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Abstract

Adaptive Control for Frictional and Impact Chatter
in Metal Cutting via Piezoelectric Actuator

Yang Wang

From the very beginning, metal cutting has had one troublesome obstacle in increas-
ing productivity and accuracy, namely chatter. In machining, chatter is perceived as
unwanted excessive vibration between the tool and workpiece, resulting in a poor sur-
face finish and accelerated tool wear. It also has a deteriorating effect on the machine
tool life, and the reliability and safety of the machining operation. The frictional and
impact chatter are mainly due to the nonlinearity of the dry friction and the inter-
mittent contact between the cutting tool and the workpiece. This thesis addresses
the controller design for suppressing frictional and impact chatter in metal cutting

systems.

Piezoelectric actuators have become a standard option in positioning applications
where the displacements must be small and highly accurate. In particular, ultra-
precision manufacturing requires exceptionally fine and repeatable motions, making
piezoelectric actuators a common choice. In this thesis, with the application of piezo-

electric actuators in two directions x and y, an adaptive controller is developed to deal



iv
with unknown hysteresis combined with time delay. And an approach for adaptive
control of frictional and impact chatter for metal cutting by piezoelectric actuator
is presented. The developed control approach is based on an accepted model of the
metal cutting process dynamics in the context of an approximate analysis of the
resulting non-linear differential equations of motion. The stability analysis of the sys-
tem is also given. The results of the numerical study of the adaptive control system
shows the effectiveness of control of frictional and impact chatter with piezoelectric

actuators.
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Nomerclature

¢1-4 = cutting process constants

¢z, ¢y = stiffness in x and y direction

C; = Ritz constant

f() = vector of force

ficut = ith component of the cutting force

fo— vector of other forces acting on the machine tool structure
fz, fy = cutting force in x and y direction resppectively
h = depth of cut

ho = initial depth of cut

H() = Heaviside function

ky,ky, = viscous damping in z and y direction

m = mass of the vibrating system

qo = modulus of the cutting force

R = variable shear plastic deformation coefficient

Ry = shear plastic deformation constant

{ = time

vy = relative velocity between the tool and the workpiece in y direction
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vo = velocity of the workpiece

v, = relative velocity between the tool and the workpiece in x direction
z,y = model’s coordinates

« = stiffness ratio

a; = jth cutting parameter

¢ = shear angle

x() = friction coefficient of a chip on the ranke surface

& = coeflicient of viscous damping

&z, &, = coefficient of viscous damping in z and y direction respectively
Woz, Woy = natural frequency in = and y direction respectively

o = static friction coefficient

At = time step



Chapter 1

INTRODUCTION

1.1 General

Machining (turning, milling, drilling) is the most widespread metal process in the
mechanical manufacturing industry. Worldwide investment in metal-machining ma-
chine tools holds steady or continues to increase year by year. Machining is still the
fundamental manufacturing technique and it is expected to remain so for the next
few decades. Moreover, it is predicted that ultra-precision machining will take an

even more significant role among other manufacturing techniques. [47]

In the search for a significant improvement in accuracy and productivity of machin-
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ing processes, the mechanics of chip formation has been revisited in order to under-
stand functional relationships between the process and the technological parameters.
This has led to the necessity of considering the chip-formation process to be highly
nonlinear with complex interrelations between its dynamics and thermodynamics.
However, the major requirement is to perform the technological operation under
chatter-free conditions. In machining, chatter is perceived as unwanted excessive
vibration between the tool and the workpiece. Piezoelectric actuators have become
a standard option in positioning applications where the displacements must be small
and highly accurate. In particular, ultra-precision manufacturing requires exception-
ally fine and repeatable motions, making piezoelectric actuators an appropriate and

common choice.

1.2 Problem Statement

Large relative vibrations between the tool and the workpiece in metal cutting pro-
cesses can compromise the productivity and accuracy of this manufacturing technique.
This is particulary dangerous when a sudden and uncontrolled rise of vibration ampli-

tude occurs. An example of such behavior is self-excited oscillations so-called chatter.
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In machining, chatter is perceived as unwanted excessive vibration between the tool
and the workpiece resulting in a poor surface finish and accelerates tool wear. It also
has a deteriorating effect on the machine tool life and the reliability and safety of
the machining operation. The frictional and impact chatter is primary chatter and
is mainly due to the nonlinearity of the dry friction and the intermittent contact

between the cutting tool and the workpiece.

1.3 Thesis Outline

The main objective of this thesis is to design an adaptive control system to overcome
the frictional and impact chatter via piezoelectric actuator. Respecting to the dy-
namics of the metal cutting system, two mathematic models, namely Deterministic
and Stochastic model, are used in this thesis to describe the dynamics of orthogonal
cutting in the lathe operation. And the method of Adaptive Control of a Class of
Nonlinear Systems with Unknown Backlash-Like Hysteresis is used to develop cor-
responding control laws to overcome the frictional and impact chatter during the

orthogonal cutting process.

The work carried out and the results obtained are organized in this thesis as follows:
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Chapter 2 gives the literature review that consists of four parts: 1) Chatter Mecha-
nisms, 2) Metal Cutting Mechanics, 3) Chatter Suppression in Turning 4) Contribu-
tions of the Thesis. The first part gives a brief review of chatter mechanisms. Because
the chatter mechanism should take into account kinematics, dynamics and geometry
of the chip formation, in part 2 the metal cutting mechanics are reviewed. In part
3, preview works of chatter suppression is shown. And in part 4, the comparison of
models and control systems for chatter are discussed. The advantages of the model
for frictional and impact chatter, piezoelectric actuator and adaptive control of non-

linear system with unknown hysteresis are also discussed.

In Chapter 3 the piezoelectric actuator is introduced. As some advantages of a piezo-
electric actuator, such as lager force generation, sub-millisecond response, fast ex-
pansion, sub-nanometer resolution and so on, are shown to be suitable in controlling
chatter in metal cutting. Finally a continuous-time dynamic model is used to describe

the dynamics of piezoelectric actuator.

Chapter 4 fully analyzes the frictional and impact chatter in the two-degree-of-

freedom deterministic model. The deterministic model describes dynamic interactions
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in the uncoupled MT(Machine Tool)-CP(Cutting process) system in a comprehensive

manner.

In Chapter 5 an adaptive control method is developed for the deterministic model.
The adaptive control law for nonlinear systems with hysteresis is used in the sup-
pression of chatter because of the inherent hysteresis in piezoelectric actuators. The

simulation results of the control system are discussed in this chapter.

Chapter 6 fully analyzes the frictional and impact chatter in the two-degree-of-
freedom stochastic model. This chapter demonstrates the necessity of modelling the
stochasticity of the cutting process. In particular, the randomness of the specific
cutting resistance is examined. The simulation shows the effect of random material

property on the vibration of machine tools in the metal cutting process.

In Chapter 7 the adaptive control method for the stochastic model is developed. And

the results of simulation of the control system are discussed in this chapter.

Finally, Chapter 8 consists of two parts; 1)Conclusion. This part presents highlight of

the present investigation and important conclusions of this studies. 2)Future Works.
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This part gives a list of recommendation for further work in this area.



Chapter 2

LITERATURE VIEW

2.1 Chatter Mechanisms

It is possible for periodic force variations in the cutting process to interact with the
dynamic stiffness characteristics of the machine tool including the tool holder and
workpiece to create vibrations during processing that are known as chatter. This
is particularly dangerous when sudden and uncontrolled rise of vibration amplitude
occurs. Chatter leads to poor surface finish, dimensional errors in the machined
part and also accelerates tool failure. Although chatter can occur in all machining
processes (because no machine tool is infinitely stiff), it is a particular problem in

operations requiring large length-to-diameter ratio tool holders (for example in bor-
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ing deep holes or end milling deep slots and small radius corners in deep pocket)
or when machining thin-walled components. It can then be hard to continue the
operation because of chatter vibration. The purpose of chatter vibration modelling
is to support chatter avoidance strategies. Although the conditions in which such
an instability appears can be explained by linear dynamics in many practical situ-
ations, more comprehensive insight can be gained only if the dynamic interactions

between the machine tool (MT) and the cutting process (CP) are treated as nonlinear.

Despite the continuing effort in the field and generation of new theories [1], [4], [7],
[10],[11], [12],[16],[17], [18],]24],[26],[41], there is no consistent explanation for the exis-
tence of chatter. The reason behind it is the complexity of the chip-formation process,
where the following strongly nonlinear phenomena are interrelated and dependent:
temperature-dependent plasticity; temperature and velocity-dependent friction; non-
linear stiffness of machine tools; regenerative effects; and intermittency of the cutting

process.

The first attempts to describe chatter were made by Arnold [1}, Hahn [11] and Doi
& Kato [7]. There have been several theories put forward to explain them, how-

ever, a sufficient agreement between different investigators has not been reached yet
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(Jemielniak [16]). One reason for these divergences is because of the approach, which
treats the dynamics and cutting process separately. Tobias [41], Opitz and Bernardi
[29], and Tlusty [40] have abolished the validity of this assumption by observing the
intermittent cutting process, and Grabec [10] did the first numerical investigation.
Another common example is the existence of the stick-slip phenomena in the machine
tool slide ways, which has a great influence on the cutting process itself (Wiercigroch

[486]).

The metal cutting process involves a number of strongly nonlinear phenomena, which
can be classified into two distinct dynamical systems, namely mechanics and thermo-
dynamics of chip formation. In figure 2.1 the functional interrelationships between
these two systems are shown in a form of a close-loop model. The mechanical part is
comprised of two major blocks: the cutting and thrust force generation mechanism
(CTFGM) and the machine-tool (MTS).The thermodynamical part consists of two
blocks: the heat-generation mechanism (HGM) and thermodynamically equivalent
chip volume (TECV). The HGM is fed with the initial values of shear flow stress oy,
friction angle 75 and shear angle ¢, and a feedback path of current temperature of
the chip, 6(¢). TECV system shows that the equivalent changes of the chip volume

due to temperature variations. The input Qg4(t) is the quantity of heat from HGM.
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Figure 2.1: Closed-loop model of dynamic and thermodynamic interaction [47]

10

The input @;(t) is the quantity from outside and the cooling system, so it is minus.

The inputs to the CTFGM are the required geometry of the cutting system, G,, and

kinematics of the cutting system, K, a feedback from the MTS in a form of the

dynamical vector X (t), and a feedback from the thermodynamically equivalent chip

volume (TECV) in the form of the shear flow stress, o(t), and the friction and shear

angles, 7(t) and ¢(t). The outputs from CTFGM are the cutting and thrust forces,

F(t) and F(t), which, together with the vector of initial conditions, Xo, act on the

MTS, producing the dynamic vector of displacement and velocities, X (t).

From the work of Merritt [26], Kegg [18] and Kudinov [19] the idea of portraying the
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dynamic interactions in the metal cutting as a system of automatic control originated.
But, all three have only looked at the mechanical part of the problem, and assumed

a linear system.

