On Usability Pattern Documentation:

An XML-based Approach

Faridul Islam

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University

Montreal, Quebec, Canada

October, 2003

© Faridul Istam, 2003



3

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliotheque nationale
du Canada

Acquisisitons et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-91048-2
Our file  Notre référence
ISBN: 0-612-91048-2

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this dissertation.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the
dissertation.

| Lol ]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de ce manuscrit.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.



ii



ABSTRACT

On Usability Pattern Documentation: An XML-based Approach

Faridul Islam

There are several ways to document patterns. Different formats have been proposed by
different authors for capturing the best practices and proven solutions; i.e. patterns. The
Alexandrian format of patterns was presented in a fairly informal, narrative style. On the
other hand, the Gang-of-Four format of patterns was presented in much finer grained
fashion by decomposing each pattern into many sections. The structure of pattern
documentation depends on several factors. Each author has his own preferences.
Different subject matters may influence the structure. For example, more technical
information may require patterns with more structure. Different users may require
different structures as well. Novice users may prefer a more prosy style while the
experienced users may prefer a more structured one. Thus, there was a need to
compromise for having a consistent structure so that patterns are clear, understandable,

and reusable.

This thesis explores some of the most popular formats of patterns, proposed by different
individuals or communities. After a thorough study of the strength and weaknesses of the
existing ones, a new comprehensive format of pattern documentation, comprising seven
elements, has been developed. Besides enhancing productivity, the proposed format
reduces the communication gap among the three key professional groups; i.e. Patterns
Writers, Usability Experts and Software Developers. To support the selection of a pattern
for a given context, a classification scheme, which organizes patterns according to
granularity, functionality, and structural principles, is also proposed. The study concludes
with the development of syntax and semantics of a markup language, named Usability

Pattern Markup Language (UPML), based on eXtensible Markup Language (XML).

i1



ACKNOWLEDGEMENTS

I would like to expresses my deep sense of gratitude to my thesis supervisor, Dr. Seffah
Ahmed, Assistant Professor, Department of Computer Science, Concordia University,
who has supported my work with his patience and kindness. He has given me valuable

suggestions, remarks, and clear guidelines that contributed to the success of this thesis.

I am highly glad of being a member of the Human-Centered Software Engineering
(HCSE) group at Concordia University and greatly enjoy the new experience that I have
gathered during my master’ studies — a new era of pattern supportive design, task
oriented modeling, and overall integrating the User Centered Design (UCD) concepts in
the process of software engineering and re-engineering. I am also thankful to Dr. Seffah
Ahmed for giving me the opportunity to serve the HCSE Laboratory as Lab Manager

during the last summer.

I am also grateful to Ms. Pai, Hsueh-Ieng for her illuminating discussion and support in
writing XML schema for the Usability Pattern Markup Language (UPML). T would like
to thank my friends, Kedar Chandra Das and Mahmud Hossain, for their time to help me

with proof reading of this thesis.

Finally, I would like to thank my family for their love and support.

iv



TABLE OF CONTENTS

List of Figures ........ Cerercrertestnnsscnnas ceetecetnnetsennstcennas ceenreans Vil
List of Tables ........cccccveiennnenn. errerseeceneeiaetatientinacenstnnninns viii
1. Introduction ............. cerererentrintinstanns ceereceesnainnn ceerecennne 1
1.1 A Brief History of Patterns Movement ......................o.o..e. 2
1.2 Definition of Pattern and Basic Terminology ....................... 3
1.3 Significance of Patterns .............cococeiiiiiiiiiiiiiiii . 6
1.4 Objectives and Scope of the Thesis ................ccoceiinininn... 8
1.5  Thesis Organization ............ccceeviiiiiiiiinieriniiiiinieaennns 8

2. An Analysis of Some Popular Formats for Pattern

Documentation .....cceeeeeiiiiiiiniiieiniiiiiiienraeeecnceennns veeeeee 10
2.1 Christopher Alexander ...................coooiiiiiiiii 10
22 Gang-of-Four ..., 15
2.3 Common Ground (Jenifer Tidwell) ...........ccoovviniiii i ... 17
2.4 Amsterdam Collection (Martijn Van Welie) ....................... 20
2.5 Portland Pattern Repository .............cooooiiiiiiiiiininnn ., 21
2.6  Todd Coramand JimLee ..............coooiiiiniiniiiii i, 25
27 James O. Coplien and Douglas C. Schmidt ......................... 28
2.8 The Significance of XML for Pattern Documentation and the
Motivation for UPML ... 31
2.9 SUMMATY ..ottt 32
3. A Generalized Format of Pattern Documentation ............... 33
3.1 Weaknesses of the Formats ......................o 33
3.2 A Classification Scheme for Patterns ................................. 40
3.2.1 Requirements for the Classification Scheme ............ 40
3.2.2 The Proposed Classification Scheme for Patterns ...... 41



3.2.3 Explanation of the Terminology.. ...........cccovvvnnn.. 43

3.2.4 COmMPALISON ...vvitiiitiiit et eaaa 46
3.3 A 3D-Reference Model of Pattern Properties ....................... 48
3.3.1 Requirements for the 3D-Reference Model .............. 48
33.2 The Proposed 3D-Reference Model of Pattern
Properties ... 51
3.3.3 The Proposed Generalized Format ........................ 53
3.3.4 Explanation of the Terminology............................ 54
4. UPML Specification ......c.coceeeinivnvinrnennennnnnnnnn. cerresenseens 59
4.1 UPML Module and Element Definitions ............................. 59
4.2 Properties of UPML, Elements and Attributes ..................... 62
42.1 UPML Data TYPES «.oeovvniniiiiiiiiiiiieiirieiiien, 62
4.2.2 Enumeration ..........c..ccoevuiiiiiiiiriiiiniiiiii i, 62
4.3 Association Module .............cocoii 63
44  Meta-Information Module ......................oocoi 66
4.5 Problem Module ..o 72
4.6 Solution Module ........c.oooiiiiiiiiiii e, 75
4.7 Structure Module ..........ooiiiiiiiii 82
4.8  UPML Attribute Definitions ................cooiiiiiiiiiniiniein, 84
4.9  UPML Identification .............ccoooevuiiiiniiiiiiiiiisei i 87
4.10  UPML Conformance ..............c.oeuiviiiinininininieieieaenannn., 88
4.10.1 UPML Document Conformance ........................... 88
4.10.2 UPML Processor Conformance ........................... 89
3. Conclusion and Future Work .......ccccoiviuvevenniicecninenrenaes. 90
References ......... etesecctenttanrstnactnstseesttnntonntatnrettasennaasenses 92
Appendix A ...cccieiiiiniiiiiiinienen.. B . 98
Appendix B ......... ceerenes Semecsenesssannsiscentsttarstenansasenerstncsaens 110

Vi



Figure 1.1
Figure 2.1
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 4.1

LIST OF FIGURES

The Pattern domain

Using XSL to Transform UPML Documents ...........................

Welie’s Classification of Patterns ......ooovvveveeeeeeiiiiieinn,

Mapping of Patterns ............ooiiiiiiiiiiiiiiiiii i

A Classification Scheme for Patterns ....oooovroeeveereeeeen,

A 3D-Reference Model of Pattern Properties ...........................

Structure of UPML

vii

32
36
39
41
52
61



Table 3.1
Table 3.2
Table 4.1
Table 4.2
Table 4.3
Table 4.4
Table 4.5
Table 4.6
Table 4.7
Table 4.8
Table 4.9
Table 4.10
Table 4.11
Table 4.12
Table 4.13
Table 4.14
Table 4.15
Table 4.16
Table 4.17
Table 4.18
Table 4.19
Table 4.20
Table 4.21
Table 4.22
Table 4.23
Table 4.24
Table 4.25

LIST OF TABLES

Catalog of Gang-of-Four’s Design Patterns ..............................
The Generalized Format of Pattern Documentation ....................
UPML ModUles ......vineiiiiiii e
The category Element ..o,
The link Element ..........ooiiiiiiiiiiiii e,

The related-patternElement .............ooooiiiiiiiiinniin..

The alias Element ........ooovii e,

The keyword Element .............cooiiiiiiiiii il
The metadata Element ........coooveiiiii i,
The name Element ... el

The term EIEment ... ... e

The platform-compatibility Element ...............cou... ..
The problemElement .............cooiiiiiiii e,
The task Element ..o,
The user Blement ...........cooooiiiiiiiiiiii e,
The consequence Element ............ooooiiiiiiiiiiiniini .
The example Element ..........oooouiieeiiniiii e
The implementationElement ...............cooooiiiiiiiiiii ...

The rationale Element .......c.ccooviiiiuii el

viii

35
53
59
63
64
64
65
66
67
67
68
69
69
70
71
71
72
73
73
74
74
75
76
76
77
78
79



Table 4.26
Table 4.27
Table 4.28
Table 4.29
Table 4.30
Table 4.31
Table 4.32
Table 4.33
Table 4.34
Table 4.35
Table 4.36
Table 4.37
Table 4.38
Table 4.39
Table 4.40

The solution Element .....oooviiiiiiiiiiiiiiiiie i

The strategy Element ............ooooiiiii i,

The structure EBlement .....ooooviiii e,

The body Element ......
The head Element ......

The pattern Element

The upml Element ......

The event Attribute ...
The 14 Attribute ........

The impact Attribute .

.....................................................

The object-type Attribute ........ooviiiiiii e,

The relation AMribULE ... e

The term-type Attribute ..ot

The uri Attribute .......

iX

80
80
81
82
83
83
84
85
85
85
86
86
87
87
87



Chapter 1

Introduction

Over the past few decades, there have been significant interests in using patterns and
pattern languages by different disciplines; e.g. Architecture and Civil Engineering,
Chemistry, Biology, Bio-Informatics, Genetic Engineering etc. In fact, the notion of
patterns and pattern languages were originated in the late 1970’s [Alexander+77] in the
civil engineering and urban planning domains as an approach to design buildings,
roadways, and towns. After the enormous success of Alexander’s works on patterns in
civil engineering domain, some usability experts and pattern authors have been trying to
promote the use of patterns into software engineering domain (including software
architecture, design, and development) since the last decade. In recent years, there have
been a series of seminars, symposiums on the usability of patterns in object-oriented
software architecture and development. However, relying on the popularity of patterns,
many individuals and communities across the globe have been contributing to this field in
a scattered manner. As a result, pattern collection became heterogeneous and users need
to spend a significant amount of time just to pick the right pattern for their use from this
heterogeneous collection. Since software designers and developers are used to work
under a tight schedule, they need patterns in a clear and understandable format or ready-

to-go state along with a proper organization.

The thesis is an effort to reduce the communication gap among different professional
groups, who are interested in patterns and pattern languages, by introducing a methodical
approach, in general, and a generalized format, in particular for pattern documentation in
a consistent manner. It also provides a scheme for pattern classification. Last but not the
least, this thesis will provide syntax and semantics of the Usability Pattern Markup
Language (UPML) 1.0 specification, based on the eXtensive Markup Language (XML)

notation, in order to write the future patterns.



1.1 A Brief History of Patterns Movement

The movement of patterns originates in the work of a building architect named
Christopher Alexander during the late 1970s. He started the patterns movement through
his works, especially by writing two books, “A Pattern Language” [Alexander+77] and
“A Timeless Way of Building” [Alexander79] which, in addition to giving examples,

described his rationale for pattern documentation.

The pattern movement was very quiet until 1987 when patterns appeared again at an
OOPSLA conference in Orlando organized by Kent Beck and Ward Cunningham. Since
then, many papers and presentations have appeared, authored by a large number of
people; i.e. Grady Booch, Richard Helm, and Erich Gamma, Kent Beck, etc. In 1993, the
formation of “Hildside Group” by Beck, Cunningham, Coplien, Booch, Johnson and
others was the first step forward in evolving a pattern community. From 1987 to 1995,
many periodicals, featured articles were published directly or indirectly relating to
patterns. In 1995, Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides
(affectionately known as Gang-of-Four) published “Design Paiterns: Elements of
Reusable Object-Oriented Software” [Gamma+95], which has been creating a great

interest in using patterns within the object-oriented software developers community.

In the CHI’1997 Workshop, the Human Computer Interaction (HCI) community formed
a forum for vigorous discussions on patterns and pattern languages for user interface (UI)
designers or even for the software developers. Since then many groups devoted
themselves to develop HCI patterns and pattern languages for design [Tidwell97,
Coram+98, Welie+00, Pemberton+99, Granlund+01, Brochers00]. The most recent and
remarkable addition to this movement is done by Alan S. and James R. T. “Design
Patterns Explained — a new Perspective on Object-Oriented Design”, in 2002 published
by Addison-Wesley [Alan+02].



1.2 Definition of Pattern and Basic Terminology

A pattern expresses a relationship among a certain context, a problem and a solution. A
context is the environment, situation, or interrelated conditions within the scope of which
something exists. A problem is an issue that needs to be investigated and resolved, and is
typically constrained by the context in which it occurs. A solution is a response to the
problem in a context that helps resolving the issue(s). It also shows the rationale behind

the solution of a problem.

Figure 1.1: The Pattern domain

Therefore, if the context is changed, solution could be different for the same problem that

means different Pattern.

Christopher Alexander, the pioneer in this field, has defined pattern as: “A recurring
solution to a common problem in a given context and system of forces” [Alexander+77].
Therefore, the recurring use or reusability is an important factor to validate the pattern
itself. In defining pattern as: “Each pattern is a three-part rule, which expresses a
relation between a certain context, a problem, and a solution” [Alexander+77] he also

identified, which are the fundamental properties of a pattern.

A pattern language formalizes the definition of a pattern by providing a vocabulary that
helps the users in understanding patterns. It also provides a notation for writing patterns
in a uniform fashion [Appleton00]. Some of the defining characteristics of a pattern

language inspired by software engineering principles are: abstraction, anticipation of



change, generality, semantic-relationship (among patterns) that may lead to inheritance
(of the solution of one pattern by the other, in whole or in part), and consistency (that one

pattern should not provide a solution if it conflicts with the others).

James O. Coplien has defined pattern language as a structured collection of patterns that
build on each other to transform needs and constraints into an architecture. It is not a
programming language in any ordinary sense of the term, but is a prose document whose

purpose is to guide and inform the designer [Coplien+95].

In this thesis, usability patterns have been characterized as usability-related software
design patterns including design patterns, user interface design patterns, HCI patterns,
etc. Well, the difference between design patterns and usability patterns can be defined as:
Usability patterns are concerned mostly with an external point of view on a software
system, whereas design patterns in general are concerned with an internal, more
structural, point of view. Moreover, the study will discuss only the patterns that are
related to the software engineering domain (including software architecture, design, and
development). Therefore, software designers and developers are expected as its potential
users. In the remaining parts of this thesis text, the term “users” will simply refer to the

above mentioned groups or professionals.

Besides the formal definitions, patterns and pattern languages are means to describe the
best practices and experience of the experts in a way such that the users (including novice
users) can reuse this experience easily [Linda98]. As we all know, in any Science and
Engineering discipline the fundamental issue is to communicate and share experience
with others in order to achieve the great mutual benefits, and for that reason a common or
understandable vocabulary is necessary. The goal of patterns within the software
engineering community is to create a body of literature to help software designers and
developers to resolve recurring problems encountered throughout the life cycle of the
software development [Alexander79]. Patterns help to create a shared language for
communicating insight and experience about these problems and their solutions.
Formally codifying these solutions and their relationships help the patterns writers

successfully capture the body of knowledge, which defines an understanding of good



architectures. Forming a common pattern language for conveying the structures and
mechanisms of the architectures allows patterns writers to intelligibly reason about them.
The primary focus of this thesis is more on creating a common notation of pattern
documentation in an understandable manner rather than on investigating of its inherent
technology. Therefore, a pattern may be defined as: “A literary for capturing the wisdom

and experience of expert designers, and communicating it to novice”.
Are Patterns Framework?

Patterns capture the static and dynamic structures and collaborations of successful
solutions to problems that arise when developing application in a particular domain. A
Framework is an integrated set of components that collaborated to provide a reusable

architecture for a family or related applications,

Patterns and frameworks are highly synergistic (i.e. neither is subordinate). Patterns can
be characterized as more abstract description of frameworks, which are implemented in a
particular language (i.e. Pattern descriptions are often independent of programming
language or implementation details). In general, sophisticated frameworks embody

dozens of patterns and patterns are often used to document frameworks.
Are Patterns Components?

Patterns mainly used to make the design decisions during the design phase, whereas
Components are used during the implementation phase. Since patterns are the abstract
description of design solution, it avoids all the implementation details. But, components

are basically a ready to use module in a particular programming language.
Are Patterns just Rules?

Rules are not commonly supported by a rationale, nor put in context. A rule may be part
of the solution in a pattern description, but a rule solution is neither sufficient nor
necessary. Patterns are not designed to be executed or analyzed by computers, as one

might imagine being true for rules.



1.3 Significance of Patterns

There are several characteristics that make patterns useful. Some of those are as below:

Formality

Patterns are formal. There have been several efforts [Alur+01, Gamma+94, BryanOl,
Appleton00, IEEE87, IEEE9S, IBM99a] that provide strategies and suggest guidelines
for pattern documentation. However, one of the limitations of these guidelines is that they
make broad use of natural language for description. The guidelines are less formal and
vague. Although Frequently Asked Questions (FAQs) help in answering user questions,
they are usually focused on a single topic, which is often specific to a particular
technology. Patterns are more formal in their approach, and exist at a higher level of
abstraction than the strategies or guidelines. Patterns offer various advantages over
guidelines [Griffiths+01] and are anticipated to play an essential role in information
technology [IBM99a]. Nevertheless, patterns do not attempt to necessarily replace the
FAQs, strategies, or guidelines. Rather, they should be considered as a key complement

to the overall initiative.

Nomenclature
Patterns (and therefore, the concepts they represent) are assigned names. This expedites

further discussion, analysis, and reference of previously localized concepts.

Practicality

Patterns provide practical "ready-to-go" solutions. A pattern describes "good" practical
solutions to a common problem within a certain context by describing the invariant
aspects of all those solutions. Given a problem, patterns include a compact, focused,
complete, and straightforward way of describing a solution. Since they provide the
consequences of applying that solution, the users can decide and act upon in a timely

manner if the solution is applicable to their situation.



