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ABSTRACT
Control and Design of Flexible-Link Manipulators

Mehrdad Moallem, Ph.D.
Concordia University, 1996

The control of non-minimum phase systems remains an important open prob-
lem in nonlinear control, finding relevance in the control of underactuated and flex-
ible systems. One wishes to cause the output of a dynamical system to track a
desired trajectory while maintaining internal stability of a nominally unstable sys-
tem. In this regard, motion control of structurally flexible robotic manipulators has
drawn the attention of robotics researchers in the past few years. These robots find
applications in space, underwater, and high speed energy efficient manipulation.

This dissertation aims to address two important issues regarding flexible link
manipulators: Control design, and structural shape design. In this regard, two
control strategies are considered. The first one is based on the concept of integral
manifolds in singular perturbation theory, and the second is based on input-output
decoupling in nonlinear systems theory. The practical implementation issues for
the former require the inconvenient measurement of flexural rates. An observation
strategy is proposed to circumvent this problem. Experimental evaluation of the
control strategies are carried out on a setup constructed in the laboratory.

Furthermore, structural shape optimization is considered as a means to im-
prove the dynamic behavior. In this regard, an optimization index is introduced to
achieve some desired features such as higher flexible mode natural frequencies and

easier accessibility of flexible modes by the control inputs.
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Chapter 1

Introduction

In this chapter several issues are discussed regarding the modeling, control, and de-
sign of flexible-link robotic manipulators. The philosophy and technical difficulties
associated with these robots are illustrated in section 1.1. Section 1.2 covers a liter-
ature review on the modeling of flexible-link manipulators. By modeling, we mean
the plant dynamics that are used for the purpose of control. The control strategies
are outlined in section 1.3 and the design problem is discussed in section 1.4. In
section 1.5, we consider some topics related to the control problem of these robots.
Some examples are also given from other fields which have similar difficuities from
the control point of view. Finally, the contributions of this dissertation are stated

briefly in section 1.6.

1.1 Motivation

The modeling, design, and motion control of structurally flexible robotic manipu-
lators has been the focus of attention of researchers in the past few years. This
field of research has been attractive because of several reasons. For instance, space
applications require low-mass designs, to achieve escape velocity, and in order to

accomplish a mission with better fuel economy. This restriction puts a limitation



on the degree of rigidity of space robots. On the other hand, increased structural
flexibility may be desirable in tasks such as cleaning delicate surfaces, or avoiding
damages to the manipulator system due to accidental collisions. Still the problem
may be viewed from other angles such as high-speed manipulation and increased
productivity. The conventional manipulators are limited to a load-carrying capacity
of 5-10 percent of their own weight. This restriction is mainly due to the require-
ment of having a stable closed-loop system. This has encouraged the design of heavy
(rigid) robots so as to have less stringent control problems. Thus, the designers of
earth-bound robots have solved the control problem by making the manipulators
more rigid using bulkier structures. Likewise, for light—weight space based systems,
one simple solution is to move the manipulators slowly.

Achieving exact, high-speed manipulation with lightweight structures, is def-
initely a desirable objective. Such an achievement is also attractive from energy
consumption considerations since smaller actuators are needed due to lighter loads.
Regardless of the reason that flexibilities become significant, precise and stable con-
trol of the manipulator tip is desirable. This requires the inclusion of deformation
effects due to the flexibility of the arms in the dynamic equations, and generally
tends to complicate the analysis and design of the control laws. In flexible link
manipulators, a major difficulty arises when one tries to track a specific tip position
trajectory by applying the torques at the actuation ends. Due to the non-colocated
nature of sensors and actuators, the zero-dynamics of the system become unstable.
The zero-dynamics are defined as the internal system dynamics when the outputs
are driven to zero by specific inputs. The system is called non-minimum phase when
these dynamics are unstable. This intrinsic non-minimum phase property hinders
exact asymptotic tracking of a desired tip trajectory if causal controllers are em-
ployed. Thus in practice one may be satisfied with small (rather than zero) tracking

errors. More details on this are given in section 1.5.



This dissertation aims to address two major issues regarding flexible-link ma-
nipulators: Plant design and control design. The plant to be controlled is the robotic
manipulator and we are interested in devising control strategies that take into ac-
count the flexural effects as well. The first aim is to alter the plant characteristics
such that the final plant has some desirable features from the control point of view.
This should be achieved without any sacrifice to some specifications such as the total
mass or the moments of inertia experienced by the actuators. There is certainly a
limit to which improvement may be achieved, and the rest of the effort is the job
of the controller. Thus we are concerned with the mechanical design of the manip-
ulator on the one hand and controller design on the other hand. By mechanical
design, we mean improved structural shapes. The type of material used in design
is a key issue and plays an important role. A material with a high modulus of
elasticity, a low mass density, and high structural damping is the solution to most
problems of flexibility. Here it is assumed that the type of material is specified.
This specification may be considered as the ultimate restrictions put forth either
by materials technology or economic considerations. The other side of the coin is
the control problem. In this respect, a dynamic model that describes the system
behavior in a concise and accurate way is desirable. Improved dynamic modeling al-
lows for reliable design and control. Theoretically the dynamic equations are infinite
dimensional and may be described by partial differential equations. This is simply
due to the fact that an infinite number of coordinates are required to kinematically
describe each link. However, an infinite dimensional model may not be suitable for
control system design. This is due to factors such as the dynamic model complexity
and the band-limited nature of sensors and actuators. In the modeling phase, one
usually truncates the number of flexible coordinates. In any case, the dynamics
turn out to be a highly nonlinear and coupled set of differential equations which
enjoy a two-time-scale nature. Another major question in controller design are the

number and type of sensing points. Since tip positions and their rates of change



with time are to be controlled, the least information to be provided to the controller
is accurate information on tip positions. In particular, tip position information can
be provided by using camera vision or strain gauge measurements, however tip rate

measurements are not directly obtainable.

1.2 Dynamic Modeling

Like rigid manipulators, knowledge of the dynamic model of a structurally flexible
manipulator is needed for the purpose of simulation (forward dynamics), inverse
dynamics and more importantly, for the design of the controller. For rigid-link
manipulators it is known that once the kinematics of the chain of rigid bodies are
properly defined, the set of dynamic equations can be obtained by conventional
methods such as Newton—Euler or Lagrangians [32]. In principle, all sets of dynamic
equations derived based on different kinematic descriptions are equivalent. However,
this is not usually true for flexible-link manipulators. The main reason is that
the actual system dynamics are infinite dimensional because of the distributed link
flexibility. To simplify the problem a conventional method is to approximate the
flexible-link system by a system with a finite number of degrees of freedom. The
method of approximation is the source of difference in the dynamic equations. In
what follows we review some of these methods.

A great deal of research in modeling and control of flexible link robots has
focussed on a single link flexible beam free to rotate and flex in a horizontal plane (see
Figure 1.1). Neglecting second order effects such as rotary inertia, shear deformation
and actuator dynamics, the dynamics of position y(z,t) of any point on the beam
is given (e.g.[15]) by the Euler-Bernouli beam equation

d'y(z,t) Py(z,t) _

where E is Young’s modulus of elasticity of the material, / is the area moment of

inertia of the cross section about the z-axis, m is the mass per unit length of the

4



arm, and ! is the length of the arm. Note that y(z,t) = 0z + w(z,t), and the hub
angle ¥ = -a-%?l =0+ %lz:O. The boundary conditions of (1.1) at z = 0 are as

follows
y(0,¢) = 0 (1.2)
9%y

where Jj, is the hub inertia and u is the actuating torque, and at z = [

) 0%y d? Oy
Bending Moment : Elﬁ = —Jpz,z(a—z) (1.4)
Py d?
Shear Force : E[6x3 = Mp-dt—zy (L.5)

where J,, M, are the payload inertia and mass respectively.

The flexible-link described in (1.1) has been the subject of many research
projects. Cannon and Schmitz [2] used the assumed modes method to model the
flexible link. They have assumed zero payload and pinned-free eigenfunctions for
mode shapes. With this approximation, the mode shapes form a complete set of
orthogonal functions with the rigid body mode shape given by ¢¢(z) = z. Using
the Lagrangian formulation and taking into account the structural damping of the
beam, a set of decoupled differential equations are obtained which can be put in
the form of a linear state-space model. Hastings and Book [1] followed a similar
approach in modeling. They have experimentally verified that clamped-mass ad-
missible functions (mode shapes) yield better results than other mode shapes such
as pinned—free used by Cannon and Schmitz. Two mode shapes have been used
for modeling and acceptable agreement with theory has been reported. Wang and
Vidyasagar [36] have used clamped—free mode shapes and have theoretically shown
that if the number of modes is increased to obtain a more accurate model of the
flexible link, the transfer function from torque input to tip position output does
not have a well defined relative degree. To alleviate this problem they propose a

re—definition of the output as the reflected tip position that can be easily measured.
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Figure 1.1: The one link flexible arm.