Grabec {10], and Lin & Weng [23] considered mechanical models with nonlinear cut-
ting forces. Recent investigations into nonlinear dynamics show the existence and the
importance of chaotic motion (The motion is chaotic, not following any discernable
regular pattern but varying in an unpredictable way.), which occurs in many appli-
cations. However they are mostly dedicated to the continuous problems. Although
some discontinuous systems have been analyzed, e.g., a piecewise oscillator by Shaw
and Holmes [35], impact system by Nordmark [28], rotor systems with clearances by
Neilson and Gonsalvez [27], only a very few works have been addressed to the dy-
namics of the cutting process. Preliminary theoretical works carried out by Grabec
[10] and Wiercigroch [46] have shown some evidence of chaotic vibrations, which are

mainly due to the nonlinearity of the cutting tool and workpiece.

In general, chatter can be classified as primary and secondary. Another classification
distinguishes frictional, regenerative, mode-coupling and thermo-mechanical chatter.

The following section explains these classifications of chatter.
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2.1.1 Frictional Chatter

The distinction between primary (frictional) and secondary (regenerative) chatter can
be made easily. Marui et al.[24] compared the size and orientation of the vibratory
locus (trajectory of the cutting edge) for the frictional and regenerative chatter. The
regenerative locus is almost ten times bigger than the frictional locus and also as their

spatial orientations are different [24].

The analytical and experiment studies on the primary chatter reveal that the exci-
tation energy is generated from the friction force both between the workpiece and
tool flank and between the chip and the rake surface (Hamdan & Bayoumi [12]). The
friction force on the tool face is generally considered to be the force required to shear
the welds formed between the sliding surfaces. Because the shear stress varies with
the temperature and the shear rate, the friction force can be estimated depending on
the cutting velocity. By analyzing the results presented by Cook [26], it is shown that
the shear flow stress and the friction force decrease with an increase of chip velocity.
Therefore, if there are relative oscillations between the cutting tool and the chip,

there will be a net energy input to the system, which can sustain the vibration.
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2.1.2 Regenerative Chatter

The most commonly studied form of chatter is known as regenerative chatter. It can
occur when compliance of the machine tool structure allows cutting force to displace
the cutting edge normal to the cut surface and when, as is common, the path of a

cutting edge over a workpiece overlaps a previous path.

Regenerative chatter is the most common form of self-induced vibration. Boothroya
[2] had found that the regenerative chatter occurs so often because the majority of
cutting involve overlapping cuts and the amplitude of the forced vibrations resulting
from shaving a wavy surface from the pervious cut can be significantly amplified
although the machine tool system is stable itself. Marui et al. [24] and Kaneko [17]
had provided clear evidence of how dominating the regenerative effect can be when
compared with other types of chatter by experiments. The cutting force could be a
function of the depth of cut,h, the rake angle, a, and clearance angle, 3,(Kudinov

[19]) which can be written as

F,.=F.h,a,p) (2.1)

Assuming that this function has a total differential, Kudinov [19] proposed a formula
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for the dynamic variation of the cutting force in the following form:

oF, oF, oF,
dF, = 3 dh + E™ do + o8

g (2.2)

Tobias & Fishwick [41] adopted a similar approach of modelling the dynamic variation
of the cutting force, where the cutting force in turning was assumed to be a function
of the depth of cut, h, the feed rate, r, and the rotational speed, €2, representing the
cutting speed, v.. The formula can be written as

oF,  OF,  OF,
dF, = —cdh+ —Sdr + 5o

ds (2.3)

where
dh = z(t) — px(t — T) (2.4)

1 is the factor of overlapping between the previous and present cuts, and T is a period

of one revolution.

2.1.3 Mode Coupling

The mode-coupling chatter exists if the vibration in the thrust force direction gener-
ates vibration in the cutting force direction and vice versa. This results in simultane-
ous vibration in the cutting and thrust force direction. Physically, many sources can
cause mode-coupling chatter. The sources includes chip thickness variation (Tlusty

& Ismail [40]), shear angle oscillations (Wu [43]), regeneration effect (Jemielniak &
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Widota [16]), and friction on the rake and clearance surface (Cook [4] and Wiercigroch
[46]). The necessary condition is that the cutting and thrust forces have components
(feedback) of other direction (Wu & Liu [44]). This has been elegantly captured for a
two-degree-of-freedom model by Wu & Liu [44] shown in figure 2.2. The cutting and

thrust forces are given by two formulaes, respectively as:

1 1 .. K
mI+c,Z+k,x = 2w03($0—x)[(Ax~C’mvo)+§Bm(:b—5c0)—§Cx(y—y0)] — vw

i (2.5)

. . | 1., .
mi + cyy + kyy = 2wos(z0 — z)[(Ay — Cyve) + 'Q‘By(x — &) — §Cy(y —%)] (2.6)

where m is the equivalent vibrating mass, ¢, and cythe viscous damping coefficients,
ky and k, the machine structure stiffness constants, v. the cutting speed, and K is
the damping coefficient evaluated from the ploughing force acting on the tool nose, w
is the frequency, o5 is shear stress. x4 and yo are the starting position of chip on the
surface of workpiece. z and y are the position of tool. F; and F, are the cutting forces
in z and y directions. The remaining constants in (2.5) and (2.6) (As, Ay, By, By, Cy
and Cy) are called the dynamic force coefficients and are fully described in Wu & Liu

[43].
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Figure 2.2: Two-degree-of-freedom model of the metal-cutting system

2.1.4 Thermomechanical Chatter

Thermomechanical chatter is due to temperature variations and the temperature
distortion of the chip. The first approach to comprehensively describe the thermo-
mechanics was made by Hastings et al. [13]. Shown in the Figure 2.3, the thermo-
dynamical part consists of two blocks: the heat-generation mechanism (HGM) and
thermodynamically equivalent chip volume (TECV). The HGM is fed with the initial
values of gy, 79 and ¢y, and a feedback path of current temperature of the chip, 6(¢).
TECYV system shows that the equivalent changes of the chip volume due to tempera-

ture variations. The input QQy(t) is the quantity of heat from HGM. The input Q;(t)
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G0, oy, 6y o) 1)
heat generation -Oit) thermodynamically
|: mechanism 0.0 equivalent chip volume o)

Figure 2.3: Resource of thermomechanical chatter

is the quantity from outside and the cooling system, so it is minus. The output of

the HGM are the shear flow stress, o(t), and the friction and shear angles, 7(¢) and

¢(t)

They formulated an approximate theory which was applied to two plain carbon steels
by using the flow stress data obtained from high-speed cutting and a good agreement
between theory and experiment has been shown for predicting the cutting and thrust
forces, to account for the effects of temperature and strain-rate in the plastic defor-

mation zone on the mechanics of chip formation.

In the paper by Hastings et al.[13] an approach explaining the influence of the tem-
perature and the strain rate dependent properties of the workpiece has been given.
Applying the appropriate stress equilibrium equation along the shear plane, it can be

shown that for 0 < ¢ < 7/4, the auxiliary angle, «, which is the angle between the
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shear force F,; and the resultant force R, is given by
tan(k) =1+ 2(r/4 - B) — Cn (2.7)

There are two constants in this equation, in which C is an empirical constant and n

is the strain-harding index.

C came from detailed studies of deformed grids in experimental work and calculations

of the primary shear strain rate:

_ Cu,
- hoSi’IL(f)

Vs (2.8)
in which %, is the maximum shear strain-rate at the shear plane, v, is the shear ve-

locity, hg is the initial depth of cut.

Strain-hardening index n can be calculated from the empirical strain-stress relation

O = 01(9int7"Yint), €", (2-9)

where o, and € are the uniaxial flow stress and strain and o; is a constant defining
the stress-strain curve for given values of strain rate, ¥, and temperature, §. The
temperature on the shear plane can be calculated by knowing the initial temperature

of the workpiece, 0,,, from the following equation,

1—1(v.) Fscosa

b= b tn pShow cos(¢p — a)

(2.10)
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in which n € (0,1) is a coefficient accounting for how much of the plastic deformation
has occurred on the shear plane, p and S are the density and specific capacity of the
workpiece, respectively, and 1(v.) is the empirical non-dimensional function used to
determine a portion of the heat conducted into the workpiece from the shear zone.
In a similar manner, the average temperature at the cutting-tool-chip interface, 0;y;,

is calculated

1—(v.) Fscosa
pShow cos(¢p — a)

Oint = Oy + + &0,y (2.11)

where 0, is the maximum temperature rise in the chip and £ € (0, 1) is a constant
allowing 6;,; to have an average value. The average temperature rise in the chip,
6., and the thickness of the plastic zone, d, can be calculated from a combination of

numerical and empirical formulae,

Fsing
be = pShwecos(¢ — a) (212)
0.5
lg(%—m) =0.06 — 0.1965(-1%—;@) + 0.51g(@) (2.13)
c

where ¢ is the ratio between the thickness of the plastic zone in the chip and the chip
thickness, Ry is a non-dimensional thermal coefficient and [ is the cutting-tool-chip

contact length, which can be calculated from the moment equilibrium on the shear

plane,

hgsink Cn
(1 ) )

" coshsing\ ' 3(1+ 057 — 24— Cn (2.14)
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A relation for the maximum shear strain rate at the cutting-tool-chip interface is

given

ve  Sing
Oh cos(¢ — a)

Yint = (2.15)
It is the first time that the Hastings’ models allows calculation of the temperature

and the strain rate at the cutting-tool-chip interface and the corresponding shear flow

stress and describe the thermomechanical chatter.

2.2 Metal Cutting Mechanics

In 1800s studies on metal cutting had been carried out. A lot of works have been
done in this area[2], [6], [13], [23], [25], [32], [43], [44]. In general, the cutting process
is a result of the dynamic interaction between the machine tool, the cutting tool and
the workpiece. Therefore, its mathematical description should take into account its
kinematics, dynamics, geometry of the chip formation and workpiece, mechanical and
thermodynamical properties. A simplified schematic locating all important phenom-
ena in the cutting zone is shown in Figure 2.3 {47]. Here most of the phenomena
listed are strongly nonlinear and interdependent. Then the Merchant’s model and

Hasting’s model will be introduced.
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primary shear zone secondary shear
—elasto-plastic and friction zone
deformation —plastic deformation

—heat generation —friction
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—adhesion and diffusion

tool flank deformation
and friction zone
—elastic deformation
—friction

—heat generation

workpiece

Figure 2.4: Physical phenomena in the cutting zone [47]

2.2.1 Merchant’s Model

In the pioneering work of Merchant [25], a model of the cutting process was used in
which the shear in chip formation was confined to the shear plane, and movement
of the chip over the tool occurred by classic sliding friction, defined by an average
friction angle 8. Here the uncut layer (initial depth of cut), hg, of the workpiece in
the form of a continuous chip without a built-up edge is seen to be removed along

the shear plane. Merchant’s force circle were restricted to a model of orthogonal or

two-dimensional metal cutting shown in Figure 2.5 [25].
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1
)

Figure 2.5: Merchant’s force diagram [25]

The cutting and feed forces can be found from figure 2.5 as the two equations below:

_ howkcos(f — )

~ singcos(¢p+ B — a)

_ hywksin(f - a)
L7 sing cos(¢ + 0 — )

(2.16)

(2.17)

where (3 is an average friction angle. Appendix A describes Mechant’s work in more

detail.