Experience

Patterns form an "expert" system in practice. Patterns, when well-defined and organized,
are more than a mere static disjoint "collections" of recipes. Patterns are tried-and-tested
ways to deal with problems that recur. It is expected that those who have experience in a
particular field of knowledge will have certain localized solutions to these problems. As a
result, they recognize a problem to be solved and know which solution needs to be
applied in a particular situation. A pattern describes this localized experts’ knowledge
and states the problem, context, and solution, so that others with less experience can be
benefited. In this sense, patterns themselves can be considered as a "smart FAQ" or an
"expert system" that encapsulates the knowledge and experience of the author. This

enables them to be used as a knowledge base.

Re-Usability

A pattern presents a higher-level view of the same problem inflicting often multiple
industries and provides a solution for it. It may also be connected to other patterns in
existence (in the same or other catalogs) for whole or in part of its solution (inheritance).

Patterns thus encourage re-use.

Abstract, Modular Framework

Complex problems are often composed of several steps that need to be dealt with
independently and then combined to arrive at a solution. Patterns represent these steps at
a high-level via "intelligent" distribution and allocation of responsibilities. They provide

a framework that works in unison to fulfill a given task.

Community

Patterns help a broader community. Patterns communicate solutions to a community of
architects, designers, and engineers, who make use of those at different levels and for
different purposes. The goal of the pattern community is to build a re-usable body of

knowledge to support design and development in general.



1.4 Objectives and Scope of the Thesis

The main objective of this thesis is to investigate some of the most popular formats of
pattern documentation with the goal to establish a generalized format based on XML

notation. In order to achieve the goal, the following questions need to be addressed:

What are the patterns, pattern languages and usability patterns?
What are the popular formats currently being used for pattern documentation?
What are the weaknesses and strengths of the above formats?

What are the significances of XML for pattern documentation?

A A e

What are tools or languages for writing future patterns?

This study will also provide the directions as well as scope for further studies.

1.5 Thesis Organization

After the introductory chapter (Chapter 1), this thesis text is organized as follows:

Chapter 2 provides a literature review of some of the most popular formats for pattern
documentation, proposed by different individuals and/or communities. It also explores
XML as a viable solution for documenting the future patterns, and motivates us to

develop the Usability Pattern Markup Language (UPML) 1.0 using XML notation.

Chapter 3 discusses about our two major contributions; (i) A Classification Scheme of
Patterns and (ii) A 3D-Reference Model of Pattern Properties along with the definition of
the terminology. This chapter also discusses about the weaknesses of the formats under

study and finally recommends a generalized format of pattern documentation.



Chapter 4 defines the syntax and semantics of the UPML 1.0 specification. First it lists
the UPML modules and their elements and then lists the basic properties of elements and
attributes, including conditions on their data types and enumeration. This chapter also
provides the definitions of individual elements along with the details of corresponding

attributes, sub-elements, and examples.

Chapter 5 summarizes the major contributions of the thesis work as well as some of

avenues for future studies.



Chapter 2
An Analysis of Some Popular Formats for Pattern

Documentation

This chapter mainly provides a literature review of some of the most popular formats of
pattern documentation (section 2.1 through section 2.7). Section 2.8 shows the
significance of XML for pattern documentation as well as the motivation for the
Usability Pattern Markup Language (UPML) specification. Section 2.9 summarizes the

discussions of this chapter and bridges it with the ongoing chapter(s).

There are different formats (with a wide range of properties, elements and attributes) for
pattern documentation, which are suggested by different individuals or communities.

Some of the most popular formats are as follows:

2.1 Christopher Alexander

Christopher Alexander, the father of the patterns and pattern languages movement, has

created his pattern format as below:

Each pattern has the same format. First, there is a picture, which shows an archetypal
example of that pattern. After the picture, an introductory paragraph...sets the context ...
explaining how it helps to complete certain larger patterns. Then there are three
diamonds.... After the diamonds ... a headline, in bold type ... gives the essence of the
problem in one or two sentences. After the headline comes the body of the problem.
This 1s the longest section. It describes the empirical background of the pattern, the
evidence for its validity, the range of different ways the pattern can be manifested in a

building, and so on. Then, again in bold type, like the headline, is the solution, the heart

10



of the pattern, ... in the stated context. This solution is always stated in the form of an

instruction so that one knows exactly what one needs to do to build the pattern.

Afterwards, a diagram of the solution followed by another three diamonds and a

paragraph are introduced to complete the pattern.

Each solution is stated in such a way that it gives the essential field of relationships
needed to solve the problem, but in a very general and abstract way so that the users
can solve the problem in their own way ... Alexander has tried to write each solution in
a way which imposes nothing on the users. It contains only those essentials, which
cannot be avoided if the users really want to solve the problem. In this context,
Alexander has tried, in each solution, to capture the invariant properties common to all

(solutions of) the problem.

11



An Example of Alexandrian Format [Alexander+77]

251 DIFFERENT CHAIRS

12



s whem you | ”‘:mady 16 furnish rooms, choose the variety of
furnitore as carefully as you have made the building, so that each
piece of furniture, loose or built in, has the same unique and
organic individuality as the rooms and alcoves have—each
different, according to the place it OCCUPics—SEQUENCE - OF
SITTING SPACES (142}, uTTingG cincLE (185), BUILT-IN SEATS
{z02).

+ P

Peop!c are dlﬁmm sizes; they sit in different ways.
Andyﬂthamisamqummudcmmmmakeaﬂ
“Ehﬂlmaﬁlkc.

 OF course, this tendency to make all chairs alike is fueled by
the demands of prefabrication and the wpp-md economies of
scale. I}wgnﬁn have for years been creating “perfect chain—
chairs that can be manufactured cheaply in mass, Thesc chairs are
‘made to be comfortable for the average person. And the institu-
tions that buy chain have been persnaded that buying these
ehgm in bulk meetz all their needs,

. But what it means is that some people are chmmeakly uncom-

fm":-lblc; and the variety of moods among people sitting gets en-
tirely stifled.
f Ghvmmiy, the “average chair” is good for same, but not for
everyone, Short and tall people arc likely to be uncomfortable.
And :Ithmt,gh situations are roughly uniform—in a restaurant
everyone is eating, in an office everyone is working at a table—
even 80, there are nmpunmt distinctions: people mtmg for dif-
ferent lengths of time; pwpl:: sitting back and musing; pcnplt
sitting aggressively forward in a hot discumion; people sitting
formally, waiting for a fow minutes, If the chairs are all the same,
these differences are repressed, and some people are uncomfort-
able,

What is lem obvious, and yet perhaps most impurtmt of all,
is this: we project our moods and personalities into the chairs

we sit in. In one mood & big fat chair is just right; in another

13



mood; a rocking chair; for another, a stiff upright; and yet again,
a stool or sofa. And, of course, it im’t only that we like to switch
according to our mood; one of them is our favorite c:ha;r, the one
that makes us most secure and comfortable; and that again is dif-
ferent for each person. A setting that is full of chairs, all slightly
different, mair:dm:!y creates an amosphere which supports rich
experience; a setting which contains chairs that are all alike puls
a subtle straight jacket on experience.
T‘hcrtfnrm

Never fnmnh any place with chairs that are identically
the same. Choose a variety of different chairs, some big,
some small, some softer than others, some rockers, some
very old, some new, with arms, without arms, some wicker,
some wood, some cloth.

o B

Where chairs are placed alone and where chairs 2re gathered,
reinforce the character of the places which the chairs create with
POOLS OF LIGHT (15:); each local to the group of chain it
marks, .. .

14



2.2 Gang-of-Four

The format defined by the Gang-of-Four (Erich Gamma, Richard Helm, Ralph Johnson,

and John Vlissides) is described in the first chapter of their book [Gamma+95], which

comprise four essential elements:

1.

The pattern name is a handle we can use to describe a design problem, its
solutions, and consequences in a word or two. Naming a pattern immediately
increases our design vocabulary. It helps us design at a higher level of
abstraction. Having a vocabulary for patterns helps us to communicate among
our colleagues, in our documentation, and even to ourselves. It makes easier to
think about designs and to communicate with them and their trade-offs to
others. Finding good names has been one of the hardest parts of developing our

catalog.

The problem describes when to apply the pattern. It explains the problem and its
context. It might describe specific design problems such as how to represent
algorithms as objects. It might describe class or object structures that are
symptomatic of an inflexible design. Sometimes the problem will include a list of

conditions that must be met before it makes sense to apply the pattern.

The solution describes the elements that make up the design, their relationships,
responsibilities, and collaborations. The solution doesn't describe a particular
concrete design or implementation, because a pattern is like a template that can
be applied in many different situations. Instead, the pattern provides an abstract
description of a design problem and how a general arrangement of elements

solves it.

The consequences are the results and trade-offs of applying the pattern. Although

consequences are often unvoiced when we describe design decisions, they are

15



critical for evaluating design alternatives and for understanding the costs and

benefits of applying the pattern.

The consequences for software often concern space and time tradeoffs. They may
address language and implementation issues as well. Since reuse is often a factor
in object-oriented design, the consequences of a pattern include its impact on a
system's flexibility, extensibility, or portability. Listing these consequences

explicitly helps us to understand and evaluate them.
Each pattern in the Gang-of-Four’s collection is described following a consistent format:

Pattern Name and Classification:

What is the pattern called? Is the pattern creational, structural, or behavioral?
Intent:

What problem does this pattern solve?

Also Known As:

What are other names for this pattern?

Motivation:

What is an example scenario for applying this pattern?
Applicability:

When does this pattern apply?

Structure:

What are the class hierarchy diagrams for the objects in this pattern?
Participants:

What are the objects that participate in this pattern?
Collaborations:

How do these objects interoperate?

Consequences:

What are the tradeoffs of using this pattern?

Implementation:

Which techniques or issues arise in applying this pattern?

16



Sample Code:

What is an example of the pattern in source code?

Known Uses:

What are some examples of real systems using this pattern?
Related Patterns:

What other patterns from this pattern collection are related to this pattern?

The Gang-of-Four format has a profound effect on the object-oriented community, but it
provides little help for pattern writers. The list of elements created by this thoughtful
group of four has contained the essentials for good pattern writing and this thesis work

will follow their notations closely for pattern documentation.

Gang-of-Four authors have organized their design patterns based on two criteria:
purpose and scope, which is further elaborated in chapter 3. This kind of organization
has certainly motivated patterns writers to organize their patterns. However, it faces a
serious problem of overlapping patterns among different categories as there are no
concrete definitions of the boundary criteria. Therefore, we need to make sure that the
set of criteria for pattern classification are clear and concrete. It should not be only
applicable to a particular collection, but also need to be applicable for both the existing
and upcoming patterns. Otherwise, classification of patterns may create more

disagreement rather than agreements.
An Example of Gang-of-Four Format [Gamma+95]

Abstract Factory (Please see Appendix A for the details).

2.3 Common Ground (Jenifer Tidwell)

Jenifer Tidwell has formed a platform named “Common Ground” in order to serve the
Human-Computer Interface (HCI) community by providing a collective collection of HCI

Design Patterns. She felt that the HCI community will be greatly benefited by using

17



patterns as 40% codes of software applications are related to the Interface Design or

simply Graphical User Interface (GUI).

Mostly her work in pattern language, specially pattern format, is intended to form an
Alexandrian pattern language, as found in Christopher Alexander's book “A Pattern
Language” and not a catalog such as is found in the book “Design Patterns” of Gang-of-
Four. Like other such pattern languages, it does not break new theoretical ground or
present innovative new techniques -- it's more likely that you have seen examples of
every pattern here. Instead, it captures ordinary design wisdom in a practical and

understandable manner.

An Example of Tidwell Format [Tidwell99]

Go Back to a Safe Place

Examples:
e The "Home" button on a Web browser
e Turning back to the beginning of a chapter in a physical book or magazine

o The "Revert" feature on some computer applications

Context: The artifact allows a user to move through spaces (as in Navigable Spaces), or
steps (as in Step-by-Step Instructions), or a linear Narrative, or discrete states; the artifact

also has one or more checkpoints in that set of spaces.

Problem: How can the artifact make navigation easy, convenient, and psychologically

safe for the user?

18




Forces:

A user that explores a complex artifact, or tries many state-changing operations, may
literally get lost.

A user may forget where they were, if they stop using the artifact while they're in the
middle of something and don't get back to it for a while.

If the user gets into a space or a state that they don't want to be in, they will want to
get out of it in a safe and predictable way.

The user is more likely to explore an artifact if they are assured that they can easily get
out of an undesired state or space; that assurance engenders a feeling of security.

Backtracking out of a long navigation path can be very tedious.

Solution: Provide a way to go back to a checkpoint of the user's choice. That checkpoint

may be a home page, a saved file or state, the logical beginning of a section of narrative or a

set of steps. Ideally, it could be whatever state or space a user chooses to declare as a

checkpoint.

O—0O-—>8

TN
o-~-0—0

Resulting Context: Go Back One Step is a natural adjunct to this pattern, and is often found

along with it. For non-Narrative use, Interaction History is useful too, almost to the point of

making Go Back to a Safe Place unnecessary: it may actually help a "lost" user figure out

where they are, for instance, or remind an interrupted user of where they are and what they've

done.

19




2.4 Amsterdam Collection (Martijn Van Welie)

The Welie format is closely related to the format of Christopher Alexander. In addition to
Alexandrian format, his format describes when and why a pattern will be used in a simple
text/narration in order to enhance understandability and learnability of a pattern.
Moreover, his format highlights some of the known uses so that the pattern users can
easily find out the appropriate place to use by comparing with the existing examples,

which intends some of the Gang-of-Four’s properties.

An Example of Welie’s Format [Welic03]

Breadcrumbs

Home » Products > Flazh

Macromedia Flash MX

Product Overview

From www.macromedia.com

Problem The users need to know where they are in a hierarchical structure

Use when Sites with a large hierarchical information structure, typically more than three
levels deep. Such sites are medium to large sized and include shops, catalogs,
portals, corporate sites etc. The site has got a main navigation scheme that allows
users to traverse the hierarchy. Users may want to jump several steps back instead
of following the hierarchy. Users may be unfamiliar with the hierarchical
structure of the information. Users may need to know where they can go. Users
need to know how they arrived at their current location.

Solution Show the path from the top level to the current page.

Home > Nextlevel > Nextlevel > Current page

The path shows the location of the current page in the total information structure.
Each level of the hierarchy is labeled and functions as a link to that level. The

current page is marked in order to give the users feedback about where they are

20



Why

More

Known
Uses
Related

Patterns

Examples |

now. Don't use the current page name in the breadcrumb as the only way to show
section title, add a title anyway. The path shows that a top-down path is traversed
by using appropriate separators such as > or \ that suggest a downward motion. If
the path becomes too long to fit in the designated place, some of the steps can be
replaced by an ellipsis e.g. "...". The path is placed in a separate "bar" that
preferably spans the entire width of the content area. It is placed close to the
content area, preferably above the content area but below the page header.

The bread crumbs show the users where they are and how the information is
structured. Because users see the way the hierarchy is structured they can learn it
more easily. By making each label a link, the users can quickly browse up the
hierarchy. They take up minimal space on the page and leave most of the space

for the real content.

Sun | Fegiona

“‘sktﬁ!l Systems > UltraSPARC Workstations
DESKTOP SYSTEMS

> Sun Blade 1000 UltraSPARC Workstations
* Ultra 5 Workstation

This example is taken from Sun's web site and shows the use of bread crumbs in
product pages. The path from the top level is visible and the users can go to any

of the other higher level product categories.

www.sun.com ; www.useit.com; www.vahoo.com

This pattern can be combined with most navigation patterns.

2.5 Portland Pattern Repository

The Portland format, so named because its initial three users were all from Portland,

Oregon. It is a narrative format, in contrast to the Gang-of-Four format, which captures a

21




pattern in a series of sections. A pattern of this format contains statements like the
following: This set of forces creates this problem, so here’s the solution. The pattern
takes its name from the solution. Each pattern is a part of a set of related patterns. Higher
level patterns resolved forces, which open up new problems with derived forces

[Cunningham95].

Actually, Portland format is a fairly direct emulation of Alexandrian format with some
simplification in typesetting. Portland Pattern Repository is maintained by Ward
Cunningham, who was one of the pioneers of incorporating patterns into software

engineering domain.
An Example of Portland Format [Portland95, Cunningham95]

The Portland format basically describes or analyses three major areas in order to solve
any problem starting from the initial phase of design. The format uses the following three

properties to articulate the best practices:

1. User Decision
2. Task
3. Task Window

User Interface Author: Kent Beck

User Decision:
e Have you collected a set of Stories?

¢ How do you organize a Story so it can be mapped into a simple and coherent user

interface?

Stories give you a lot of raw material from which to mold the user interface. The problem
with stories is that they are organized chronologically, while interfaces are organized
spatially. We have to break the story into parts, some of which will be spatially closer than

others. We need to translate the story from the time domain into the interface domain.

22



A good user interface has a sense of plot and flow. You naturally follow some path through
the parts of the interface, first using one window or kind of window more, then shifting your
focus to another. Interfaces that force you to jump back and forth between different styles of
interaction (text editing to form fill out to tabular presentation to direct manipulation) violate

this sense of easy flow.

Avoiding "interface shock" requires that we put chronologically related parts of the story
close together spatially in the interface. At the same time, we should use the best possible
presentation and manipulation technique for every part of the story. To start with, we need to

identify the "atoms" of the interface so we can begin to find "clumps". Therefore:

Make a list of every decision the user has to make during the stories. For each decision, write

down the information the user needs to make the decision wisely.

Task:
e Have you listed of User Decisions?

e How do you group decisions into coherent tasks?

One of the marks of a good interface is that everyone feels like they can work the way they
want to, that the system does not impose any particular method of solving a problem. Indeed,
it is just this feeling that is the primary goal of my whole involvement with patterns- to give

users a sense of mastery of their environment.

This feeling of mastery is often at odds with the users' managers' need to feel in control of
the users' work. Anyway, we need to design an interface that satisfies both these desires. The
user must feel like the system doesn't impose on their prerogatives. Management (who likely

decides whether you get paid for this work) must feel that no user can stray too far from

productive paths.