Pota and Vidyasagar [11], and Wang and Vidyasagar [12] further discuss the passiv-
ity of the resulting transfer function and conclude that any strictly passive cascade
controller will stabilize the system and the controllers become simpler. Bellezza
et.al [4] have shown that the open loop models obtained by using clamped—free
and pinned-free eigenfunctions are identical and only differ in the reference frame
in which the elastic deflections are measured. It should be noted that the actual
boundary conditions given by (1.2)—(1.5) are neither pinned—free nor clamped—free.
In fact, the boundary conditions are time varying and depend on the input torque
profile. Cetinkunt and Yu [5] have compared the first three modes of the closed—
loop system for pinned-free and clamped—free mode shapes with the modes obtained
from the exact solution of the Bernouli-Euler beam equation. For both tip posi-
tion proportional-derivative (PD) controller and hub angle PD controller, they have
shown that the predictions of clamped-free mode shapes are much more accurate

than the predictions of pinned—free mode shape models. Bayo [6] uses Hamilton’s



principle and a finite element approach to model a single flexible-link arm. One
advantage of this method is that different material properties and boundary condi-
tions like hubs, tip loads and changes in cross section can be handled in a simple
manner. Usoro et.al 7] use a finite-element Lagrange method to model multi-link
flexible robots, but no comparison is made with other schemes and the model is not
validated with experimental evidence. There have been a few other approaches to
modeling multi-link flexible robots. Book [29] introduced a recursive Lagrangian
assumed modes method to model a flexible-link manipulator in three dimensional
space. The method is applicable to revolute-joint robots and gives rise to dynamic

equations of the form

M(2)z + h(z,2) + Kz = Bu (1.6)

where M(z), K are the positive definite inertia and stiffness matrices, k(z, z) is the
vector of Coriolis and centrifugal terms, z is the vector of generalized coordinates
(joint positions and deflection coordinates), B is a constant matrix which depends on
the shape functions used, and u is the vector of input torques. A complete model for
a two-link manipulator is given in [9]. Benati and Morro [10] consider the modeling
of a chain of flexible links by describing the deflection w(z;,¢) of each point on link
¢ as

w(zi,t) = a(t)pn(2) + aa(t)a(c) (L.7)
where ¢y, ¢, are the first two eigenfunctions of the clamped-mass beam with a mass
equal to the total mass of the links and payload after link . The deflection equation
(1.7) can then be related to ¥; and §; quantities by (see Figure 1.2)

w(zi, ¥i, 6:) = oz, 1) + B(zi, 1)4; (1.8)

where [ is the link length and «, 8 are known functions. The kinetic and potential
energies are then found based on this kinematic description and the Lagrangian

method is used to derive the dynamic equations.



Figure 1.2: Chain of flexible links.

Yoshikawa et.al [13] have modeled each link of a three degree of freedom flex-
ible robot with two flexible links using a lumped parameter approximation. The
mass of each link is assumed to be negligible and a lumped mass is considered at
the tip of each link. The flexibility effects are approximated by lumped torsional
and longitudinal springs attached at the end point of each link. These quantities
are in terms of the links geometry and material properties such as mass density and
modulus of elasticity. The modeling is again carried out using the Lagrangian for-
mulation. De Luca et.al [14] have conducted experiments on a two-link robot with
a flexible forearm. The modeling is similar to that in [9]. They have reported the
accuracy of the flexible part of their model based on experimental observations. For
a rather severe trajectory, it is concluded that the first vibrational mode is signifi-
cantly excited and the model with two vibration modes has been reported to yield

satisfactory results.



1.3 Control Strategies

Most of the research in the area of flexible-link manipulator control has been ap-
plied to the case of a single flexible arm. However there is one major critique in
this regard. In the multi-link case, the mass matrix contains joint position vari-
ables, which introduce considerable nonlinearities in the dynamic equations. For a
single flexible link the mass matrix is only a function of deflection variables- which
are quadratic type nonlinearities. Thus a single-link may well approximate a linear
system, while this is not true in the multi-link case. In spite of this fact, the experi-
ments conducted with a single link case provide a basis for multi-link investigations,
since both cases suffer from the undesirable non-minimum phase property [66]. This
property shows up when the controlled output is the end—effector position. In such
a case a critical situation is encountered when one tries to apply standard inversion
techniques for exact trajectory tracking. Any attempt to achieve exact tracking via
inversion results in unbounded state trajectories and unstable closed—loop system.
The less difficult problem of end—point stabilization may also become troublesome,
although not impossible, because of the non-minimum phase nature. On the other
hand, the tracking of joint trajectories can always be obtained in a stable fashion in
the presence of link flexibilities. This may of course yield unacceptable tip position
errors. We will discuss the problem in more detail in section 1.5.

Of the early experimental work in this area, the work of Cannon and Scmitz
[2], Hastings and Book [1], among others, aim at the end—point regulation problem.
Output re-definition may be a key to achieving smaller tracking errors. To this end,
Wang and Vidyasagar [36] introduced the reflected-tip position as a new output
for a single flexible link. De Luca and Lanari [37] studied the regions of sensor
and actuator locations for achieving minimum phase property for a single flexible
link. Wang and Vidyasagar [56] have shown that the nonlinear flexible-link system
is not in general input-state feedback linearizable, however the system is locally

input-output linearizable.



Nemir et.al [64] introduced the pseudo-link concept but have not addressed
the non-minimum phase issue associated with the tip output. Other approaches
have been proposed to deal with the exact tracking problem. Bayo [6], and Kwon
and Book [24] introduced noncausal controllers for the purpose of exact trajectory
tracking. However their approaches typically require heavy computation and have
been restricted to the linearized single-link case. Based on the concept of pole
assignment in linear systems, transmission zero assignment was introduced by Patel
and Misra [41] and applied by Geniele et.al [54] to a single-link flexible manipulator.
Here the basic idea is to add a feedforward block to the plant so that the zeros of
the new system are at prescribed locations in the left half-plane. It is then possible
to use output feedback and ensure that the closed-loop system poles are at good
locations in the left half-plane. The work of Hashtrudi-Zaad and Khorasani [42]
which is based on an integral manifold approach may also be interpreted as a form
of output re-definition. In this work, new fast and slow outputs are defined and the
original tracking problem is reduced to tracking the slow output and stabilizing the
fast dynamics.

Input-shaping control was implemented, among others, by Hillsley and Yurkovich
(25]. Tzes and Yurkovich [26], and Khorrami [27]. This approach essentially involves
the convolution of a sequence of impulses with the reference inputs to suppress the
tip—position vibrations. This can be accomplished by coloring the input such that
no energy is injected around the flexible modes, or by filtering out the frequencies
around the flexible modes using notch filters. The validity of such methods depends
on the exact knowledge of the flexible structure dynamics. Also such methods are
open loop in essence.

The nonlinear approach to the design of controllers has also been addressed,
although to a lesser extent by some authors, e.g., [8], [16], [48], [49],[56]. In this
regard, the approach based on the singular perturbation theory [81], [44] has been

attractive due to the two-time-scale nature of the system dynamics. To this end,
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Siciliano and Book (8] furnished a singular perturbation model for the case of multi—
link manipulators which follows a similar approach in terms of modeling to that
introduced by Khorasani and Spong [46] for the case of flexible~joint manipulators.
Their control strategy is then based on stabilizing the fast dynamics and tracking
the joint trajectories. The same strategy is also addressed by [16], [48], [49]. Mostly
these researchers have taken joint positions as outputs to avoid the problems due to
the non-minimum phase nature of the plant. A comparison is made experimentally
between some of these methods by Aoustin et.al [50]. However, taking joint positions
as the outputs has the drawback of large tip position errors, especially when the
singular perturbation parameter is not small enough.

Wang and Vidyasagar [56] studied the input-state feedback linearization prob-
lem and showed that the system is not in general linearizable, however it is input—
output linearizable. The input—output linearization in the nonlinear systems theory
is essentially based on the works of Hirschorn [18] and Byrnes and Isidori [19]. To
this end, the tip positions cannot be selected as the outputs due to the instability
of the unobservable dynamics associated with such choice of outputs. Thus the def-
inition of another output may seem unavoidable. Such outputs should naturally be
selected such that small enough tracking errors are achieved [37], [38].

Recently, intelligent control methods have been applied to flexible-link manir-
ulators [39]. Intelligent control is the discipline in which control algorithms are devel-
oped by emulating certain characteristics of intelligent biological systems. Moudgal
et. al [39] have implemented a fuzzy supervisory control law for vibration damping
of a flexible two-link manipulator. However, an unbiased and accurate comparison
of intelligent and classical control strategies is not yet available in the literature.
Therefore, more benchmark comparisons should be made before one can come to
any conclusion regarding the employment of intelligent, classical, or a combination

of both methods.
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1.4 Mechanical Design

As was mentioned previously, by mechanical design we mean constructing the op-
timum shape of the links of a manipulator such that some desirable features are
achieved. Parallel to this line of research the use of advanced materials in arm
construction should not be overlooked. One example is using distributed actuators
and sensors as described in [28]. As pointed out by Asada, et.al [21], the majority
of flexible manipulators that have been addressed in the literature have a simple
structure consisting of beams with uniform mass and stiffness distribution. While
the simplified beams allow for analytic modeling and theoretical treatment, the arm
construction is unrealistically primitive and its dynamic performance is severely lim-
ited. Compensating for the poor dynamics merely by control may require a lot of
control energy and heavy computation. Therefore, alteration of plant dynamics to
achieve less stringent control strategies can be pursued in this regard.

