequence
stmilarity should measure the maximum extent of sequence conservation or the minimum

extent of sequence divergence.

An alignment is a mutual arrangement of two sequences, which is a sort of qualitative
answer; it exhibits where the two sequences are similar, and where they differ. An
optimal alignment, of course, is one that exhibits the most correspondences, and the least

differences.

2.1.4 Similarity vs. Distance

Two ways are used to quantify similarity of two sequences: A similarity measure is a
function that associates a numeric value with a pair of sequences, with the idea that a
higher value indicates greater similarity. Beyond this, similarity measures vary widely,

and care must be taken when interpreting similarity measures.

The notion of distance is somewhat dual to similarity. It treats sequences as points in a
metric space. A distance measure is a function that also associates a numeric value with a

pair of sequences, but with the idea that the larger the distance, the smaller the similarity,

and vice versa. Distance measures usually satisfy the mathematical axioms of a metric. In

particular, distance values are never negative.

In most cases, distance and similarity measures are interchangeable in the sense that a
small distance means high similarity, and vice versa. Sometimes similarity measures are a

little more flexible.

This scheme is known as the Levenshtein Distance [13], also called unit cost model. Its
predominant virtue is its simplicity. In general, more sophisticated cost models must be
used. For example, replacing an amino acid by a biochemical similar one should weight

less than a replacement by an amino acid with totally different properties.

2.2 Weight Matrices for Sequence Similarity Scoring

2.2.1 The Scoring Model

The key issues of aligning the sequences are: (1) what sorts of alignment should be
considered; (2) the scoring system used to rank alignments; (3) the algorithm used to find
optimal scoring alignments; and (4) the statistical methods used to evaluated the
significance of an alignment score. So we must give careful thought to the scoring system

we use to evaluate alignments [8].

When we compare sequences, we are looking for evidence that they have diverged from a
common ancestor by a process of mutation and selection. The basic mutational processes
that are considered are substitutions, which change residues in a sequence, and insertions

and deletions, which add or remove residues. Insertions and deletions are together

referred to as gaps. Natural selection has an effect on this process by screening the

mutations, so that some sorts of change may be seen more than others.

The total score we assign to an alignment will be a sum of terms for each aligned pair of
residues, plus terms for each gap. In the probabilistic interpretation, this will correspond
to the logarithm of the relative likelihood that the sequences are related, compared to
being unrelated. Informally, we expect identities and conservative substitutions to be
likely in alignment than expected by chance, and contributes positive score terms; and
non-conservative changes are expected to be observed less frequently in real alignments

then expected by chance, and so these contribute negative score terms.

Using a scoring scheme corresponds to an assumption that we can consider mutations at
different sites in a sequence to have occurred independently (treating a gap of arbitrary
length as a single mutation). All the sequence alignment algorithms for finding optimal

alignments depend on such a scoring scheme.

Scoring matrices or substitution matrices appear in all analysis involving sequence
comparison. The choice of matrix can strongly influence the outcome of the analysis.
Scoring matrices implicitly represent a particular theory of evolution. Understanding

theories underlying a given scoring matrix can aid in making a proper choice.

2.2.2 The Substitution Matrices

10

We need to score terms for each aligned residue pair. Given a pair of aligned sequences,
we want to assign a score to the alignment that gives a measure of the relative likelihood

that the sequence are related as opposed to being unrelated.

Protein structure and function are surprisingly resistant to polypeptide substitution, to the
degree that the substitutions don’t alter the chemistry of the protein. Substitutions are
common over large expanses of time and from one species to the next. In many cases, the
substitution of polypeptides through evolution can be predicted. In this way, a matrix of
likely polypeptide substitutions can be constructed. The amino acids are listed across the
top and side of a matrix, typically using the amino acid code letters. At each intersection,
the matrix is filled with a score that reflects how often one polypeptide would have been
paired with the other in an alignment of related protein sequences. This is known as a
score matrix or a substitution matrix. An underlying assumption is that this association is

symmetrical, in that either polypeptide can be substituted for the other [4].

Several criteria can be considered when devising a scoring matrix for amino acid
sequence alignments. Two of the most common are based on observed chemical/physical

similarity and observed substitution frequencies.

A more common method for deriving scoring matrices is to observe the actual
substitution rates among the various amino acid residues in nature. If a substitution
between two particular amino acids is observed frequently, then positions in which these

two residues that are aligned are scored favourably. Likewise alignments between

11

residues are not observed to interchange frequently in natural evolution are penalized.
One commonly used scoring matrix based on observed substitution rates is the Point
Accepted Mutation (PAM) matrix [7]. The scores in a PAM matrix are computed by
observing the substitutions that occur in alignments between similar sequences. First, an
alignment is constructed between sequences with very high (usually > 85 %) identity.
Next, the relative mutability, mj, for each amino acid, j, is computed. The relative
mutability is simply the number of times the amino acid was substituted by any other

amino acid. Next, Aj;, the number of times amino acid j was replaced by amino acid i, is

tallied for each amino acid pair i and j. Finally, the substitution tallies (the Aj;j values) are
divided by the relative mutability values, normalized by the frequency of occurrence of
each amino acid, and the log of each resulting value is used to compute the entries, Rjj, in

the PAM — 1 matrix. The resulting matrix is sometimes referred to as a log odds matrix,
since the entries are based on the log of the substitution probability for each amino acid

[4].

The normalization of each matrix entry is done such that the PAM matrix represents
substitution probabilities over a fixed unit of evolutionary change. For PAM - 1, this unit
is 1 substitution (accepted point mutation) per 100 residues, or one PAM unit. The
particular PAM matrix is most appropriate for a given sequence alignment depends on
the length of the sequences and on how closely the sequences are believed to be related.
It is most appropriate to use the PAM ~ 1 matrix to compare sequences that are closely

related, whereas the PAM — 1000 matrix might be used to compare sequences with very

12

distant relationships. In practice, the PAM — 250 matrixes is a commonly used

compromise (see Table 1).

Table 1 The log odds matrix for PAM250 (multiplied by 10)

0
-5 -2 ~1 -2 -1 -3 -2 ~3 -2 -~ 6
-2 -1 0-2-1-3-2-2-2-2-2-2-2 2 5
-6 -3 -2 ~3-2-4-3-4-3-2-2-3-3 4 2 6
-2 -1 0-1 0-1-2-2~-2-2-2-2-~-2 2 4 2 4
-4 -3-3-5§5-4-5-3-6-5-58-2-4-5 0 1 2-1 9
0-3-3-5-3-5-2-4-4-4 0-4-4-2-1-1-2 710
8 -2-5-6-6-7-4-7-7-5-3 2-3-4-5-2-6 0 017
C 8 T P A G N DE G HZRIEKUXTILVU F Y W

c 1z

s o 2

T -2 1 3

P -3 1 0 &

A -2 1 1 1 2

G -3 1 0-1 1 5§

N -4 1 0-1 0 0 2

D -5 ¢ 0-1 0 1 2 4

BE -5 0 0-1 0 0 1 3 4

g -5-1-1 0 0-1 1 2 2 4

H -3-1-1 0-1-2 2 1 1 3 &

R 4 0-1 0-2-3 0-1-1 1 2 6
K -5 0 0-1-1-2 1 0 1 0 3 5
M 1

I

L

v

F

b 4

W

Another popular scoring matrix, the BLOSUM matrix [11], is also derived by observing
substitution rates among similar protein sequences. For BLOSUM, un-gapped alignments
of related proteins are grouped using statistical clustering techniques, and substitution
rates between the clusters are calculated. This clustering approach helps to avoid some
statistical problems that can occur when the observed substitution rate is very low for a
particular pair of amino acids. Like the PAM matrices, various BLOSUM matrices can be
constructed to compare sequences with different degrees of relatedness. The significance
of the numbering for BLOSUM matrices, however, can be thought of as the inverse of
the PAM numbers. In other words, lower numbered PAM matrices are appropriate for
comparing more closely related sequences; while lower numbered BLOSUM matrices are
used for more distantly relate sequences. As a rule of thumb, a BLOSUM — 62 matrix is

appropriate for comparing sequences of approximately 62 % sequence similarity, while a

13

BLOSUM - 80 matrix is more appropriate for sequences of about 80 % similarity (see

Table 2).

Table 2 The log odds matrix for BLOSUM62

[g

g -1 4

T -1 1 §

P -3-1-1 7

A o 1 0-1 4

G -3 0-2-2 Q0 €

N -3 1 0-2-2 0 &

D 3 0-1-1-2-1 1 €

E -4 0-1-1-1-2 0 2 &5

Q -2 0-1-1-1-2 0 0 2 5

H -3-1-2-2-2-2 1-1 0 0 &8

R -3-1-1-2-1-2 0-Z2 0 1 0 S

K -3 0-1~-1-1-2 0-1 1 1-1 2 5

¥ -1-1-1-2-1-3-2-3-2 0-2-1-1 5§

I -1-2-1-3-1-4~-3-3-3-3-3-3-3 1 4

L -1-2-1-3-1-4-3-4-3-2-3-2-2 2 2 4

Vv -1-z2 0-2 0-3-3-3-2-2~3-3-2 1 3 1 4

F 2-2-2-4-2-3-3-3-3-3-1-3-3 0 0 0-1 €

Y 2-2-2-3-2-3-2-3-2-1 2-2-2-1-1-1-1 3 7

W 2-3-2-4-3-2-4-4-3-2-2-3-3-1-3-2-3 1 211
F

cC 8 T P A G N D B @Q HR K XN I L ¥
First, these matrices are static; furthermore, these matrices aren’t mere mathematical
constructs designed simply to facilitate computational sequence alignment, but they

reflect the biology of the molecules represented by the sequences [4].