Users with more autonomy will not be under the intense scrutiny described above. Even so,
we owe these users a debt, a debt of structure. An interface with no structure, no point of

view, gives the user no leverage. Such an interface quickly devolves into an exercise in

23




interface design for the user, through preferences, macros, or even an embedded

programming language.

Here is the dilemma in a nutshell. We must structure the interface, because without structure
there is no leverage. We musin't structure the interface, because structure takes away the

user's experience of being in control of the machine instead of the other way round.

The artistic "liberating structure" debate arises once again! Short circuiting hours (days
weeks months years) of debate, structure liberates, as long as it eliminates unnecessary

decisions on one axis in order to open up decisions on another.

You may not be comfortable making these kinds of decisions. How can you possibly know
how every user who will ever encounter the system will use it? How can you be sure that

you're right, that you aren't restricting important avenues of exploration for the user?
Two answers:

1. The patterns give you a pretty decent chance of being right for most users most of the
time, provided you are listening to them.
2. Of course you'll make mistakes. That's no reason not to ship the system. There will

always be "power users” who will stretch whatever facilities you provide.

Therefore,
a. Write each User Decision and its required information on an index card.
b. Put cards with the same information touching each other.
c. Put clumps of cards listing similar information close to each other.
d. Each clump of cards is a task.
e. Name it.

Support each Task with a Task Window. Use a Wizard to overlay temporality when the

spatial layout becomes confusing.

24




Task Window:

e Have you found a Task?

e How much of the system do you reflect in a single window?

Interface design tends to fall into one of two camps- the "everything in one window" camp
and the "everything in separate windows" camp. Neither of these extremes serves the user of

current computer systems.

The "everything in separate windows" is exemplified by early design on the Macintosh. With
the extreme limits it had on screen real estate, it was appropriate not to pack too much into
any one window. However, it resulted in some software that was hard to use (Finder,
ResEdit) because the user spends far too much time managing windows. The need for a

separate "Window" pull down menu is a symptom of this problem.

"Everything in the same window" goes too far the other way. Putting all the functionality of
a large system (many workstation CAD systems demonstrate this problem) into one window
results in a vast sea of choices. The system isn't helping the user structure their time, isn't

presenting any flow through the system.

Finding a happy medium is critical to the operation of the interface (and to the viability of

the rest of these patterns). How do you tell when you have enough information in a window?

Ask the user to divide their job into identifiable tasks. Create a window for each task. Name

the window after the task.

2.6 Todd Coram and Jim Lee

Todd Coram and Jim Lee’s works on patterns are documented by using a format which is
well known as “Coram Format”. This format is basically a modified version of the format
described by Christopher Alexander [Alexander+77]. Unlike Alexandrian format (where

solution is placed at the ends of the body of a pattern), Coram format places the solution

25




after identifying the forces. They preface each pattern with an exemplary picture of the
pattern at work and a mini-map diagram to show us where the pattern lies within the

language.

An Example of Coram Format [Coram+98]

Interaction Style

Belection Meow,

Interaction Style (1)

Cornsrersational Text

%, Explorable Intexface {2)

Interaction Style

..there are many ways the user may interact with your system. The various interaction styles

that you can choose will provide the framework for the user's experience.

It is essential that the interaction style match the needs of the audience.

You need to provide an interface for the user to interact with the system. But how much
computer experience does your user have? How much training will your user receive? For
instance, text editors such as vi or emacs are useful tools for most programmers, but

inappropriate for occasional users.

As a designer, realize when users become frustrated with a program, it is because they know
what they want to do, but cannot because the program has a ““secret language" that the user

does not understand.

26



The computer interface can be an unfamiliar and unnatural thing, but a well designed
interface will minimize the gap between a user's goals and the knowledge required to use the
interface. Edwin Hutchins, James Hollan and Donald Norman defines these as the Gulf of
Execution, the effort required determining how to get a program to do what the user wants,
and the Gulf of Evaluation, the effort required to interpret the feedback provided by the

program.

Selecting an inappropriate interaction style could increase the Gulf of Execution. Consider a
factory foreman with poor typing skills. Providing a command language interface would
force this user to do a lot of typing, which in this case would exceed the user's capability, and

would almost certainly result in a frustrated foreman.
Therefore:

Study the user and his environment. Work with the user to determine what interaction style is
best. Keep things simple and consistent. There are several primary interaction styles: Menu
Selection, Form Fill In, Command Language, and Direct Manipulation. Use menu selections
to structure the decision making path. Use form fill Ins for data entry tasks. Use command
languages when expressibility is an overriding factor. Use direct manipulation interfaces for

highly interactive tasks.

A menu selection interface guides the user through well defined tasks. Softkey's MPC
Wizard uses this type of interface to guide the user through a series of personal computer

diagnostic tests.

Tasks requiring a great deal of user entered information, such as Windows935 Dial-In

Network Setup window, are candidates for form fill in.

Programmers and scientists often require the flexibility and power of conversing with the

computer by using command languages such as C++, Java and Unix shells.

27




2.7 James O. Coplien and Douglas C. Schmidt

James O. Coplien and Douglas C. Schmidt’s works on patterns and pattern languages are

presented using a narrative style which is known as Coplien’s format.

Coplien's report in the PLoP’94 [Coplien94a] includes the details of his pattern format.
He feels that the essence of the Alexandrian format should be present regardless of the
style; i.e. there should always be a clear definition of the problem, the forces, and the

solution.

Coplien encourages the use of an abstract that helps a reader to determine whether the
pattern is relevant for the problem at hand or not. The solution should be layered, with the
most general interpretation at the highest level so that more details are uncovered as the

reader progresses through sections.

Coplien also focuses on good names. Good names are important as they reflect the
problem, the solution, the resulting context or intent. Therefore, extra care is required to
choose a right name. Providing alternative names or nicknames relevant to different

domains may be helpful for the users.

Coplien and Schmidt offer the following suggestions:
1. Patterns should be general, not abstract.
2. If considerable collaboration is involved, include a diagram of dynamic

behaviors; e.g. an interaction diagram.

Therefore, the Coplien format reflects the basic elements found in the Alexanderian

format. It delineates pattern sections with the following headings:

¢ The Pattern Name: The Coplien format commonly uses nouns for pattern names.

However, short verb phrases are also used.

28



The Problem: The problem is often stated as a question or design challenge.

The Context: A description of the context in which the problem might arise, and

to which the solution applies.

The Forces: The forces describe pattern design trade-offs; what pulls the problem

in different directions, toward different solutions?

The Solution: The solution explains how to solve the problem. A sketch may

accompany the solution.

A Rationale: Why does this pattern work? What is the history behind the pattern?
We extract this so it does not “clutter” the solution. As a section, it draws
attention to the importance of principles behind a pattern; it is a source of

learning, rather than action.

Resulting Context: This section describes which forces of a pattern are resolved
and which forces remain unresolved, and it points to more patterns that might be

the next ones to consider.

29



An Example of Coplien Format [Coplien+95]

Self-Selecting Team

Problem: There are no perfect criteria for screening team members.

Context: You are building a software development organization to meet competitive cost

and schedule benchmarks. You are staffing up to meet a schedule in a given market.

Forces:
e Empowerment depends on competency and the distribution of knowledge and power.
The worst team dynamics can be found in appointed teams. The best team dynamics

can be found in self-selecting teams.

¢ Broad interests (music and poetry) seem to align with successful team players.

Solution: Build self-selecting teams, doing limited screening on the basis sack record and

broad interests.

Resulting Context: An empowered, enthusiastic team willing to take extraordinary

measures to meet project goals.

30



2.8 The Significance of XML for Pattern Documentation and
the Motivation for UPML

Among the existing markup languages and tools for pattern documentation, this study

finds XML to be the best suitable one. The reasons are as follows:

1. XML provides a standardized way patterns are written, and hence facilitates the
share of knowledge as well as the reuse of patterns.

2. XML is more expressive and provides a higher level of granularity than that is
possible by pure natural language.

3. XML provides a way to more formally specify patterns.

4. XML allows a pattern service provider (a pattern server) to vary pattern
presentations to suit different situations; e.g. different client-side requirements.

5. XML makes it feasible to verify (validate against a schema) the pattern format.

6. XML enables cross-referencing of patterns using hyper linking mechanisms.

7. XML enables automated programs to extract summaries or descriptions of
patterns for the purpose of indexing and use in pattern catalogs.

8. XML provides structure, which facilitates contributors in submitting patterns via
the Web or otherwise. Making pattern catalogs available on the Web provides
various advantages: evolution (for maintenance, extension), global instant
access, inclusion of "dynamic" objects as part of solution, and so on.

9. XML makes it easier for users to navigate (via links) or search (via forms) the
online pattern collection.

10. XML enables pattern catalogs to be used as a knowledge base.

11. XML provides cross platform compatibility.

Inspired by the above advantages, the study has proposed the generalized format for
pattern documentation (please see chapter 3) and developed a markup language named
Usability Pattern Markup Language (UPML) using XML notation (please see chapter

4). Please note that a pattern is expressed in UPML can always be down-transformed

31



into a traditional text-based notation using eXtensible Stylesheet Language (XSL). XSL
has two parts: XSLT (XSL Transformations) and FO (Formatted Objects) [Benoit02] as

shown in the following figure:

HTML
Document

L 7
UPML

Document XML
Document
Y -

.| FO
| Document WML

Document
XSTL

Style Sheet
.

PDF
Document
Y -

Figure 2.1: Using XSL to Transform UPML documents

2.9 Summary

The comprehensive studies/analysis on some of the most popular formats for pattern
documentation provides us the basic platform to carry out our studies; i.e. finding the
strengths and weaknesses of the existing formats of pattern documentation with a goal of
sketching a generalized format by addressing most of the limitations, which is discussed
in chapter 3. The findings of the significance of XML for pattern documentation also

motivate us to develop the UPML 1.0 specification, which is elaborated in chapter 4.

32



Chapter 3

A Generalized Format of Pattern Documentation

This chapter mainly describes two of our major contributions; (i) A Classification
Scheme of Patterns (section 3.2) and (ii) A 3D-Reference Model of Pattern Properties
(section 3.3). It also shows the development process that leads to establish a generalized
format for pattern documentation. Firstly, this chapter explores the weakness of the
formats under the study (section 3.1). Secondly, it proposes a Classification Scheme for
patterns as well as a 3D-Reference Model of pattern properties with a goal to address
some of the weaknesses described in section 3.1. Finally, it outlines the generalized

format of pattern documentation into a table (Table 3.2).

3.1 Weaknesses of the Formats

There are several weaknesses found in the study of different formats of pattern
documentation. Even now, we do not have any rule in order to validate a pattern or when
a best practice will be treated as a pattern. In addition, there is no common vocabulary or
notation for patterns in capturing and disseminating the experts’ knowledge. This is a
major draw back for the usability experts and the HCI community to promote patterns.
However, in the recent years, a lot of research on this issue has taken place throughout

the world to reach a consensus.

Based on this study on some of the most popular formats for pattern documentation

(discussed in chapter 2), we found the following major weaknesses:

1. Lack of naming convention

2. Lack of a classification scheme
3. Lack of coupling and cohesion
4

. Inconsistency of elements

33



5. Lack of implementation strategies
6. Lack of factors, criteria to validate patterns

7. Lack of consistent list of related patterns
Lack of Naming Convention:

There are a numbers of patterns invented by different authors with different names.
However, all these patterns address the same problems in the same context. Therefore, it
is very hard to apply those patterns by the pattern users or even by the pattern writers.
Moreover, it wastes the valuable time and efforts of both patterns writers and users. As
the solution of a particular problem has already been addressed, the patterns authors need
not re-invent the wheel which is already invented. If someone contradicts with the
existing solution s/he might improve the solution by providing her/his valuable
recommendation. Thus, the problem can be easily solved if there is a common platform
for pattern writers, researchers, and users. Besides, names are frequently changed by the
writers (e.g. Jenifer Tidwell and Martijn van Welie) which lead to a serious problem to
maintain the pattern dictionary. Therefore, names should be handled in a way so that once

a pattern name is assigned and published; names can not be changed any more.
Lack of a Classification Scheme:

The study finds a classification scheme for design patterns provided by the Gang-of-Four
[Gamma+95] for their design patterns. They categorized their design patterns based on
two criteria. The first criterion, called purpose, reflects what the pattern does. Patterns
can have creational, structural, or behavioral purpose. The second criterion, called scope,
specifies whether the pattern applies primarily to class or to objects (for the definitions
please see section 3.2.4). The following table shows the Gang-of-Four’s classification

scheme:

34



Table 3.1: Catalog of Gang-of-Four’s Design Patterns

Purpose
Creational Structural Behavioral
Scope Class |Factory Method |Adapter (class) |Interpreter
Template Method
Object | Abstract Factory | Adapter (object) |Chain of Responsibility
Builder Bridge Command
Prototype Composite Iterator
Singleton Decorator Mediator
Facade Memento
Flyweight Observer
Proxy State
Strategy
Visitor

According to this classification scheme, distinction between structural and behavioral
patterns is too vague. For example, “Mediator” can be used as a structural or as a
behavioral pattern, depending on the specific design situation. Moreover “Composite”, a
structural pattern, is often used with “Iterator” and “Visitor” which are behavioral class
pattern, which makes the classification ambiguous. From the scope criterion, we see that
“Adapter” is treated as both class and object which can easily leads to confusions. There

is another classification scheme presented by Martijn van Welie [Welie03], which is

based on the nature of the applications. The following figure shows his classification:

35



W W w.we | l g.com wpatterns in interaction Design

ﬁzm Welb Deslgrpatterns . GUI Design gatterns Wobilell Design patterns Literature & links About me

Welcomel!

Wwelcome on my small web site. As you can see, it is mainly about Design Patterns. With these patterns I try
to capture every bit of good design that I encounter. I will update the site regularily and add new patterns.

«.s0if you have any suggestions, let me know!

Have fun...,

What's new?

+ 11-09-2003, Added the pattern Testimonials,

- 07-08-2003, Added the pattern Contact Page.

- 01-08-2003, Updated the pattern Prnter-frisndly Fage and moved it to ‘Basic Page Types'.
11-07-2003, I've added the possibility to comment on Web Design patterns. Let's see what happens. ..
11-07-2003, Added more Wweb Design patterns, making a total of 80!

11-07-2003, New site design! I got bored with the old one....

© 2003, Martijn van Wslie

Figure 3.1: Welie’s Classification of Patterns

In the above figure, we notice that he classifies the patterns into “Web Design patterns”,
“GUI Design patterns”, and “MobileUl Design patterns” categories. This kind of
classification is also ambiguous as we know same pattern may be used by different types
of applications. For example, “Search” pattern can be found in all of the above

applications.

Lack of Coupling and Cohesion:

Object coupling describes the interdependence (the number of message, the frequency of
messages, and the number of arguments) between two objects. There are two types of
coupling: “tight” and “loose”. Loose coupling is desirable for good software engineering
(better encapsulation, fewer objects needlessly affected when making changes)
[Coad+95]. On the other hand, cohesion defines the binding of the elements within one

method and within one object class. Therefore, high cohesion is desirable for good

36



software engineering. Most of the formats for pattern documentation are leaning with the
Alexandrian format in one way or other. That means most of the formats use the prosy
style using natural language to capture their best practices or experience. However, the
narrative texts are always tightly coupled and low cohesive. For example, if the
Alexandrian format needs to do add one more section, the entire Alexander’s works on
patterns (about 253 patterns) should be modified manually one by one. This is a very
tedious job and inefficient at this scientific age. Therefore, patterns should be

documented ensuring the loose coupling and high cohesive characteristics.
Inconsistency of Elements:

This study finds that different authors and communities use different pattern formats
including different elements for pattern documentation. They are broadly classified into

the following three different sets:

e Name e Name e Name
e Problem e Intent e Intent
e Context e Context e Also Knows As
e Solution e TForces e Motivation
e Solution e Applicability
e Examples e Structure
¢ Resulting Context e Participants
¢ Related Patterns e Collaborations
¢ Known Uses ¢ Consequences

¢ Implementation
e Sample Code
e Known Uses

o Related Patterns

37



Even though there are several formats, elements and attributes, there are some similarities
in the elements. However, the new users of patterns are getting confused in the first place
by having different formats for pattern documentation in the market place. Certainly, the
lack of a common set of elements to describe patterns creates complexity and ambiguity
among the pattern users or even pattern researchers. To capture and disseminate the
knowledge of patterns, patterns need to be clear and understandable, so that it stands on
its own, as the author will not be available to answer the users’ questions. The users must
get a clear understanding of the solution and the trade-offs it makes. The users must
understand when it is appropriate to apply the pattern and when it is not. These can be
done if pattern writers embrace the fact of having a unified approach for documenting

patterns.

Lack of Implementation Strategies:

In most of the formats, except the Gang-of-Four’s format, there are no clear
implementation strategies i.e. how the pattern can apply to solve the problem under a
particular context. For example, if object oriented software developers want to apply one
of Alexander’s patterns they may face a major problem to interpret this natural
description into the implementation process. Therefore, it would be better to have the
implementation structure and strategies along with examples, figures, and even a sample
code (pseudo code) so that the software developers can easily apply the pattern into their

respective domains.

Lack of Factors, Criteria to Validate Patterns:

This is a serious problem related to almost all the formats. In fact, a list of factors, criteria
with impacts (positive or negative) is essential to validate a pattern. In addition, this list
helps in answering the question: why the users will use it? Some formats have this factor
in an indirect way; e.g. within the consequence section. However, this thesis recommends
having an explicit list of usability issues in terms of factors and criteria along with the

possible impacts (either positive or negative) for a given context. Moreover, it will

38



facilitate the patterns authenticity. For example, if a pattern claims that it improves the
response time but overloads the memory, then users concerned with memory

consumption can avoid of using it rather than checking the authenticity after applying it.

Lack of Consistent List of Related Patterns:

A pattern is a generic solution to a problem in a given context. To solve any real world or
complex problem, a series of patterns may need to be applied. Therefore, it is essential to
have a consistent list of closely related or coherent patterns along with the patterns
descriptions. Although some formats do have this list, far behind they are in achieving the
goal as they are seriously narrow; i.e. organize their own collections only. For example,
“Experience”, an article published by Coram T. and Lee J. [Coram+98] shows how badly
patterns are related. It may take hours to find out which patterns are related to which one

or even to find out the root pattern among those incongruous pattern mappings.