The design process regarding arm shape design to achieve properties such as
low mass and moments of inertia and high natural frequencies generally boils down
to the solution of an optimization problem. Asada et.al [21] have obtained the
optimum torque application point and structural shape for a single flexible arm.
The torque application point affects system zeros and the structural shape mostly
affects the modal frequencies. The experimental results obtained show a twenty five
percent increase in the lowest natural frequency and the plant requires less stringent
control strategy due to a robust allocation of the torque transmission mechanism.

A few other published works have recently appeared in this area (e.g. [22], [82]).

1.5 Some Related Topics

In this section, we review some basic concepts and definitions that are related to the
control of flexible-link manipulators. The challenge of control in these manipulators

stems from several sources. First, the dynamic equations are highly coupled and
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nonlinear. Second, these equations are stiff due to the time-scale separation of the
slow rigid modes and the fast flexible modes. Third, the presence of right half-plane
transmission zeros in a non-colocated sensor-actuator configuration imposes limita-
tions on the control problem, both in trajectory tracking and set—point regulation.
These factors will create problems in control design, analysis and simulation as we
will briefly discuss in this chapter.

The study of control for these manipulators is also stimulating if one considers
similarities with other control problems. We will give a few examples from other
applications where the controller has to cope with plant nonlinearities and unstable

zero—dynamics with essentially similar characteristics.

1.5.1 Regulation and Tracking

The task of every control problem can generally be divided into two categories:
Regulation (or stabilization) and tracking (or servoing). In the regulation problem,
one is concerned with devising the control law such that the system states are
driven to a desired final equilibrium point and stabilized around that point. In the
tracking problem, one is faced with devising a controller (tracker) such that the
system ouiput tracks a given time-varying trajectory. Some examples of regulation
problems are: Temperature control of refrigerators, AC and DC voltage regulators,
and joint position control robots. Examples of tracking problems can be found in
tracking antennas, trajectory control of robots for performing specific tasks, and
control of mobile robots.

The formal definitions of the above control problems can be stated as follows [66]

Regulation Problem: Given a nonlinear dynamic system described by

i = f(z,u,t) (1.9)

where T is the nx 1 state vector, u is the m x 1 input vector, and t is the time variable,

find a control law w such that, starting from anywhere in a region in Q@ C R", the
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state tends to zero ast — oo.

Similarly
Tracking Problem: Given a nonlinear dynamic system and its output vector de-
scribed by

z = f(z,u,t)

y = h(z) (1.10)

and a desired output trajectory yq(t), find a control law for the input u such that,
starting from an initial state in a region 8 C R", the tracking error y(t) — ya(t)
approaches to zero while the whole state z remains bounded.

The control input u in the above definitions may be either called static if it
depends on the measurements of the signals directly, or dynamic if it depends on
the measurements through a set of differential equations. Tracking problems are
generally more difficult to solve than regulation problems. One reason is that, in
the tracking problem, the controller has to drive the outputs close to the desired
trajectories while maintaining stability of the whole state of the system. On the other
hand, regulation problems can be regarded as special cases of tracking problems
when the desired trajectory is constant with time.

In this thesis we are concerned with the tip—position tracking problem of
flexible-link manipulators. To get more insight into the nature of this problem
we will first review some concepts such as internal dynamics, zero-dynamics, and
non-minimum phase characteristic in the nonlinear framework. Towards this end
let us consider a class of square nonlinear systems given by (1.10) that are linear in

the input u (affine systems), i.e.,
z = f(z)+g(z)u
y = h(z) (1.11)

Let z € R*, u € RP, y € RP. Further, assume that the column vector fields f(z),

gi(z) (: = 1,...,m), and the functions h;(z) (¢ = 1,...,p) are smooth on an open
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set of R". We are interested in tracking the output vector y while keeping all other
states reasonably bounded. In this regard, a representation of (1.11) in terms of
the output vector and its time derivatives would prove helpful. Towards this end,

assume that the system (1.11) has well defined vector relative degree ([31])
T =[r1, T2, ey Ty (1.12)

in a neighberhood of origin £ = 0. Also assume that f(0) = 0 and A(0) = 0.
The assumption of a well defined relative degree implies that if we successively
differentiate y;(¢) with respect to ¢, then some component u;(t) of the input u(t)
appears for the first time at the r;th derivative of y;.

Through state-dependent coordinate and input transformations, ([31]), we

may input-output linearize the plant (1.11) so that it takes the equivalent represen-

tation
g = §f+1, ied{l, ..., p}, jed{l, .., mi—1}
€ = uw, ie{l,..,p} (1.13)
n = aén)+B(&n)u
v = &, i€{l, .., p} (1.14)
where
11 n
2 1
L y{ Y
f Y2
§=¥(z)=|  |= _ (1.15)
2 ys Y
’1, Yp
& Ly ]




External Dynamics
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|
Internal Dynamics
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e

Figure 1.3: Representation of the system in internal and external dynamics.

The £ vector represents part of the dynamics in the form of p integrator chains, each
of length r;, i € {1, ..., p},and T =[n1,--+, Nup] (M =i(z), i=1, ---, n—p),
are smooth functions of z such that the state transformation (£,7) = ¥(z) :=
(¥(z),#(z)) is a (local) diffeomorphism at the origin.

The structure of (1.13)—(1.14) is illustrated in Figure 1.3. The dynamics of 7
are referred to as internal dynamics. These dynamics are obtained from (1.14) with
£ regarded as an exogenous time-dependent function. Now the zero—dynamics of
the system in Figure 1.3 are defined as the internal dynamics of the system when
the inputs act such that the output is identically zero (v = 0, € = 0). In the

representation thus obtained the zero-dynamics are given by

i = (0, 7) (1.16)

If the zero—~dynamics of (1.16) are asymptotically stable then the original system
is a minimum-phase system. Otherwise the system is nonmimimum-phase. These
terms are adapted from linear system theory. If a transfer function H(s) of a linear

system has a zero in the right half of the complex plane, the transfer function, when
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evaluated for s going along the imaginary axis from —joo to +joo, undergoes a
change in phase which is greater, for the same magnitude, than if that zero were
replaced by its left-half plane mirror image; hence the name non~minimum phase.
In linear systems the minimum-phase characteristic can be checked in different ways.
To this end the transmission zeros of an nth—order m input, m output linear system

of the form

z = Az + Bu
y = Cz (1.17)

are defined as those values of A for which

A-)M, B
rank <n+m (1.18)
C 0

Similarly, if CB is invertible the transmission zeros are the finite eigenvalues of
A+ gBC as g — co. The latter definition has an interesting interpretation: When
static output feedback (g/mxm) is used the poles of the closed-loop system are
attracted towards the transmission zeros as the feedback gain g is increased. Thus
if the system has right-half plane transmission zeros (non-minimum phase) the

closed-loop system can become unstable under static output feedback.

1.5.2 Some Examples of Non—Minimum Phase Systems

In the rest of this section we will consider some examples in other areas with non—
minimum phase behavior. Most of these examples are from underactuated mechan-

ical systems which are somehow similar to the underactuated flexible-link system.

The Acrobat

The acrobatic-robot [87] or acrobot (see Figure 1.5) is a highly simplified model of

a human gymnast performing on a single parallel bar. By swinging his/her legs (a
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Figure 1.4: Acrobot: An acrobatic robot.

rotation at the hip) the gymnast is able to bring himself/herself into a completely
inverted position with the feet pointing upwards and the center of mass above the
bar. The acrobot consists of a simple two-link manipulator operating in a vertical
plane. The first joint (corresponding to the gymnast’s hand sliding freely on the
bar) is free to rotate. A motor is mounted at the second joint, between the links,
to provide torque input to the system. This corresponds to the gymnast’s ability to
generate torques at the hip. The acrobot is also a good model for under-actuated
mechanical systems such as unicycles and walking machines, where balance must
be maintained while trying to accomplish the assigned task. The dynamics of the
acrobot can be obtained using the Lagrangian formulation, and have the general

form

M(8)8 + C(6,6) + G(8) = 0 (1.19)

T

where 8 = (6,,0;) are the joint angles, M is the positive~definite inertia matrix, C

contains the Coriolis and centrifugal forces, G contains the effects of gravity, and =
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is the torque applied between the first and second links.
Now modeling the acrobot shown in Figure 1.5 with m; = m, = 8kg, [; =

0.5m, I, = lm, and g = 10m/s? results in

M(6) [ 12 + 8cosf, 8 + 4cosb,
8 + 4cosb, 8

. [ —40.2(20.1 + éz)sinﬂg
c(6,0) = _
] 462sin0,
[ _80(sinf, + sin(6; +
GO) = (sinby + sin(0: +62)) (1.20)
i —80sin(6; + 6,)

Consider the equilibrium point corresponding to 8§, = 8, = 0, and choose the desired
output to correspond to 6y, i.e., y = #;. Then the zero-dynamics of this system can
be obtained by finding an input that restricts the system output identically to zero
and considering the resulting internal dynamics. To this end setting y, y, ¥ to zero

yields from the first equation in (1.19) the zero-dynamics
(8 + 4c0s0, )0, — 462sinb, — 80sinb, = 0 (1.21)
and the corresponding input is obtained from the second equation in (1.19), i.e.,
80, — 80sind, = u (1.22)