2.3 Realistic Gap Models

Sometimes, from an evolutionary point of view, it is more realistic to assume that nature
frequently deletes or inserts entire sub-strings as a unit, as opposed to deleting or
inserting individual nucleotides. A gap in an aligﬁment is defined as a continuous
sequence of spaces in one of the rows. (We have treated the gap symbol “-“ as yet
another character, denoting an individual insertion or deletion.) It is natural to assume
that the score of a gap consisting of x spaces is not just the sum of scores of x index, but

rather a more general function.

14

In the simple case, where no internal gaps are allowed, aligning two sequences is simply
a matter of choosing the starting point for the shorter sequence. (Sometimes we want no-
gap alignments. For example, in a family of proteins there may be a strongly conserved
subunit, which is the site of some protein-protein interaction. Any deletion/insertion in
the chain of amino acids would be likely to destroy its biochemical function. Such
regions we want to align using matches/replacements only.) But when we add gaps into
compared sequences to reflect the occurrence of insertion and deletion, the possibility of
insertion and deletion events significantly complicates sequence alignments by vastly
increasing the number of possible alignments between two or more sequences. In scoring

an alignment that includes gaps, the gap penalty must be included in the scoring function

{8].

We expect to penalize gaps. The standard cost associated with a gap of length g is given

either by a linear score

Y@g) =-gd

or an affine score

Y@)=-d-(g-De
where d is called the gap-open penalty and e is called the gap-extension penalty. The

gap-extension penalty e is usually set to something less than the gap-open penalty d. It

means that we charge a certain set-up cost for introducing a new gap, whereas extending

15

an existing gap is less expensive. This is desirable when gaps of a few residues are

expected almost as frequently as gaps of a single residue.

2.4 Dynamic Programming

2.4.1 Overview of Dynamic Programming

One way to be certain that the solution to a sequence alignment is the best alignment
possible is to try every alignment, introducing one or more gaps at every position, and
computing an alignment score based on aligned character pairs and inexact matches.
However, the computational overhead of evaluating all possible alignments of one
sequence against another grows exponentially with the length of the two sequences. For
example, consider two modest-sized sequences of 100 and 95 nucleotides. If we were to
devise an algorithm that computed and scored all possible alignments, our program
would have to test ~55 million possible alignments, just to consider the case where
exactly five gaps are inserted into the shorter sequence. As the lengths of the sequences
grow, the number of possible alignments to search quickly becomes intractable, or

impossible to compute in a reasonable amount of time [12].

We can overcome this problem by using dynamic programming, a method of breaking a
problem apart into reasonably sized sub-problems, and using these partial results to

compute the final answer.

16

Dynamic Programming is a useful mathematical technique for making a sequence of
interrelated decisions. The mathematical theory of dynamic programming as a mean of
solving dynamic optimization problems dated to the early contributions of Bellman [3]
and Bertsekas [5]. It provides a systematic, recursive procedure for determining the
optimal combination of decisions. In contrast to linear programming, there does not exist
a standard mathematical formulation of the dynamic programming program. Rather,
dynamic programming is a general approach to problem solving. A certain degree of

ingenuity and insight are necessary to develop the appropriate form of the recursion.

Dynamic Programming is a very general programming technique. Dynamic
programming, in fact, is a divide-and-conquer method. The three parts to dynamic
programming are:

* Recurrence relation - establishes the recursive relation between a problem and
smaller instances of the problem. For any recursive relation, the base condition(s)
must be specified.

¢ Tabular computation - use the recurrence relations to compute all partial solutions
for the sub-problems. Find the optimal partial solution in each sub-problem.

* Traceback - Find the optimal overall solution by tracing back the path that gave

the optimal partial solutions.

S. Needleman and C. Wunsch [15] were the first to apply a dynamic programming

approach to the problem of sequence alignment. To bring the power of dynamic

programming into the realm of pairwise sequence alignment, consider Max Value to be

17

the alignment score for pairwise alignment of two sequences. MaxValue takes into
account gaps penalties, correct alignments, and imperfect alignment. After the matrix is
filled in using the alignment score to determine MaxValue, the highest scoring path is
followed back to the beginning of the alignment to define the best alignment of elements

in the sequence, including gaps.

Dynamic programming is processor- and RAM- intensive, but the technique of storing
intermediate values in a matrix can transform an otherwise intractable problem requiring
immense computational capabilities into one that is computationally feasible. Instead of
solving one complex CPU- and RAM- intensive problem, the task is decomposed into

hundreds or thousands of easily and quickly solved problems.

2.4.2 Characteristics of Dynamic Programming Problems

¢ The problem can be divided into stages with a policy decision required at each
stage.

¢ Each stage has a number of states associated with it. The number of states may be
finite or infinite.

» The effect of the policy decision at each stage is to transform the current state into
a state associated with the next stage. The transformation may be deterministic or
stochastic.

¢ Given a current state, an optimal policy for the remaining stéges is independent of

the policy adopted in the previous stages. This is the Principle of Optimality or

the Markovian Property.

18

e The solution procedure typically begins by finding the optimal policy for each
state of the last stage, i.e., we use a backward solution technique. Sometimes a
forward procedure makes more sense.

e A recursive relationship identifies the optimal policy for each state at stage n,
given the optimal policy for each state in stage n+1 is available. The form of the
recursion is problem dependent. Therein lies the “art” of dynamic programming.

e Using the recursive relationship, the solution procedure moves backward (in a
backward formulation) stage by stage - each time finding the optimal policy for

that stage.

2.5 Variations of Pairwise Alignment

2.5.1 Pairwise Alignment Algorithm

Given a scoring system, we need to have an algorithm for finding an optimal alignment
for a pair of sequences, where the sequences have the same length n, there is only one

possible global alignment of the complete sequences, but things become more

complicated once gaps allowed. There are
2n _ 2n)! - 22"
n) YT Jan

possible global alignments between two sequences of length n. It is clearly not

computationally feasible to enumerate all these, even for moderate values of n. But
dynamic programming algorithms are guaranteed to find the optimal scoring alignment or
set of alignments. In most cases heuristic methods have also been developed to perform
the same type of search. These can be very fast, but they make additional assumptions

and will miss the best match for some sequence pairs [8].

19

Because we introduced the scoring system as a log-odds ratio, better alignments will have
higher scores, and so we want to maximize the score to find the optimal alignment.
Sometimes score are assigned by other means and interpreted as costs or edit distances, in
which case we would seek to minimize the cost of an alignment. Both approaches have
been used in the biological sequence comparison literature. Dynamic programming

algorithms apply to either case; the differences are trivial exchanges of ‘min’ for ‘max’.

2.5.2 Global Alignment: Needleman — Wunsch algorithm

The problem this project is considering is that of obtaining the optimal global alignment
between two sequences, allowing gaps. The dynamic programming algorithm for solving
this problem is known in biological sequence analysis as the Needleman-Wunsch
algorithm [15], but the more efficient version that we describe was introduced by Gotoh

[10].

The idea is to build up an optimal alignment using previous solutions for optimal
alignments of smaller subsequences. We construct a matrix F indexed by I and J, one

index for each sequence, where the value F(i,j) is the score of the best alignment between
the initial segment x;_; of X up to x; and the initial segment Yi..jof y up to y;. We can

build F(i,j) recursively. We begin by initializing F(0, 0) = 0. We then proceed to fill the
matrix from top left to bottom right. If F(i-1,j-1), F(i-1,j) and F(,j-1) are known, it is
possible to calculate F(i,j). There are three possible ways that the best score F(i,j) of an

alignment up to x;, y; could be obtained: x; could be aligned to ¥j» in which case

F@1,j) = FG-1,j-1) + s(x;, ¥j); or X; is aligned to gap, in which case F(i,j) = F(i-1, J)—d;or

20

yj is aligned to gap, in which case F(i,j) = F(i, j-1) — d. The best score up to (i,j) will be
the largest of these three options.

Therefore, we have

F(i-1,j-1) + s(x, y)),
F(i, j) = Max F(i-1,j) - d, 2.1
F(, j-1) - d

This equation is applied repeatedly to fill the matrix of F(i,j) values, calculating the value
in the bottom right-hand comer of each square of four cells from one the other three

values as in the figure 1.

Figure 1: Finding the score of each cell in the matrix

As we fill in the F(i,j) values, we also keep a pointer in each cell back to the cell from
which its F(i,j) was derived, as shown in the example of the full dynamic programming

matrix in Figure 2.