Selection Meny

|
Conwrational Text

/’
Interaction Style (1)
AN

Enplorable Enterface (2)

Multiple Fettings(d)

Fingle Fetting(3)

Dilctu

Cooperating Wind ows \ Clickable Symbols
ommand Control Center(s) .“
Gard en of Wind ows(€) I symbol Evplainations

Zen Garden | Rich Garden I Dialog Bon
Content Sensitive Help I

Mod eless Feedback Rrea (8]

rganized D esktop

Figure 3.2: Mapping of Patterns

39



Therefore the best strategy is to have a proper naming convention along with a decisive

classification scheme of patterns and an explicit list of the related patterns.

3.2 A (Classification Scheme for Patterns

This section defines the proposed classification scheme for patterns. It also describes a
list of requirements for the scheme (section 3.2.1), demonstrates how it works with an
overview diagram (section 3.2.2), explains the terminology used in this scheme (section
3.2.3), and compares with other classifications, especially with the Gang-of-Four’s one

(section 3.2.4).

3.2.1 Requirements for the Classification Scheme

As the number of patterns is growing day by day, it is becoming more and more difficult
to organize them in an understandable and useable manner. If the users need to read,
analyze and understand every pattern in detail to find out the one they need, the pattern
collection as a whole is useless, even if its constituent patterns are useful. To handle the
entirety of all patterns conveniently within a pattern collection it is therefore helpful to
classify them into groups of related patterns. A classification scheme for patterns that
supports the development of software systems using patterns should have the following

properties:

¢ It should be simple and easy to learn.

e It should consist of only a few classification criteria that organize patterns
efficiently and effectively.

e Each classification criterion should reflect natural properties of patterns, for
example the kinds of problems the patterns address, rather than artificial criteria

such as whether patterns belong to a pattern language or not.

40



e It should provide a ‘roadmap’ that leads users to a set of potentially-applicable
patterns, rather than a rigid ‘drawer-like’ scheme that tries to support finding the
one ‘correct’ pattern.

e The scheme should be open to the integration of new patterns without the need for

refactoring the existing classification.

3.2.2 The Proposed Classification Scheme for Patterns

Following the above requirements, this thesis is proposing a classification schema that is
simple, flexible to hold up future patterns, and meaningful. This scheme is build upon

3 3

three classification criteria: “Granularity”, “Functionality”, and “Structural Principles”.
Each category represents a crisp set of criteria or design issues that will play a significant

and primary role in software development. The following figure gives the overview of the

scheme:
Granularity
A
Architectural |
Frameworks Structural principles
Design e Coupling and Cohesion
Patterns
Separation of Concerns
_ g Encapsulation
Idioms - )
Abstraction
I ' I I Functionality

| I | I "
Creation Commu- Access Organization
nication of Task

Figure 3.3: A Classification Scheme for Patterns

41



Every pattern within a pattern collection may be classified according to the above
categories. Firstly, patterns are categorized based on granularity (level of abstraction).
Then a list of functionalities and structural principles are associated with each pattern.
For example, most of the Gang-of-Four’s design patterns will fall into second level based
on the granularity. Moreover, the proposed scheme provides a list of functionalities and
structural principles, which the pattern will address. By doing so, the scheme gives multi-
ways of indexing and eliminates the ambiguity that comes from the Gang-of-Four’s
creational, behavioral, structural based classification and provides the flexibility to
categorize patterns (including the future ones) without a major complexity. Therefore, the
resulting classification scheme forms a guide that users can use in choosing patterns for

specific applications.

To use a classification scheme in a concrete design situation, we may take the following

steps:

1. Determine the required granularity for the pattern. This is usually easy to decide,
since it should be clear if the pattern serves as a basic structure for a whole
application, a scheme for structuring a subsystem or component, or a concrete

implementation of a specific design requirement.

2. Select the required functionality. This should be clear as well, since usually only
one category of functionality is considered for a given design situation. However,
it might be necessary to combine several functional aspects within a single
structure. In this case, either a pattern that serves all the desired functionalities is
selected or several patterns are selected that together provide the required

behavior.
3. Determine the desired structural principles. This is the most difficult step. It is

certainly a design decision, because often more than one structural solution is

possible for a specific functionality requirement. The proposed principles force

42



designers to think about what structural property is the most useful and important

for the situation at hand.

The classification scheme provides a guide for users, helping them to search for an

appropriate pattern for a given context.

3.2.3 Explanation of the Terminology

The three categories can be identified as follows:

Granularity

Developing a software system requires one to deal with various levels of abstraction,
beginning with the basic structure of an application and ending with issues regarding the
concrete realization of particular design structures. Thus granularity is an important

category for classifying patterns. The three levels of granularity are as below:

i. Architectural Frameworks: Every software architecture is built according to an
overall structuring principle. These principles are described by architectural frameworks

as follows:

An architectural framework expresses a fundamental paradigm for structuring
software systems. It provides a set of predefined subsystems, as well as rules and

guidelines for organizing the relationships between them [Coplien+95].

Architectural frameworks determine an application's basic structure and have an
influence on its subsystem architecture. Thus architectural frameworks allow one to
handle the high level structural complexity of software systems. The selection of a
particular architectural framework for a software system is a fundamental design

decision.

43



To construct a concrete software architecture based on an architectural framework, the
application's functionality must be mapped into its structure. In addition, it must be
enhanced and specified in detail. With the help of smaller patterns, its predefined
subsystems have to be refined, and the relationships between them have to be fully

specified.

Example: The Model-View-Controller framework, Java Strut Studio, J2EE, etc.

ii. Design Patterns: Software architecture usually consists of several smaller

architectural units. These are described by design patterns as follows.

A design pattern describes a basic scheme for structuring subsystems and
components of a software architecture, as well as the relationships between them.
It identifies, names, and abstracts a common design principle by describing its

different parts and their collaboration and responsibilities [Gamma+93].

Design patterns can be seen as micro architectures [Gamma+93]. They are software
architectures. As they used to structure software systems they are micro architectures. A

design pattern is less than a complete software architecture or architectural framework.

A design pattern may also be interlocked with other design patterns and composed out of

several smaller patterns.

Example: Master-Slave pattern, Producer-Consumer pattern etc.

iii. Idioms: Idioms deal with the concrete realization and implementation of particular

design issues.

An idiom describes how to implement particular components (parts) of a pattern,
the components' functionality, or their relationships to other components within a
given design. They often are specific for a particular programming language

[Coplien+95].

44



Idioms represent the lowest level of a pattern. They are closely related to a particular
programming language. Often the same idiom looks different in different languages, and
sometimes an idiom that is useful in one programming language does not make sense in
others. For example, a C++ idiom may describe how to implement reference counting to
correctly handle multiple referenced objects. In Smalltalk such an idiom is not needed

because of the garbage collection mechanism integrated in the language.

Since idioms address aspects of both the design and the implementation of a particular
structure, they close the gap between the design and implementation phase of software

development.

Example: The Counted Body Idiom [Coplien94b].

Functionality

The second criterion for classifying patterns is functionality. Each pattern serves as a
template for implementing a particular functionality. However, the various classes of
functionality are of a general nature rather than specific for a certain application domain.

The following categories of functionality can be distinguished:

i. Creation of Objects (Creation): Patterns may specify how to create particular

instances of complex recursive or aggregate object structures.

ii. Guiding Communication Between Objects (Communication): Patterns may
describe how to organize communication between a set of collaborating objects that may

also be independently developed or remote.
iii. Access to Objects (Access): Patterns may describe how to access the services and

state of shared or remote objects in a safe way, without violating their encapsulation of

state and behavior.

45



iv. Organizing the Computation of Complex Tasks: Patterns may specify how to
distribute responsibilities among cooperating objects in order to solve a more complex

function or task.

Structural Principles

To realize their functionality, patterns rely on certain architectural principles. These

principles form the third and final criterion.

i. Abstraction: A pattern provides an abstract or generalized view of a particular (often

complex) entity or task in a software system.

ii. Encapsulation: A pattern encapsulates details of a particular object, component, or
service to remove dependencies on it from its clients or to protect these details from

access.

iii. Separation of Concerns: A pattern factors out specific responsibilities into separate

objects or components to solve a particular task or provide a certain service.
iv. Coupling and Cohesion: A pattern removes or relaxes the structural and

communicational relationships and dependencies between otherwise strongly coupled

objects.

3.2.4 Comparison

The Gang-of-Four's schema has two dimensions: purpose and scope. The following

paragraphs are an excerpt from the Gang-of-Four book.
The first criterion, called purpose, reflects what a pattern does. Patterns can have

creational, structural, or behavioral purpose. Creational patterns concern the

process of object creation. Structural patterns deal with the composition of

46



classes or objects. Behavioral patterns characterize the ways in which classes or

objects interact and distribute responsibility.

The second criterion, called scope, specifies whether the pattern applies primarily
to classes or to objects. Class patterns deal with relationships between classes
and their subclasses. These relationships are established through inheritance, so
they are static-fixed at compile-time. Object patterns deal with object

relationships, which can be changed at run-time and are more dynamic.

According to this classification schema, a distinction between structural and behavioral
patterns is too vague. For example, “Composite”, a structural pattern, is often used with
“Iterator” or “Visitor” which are behavioral class pattern, which leads confusion among
users. Furthermore, the Gang-of-Four's scope criterion will not provide any help to
software developers for selecting a pattern. This is because it does not relate to any
specific design situation or activity, and also does not fit with non-object-oriented

patterns such as Layers or Pipes and Filters.

On the other hand, the proposed classification scheme categorizes patterns based on level
or granularity. At the lowest level are language specific patterns, known as idioms. For
example, C++ Orthodox Canonical Class Form idiom and the Handle/Body Class idiom
[Coplien94b]. Design patterns, such as those catalogued in Gang-of-Four, fall at the
middle level. Design patterns are not language specific and can be implemented in a
variety of languages. At the highest level are architectural patterns; e.g. the Model-View-
Controller (MVC). This classification is also concerned with the structure of the pattern,
which helps in identifying patterns in an existing software system. It also addresses one

or more functionalities which makes the classification scheme flexible enough to hold the

future patterns.
Other organizational schemes for patterns are presented in several articles

[Eisenhauer+94, Zimmer94, and Buschmann+94]. R. Eisenhauer builds on problem

categories, such as transactions or bridging the gap between object-oriented applications

47



and relational databases, in the same way that the proposed scheme does. Zimmer focuses
on relationships between patterns; e.g. “pattern A uses pattern B” or “pattern A is similar

to pattern B” in his solution [Zimmer94].

Unlike Buschmann’s [Buschmann+01] two dimensional classifications of patterns,
pattern categories and problem categories; the proposed scheme is three dimensional. The
first two dimensions--called ‘granularity’ and ‘functionality’ - correspond directly to his
pattern and problem categories. The third dimension, ‘structural principles’, depicts the

technical principles of underlying solutions that the patterns propose.

3.3 A 3D-Reference Model of Pattern Properties

This section defines the proposed 3D-Reference Model of Pattern Properties, its elements
and attributes. It also describes a list of requirements for the model (section 3.3.1),
demonstrates how it works with an overview diagram (section 3.3.2), and explains the

terminology used in the model (section 3.3.3).

3.3.1 Requirements for the 3D-Reference Model

According to the Gang-of-Four description, the fundamental properties of pattern are as

follows:

Each pattern

e Provides a predefined scheme for implementing a particular structural or
functional principle for software systems, by describing its different parts as well
as their collaboration and responsibilities

e Captures existing, well-proven design experience

e Identifies names, and specifies abstractions that are above the level of classes and

instances

48



e Provides a common vocabulary and understanding for design principles.

e Helps to handle the complexity of software

e Serves as a reusable building block for software development

e May be either domain-independent or domain-specific (such as exception
handling)

e Addresses both functional and nonfunctional aspects of software design

Besides the fundamental properties, the proposed 3D-Reference Model needs to have the

following characteristics:

Encapsulation: Each pattern needs to encapsulate a well-defined problem/solution
[Parnas79]. Patterns should be independent, specific, and precisely formulated in order to

make it clear, understandable, and reusable.

Generativity: Each pattern needs to contain a local, self-standing process prescription
describing how to construct realizations as patterns may be usable by all development

participants, not only the trained designers but also the novice users.

Equilibrium: Each pattern needs to identify a solution space containing an invariant that
minimizes conflict among forces and constraints. When a pattern is used in an
application, equilibrium provides a reason for each design step, traceable to situational
constraints. The rationale that the solution meets this equilibrium may be a formal,
theoretical derivation, an abstraction from empirical data, observations of the pattern in
naturally occurring or traditional artifacts, a convincing series of examples, analysis of
poor or failed solutions, or any mixture of these. Equilibrium is the structural side of
optimality notions familiar in computing, and can be just as hard to find a basis for
[Johnson92]. Alexander argues for establishment of objective equilibria based in the
"quality without a name" even (or especially) when surrounding aesthetic, personal, and
social factors. He also notes the elusiveness of this goal artifacts more often than not fail

to achieve this quality despite the best of efforts.

49



Abstraction: Patterns need to be represented as the abstractions of empirical experience
and everyday knowledge. They are general within the stated context, although not
necessarily universal. Pattern construction (like domain analysis [Prieto+89]) is an
iterative social process collecting, sharing and amplifying distributed experience and
knowledge. Sometimes, patterns may be constructed more mechanically by merging others

and/or transforming them to apply to a different domain.

Openness: Patterns need to be extended down to arbitrarily fine levels of detail. Patterns
are used in development by finding a collection of entries addressing the desired features of
the project at hand, where each of these may in turn require other sub-patterns. For
example, while only a small set of patterns would typically apply in the design of a certain
housing community, each house will itself be unique due to varying micro-patterns.
Because the details of pattern instantiations are encapsulated, they may vary within stated
constraints. These details often do impact and further constrain those of other related

patterns. But again, this variability remains within the borders of higher-level constraints.

Composibility: Patterns need to be hierarchically related. Coarse-grained patterns are
layered on top of, relate, and constrain fine-grained ones. These relations include, but are
not restricted to, various whole part relations [Civello93]. Most patterns are both upwardly
and downwardly composible, minimizing interaction with other patterns, making clear
when two related patterns must share a third, and admitting maximal variation in sub-
patterns. Pattern entries are arranged conceptually as a language that expresses this
~layering. Because the forms of patterns and their relations to others are only loosely
constrained and written entirely in natural language, the pattern language is merely
analogous to a formal production system language, but has the same properties, including

infinite nondeterministic generativity.

Therefore, patterns must have the characteristics that comply with the object-oriented
design paradigm or software engineering principles in order to capture and disseminate
the best practices and proven solutions effectively. In addition, the study always

highlights the fact of simplicity and learnability [Seffah+00, NingO1]. Hence, the study

50



revisited the Alexandrian format for the simplicity and the Gang-of-Four formats (the
master in object-oriented design patterns) for accommodating the necessary features of

the object oriented design paradigm.

3.3.2 The Proposed 3D-Reference Model of Pattern Properties

The main objective of this thesis is to reduce the communication gap among different
professionals groups (Pattern Writers, Usability Experts and Software Designer and
Developers) by providing a consistent approach for pattern documentation. This is
achieved by finding the commonalities among different formats after a through study. A
list of the concerning issues about patterns, raised by different professional groups, is also
needed to be considered for the better understandability and reusability. Thus, the study
uses the Alexandrian format as the fundamental basis to develop the proposed
generalized format (which is outlined in Table 3.2). The study also incorporated some of
the design issues from the Gang-of-Four format in order to accommodate the object-
oriented design paradigm as well as reduce the communication gap, particularly with the
software developers. The following figure shows an overview of various concerns related
to patterns that came from the three key professional groups (pattern writers, usability

experts, and software developers):

51



\ A A

Writers Solution —— Natural/Markup Language-
Based Approach
Problem ——
Implementation
Context —— ¢ Structure / Strategies (Example,

Architecture Diagram, code)

| [ g
[ | g

XML-Based Approach

Rationale 4

Consequence

Developers

Related Patterns
Usability Experts

Figure 3.4: A 3D-Reference Model of Pattern Properties

The above model clearly shows the major concerns of each professional group related to
patterns. By introducing this Reference model, the study basically provides a common
platform where each professional group can be aware of its own concerns as well as the
others which may result in utilizing the great benefits of patterns efficiently and
effectively. It also reduces the communication gap among those three key professional
groups as this platform gives them an opportunity for a good team work. Therefore, each
group may consider the others’ concerns while contributing towards patterns rather than
working isolated and focusing only for their own benefits. Moreover, this is a vital issue
to address, which is also one of the key objectives of this thesis. Otherwise, the main goal
of patterns, ease to understand and use, will never be achieved in this software

engineering domain.

52



3.3.3 The Proposed Generalized Format

Bearing the above facts shown in the 3D-Reference model (Figure 3.2), this thesis has

proposed a generalized format as below. This may be treated as a “Standard Template” in

future (we hope) based on Industry feedback and/or empirical studies.

Table 3.2: The Generalized Format of Pattern Documentation

Element Sub-Elements
Name
Alias Optional
Author(s)
Date
Category Patterns Classification
Identification
Keyword For searching
Related Pattern(s) Superordinate
Subordinate
Sibling/Neighboring
Competitor
User Category of users; i.e. novice,
expert etc.

Context of Use Task Tasks are structured
hierarchically. All  sub-tasks
should be originated from a root.

Platform Compatibility | Environmental and Technical
and Constraints aspects.

Problem Give a statement of the problem that this pattern resolves.

The problem may be stated as a question.

Forces Forces describe the influencing aspects of the problem and

solution. This can be represented as a list for clarity.

53




Give a statement of the solution to the problem including
Solution the rationale behind the solution. It could also provide the

references for further understanding.

Structure It’s a high level abstraction
done by visual modeling

Implementation notation.

Strategy Including examples, figures,

sample-code etc.

Consequences Trade-off and results of using the pattern. It can be

described by a list of usability factors, criteria, or metrics.

3.3.4 Explanation of the Terminology

Pattern Name and Alias

Names are used to succinctly convey the purpose of the patterns and to provide a
mnemonic aid to remember them. The name allows one to use a single word or short
phrase to refer to the knowledge a pattern encompasses. According to Alexander, names
can name the thing created by the pattern, the process of creating it, or some attributes of

the solution.