Around the equilibrium point 8; = 0, 6, = 0, the dynamics given by (1.21) can be

linearized to yield
126, — 806, = 0 (1.23)

Thus the zero-dynamics are unstable at this equilibrium point. Physically these
dynamics correspond to the dynamics of the second link (an inverted pendulum)
when 6; (output) is restricted to zero. Moreover, equation (1.22) illustrates how the
control input is affected by the unstable zero-dynamics in order to maintain balance
at 6, = 0, = 0. It can be shown that taking 8, as the output will result in unstable

zero-dynamics again.
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PVTOL Aircraft

We consider the planar vertical takeoff and landing (PVTOL) aircraft given in [88].
Referring to Figure 1.5 the aim is to control the position of the aircraft. Thus the
outputs to be controlled are z and y. Simplified equations of motion for this system

are

z = —uisinb + euycosl
Yy = ujcosd + eugsinfd — 1
= u, (1.24)

where ”-17 is the gravitational acceleration and ¢ is the (small) coefficient giving the
coupling between rolling moment and the lateral acceleration of the aircraft. The
control inputs u;, 43, are the thrust (directed out from the bottom of the aircraft)
and the rolling moment. The non-minimum phase character of aircraft is a result
of small body forces that are produced in the process of generating body moments.
Here since the roll moment reaction jets create a force that is not perpendicular to
the lateral axis of the aircraft, the production of a positive rolling moment (to the
pilot’s right) will also produce a slight acceleration of the aircraft to the left. This
phenomenon makes the aircraft non-minimum phase. Thus taking z and y as the
outputs, the zero dynamics are obtained by first differentiating each output until
at least one input appears and then setting each output identical to zero. This will

lead to the following equivalent representation

r = WM

y = v

" 1

0 = ;(sinG + cosfv, + sinfv,) (1.25)

Thus the zero-dynamics are given by

b= %sinﬂ (1.26)
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Figure 1.5: The planar vertical takeoff and landing (PVTOL) aircraft.

The above equation is reminiscent of the dynamics of an undamped pendulum which
is not asymptotically stable. This undamped behavior may produce undesirable
aircraft response. For example if y is to be kept at zero by v, and z is forced to
track a smooth trajectory by v;, the aircraft will acquire a pendulum-like motion
which may not be desirable.

Another non-minimum phase characteristic in aircraft dynamics is the re-
sponse of aircraft altitude to the deflection of the elevator angle [66]. This will show
itself in an initial downward motion when an attempt is made to move upward.
Of course, such non-minimum phase behavior is important for the pilot to know,

especially when flying at low altitudes.

Flexible-Link Manipulators

To illustrate the non-minimum phase characteristic in flexible-link systems we con-
sider a single-link flexible arm as shown in Figure 1.1. A linearized dynamic model

of this arm can be found by using the method of assumed modes and Lagrangian
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formulation. When a single flexural mode is used the following dynamics result

mué + mlgg = Uu

mlgé + ngs + kJ + d(; =0 (1.27)

where m,;, 7, j € {1,2}, are components of the mass matrix given, for zero payload,

by
{
my = pAl3/3 +Jp, mp= / d(z)zpAdz, mo = pA (1.28)
0

where A is the link’s cross sectional area, p is its mass density, ¢(z) is the modal

shape function, and k is the stiffness coefficient of the beam given by

_ g1 [
k= E[/O (S5)da (1.29)

In (1.29), F is the link modulus of elasticity and [ is the cross sectional area moment
of inertia. Also in (1.30), d is the damping coefficient of the flexural mode, and u is

the input torque. Defining the output y as the tip position and ¢. = ¢({), we have
y=60+¢0 (1.30)

where 9. = ¢(l). As before the zero—dynamics can be found by setting y identically

zero, which yields

u = (myz—mnde)d (1.31)
0 = (Mo —m¢.)d +dé + ké (1.32)

The zero dynamics represented by (1.32) are generally unstable since m2 —m ¢ <
0. Note that by using (1.28) the latter term is given by pA(l — ¢. Ji z¢(z)dz).
Now, assuming a clamped—free mode shape it can be concluded from #(z) < ¢.
that ¢ [} zé(z)dz < #212/2. Therefore, if | is large enough the first coefficient in
(1.32) is negative, i.e., unstable zero-dynamics. The nonminimum-phase condition

in this case is a result of the non-colocated sensor and actuator positions. The
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system is under-actuated as in previous examples and the input torque affects the
tip position through flexural variable § and rigid body mode 8. From the control
point of view, the zero-dynamics addresses an important question: Is there any
control input that can identically regulate y to zero? The unstable zero-dynamics
given by (1.32) implies that the internal states §, § will be unbounded if the initial
states are different from zero. This will require an unbounded input from (1.31)
which is not desirable. However, relaxing the control goal of identically zeroing the
output, it is possible to have sufficiently small bounded output while the internal

states are bounded, even when the system is nonminimum-phase.
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1.6 Contributions and Accomplishments of this
Dissertation

This thesis focuses on three main steps in engineering practice: Theoretical devel-
opment, software simulation, and practical implementation. Here we are specifically
dealing with the trajectory tracking control of flexible multi-link manipulators and
are interested in achieving sufficiently small tip—position tracking errors while main-
taining closed-loop system stability.

The control problem is considered to be a difficult one for several reasons:
The non-minimum phase characteristic of the plant, the nonlinear dynamics of the
manipulator, and the ill-conditioned dynamics that results from the time-scale sep-
aration of rigid and flexible modes. It is now more than a decade that several
researchers have worked on different aspects of the control and design of such ma-
nipulators. In this respect, the contributions of this research can be summarized as

follows:

1. Tracking Control Using Integral Manifolds

Development of a nonlinear control strategy is considered for approximate tip—
position tracking of a class of flexible multi-link manipulators based on the concept
of integral manifolds and singular perturbation theory. The development is along
the lines stated in [42], [43] which is applicable to the linear dynamics of a single-link
flexible arm. Our development is based on the more appropriate nonlinear frame-
work, and is applicable to a class of multi-link flexible manipulators. The results
are stated in Theorem 2.1 which furnishes the conditions under which small tracking
errors and closed-loop system stability are guaranteed. From a practical point of
view, a major advantage of the proposed strategy is that the only measurements
required are the tip positions, joint positions, and joint velocities. This topic is

addressed in Chapter 2 and has appeared in [70].
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2. Tracking Control by Output Redefinition and Input—Output Decou-
pling

Decoupling control is essentially based on the developments described in [18] and
[19]. Its application to flexible-link manipulators has appeared in [79] and [38].
To ensure that the internal dynamics remain bounded, we have modified both the
controlled outputs and the control inputs such that boundedness of the internal
dynamics is guaranteed. The results are summarized in Theorem 3.1 which indicates
the conditions for achieving closed-loop system stability with this control strategy.
Again, the control strategy is developed in a general context for a class of multi-link
flexible manipulators. This topic is addressed in Chapter 3 and has appeared in [69].
The same strategy is further expanded in Chapter 5, using the concept of sliding
surfaces in variable structure control. [t is shown that a more robust performance
is achieved in the face of considerable parametric uncertainties. The results are

summarized in Theorem 5.1.

3. Observation Strategy for Flexural Rates

Many advanced control strategies require knowledge of flexible modes as well as
their time derivatives (flexural rates). The flexible modes can be measured by eco-
nomic sensors such as strain gauges, but the measurement of flexural rates is rather
inconvenient and prone to errors. Therefore, an observer is proposed to estimate
these variables. The observation scheme is proposed in a general framework and can
be applied to find the flexural rates if joint positions, joint velocities, and flexible
modes are available. The observation scheme is also incorporated in the control
strategy outlined in item 2 above and the conditions for achieving closed-loop sys-
tem stability are obtained. The results are summarized in Theorem 4.1. This topic

is addressed in Chapter 4 and has appeared in [78].

4. Structure Design

Improving the plant characteristics to achieve a more well behaved system for the
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purpose of control has been a usual trend in systems and control engineering practice.
As an example, for the aircraft to be open-loop stable, the center of mass has to
be ahead of the center of pressure. Thus, one aspect of aircraft design is to achieve
such a condition. The same philosophy can be applied to flexible structure robots.
The design process then boils down to the solution of an optimization problem
to achieve low inertia arms with high structural natural frequencies [21], [22], [82]-
Although increasing the structural natural frequencies will help to improve structural
properties, it is not necessarily enough to achieve a more robust control. To this
end an optimization index was introduced in [71] that incorporates a measure called
modal accessibility [34]. This measure indicates the ease with which the flexible
modes can be accessed and can therefore improve the system performance. This

topic is addressed in Chapter 6 and has appeared in [71].