21

H B A G A W G H E B

0 & -84 16+ -24% _32e¢ _4{le HBe 564 Gl -Te -§0
"x "\ \ ‘\ ‘\ '\

Pl -8 -2 - ~17T€ =25 334 42« 40« 51 -6 ~T73
4 LN . LN

Al -t6 -10 -3 4+ 12 e 28 36w ~dd e 52« _GD
+ 4 LN " LN “k

Wi-e -8 -1 -6 7 ~15 -5 4 <134 2]+ -29¢ -37
+ " bW b “ + " "

Hiaa -4 -8 -13 -8 -9 -13 -7 -3 — —lle ~19
4 + 5 = " LN ® “~

E |40 -2z -8 «— =16 -I6 -9 -1z -15 -7 3 -5
+ + L RN " " . + TN

A48 30 .16 “3 e 11 11 12 1T 15 -£ 2
+ + + + “~ “ . . * -

Ejse -3 24 _-n -6 -12 14 15 12 - 1

HEAGAWGEE-E
~--P-AW-EEAE

Figure 2: An example of Needleman — Wunsch algorithm

Note for the figure 2:
* Above, the global dynamic programming matrix for our example sequences,
with arrows indicating traceback pointers; values on the optimal alignment
path are shown in bold.

e Below, a corresponding optimal alignment, which has total score 1.

To complete our specification of the algorithm of the algorithm, we must deal with some
boundary conditions. Along the top row, where j = 0, the values F(i-1, j) and F(i-1, b
are not defined so the values F(i,0) must be handled specially. The values F(i,0) represent
alignments of a prefix of x to all gaps in y, so we can define F(i,0) = -id. Likewise down

the left column F(0,j) = -jd.

22

The value in the final cell of the matrix, F(n, m), is by definition the best score for an
alignment of x{_ ,, Yi...m, Which is what we want: the score of the best global alignment

of x to y. To find the alignment itself, we must find the path of choices from the above
(2.1) that led to this final value. The procedure for doing this is known as a traceback. 1t
works by building the alignment in reverse, starting from the final cell, and following the
pointers that we stored when building the matrix. At each step the traceback process we
move back from the current cell F (i, j) to the one of the cells (i-1, J-D), -1, j) or (i, j-1)

from which the value F (i, j) was derived. At the same time, we add a pair of symbols

onto the front of the current alignment: x; and y; if the step was to (i-1, j-1), x; and the gap
character ‘- if the step was to (i-1, j), or ‘- and y; if the step was to (i, j-1). At the end we

will reach the start of the matrix, I = j = 0. An example of this procedure is shown in the

Figure 2.

Note that in fact the traceback procedure described here finds just one alignment with the
optimal score; if at any point two of the derivations are equal, an arbitrary choice is made
between equal options. The traceback algorithm is easily modified to recover more than
one equal-scoring optimal alignment. The set of all possible optimal alignments can be

described fairly concisely using a sequence graph structure [1].

It is useful to know how an algorithm’s performance in CPU time and required memory
storage will scale with the size of the problem. From the algorithm above, we see that we
are storing (n+1) x (m+1) numbers, and each number costs us a constant number of

calculations to compute three sums and a max. \We say that the algorithm takes O(nm)

23

time and O(nm) memory, where n and m are the length of the sequences. Since n and m
are usually comparable, the algorithm is usually said to be O(nz). The larger the exponent
of n, the less practical the method becomes for long sequences. With biological

sequences and standard computers, O(nz). Algorithms are feasible but a little slow, while

O(n3) algorithm are only feasible for very short sequences.

2.5.3 Semi-global Alignment Algorithm implemented in the report
The objective of global alignment is to maximize a similarity score to give a maximum
match between two-compared sequences, where maximum match means the largest
number of residues of one sequence that can be matched with another allowing for all
possible deletions. In above sections, we have presented a global alignment algorithm
with constant penalty (line penalty). In this report, semi-global alignment algorithm with
affine gap penalty will be implemented.
Three Main Steps
¢ Assign similarity scores: A numerical value (score) is assigned to every cell in the
array depending on the substitution matrix selected by the user.
e Score pathways through matrix: For each cell want to know the maximum
possible score for an alignment ending at that point; Cumulative score by adding
in a path through the matrix; searches subrow and subcolumn for the highest

score; Gap penalty dependent of the length of the gap; the best match is the
pathway with the highest score.

Initialization:

24

S[0]{0] = 0;

S[i}[0] = S[0]i] = 0; (0 <i < =length of sequence A, 0 <| <= length of sequence B)

Assignment: assign similarity score for each cell in the matrix.

Iteration:

for(inti = 1; i<= length of sequence B; i++) {

for (intj = 1; j<= length of sequence A; j++) {

Shij0 = max{ S[i-1]i-11+ S[llil;

max{ Si-1,j — open Penalty;Si1,; — extension penalty ,;

max;Sij1 - open Penalty; Sij extension penalty ,;

25

3 Generic Programming

Generic programming is about generalizing software components so that they can be
casily reused in a wide variety of situations. In C++, class and function templates are
particularly effective mechanisms for generic programming because they make the

generalization possible without sacrificing efficiency.

The term generic programming has at least four different meanings:
¢ Programming with generic parameters.
® Programming by abstracting from concrete types
e Programming by abstracting from concrete types
¢ Programming with parameterized components programming method based in
finding the most abstract representation of efficient algorithms.
The first meaning is the most common: generic parameters are type or value parameters
of types. With generic parameters, code duplication can be avoided. [6].
The design of STL is a demonstration of generic programming, a novel programming

paradigm that separates data structures from algorithms.

3.1 Generic programming and STL

26

The data structures and algorithms in the Standard C++ Library, and the STL [2, 14, 16,
20], are a demonstration of a programming paradigm called generic programming. The
key abstraction of the generic components in the Standard C++ Library are algorithm,
iterators, adapter and functors. Data abstractions are data types and sets of operations on
them. C++ provides templates as the necessary constructs for data abstractions.
Templates provide a uniform interface and implementation abstractions for different data
types. For instance, a template stack class can be instantiated to a stack of integers,
doubles, or any user-defined type. Thus, for N data types only one template container

class is provided which can be instantiated N ways.

3.1.1 Algorithms

Generic algorithmic abstractions are families of data abstractions with a common set of
algorithms. In order to make algorithms generic they are designed to work on iterators
(see below) that are exported by containers. For instance, a sort algorithm could work on
a linked list or a vector data abstraction if the list and vector collection classes provide
iterator objects that mark the beginning and end of the container. Algorithms are
implemented as template functions in STL, typically parameterized over iterators or

structural abstractions.

3.1.2 Iterators

Iterators are implementations of structural abstractions and are data type templates
exported by container classes. Iterators are generalizations of array pointers for generic
containers and provide operators to traverse the range of data they point to and also

operators to reference the element they point to. Typically, the pointer arithmetic

27

operators like ++ (auto-increment), - (auto-decrement), +n (jump n positions forward),
and -n (jump n positions backward), are overloaded to provide traversal implementations.
They also overload the comparison operators (==, <, >,) and the assignment operator (=)
to compare iterator positions and allow iterator assignments, respectively. The C++ *
operator is overloaded to reference the element at the position pointed to by the iterator.
Algorithms work over iterators rather than directly over containers. Therefore the same
algorithm can work for different container types as long as they export appropriate types
of iterators. An additional advantage of having algorithms work on iterators instead of on
containers is that algorithms can be used to work on a partial range of elements in a

container.

An iterator can be of one of the following kinds - input, output, forward, bidirectional, or
random-access. Input iterators are data sources (e.g. the cin standard input object in C++),
and output operators are data sinks (e.g. cout in C++). Forward iterators satisfy properties
of both input and output iterators. Forward iterators can be traversed one position at a
time only in the forward direction, hence they support only the ++ operator. Bidirectional
iterators satisfy properties of forward iterators, can be traversed in both forward and
reverse directions one step at a time, and support the - operator. Random access iterators
are bidirectional iterators, which can make non-unit jumps in the forward or reverse

direction. They support the +n and -n operators too.

Most container classes export member functions called begin() and end() which return

iterators that point to the first element and past the last element, respectively, of the

28

container object. Starting with these functions, and using the iterator traversal operators,

users can construct iterators pointing to a subrange of the elements in a container.

3.1.3 Adaptors

Generic representational abstractions are mappings from one structural abstraction to
another. Called adaptors in STL, these abstractions are casting wrappers that change the
appearance of a container (building a stack from a list), or an iterator (converting a
bidirectional iterator to a reverse iterator). STL also has adaptors to convert C++ [/O

streams and arrays to STL-style containers.

3.1.4 Functors

STL also defines function objects (or functors) which are basically template function
pointers wrapped in template classes. These classes provide a '()' operator which is used
for invoking the function. STL also provides adaptors to convert normal C++ function

pointers to function objects.

3.2 Genericity and polymorphism

The ability of a code to work with different type is referred to as polymophism, which can
be achived through two different ways: subtyping and parametric. Both ways can archive:
generic parameters, abstracting from concrete types, parameterized components. Here we
will explain how C++ supports these two ways of polymophism and the advantage of

parametric polymophism.