While it is difficult to fully encompass a single pattern in its name, the pattern names are
intended to provide sufficient insight into the function of the pattern. Well-chosen pattern
names form a vocabulary for discussing design problems and solutions. A pattern should
have a meaningful name that represents the problem it is addressing. The names should
be as granular as possible. A carefully chosen pattern name may be used as identifiers for
further processing, and can assist in indexing and querying a pattern database. Therefore,

inclusion of white space and shell meta-characters in the name should be avoided.

Context of Use
The context is the set of conditions under which the problem recurs, and for which the

solution is desirable. Apart from the problem description, the context also provides

54



criteria for determining when the pattern is applicable. This section describes the context
in which the problem occurs including the characteristics of the user, tasks, as well as of
the technical, physical and organizational environment. Each of these is identified by a
set of attributes. Not all of these attributes will be relevant in any particular system,

and/or additional attributes may need to be used.

Some aspects of Context of Use can be summarized as follows:
User = Novice, Intermediate, Expert, Occasional
Task = Duration, Frequency, Flexibility

Platform Compatibility and Constraints = Environmental and Technical aspects

Problem

While using a user interface, the users can face many problems. These problems are
typically task related. The users need to know about the rational inputs that they have to
give to have the rational outputs from the application(s). This section describes the user
problem which the pattern attempts to solve within the given context and constraints of

the problem.

Forces

Forces reveal the intricacies of a problem and define the kinds of trade-off that must be
considered in the presence of the tension or dissonance they create. A good pattern
description should fully encapsulate all the forces that have an impact upon it. A
description of the relevant forces and constraints includes how they interact/conflict with
one another and with goals we wish to achieve (perhaps with some indication of their
priorities). A concrete scenario which serves as the motivation for the pattern is

frequently employed or used.

Examples
This section gives instance(s) of situations where the pattern is used. Examples help
usability engineers to understand the scope and domain of applicability of the pattern.

This also enforces the fact that the pattern describes a proven solution. The section may

55



also include “counter-examples” (example(s) of interface(s) where the pattern should
have been used but was not) and "non-examples" (example(s) of interface(s) where the

pattern should not have been used but was).

The example(s) can be provided in several ways: prose, diagrams, pictures (hand

sketched or photographed), and so on, which illustrate the use of the pattern.

Rationale

Given a problem, and a large collection of patterns, one faces the issue of making a viable
choice. This section describes, in a solution-independent manner, the reasoning behind
and suitability of the pattern as a justified choice towards solving the usability problem.
The rationale assists a usability engineer in making an appropriate choice by describing
how and why the pattern works, with an insight into the internal structure and key

mechanisms of the system.

Solution

This section describes the actual solution provided by the pattern to solve the problem. It
describes the solution approach briefly and the solution elements (such as, prose,
diagrams, and pictures) in detail. The solution elements identify the pattern's structure,

presentation, logic, and behavior.

The solutions that the patterns suggest are based upon different design principles. A
principle is a theoretical framework that is expressed in prose and a result of an
amalgamation of an expert's ideology and practical experience with users. This section
describes the underlying principle and is intended to provide a guideline and direction for

future pattern researchers to work. The principle may also be used to structure a

collection of patterns.
Implementation

Given the large variety of applications, usability patterns upon implementation should

exist in various formats. The implementation section may include:

56



e Structure: Describes the high level abstraction of a pattern using a graphical
notation. For example, use of UML Class Diagrams to show the basic structure of
the solution. Similarly, UML Sequence Diagrams present the dynamic
mechanisms (data flow) of the solution. This is supplemented by a detailed

explanation of the participants and collaborations.

e Strategies: Describe different ways a pattern can be implemented. Strategies
promote better communication, by providing names for lower-level aspects of a
particular solution. Engineers discover and invent new ways to implement the
pattern, producing new strategies for well-known patterns. To accommodate that,

strategies provide an extensibility point for each pattern.

Consequences

This section describes usability-related impact and trade-offs. In general, this section
focuses on the results of using a particular pattern, and notes the pros (such as, what
usability aspects have been improved) and cons (such as, what usability aspects have
worsened) that may result from the application of the pattern. It is likely that a pattern

may improve one aspect at the cost of deteriorating others.

This section describes relevant factors and criteria that are used by usability engineers to
justify the usability of the design solution. Factors and criteria together provide a
quantitative picture of the complexities of the problem(s) and help to define the kinds of
trade-offs that must be considered. A pattern resolves one or more of the factors under

given criteria.
Some usability factors and criteria can be summarized as follows:

e Factors = {Efficiency, Effectiveness, Satisfaction, Productivity, Safety,

Accessibility, Universality}

57



e Criteria = {Understandability, Operability, Aesthetics, Compliance, Consistency,
Flexibility, Minimal Action, Minimal Memory load, Guidance, Accuracy,

Completeness, Required Resources, Helpfulness, Controllability}

The following are the measurable (quantitative and qualitative) aspects of usability that
have been identified over the time in the usability pattern literature:
¢ Learnability: How easy the system is to use and learn. How steep is the learning
curve.
e Task Completion: What degree the task could be completed to.
¢ Error Analysis: The number of errors made by a user while using the system. The
degree (such as, minor, major, fatal) and reasonability (such as, unacceptable,
ignorable) of errors.
e Performance: How quickly a user can accomplish the task (or a sub-task) using
the system?

e Satisfaction: What is the level of satisfaction on part of the user?

Related Patterns
This section provides other patterns (either super-ordinate, subordinate, competitor, or
neighboring patterns) that are related, with pointers to where they can be found. For each

related pattern, there is a brief description of its relationship to the pattern being

described.

58



Chapter 4
UPML Specification

This chapter defines the syntax and semantics of the UPML 1.0 specification. Section 4.1
lists the UPML modules and their elements. Section 4.2 lists the basic properties of
elements and attributes, including conditions on their data types and enumeration.
Sections 4.3 through 4.7 provide definitions of individual elements along with the details
of corresponding sub-elements, attributes, and examples. Here, several definitions have
been repeated from chapter 3 for smooth reading. Section 4.8 provides definitions of each
of the attributes. Section 4.9 provides objects of UPML identification, namely UPML
media type and UPML namespace. Finally, section 4.10 discusses the issue of

conformance with respect to UPML.

The current status, as being the first draft, of all UPML related documents, grammars,

and schema is of version 1.0.

4.1 UPML Module and Element Definitions

UPML is composed of five sets of semantically-related elements and attributes, which
are: Association Module, Meta-information Module, Problem Module, Solution Module,

and Structure Module.

UPML has thirty one elements; each one is responsible for a specific functionality of the
language. The following table lists the UPML modules along with the alphabetical list of

corresponding elements.

Table 4.1: UPML Modules

Module Elements

Association

Module category, link, reference, related-pattern

59



Meta-

Information alias, author, date, identification, keyword, metadata, name, term, title
Module
Problem context, forces, platform-compatibility, problem, task, user
Module ’ ’ ’
Solution consequences, example, implementation, rationale, sample-code,
Module solution, strategy, structure
Structure
body, head, pattern, upml
Module Yy P P

The following figure (Figure 4.1) will give a structural overview of UPML that displays

its key elements.

60



o

uedml

Idd \Lﬂn :elglloé

g

related-pattern

ML M

implementation

f sample-code [

Figure 4.1: Structure of UPML

61



4.2 Properties of UPML, Elements and Attributes

The two properties of interest are data type and enumeration.

4.2.1 UPML Data Types

UPML data types determine the type of data allowed in elements content and attribute

values.

A “Singleton” data type indicates that the element content consists of only character data
and does not have any sub-elements. An “Aggregate” data type indicates that the element
content consists of only sub-elements. A “Mixed” data type indicates that the element
content is a combination of character data and sub-elements. The class of characters,
allowed as character data, is determined by the XML 1.0 specification [W3C00a,
W3C00b]. For the types of character data in element content and attribute values, a

library of data types such as the one provided by XML Schema [W3C01] can be used.

Empty elements do not contain any content. All UPML elements, unless stated

otherwise, are non-empty.

4.2.2 Enumeration

Enumeration determines the number of times an element can occurs; i.e. its multiplicity.

The occurrence of elements is classified as Required, Conditional, or Optional. An
element that is labeled as "Required" must be present in every UPML document; an
element that is labeled as "Conditional" must be present in a UPML document under the
given conditions; an element that is labeled as "Optional” may not be present in every
UPML document. The concept of cardinality, which indicates the number of times an
element can occur, if at all, is related to occurrence. If an element is a child of another
element, the cardinality indicates the number of times the child element can occur in its
parent. A cardinality of "N" indicates that the element occurs N times, where N=1, 2, ...

A cardinality of "N..M" indicates that the element can occur N to M times, where N=0, 1,

62



2, ..., M=1, 2, ..., and M>=N. A cardinality of "N...Unboundeded" indicates that the
element can occur N or more times, where N=0, 1, 2, ... An element whose occurrence
is Required will have a cardinality of (at least) 1; an element whose occurrence is
either Optional or Conditional will have a cardinality of (at least) 0. Note that the root

element is always Required with cardinality = 1.

The occurrence of attributes is classified as Required, Conditional, or Optional, and
is indicated in the parenthesis next to its name. An attribute that is labeled as
"Required" must always be present in its corresponding element; an attribute that is
labeled as "Conditional” must be present in its corresponding element under the given
conditions; an attribute that is labeled as "Optional" may not always be present. A
"None" indicates that the element does not have any attribute. An attribute can occur

only once in an element.

The following sections specify the individual definitions of elements and attributes.

4.3 Association Module

The Association Module signifies the association of a pattern to its class (category), to
other pattern(s), or to a reference. The association is made possible by the linking

mechanism.

Table 4.2: The category Element

Element Name category
Module Association Module
Description The patterns are classified into several categories as discussed in

section 3.2 of chapter 3. The category element names the
classification scheme to which the pattern belongs to. It also helps

to organize patterns efficiently.

Data Type Singleton

63



Attribute(s)

id (Optional)

Parent Element(s)

identification, metadata

Child Element(s)

None

Example

<category>Design Pattern</category>

Table 4.3: The 1ink Element

Element Name

link

Module Association Module

Description The purpose of the 1ink element is to provide linking semantics
to the pattern element it is associated with.
Note: When transforming a UPML document to other formats,
the 1ink element can be mapped to sophisticated hyper linking
schemes such as XLink [W3C02}, which provides support for
both uni-directional and bi-directional linking.

Data Type Not Application (Empty Element)

Attribute(s) id (Optional), uri (Required)

Parent Element(s) | reference

Child Element(s) None

Example <link uri="http://www.welie.com/patterns”/>

Table 4.4: The reference Element

Element Name

reference

Module

Association Module

Description

The reference element includes information on references
related to the pattern problem and/or solution that may be helpful
towards further understanding. It suggests that a referenced item
should be canonical and follows standard guidelines of a
bibliography. If a referenced item is accessible via Web, the URL
should be provided.

64




Data Type

Aggregate

Attribute(s)

id (Required)

Parent Element(s)

problem, solution

Child Element(s) title (Required, Cardinality = 1), author (Required,
Cardinality = 1..Unbounded), date (Required, Cardinality =
1..Unbounded), 1ink (Required, Cardinality = 1)

Example <reference id = “Appleton00”>

<title>Patterns and Software: Essential
Concepts and Terminology</title>
<author>Appleton, B.</author>
<date>2000</date>
<link uri="http://www.eteract.com/~bradapp
/docs/patterns-intro.html” />

</reference>

Table 4.5: The related-pattern Element

Element Name

related-pattern

Module

Association Module

Description

The related-pattern element provides information on other
pattern(s) that is related to the pattern being described. It may
include the type of relationship to the described pattern, class to

which it belongs to, and pointer to where it can be found.

The relationship can be categorized as superordinate,
subordinate,  sibling/neighboring, or competitor. A
superordinate pattern is the super set of the described pattern. It
can therefore contain the described pattern and possibly other
patterns. A subordinate pattern is a subset of (i.e. it can be
embedded into) the described pattern. It is therefore a part of the

described pattern. A sibling/neighboring pattern belongs to the

65




same pattern category as the described pattern. It provides either
replaceable or enhanced function to the described pattern, but not
necessarily in the same context. Finally, a competitor pattern can
provide the identical or similar function as the described pattern.

Thus, it can replace the described pattern in the same context.

Data Type Mixed

Attribute(s) id (Optional), relation (Required)

Parent Element(s) | identification, metadata

Child Element(s) name (Required, Cardinality = 1), category (Required,
Cardinality = 1), 1ink (Optional, Cardinality = 0..1)

Example <related-pattern relation = “sibling”>

<name>Bridge</name>
<category>Design Pattern</category>

</related-pattern>

4.4 Meta-Information Module

Literate Programming [Knuth92] advocates program literacy and emphasizes that

program should be written in such a manner, so that compilers as well as human beings

can read that program. UPML documents should follow a similar approach, which is the

motivation for adopting the Meta-Information Module.

Table 4.6: The alias Element

Element Name

alias

Module Meta-Information Module

Description The alias element describes the other well known names of the
pattern.

Data Type Singleton

Attribute(s) id (Optional)

66




Parent Element(s)

identification, metadata

Child Element(s)

None

Example

<alias>Wrapper</alias>

Table 4.7: The author Element

Element Name

author

Module Meta-Information Module

Description The author element contains the name of the pattern writer(s)
and contributor(s). The names can be expressed in first name-last
name or last name-first name formats.

Data Type Singleton

Attribute(s) id (Optional)

Parent Element(s) | identification, metadata, reference

Child Element(s) None

Example <author> Erich Gamma, Richard Helm, Ralph

Johnson, and John Vlissides</author>

Table 4.8: The date Element

Element Name

date

Module Meta-Information Module

Description The date element provides a timestamp (namely, pattern
creation, publication, and revision). It may be used to tabulate the
date(s) of evolution of the pattern. It can also be used for the date
of reference. The date can be expressed in a Gregorian format of
recurring day, month, and year.

Data Type ISO 8601 Format

Attribute(s) event (Optional)

Parent Element(s)

identification, metadata

Child Element(s)

None

Example

<!-- The 1% of March, 2003 -->

67




<date event = “creation”>2003-03-01</date>

Table 4.9: The identification Element

Element Name

identification

Module Meta-Information Module

Description The identification element describes how a pattern can be
uniquely disguised within a patterns’ repository. Certainly it is
important for increasing vocabulary of the pattern dictionary. It
also helps to communicate with others effectively.

Data Type Aggregate

Attribute(s) id (Optional)

Parent Element(s) | head

Child Element(s) name (Required, Cardinality = 1), alias (Optional, Cardinality
= 0.1), author (Required, Cardinality = 1..Unbounded),
category (Required, Cardinality = 1) related-pattern
(Optional, Cardinality = 0..1)

Example <identification>

<name>Adapter </name>

<alias>Wrapper</alias>

<author> Erich Gamma, Richard Helm,

Ralph Johnson, and John Vlissides

</author>

<category>Design Pattern</category>

<related-pattern relation="sibling”>
<name>Bridge</name>
<category>Design Pattern</category>

</related-pattern>

< identification>

68




Table 4.10: The keyword Element

Element Name

keyword

Module Meta-Information Module

Description The keyword element includes a sequence of term(s) relevant to
the pattern.

Data Type Mixed

Attribute(s) None

Parent Element(s)

identification, metadata

Child Element(s)

term (Required, Cardinality = 1..Unbounded)

Example

<keyword>
<term>Design</term>, <term>Pattern</term>

</keyword>

Table 4.11: The metadata Element

Element Name

metadata

Module

Meta-Information Module

Description

The Web was originally built for human consumption. Although
everything on the Web is machine-readable, this data is not
always "machine understandable." It is very difficult to automate

tasks, such as indexing, filtering, and searching on the Web.

The solution proposed here is to use metadata ("data about data")
information to describe UPML documents published on the Web.
Any information that is "about” the pattern is known as pattern

metadata.

The metadata element is a container for pattern metadata,
including the pattern name, the classification scheme to which the
pattern belongs to, pattern author-related information, pattern

history, a brief synopsis, and keywords related to the pattern.

Data Type

Aggregate

69




Attribute(s)

None

Parent Element(s)

head

Child Element(s) name (Required, Cardinality = 1), category (Required,
Cardinality = 1), author (Required, Cardinality =
1..Unbounded), date (Optional, Cardinality = 0..Unbounded),
keyword (Optional, Cardinality = 0..1)

Example <head>

<metadata>
<!-- Include Elements for Pattern, such
as name, date, category, etc. -->
<name> .. </name>
</metadata>
</head>

Table 4.12: The name Element

Element Name

name

Module

Meta-Information Module

Description

The name element encapsulates the name of the pattern. A
pattern should have a meaningful name that represents the
problem it is addressing. A good name is vital, because it will
become part of the design vocabulary. A name is usually a
string of alphabetic characters. It can be a single word or a

short phrase to refer to the knowledge a pattern encompasses.

Patterns often make connections to other available patterns, and
may need to be referenced from contexts outside their scope of
existence (the catalog). The pattern names alone can not
guarantee globally unique identification. The hierarchical nature
of our pattern classification can be useful in devising a universal

naming scheme for cross-referencing. We can adopt the Java

70




package specifying convention to serve as a resource identifier.

Data Type Singleton

Attribute(s) id (Optional)

Parent Element(s) | identification, metadata
Child Element(s) None

Example <name>Adapter</name>

Table 4.13: The term Element

Element Name

term

Module Meta-Information Module

Description The subjects of pattern, UPML, XML, Software Engineering, and
the application domain in which the pattern itself exists, all have
their own “vocabulary”, for example, the term can be used in the
metadata keywords, extracted to form a glossary, and so on. The
term element encapsulates the terminology related to the pattern.

Data Type Singleton

Attribute(s) term-type (Optional)

Parent Element(s) | keyword, implementation

Child Element(s) None

Example <term>Design Pattern</term>

Table 4.14: The title Element

Element Name

title

Module Meta-Information Module

Description The title element provides the title of the document. This title
can be used either as the title of the UPML document or the title
of a reference for further understanding.