2.2.2 Hasting’s and Oxley’s Models

The main deficiency of the models by Merchant was a difficulty to verify the theoreti-

cal predictions with experiments. In the paper by Recht [32] a brief description of the
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Figure 2.6: Schematic of the segmented chip formation [47]

chip-fragmentation hypothesis is given to illustrate the complexity of this problem.

For certain temperatures and workpiece materials, mechanical properties are not ca-
pable of sustaining a steady-stress field and chip segmentation, and the resulting
fluctuating stress and temperature fields occur. Referring to Figure 2.6, as the work-
piece is approached by the tool, it experiences a stress field, which changes with time.
The chip segment enclosed within lines 1, 3, 4 and 5 is being plastically deformed by
the tool, and stress, strain and temperature fields are building up in the workpiece.
As the material begins to shear along line 5, these fields develop conditions leading

to thermoplastic instability, and a very thin shear-localized band absorbs the bulk of
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further strain. Then the chip segment moves up the ramp formed by the workpiece
material on the workpiece side of line 5. As the tool moves into the ramp, a new
segment begins to form. Its upper surface, represented by line 5, becomes the surface
through which the tool upsets the material. As upsetting progresses, this surface be-
comes that identified by line 3 and 4, the latter of which is being pressed against the
tool face. Until a new localized shear zone forms due to thermostatic instability, the
increasing portion of line 4 (a hot sheared surface) that lies on the rake face remains
at rest. Shearing between segments along line 3 ceases when the next localized shear
zone forms along line 5, due to the build-up of the stress, strain and temperature
fields. Once deformation and shearing have ceased, the chip segments pass up the
rake face. Chip-sliding behavior on the rake face is therefore characterized by a start-
stop motion. Considering the pressures, temperatures and heat transfer conditions
at the cutting-tool-chip interface, sliding resistance would be expected to be much
greater for the segmented chips than for continuous chips. When frictional forces and
speed are sufficient to produce localized melting temperatures at asperities within the
cutting-tool-chip interface, segmented chips produce much higher friction coefficients,
interface temperature and tool wear rates than the continuous chips do. As described
above, segmented chips experience stick-slip motion. Under very high compression,

molten regions in the interface may quench and freeze. Weld bonds in the interface
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must be sheared, producing high friction forces.

Unlike most of the classic models of chip formation, such as Merchant’s model, Ox-
ley [30] has confirmed that a shear-zone model is much closer to practical machining
situation than a shear-plane model. Rather than on a single plane in Oxley’s model
chip formation is considered to take place in a fan-shaped zone at low speed, and a
parallel-sided zone at high speeds. The frictional conditions are described as shear

within a layer of the chip adjacent to the rake face of the tool.

2.3 Chatter Suppression in Turning

In order to suppress the chatter in turning, a lot of researches have been done [3],
(5], (8], [9], {15], [21], [31], [37], [39]. Rasmussen et. al. [31] improved the workpiece
surface by employing a digital repetitive servo control with the design of piezoelec-
tric actuated cutting tool. Tarng and Wang [39] developed an adaptive fuzzy con-
trol system for the turning processes with highly nonlinear and time-varying cutting
characteristic. Shiraishi et. al. [37] obtained satisfactory chatter vibration control

by implemented optimal control of chatter. Hwang ef. al [14] implemented a fixed
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gain PI control and an adaptive pole assignment control technique with the feed force
feedback. Chen and Chang [3] considered the system to be linear with nonlinear time-
varying perturbation and employed PI controller to treat this stabilization problem.
Recently, with the advantages of piezoelectric actuator, more and more researchers

pay attention to the application of piezoelectric actuator for metal cutting systems

[51, 8], {91, {15}, [21].

2.4 Contributions of the Thesis

2.4.1 Dynamic Model

Early work done by Merchant [25]and his followers examined the relationship between
the forces and the chip, and linearity of the machine tool. Recent research conducted
by Hastings et al. [13] still followed this line, although theoretically these studies
were better founded. According to my knowledge, the problem of relative vibration
between the workpiece and the tool in these researches [2], [6], [13], [23], [25], [32],
[43], [44], has been addressed for years assuming that contact between the workpiece
and tool is never lost. This gives a good representation of the reality for small changes

in the cutting process parameters under steady-state conditions. However, modern
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manufacturing requires a high flexibility of the cutting conditions and therefore a
good understanding of the transients is essential to eliminate a catastrophic breakage
of the tool. Despite the significant process made in perceiving the complex mecha-
nism of the chip formation using linear models, a proper understanding will only be
possible when the nonlinear nature of the chip-formation phenomena is unveiled and

appropriately modelled. (Wiercigron|[46]).

Recent investigations into nonlinear dynamics have shown an existence and impor-
tance of chaotic motion occurring in machining. The models by Grabec [10] and
Wiercigroch [46] have shown evidence of chaotic vibrations, which occurs mainly due
to the nonlinearity of dry friction and the intermittent contact between the cutting
tool and the workpiece. In this thesis, the author uses the models by Grabec [10]
and Wiercigroch [46] to explain the nonlinearity of the frictional and impact chatter
in metal cutting processes. And in this thesis the metal cutting process based on
the stochastic models was introduced to demonstrate the stochasticity of the cutting
process instead of the deterministic models. With nonlinear dynamic analysis and

simulations this model will demonstrate the frictional and impact chatter properly.



Chapter 2. Literature View 28
2.4.2 Chatter Suppression

Recent researches [5], {8], [9], [15], [21], [22], [37], [48], pay more and more attention
to the active control of chatter. With the development of piezoelectric technology,
piezoelectric actuators have become a standard option in positioning applications
where the displacements must be small and highly accurate. In particular, ultra-
precision manufacturing requires exceptionally fine and repeatable motions, making
piezoelectric actuators a common choice. The research by Richter [34] shows the
hysteretic behavior of piezoelectric actuator is a important problem for designing the
control system. In this thesis, with the application of piezoelectric actuators in two
directions z and y, we develop a adaptive controller to deal with unknown hysteresis.
According to my knowledge there is no discussion in literature about frictional and
impact chatter suppression by piezoelectric actuator. It is the first time that the
frictional and impact chatter was combined with adaptive control system of nonlinear
system with unknown hysteresis by using piezoelectric actuator. The simulation of
the adaptive controller will show the suppression of frictional and impact chatter and

stability of the metal cutting system.
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Dynamic Model of Piezoelectric

Actuator

Piezoelectric actuators (piezo) are solid state (ceramic) actuators that convert elec-

trical energy directly into motion (mechanical energy) of extremely high resolution.

Pierre and Jacques Curie {49])in 1880 were the first to experimentally demonstrate
that there was a connection between macroscopic piezoelectric phenomena and crys-
tallographic structure. Their experiment consisted of a conclusive measurement of
surface charges appearing on specially prepared crystals (tourmaline, quartz, topaz,

cane sugar and Rochelle salt among them) which were subjected to mechanical stress.

29
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This effect was dubbed as " piezoelectricity”.

The first serious applications of piezoelectric devices took place during World War I.
In 1917, P. Langevin and French co-workers began to perfect an ultrasonic submarine
detector [49]. Their transducer was a mosaic of thin quartz crystals glued between two
steel plates (the composite having a resonant frequency of about 50 KHz), mounted
in a housing suitable for submersion. Continuing their work after past the end of
the war, they did achieve their goal of emitting a high frequency ”chirp” underwater
and measuring depth by timing the return echo. The strategic importance of their
achievement was not overlooked by any industrial nation, and since that time the

development of sonar transducers, circuits, systems, and materials have never ceased.

Now the commercial success of the Japanese efforts has attracted the attention of
industry in many other nations and spurred a new effort to develop successful piezo-
ceramic products. Another measure of activity is the rate and origin of article publica-
tions in the piezoelectric materials/applications area - there has been a large increase

in publications rate in Russia, China and India.
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3.1 Advantages of Piezoelectric Actuators

As a kind of new actuator, piezoelectric actuator has many advantages, such as:

¢ Sub-nanometer resolution

e Large force generation (> 10,000 N)

e Sub-millisecond response

e No magnetic fields

e Extremely low steady-state power consumption
e No wear and tear

e Vacuum and clean room compatibility

e Operation at cryogenic temperatures

3.1.1 Advantages of Piezoelectric Positioning Systems

Especially for positioning system, piezoelectric actuator shows lots of advantages.

e Unlimited Resolution

A piezoelectric actuator can produce extremely fine position changes down to the
subnanometer range. The smallest changes in operating voltage are converted into

smooth movements. Motion is not influenced by stiction/friction or threshold volt-
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ages.

¢ Large Force Generation
Piezoelectric actuators can generate a force of several 10,000 N. Some units even can
bear loads up to several tons and position within a range of more than 100 gm with

subnanometer resolution.

¢ Fast Expansion
Piezoelectric actuators offer the fastest response time available (microsecond time

constants). Acceleration rates of more than 10,000 g’s can be obtained.

e No Magnetic Fields
The piezoelectric effect is related to electrical fields. Piezoelectric actuators do not
produce magnetic fields nor are they affected by magnetic fields. They are specially

well suited for applications where magnetic fields cannot be tolerated.

e Low Power Consumption
The piezoelectric effect directly converts electrical energy into motion only absorbing

electrical energy during movement. Static operation, even holding heavy loads, does
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not consume power.

e No Wear and Tear
A piezoelectric actuator has neither gears nor rotating shafts. Its displacement is

based on solid state dynamics and shows no wear and tear.

e Vacuum and Clean Room Compatible
Piezoelectric actuators are ceramic elements that do not need any lubricants and show
no wear and abrasion. This makes them clean room compatible and ideally suited for

Ultra High Vacuum applications.

e Operation at Cryogenic Temperatures

The piezoelectric effect is based on electric fields and functions down to almost zero

Kelvin.
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3.2 Precision Positioning by Piezoelectric

Actuators

3.2.1 Open and Closed Loop Operation

One essential feature of a piezoceramic actuator is its ability to make infinitely small
movements, when a correspondingly small voltage signal is applied. This enables
piezoelectric actuators for ultra precise positioning tasks (unlimited relative position-

ing sensitivity).

On the other hand, when a large change in the voltage signal is applied to a piezo-
electric actuator, the actual position step width can be influenced by many internal
and external parameters acting onto the actuator, so that in the first instant, the
relationship between voltage and the induced motion can only roughly be predicted.
This can be demonstrated by applying a series of random voltage steps to a piezo-
electric actuator or by running a cycle over a distinct voltage range producing the

well known hysteresis loop.

When a distinct piezoelectric voltage level is accessed from randomly distributed

starting points of the actuator, the uncertainty in the final position is roughly equal
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Figure 3.1: Open loop correlation of position and driving voltage [49]

to the intersection of the hysteresis field with the voltage level. So the uncertainty
in open loop piezoelectric positioning in random access operation can be up to 10%
to 15% of the actually applied total piezoelectric actuator range. In Figure 3.1 the
characteristic of a low voltage actuator is shown for the full output voltage range -30

V to +150 V. Displacement hysteresis is about 15 % [49].