5. Experimental Evaluation

To evaluate the performance of the controllers outlined in parts 1-3 above a two-link
flexible manipulator was built with the first link rigid and the second link flexible.
This setup has two significant features that highlight two main characteristics of
flexible manipulators: Nonlinear dynamics and the non-minimum phase behavior.
The instrumentation, wiring, layout design, analog signal conditioning, and interfac-
ing with the computational engine were carried out in the first step. In the second
step, the control algorithms were coded in C-language and tailored for execution
in a real-time environment. More details on the experimental results are given in

Chapters 2 and 4.
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Chapter 2

Tracking Control by Integral
Manifolds

In this chapter a nonlinear control strategy for tip position trajectory tracking of a
class of structurally flexible multi-link manipulators is developed. Using the concept
of integral manifolds and singular perturbation theory, the full-order flexible system
is decomposed into corrected slow and fast subsystems. The tip position vector is
similarly partitioned into corrected slow and fast outputs. To ensure an asymp-
totic tracking capability, the corrected slow subsystem is augmented by a dynamical
controller in such a way that the resulting closed—loop zero dynamics are linear
and asymptotically stable. The tracking problem is then re-defined as tracking the
slow output and stabilizing the corrected fast subsystem by using dynamic output
feedback. Consequently, it is possible to show that the tip position tracking errors
converge to a residual set of O(e?), where ¢ is the singular perturbation parameter.
A major advantage of the proposed strategy is that the only measurements required
are the tip positions, joint positions, and joint velocities. Experimental results for a
single-link arm are also presented and compared with the case when the slow control

is designed based on the rigid-body model of the manipulator.
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2.1 Introduction

As it was discussed in Chapter 1 the control of structurally flexible manipulators
is hampered by their non-minimum phase characteristic. For a causal controller,
this characteristic hinders perfect asymptotic tracking of the desired tip position
trajectories with bounded control inputs. In this regard, the approach based on
singular perturbation theory [81], [44], is attractive due to the two—time—scale nature
of the system dynamics.

In this chapter, we address the problem of tip position tracking of flexible
multi-link manipulators with the same design philosophy as in [42], [43],[90] but by
taking into account the nonlinear characteristics of the plant. Most of the standard
singular perturbation results that are applied to flexible-link manipulators in the lit-
erature exclude high performance light-weight manipulators, since a reduced—order
rigid body equivalence of the flexible manipulator has limited use and application.
However, the integral manifold approach in [42], [43] and [45], [46] facilitates the
inclusion of the effects of higher frequency flexible modes into the corrected models.
The methodology proposed in this chapter is tested by simulations on a two-link
flexible manipulator, and experimentally on a single-link flexible arm. The new
strategy allows for smaller tip position tracking errors, and its implementation does
not require any measurement of rates of change of deflection variables with time, as
these variables are not generally conveniently measurable.

The organization of this chapter is as follows. In section 2.2, the concept of
integral manifolds is used to decompose the dynamics of the full-order flexible sys-
tem into reduced-order corrected slow and fast subsystems up to O(e®), where ¢
is the singular perturbation parameter representing the elasticity of the arm. In
section 2.3, the control laws for the reduced order subsystems are designed. The
main objective of the control problem is to achieve asymptotic stability of the fast
subsystem and guarantee the tracking of the slow subsystem outputs by using only

tip positions, joint positions and velocities. Towards this end, dynamical output
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feedback controllers are constructed for the corrected slow and fast subsystems. It
is shown that in the resulting closed—loop system, the tip positions track desired
reference trajectories to O(e?). In section 2.3, simulation results are also presented
for a two-link flexible manipulator. Experimental results for a single-link arm are
presented in section 2.4 and compared with the case when the slow control is based
on the rigid-body model of the manipulator. It is shown that improved tip po-
sition tracking performance is achievable by using the proposed scheme. Finally,

conclusions are given in section 2.5.

2.2 Model Reduction Using Integral Manifolds

In this section, an order reduction of the dynamic equations of flexible-link manip-
ulators is given by using the concept of integral manifolds. A composite control
strategy [44] is assumed in which the controller is comprised of slow and fast terms.
The integral manifolds method, in the context of composite control, has been ap-
plied to flexible—joint manipulators in [45] and [46] and to flexible-link manipulators
in [42] and [43]. Such control laws are referred to as corrective control laws because
the slow control component contains corrective terms added to the term designed
for the rigid model. In the following, we briefly establish the singularly perturbed
model of the flexible-link manipulator that is considered in the sequel.

Consider the dynamic equations of a flexible-link robotic manipulator given

by ([8])
6 fZ(Q9 q) g2(Qs q') Ja 6) 0 K 6 0

or equivalently

é = —Hll(q76)(f1(q7q)+gl(q141618))
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- le(‘l? J)(fZ((L 4) + 92(‘1, Qa 61 6)) - Hl2(‘17 J)Ka + Hll(Q? 6)”
= —Hn(q, 6)(fl(q7 Q) +gl(Q7 41 61 <S-))
- H22(Q7 6)(f2(Q1 é) + g2(‘11 41 67 6)) - H22(Q7 6) Ké+ H21(q7 6)“ (22)

O

where ¢ € R" is the vector of joint position variables, § € R™ is the vector of flexible
modes, f1, f2, g1, and g, are the terms due to gravity, Coriolis, and centripetal forces,
H is the inverse of the positive-definite mass matrix M such that M, ;, H;;, ¢, =
1,2 are the submatrices corresponding to the ¢ and é vectors, and K is the positive
definite stiffness matrix. Let us define the new state variables

) é

= =. =—’ = - 2.3
Iy =4q, T2 =q, Z =2 22 e (2.3)

where ¢ is the singular perturbation parameter defined [42], [43] as

1
P — 2.4
Amin(Ha20K) (24)

In (6.4), Anin(H220K) is the lower bound of the minimum eigenvalue of the Ha,
submatrix evaluated at § = 0 (i.e. Hz = H22(q,0)) over the range in which ¢

varies. The system described by (6.2) may then be written as

I, = Zi
T2 = a(xy,T2,€%21,620) — A(z1,€%21) 21 + Hii(21,€%21)u (2.5)
EZl = Zg
€23 = b(zy,z2,6%21,625) — B(z1,6%21) 2z + Hy (21,6221 )u (2.6)

where z;,z, € R?, 21,22 € R™ and

a(ll, Z2, 6221, 522) = —H11f1 - lefz — Hy191 — Hi292
b(l'l, 2, 6221, 622) = —Hufi— Haf: — Hug — Ha2g2
H , 22K
A(z,, 6221) = ,\12@(1[[622?12)
H €22 ) K
B(z1,¢%2) ;4”(‘,,2;2) (27)
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Defining the tip positions as outputs, the output vector y is written as [79]
y =z + Velz (2.8)

where ¥ is an n x n matrix depending on the shape function used in the original
model given by (6.2) (see Appendix B for further details). In this analysis it is
assumed that the vibrations are in the lateral plane of each joint axis. Let z(¢,z)
and z(¢,€) denote the solutions of (2.5)-(2.6). In the (2n + 2m)-dimensional state
space of (2.5)~(2.6), a 2n—-dimensional manifold M., depending on the scalar ¢,
defined by

M.: z=h(z,u,e) (2.9)

is said to be an integral manifold of (2.5)—(2.6) if given z(%o,€) = h(z(to,€),u,¢),
it then follows that z(t,&) = h(z(t,€),u,¢) for all ¢ > o, where 27 = [T 2]].
Substituting A from (2.9) in (2.6) leads to a partial differential equation for 4 that
is referred to in the literature as the manifold condition [45], [81], [53]. However,
an approximate solution may be found by a series expansion of v and A in terms
of . The €? term in (2.8) suggests that the expansions of h(z,u,e) and u are
required at least up to €3 terms if output feedback is to be used for control. This
will become obvious shortly from equation (2.23). Let us now express the control
input u according to

u = us(z,€,t) + uy(z, 2) (2.10)

where

Uy = U + €Uy + 2uy + O(€3) (2.11)
with uo, u;, and u; to be designed subsequently. It is further assumed that u; is
zero on the second order corrected slow manifold, that is, up to O(e®). Expanding
zy and 2, in (2.9) as

21 := hy(z,u,€) = hig + €hy1 + €%h12 + O(€%)
23 := ha(z,u, &) = hao + €hay + €%hay + O(&?) (2.12)
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and substituting (2.12) in (2.6) gives

E(ilm + ehyy + €%hyp + O(€%)) = hao + €hay + €2has + O(€3)
e(izzo + ehgy + €%hos + 0(&?)) = b(zy, x5, €%(h1o + O(¢)), e(hao + €hay + O(?)))
—B(z1,€*(h1o + O(€))(h1o + ha1 + O(€?)) + Ha1(z1,€2(h1o + O(€))(2.13)