Data Type Singleton

Attribute(s) None

Parent Element(s) | upml, reference

71




Child Element(s) | None
Example <title>Patterns and Software: Essential
Concepts and Terminology</title>
4.5 Problem Module

The Problem Module provides the problem that the pattern attempts to solve within a

given context and constraints. It also specifies the forces to justify the technical decisions

being made towards design solution of the problem.

Table 4.15: The context Element

Element Name context

Module Problem Module

Description The context element outlines the conditions under which the
problem recurs, and for which the solution is desirable. These
conditions may be characteristics of the user, task, as well as the
technical and physical organizational environment. Apart from
the problem description, the context also provides criteria for
determining when the pattern is applicable. Context also helps to
answer when (forces) the pattern will be used. Moreover, context
serves to help prioritize strong and weak forces.

Data Type Aggregate

Attribute(s) id (Optional)

Parent Element(s) | body

Child Element(s) user (Required, Cardinality = 1), task (Required, Cardinality =
1..Unbounded), platform-compatibility  (Optional,
Cardinality = 0..Unbounded), forces (Optional, Cardinality =
0..Unbounded)

Example <context>

72




<user>Visually-disabled Users</user>
<task>Simple Computing</task>
<platform-compatibility>PDA

</platform-compatibility >

<!-- Forces -->
</context>
Table 4.16: The forces Element

Element Name forces

Module Problem Module

Description The forces element describes relevant constraint(s) of the
problem and how the elements interact/conflict with one another.
They are used by the engineers to justify the technical decisions
for their design. Forces provide a clear picture of the complexities
of the problem(s) and help defining the kinds of trade-offs that
must be considered.

Data Type Mixed

Attribute(s) id (Optional)

Parent Element(s) | body

Child Element(s)

term (Optional, Cardinality = 0..Unboundeded)

Example

<forceg>Limited
<term>Memory</term>
<term>Screen Size</term>

</forces>

Table 4.17: The platform-compatibility Element

Element Name

platform-compatibility

Module

Problem Module

Description

The platform-compatibility  element describes

constrains of the technical and environmental aspects where users

73




want to accomplish the task.

Data Type Singleton

Attribute(s) id (Optional)

Parent Element(s) | context

Child Element(s) None

Example <platform-compatibility>PDA

</platform-compatibility>

Table 4.18: The problem Element

Element Name problem

Module Problem Module

Description The problem element describes the problem that the pattern
attempts to solve within a given context and constraints of the
problem.

Data Type Mixed

Occurrence Required

Attribute(s) id (Optional)

Parent Element(s)

body

Child Element(s) reference (Optional, Cardinality = 0..Unboundeded), term
(Optional, Cardinality = 0..Unboundeded)
Example <problem>

To create an <term>eBook</term> that is
<term> device independent.</term>

</problem>

Table 4.19: The task Element

Element Name task
Module Problem Module
Description The task element describes a specific task that users want to

accomplish under a certain context.

74




Data Type

Singleton

Attribute(s) id (Optional)

Parent Element(s) | context

Child Element(s) None

Example <task>To do a simple computation</task>

Table 4.20: The user Element

Element Name user

Module Problem Module

Description The user element articulates the behavioral aspects of the users
from different points of views. For example, skill, education, age,
disability issues etc.

Data Type Singleton

Attribute(s) id (Optional)

Parent Element(s) | context

Child Element(s) None

Example <user>Visually disabled User</user>

4.6 Solution Module

The Solution Module provides the design solution including its structure and strategy for

the implementation of usability problems specified within a given context.

75




Table 4.21: The consequence Element

Element Name

conseguence

Module Name

Solution Module

Description

The consequence element describes impact and trade-offs
from the application of the pattern. It is likely that a pattern may
improve one aspect at the cost of deteriorating others. In general,
this section focuses on the results of using a particular pattern,
and notes the pros (e.g. what aspects have been improved) and
cons (e.g. what aspects have worsened) that may result from the

application of the pattern.

Data Type

Mixed

Attribute(s)

impact (Required)

Parent Element(s)

body

Child Element(s)

term (Optional, Cardinality = 0..Unboundeded)

Example

<consequence impact ="positive">
Adapter will increase Usability.

</consequence>

<consequence impact ="negative">
Composite will decrease Learnability.

</consequence>

Table 4.22: The example Element

Element Name

example

Module Name

Solution Module

Description

The example element gives instance(s) of '"real-world"
situations where the specified pattern has been used by the
author and/or by other users. The section may also include
“counter examples” (examples of cases where the pattern should
have been used but was not) and "non examples" (examples of

cases where the pattern should not have been used but was).

76




The examples included in this section help engineers to
understand the scope and domain of applicability of the pattern.
They also enforce the fact that the pattern describes a proven
solution. This is crucial in judging the viability of and

quantifying the actual use of the pattern.

The example(s) can be provided in several ways: prose, figure,

markup etc. that illustrate the use of the pattern.

Data Type Singleton
Attribute(s) id (Optional)
Parent Element(s) | strategy
Child Element(s) | None
Example <examples>

The <term>eBook</term>g are used by
established book distribution enterprises
(such as, Amazon.com, and Barnes and
Noble) and by noted publishers (such as,
Addison-Wegley) .

</examples>

Table 4.23: The implementation Element

Element Name

implementation

Module Name Solution Module

Description The implementation element includes the actual
implementation of the solution suggested by the pattern.

Data Type Aggregate

Occurrence Required

Attribute(s) id (Optional)

Parent Element(s) | body

77




Child Element(s)

structure (Required, Cardinality = 1), strategy (Required,

Cardinality = 1), example (Optional, Cardinality =

0..Unbounded), sample-code (Optional, Cardinality
0..Unbounded)

Example

<implementation>
<!-- Includes structure and strategy -->

</implementation>

Table 4.24: The rationale Element

Element Name rationale

Module Name Solution Module

Description Given a problem and a large collection of patterns, one might face
a serious problem of choosing the right pattern. The rationale
element describes the reasoning behind including the suitability of
the pattern as a justifiable choice for solving the problem. The
rationale assists a usability expert in making appropriate choice
by describing how and why the pattern works, with an insight into
the internal structure and key mechanisms of the system.

Data Type Mixed

Attribute(s) None

Parent Element(s)

body, solution

Child Element(s) term (Optional, Cardinality = 0...Unbounded)
Example <solution>
<rationale>

The rationale for presenting a
solution based on <term> XML
</term> 1is that it has several
advantages. By the application of
the single-source approach, it

makes possible for author to

78




document once and serve them
everywhere.
</rationale>

</solution>

Table 4.25: The sample-code Element

Element Name sample-code
Module Name Solution Module
Description The sample-code element illustrates how we can implement

the pattern in any object-oriented programming language by

providing some pseudo-codes.

Data Type Singleton

Attribute(s) None

Parent Element(s) | strategy

Child Element(s) None

Example <sample-code>
class eBook {
//constructor
eBook () ;
//destructor
~eBook () ;
/ /methods
Chapter* GetChapter () ;
void SetChapter (Chapter *ptrChap) ;

//attributes
integer iNumberOfChapters;

Chapter* chapter;

};

</sample-code>

79



Table 4.26: The solution Element

Element Name solution

Module Name Solution Module

Description The solution element includes a description of the actual
solution provided by the pattern to solve the problem. It describes
the solution approach briefly and the solution aspects in details.
The solution aspects identify the pattern’s structure, presentation,
logic, and behavior.

Data Type Mixed

Occurrence Required

Attribute(s) None

Parent Element(s) | body

Child Element(s) | reference (Optional, Cardinality = 0..Unbounded)
Example <solution>
<!-- brief description of solution -->
</solution>

Table 4.27: The strategy Element

Element Name

strategy

Module Name Solution Module

Description Software developers/engineers discover and invent new ways to
implement the pattern, producing new strategies for well-known
patterns. To accommodate the discovered or invented ways,
strategies provide an extensibility point for each pattern. The
strategy element includes a description of different ways a
pattern can be implemented.

Data Type Mixed

Attribute(s) Object-type

Parent Element(s)

implementation

Child Element(s)

example(Optional, Cardinality = 0..Unbounded), sample-

80




code (Optional, Cardinality = 0..Unbounded), figure
(Optional, Cardinality = 0..Unbounded), term (Optional,
Cardinality = 0..Unbounded)

Example

<strategy>
The tree structure of an <term>eBook
</term> can be implemented in several
ways. The most reader-friendly way is
to follow the format of a regular book.
There is a cover page, table of
contents, and a set of chapters. The
items in the table of contents link to
preface, individual chapters, and

sections.

</strategy>

Table 4.28: The structure Element

Element Name

structure

Module Name Solution Module

Description The structure element includes a description of a pattern at a
high level abstraction. This can be done by using prose or by
using a visual modeling notation. For example, use of the UML
diagrams can be drawn to show the basic structure and data flow
diagram of a solution.

Data Type Mixed

Attribute(s) None

Parent Element(s) | implementation

Child Element(s) term (Optional, Cardinality = 0..Unbounded)

Example <structure>

The solution structure of eBook is a

81




tree where all the nodes are accessible
from the root.

</structure>

4.7 Structure Module

The Structure Module provides the high level abstraction of Pattern Documentation using

XML-based notations for Web publishing.

Table 4.29: The body Element

Element Name

body

Module Name Structure Module

Description The body element is the container that holds the actual content of
a pattern.

Data Type Aggregate

Occurrence Required

Attribute(s) None

Parent Element(s) | pattern

Child Element(s) context (Required, Cardinality = 1), problem (Required,
Cardinality = 1), forces (Required, Cardinality =
1..Unbounded), solution (Required, Cardinality = 1),
rationale (Required, Cardinality = 1), implementation
(Required, Cardinality = 1), consequence (Required,
Cardinality = 1..Unbounded)

Example <body>

<!-- Other Elements Here -->

</body>

82




Table 4.30: The head Element

Element Name

head

Module Name Structure Module

Description The head element is a container of information, which is not
directly related to the patterns content. However, it provides the
identification information of the pattern.

Data Type Aggregate

Attribute(s) None

Parent Element(s) | Pattern

Child Element(s) metadata (Required, Cardinality = 1)
Example <head>
<metadata>
<!-- Other Elements Here -->
</metadata>
</head>

Table 4.31: The pattern Element

Element Name

pattern

Module Name Structure Module

Description The pattern element is a container for pattern information
organized into head and body.

Data Type Mixed

Attribute(s) id (Required), version (Required)

Parent Element(s)

upml

Child Element(s) | head (Required, Cardinality = 1), body (Required, Cardinality =
1)
Example <pattern>
<head>
<!-- Other Elements Here -->
</head>

83




<body>
<!-- Other Elements Here -->
</body>
</pattern>
Table 4.32: The upml Element

Element Name upml
Module Name Structure Module
Description The upml element is the root of a UPML document. It can

contain one or more pattern elements.

Data Type Aggregate

Attribute(s) id (Optional), version (Required), xml:lang (Required),

xml : space (Optional),

Parent Element(s) | None

Child Element(s) pattern (Required, Cardinality = 1..Unbounded)

Example <upml version = “1.0” xml:lang = “en”>
<pattern>
<!-- Other Elements Here -->
</pattern>
</upml>

4.8 UPML Attribute Definitions

UPML defines eight attributes: event, 1id, impact, object-type,
relation, term-type, uri and version. They are described in the following
tables. Besides, UPML borrows two attributes from the XML 1.0 [W3C00a], which are:
xml:lang and xml:space. xml:lang is used to indicate the natural language

being used in the document. xml:space gives directions to the processor for

84



controlling white spaces. UPML also uses an attribute from Namespace in XML

specification [W3C99], xm1lns, to uniquely identify its elements and attributes.

A “|” indicates an Exclusive-OR.

Table 4.33: The event Attribute

Attribute Name event

Description The event attribute provides the context of time stamping. For
example, the context can be related to the evolution, creation,
publication, modification, etc. of the patterns.

Data Type creation | publication | revision

Related date

Element(s)

Table 4.34: The 14 Attribute

Attribute Name id

Description The id attribute uniquely identifies an element within a
document. Its value is an XML identifier.

Data Type XML ID. For acceptable values, see the XML 1.0 Specification
[W3C00a]

Related implementation, pattern, reference, upml

Element(s)

Table 4.35: The impact Attribute

Attribute Name impact

Description The impact attribute provides the type of consequence that a
pattern may have as a result which is applied at a given situation.

Data Type positive | negative

Related consequence

Element(s)

85




Table 4.36: The object-type Attribute

Attribute Name

object-type

Description

The object-type attribute states the types of object included
in the UPML document. The possibilities are: figure, markup, or
sample-code. A figure can be used to describe the structure of the
pattern solution and the pattern implementation. Markup provides
an implementation of the pattern solution in the form of
full/partial document based on a markup language (preferably
XML). A sample-code (pseudo code of a program, or a script, or
a style-sheet) provides an implementation of the pattern solution

based on a formal (non-markup) language.

Data Type

figure | markup | sample-code

Related
Element(s)

strategy

Table 4.37: The relation Attribute

Attribute Name relation

Description The relation attribute symbolizes the type of relationship
between the related pattern and the pattern under study.
The relationship can be categorized as superordinate, subordinate,
sibling/neighboring, or competitor.

Data Type superordinate | subordinate | sibling | competitor

Related related-pattern

Element(s)

86




Table 4.38: The term-type Attribute

Attribute Name term-type

Description The term-type attribute symbolizes the nature of the term that
may exist in various forms.

Data Type abbreviation | concept | principle | technology | tool

Related term

Element(s)

Table 4.39: The uri Attribute

Attribute Name uri

Description The uri attribute provides the URI of the content it is associated
with.

Data Type anyURLI. For acceptable values, see IETF RFC 2396 [Berners+98]

Related link

Element(s)

Table 4.40: The version Attribute

Attribute Name version

Description The version attribute provides a numerical value of the release
date of either the UPML document or the pattern.

Data Type decimal

Related pattern, upml

Element(s)

4.9 UPML Identification

UPML documents need to be identified by user agents and processors. This section

describes the facilities provided by UPML; e.g. UMPL MIME type, namespace, files

extension, etc.

87




UPML Internet Media (MIME) Type:

In accordance with IETF RFC 3023 [Kohn+01], UPML documents should be reserved
application/upml+xml
as its MIME type. Until user agent recognizes the ‘“+xml’ suffix for XML-based MIME

types, UPML documents may be served as the media type ‘text/xml’.

UPML Namespace:

The XML Namespace assigned to UPML is
http://localhost:80/upml

The prefix “upml: ” is used by convention to denote the UPML namespace. However,
any prefix can be used. This is necessary when authoring and delivering UPML

documents, particularly those containing any non-UPML markup fragments.

UPML File Extension:

The upml is recommended as the filename extension for UPML documents.

4.10 UPML Conformance

The section provides the desirable criteria for conformance of a UPML document and

that of a UPML processor.

4.10.1 UPML Document Conformance

A UPML conforming document must satisfy the following criteria:

1. It must conform to the XML 1.0 specification [W3C00a].

2. It must specify a character encoding in the XML processing instruction.

88



It must declare upml as its root element.
It must contain at least one pattern element.

It must validate against the UPML schema (please see “Appendix B” for details).

S kW

If any namespaces other than UPML are used in the document, it must conform to
the namespaces in XML [W3C99a]. Particularly, the namespaces need to be
specified at the root element of a UPML document, if it includes any fragments of
non-UPML markup. On the other hand, to separate any UPML fragments from
non-UPML fragments, it may be specified with the prefix "upml : " for all UPML
elements.

7. Tt shall conform to Cascading Style Sheets (CSS), Level 2 specification [W3C98]

if there is any use of it.

8. It shall conform to associating eXtensible Style-sheet Languages (XSL) with
XML Documents [W3C99b], if it refers to any external style-sheets.

4.10.2 UPML Processor Conformance

A UPML processor must be conforming to an XML processor as defined in Section 5 of
the XML 1.0 Specification [W3C00a]. Here, the XML schema has been developed using
TIBCO’s TURBO XML. Further the schema and UPML documents have been validated

using Xerces parser, which is easy to bind with Apache Server.

Xerces (named after the Xerces Blue butterfly) parser provides the world-class XML
parsing and generation. Fully-validating Xerces parsers are available for both Java and
C++, implementing the W3C XML and Document Object Model, DOM (Level 1 and 2)
standards, as well as the de facto Standard API for XML, SAX (version 2) standard.

These parsers are highly modular and configurable. Initial support for XML Schema
(draft W3C standard) is also provided [Benoit02] with these parsers.

89



Chapter 5

Conclusion and Future Work

Although patterns have several advantages in the software engineering domain, there has
been a big communication gap among the professional groups. Moreover, there was a
lack of consistency of elements in pattern documentation as well as organization of
patterns. The proposed format with a unified set of elements will increase the
acceptability of using pattern in the software engineering domain and hence ease to reuse
of architecture and design by capturing and disseminating the experts’ knowledge and
experience. In addition, the suggested format addresses the consistency and

organizational issues of a pattern to make it more clear, understandable and reusable.
The study has brought forth the following contributions / recommendations:

Firstly, this thesis has analyzed some of the most popular formats for pattern
documentation, proposed by different individuals and communities, while highlighting
their strengths and weaknesses. This study has proposed a comprehensive format,
comprising the following seven elements: identification, problem description, context,

forces, solution, implementation strategies, and consequences.

Secondly, a 3D-Reference Model of pattern properties, which describes the major
concerns of different professional groups related to patterns, has been proposed. This
decreases the unwanted gap in communication among the various professional groups

including Patterns Writers, Usability Experts and Software Developers.
Thirdly, the study has proposed a classification scheme, which organizes patterns

according to granularity, functionality, and structural principles, for choosing the

appropriate pattern(s) effectively and efficiently.

90



Finally, syntax and semantics of the Usability Pattern Markup Language (UPML)
specification, based on XML notations, has been developed. This provides the higher
level abstraction and a validation schema for pattern documentation. The proposed

specification, as being the first version, has been named as ‘UPML 1.0’.

The outcome of the study may be revised based on the feedback from various industrial
projects in the future. Empirical studies, questioning the pattern writers, usability experts,
and software developers may also contribute to the improvement of this study. After
collecting feedbacks and conducting empirical studies, the XML schema for validating

the UPML documents may be reviewed to develop a newer version.

There are several other projects that have been carried out by the Human-Centered
Software Engineering (HCSE) group in the Department of Computer Science at
Concordia University. Among these projects, the following two are mentioned (as
examples) which will be benefited by the outcome of this thesis work. At the same time,

this study may be enriched by the above projects.