3.2.2 Basics of Closed Loop Operation

The actuator produces only a motion, but does not contain an inherent precise infor-

mation about the exact position. To obtain this information of the actual position,
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piezoelectric actuator
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Figure 3.2: Model structure of the position control system feedback control unit

the actuator must be combined with a suitable kind of position sensitive sensor. " Suit-

able” means: sufficiently high in accuracy, repeatability and linearity.

By a feedback control logic, the real position of the actuator is permanently compared
with the desired position, defined by the magnitude of the input signal. When there is
a difference between wanted (reference) and real position, the feedback control drives

the piezoelectric actuator to the perfect position and cancels the difference.

3.2.3 Piezoelectric Positioning System

The complete piezoelectric positioning system requires:

e the piezoelectric actuator including the position sensor option (strain gage),
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e other electronic units (comprising all necessary modules, Figure 3.2) such as:
- sensor signal amplifying stage
- feedback control logic (including microprocessor)

- piezoelectric voltage amplifying unit

3.3 Piezoelectric System Companies

With the development of the piezoelectric system, more and more companies began

to produce the piezoelectric system and do the researches.

e Piezo System Inc.
186 Massachusetts Avenue Cambridge,Massachusetts 02139 USA

Web: www.piezo.com

e Physik Instrumente (PI) GmbH Co. KG
Auf der Roerstrasse 1, D-76228 Karlsruhe/Palmbach, Germany

Web: www.physikinstrumente.de

o Piezomechanik GmbH
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Berg am Laim Str. 64, D-81673 Munchen/Munich, Germany.

Web: www.piezomechanik.com

3.4 Technical Data of Piezoelectric Actuator

Here we choose the P-239 Piezoactuator as example to show the technical data and
the limitation of the piezoactuator’s motion.

Open-loop travel: 180 um + 20 %

Close-loop travel >: 180 um

Close-loop/open-loop resolution: 3.6/1.8 nm

Static large-signal stiffness: 35 N/um=+20%

Push/pull force capacity:4500/500 N

Torque limit(at tip): 1 Nm

Max. operation voltage: —1000V

Electrical capacitance: 2100 nF

Dynamic operating current coefficient: 17.5 pA/(Hz x pm)
Unloaded resonant frequency: 2 kHz

Weight without cables: 400 ¢
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3.5 Dynamic Model of Piezoelectric Actuator

Piezoelectric actuators have become a standard option in positioning applications
where the displacements must be small and highly accurate. For the design of
controller instead of using the traditional backlash hysteresis nonlinear model, a

continuous-time dynamic model to describe a class of backlash-like hysteresis have

been defined by Su et. al. [38]:

dw(t
dt

du(t)

)
-« at

(3.1)

d’;gf) ‘ (cu(t) — I(8)) + B

where a, ¢, and B; are constants, satisfying ¢ > B;. And in Figure 3.3 the hys-
teresis curves given by equation (3.1) with @ = 1, ¢ = 3.1635, and B; = 0.345 for
v(t) = k sin(2.3t) with k = 2.5, 3.5, 4.5, 5.5, and 6.5 was shown.

As the proof in [38], equation (3.1) can be solved explicitly for v(¢) piecewise mono-

tone
w(t) = cu(t) + d(v(t)), (3.2)

with

d('l)(t)) = [UJ() — C'Uo]e“"‘(”—vo)sgn(i)) + e—a‘vsgn('[)) /v [B _ C]eaCSgn(b)dC
vo
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Figure 3.3: Hysteresis curves given by equation(3.1)[38]

As the proof in [38], it is important to note that there exists a uniform bound p such

that
ld(u(EDI] < p (3.3)

So the piezoelectric actuator force f,(v) can be described as

fo = Eplev(t) + d(v(t))] (3-4)

3.6 Application of Piezoelectric Actuator

The piezoelectric actuators are used as positioning device in the turning tool and

is illustrated in Figure 3.3. The piezoelectric actuators can move the tool with high
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Figure 3.4: The scheme of turning tool with piezoelectric actuator

accuracy in two directions, X and Y. By applying the controlled electrical voltage, the
piezoelectric actuators can expand as ordered in microseconds. With the expanding of
the piezoelectric actuators, the cutting tool can be adjusted as commanded. Therefore
the chatter can be overcome by the motion of piezoelectric actuators with the adaptive

control system.
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Frictional and Impact Chatter in
the Two-Degree-of-Freedom

Deterministic Model

4.1 Dynamic Model

Dynamic interactions in any mechanical system may be described by the following

second order differential equation [46].

d’z dz
W—f(t7$7327p)) (41)

42
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where z(t) is the tool’s displacement vector in z direction, p is the system-parameters
vector and f(-) is the force vector, dependent on both the internal and external exci-

tations.

The MT-CP system may be treated as a dynamic system with a feedback control,
which is schematically depicted in Figure 4.1. During the chip formation, the vector
of cutting force, f.., is generated and acts with the vector of other forces, f,, on the
machine tool structure. The require geometry, g,, is distorted by the relative vibra-

tions between the tool and the workpiece, which can be represented by the vector

(z, ).

We assume steady-state conditions and consider a three-dimensional vector of the
cutting force, f.:, which is dependent on the changes of the cutting parameters
a;j, the process constant ¢; and f§;, and the Heaviside function (Appendix B) Hj,
to account for the separation between the tool and the workpiece. Thus the ith

component of the cutting force can be evaluated from [46]
L P
fori = [[ e Hy (a), i=1,2,3, len, I<k<n (4.2)
=1

where 3 is the collocation parameters, k is the time-step, and n is the period of one

spindle revolution. The cutting parameters a; are functions of the displacement and
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Figure 4.1: Dynamic interactions during a metal-cutting process

velocity, and can be written symbolically as follows:

a; = g(z,2), (4.3)

4.2 Frictional and Impact Chatter in the Two-Degree-
of-Freedom

Deterministic Model

Because the instantaneous separation of the cutting tool from the workpiece has a
great influence on the system dynamics, our model of the MT-CP system should take

into account the feedback control loop through f.., and also the discontinuity of
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the process. [llustrated in Figure 4.2 is a simple but realistic model of the MT-CP
system under consideration. The elastic, dissipative and inertial properties of the
machine-tool structure, tool and the workpiece are represented by a planar oscillator,
which is excited by the cutting force components f, and f,. It is assumed that the
relationship between the cutting forces and the chip geometry, namely the cutting
process characteristics, is captured by orthogonal cutting, where the cutting edge is
parallel to the workpiece and normal to the cutting direction, as depicted in Figure
4.2(b). In our case, the cutting parameter, a; should be understood as the depth
of the cut, h, and the relative velocity, v.. Due to vibration in the z direction, the
relative velocity v, can cross the zero value point, therefore static and dynamic friction
occurs. Thus the cutting process characteristics as a function of the relative velocity
can not be expressed directly by the formulae (4.2) [46], therefore one can postulate
the following relationships

fo = B H(h)gz(vr), (4.4)

fy = B H(h)gy(v,), (4.5)
Since f, and f, are mutually related, one can be expressed by the other. This approach

was used by Hastings et al. [13], and the cutting forces formulas for a wide class of

technical materials are provided [46]

fao(y,7,9/) = qoh(cr(abs(v) — 1)* + 1) H(h), (4.6)
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Figure 4.2: MT-CP system (a) physical model (b) chip geometry
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foly, 7 y) = x(ur, vp, B faly, 7', 9), (4.7)
where
X() = (cavr — 1)” + 1)(ca(h — 1)* + D) H(fz)sgn(vy),
vp =19 — T
Vg =Yg — Ry,
h = hg —y,
R = Ry(cq(vy — 1)? + 1),
where h is the depth of cut, v, is the relative velocity, vy is friction velocity, x(-) is
the friction acting on the rake surface. ¢, — ¢4 and ¢ are cutting parameters. R is

the shear plastic deformation.

It is assumed that the force, f,, is mainly due to the friction, x(-). The friction
velocity, vy, is reduced due to shear plastic deformation, R, which is represented by

the shear angle, ¢. [46]
R = ctg(4), (4.8)
The cutting process starts with an initial depth of cut, hy, where layers are taken out

from the workpiece with the constant velocity, vy. The rest of the cutting parameters

¢; — ¢4 and gp are constants [46].
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Figure 4.3: (a) Former form of f,. (b) New form of f,

Summarizing, the nonlinear relationship between the cutting force, f, and chip ve-
locity is graphically presented in Figure 4.3(a), where for v, < 0 the excitation force
is equal to zero. In reality this force never disappears as there is always a consider-
able friction force due to the compression force in the vertical spring. The outlined
simplified approach can be found in the work by Grabec [10] and Wiercigroch [46].
To make it more realistic, a Coulomb friction force acting in the z direction for the
v, < 0 case needs to be added [46]. From the other hand, Equation (4.6) should be
still valid to predict the total force, f, for the v, > 0 cases. A modified formulae,

which satisfies the conditions listed above is written below presented graphically in
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Figure 4.3(b)

foly, 2, y) = qoh <H<vr> + sgn(w)—"“—m) (cr(abs(v,) — )2 + 1)H(R), (4.9)

1+ po 1+

where (g is a static friction coefficient.

And motion of the analyzed system can be described by a set of two second order

differential equations, which are presented here in a non-dimensional form

o'+ 26,7 +z = fo(y, 2, y), (4.10)
y' +2Vey +oay = fi(y,7,y), (4.11)
where
Wi = 75
4=5,
Ny

k

& = gy
m is the mass of vibrating system, c;, ¢, are stiffness in = and y direction, &, k, are

viscous damping in z and y direction, wo,,wo, are natural frequency in z and y di-

rection respectively, a is stiffness ratio, §;,£, are dimensionless coefficient of viscous
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Figure 4.4: 2D model of orthogonal metal cutting

damping in the z and y direction respectively.

From Figure 4.4, the dynamic process of the metal cutting system can be described

by a set of two second order differential equation.

1 0Y [z 2¢, 0 z 1 0] =z
+ +
0 1|1}y 0 26Val |y 0 ally

1
- [ ] fow 2 ¥) (412)
X(Uﬁ vr, h’)

where

X() = (ca(vy = 1)% + 1)(ca(h = 1)* + 1 H(fo)sgn(vy),
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2 _ Cz
wOm‘m)
2 _ G
wa—m,
o=
Cy ?

_ _k
£o = g
k

§y=mf;£,

where x(-) is the friction acting on the rake surface. m is the mass of vibrating
system, ¢, ¢, are stiffness in z and y direction, k, k, are viscous damping in z and y
direction, wo,,wq, are natural frequency in z and y direction respectively, o is stiff-
ness ratio, &, &, are dimensionless coefficient of viscous damping in z and y direction

respectively.