3.2.1 Parametric polymorphism

29

Generic paramerters: almost all the algorithm in STL using generic parameters so that
it can be used with different types. For example, sorting routine where the element type
is declared as a generic parameters. This way, same sorting code for different types is
avoided.

Abstracting from concrete types: Data abstractions are data types and sets of operations
on them. C++ provides templates as the necessary constructs for data abstractions.
Templates provide a uniform interface and implementation abstractions for different data
types. For instance, a template stack class can be instantiated to a stack of integers,
doubles, or any user-defined type. Thus, for N data types only one template container
class is provided which can be instantiated N ways. the container data structures and
algorithms in STL are desingned and implemented as generic by finding the most abstract
representation of efficient algorithms, so that the abstraction process should not
compromise efficiency — the abstract algorithm can be instantiated back for a concrete
case, and the result is as efficient as the original concrete algorithm. The focus on
efficiency has led to using type parameterization as the main implementation technique.
Parameterized components: In STL, template method provides a way to vary
computation steps while keeping the algorithm structure constant, and the strategy
provides a way to vary the algorithm used by a component, such an object is refered as an
function object. To implement strategy as static parameteration, strategy can be

encapsulated as an object and be passed to the sorting routine as an extra parameter.

3.2.2 Subtype polymorphism
Generic parameters: which use an abstact type — abstract class in C++ -- in the place of

the element type with dynamic binding. The abctract type should be defined to include

30

the comparison operation , and the rountine works for all subtypes of the abstract type.
Programming paradigm prescribes four kinds of abstractions: data abstractidns,
algorithmic abstractions, structural abstractions, and representational abstractions.
Abstracing from concrete types: list the operation called on a given variable in the code
we want to abstract and to use an abstract type including these operations as the type of
the variable.

Parameterized components: the function object is made to pass code that varies at

runtime, i.e. virtual function in C++.

3.2.3 C++ support for both pelymophism
C++ supports subtyping polymorphism through virtual functions. The target component
implementing the method may vary at runtime. C++ supports static polymophism

through template, typedef, inline, etc.

The main advantages of using static polymophism are: better efficency and smaller
executables. Parameter components are instantiated at compile time, and only the

necessary functional code to be executated avoiding dynamic binding overhead.
3.3 Using Generic Programming for Application Development

Usually, genericity can be achieved by means of a design idea, that is, separation of data
structures from algorithms, and by the use of programming techniques supported by the

programming language, i.e. C++ class and templates [19].

31

Although generic programming uses classical object-oriented C++ language features such
as class (template) declarations, it is not object-oriented. In object-oriented programs

abstractions are expressed by means of base classes.

Object-oriented programming and generic programming are fundamentally different.
Object-oriented design methods could not model a generic program: because classes in
generic programming are mostly unrelated. There is no inheritance among them; in
generic programming, many relationships are expressed in terms of implicit requirements
to template arguments, which can be modeled by object-oriented design method.

Let us consider following scenarios in application development:

Scenario 1: Design an application as a generic program.
To apply the generic programming paradigm to the entire application, i.e. to design an
application as a generic program that consists of various generic components that can be

plugged together.

The C++ standard already defines a set of generic components - the data structures and
algorithms from the Standard C++ Library. It would certainly be wise to make your
abstractions compatible to the standard framework. Now, think of the main elements of
generic programming in the Standard C++ Library - containers, algorithms, and iterators.
Adopting the generic programming paradigm from the Standard C++ Library for an
entire application basically means that you have to categorize all significant elements of

your software to be either an algorithm, or an iterator, or a container.

32

Figure 3: Design an application as a generic program

The notion of these main elements can be broadened to some extent. Take the abstraction
of a container for instance. A container in essence is an object that can provide iterators
to let algorithms operate on itself. Hence, a container need not necessarily be a typical

‘container’ data structure such as a list or a queue.

Also, the generic programming paradigm does not impose any limitations regarding the
type or number of abstractions. You are free to invent novel generic abstractions.
Allocators are an example of this; they were introduced to the STL in the process of
making the STL part of the Standard C++ Library. Allocators added another dimension
of genericity to containers. You can also contrive a novel set of requirements to
algorithms; you might want to add algorithms that accept containers as arguments rather

than iterator ranges.

33

In principle, it is conceivable that to use the ideas of generic programming in an
application design, broaden the standard abstractions and add new generic elements.
Scenario 2: Design your application as an object-oriented program that uses the
generic components.
In this case you will apply classical object-oriented design techniques, and then build this
object-oriented application on top of the generic components from the Standard C++
Library or the STL. In principle there are two possibilities for doing this:

* You can either use the generic components directly, or

* You introduce a middle layer of object-oriented base components that are built on

top of the generic components from the Standard C++ Library or the STL.

If you use the generic components directly, i.e. without a middle layer, these generic
components will show up in your object-oriented design model. One reasonable way of
integrating them is to model the standard containers as classes, and all standard
algorithms that can be applied to a container as methods of the respective container class.

Basically you would fake an object-oriented container model.

In your object-oriented design the application domain objects will have use- and
containment-relationships to the faked object-oriented container classes. However, for

purpose of implementation, your application domain classes you will ultimately have to

use the generic components as they are: as containers with separate algorithms.

34

Application

STL or Standard C++ Library

Figure 4: Design an application as an Object-Oriented program that use the generic components (2a)

An alternative possibility is to really implement the object-oriented containers from our
design model above, i.e. you will implement a middle layer on top of the generic

components.

In your object-oriented design the application domain objects will have use- and
containment-relationships to the object-oriented container classes from the middle layer.

Different from the approach suggested above, you will also use these object-oriented
containers in your implementation. You will not have to switch back to generic

programming then.

The generic components from the Standard C++ Library will be hidden behind an object-
oriented wrapper and will serve solely as a portability layer. They will be invisible both

in design and implementation.

35

Application

Object - Oriented API

Object-Oriented Foundation library

STL or Standard C++ Library

Figure 5: Design an application as an Object-Oriented program that use the generic components (2b)

There is a mismatch between object-oriented design / object-oriented programming on
the one hand and generic programming / use of generic components on the other hand.
You cannot appropriately express generic programming in an object-oriented design.
Either you refrain from doing object-oriented design (scenario 1) and stick to the generic
programming paradigm. Or you do object-oriented design, fake an object-oriented
container model for that purpose, and accept that your implementation does not exactly
match the design (scenario 2a). Or you hide the generic components under an object-
oriented layer that you can include both in your design and implementation (scenario 2b).

All three alternatives are viable approaches.

36

4 Generic C++ Implementation

This chapter presents a generic application for pairwise alignment algorithms
implemented with C++ and how to obtain an implementation for a concrete problem,

namely semi-global alignment algorithm based on the framework of generic application

and components reuse.
This chapter is organized at follows:
e Section 1: the class design in UML

* Section 2: design and implementation for both framework and function object —

Globalalgorithm.

* Section 3: show how to instantiate this application for semi-global alignment

algorithm.

37

8¢

TINN Ul Wwexserp ssey) :9 aangiy

(xurenansieb g<aignop>xiyen
(Mareusdquonusx3ieb m_n:ovﬁ
(Mareusgquadieb aiqnopg
()geouenbegieb ,1eyog:
()wveousanbagiab ,ieyo;

()odA1 sousnbagieb ju
(Jwbusssousnbegiel juigt
()wBueyeouenbeg)eb juig:
(xirepyungeresso plo
()oouenbagalesio pIoA:
(JaudpyeAs) joo
()simewereqbuisied jooq

M

(J1epeapHaqindinoyund v_g@wm
(hurodpuzs

(Juontsodias pio
(Juomisodurigpuy pio
(yerenjeas pra
()seourenezireniul pro
(Mireueddeb ejqnopgl
()yaousnbagydeb sjgno
(ygeouanbagiydeb sjgno
(Jubiypusxs signo
(Jundlgoseipesn

XUBNGN' S <d|qnOP>XUNENOEE
‘uonisod™A s

‘uogisod X JuieE
‘Mjeuaguonusie ajqnopgs
‘Njeusduado sjgnopiss

XIHBN NS ,<e|qnop>XLIeNORE

‘uonuexs sjgnopLE

tuedo sjgnopEs

‘edf1eousnbes juilH
‘yibuageousenbes 1y

‘ybuayeouanbes . juis

leweNsjixuengns teyods

Ngew reyog®

‘fvery reyogs

‘geousnbes eyolE

‘yeouanbas ey

ounglqosipesn

Aimn

(Jusiuewaubivies plongs
(hus wubiund prongk

(huawubivgs

'8100s BiqnopLE

Apusp|wnu JuE
Arel wig winu Juis

‘sodpuggeouanbesy
‘sodpugyeousnbes jui
‘soduerggaouanbas s
soduelgyeousnbas juj
‘aIppiW ,JeyoRd
‘gbuns Jeyold
vBuns Jeyols

uawubiy

(ruewubiyewndoish yus wubi

()dquawuby

XUIBN 9100 S R<3[qNOP>XLITEN

uogoungaapoalqo 3158
XUy 90Rl B<IUSXITENORE

JuswubiyAw gruawubi
‘geouanbas paousnbagiE
‘yaouenbas gaousnbagi#

dqius wuby

O(1oresedo 31 g
()=1o1e19do YxureN O

Xurewdd~w,,
tazISfio Wewu™ W U
SZISAU™ W UGS
8ZISX U™ W Ul
\\ ISXU™ W Igs
XN O

(uisiaids)jooqgi

‘adf] souanbas |00q
‘ypbuens)y
‘souenbesys Jeyols

souanbag

TN Ul ud1sa(q WaisAS v

4.2 Design and C++ implementation

This section will show the main points of the design and implementation in C++ of the

framework in this application and instantiate a function object for Globalalgorithm.