Equating the terms with the same powers in € on both sides of the above equations

up to & and using (2.11) gives

h = 0
hay = hyeo
haa = hyu

hio = B7Y(z1,0)(b(z1,0,0) + Ha1(z1,0)uo)

hiy = B7Yz1,0)Hyu{zy,0)u

. b ab
hiz = Bz, 0)(—ha1 + 96 Is.é:o hio + — |5.5=0 ha1

aé
= 0B
- as; ls=0 h10i)h10 + Ha1(21,0)uz

i=1
b (3 oo o (2.14)
where h)q; is the i-th element of hio. By now substituting z; and z, from (2.12) into
(2.5) yields the dynamics of the ezact slow subsystem restricted to the M, manifold
(42], [43], [90], [45], [46], [53]. Keeping O(e?) terms and assuming that the fast control
uy is inactive on the O(&2) approximate manifold, or more precisely, the second order
manifold represented by M, : z = h%(z,uq,0) +ch'(z, ug, uy,€) + O(e?), the second

order corrected slow subsystem is obtained as

.’i:1=$2

£y = Mpo(uo + euy + e*uz — fi(z1,2)) — £2d(21, 22, £2 |e=0, Uo, g) (2.15)
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where My = Mi1:(q,0) !, and d(.) is given by
3Hu

d(z1, 2, Z2 |c=0, Uo, o) = H110(G12h10 + Gr1h21) + (Z ls=0 h1oi) fi
i=1
JoH b 6A
+(Z 12 Is—o h1oi) f2 + Hi20(G22h10 + Garha1) + (Z %' ls=0 P10i)h1o
:-—l i=1
aHu
Z IS-—O hwz)uo + Huonzo{ h21 + a3 lss—o k1o + 86 Iss— hay
=1
= 9B aH21

~(2 75, ls=o P hw+((z — ls=0 huoiJuo} (2.16)

=1

with the G;j, 7,7 = 1,2 matrices in (2.16) defined as

3 )
Gu(zy,z2) = 65? lsizo  Gaulz1,22) = 65? |5.6=0

dg dg
Gra(z1,22) = 35‘ lsimo  Gaa(z1,72) = a; l5.4=0 (2.17)

It should be pointed out that in the calculation of izlo and /;.10 whenever z;
and I, are required they are obtained from the controlled rigid model (i.e. at ¢ = 0)

given by

Ty = I,

.’2'22 = a(zl,xg,0,0) - A(.’Bl,O)hlo + H11($1,0)UQ (218)

The exact fast variable z will deviate from the second order manifold M;. Repre-

senting this deviation by Z;, Z; according to

2y =2z — (hwo+ehu+ €2h12)
2y =29 — (hoo + €hay + €2h22) (2.19)

and substituting (2.19) in (2.6) results in the ezact fast subsystem described by

62:'1 = 52—63,&12

'In general M;jo = M;j(g,0) and Hijo = H;j(q,0) fori=1,2, j =1,2.
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= 0B

€2, = —(B(z1,0)+ € Z Is_o hioi)Z1
:-1
JH.
+ (Huo+¢* Z 36'21 ls=0 hioi)us + 0(53) (2.20)

=1

By neglecting the O(&3) terms, the corrected fast subsystem is now governed by

631 = 22
3 " JB
€2, = —(B(z1,0)+¢ Z 35, |ls=0 h10i)Z1
i=1
O0H.
+ (Huo+€® z 6621 ls=0 R10i)urs (2.21)
=1 t

Our aim is to use output feedback to stabilize the fast subsystem (2.21) so
that the second order manifold is an attractive set. To this end, let us consider y
from (2.8) when z; is defined from (2.19). This defines the actual output restricted
to O(e) manifold by
Yres = T1 + £2U(31 + h1o) (2.22)
Thus, we may now define the slow and fast outputs y, and yy, respectively according
to
Ys: = 1+ e2Whyy
yr: = ¥z (2.23)
so that y,.s = ys +y;. Note that y; can be obtained from measurements of the joint
variables (positions and velocities). If the total tip deflection y is measured, then yy

can be constructed formally from y; = y — y,. Thus, if y — y, is used to obtain yy,

there will always be an O(e?) error term due to the neglected unmodeled terms.

2.3 Slow and Fast Subsystem Control Strategies

In this section, we will develop control strategies based on output feedback for the
corrected slow and fast subsystems described by (2.15) and (2.21), respectively. The
outputs of the subsystems are given by (2.23).
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Slow Subsystem Control Strategy

Consider the input-output representation of the second order corrected slow sub-

system described by (2.15) with output given by y;, in (2.23), i.e.,

.

Js = Mo(uo + euy + €%up — fi(z1, 22))

—  %d(zy, 2, &3 |emo, Uo, ti0) + E2Wh1o (2.24)
The objective, as proposed in [42], [30], [90] is to design the control terms uo, u

and u; such that the resulting closed—loop system has asymptotically stable zero

dynamics. Towards this end, taking

up = Muovo + fi(z1,22)
up = Muyon
u = Muo(vz + d(z1, 22, &2 |e=0, U0, o) — Phio) (2.25)
will render (2.24) into
s = vo + vy + €20, (2.26)

where vg, v;, and v, are new inputs to be defined subsequently. Note that with the
above choice of control laws, A9, A3, and k), are now expressed in terms of v, vy,

and v, respectively. Now let us choose

vy = Ay

Ve = Ag'l.}o (2.27)

which when substituted in (2.26) yield

_1;, = v+ EAll.Jo + EzAgi;o = U (228)

This is the new representation of the corrected slow subsystem with its zero dynamics
given by
U= A, (2.29)
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where v7 = [vf vT], and

e i
A, = (2.30)

_AATY  auart
2 3

The matrices A; and A; are chosen such that the zero-dynamics are asymptotically
stable. This can always be guaranteed, for instance by taking A; = [ and A, any
positive definite matrix. The tracking objective for system (2.28) is now stated as
follows: Design the control law v, such that the resulting closed-loop output y, and
its higher order derivatives follow prescribed desired trajectories.

Let v, in (2.28) be defined as
vs = §r — Ka(9s — 9r) — Kp(ys — ) (2.31)
where y,, ¥, and g, define the reference trajectory to be tracked, and further define
the tracking error signals by
& =y—Y, €=U -4, e =[¢ ¢ (2.32)
The error dynamics are now given by

é=A.e (2.33)

where

[ 0 I
A, = (2.34)

-K, —Ky
Substituting (2.31) into (2.28) and using (2.30) and (2.32) yields

b = Ay + by(ijy, €, €) (2.35)

where

0
-1
AL (§, — Kaes — Kpey)
A block diagram of the corrected slow subsystem control strategy is shown in Figure

2.1.

bo(ijrr €,€) = [ (2.36)
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Figure 2.1: Block diagram of the corrected slow subsystem control strategy.
Fast Subsystermn Control Strategy

Consider the corrected fast dynamics (2.21) with the fast output y; defined by (2.23).

We are interested in using dynamic output feedback to stabilize the fast dynamics.

To this end, (2.21) is written in the form

Eé = Af(xl, Ig, 52, ‘UQ)E + Bf(zly T2, 52, Uo)Uf (2'37)

where 7 = [zT 3T] and

Af(:) = Ajo+e*Apn(z1,z2,v0)
o 1] 0 0
= te 3B
| —B(z1,0) 0 | — X1 35 le=0 h1oi 0
Bf(') = Bfo +€2Bf1($1’$2, 'Uo)
0 . 0
= +e ) (2.38)
| —Hao | T B (520 huo

The output y; may also be written as

y, = Cfi" (239)
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where the n x 2m output matrix Cy is given by
C;=[e?¥ 0] (2.40)

Since the slow variables are treated as frozen parameters [81] in (2.37), the above
system is linear in terms of 2. Considering the O(1) terms in Af(-) and By(-)
in (2.38), the general configuration for the dynamic output feedback controller is

proposed as

ew = F(z,)w+ G(zy)yy (2.41)
up = M(z1)w+ N(z1)ys (2.42)

where w € R/, and matrices F(z,) (I x I}, G(z;) (I x n), M(z;) (n x ), and N(z,)
(n x n) are to be selected so that the resulting closed—loop corrected fast subsystem
is asymptotically stable. In order to have a controller which is robust to higher order
unmodeled dynamics and measurement noise, there should be no feed~through of
the output in the control law (i.e., N(z,) = 0) [47]. Thus, augmenting the fast
dynamics (2.37) with (2.41) and using the control law (2.42) yields the closed-loop

corrected fast subsystem

€1 = (Aq(z1) + €2 Apea (21, T2, v0) )0 (2.43)
where
n' = [ w]
e = | e Beledite)|
hon(orzmte) = -Afl(xl(,)zg,vo) Bfl(zl,zgc,)vo)M(xl)J .44

and which by design is guaranteed to be asymptotically stable.
A stability analysis for the full-order system is performed by considering the
open-loop system (2.5)-(2.6) and the control laws (2.10), (2.11), (2.25), (2.35),
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(2.41), and (2.42), and by relaxing the frozen parameter assumption in treating the

corrected fast subsystem. This analysis is now summarized in the following theorem:

Theorem 2.1 Let the control laws (2.10), (2.11), (2.25), (2.835), (2.41), and
(2.42) be applied to the open—loop nonlinear system (2.5)-(2.6). Assuming that the
desired reference trajectories and their time derivatives (at least up to order 2) are
continuous and bounded, it then follows that the trajectories of e, 5, and v converge
to a residual set of order O(e?) if the perturbation parameter € belongs to the interval
(0,Emaz) With Emqar obtained from matriz A in (A.11), and further, provided that
certain norm conditions on the vectors b., b,, b,, the matrices A., Ay, A,, F(z1),

G(z1), and M(z,) defined by (A.7)-(A.9) are satisfied.