Then equation (4.12) can be written as:

1 Ho
:L_/l + 2 ! + — h . H . ! — ! _~
' + qo(ho — y) (vo — x )1 v + sgn(vo — x )1 e

X (cl (abs(vo —z')y - 1)2 + 1) H(hy — y), (4.13)

Yy +26Vay +ay = <c2(v0 — Ry —1)*+ 1) (03(h0 —y -1+ 1>H(fx)

X <H(v0 — ') + sgn(vo — o) )

1+ pig L+ po
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x (cl(abs(vo — ) — 1)2 + 1) H(ho —y)

xsgn(vo — Ry")go(ho — ¥), (4.14)

4.3 Simulation of the Deterministic Model

Figures 4.5 (a) and (b) (J.Warminski et al. [42]) show plots of initial velocity vy as a
functions of cutting force magnitude, g, and initial depth of cut, hy, with the upper
solid line delineating the theoretically stable region (white) from the theoretically
unstable region (grey). The dotted line is the corresponding numerical solution for
the upper solid line. Numerical simulations were carried out by means of the fourth
order Runge-Kutta method, and vibrations of the system were analyzed for small
initial conditions. The dotted line in the figures divides the parameter plane into
two regions with a stable regime predicted for the space above the line and unstable

behavior below.

lustrated in Figure 4.5 (a) (Plot of feed velocity vg as a function of the magnitude
of the cutting force ¢) the multiple scales analysis (analytical result AR-solid curve)
and numerical analysis based on the original equations of the motion due to Wierci-

groch [46] (numerical solution NS-dotted curve). Stable area is white, unstable area
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@)

Figure 4.5: (a) Plot of vy as a function of go. (b)Plot of v as a function of hg.[42]

is grey. Additional data is, puo = 0.1, ¢; = 0.3, ¢; = 0.7, c3 = 1.5, ¢4 = 1.2, hg = 0.5,

Ro=22 a=4§=01,£§ =0.1.

Hlustrated in Figure 4.5 (b) (Plot of feed velocity vy as a function of the initial depth
of cut hg) the multiple scales analysis (analytical result AR-solid curve) and numerical
analysis based on the original equations of motion due to Wiercigroch [46] (numerical
solution NS-dotted curve). Stable area is white, unstable area is grey. Additional
data is o = 0.1, ¢ =03, =07, ¢c5=15,¢, =12, Ry =22, a=4,& = 0.1,

¢, =0.1.

As the analyzed system is nonlinear and can exhibit a broad range of responses, it
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is essential to provide a high-accuracy integration routine. Each time a discontinuity
occurs, the precise value of the time has to be calculated in order to provide the
correct initial conditions for the next integration step. For a given set of parameters
and initial condition, the numerical integration is carried out using the fourth-order
Runge-Kutta procedure with a fixed time-step, At = 0.001s, until a discontinuity is
detected. Figure 4.6 to Figure 4.11 show the simulation results for the 2D determinis-
tic model in stable region and unstable region. Illustrated in Figures 4.6, 4.7 and 4.8,
when the h = 0.5, ¢ = 1.2, vp = 0.4 and At = 0.001s in unstable region as shown
in Figure 4.5, the chatter occurs. Not only the z vibrates, but also the z'changes
along with time. The relation between z and z’ clearly shows that this is not stable.
Similar as what we just saw, for y, ¥/, fz, f, and h, they all have the similar results.
Additional data is pg = 0.1, ¢, = 0.3, ca =07, c3 =15, ¢4 = 1.2, Ry = 2.2, o = 4,
& = 0.1, & = 0.1. The system shows vibrations in both directions z (Figure 4.6(a)
and 4.6(b)) and y (Figure 4.7(d) and 4.7(e)), which is confirmed by the phase plane

portraits (Figure 4.6 (c) and 4.7(f)).

Illustrated in Figures 4.9, 4.10 and 4.11, when the h = 0.5, go = 1.2, vg = 0.8 and
A7 = 0.001s in stable region as shown in Figure 4.5, the chatter can not be hold in

stable region. Additional data is py = 0.1, ¢; = 0.3, ¢g = 0.7, ¢3 = 1.5, ¢y = 1.2,
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Ry =22, a=4,£§ =01, § = 0.1. It is clearly that the cutting system response is
decreasing rapidly onto equilibrium state of the system in both directions z (Figure
4.9(a) and 4.9(b)) and y (Figure 4.10(d) and 4.10(e)), which is confirmed by the phase

plane portraits (Figure 4.9 (c) and 4.10(f)).
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Chapter 5

Active Control for Chatter with
2-D Deterministic Model

and Piezoelectric Actuator

This chapter considers the suppression for the chatter in metal cutting system by use
of piezoelectric actuators. The 2D deterministic model of the metal cutting system
is modelled in Figure 5.1. The robust adaptive control laws of nonlinear system
with hysteresis by Su et. al. [38] are used in the suppression of chatter because of
the hysteresis of the piezoelectric actuator. The simulation of the responses of the

control system will show the result of the adaptive control laws.

62
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5.1 System Dynamic Model

[lustrated in Figure 5.1 a simple but realistic model of the MT-CP system that is
being considered. The elastic, dissipative and inertia properties of the machine-tool
structure, tool and the workpiece are represented by a planar oscillator, which is ex-
cited by the cutting force components f, and f,. It is assumed that the relationship
between the cutting forces and the chip geometry, namely the cutting process charac-
teristics, is captured by orthogonal cutting, where the cutting edge is parallel to the
workpiece and normal to the cutting direction, as depicted in Figure 5.1(b). And two
piezoelectric actuators are in the direction X and Y. From Figure 5.1, the dynamic
process of the metal cutting system can be described by a set of two second order

differential equation.

+ +
0 1] {y" 0 2§Vaf |y 0 afly
1 1 0] [ e
= fx(ya xla y,) + (51)
X(UT’Uf)h) 0 1 fpy
For = Fompzlous (t) + d(ua(t))] (5.2)
fov = kmpylouy (t) + d(“y(t))] (5.3)

foly, 2" y') = q@oh(ea(abs(ur) — 1)* + 1) H(h), (5.4)
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Piezo actuator

C | ke

Figure 5.1: Model of cutting system with two piezoelectric actuators

64
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F, 2 y) = x(or,vp, W) fu(y, 25y, (5.5)
where
x() = (ealvy = 1)? + 1)(es(h — 1)* + D H(fz)sgn(vy),
vy = vy — 2’
v; = vp — Ry,

h:h0¢y7

2 _ Cg
wOm“m’
2 _ G
wa'_m1
C

a=g,

g = 2
mpTr T om0
—
mpy m

where h is the depth of cut, v, is the relative velocity, vy is friction velocity, x(-) is
the friction acting on the rake surface. ¢; — ¢4 and gy are cutting parameters. R is
shear plastic deformation. m is the mass of vibrating system, c,, ¢, are stiffness in
and y direction, k;, k, are viscous damping in = and y direction, wo.,wo, are natural

frequency in z and y direction respectively, « is stiffness ratio, &, &, are dimensionless
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coefficient of viscous damping in z and y direction respectively. x(:) is the friction
acting on the rake surface. fy; and fp, are the forces of the piezoelectric actuators in
x and y.

The cutting process starts with an initial depth of cut, hg, where layers are taken out

from the workpiece with the constant velocity, vg. The rest of the cutting parameters

c1 — ¢4 and gg are constants.

5.2 Adaptive Controller Design

The closed-loop dynamic system of metal cutting system in turning with piezoelectric

actuators and adaptive controllers is illustrated in Figure 5.2.

Equation (5.1) can be transformed as follows:

1 Ho
'+ 26+ = ho — H(vg— 2’ + sgn{vy — &’

X (c1 (abs(vg —-7') - 1)2 + 1) H(ho — y) + for, (5.6)

v +2,3ay +ay = (el =Ry = 17 +1) (colho —y — 1 + 1) H(f)

9 (H@O _ )

Lo
+ sgn(vg — «’
[T om0 )1+Ho>
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U
for | A7) ad Controller-X

T — ]
| L0, X, y) Gx(s)

O< p
| 50, x5 y) Gy(s) i
| Cuting Process ||| MachineTool |

A 4 Controller-Y

Figure 5.2: Block diagram of turning system with piezoelectric actuators
X (cl (abs(vo —z') - 1)2 + 1) H(hy —y)
xsgn(vo — Ry )go(ho — ) + foy, (5.7)

A filtered tracking error is defined as

8:(t) z(t) + Mz'(t)
5(t) = = =0 (5.8)
82(t) y(t) + A2y (t)
A turning error ., as follows:
o\ .
0ie = 0; — € sat <—> 1=1,2 (5.9)
€

where € is an arbitrary positive constant and sat(-) is the saturation function (Ap-

pendix C).
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Differentiating 6(¢) with respect to time t as:

So

() = (1—2M&)7 — Mz + Mgo(ho — ¥)

1 Ho
H(vp— o' + _ )t
X ( (vo :c)l T sgn(vy — )1 Mo)
X <01 (abs(vo —z') - 1)2 + 1) H(hy — y)

+A1kmpz[cuz(t) + dy (uz (t))]v

Sa(t) = (1 —=20EVa)y — Aaay + Ay(ca(vo — Ry — 1)? + 1)

x(cs(ho —y — 1)* + 1) H(f,)sgn{vo — Ry")qo(ho — ¥)

x (H(vo — ) + sgn(vo — x')ﬂ#.>

L+ po 1+ po
x(ci(abs(vg — ') — 1)2 + 1)H(hg — y)

+Azkmpy[cuy (t) + dy (uy(t))],
The above can be simplified:
Su(t) = Aart’ — Naa + 0a ()6 (2') + Aati (£) + Apadr (11 (2))

52 (t) = /\yly, — Ay + ny(y)cy(fv’) + Ayauy(t) + Ayady (uy(t)),

68

(5.10)

(5.11)

(5.12)

(5.13)
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where

12(y) = Aqo(ho — y)H(ho — y)

&(z') = (H(’Uo —a') 1 L . sgn(vo — x')ﬁ) (cl(abs(vo —2') - 1)2 + 1)

Ho

ny(y) = Aa(ca(vo — Ry’ — 1)? + 1)(c3(ho — y — 1)* + 1)sgn(vo — Ry')go(ho — y)H(ho — y)

o (z') = H(f2) <H(U0 —z') 1 ':MO + sgn(vy — ') ] —llfollo) (ci(abs(vp — z') — 1)2 + 1)

)\131 = (1 - 2)‘15:1:)) Aft? = >‘17 )‘.723 = )‘lkmpzcy )\ZE4 = /\lkmpan

)\yl =1- 2A2§y\/5, )‘y2 = )\2(1, )\yg = /\kapyc, )\y4 = )\2kmpy

Then define
/\:rl )\1-2 1 )\14
Tl = y Uz2 = y Ugg = 3 02 = .
b ! )\x3 f 2 >\x3 f ? /\a:3 ‘ /\z3
A 1 A D) 1 A 4
g, =L g =2 g~ g o l¥h
yl )\y3 y Vy2 Ay;} y Yy3 )\y3 ) 4 /\y3

The following control and adaptation laws are presented:

€

wa(t) = - [kwmt) 0012 (1) + uga(t) + Bustra(t) + Kzsat(LD >} (5.14)