Performance is the main criteria in comparing sequences. Static binding leads to run-time
efficiency since the compiler can optimize code before executing it. The design was
driven by the goal of programming with generic parameters and parameterized
components so that the generic process should not compromise efficiency. The focus in

efficiency has led this project using type parameterization as the main implementation

technique.

The idea is that the compile will automatically generate an appropriate concrete function

for each parameterized type — alignment algorithm when an application is run.

This project is designed as an object-oriented program that use the generic components.
We will apply classical object-oriented design techniques, and then build this object —
oriented application on the top of the generic components, which is used directly, as we

described in previous chapter, these generic components will show up in object-oriented

model, which is modeled as a class.

Based on the revision of several pairwise alignment algorithms, we see that

39

¢ There are entities, such as score matrix, trace matrix, Sequence, Alignment; they
are not dependent on the problem at hand, in that, they can be implemented in a
generic way.

e There is another entity, alignment algorithm, which is completely problem

dependent.

Hence, we can divide the components in this application into two distinguished parts:
* A "public” part consists of several classes have been implemented in this project.
e A “private” part consists of generic component class, which needs to be filled in
by the users who will instantiate this framework for a given algorithm. In this
project, global algorithm has been defined and implemented.
Following are the “public” components in ADP application so as to identify common

entities of this application:

Template class AlignmentDP is a template class, which can accept parameterized
objective function — pairwise alignment algorithm as well as input sequence, score
Matrix, trace Matrix as well as output Alignment object.

This application is a generic application, since the objective function is made a parameter
and thus this application can be adapted to work with any pairwise alignment algorithm.
The key abstraction of the generic component in ADP is alignment objective function,

which implement alignment algorithm of interest.

Template class Cmatrix is a kind of container. Like many class libraries, the ADP

includes container class: classes whose purpose is to contain other objects. The ADP

40

includes the class Matrix, which is a template class, and can be instantiated to contain any
type of object, In this application, there are two types matrix are instantiated, int and
double type, i.e. traceMatrix<int>, which’s cell keeps the direction to the start point of
alignment; Cmatrix<double>Score Matrix, which’s cell keeps maximal score of

alignment end at that cell;

Class Sequences is a data structure that keeps sequence raw data, sequence type
information as well as find function, which accepts a characters and return the index in

substitution Matrix.

Class Alignment is a data structure for output of application, which is represented by
three lines:

¢ The first line shows the first sequence.

e The third line shows the second sequence.

e The second line has a row of symbols. The symbol is a vertical bar wherever
characters in the two sequences match, a space wherever there is a
deletion/insertion on either sequence, a colon wherever score value of characters
in two sequence are greater than 0, otherwise a single dot.

Horizontal bar may be inserted in either sequence to represent gaps.

Class Utility is a utility class, which extracts user command lines parameters and

generates data necessary to instantiate above objects.

Objective Function is the only “private” component in this application. manObjFunc is

an objective function class for Global algorithm to exemplify this application, which will

41

implement global alignment algorithm. Implementation detail, refer chapter 2, section

2.5.

The implementation of this application using parameterized component mechanism:

Template <class T>

Class AlignmentDP{

public:

ATbT: eTtDP(SequeTce& a,

SequeTce& T,
CMatrix<douTE>& score,
CMatrix<iTt>& trace,
T& pOTjectiTeFuTctioT,
ATbT: eTt& : yATbT: eTt);

4.3 An Instantiation: semi-global alignment algorithm

This section will show how to implement a function object for a pairwise alignment
algorithm and instantiation procedure. In this report, global alignment with affined gap

penalty, global algorithm is instantiated.

To be a parameterized objective function of this application, the following function must
be implemented for an algorithm:
initializeMatrices ():

initialize the score and trace matrices which are passed by references.
gapPenalty():

function to calculate gap penalty and return the value

42

extendAlign():

extend alignment, return score value of a certain cell which is coming from upper diagonal cell

plus match value.

gapAtSequenceB():
maximal alignment end as sc(aj, -), return score value comes from upper cell’s score value minus

gap penalty

gapAtSequenceA():
maximal alignment end as sc(-, b;), return score value comes from left cell’s score value minus

gap penalty

evaluation():

evaluate all the possibilities, with global algorithm, is function will return the maximal value of

above three cases.

PrintQutputFileName():

display the algorithm name and applicable properties of an algorithm to output file. For global
algorithm, it will display Globalas application name as well as display gap opening penalty value

and gap extension penalty value.

IsEndPoint() :

implement the criteria for terminating an alignment. With global alignment algorithm, alignment
will be end at the beginning of two sequences.

Note that the type parameters allow us to ensure proper typing at compile time. If an
algorithm’s objective function which is passed not having above functions, a compile

time error would be generated.

Follows are the steps to instantiate the application for Globalalgorithm:

43

e A new class definition should be created for a new alignment algorithm, and all
the functions mentioned above should be defined as well. For example,
NeedleObjFunc.h in this project.

* A new class implementation file should be created for implementing all the
functions; it is file NeedleObjFunc.cpp in this project.

e Modified AlignmentDP.cpp: Include objective function header file for certain
alignment algorithm; instantiate an instance of function object just defined. For
example: NeedleObjFunc NeedleObjectFunction (parameters); instantiate an
instance of Alignment application with parameterized object created in step3. For
example:

AlignmentDP<NeedleObjFunc> mylnstance(parameters, NeedleObjectFunction, etc);

44

5 Experimental Results

5.1 Outline of the Experiments

There are two sets of experiments in report. The first set is a pair Protein sequences and
the other one pair is nucleic acid sequences.
e Two protein sequences with open-gap-penalty =10, extension-gap-penalty = 0.5
and substitution matrix EBLOSUMS62 for protein sequences.
e Two Nucleic acid sequences with open-gap-penalty = 10, extension-gap-penalty =

0.5 and substitution matrix EDNAFULL for nucleic acid sequences.

5.2 Experiment Data

Protein sequencel: hba_human:

VLSPADKTNV KAAWGKVGAH AGEYGAEALE RMFLSFPTTK TYFPHFDLSH GSAQVKGHGK
KVADALTNAV AHVDDMPNAL SALSDLHAHK LRVDPVNFKL LSHCLLVTLA AHLPAEFTPA
VHASLDKFLA SVSTVLTSKY R

Protein sequence2: Hba_human:

VHLTPEEKSA VTALWGKVNV DEVGGEALGR LLVVYPWTQR FFESFGDLST PDAVMGNPKV
KAHGKKVLGA FSDGLAHLDN LKGTFATLSE LHCDKLHVDP ENFRLLGNVL VCVLAHHFGK
EFTPPVQAAY QKVVAGVANA LAHKYH

Protein sequence3: Rattus norvegicus cxc4 protein sequence

MEIYTSDNY SEEVGSGDYDSNKEPCFRDENENENRIFLPTIYFIIFLTGIVGNG
LVILVMGYQKKLRSMTDKYRLHLSVADLLFVITLPFWAVDAMADW YEGKFLCKAVHIIYT
VNLYSSVLILAFISLDRYLAIVHATNSQSARKLLAEKAVYVGVWIPALLLTIPDIIFADV
SQGDGRYICDRLYPDSLWMVVFQFQHIMVGLILPGIVILSCYCIIISKLSHSKGH
QKRKALKTTVILILAFFACWLPYY VGISIDSFILLEVIKQGCEFESVVHKWISITEALAF
FHCCLNPILY AFLGAKFKSSAQHALNSMSRGSSLKILSKGKRGGHSSVSTESESSSFHSS

Protein sequenced: Cyprinus Cyprinus carpio cxc4 protein sequence

MEFYDHIFFDNSSDSGSGDFDFDELCDLKVSNDFQKIFLPVVYGIIFVLGIIGNG
LVVLVMGFQKKSKNMTDKYRLHLSIADLLFVLTLPFWAVDAASGWHFGGFLCVTVNMIYT
LNLYSSVLILAFISLDRYLAVVRATNSQNFRRVLAEKVIYLGVWLPASLLTVPDLVFAKYV
HDTGMNTICELTYPLQGNTVWKAVFRFQHIFVGFLLPGLIILTCYCIIISKLSKNS KGQA
LKRKALKTTVILILCFFICWLPYCAGILVDTLVMLNVISHTCFLEQGLEKWIFFTEALAY