1. UPADE (Usability Pattern Assisted DEsign), a Java based editor for
documenting, editing, developing pattern-oriented design, and combining existing
usability patterns. Pattern oriented design can be enriched by using the UPML
1.0. On the other hand, UPADE tool can help UPML documents writers, users by
providing them with a Ul (User Interface) for authoring and validating usability

patterns.

2. MOUDIL (Montreal Online Usability patterns DIgital Library), a MySQL based
relational database for storing patterns along with HTML based online browsing,
navigation, and searching tool, can be improved by using the UPML 1.0. On the
other hand, MOUDIL can be of assistance to the UPML documentation by

providing the online digital repository of usability patterns.

The study provides a new outlook on the format for pattern documentation following the

XML approach and justifies the needs of this study.

91



References

A
[Alan+02] Alan S. and James R. T. Design Patterns Explained — A New Perspective on
Object-Oriented Design, Addison-Wesley, 2002.

[Alexander+77] Christopher Alexander et. al, A pattern language, New York: Oxford
University Press, 1977.

[Alexander79] Christopher Alexander, The timeless way of Building, New York: Oxford
University Press, 1979.

[Alur+01] Deepak Alur, John Crupi, and Dan Malks, Pattern Template in sun Java
Center J2EE Patterns, Sun Java Center, March 2001,

http://developer.java.sun.com/developer/technical Articles/J2EE/patterns/Pattern Template

.html

[Appleton00] Appleton, B., Patterns and Software: Essential Concepts and Terminology,
2000, http://www.entract.com/~bradapp/docs/patterns-intro.html

B
[Benoit02] Benoit Marchal, XML By Example (Second Edition), QUE, USA, 2002.

[Berners+98] Berners-Lee, T., Fielding R., Masinter, L., RFC 2396: Uniform Resource
Identifiers (URI): Generic Syntax, IETF, August 1998, http.//www.ietf.org/rfc/rfc2396.txt

[Brochers00] Brochers J.O., A Pattern Approach to Interaction Design, in Proceedings of
the DIS 2000 International Conference on Designing Interactive Systems, New York,
Aug 16-19, 2000, ACM Press, pp 369-378.

92



[Bryan01] Bryan, M. (Project Editor), ISO/IEC JTC 1/SC34 Information Technology—
Document Description and Processing Language, Working Draft, October 22, 2001

[Buschmann+01] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal,
Pattern-Oriented Software Architecture, John Wiley & Sons Ltd., Feb 2001

[Buschmann+94] F. Buschmann, R. Meunier, A System of Patterns, Proceedings of

PLoP’94, pp 325-343, PLoP94

C
[Civello93] Civello, F., Roles for Composite Objects in Object Oriented Analysis and
Design, Proceedings, OOPSLA’93, ACM, 1993

[Coad+95] Peter Coad, David North and Mark Mayfield, Object Models: Strategies,
Patterns, and Applications, Prentice Hall, NJ, 1995

[Coplien94a] Coplien, J.O., Progress on patterns: Highlights of PLoP’94, In Proceedings
of Object Expo Europe, 1994,
ftp://st.cs.uiuc.edu/pub/patterns/papers/ObjectExpoPLoP.ps

[Coplien94b] Coplien, J.O., Description of the Envelope-Letter Idiom, OOPSLA Pattern
Mailing Reflector, 1994

[Coplien+95] Coplien, J.0., & Schmidt, D.C., Partern Language of Program Design,
Addison-Wesley, MA, 1995

[Coram+98] Coram T. and Lee J., Experiences — A Pattern Language for User Interface

Design, 1998, http://www.maplefish.com/todd/papers/Experiences.html

[Cunningham95] Ward Cunningham, WikiWikiWeb, 1995 (posted, but updated most
frequently), http://c2.com/cgi/wiki?WelcomeVisitors

93



E

[Eisenhauer+94] R. Eisenhauer, S. Kumsta, F. Miralles, K. Mobious, U Steinmuller, P.
Stobbe, C. Vester, Hand Book for Software Architecture, Siemens Nixdorf Information
System AG, Internal Report, 1994

G

[Gamma+93] E. Gamma, R. Helm, and J. Vlissides, Design Patterns: Abstraction and
Reuse of Object-Oriented Design, ECOOP 7 Proceedings. Berlin: Springer-Verlag, 1993,
pp 406-431.

[Gamma+95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software, Addison Wesley, 1995.

[Granlund+01] Granlund A., Lafreniere D., and Carr A., A Pattern-Supported Approach
to the User Interface Design, in 9th International Conference on HCI, New Orleans, Aug
5-10, 2001, http://www.sm.luth.se/~david/papers/HCIInt2001Final.pdf

[Griffiths+01] Griffiths, R., Pemberton, L., Don’t Write Guidelines, Write Patterns,
University of Brighton, Brighton, UK, 2001.

H
[HillsideOO] Hillside.net, Patterns Home Page: Your Patterns Library, 2000,

http://www.hillside.net/patterns/

I
[IBM99a] IBM, Patterns for E-Business, IBM, 1999,

[IBM99b] IBM, Xenna, IBM Alpha Works, March 1999 (posted), June 2000 (updated),

http://www.alphaworks.ibm.com/tech/xeena

[(IBM99c] IBM, XML Generator, IBM Alpha Works, September 1999 (posted), August
2001 (updated), http://www.alphaworks.ibm.com/tech/xmlgenerator

94



[IEEE87] IEEE, Recommended Practice for Software Design Descriptions, IEEE STD
1016-1987, 1987.

[IEEE98] IEEE, Recommended Practice for Software Requirement specifications, IEEE
STD 830-1998, 1998.

J

[Johnson92] Johnson, R., Documenting Frameworks Using Patterns, Proceedings,

OOPSLA’ 92, ACM, 1992

K
[Knuth92] Knuth, Donald E., Literate Programming, CSLI Lecture Notes, November 27,
1992

[Kohn+01] Kohn, D., Murata, M., St. Laurent, S., RFC 3023: XML Media Types, IETF,
January 2001

L
[Linda98] Linda Rising, The Patterns Handbook - Techniques, Strategies, and
Applications, Cambridge University Press, UK, 1998.

N
[Ning01] Ning, N., A Usability Pattern Language and Tool for Web Application, Master
Thesis, Concordia University, 2001

P

[Parnas79] Parnas, D., Designing Software for Ease of Extension and Contraction, IEEE

Transactions on Software Engineering, March 1979

[Pemberton+99] Pemberton L., and Griffiths R., The Brighton Usability Pattern,
Collection, 1999, http://www.it.bton.ac.uk/Research/patterns’home.html

95



[Portland95] Portland, Portland Pattern Repository, 1995, http://c2.com/ppr/

[Prieto+89] Prieto-Diaz, R., & G. Arango, Domain Analysis: Acquisition of Reusable

Information for Software Construction, IEEE Computer Society Press, 1989

R

[RFC98] T. Berners-Lee, R. Fielding, L. Masinter (editors). IETF (Internet Engineering
Task Force) RFC 2396: Uniform Resource Identifiers (URI): Generic Syntax, eds.
August 1998

S
[Seffah+00] Javahery, H. and Ahmed, S., A Model for Usability Pattern-Oriented
Designs, Concordia University, 2000

T
[Tidwell99] Tidwell J., Common Ground: A Pattern Language for Human-Computer

Interface Design, 1999, http://www.mit.edu/~jtidwell/common_ground.html

\u4
[W3C] W3C's XML Schema Definition Language (XSDL)

[W3C00a] Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E. (Editors), Extensible
Markup Language (XML) 1.0 (Second Edition), W3C Recommendation, October 2000,
http://www.w3.org/TR/REC-xml

[W3C00b] Davis, M., Hors, A., Robie, J., Wood, L. et. Al. (Editors), Document Object
Model (DOM) Level2 Core Specification”, W3C Recommendation, November 2000,
http://www.w3.0org/TR/DOM-Level-2-Core

[W3CO01] Fallside, David C. (Editor), XML Schema Part O: Primer, W3C
Recommendation, May 2001, http://www.w3.org/TR/xmlschema-0

96



[W3C02] Dardailler, D., Palmer, S. B. (Editors), XML Accessibility Guidelines, W3C
Working Draft3, October 2002, http://www.w3.org/TR/xag

[W3C98] Bos, B., Lie, H-W., Lilley C., Jacobs, 1. (Editors), Cascading Style Sheets:
Level 2 (CSS2) Specification, W3C Recommendation, May 1998

[W3C99a] Bray, T., Hollander, D., Layman, A. (Editors), Namespace in XML, W3C

Recommendation, January 1999

[W3C99b] Clark, J. (Editor), XSL Transformations (XSLT) Version 1.0, W3C

Recommendation, November 1999, http://www.w3c.org/TR/xml-stylesheet

[Welie+00] Van Welie M. Van der Veer G.C., and A. Eliens, Patterns as Tools for User
Interface Design, in International Workshop on Tools for Working with Guidelines,

October 7-8, 2000, Biarritz France, pp 313-324.

[Welie03] Martijn van Welie, Patterns in Interaction Design, 2003 (posted, but updates

most frequently), http://www.welie.com/

Z
[Zimmer94] W. Zimmer, Relationships Between Design Patterns, Proceedings of

PLoP’94, pp 345-363, PLoP94.

97



Appendix A

Abstract Factory Object Creational

Intent
Provides an interface for creating families of related or dependent objects without specifying

their concrete classes.

Also Known As
Kit

Motivation

Consider a user interface toolkit that supports multiple look-and-feel standards, such as Motif
and Presentation Manager. Different look-and-feels define different appearances and
behaviors for user interface “widgets" like scroll bars, windows, and buttons. To be portable
across look-and-feel standards, an application should not hard-code its widgets for a particular
look and feel. Instantiating look-and-feel-specific classes of widgets throughout the

application make it hard to change the look and feel later.

We can solve this problem by defining an abstract WidgetFactory class that declares an
interface for creating each basic kind of widget. There's also an abstract class for each kind of
widget, and concrete subclasses implement widgets for specific look-and-feel standards.
WidgetFactory's interface has an operation that returns a new widget object for each abstract
widget class. Clients call these operations to obtain widget instances, but clients aren't aware
of the concrete classes they're using. Thus clients stay independent of the prevailing look and
feel.

98




HeotifWidgetFectory | PHWidgetFectory

CreateScrallBar{) CrealeScrall Bar))
CreateWindaw) CreateWindaw{)

There is a concrete subclass of WidgetFactory for each look-and-feel standard. Each subclass
implements the operations to create the appropriate widget for the look and feel. For example,
the CreateScrollBar operation on the MotifWidgetFactory instantiates and returns a Motif
scroll bar, while the corresponding operation on the PMWidgetFactory returns a scroll bar for
Presentation Manager. Clients create widgets solely through the WidgetFactory interface and
have no knowledge of the classes that implement widgets for a particular look and feel. In
other words, clients only have to commit to an interface defined by an abstract class, not a

particular concrete class.

A WidgetFactory also enforces dependencies between the concrete widget classes. A Motif
scroll bar should be used with a Motif button and a Motif text editor, and that constraint is

enforced automatically as a consequence of using a MotifWidgetFactory.
Applicability

Use the Abstract Factory pattern when

e a system should be independent of how its products are created, composed, and

represented.
» asystem should be configured with one of multiple families of products.

o a family of related product objects is designed to be used together, and you need to

99




enforce this constraint.

e you want to provide a class library of products, and you want to reveal just their

interfaces, not their implementations.

Structure

EreatsProductAf)
CreateProductBf} |
e S

: ProductA2

ConcreteFectoryi ConcreteFratory2

CreatePraduciAf) CreatePraduciAf)
CreatePraduciB{} » CreatePraduciB{)

Participants

AbstractFactory (WidgetFactory)

o declares an interface for operations that create abstract product objects.
o ConcreteFactory (MotifWidgetFactory, PMWidgetFactory)
o implements the operations to create concrete product objects.
e AbstractProduct (Window, ScrollBar)
o declares an interface for a type of product object.
o ConcreteProduct (MotifWindow, MotifScrollBar)
o defines a product object to be created by the corresponding concrete factory.
o implements the AbstractProduct interface.

o C(lient

100



o uses only interfaces declared by AbstractFactory and AbstractProduct classes.

Collaborations

Normally a single instance of a ConcreteFactory class is created at run-time. This
concrete factory creates product objects having a particular implementation. To create

different product objects, clients should use a different concrete factory.

AbstractFactory defers creation of product objects to its ConcreteFactory subclass.

Consequences

The Abstract Factory pattern has the following benefits and liabilities:

1.

It isolates concrete classes. The Abstract Factory pattern helps you control the classes
of objects that an application creates. Because a factory encapsulates the responsibility
and the process of creating product objects, it isolates clients from implementation
classes. Clients manipulate instances through their abstract interfaces. Product class
names are isolated in the implementation of the concrete factory; they do not appear in

client code.

It makes exchanging product families easy. The class of a concrete factory appears
only once in an application---that is, where it's instantiated. This makes it easy to
change the concrete factory an application uses. It can use different product
configurations simply by changing the concrete factory. Because an abstract factory
creates a complete family of products, the whole product family changes at once. In
our user interface example, we can switch from Motif widgets to Presentation
Manager Widgets simply by switching the corresponding factory objects and

recreating the interface.

It promotes consistency among products. When product objects in a family are
designed to work together, it's important that an application use objects from only one

family at a time. AbstractFactory makes this easy to enforce.

Supporting new kinds of products is difficult. Extending abstract factories to produce
new kinds of Products isn't easy. That's because the AbstractFactory interface fixes the

set of Oproducts that can be created. Supporting new kinds of products requires

101




extending the factory interface, which involves changing the AbstractFactory class and
all of its subclasses. We discuss one solution to this problem in the Implementation

section.
Implementation

Here are some useful techniques for implementing the Abstract Factory pattern.

1. Factories as singletons. An application typically needs only one instance of a

ConcreteFactory per product family. So it's usually best implemented as a Singleton.

2. Creating the products. AbstractFactory only declares an interface for creating
products. It's up to ConcreteProduct subclasses to actually create them. The most
common way to do this is to define a factory method for each product. A concrete
factory will specify its products by overriding the factory method for each. While this
implementation is simple, it requires a new concrete factory subclass for each product

family, even if the product families differ only slightly.

If many product families are possible, the concrete factory can be implemented using
the Prototype pattern. The concrete factory is initialized with a prototypical instance of
each product in the family, and it creates a new product by cloning its prototype. The
Prototype-based approach eliminates the need for a new concrete factory class for

each new product family.

Here's a way to implement a Prototype-based factory in Smalltalk. The concrete
factory stores the prototypes to be cloned in a dictionary called partcatalog. The

method make: retrieves the prototype and clones it:

make: partName
~ (partCatalog at: partName) copy
The concrete factory has a method for adding parts to the catalog.
addPart: partTemplate named: partName
partCatalog at: partName put: partTemplate
Prototypes are added to the factory by identifying them with a symbol:

aFactory addPart: aPrototype named: #ACMEWidget

102




A variation on the Prototype-based approach is possible in languages that treat classes
as first-class objects (Smalltalk and Objective C, for example). You can think of a
class in these languages as a degenerate factory that creates only one kind of product.
You can store classes inside a concrete factory that create the various concrete
products in variables, much like prototypes. These classes create new instances on
behalf of the concrete factory. You define a new factory by initializing an instance of a
concrete factory with classes of products rather than by sub-classing. This approach
takes advantage of language characteristics, whereas the pure Prototype-based
approach is language-independent. Like the Prototype-based factory in Smalltalk just
discussed, the class-based version will have a single instance variable partCatalog,
which is a dictionary whose key is the name of the part. Instead of storing prototypes
to be cloned, partCatalog stores the classes of the products. The method make: now

looks like this:

make: partName
~ (partCatalog at: partName) new
Defining extensible factories. AbstractFactory usually defines a different operation for
each kind of product it can produce. The kinds of products are encoded in the
operation signatures. Adding a new kind of product requires changing the

AbstractFactory interface and all the classes that depend on it.

A more flexible but less safe design is to add a parameter to operations that create
objects. This parameter specifies the kind of object to be created. It could be a class
identifier, an integer, a string, or anything else that identifies the kind of product. In
fact with this approach, AbstractFactory only needs a single ““Make" operation with a
parameter indicating the kind of object to create. This is the technique used in the

Prototype- and the class-based abstract factories discussed earlier.

This variation is easier to use in a dynamically typed language like Smalltalk than in a
statically typed language like C++. You can use it in C++ only when all objects have
the same abstract base class or when the product objects can be safely coerced to the

correct type by the client that requested them. The implementation section of Factory

103




Method shows how to implement such parameterized operations in C++.

But even when no coercion is needed, an inherent problem remains: All products are
returned to the client with the same abstract interface as given by the return type. The
client will not be able to differentiate or make safe assumptions about the class of a
product. If clients need to perform subclass-specific operations, they won't be
accessible through the abstract interface. Although the client could perform a
downcast (e.g., with dynamic_cast in C++), that's not always feasible or safe,
because the downcast can fail. This is the classic trade-off for a highly flexible and

extensible interface.
Sample Code

We'll apply the Abstract Factory pattern to creating the mazes we discussed at the beginning

of this chapter.

Class MazeFactory can create components of mazes. It builds rooms, walls, and doors
between rooms. It might be used by a program that reads plans for mazes from a file and
builds the corresponding maze. Or it might be used by a program that builds mazes randomly.
Programs that build mazes take a MazeFactory as an argument so that the programmer can

specify the classes of rooms, walls, and doors to construct.

class MazeFactory {
public:

MazeFactory () ;

virtual Maze* MakeMaze() const
{ return new Maze; }
virtual Wall* MakeWall() const
{ return new Wall; }
virtual Réom* MakeRoom(int n) const
{ return new Room(n); }
virtual Door* MakeDoor (Room* rl, Room* r2) const

{ return new Door(rl, r2); }

104




Recall that the member function CreateMaze builds a small maze consisting of two rooms
with a door between them. CreateMaze hard-codes the class names, making it difficult to

create mazes with different components.