(5.15)

uy(t) = — [kyfagm + 01y () + Gyzy () + Bty (1) + ’“58“’“‘(525) )]
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Yo (t) = Na(y)sa(2) (5.16)
Py(t) = my(y)sy(2") (5.17)
bus = proj(fus, —uidss) (5.18)
byi = proj(Bys, ~vydy) (5.19)

where k;; and ky, are constant positive gains, and kj and kj, are control gains, sat-
isfying k} > p/Cmin and k; > p/Cpin, whereby, p is defined in Equation (2.3). The
parameter <y,; and -y,; are positive constants determining the rates of adaptations, the

proj(-,+) is a projection operator, which is formulated as follows [38]:

(

0 : Zf ézz = Uzimaz and 71:1:191‘1: <0

_’Ym’ﬂzi : Zf [ezimin < ézi < Oximaz]

p’f‘Oj(Hm', _fyxi'ﬁm') = : Or[éwi = Orimaz aNd ’Ym'ﬂm > O] (520)
or [0zi = Ogimin and — V492 < 0]

A

0 : Zf Om = aximin and '711'19.11‘ >0

where
’19(15);,;1 = 51€(t):c’(t),
V(t)z2 = d1e(t)z(2),

'19(t)z3 = 516(t)1/)2(t)’

and
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0 : Zf éyi = Hyima:t and ’Yyi'ﬁyi <0
—’Yyi'ﬁyi : Zf [Hyimin < é\yi < Hyimaa:]

proj(0yi, —Vyily:) = : or[éyi = Oyimaz and Yyiy; > 0] (5.21)

or [éyi = 9yimin and — Vyiﬁyi < O]

0 ’Lf éyi = Gyimin and ’Yyiﬂyi >0

where
()1 = G2e()y'(2),
D(t)y2 = ac(t)y(t),

ﬁ(t)yii = 526(t)¢y(t)-

5.2.1 Stability Analysis of the System

To establish global boundedness, we define a Lyapunov function candidate :

111 1 3.1 « 5.1 &
V(t) = 5 | 7=0% + 705 + D[ (0ai(t) — 020)*] + D _[—(61s(t) — 0,)°]|  (5.22)

i) Since the discontinuity at |6(¢)| = € is of the first kind and since 6;(t) = 0 when

|6(t)] < ¢, it follows that the derivative V() exists for all §(t), which is

V(t) =0 when |5(t)] <e (5.23)
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ii) When [6(t)| > €, using Equation (5.16) and the fact 8,0;c = 8;c0;, one has

V(t)

—1—51651 + i[—l—(ém(t) - ezl)ém(t)]

)\a:3 i=1 Vi

by 3 00~ 0,000 )

i=1 Vvi

81610217 (£) + Ba0m(t) + Oaathu(t) + a(t) + Ozad (us(t) )]
+ ;[i(ém(t) - Hxi)éa:i(t)]

+02e[019 (£) + Oy2y(2) + Oyathy () + uy(2) + 9y4d(“y(t))]

+ ;{;Ege‘m(t) — 0,)0,:(t)]

81el0a12 (£) + 0u2(t) + Oasthu(£) + Ozad (us(t) )]

+ Z[_l_(ém(t) — Om‘)ém’(t)]

i=1 Jzi

) . . §
o lkmél(t) + 012" (8) + Oa0(8) + O3tf(t) + Kzsat( f )]

—

02019/ (8) + Oy2y(t) + 04390y (t) + 0y4d<uy(t))]

+ ;[Viygéyi(t) —~ 0,0)6,4(2)]

52(t)

€

—8ae [k;yréz(t) + 01y (t) + Oy2y(2) + Oyapy (t) + K sat( )} (5.24)

The above equation can be simplified, by the choice of J;, as

V() < 810012 (8) + 0222 (t) + Oazthu () + Orad(us(t))]

3

+ Z[i(ém(t) — em)ém(t)]

i=1 Tz
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—kz'réfe - 616 lézlxl(t) + é:1:2-'1:(t) + éazlﬂpx (t) + k;Sat(élit) )]

+62e[6y1y,(t) + 9y2y(t) + eyiﬂl}y(t) + 9y4d(uy(t))]

+ Z[%(éw(t) - eyz)éyz(t)]

y

8 (1)

€

- [éyly'(t) + 0y () + a1, (8) + K sat( )] (5.25)

By using adaptive laws (5.17), and the properties:
1 A o .
jy—(ezi — 024) Proj(0zi, —Yzi¥zi) < (Ozi — 02i)Vai
zi

1, a A
—(Oyi — Oyi) Proj(Oyi, —vyiyi) < (Oyi — Oyi) Dy

yi

one obtains

V() < Oic [0/ (£) + Oa(t) + Oustha(t) + Oradl(ua(t) )]
+(0a1 — 020)61' (8) + (B2 — O22)815(t) + (G5 — Ga3)S1695(1)
—kgr 02, — O1c [émx'(t) + Ga0(t) + Ouatpu(t) + k;sat(él—it))}
+0ae (019 (£) + Oy2y(£) + 6,59 () + 0,40 (uy (1)) ]

+(9Ay1 - 6y1)526y,(t) + (éy2 - 9y2)52€y(t) + (éy3 - 0y3)526wy(t)

4 j 5 . 0ot
~kyr8e — b2 [9y1y (t) + 02y () + Oyathy(t) + kijsat( 2£ ))]

01(t
=kt~ kbrsat(D) 4 0,06 (a0)

da(2)

€

—kyr 03, — kdzesat(

)+ OyaBacd 1y () (5.26)
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Since |6;c] = Giesat(%) for |6;] > € [|d(uq(t))|| < p and ||d(uy(t))]| < p the above

becomes

V(t) < —kerd?, — k2l01e] + Ozad(ua(t))[81c]

ko2, — k2l01e] + Oad(ua(t) ) |61c]

Then we define &k} = & 2 pOrmas and k; = kj, > POymaz we will get

rmax ymax

V(t) < —kerdl, — K2101e] + Onad(ua(t))[61c]
— k8% — k3 101] + Oad(ua(£)) 01

< _er‘sfe - kyr‘sge

5.2.2 Simulation of the Dynamic System

(5.27)

(5.28)

To suppress the chatter the adaptive control law (Equation 5.17) is introduced into the

system (Equation 5.1). The parameters limits are 8,; € [—4.5e(—4), —2.5e¢(—4)|, 02 €

[3.56(—4), 2.0e(=4)], 843 € [~4.2¢(~4), —2.2¢(—4)], Os4 € [5.0e(—4), 1.5e(~3)], 8,1 €

[—5.5e(—4), —3.5e(—4)], 8,2 € [4.0e(—4),6.5e(—4)], b5 € [—5.5e(—4), —2.5e(—4)],

fya € [5.0e(—4),1.5¢(—3)]. Then we are taking initial data as 6;; = —3.85e(—4),

B0 = 1.4e(—4), 043 = —3.57e(—4), Oy = 1.0e(=3), 0,1 = —4.9e(—4), 0,5 = 5.7e(—4),

0y3 = —4.36(-—4), 91/4 = 108(—3), Yei = 1 (2 = 1,2,3), Yyi = 1 (’L = 1,2,3), € =

1.0e(—4) and K, = 2.0e(—4). For a given set of parameters and initial condition, the
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numerical integration is carried out using the fourth-order Runge-Kutta procedure
with a fixed time-step, At = 0.001s. Figure 5.2 to Figure 5.5 show the simulation
results for the chatter suppression in 2D deterministic model when h = 0.5, ¢y = 1.2,
vo = 0.4. Additional data is po = 0.1, ¢; = 0.3, ¢ = 0.7, c3 = 1.5, ¢4 = 1.2,
Ry=22,a=4,§6=201,§ =01, h=05, g =12, yp =04 and A7 = 0.00Ls
(The same data as we have shown in charter 4 , unstable region). It is clear that the
adaptive controller suppress the chatter and makes the cutting force being stable. In
Figure 5.2 the z and z’ will be stable due to the adjustment by piezoelectric actuator
in 5 millisecond . In Figure 5.3 the y and gy’ will be stable due to the adjustment
by piezoelectric actuator. In Figure 5.4 the F; F, and h will be stable due to the
adjustment by piezoelectric actuator. Finally the U, and U, were shown in Figure

9.5.

5.3 Summary

In this chapter the adaptive control law for the deterministic model was developed.
The stability of the cutting system was examined and the simulation results show
that the piezoelectric actuators in z and y directions with the adaptive control law

suppress the frictional and impact chatter successfully.
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Figure 5.3: z and z’ of the adaptive control system
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Chapter 6

Frictional and Impact Chatter in
the Two-Degree-of-Freedom

Stochastic Model

6.1 Two-Degree-of-Freedom Stochastic Model

When a workpiece is being turned on a lathe, the chatter irregularity will cause
an inhomogeneity which leads to a random cutting resistance. Though considerable
progress in the modelling of dynamic interactions occurring during metal cutting has

been made, the models are mostly deterministic, using average values of the cutting-

80
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material coefficients, and do not take into account the stochastic issues. For sure,
the randomness of the cutting resistance is worth examining because of the varying
grain size of the workpiece. There is a random cutting resistance because of the
chip irregularities. A rigorous mathematical treatment of the plastic deformation for
inhomogeneous material is a complex issue and so far no solid foundation has been
laid in this area. As a consequence, a simplified but pragmatic approach is used to
model the cutting resistance. This can be expressed as a function of the cutting-tool

trajectory, and takes the form (Wiercigroch & Cheng [45]),

c(r) = c(z,y, 2,) (6.1)

where r(t) = (z(t),y(t),2(t)) is a parametric function of time. In this thesis we
consider the cutting resistance as a one-dimensional process, which is a reasonable
approximation for orthogonal cutting. It is assumed that the cutting resistance has

been normalized by its mean so that the mean value € is equal to 1,

lim %/Ol c(z)dz =1 (6.2)

l—o0
where [ is a reference length of cut, and ¢(z) is the specific (normalized) cutting re-
sistance. Subtracting the mean value from c(x), we obtain the fluctuation quantity

&(z) = ¢(z)—¢, where ¢ is a zero-mean one-dimensional univariate weakly stationary
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Ganssian process. It is characterized by a standard deviation 1, and an autocorrela-
tion coefficient R(z), where z is the distance separating two points. A power spectral

density function S(w) is define as
1 * —WwT
Sw) = 5 /_ _ R(z)e™" dz (6.3)

The autocorrelation coefficient is typically characterized by a correlation length, say
L., which is relate to the distance beyond which the correlation of the material fluctu-
ation diminishes. The correlation length and the form of the autocorrelation function
should be determined experimentally either by a direct testing of the material or
by an interpretation of the vibration signal. Unfortunately, no such measurement is
available to our knowledge [45]. From the material science point of view, L. should be

mainly dependent upon the grain size of the material, hence an estimate can be made.

As a first approximation, a simple but popular model for the autocorrelation coefh-

cient is adopted for the present study [45]:
R(z) = M (6.4)

Here, 1/X characterizes the correlation length. The power spectral density function

corresponding to Equation (6.4) is

(6.5)
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0.2

™
1

Figure 6.1: A stochastic specific cutting resistance for A = 5 [45].