45

FHCCLNPILY AFLGVKESKSARNALSISSRSSHKMLTKKRGPISSVSTESESSSVLSS

Nucleic acid sequence 1: Didelphis

GCAAGTTTCCGCTACCCAGTGAGAATGCCCTTTAAGTCTTATAAATTAAGCAAAAGGAGCTGGTATCAGGC
ACACAAAATGTAGCCGATAACACCTTGCTTTACCACACCCCCACGGGAGACAGCAGTGATTAAAATTAAGC
AATAAACGAAAGTTTGACTAAGTCATAATTTACATTAGGGTTGGTCAATTTCGTGCCAGCCACCGCGGTCA
TACGATTAACCCAAATTAATAAATAACGGCGTAAAGAGTGT TTAAGTTATATACAAAAATAAAGTTAATAA
TTAACTAAACTGTAGCACGTTCTAGTTAATATTAAAATACATAATAAAAATGACTTTAATATCACCGACTA
CACGAAAACTAAGACACAAACTGGGATTAGATACCCCACTATGCTTAGTAATAAACTAAAATAATTTAACA
AACAAAATTATTCGCCAGAGAACTACTAGCAATTGCTTAAAACTCAAAGGACTTGGCGGTGCCCTAAACCC
ACCTAGAGGAGCCTGTTCTATAATCGATAAACCCCGATAAACCAGACCTTATCTTGCCAATACAGCCTATA
TACCGCCATCGTCAGCTAACCTTTAAAAAGAATTACAGTAAGCAAAATCATACAACATAAAAACGTTAGGT
CAAGGTGTAGCATATGATAAGGAAAGTAATGGGCTACATTCTCTACTATAGAGCATAACGAATCATATTAT
GAAACTAAAATGCTTGAAGGAGGATTTAGTAGTAAATTAAGAATAGAGAGCTTAATTG

Nucleic acid sequence 2: Dasypus

GCAAGTATCAGCACACCAGTGAGAATGCCCTCTAACTCTTATAGATCAAAAGGAGCAAGCATCAAGTACAL
ACAGCCCTTACAGTAGCTCATAACCGAAAGCTTGACTAAGTTATGTTATTATAAGGGTTGGTAAATTTCGT
GCCAGCAACCGCGGTCATACGATTAACCCAAATTAATAGTTATCGGCGTAAAGCGTGTTTAAGACACCTAG
ACAATAGAGTTAAACCCTTACTACGCTGTAAAAAGCCTTAGTAGGACCATAAACCCTTCAACGAAAGTGAC
TCTAATTTATCTGACTACACGATAGCTAGGACCCAAACTGGGATTAGATACCCCACTATGCCTAGCCC
TAAACTAAAACAGTTCACAAACAAAACTGTTCGCCAGAGTACTACTAGCAACAGCTTAAAACTCAAAGGAC
TTGGCGGTGCTTTACATCCTTCTAGAGGAGCCTGTTCTATAATCGATAAACCCCGATATACCTCACCACCC
CTTGCTAATACAGCCTATATACCGCCATCTTCAGCAGACCCTAGTAAGGCACCACAGTGAGCACAATAACA
TACATAAAGACGTTAGGTCAAGGTGTAGCTTATGGGGTGGGAAGAAATGGGCTACATTTTCTAATAAAGAG
CAAATACAAAAAACTTAATGAAACAATTTAAGACTAAGGTGGATTTAGTAGTAAGC TAAAAATAGAGAGTT
TAGCTG

5.3 Result Presentation

5.3.1 OQOutput: Hba_human and Hba_human

Needleman-Wunsch global alignment.
Gap opening Penalty : 10.000000
Gap extention Penalty: 0.5

Output file name : A

Alignment length: 148

Gaps: 9

Identity: 63/148 (42.6%)

Similarity: 88/148 (59.5%)

score : 290.5

sequence 1: 1 -VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF -DL 48
R R A T P e R Y

sequence 2: 1 VHLTPEEKSAVTALWGKV- -NVDEVGGEALGRLLVVYPWTQRFFESFGDL 48

sequence 1: 49 S---—- HGSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRY 93
l SRR R RN R RN N R o RN R B N

sequence 2: 49 STPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHV 98

sequence 1: 94 DPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR 141

R N N RN E R N R N T S Y EPDY PR Y s R

46

sequence 2:

99

DPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH

5.3.2 QOutput: Rattus and Cyprinus

Needleman-Wunsch global alignment.
Gap opening Penalty : 10.000000
Gap extention Penalty: 0.5

Output file name
Alignment length:

Gaps:
Identity:
Similarity:
score
sequence 1:
sequence 2:
sequence 1:
sequence 2:
sequence 1:
sequence 2:
sequenée 1:
sequence 2:
sequence 1:
sequence 2:
sequence 1:
sequence 2:
sequence 1:
sequence 2:
sequence 1:

sequence 2:

48

49

98

99

148

149

195

199

243

249

293

299

343

347

: A
357
12
2257357 (63.0%)
276/357 (77.3%)
1117.0

MEIYTS---DNYSEEVGSGDYDSNKEPCFRDENENFNRIFLPTIYFIIFL

I R R N O Y R e IR PR AN

MEFYDHIFFDN-SSDSGSGDFDFD~ELCDLKVSNDFQKIFLPVVYGITFV

TGIVGNGLVILVMGYQKKLRSMTDKYRLHLSVADLLFVITLPFWAVDAMA

IR R e R e A A A R RN

LGIIGNGLVVLVMGFQKKSKNMTDKYRLHLSIADLLFVLTLPFWAVDAAS

DWYFGKFLCKAVHIIYTVNLYSSVLILAFISLDRYLAIVHATNSQSARKL

AL e = LD =T e

GWHFGGFLCVTVNMIYTLNLYSSVLILAFISLDRYLAVVRATNSQNFRRV

LAEKAVYVGVWIPALLLTIPDIIFADVSQGDGRYICDRLYP--~DSLWMV

R R A A A R o il e

LAEKVIYLGVWLPASLLTVPDLVFAKVHDTGMNTICELTY PLQGNTVWKA

VFQFQHIMVGLILPGIVILSCYCIIISKLS~-HSKGHQ-KRKALKTTVILI

PE LTl = D LT =T T]

VFRFQHIFVGFLLPGLIILTCYCIIISKLSKNSKGQALKRKALKTTVILI

LAFFACWLPYYVGISIDSFILLEVIKQGCEFESVVHKWISITEALAFFHC

R R A R R R R e I P RN A AN

LCFFICWLPYCAGILVDTLVMLNVISHTCFLEQGLEKWIFFTEALAYFHC

CLNPILYAFLGAKFKSSAQHALNSMSRGSSLKILSKGKRGGHSSVSTESE

R R R e e I e N AU R AR AN

CLNPILYAFLGVKFSKSARNALSISSR-SSHKMLTK-KRGPISSVSTESE

SSSFHSS 349

H-

SSSVLSS 353

5.3.3 Output: Didelphis and Dasypus

Needleman-Wunsch global alignment.
Gap opening Penalty : 10.000000
Gap extention Penalty: 0.5

Output file name
Alignment length:

Gaps:
Identity:

HE ¥
781
81
568/781 (72.7%)

47

146

a7

48

97

98

147

148

194

198

242

248

292

298

342

346

Similarity:

score

sequence 1:
sequence 2:
sequence 1:
sequence 2:
sequence 1:
sequence 2:
sequence 1:
sequence 2:
sequence 1:
sequence 2:
sequence 1:
sequence 2:
sequence 1:
sequence 2:
sequence 1:
sequence 2:
sequence 1:
sequence 2:
sequence 1:
sequence 2:
sequence 1:
sequence 2:
sequence 1:
sequence 2:
sequence 1:
sequence 2:
sequence 1:
sequence 2:
sequence 1:

sequence 2:

50

46

100

72

149

96

198

144

248

194

298

243

346

292

396

342

446

391

496

441

546

491

596

541

644

588

694

638

568/781 (72.7%)
2072.0

GCAAGTTTCCGCTAC-CCAGTGAGAATGCCCTTTAAGTCTTATAAATTAA

LELVEL - PR TR ET -

GCAAGTATCAGC-ACACCAGTGAGAATGCCCTCTAACTCTTATAGA-~~—

GCAAAAGGAGCTGGTATCAGGCACACAAAATGTAGCCGATAACACCTTGC

PPV T T

TCAAAAGGAGCAAGCATCAAGTACAC- =~~~ ==== === mm e

TTTACCACACCCCCACGGGAGACAGCAGTGATTAAAATTAAGC -AATAAA

HT NI

————————————————————— ACAGC----CCTTACAGT-AGCTCATAAC

CGAAAGTTTGACTAAGTCATAATTTA~-CATTAGGGTTGGTCAATTTCGTG

N e L A R AR AR AN

CGAAAGCTTGACTAAGT - -TATGTTATTATAAGGGTTGGTAAATTTCGTG

CCAGCCACCGCGGTCATACGATTAACCCAAATTAATAAATAACGGCGTAA

LEVLT LTV TP - T T

CCAGCAACCGCGGTCATACGATTAACCCAAATTAATAGTTATCGGCGTAA

AGAGTGTTTAAGTTATATACAAAAATAAAGTTAATAATTAACTAAACTGT

SR e e N NN RN

AGCGTGTTTAAGACACCTA-GACAATAGAGTTAAACCCTTACTACGCTGT

AGCACGTTCTAGTTAATATTA-AAATACAT-AATAAAAATGACTTTAATA

R N e N e AT R I RN T

AAAAAGCCTTAG-TAGGACCATAAACCCTTCAACGAAAGTGACTCTAATT

TCACCGACTACACGAAAACTAAGACACAAACTGGGATTAGATACCCCACT

Lo L L PEE T - D T PP TR

TATCTGACTACACGATAGCTAGGACCCAAACTGGGATTAGATACCCCACT

ATGCTTAGTAATAAACTAAAATAATTTAACAAACAAAATTATTCGCCAGA

R NN e NN e AR

ATGCCTAGCCCTAAACTAAAA-CAGTTCACAAACAAAACTGTTCGCCAGA

GAACTACTAGCAATTGCTTAAAACTCAAAGGACTTGGCGGTGCCCTAAAC

LA LT TP T

GTACTACTAGCAACAGCTTAAAACTCAAAGGACTTGGCGGTCCTTTACAT

CCACCTAGAGGAGCCTGTTCTATAATCGATAAACCCCGATAAACCAGACC

LE- LR T T T -

CCTTCTAGAGGAGCCTGTTCTATAATCGATAAACCCCGATATACCTCACC

TTATCTTGCCAATACAGCCTATATACCGCCATCGTCAGCTAACCTTTAAA

L R R NN RN RN A T e A T ey

ACCCCTTGCTAATACAGCCTATATACCGCCATCTTCAGCAGACCCTAGTA

AAGAATTACAGTAAGCAAAAT--CATACAACATAAAAACGTTAGGTCAAG

R e N NN N R R e AR A A PR AR AR AR AR RN

AGGCACCACAGTGAGCACAATAACATAC---ATAAAGACGTTAGGTCAAG

GTGTAGCATATGATAAGGAAAGTAATGGGCTACATTCTCTACTATAGAGC

LELETEE U L TR T L T

GTGTAGCTTATGGGGTGGGAAGAAATGGGCTACATTTTCTAATAAAGAGC
ATA~ACGAATCATATTATGAAACTAAAATGCTT--GA---AGGAGGATTT

R e N N e N e R N RN

AAATACAAAAAACTTAATGARAC---AAT--TTAAGACTAAGGTGGATTT

48

49

45

99

71

148

95

197

143

247

193

297

242

345

291

395

341

445

390

495

440

545

490

595

540

643

587

693

637

737

682

sequence 1:

sequence 2:

738 AGTAGTAAATTAAGAATAGAGAGCTTAATTG 768

FELVEEEE TP] -

683 AGTAGTAAGCTAAAAATAGAGAGTTTAGCTG 713

5.4 Result comparison with Needle application in EMBOSS

5.4.1 Output: Hba_human and Hba_human

File: hba_hwman.needle

HEBHBHBEBHBUHB B BBERBHBBEBHBHBBEHBHHEY
Program: needle

Rundate: Tue Jul 15 10:46:54 2003

Align format: sSrspair

Report_file: hba_ human.needle
BHBBAHBHAHBHUBBHU B BEHHHBEHEBBHBHBHB RO

fz=z====sszc==ssssz=s=s=z=z=zz-=ssss=======

#

Aligned_sequences: 2

1: HBA HUMAN

2: HBB HUMAN

Matrix: EBLOSUM62

Gap_penalty: 10.0

Extend penalty: 0.5

#

Length: 148

Identity: 63/148 (42.6%)

Similaricy: 88/148 (59.5%)

Gaps: 9/148 { 6.1%)

Score: 290.5

#

#

f==========cs====cc=c=ccczsccsssssz==cc==

HBA HUMAN 1 VLSPADKTNVKAAUGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF-DL

I N I N I R A N R HES IO I B N I I I e I I

HBB_HUHAN 1 VHLTPEEKSAVTALWGKV--NVDEVGGEALGRLLVVYPUTQRFFESFGDL

HBA HUMAN 49 G- HGSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRY
| N N R I I O R R R I A

HBB_HUHAN 49 STPDAVMGNPRVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHY

HBA HUMAN 94 DPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR
N NN P N N I R R N S I P B D RN BN N

HBB_HUMAN 99 DPENFRLLGNVLVCVLAHHFGRKEF TPPVQAAYQKVVAGVANAL AHKYH

Figure 7: A sample output from Needle application in EMBOSS

This result is getting from:

141

146

http://www.hgmp.mrc.ac.uk/Software/EMBOS S/Apps/needle.html#output. 1

5.4.2 OQutput: Rattus and Cyprinus

49

48

48

93

98

This result is got by running Needle application on line: http://csc-

fserve.hh.med.ic.ac.uk/emboss/needle.html

Global: , vs ,
Score: 1117.00

. 88

' 178
‘ 224
. 220
‘ 269
‘ 263
. 314
‘ 308

%$id = 65.22
Overall %id = 63.74

MEFYDHIFFDN.SSDSGSGDFDFD . ELCDLKVSNDFQKIFLPVVY

[] R N

MEIYTS. . .DNYSEEVGSGDYDSNKEPCFRDENENFNRIFLPTIY

GIIFVLGIIGNGLVVLVMGFQKKSKNMTDKYRLHLSIADLLFVLT

LUV DLV EE = s P =TI e

FIIFLTGIVGNGLVILVMGYQKKLRSMTDKYRLHLSVADLLFVIT

LPFWAVDAASGWHFGGFLCVTVNMIYTLNLYSSVLILAFISLDRY

R I I e R RN ANy

LPFWAVDAMADWY FGKFLCKAVHIIYTVNLYSSVLILAFISLDRY

LAVVRATNSQNFRRVLAEKVIYLGVWLPASLLTVPDLVFAKVHDT

R A A R

LAIVHATNSQSARKLLAEKAVYVGVWIPALLLTIPDIIFADVSQG

GMNTICELTYPLQGNTVWKAVFRFQHIFVGFLLPGLIILTCYCII

I N R A A AN

DGRYICDRLYP. . .DSLWMVVFQFQHIMVGLILPGIVILSCYCII

ISKLSKNSKGQALKRKALKTTVILILCFFICWLPYCAGILVDTLV

IR L

ISKLS .HSKGHQ.KRKALKTTVILILAFFACWLPYYVGISIDSFI

MLNVISHTCFLEQGLEKWIFFTEALAYFHCCLNPILYAFLGVKFS

L L R R N s

LLEVIKQGCEFESVVHKWISITEALAFFHCCLNPILYAFLGAKFK

KSARNALSISSR.SSHKMLTK.KRGPISSVSTESESSSVLSS

Lz fde L0 L0 bel= 0 0 T

SSAQHALNSMSRGSSLKILSKGKRGGHSSVSTESESSSFHSS

%$similarity = 80.00
Overall %$similarity = 78.19

5.4.3 Output: Didelphis and Dasypus

This result is got by running Needle application on line:

http://csc-fserve.hh.med.ic.ac.uk/emboss/needle.html output for

Global: , vs ,
Score:. 2120.00

GCAAGTTTCCGCTAC . CCAGTGAGAATGCCCTTTAAGTCTTATAA
CEREEE T 0 T TR e T

GCAAGTATCAGC . ACACCAGTGAGAATGCCCTCTAACTCTTATAG

ATTAAGCAAAAGGAGCTGGTATCAGGCACACAAAATGTAGCCGAT

[CUPPEELEEL e 41

AT....CAAAAGGAGCAAGCATCAAGTACA

AACACCTTGCTTTACCACACCCCCACGGGAGACAGCAGTGATTAA

RIRINEN [1]

............... CACAGCCC..................TTAC

50

43

42

88

87

133

132

178

177

223

219

268

262

313

307

353

349

44

44

89

70

134

82

‘

%id
Overall %id

135

83

177

123

222

168

267

207

307

247

345

291

390

336

435

380

480

425

525

470

570

515

615

560

658

602

702

647

743

688

74.22

AATTAAGC . AATAAACGAAAGTTTGACTAAGTCA . . TAATTTACA

R R N

AGT. .AGCTCATAACCGAAAGCTTGACTAAGTTATGTTATT. . . A

TTAGGGTTGGTCAATTTCGTGCCAGCCACCGCGGTCATACGATTA

FPEELEEEEE FELEELEE T TR T

TAAGGGTTGGTAAATTTCGTGCCAGCAACCGCGGTCATACGATTA

ACCCAAATTAATAAATAACGGCGTAAAGAGTGTTTAAGTTATATA

FUELEERECREL Dt TR T T I

ACCCAAATTAATAGTTATCGGCGTAAAGCGTGTTTAAG. A

CA..... AAAATAAAGTTAATAATTAACTAAACTGTAGCACGTTC

[EHE T AN

CACCTAGACAATAGAGTTAAACCCTTACTACGCTGTAAAA.