Proof: The above result is proved in Appendix A.1 by utilizing a Lyapunov stability

analysis.
Remark 1

Using the above theorem, it can also be shown that the tip position and velocity
tracking errors are O(e?). To show this, consider for example y —y,. From (2.8) and
(2.12), it follows that y = z, + ¥ehio + O(e3), which from (2.23) may be written
as y = ys + O(e®). Consequently, as shown in the theorem, since y, — y, + O(&?),
it then follows that y — y. + O(e?). A similar result also holds for y, that is,
¥ = g + O(?).

Remark 2 (Robustness considerations)

The significance of the stability analysis presented in Appendix A.l is that it can
provide the designer with guidelines for selecting controller gain matrices for a more
robust design. Towards this end, consider the elements of the matrix A that are

affected by the control gain matrices K,, K4, A1, A2, M(z,), F(z1), and G(z,). In
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general, to ensure better robustness, the off-diagonal terms in A should be decreased
and the diagonal terms should be increased. A closer inspection of A reveals that
decreasing Ypal|| Poll, YE|| Pell, and 274, || P,|| + {3 fulfills the aforementioned goal. It
can also be concluded from these terms that choosing the gain matrices to reduce
the norms ||Py[l, 18Py (z1)/0z1ll, [|A1AZ K, Kdlll, [P, IM(z1)]l, and || Pe]| will
generally result in a more robust closed—loop system. Of these terms, the matrix
M(z,) was found experimentally to have a significant effect on robustness. This
may be attributed to the fact that it affects the yg term (see (A.8)) which in turn

appears as an O(1) off-diagonal term in A.

Numerical Simulations: A Two-Link Flexible Manipulator

A two-link planar manipulator is considered in which the first link is rigid and the
second link is flexible. The main reasons for investigating this system are that it
contains strong nonlinear coupling terms in addition to being non-minimum phase.

The two-link data are as follows

1 =02, I, =0.6m, a; = 1.3cm x 3.0, a; = 0.88mm x 5.0cm
p = 7980kg/m> (Steel), M; = 1kg, M, = 0.25kg, € = 0.03
E =190 x 10°N/m?, J; = J, = 0.002, J4 = 3 x 10~ Skgm?

where [; ({2), a1 (a2), My (M), Jp ( J1, J2), p and E denote link lengths, cross
sectional areas, masses at the end points of each link, mass moments of inertia (hub,
second joint, load), mass density, and Young’s modulus of elasticity, respectively.
The first two flexible modes of this system when linearized around zero joint
angles are 5.6 and 27.6 Hz. The roots corresponding to the linearized zero dynamics
(when the tip position is taken as the output) are at +3576.9 and +16.0. The slow
control components of u; (e.g. d(-)) were obtained by MAPLE. The matrices
F'(z,), G(z:1), and M(z,) are obtained to place the poles of A,(z;) in the left~half
of the complex plane. This is achieved by obtaining the two gain matrices K(z;)

and L(z,) as follows: The matrix K(z;) is obtained by solving a pole placement
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problem for the pair (Ago(z1), Bro(z1)) with a prescribed set of pole locations Pk,
selected to be in the left-half of the complex plane. Similarly, the matrix L(z,) is
obtained by placing the poles of the pair (A%,(z1),C7) to be at a prescribed set
of pole locations P, selected to be in the left-half of the complex plane. This is
equivalent to solving the stabilization problem of the triple (Aso(z1), Bfo(z1),Cy)
using a Luenberger observer.

The stabilization of A,(z;) is achieved by dividing the workspace trajectory
into ten segments and solving a dynamic pole placement problem for each segment
such that the eigenvalues of A,(z;) are at prescribed locations in the left—half of the
complex plane. The gain matrices F'(z,), G(z1), and M(z,) were then obtained by
linear interpolation. In this way, the maximum real part of the eigenvalues of A,(z;)
is ensured to be negative when z, (second joint position variable) lies in the region
of interest. It should pointed out that the use of state dependent gain matrices
F(z;), G(z1), and M(z,) does not, in general, guarantee stability of the closed-loop
system and further interconnection conditions (see (A.7)-(A.9) in Appendix A.1)
should be satisfied.

A qualitative measure that is observed from the Lyapunov stability analysis
(cf. Remark 2 in section 3) is utilized to improve the robustness of the closed-loop
system. Specifically, lowering the norm of the matrix M(z;) was found to have a
significant effect on the stability condition. Thus, to decrease this norm, the first
row of this matrix was set to zero (which is equivalent to de-activating the fast
control term for the first-link actuator). This is justified by noting that the first
actuator has a lower accessibility to the vibrational modes of the second link and
is likely to destabilize the closed-loop system because of higher gain requirements.
The roots of the linearized zero-dynamics are located at £22.51 and +64.70, and
the other gain matrices are: A; = A2 = 51342, Kp = Iox2, Kg = 215x,.

The simulation results for quintic reference trajectories are shown in Figure

2.2. It is observed that the tracking errors y;, — y; and y, — y, are both of order
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Figure 2.2: Simulation results for a flexible two-link manipulator using the proposed
corrected controller (Horizontal axis: time (s)): a) First joint torque input (Nm)
b) Second joint torque input (Nm) c¢) First flexible mode (m) d) Second flexible
mode (m) e) First joint angle (—) and reference trajectory (---) (rad) f) Tip
position of second link (—) and reference trajectory (---) (rad) g) Tracking error
of the first link joint position, yi, — 31 (rad) h) Tip position tracking error of the
second link, yzr — y2 (rad).

42



0.035

0.03

0.025

0.02

0.01S

0.01

0.00S

-0.005 t
0 2

Figure 2.3: Simulation results for the proposed corrected control scheme: Maximum
a bsolute value of the arm deflection (—) at each instant computed among twenty
equidistant points on the second link, and tip deflection tracking error, l(y2, — y2)

(--+) (m).

O(e®) as expected (recall that ¢ = 0.03). The magnitude of the fast control u;
is relatively small compared to the slow control u,, that is of the same order of
magnitude as the control required for rigid-body motion. The maximum deflection
of the arm is plotted in Figure 2.3 together with the tip deflection error at each
instant of time.

A comparison of the performance of the proposed controller with other meth-
ods in the literature can be made by choosing the composite controller to consist
of a slow control law that is designed based on the rigid body model (e.g. [8], [49])
and a fast control law that is identical to the one used in the proposed controller.
Specifically, the slow controller uo in (2.25) is obtained by setting € = 0 in (2.10),
(2.11), and in y, given by (2.23), and in y, given by (2.28) to yield

uo = Muo(yr — Ka(z2 — 9r) — Kp(z1 — 7)) + fi(z1, 72)
Simulation results for the same K, and K, as before are shown in Figure 2.4. As
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Figure 2.4: Simulation results for a slow control that is based on rigid—-body model
plus a fast control (uncorrected scheme)(Horizontal axis: time (s)): a) First joint
torque input (Nm) b) Second joint torque input (Nm) c) First flexible mode (m)
d) Second flexible mode (m) ) First joint angle (—) and reference trajectory
(---) (rad) f) Tip position of second link (—) and reference trajectory (---) (rad)
g) Tracking error of the first link joint position, y;, —y; (rad)  h) Tip position
tracking error of the second link, ypr — yo (rad).
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Figure 2.5: Simulation results for the scheme based on rigid—body slow control plus
the fast control (uncorrected scheme): Maximum absolute value of the arm deflection
(—) at each instant computed among twenty equidistant points on the second link,
and tip deflection tracking error, {3(yor — y2) (---) (m).
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can be seen, this composite controller results in worse tracking error performance as
compared to the proposed controller. The maximum deflection of the arm is plotted
in Figure 2.5 together with the tip deflection error at each instant of time. The two
case studies show that the proposed controller has been successful in providing a
stable control action in addition to smaller tracking errors (the maximum absolute
error is 7.3 times smaller as seen from Figures 2.2h and 2.4h). A quantitative
measure to evaluate the tracking performance of the controllers can be defined as
the ratio of maximum tip deflection error to the maximum arm deflection during
the whole trajectory. For the proposed control scheme, this ratio is 0.13 (Figure 2.3)
while for the rigid—-body based slow control a ratio of 0.86 is obtained (Figure 2.5).
In other words, the proposed control scheme results in an improvement of 6.6 times

(0.86/0.13) in the above ratio.

2.4 Experimental Results

In this section, the practical implementation of the control strategy discussed in this
chapter is investigated. Figure 2.6 shows the schematic diagram of our experimental
setup. The flexible link is a stainless—steel 60cm x 5¢m x 0.9mm rectangular bar
with a 0.251kg payload attached to its end point. The mass of the bar is 0.216kg
that is comparable to its payload. The first three measured natural frequencies
are at 5.5, 20, and 45 Hz. The sensory equipment consists of three strain gauge
bridges, a tachometer, and a shaft-encoder that are used to measure the flexible
modes of the link, joint rate, and joint position, respectively. The signals from the
strain gauge bridges and the tachometer are then amplified using low-drift amplifier
stages and further passed through anti-aliasing filters. These signals are then fed
into the XVME-500/8 analog input module from Xycom. The actuator is a 5113
Pittman DC brushless servomotor which is driven by a 508 Copley PWM servo—drive

amplifier.
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Figure 2.6: Experimental setup for the flexible arm.
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The digital hardware has been selected based on the idea of a reconfigurable
sensor-based control application. The Chimera 3.1 Real Time Operating System [73]
is used as a local operating system in conjunction with a global UNIX environment.
It can execute on one or more single board computers in a VMEbus—based system.
In Figure 2.6, the Chimera 3.1 kernel is running on the Ironics MC68030 processor
with 33M Hz clock frequency and a floating—point co—processor. This processor,
along with the analog and digital output modules, are used for data acquisition as
well as computation of the control algorithm. The code to run under Chimera 3.1
is written in C.