With the above statistical quantities, it is possible to generate artificially a random
signal with the same statistics. The technique adopted is the spectral representation
method initiated by Rice [33] and refined by Shinozuka et al. [36]. It is modelled by

the series

é(z) =2n Nizl \/S(wk)chos(wkx + ¢x) (6.6)
k=0

c(z) is shown in Figure 6.1 when A = 5, where 7 is the standard deviation, ¢
is a random phase angle uniformly distributed over [0,27], wp = kAw, and Aw is

the frequency increment. Assuming the same mathematical model of the MT-CP
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system as in the chapter 4 (Equation (4.6) and (4.7)), the cutting forces f, and f,
depend upon the stochastic properties of the workpiece, which are modelled by the

randomness of the specific cutting resistance ¢(z),
Fo(y, 7' y) = c(z)aoh(cr(abs(v,) — 1)* + 1) H(h), (6.7)

Fu, ') = x(or, vp, B) foly, 2 0), (6.8)
where
X() = (ealwoy = 12 + 1)(es(h — 12 + DH(f2)sgn(vy),
Up =y — T
vr =vo — Ry,
h=hy—y,

R = Ry(cq(vr —1)2 + 1),

&(z) = 20 TR /S (wi) Awcos(wiz + i),

c(z) =é(z) +1

where h is the depth of cut, v, is the relative velocity, vy is friction velocity, x(-) is the
friction acting on the rake surface. ¢; — ¢4 and gy are cutting parameters. R is shear
plastic deformation. m is the vibrating of tool, c;, ¢, are stiffness in = and y direction,
kz,ky are viscous damping in r and y direction, wp;,woy are natural frequency in x

and y direction respectively, « is stiffness ratio, &;, &, are dimensionless coefficient of
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viscous damping in z and y direction respectively. x(-) is the friction acting on the

rake surface. The randomness is introduced by the specific cutting resistance c(x).

6.2 Simulation of the 2D stochastic model

For the stochastic model, n = 0.2 and A = 5 are used. Additional data is yy = 0.1,
c1=03,¢=07c=15c=12 Ry =22 a=4,&§,=01,§, =01, h =0.5,
Qo = 1.2, vy = 0.4 and At = 0.001s. In the stochastic model the tool undergoes a
higher stress, the force can be as much as 300 % to 400 % greater than average value
under stead cutting conditions. Figure 6.2 shows the simulation result about cutting
forces in « and y directions for the stochastic model. The z component of the cutting
force exhibits discontinuities that correspond to the loss of contact between the tool
and the workpiece. We observe not only longer transient period, but also much greater
impact force than deterministic model. It shows the force can be as much as 300% to
400% greater than average value. The time interval of tool separation is also longer.
This theoretical prediction is consistent with the manufacturing reality which the

majority of cutting tool breakages occur during the transient period.
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Figure 6.2: f, and f, for 2D stochastic model



Chapter 7

Active Control for Chatter with

2-D Stochastic Model

and Piezoelectric Actuator

7.1 System Dynamic Model

Form Figure 7.1, the dynamic process of the metal cutting system can be described

i

by a set of two second order differential equations.
1 0] [=" 2%, 0
+
0 1)1y 0 26«

87
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+
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Figure 7.1: Model of cutting system with two piezoelectric actuators

38



Chapter 7. Active Control for Chatter with 2-D Stochastic Model

where

ISR |
= fz(ywrl’ y,) +
X(vrvvah)c(x) 0 1 fpy

foz = kmpz[cug(t) + d(ux(t))]
foy = Empyleuy(t) + d(uy(t))]
fo(y, 2, y) = qoh(ci(abs(v,) — 1)2 + 1)H(h),

fy(y7 :LJ) y,) = X(v‘r) 'Uf, h)fx(y) mla y/)’

X() = (e2(vy — 1)* + D(es(h = 1)* + 1) H(fo)sgn(vy),

Up = vy — X'
’Uf;—_UO_Ry,v
h:ho—y,

R = R{)(C4(’UT - 1)2 + 1),

2 __ C
wO:c"?%?
2 __
wa_%>
C
a=gt,
£, = k
z—ma
k
gy:QT—TMyTy’

é(z) = 2n o0 \/S(wk)chos(wkx + ¢r),
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S(w) w(/\z)-\i-wz) )
kmpz = 'I%ZTx,

k
kmpy = _T%!L’

where h is the depth of cut, v, is the relative velocity, vy is friction velocity, x(-) is
the friction acting on the rake surface. ¢; — ¢4 and ¢y are cutting parameters. R is
shear plastic deformation. m is the mass of vibrating system, c., ¢, are stiffness in z
and y direction, k;, k, are viscous damping in x and y direction, wo;,wo, are natural
frequency in z and y direction respectively, « is stiffness ratio, &;, {, are dimensionless
coefficient of viscous damping in z and y direction respectively. x(-) is the friction
acting on the rake surface. The randomness is introduced by the specific cutting

resistance ¢(x).

The cutting process starts with an initial depth of cut, hy, where layers are taken out
from the workpiece with the constant velocity, vg. The rest of the cutting parameters
c1 — ¢4 and qo are constants. 7 is the standard deviation, ¢y is a random phase angle
uniformly distributed over [0,27], wx = kAw, and Aw is the frequency increment.

For the stochastic model, n = 0.2 and A = 5 are used.
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Figure 7.2: Block diagram of turning system with piezoelectric actuators

7.2 Adaptive Controller Design

The closed-loop dynamic system of metal cutting system in turning with piezoelectric

actuators and adaptive controllers is illustrated in Figure 7.2.

Equation (7.1) can be transformed as follows:

"y ot a = ho — H(vg — o'
'+ 2,1 +x c(ﬂ?)ro(o y)( (UO $)1+u0 14+ po

+ sgn(vy — ') Ko )

X (01 (abs(vo —z') — 1)2 + 1) H(ho — y) + fpas (7.6)

v+ 26/ay +ay = @)l — Ry~ 02+ 1) (alho —y — 17 + 1) H()
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1
X (H(vg - z') T 0 + sgn(vo — m’)%—(}-)

X (cl (abs(vo —z') - 1)2 + 1) H(hy —y)
xsgn(vo — Ry )go(ho — ¥) + foy, (7.7)

A filtered tracking error is defined as

01(t) z(t) + M/ (t)
st :[ }:[ ]:0 a8
d2(t) y(t) + Ay (t)

A turning error ¢, as follows:

die = 0; — € sat (-(-;3) i=1,2 (7.9)

€

where € is an arbitrary positive constant and sat(-) is the saturation function.

Differentiating §(¢) with respect to time t as:

So

Sl(t) = (1-2X0&)z — Mz + Mc(x)go(ho — v)

1
x<H(v0—:c')1+ + sgn(vg — 7') Fo )

Ho 1+ po

X <c1 (abs(vo — ') —1)" + 1> H(ho —y)

i Kmpe [cuz () + de (ua(t) )], (7.10)

() = (1 —20EVa)Y — Maay + daoc(z)(ca(vo — Ry — 1)2 + 1)
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x(cs(ho —y — 1)* + 1) H(fz)sgn(vo — Ry )go(ho — y)

n 1
X (H(vo -z )1 T + sgn(vo — x’)1i0#0>
x(c1(abs(ug — ') — 1)2 + 1) H (ho — )

X akmpy [y (t) + dy (uy(8))], (7.11)
The above can be simplified:
81() = Aar®’ — Ao + 0o (y)52(®, 7') + Asatia(t) + Anada (ta(?)) (7.12)

52(t) = A1y’ = Ay + 1y (Y)sy(7, 2) + sty (£) + Ayady (“y(t))v (7.13)
where

N2(y) = Mao(ho — y)H(ho — y)

(o, 7/) = efz) <H(U0 ~ )

’ Ho / 2
T+ + sgn(vy — )1 +M0) (cl(abs(vo —z') - 1) + 1)

my(y) = Aa(ca(vo — Ry’ — 1)* + 1)(cs(ho — y — 1)> + 1)sgn(vo — Ry')qo(ho — y) H (ko — y)

sy(z,2") = c(z)H(fz) (H(vo — ) + sgn(vy — ') Ho ) (cr(abs(vg — ') — 1)* + 1)

14 po 14 po
Azl = (1 - 2)‘1§z)7 Az2 = >\1: Az3 = Alkmpzcy )\z4 = )\lkmpa:y
Ayl =1~ 2/\251/\/&7 Ayg = /\2a, )\yg = )\gkmpyc, /\y4 = )\kapy

Then define
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A
Ay3

A 1 A
/\_y2’ 6y3 =31 0:1:4 = A
y3

0, = .
vi Ay3 Ay

79y2:

The following control and adaptation laws are presented:

walt) = [kx,csl(t) 0 (0) + B (®) + Oustha(t) + psat( 2D >] (7.14)
uy(t) = — [kyr(sz (t) + 0,11/ (8) + B0y (t) + Oyatby (2) + k;sat(‘s?T(t))] (7.15)
Pu(t) = na(y)s:(, 2) (7.16)

Yy(t) = my(y)sy(, z') (7.17)

ém = p’l"Oj(ézi, _'Yxiﬁxi) (718)

éyi = p’l"Oj(éyi, _’Yyiﬂyi) (719)

where k;; and k,, are constant positive gains, and kj and k are a control gains,
satisfying k} > p/Cmin and k] > p/cimin, Whereby, p is defined in Equation (2.3). The
parameter -y;; and -y,; are positive constants determining the rates of adaptations, the

proj(-,-) is a projection operator, which is formulated as follows:
{

0 : Zf é.m = ea:ima:z: and ’7:1:1219:31' <0

—_’Ymiﬁmi : Zf [Gzimin < ézz < ezimaz]

proj(bzi, —VaiVai) = : or[ém- = Opimaz and Yy ¥z > 0) (7.20)

~

or [eazz = ea:imin and — ’Yzi'ﬁzi < 0]

0 : Zf éxi = ezimin and 7z11911 >0
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where
ﬂ(t)xl = 5le(t)$l(t))
I(t)z2 = 1c(t)2(2),

ﬂ(t)r?u = Jle(t)"/Jz (t)

and

proj(éyh _'Yyiﬂyi) =

where
I(t)y1 = d2(t)y/ (1),
(t)y2 = G2¢()y(t),

ﬂ(t)y3 = 0 (t)"/)y (t)

_‘f)'yi'ﬂyi

Zf éyi = Hyimu.z and 'Yyiﬂyi <0

7’f [oyimin < éyi < eyimaa:]

A

or{0yi = Oyimaz and YWy > 0

or [Oyi = Gyimm and — ’Yyi'ﬂyi S 0]

Zf éyi = ayimin and fYyiﬂyi >0

95

(7.21)
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7.2.1 Stability Analysis of the System

To establish global boundedness, we define a Lyapunov function candidate :