TAG. .TTAATATTAAAATACA. TAATAAAAATGACTTTAAT

S R FETEE TTTEY 1T

-AGCCTTAGTAGGACCATAAACCCTTCAACGAAAGTGACTCTAAT

ATCACCGACTACACGAAAACTAAGACACAAACTGGGATTAGATAC

L LEVEEEEEE T TP TP

TTATCTGACTACACGATAGCTAGGACCCAAACTGGGATTAGATAC

CCCACTATGCTTAGTAATAAACTAAAATAATTTAACAAACAAAAT

FEVELRRTTE T TR e o T

CCCACTATGCCTAGCCCTAAACTAAAA . CAGTTCACAAACAAAAC

TATTCGCCAGAGAACTACTAGCAATTGCTTAAAACTCAAAGGACT

FALEEEH D PELEEE R AL T

TGTTCGCCAGAGTACTACTAGCAACAGCTTAAAACTCAAAGGACT

TGGCGGTGCCCTAAACCCACCTAGAGGAGCCTGTTCTATAATCGA

EELEULELE b i LEPEEE LT

TGGCGGTGCTTTACATCCTTCTAGAGGAGCCTGTTCTATAATCGA

TAAACCCCGATAAACCAGACCTTATCTTGCCAATACAGCCTATAT

RERYRRERRRN AN AR IRRARERARERINY

TAAACCCCGATATACCTCACCACCCCTTGCTAATACAGCCTATAT

ACCGCCATCGTCAGCTAACCTTTAAAAAGAATTACAGTAAGCAAA

NN N N N

ACCGCCATCTTCAGCAGACCCTAGTAAGGCACCACAGTGAGCACA

AT. .CATACAACATAAAAACGTTAGGTCAAGGTGTAGCATATGAT

FETEe TR PP

ATAACAT. . . ACATAAAGACGTTAGGTCAAGGTGTAGCTTATGGG

AAGGAAAGTAATGGGCTACATTCTCTACTATAGAGCATA . ACGAA

LU TV EEEELEEE T T T Tt 1

GTGGGAAGAAATGGGCTACATTTTCTAATAAAGAGCAAATACAAA

TCATATTATGAAAC. . . . TAAAATGCTTGAAGGAGGATTTAGTAG

LT LI b0 FEE T

AAACTTAATGAAACAATTTAAGA. .CT. . AAGGTGGATTTAGTAG
TAAATTAAGAATAGAGAGCTTAATTG
(U EEE TR i 1

TAAGCTAAAMATAGAGAGTTTAGCTG

%$similarity = 82.61
Overall %$similarity = 74.22

51

176

122

221

167

266

206

306

246

344

290

389

335

434

379

479

424

524

469

569

514

614

559

657

601

701

646

742

687

768

713

6 User Manual

6.1 Function Usage

Here is a sample session with Alignment application instantiated with semi-global

algorithm.

osuatput i

Figure 8: A sample session with Global algorithm

Mandatory qualifiers:

[-asequence] sequence Required text file for Sequence A, which should be in the
same folder of executable file.

[-seqall] Sequence Required text file for Sequence B, which should be in the
same folder of executable file.

-gapopen double The gap open penalty is the score taken away when a gap is
created. The best value depends on the choice of comparison matrix. The
default value is 10.0

52

-gapextend double The gap extension, penalty is added to the standard gap penalty for
each base or residue in the gap. This is how long gaps are penalized. Usually
you will expect a few long gaps rather than many short gaps, so the gap
extension penalty should be lower than the gap penalty. An exception is where
one or both sequences are single reads with possible sequencing errors in
which case you would expect many single base gaps. You can get this result by
setting the gap open penalty to zero (or very low) and using the gap extension

penalty to control gap scoring.
-datafile CMatrix<double> This is the scoring matrix file used when

comparing sequences. This file should be in the same folder of
executable file. By default it is the file 'EBLOSUM®62'

53

7 Conclusions and Recommendation

7.1 Conclusion

This project proposes a generic C++ implementation based on a skeleton design for the
pairwise alignments. This implementation offers the possibility for the user to instantiate
the ADP for any pairwise alignment algorithm with little efforts and basic knowledge of
C++ language. The implementation provides both robustness and re-usability properties.
This project instantiated the skeleton on one pairwise alignment algorithm, namely semi-
global sequence alignment (Globalalignment) so as to evidence the claimed properties of

the skeleton.

Different pairwise alignment algorithm can be generated by varying the definition of the
data member, the gap penalty, filling Matrix procedure and evaluation criteria etc, so it
would be quite interesting to generate new implementation for an algorithm from existing

ones with as few changes as possible.

In spite of easy use, the flexibility, the robustness as well as a considerable savings in
time, this project has shown that even though being generic, this project implementation

achieves comparable results to that of other specific implementations, i.e. Needle in

EMBOSS.

In this project, there are two level of re-usability: in the application itself and in the

instantiations. The reusability of the application is due to the input and output ‘s

54

standardization of the of pairwise alignment algorithms. Sequence, Alignment, Matrix
and Utility components are directly reused from the ADP skeleton without any effort for
the user. The second level refers to the instantiations already dine. There exist many
shared methods that can be implemented in the same way for many pairwise alignment
algorithms, so a unique implementation can be reused for all of them. Furthermore, by
doing small changes in an instantiation, and reusing the rest of it, different

implementation of the same algorithm can be obtained.

7.2 Recommendations for Future Works:

Alignment application is easy to understand and reuse. To make Alignment application to
be a powerful framework, following detail job need to be carried out for improving it

reusability:

1. Input: It is better for Alignment application to accept more kinds of format data as
input. So far, this application can only accept text file with raw sequence data. If
it is necessary for this application to integrate to Emboss environment, it may
need to accept some formats of data, which are generated by other application of
Emboss.

2. Interface: For user friendliness, a graphic user interface may need.

3. Output: so far this application only supports one optimal solution; some
modification of Alignment class and trace back functionality is needed to support

multiple alignment output.

55

4. In this report, simply template class Matrix is used to store matrix data, simply
Sequence is used to store sequence raw data. For the performance and
application’s extendibility, we can replace those simple classes with container,
iterators in STL and The Matrix Template Library (MTL). This application is
designed following object-oriented mechanism; it is easy to make standard
library’s components plugged together.

5. The algorithm irﬁplemented in this report is not exactly Needleman — Wunsch
algorithm, Function printQutputFileHeader() in NeedleObjFunc class may need

to modify to prevent confusion.

56

References

l.

10.

11.

12.

S. Altschul and B. W. Erickson, Optimal sequence alignment using affine gap
costs. J. Mol. Biol., 48:603 -616, 1986

H. Austern, Generic Programming and the STL: Using and Extending the C++
Standard Template Library, Addison-Wesley Publishing, 1998

R. Bellman, Dynamic Programming. Princeton Univesity Press, 1957

B. Bergeron, Bioinformatics Computing, Prentice Hall PTR, 2002Matthew

D. Bertsekas, Dynamic Programming. Prentice Hall, 1987

K. Czarnecki, U. Eisenecker and K. Czarnecki, Generative Programming:
Methods, Tools, and Applications, Addison-Wesley Publishing, 2000

M. Dayhoff, R. M. Schwartz, and B.C. Orcutt, A model of evolutionary change in
protein. Atlas of Protein Sequence and Structure, Vol. 5, 345-352, 1978

R. Durbin, S. Eddy, A. Krogh and G. Mitchison, Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids, Cambridge, 1999

G. B. Fogel and D. W. Corne, Evolutionary Computation In Bioinformatics,
Morgan Kaufmann, 2002

O. Gotoh, An improved algorithm for matching biological sequences. J. Mol.
Biol., 162, 705-708, 1982

S. Henikoff and J. G. Henikoff, Amino acid substitution matrices from protein
blocks, Proc. Nat. Acad. Sci. U.S.A, 89: 10915-10919, 1992

D. E. Krane and M. L. Raymer, Fundamental Concepts of Bioinformatics,

Pearson Benjamin Cummings, 2002

57

13.

14.

15.

16.

17

18.

19.

20.

V.1 Levenshtein, Binary codes capable of correcting deletions insertions and
reversals. Soviet Physics-Doklandy, 10(8): 707-710. 1966

D. R. Musser and A. Saini, STL Tutorial and Reference Guide: C++
Programming with the Standard Template Library, Addison-Wesley Publishing,
2001

S. B. Needleman and C. D. Wunsch, A general method applicable to the search
for similarities in the amino acid sequences of two proteins. J. Mol. Biol. 48, 443-
453, 1970

M. Nelson, C++ Programmer’s Guide to the Standard Template Library IDG

Books Worldwide, 1995

. P. A. Pevzner, Computational molecular biology: an algorithmic approach, MIT

Press, 2000

T. F. Smith and M. S. Waterman, Identification of Common Molecular
Subsequences. J. Mol. Biol., 147, pp. 195-197, 1981

Combining OO Design and Generic Programming, C++ Report, March 1997,
http://www langer.camelot.de/Articles/C++Report/OOPvsGP/Introduction.htm

Standard Template Library Programmer's Guide, http://www.sgi.com/tech/stl/

58