Here's a version of createMaze that remedies that shortcoming by taking a MazeFactory as a

parameter:

Maze* MazeGame: :CreateMaze (MazeFactory& factory) {
Maze* aMaze = factory.MakeMaze () ;
Room* rl = factory.MakeRoom(1l) ;
Room* r2 = factory.MakeRoom(2) ;

Door* aDoor = factory.MakeDoor(rl, r2);

aMaze->AddRoom(rl) ;

aMaze->AddRoom(r2} ;

rl->SetSide(North, factory.MakeWall());
rl->SetSide(East, aDoor) ;

rl->SetSide(South, factory.MakeWall());
rl->SetSide (West, factory.MakeWall());

r2->SetSide(North, factory.MakeWall());
r2->SetSide(East, factory.MakeWall()):;
r2->SetSide (South, factory.MakeWall());
r2->SetSide (West, aDoor);

return aMaze;

We can create EnchantedMazeFactory, a factory for enchanted mazes, by subclassing
MazeFactory. EnchantedMazeFactory Will override different member functions and return

different subclasses of Room, Wall, etc.

class EnchantedMazeFactory : public MazeFactory {

public:

105




EnchantedMazeFactory () ;

virtual Room* MakeRoom{int n) const

{ return new EnchantedRoom(n, CastSpell()); }

virtual Door* MakeDoor (Room* rl, Room* r2) const

{ return new DoorNeedingSpell(rl, r2); }

protected:
Spell* CastSpell() const;
Y

Now suppose we want to make a maze game in which a room can have a bomb set in it. If the
bomb goes off, it will damage the walls (at least). We can make a subclass of Room keep track
of whether the room has a bomb in it and whether the bomb has gone off. We'll also need a
subclass of wall to keep track of the damage done to the wall. We'll call these classes

RoomWithABomb and Bombedwall

The last class we'll define is BombedMazeFactory, a subclass of MazeFactory that ensures
walls are of class Bombedwall and rooms are of class RoomwithABomb. BombedMazeFactory

only needs to override two functions:

Wall* BombedMazeFactory::MakeWall () const {

return new BombedWall;

Room* BombedMazeFactory::MakeRoom(int n) const {
return new RoomWithABomb (n) ;
}
To build a simple maze that can contain bombs, we simply call CreateMaze with a
BombedMazeFactory.
MazeGame game;

BombedMazeFactory factory;

game.CreateMaze (factory) ;

106




CreateMaze can take an instance of EnchantedMazeFactory just as well to build enchanted

mazces.

Notice that the MazeFactory is just a collection of factory methods. This is the most common
way to implement the Abstract Factory pattern. Also note that MazeFactory is not an abstract
class; thus it acts as both the AbstractFactory and the ConcreteFactory. This is another
common implementation for simple applications of the Abstract Factory pattern. Because the
MazeFactory is a concrete class consisting entirely of factory methods, it's easy to make a

new MazeFactory by making a subclass and overriding the operations that need to change.

CreateMaze used the setSide operation on rooms to specify their sides. If it creates rooms
with a BombedMazeFactory, then the maze will be made up of RoomWithAaBomb objects with
Bombedwall sides. If RoomwithaBomb had to access a subclass-specific member of
BombedWall, then it would have to cast a reference to its walls from wall* to Bombedwall*.
This downcasting is safe as long as the argument is in fact a Bombedwall, which is guaranteed

to be true if walls are built solely with a BombedMazeFactory.

Dynamically typed languages such as Smalltalk don't require downcasting, of course, but they
might produce run-time errors if they encounter a wall where they expect a subclass of wall.
Using‘ Abstract Factory to build walls helps prevent these run-time errors by ensuring that

only certain kinds of walls can be created.

Let's consider a Smalltalk version of MazeFactory, one with a single make operation that
takes the kind of object to make as a parameter. Moreover, the concrete factory stores the

classes of the products it creates.

First, we'll write an equivalent of CreateMaze in Smalltalk:

createMaze: aFactory

| rooml room2 aDoor |

rooml = (aFactory make: #room) number: 1.
roomZ2 = (aFactory make: #room) number: 2.
aDoor = (aFactory make: #door) from: rooml to: room2.

107




rooml atSide: #north put: (aFactory make: #wall).
rooml atSide: #east put: aDoor.

rooml atSide: #south put: (aFactory make: #wall).
rooml atSide: #west put: (aFactory make: #wall).

room2 atSide: #north put: (aFactory make: #wall).
room2 atSide: #east put: (aFactory make: #wall).

room2 atSide: #south put: (aFactory make: #wall).
room2 atSide: #west put: aDoor.

~ Maze new addRoom: rl; addRoom: r2; yourself

As we discussed in the Implementation section, MazeFactory needs only a single instance
variable partCatalog to provide a dictionary whose key is the class of the component. Also

recall how we implemented the make: method:

make: partName

~ (partCatalog at: partName) new

Now we can create a MazeFactory and use it to implement createMaze. We'll create the

factory using a method createMazeFactory of class MazeGame.

createMazeFactory
~ (MazeFactory new
addPart: Wall named: #wall;
addPart: Room named: #room;
addPart: Door named: #door;

yourself)
A BombedMazeFactory Or EnchantedMazeFactory is created by associating different classes

with the keys. For example, an EnchantedMazeFactory could be created like this:
createMazeFactory
~ (MazeFactory new
addPart: Wall named: #wall;
addPart: EnchantedRoom named: #room;
addPart: DoorNeedingSpell named: #door;

yourself)

108




Known Uses

InterViews uses the ““Kit" suffix to denote AbstractFactory classes. It defines WidgetKit and
DialogKit abstract factories for generating look-and-feel-specific user interface objects.
InterViews also include a LayoutKit that generates different composition objects depending
on the layout desired. For example, a layout that is conceptually horizontal may require

different composition objects depending on the document's orientation (portrait or landscape).

ET++ uses the Abstract Factory pattern to achieve portability across different window
systems (X Windows and SunView, for example). The WindowSystem abstract base class
defines the interface for creating objects that represent window system resources
(MakeWindow, MakeFont, MakeColor, for example). Concrete subclasses implement the
interfaces for a specific window system. At run-time, ET++ creates an instance of a concrete

WindowSystem subclass that creates concrete system resource objects.
Related Patterns

AbstractFactory classes are often implemented with factory methods, but they can also be

implemented using Prototype. A concrete factory is often a singleton.

109




Appendix B

<? xml version =”1.0” encoding ="UTF-8"? >

<!-- Generated by Turbo XML 2.3.1 -->

<schema
xmlns = "http://www.w3.0rg/2001/XMLSchema”
targetNameSpace = "http://localhost:80/upml”
xmlns:xs = “http://www.w3.0rg/2001/XMILSchema”
xmlns:upml = “http://localhost:80//upml”
elementFromDefault = “qualified”
attributeFromDefault = “qualified”>

<annotation>
<documentation xml:lang = "en”>

File : upml.xsd

Author : Faridul Islam

Date: March 1, 2003

Version: 1.0

Description: XML Schema for Generalized Format of Pattern Documentation
This Schema is identified by the local XML Namespace:

http://localhost:80/upml

Copyright © 2003 Faridul Islam

Permission is granted to copy, distribute, and/or modify this document under

the terms of the GNU Free Documentation License.

</documentation>
</annotation>
S P -->
<!-- Import xml:lang and xml:space Attributes.............c..ooeviiiiiiiiiiiiiiia . -->
S U -->

<import namespace = “http://www.w3c.org/ XMI./1998/namespace”
schemaL.ocation = “http://www.w3c.org/2001/xml.xsd”>

</import>
O -->
<!-- ASSOCIATION MODULE ...ttt -->
S S PPN -=>
<!--The category EIEMent ..........oiiiiiiiii i e e e ne s -->

<element name="category”>

110



<complexType>
<choice>
<element ref="upml:term” minOccurs="1" maxOccurs="unbounded”/>
</choice>
<attribute name="id" type="ID” use="optional”/>
</complexType>
</element>

<!--The Ink Blement .........coviiiiiii i -->
<element name="link”>
<complexType>
<simpleContent>
<extension base = “string”>
<attribute name="1d" type="ID" use="optional”/>
<attribute name="uri” type="anyURI” use="required”/>
</extension>
</simpleContent>
</complexType>
</element>

<!-- The reference Element ...t -->
<element name=""reference”>
<complexType>
<choice>
<element ref = “upml:title”/>
<element ref = “upml:author” minOccurs="1" maxQOccurs="unbounded”/>
<element ref = “upml:date” minOccurs="1" maxOccurs="unbounded”/>
<element ref = “upml:link”/>

</choice>
<attribute name="id” type="ID" use="required”/>
</complexType>
</element>
<!-- The related-pattern Element .......... ...t -->

<element name=""related-pattern”>
<complexType mixed="true”>
<choice maxOccurs = “unbounded”>
<element ref="upml:name”/>
<element ref="upml:category”/>
<element ref="upml:link™/>
</choice>
<attribute name="id” type="ID" use="optional”/>
<attribute name="relation” use="required”’>
<simpleType>
<restriction base=""string”’>
<enumeration value ="superordinate”/>

111




<enumeration value =”subordinate”/>
<enumeration value ="sibling”/>
<enumeration value =”competitor”/>
</restriction>
</simpleType>
</attribute>
</complexType>
</element>

<l--Thealias Element ... i -->
<element name="alias”>
<complexType>
<simpleContent>
<extension base ="'string”>
<attribute name="1d” type="ID" use="optional”’/>
</extension>
</simpleContent>
</complexType>
</element>

<!-=The author EISMENt ......oouiiiiiii i e e e ->
<element name="author’>
<complexType>
<attribute name="1d” type="ID" use="optional’/>
</complexType>
</element>

<!--The date EIEMENt ........cooiiiiiii it e e, -->
<element name="date”>
<complexType>
<simpleContent>
<extension base ="string”>
<attribute name="id” type="1D" use="optional’/>
</extension>
</simpleContent>
<attribute name="event” use="optional’>
<simpleType>
<restriction base = “string”>
<enumeration value = “creation”/>
<enumeration value = “publication”/>
<enumeration value = “revision”/>
</simpleType>

112




</attribute>
</complexType>
</element>

<!--The identification EIEmMENt .. .oovvur it ittt rir e ainees -—>

<element name="identification”>
<complexType>
<sequence>
<element ref="upml:name”/>
<element ref="upml:alias”/>
<element ref=""upml:author”/>
<element ref="upml:date” minOccurs="0" maxOccurs="unbounded”/>
<element ref="upml:category”/>
<element ref="upml:keyword”/>
<element ref="upml:related-patterns”/>
</sequence>
<attribute name="1d” type="ID" use="optional”’/>
</complexType>
</element>

<!l--The keyword EIement............coiiiiiiiii i -->

<element name="keyword”’>
<complexType mixed = “true”>
<choice>
<element ref=""upml:term” minOccurs="1" maxOccurs="unbounded”/>
</choice>
</complexType>
</element>

<l-The metadata Blement .. ..ooiiii e e e et e, >

<element name="metadata”>
<complexType>
<sequence>
<element ref="upml:name”/>
<element ref="upml:alias”/>
<element ref="upml:author”/>
<element ref="upml:date” minOccurs="0" maxOccurs="unbounded”/>
<element ref=""upml:category”/>
<element ref="upml:keyword”/>
</sequence>
</complexType>
</element>

<l--The name BIement .. .....oe e e s
<element name="name’’>
<complexType>

113




<simpleContent>
<extension base ="'string”’>
<attribute name="1d" type="ID" use="optional”/>
</extension>
</simpleContent>
</complexType>
</element>

<l--The term Element...........oooi it e -->
<element name="term”>
<complexType>
<attribute name="term-type” use="required”’>
<simpleType>
<restriction base="string””>
<enumeration value="abbreviation”/>
<enumeration value="concept”/>
<enumeration value="principle”/>
<enumeration value="technology”/>
<enumeration value="tool”/>
</restriction>
</simpleType>
</attribute>
</complexType>
</element>

<l--The title EIEMEeNt. ... .oouiiuiiiiint it e e -->
<element name="title” type = “string”>
</element>

<!--The context Element ............cocoiiiiiiiiiiiiiii e, -->
<element name=""context”>
<complexType>
<sequence>
<element ref="upml:user’/>
<element ref="upml:task”/>
<element ref=""upml:platform-compatibility”/>
</sequence>
<choice>
<element ref="upml:term” minOccurs="0" maxOccurs="unbounded”/>
</choice>
<attribute name="1d” type="ID" use="optional”’/>
</complexType>

114




</element>

<1--The forces ELIemeNnt. .......ciuiruini ittt e ->
<element name="forces”>
<complexType mixed="true”>
<choice>
<element ref="upml:term” minOccurs="0" maxOccurs="unbounded”/>
</choice>
<attribute name="id"" type="ID” use="optional”/>
</complexType>
</element>

<!-- The platform-compatibility Element.............cocooiiiiiiiiiiiiiii, -->
<element name="platform-compatibility”>
<complexType>
<attribute name="id” type="ID” use="optional”/>
</complexType>
</element>

<!-- The problem Element .........c..ooiiiiiiiiiiiiiiii e, -->
<element name="problem”>
<complexType mixed="true”>
<choice>
<element ref=""upml:term” minOccurs="0" maxOccurs="unbounded”/>
<element ref="upml:reference” minOccurs="0"
maxQOccurs="unbounded”/>
</choice>
<attribute name="1d” type="ID" use="optional”/>
</complexType>
</element>

<!--The task Blement ...........coooiiiiiiiii e -->
<element name=""task’>
<complexType>
<attribute name="id” type="ID"" use="optional”’/>
</complexType>
</element>

<I--The user EIEment ..ottt e -->
<element name=""user”’>
<complexType>
<attribute name="1d” type="ID" use="optional”’/>
</complexType>
</element>

115




<!-- The consequences Element.......oo.evieviiiiiiiiiiiiiiiii -->
<element name=""consequences”>
<complexType mixed=""true”>
<choice>
<element ref="upml:term” minOccurs="0" maxOccurs=Unbounded”/>
<element ref="upml:reference” minOccurs="0"
maxOccurs="unbounded”/>
</choice>
<attribute name="1d" type="ID"” use="optional”/>
<attribute name="impact” use="required”>
<simpleType>
<restriction base="boolean”>
<enumeration value="positive”/>
<enumeration value="negative”/>
</restriction>
</simpleType>
</attribute>
</complexType>
</element>

<!--The example Element...... ..o -->
<element name="example”>
<complexType>
<choice>
<element ref="upml:term” minOccurs="0" maxOccurs="unbounded”/>
</choice>
<attribute name="id” type="ID” use="optional”/>
</complexType>
</element>

<!-- The implementation Element ..........c..ooiiiiiiiiiiiiiiiii e -->
<element name=""implementation”>
<complexType>
<sequence>
<element ref=""upml:structure”/>
<element ref="upml:strategy”/>
</sequence>
<choice>
<element ref="upml:term” minOccurs="0" maxOccurs="unbounded”/>
</choice>
<attribute name="id” type="ID” use="optional”/>
</complexType>

116




</element>

<!-- The rationale Element.........oovuiiiiiiri i -->
<element name="rationale”’>
<complexType mixed="true”>
<choice>
<element ref="upml:term” minOccurs="0" maxOccurs="unbounded”/>
</choice>
<attribute name="1d” type="ID"” use="optional”/>
</complexType>
</element>

<!-- The sample-code Element..........ooiiiiiii e -->
<element name=""sample-code”>
<complexType>
<choice>
<element ref="upml:term” minOccurs="0" maxOccurs="unbounded”/>
</choice>
<attribute name="1d" type="ID" use="optional’/>
</complexType>
</element>

<!--The solution Element ............cooiiiiiiiiiiiiiiiiiiiiiiiicie e, -->
<element name="solution”>
<complexType mixed="true”’>
<choice>
<element ref="upml:term” minOccurs="0" maxOccurs="unbounded”/>
</choice>
<attribute name="1d" type="ID" use="optional”/>
</complexType>
</element>

<!--The strategy Element..........c.cooiiiiiiiiiiirii e -->
<element name="strategy’’>
<complexType mixed="true”>
<sequence>
<element ref="upml:example”/>
<element ref="upml:sample-code”/>
</sequence>
<choice>
<element ref="upml:term” minOccurs="0" maxOccurs="unbounded”/>
</choice>
<attribute name="id” type="ID" use="optional”/>
</complexType>
</element> ‘

117




PR N TSR n i (o140} (ol o (=) 0005301 S U -—>
<element name=""structure”’>
<complexType mixed="true”>

<choice>
<element ref="upml:term” minOccurs="0" maxOccurs="unbounded”/>
</choice>
<attribute name="1d" type="ID"" use="optional”/>
</complexType>
</element>
o e e e e e -->
<!-- STRUCTURE MODULE ... i e ->
S T S PSPPSR -->
<1--The body EIement ........c.oiiieiniiii i e -->

<element name="body”>
<complexType mixed = “true”>
<sequence>
<element ref="upml:context”/>
<element ref="upml:problem”/>
<element ref="upmi:forces” minOccurs="1" maxOccurs = “unbounded”/>
<element ref="upml:solution”/>
<element ref="upml:rationale”/>
<element ref="upml:consequence” minOccurs="0"
maxOccurs = “unbounded”/>

</sequence>
</complexType>
</element>

<!--Thehead EIement ............coeviveiiiiiiiiiiiiiiiii e -->
<element name="head”>
<complexType mixed = “true”>
<sequence>
<element ref="upml:metadata”/>
</sequence>
</element>

<!-- The pattern Element ...........ooviiiiiiiiii i e ->
<element name="pattern’”>>
<complexType>

<sequence>
<element ref="upml:head”/>
<element ref="upml:body”/>

</sequence>
<attribute name="id” type="ID" use="optional”/>

118




<attribute name="version” type="decimal”/>
</complexType>
</element>

<l--The upml Element ..........ccocooiiiiiiiiiiiiii -->
<element name="upml|”>
<complexType>
<sequence>

<element ref=""upml:pattern” minOccurs="0" maxOccurs="unbounded”/>

</sequence>
<attribute name="1d” type="ID" use="optional”’/>
<attribute name="version” type="decimal” fixed="1.0"/>
<attribute name="xml:lang” use=""required”/>
<attribute name="xml:space” default="preserve”/>
</complexType>
</element>
</schema>

.................................................................................................

119