1{1 1 3.1 4 3.1 .
V(t) = 5 |01 + =05 + D _[—(0zi(t) — 04)%) + D[ (0,:(t) — 0,)7]| (7.22)
2 /\23 )\yB i=1 Vi i=1 VYyi

i) Since the discontinuity at |6(t)] = € is of the first kind and since d;(t) = 0 when

|6(2)| < e, it follows that the derivative V() exists for all (), which is
V(t) =0 when |6(t)] <e. (7.23)

ii) When |0(t)] > €, using Equation (5.16) and the fact 8;c0;c = 0;c0;, one has

. 1 . 3.1 . A
V() = )\—1;351661 + ;[%(em(t) — 02:)02:(1)]
by + Y (00) ~ 4]

i=1 1yt

= 01012 (t) + 02 (t) + OustPa(t) + ua(t) + Ozad (ua(t))]

+ Z[‘L(ém(t) - gm)ém(t)]

+02e[051y () + Oy2y(t) + Oystpy (£) + uy () + 9y4d(“y(t))]

+ 3 0() — 0,)0e()]

i=1 Tyi

= 0160217 (t) + Ou2(t) + O3 (t) + Ozad (ua(t) )]

3 .
F Y Oun() — 0:04(0)]
=1 1%
—O1c | kgr0y(t) + Og12 (8) + Ogom(t) + Oagha(t) + k:sat(ééa)}
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+526[0y1y'(t> + 0,0(t) + 0,59, (1) + Bad(uy (1))

+ Z y%(t yt)éyi(t)]

8a(t)

~8ae | kyr82(8) + 01/ (8) + By (t) + Bty (1) + Ksat(= )} (7.24)

The above equation can be simplified, by the choice of d;, as

V() < 8el0or®’(t) + 003 (t) + Oaztha(t) + Onad(us(t) )]
ST Bult) — 0.)6(0)]

i=1 [%i

~kgr03, — O1c [ 1T (t) + 01;2.’13(1:) + Hzng(t) + k*sat( ou(t ))]

+82e[0,15 (£) + O,2y(E) + 0,39, (¢) + Oyad(uy (1))

+Z[*1;(éyt(t) - gyi)éyi(t)]
e, ~ b {éyly'u) + 0,000 + B0, (8) + kst 2 )] (7.25)

By using adaptive laws (5.17), and the properties:

1 -
’Y_-( xi — m)PTOJ(Ha:t; ’Yxi'ﬂxi) S ( xi T m)ﬁm

i

1. » )
—(Gyi —_ Hyi)ij (Qyi, *'Yyi'l?yi) S (Hyi - Gyi)ﬁyi

’Yyi

one obtains

V() < O1c [0z (£) + 0mm(t) + Oustha(t) + Orad(ua(t) )]
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+(9Ax1 - 011)6161:’({:) + (éxQ - 0$2)61€x(t) + (ézii - 613)51€¢x(t)
_kx'réfe - (515 [éa:lx,(t) + ém2$(t) + éz3¢z(t) + k;‘sat(él—it))]
+62c 819/ () + Oy (8) + Oyt (1) + Oyad (1 (1))

A

+(By1 — 0y1) 02 (£) + (By2 — 0,2) 82y (£) + (By3 — Oy3)d2ethy (2)

) o j i . L0t
ke = b [Hyw (6) + Bya9(0) + B0 (1) + kst ’)}

- _kx'r5%e - k:;élesat(élit)) + 91‘461€d(u1’(t))
O (t
~kyr 02, — ki6zesat( Zé )) + 0ya02cd (uy (1))

98

(7.26)

Since 8| = iesat(%) for |6;] > €, ||d(us(t)]] < p and ||d(uy(t))|] < p the above

becomes

V(t) < —kar0l — E2[01e] + Ozad(us(t) ) 101c)

_kl‘T(S%e - k;wlel + 914d(uz(t)> |516|

Then we define &k} = & > POrmar and kj; = kj, > POymaz We will get

TNaT ymazx

V(t) < —kerdl, — k201e] + Ozad(ua(t))[01c]
iy 07, — K3 |01c] + Ozad(us(t)) |Bic]

< _kxT(Sfe - ky"’(sge

(7.27)

(7.28)
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7.2.2 Simulation of the Dynamic System

To suppress the chatter the adaptive control law (Equation (7.21)) are introduced into
the system (Equation (7.1)). The parameters limits are 6, € [—4.5e(—4), —2.5¢(—4)],
010 € [3.5e(—4),2.0e(—4)], 0.3 € [—4.2¢(—4), —2.2¢(—4)], 0.4 € [5.0e(—4), 1.5e(-3)],
0,1 € [—5.5e(—4), —3.5e(—4)], Oy2 € [4.0e(—4),6.5e(—4)], 0,5 € [—5.5e(—4), —2.5e(—4)],
0,4 € [5.0e(—4),1.5e(—3)]. Then we are taking initial data as 6,7 = —3.85e(—4),
Oz2 = 1.4e(—4), 0,3 = —3.57e(—4), 0,4 = 1.0e(-3), 0,1 = —4.9¢e(—4), 0,2 = 5.7e(—4),
Oy3 = —4.3e(—4), 0y = 1.0e(-3), 7i = 1 (¢ = 1,2,3), 7s = 1 (& = 1,2,3),
e = 1.0e(—4) and K, = 2.0e(—4). For the stochastic model, n = 0.2 and A = 5
are used. For a given set of parameters and initial condition, the numerical inte-
gration is carried out using the fourth-order Runge-Kutta procedure with a fixed
time-step, At = 0.001s. Because when the discontinuity occurs, Additional data is
o =01,¢1=03,¢=07c3=15,c4 =12, Ry =22, a=4,§ =01, & =01,
h =0.5, g =12, vg =04 and A7 = 0.001s. Figure 7.2 and Figure 7.3 show the
simulation results for the chatter suppression in 2D Stochastic model. In Figure 7.2
the I and F, will be stable due to the adjustment by piezoelectric actuator. Finally

the U, and U, were shown in Figure 7.3.
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Figure 7.3: F, and F, of the adaptive control system
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Chapter 8

Conclusion and Future Works

8.1 Conclusion

In this thesis, frictional and impact dynamic models of the orthogonal metal cutting
generating chatter were examined. And the piezoelectric actuators are introduced to

suppress the chatter because of the advantages of piezoelectric actuator.

The system demonstrates a complex dynamic behavior, which is manifested by the
existence of periodic, quasi-periodic, subharmonic and chaotic motion. And the in-
troduction of stochastic model can show there is an immense increase in the cutting

forces (up to 300%) during the initial period of cutting. This could explain the in-

102
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dustrial reality, where the majority of the catastrophic tool breakage occurs during

this initial stage. That feature is not present in the deterministic model.

In general, it may be concludes that the nonlinear dynamic responses of the sys-
tem can be controlled most effectively by piezoelectric actuator. Unlike traditionally
discontinuous model for backlash hysteresis, a continuous-time model for backlash
hysteresis model by Su et. al.[38] is used to explain the nonlinear MT-CP system.
In this thesis, with the application of piezoelectric actuators in two directions z and
y, we develop a adaptive controller to deal with unknown hysteresis. According to
my knowledge there is no discussion in the literature about frictional and impact
chatter suppression by piezoelectric actuator. It is the first time that the frictional
and impact chatter was combined with an adaptive control system of nonlinear sys-
tem with unknown hysteresis by using a piezoelectric actuator. And the results of
simulating for adaptive control laws show that it is effective to suppress the chatter

by the piezoelectric actuators.
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8.2 Future Works

In this study the adaptive control methods are investigated for the frictional and
impact chatter in orthogonal cutting with two-degree-of-freedom deterministic and
stochastic models. In the future works three-degree-of-freedom models in 3D metal

cutting are recommended.

In the present investigation for the two-degree-of-freedom stochastic system we only
consider the cutting resistance as a one-dimensional process, c¢(z), because it is a
reasonable approximation for orthogonal cutting. But for 3D metal cutting the
cutting resistance should be considered as a three-dimensional process ¢(r), where

r(t) = (x(t), y(t), z(t) is a parametric function of time.

The future works should pay more attention to the thermomechanical chatter. Not
only all kinds of cutting forces and frictions can cause chatter, but also the thermo-
dynamics of chip formation. In reality there are functional interrelationships between
the two systems, mechanics and thermodynamics of chip formation {47]. In the future

works the complex models including mechanics and thermodynamics of chip forma-

tion are recommended.
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Finally, once the controller are presented through analytical investigation, a prototype

may be tested in the laboratory and in the field to confirm the analysis.
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In the pioneering work of Merchant [25], a model of the cutting process was used in

which the shear in chip formation was confined to the shear plane, and movement

of the chip over the tool occurred by classic sliding friction, defined by an average

friction angle 8. Merchant’s force circle were restricted to a model of orthogonal or

two-dimensional metal cutting shown in Figure 1 [25].

The forces can be found from Figure 1 as the two equations below:

_ hywkcos(6 - a)
 singcos(¢p+ 6 — a)
_ hywksin(B - a)
~ singcos(op+ B~ a)

where hg is the initial depth of cut and § is an average friction angle.

Differentiating the first equation with respect to the shear plane angle gives:

dF;  howkcos(f — a)cos(2¢p + B — a)
de sin?¢ cos (¢ + B — a)

and the Merchant equation as

(2)

(3)
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Figure 1: Merchant’s force diagram [25]

For the main cutting force F, acting in the tool work direction:

how k cos( — a)

Fe = sin [;—’ - 3(6- a)] cos (f{ +30+ %a)) )
From trigonometry the main cutting force can be written as:
F,=2whykcotd (6)
The feed force acting normal to the main cutting force is:
F = howk sin(8 — «) )

sin (% —3(8- a)) cos (% +38+ g-a))

And from the force diagram the forces on the shear plane are given by

F, = F.cos¢ — F; sing (8)
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Fn = F,sing + F; cos¢ 9)
The shear stress and normal stress are given by

F;  [F.cos¢ — F; sing| sing
Ki=-—= 1
As w h() ( 0)

_ Fy _ [F.sing + F; cosd] sing _
ag = Z’ = ’U)h() (11)

where Fj is shear force, fy is normal force, K is shear stress, o is normal stress, A;

is the shear-plane area why/sing.

The coeflicient of friction is defined as the ratio of the force in the direction of sliding
to the force normal to the sliding interface. From Figure 1 the coeflicient of friction

was shown as

F  F.sing + Ficos¢p  F,+ Fitana
p=—== — = = tanf (12)
N  F.cos¢p — Fysing  F, — Fitana

where p is coefficient of friction, F' is the friction force on the rake face shown in the

Figure 1, N is the normal force on the rake face, and 3 is the friction angle.
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Figure 2: The Heaviside function

Appendix B

Heaviside Function

Shown in Figure 2, the (unit) Heaviside function H(z) can be defined by either of:

1 >0
H(x)={ (13)
0 z<0

or

/ " H(z)d(z)dz = /0 ~ $(z)dz (14)
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<y

Figure 3: The Saturation function

Appendix C

Saturation Function

Shown in Figure 3, the Saturation function sat(x) can be defined by
z |zl <1

sat(x)=4¢ 1 z2>1 (15)