The tip deflection is constructed based on the measurements obtained from
the strain gauges. Considering a point z along the link, its deflection as a function

of time can be written as

w(z,t) = 3° (@) (2) (2.45)

=1
where m is the number of flexible modes, ¢;(z) is the :-th mode shape function, and
;(t) is the i-th flexible mode. The longitudinal strain at point z is then obtained
from

e(z,t) =

D Zu
R 2.46
5 (2.46)

V1+(32)?
where D is the thickness of the beam at point z and the remaining term Is the
reciprocal of the radius of curvature at z. An approximation to the above formula

can be obtained by noting that for typical motions of the link dw/dz, is small. Thus

e(z,t) ~ gi 9 a‘i(f)a,-(t) (2.47)

=1

In order to ensure a better approximation, three points on the link were selected
to yield a small norm for the denominator in (2.46). By measuring the strains at
the three points on the link, two deflection modes can be obtained using the Moore

pseudo—-inverse formula as shown in [64].
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2.4.1 Model Validation

In order to evaluate the accuracy of the open-loop dynamic model of the flexible-link
system, frequency responses of the link were obtained from the strain gauge outputs
to the command torque input for a sufficiently small input as long as the output
signals remain undistorted. The nonlinear dynamic model was derived by using the
method of assumed modes as shown in Appendix C. Defining X7 = [q &, - m),
where m is the number of flexible modes, and y as the vector of strain outputs, a

linearized model is obtained in the following form

X = AX +bu
y = CX (2.48)

where u is the command torque input and

On n In. n
A= ) 1, b=MgY10 --- 0
—M; 'Ky Onxn

lel lem
Omxl K

(2.49)

C = [ 0mxl Cmem Omxn ] 9 Ko =

where n =m + 1, My = M(q,6 =0), and Cj,, ., is obtained from (2.47). A sketch
of the magnitudes of frequency responses obtained from this model for m = 2 and
m = J along with the experimental results are given in Figure 2.7. It is observed that
the experimental results do closely match the predicted results obtained from the
model based on the assumed modes method. As the number of modes is increased
from two to three, the higher frequency portions of the curve gets closer to the
experimental data. Moreover, it was found that the clamped-mass shape functions

resulted in a closer match than the clamped-free shape functions.
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Figure 2.7: Comparison between the experimental (x) and the analytical fr equency
responses for two (—) and three (——) flexible modes when the strain gauge output
is taken at a) Point 1, b) Point 2, and c) Point 3. Horizontal axis: Frequency
(Hz), Vertical axis: (strain/u) dB .
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2.4.2 Implementation of the Control Law

The terms required by the controller are based on the model given in the Appendix

C and are as follows

d(z1, T2, £2 |e=0, U0, Uo) = 3 x 1076¢Pvo — 37.237¢

- —26.6512vq —26.6482v;
th = ) hu =
0.0296vq —0.2964v,

12 =
—1.0965%, + 0.01774%ve — 0.2222u,

[ 19.9221% — 1011.8217¢?vo — 199.7986u; }

For the open-loop flexible-link system the roots of the linearized zero dynamics
are located at +15.4, £572.2. The design matrices F', G, and M are selected so that
the poles of A,, given by (2.44), are in the left-half of the complex plane. Thus,

choosing Pk, = {—0.1 + j4.2,—0.1 + j1.0} and P, = {-0.2 + j8.4,—-0.2 + 2.0},

results in ) .
-0.3773  0.3773  1.0000 0
Fe 0.4227  —0.4227 0 1.0000
—101.6687 20.3974 —1.6594 7.3035
| —16.0989 —0.7886 —0.2861 1.2594 |
G =10* x [0.0133 —0.0149 3.2128 0.5014]
and

M =[0.0004 —0.0006 0.0019 — 0.0083].

The other data parameters for this system are given as € = 0.03, K, = 1, K; = 2,
A; =235, and A, = 37.

The differential equations corresponding to the dynamic control laws (2.35)
and (2.41) have to be numerically solved for a digital implementation. The numerical
solution has to be fast enough so that the results are computed and made available

well before the end of each sampling period. The procedure adopted here is the

51



modified midpoint method [74]. On average, this method requires 1.5 derivative
evaluations per step as compared to the Runge-Kutta’s 4 evaluations. Three steps
were used during each sampling period. The implemented algorithm took 2.2 msec
on the MC68030 Ironics processor board. Thus, a sampling frequency of 350 Hz
was used. This rate was sufficient to allow computation of the control law as well as
the data acquisition and trajectory generation tasks, while maintaining closed-loop
system stability.

Due to mechanical imprecisions in the physical construction of the manipu-
lator, the arm is not completely level in the horizontal plane. This can lead to
considerable errors due to the fact that the magnitude of the required torque for
control is small. The problem is resolved by noting that the gravity field produces
a torque about the joint axis that may be expressed by 7, = a + bcos(q) + csin(q),
where q is the joint angle and a, b and ¢ are terms due to small offset angles. These
terms are estimated by measuring the balancing torques at several joint angles and
by using the least-squares algorithm. Thus, 7, is added to the control torque to
counterbalance the gravitational effects. The experimental results are shown in Fig-
ure 2.8, for the case when the proposed control strategy is applied, and in Figure 2.9,
for the case when the fast control remains the same but a rigid body slow control is
employed. The experimental results show improved tracking performance for the
proposed method. The ratio of maximum tip position error to maximum arm deflec-
tion during the whole trajectory is found to be 0.67 for the proposed scheme and 1.39
for the slow rigid—based control method. The steady-state errors in both figures are
a result of the small arm deflection that exists due to gravity effects. The maximum
tip angular error of the simulated 2-link nonlinear system is about 0.005rad while
it is 0.057ad for the experimental arm. It should be noted that a faster trajectory is
used in the experimental case. On the other hand, it is worth emphasizing that the
theoretical tracking error bound in Theorem 2.1 is derived subject to the absence

of modeling imperfections, friction terms, actuator dynamics, discretization effects,
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Figure 2.8: Experimental results for the proposed method: a) Strains at points 1
(—),2(—=),and 3 (---) (m/m) b) Torque input (Nm) c) Joint velocity (rad/s)
d) Tip trajectory (—) and desired tip trajectory (---) (rad) e) Deflection modes
41 (—) and &, (---) (m) f) Tip position trajectory error, y, — y (rad).

33



—4 a) b)

o
=955 1 2 3 a4
d)
2
1.s}

0.5

-1

Q.05

—0-095g 1 2 3 a “o 1 2 3 a
Figure 2.9: Experimental results for the slow control designed based on the rigid
model plus the fast control: a) Strains at points 1 (—), 2 (——), and 3 (--+) (m/m)
b) Torque input (Nm) c) Joint velocity (rad/s) d) Tip trajectory (—) and desired
tip trajectory (---) (rad) e) Deflection modes §; (—) and &, (---) (m) f) Tip
position trajectory error, y. —y (rad).
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sensor noise, higher frequency unmodeled dynamics, and computational delay of the
control law. These factors are among the possible sources that contribute to the
difference between the theoretical tracking error estimates and the actual tracking

€rITors.

2.5 Conclusion

In this chapter, a control scheme was proposed for achieving greater accuracy for tip
position tracking in structurally flexible robotic manipulators. Theoretical estimates
show that the tracking errors converge to a residual set of O(e?), and experimental
results show that smaller tip position tracking errors are achieved compared to
conventional algorithms in the literature. The only measurements required by the
control law are joint positions, velocities and tip positions. This is an attractive
feature from a practical implementation point of view as tip deflection rates are
not directly measured, but tip positions can be readily measured by camera vision
systems or strain gauge sensors. The control law is more complicated than its rigid
counterpart; however the use of symbolic manipulation software and fast real-time

control technology make the implementation of such a control law feasible.
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Chapter 3

Decoupling Control

In this chapter we present an inverse dynamics control strategy to achieve sufficiently
small tracking errors for a class of multi-link structurally flexible manipulators.
This is done by defining new outputs near the end points of the arms as well as
by augmenting the control inputs by terms which ensure stable operation of the
closed-loop system under specific conditions. The controller is designed in a two—
step process. First, a new output is defined such that the zero dynamics of the
corresponding system are stable. Next, to ensure stable asymptotic tracking the
control input is modified such that stable asymptotic tracking of the new output or
approximate tracking of the actual output may be achieved. This is illustrated for

the case of single- and two-link flexible manipulators.

3.1 Introduction

As discussed in Chapter 1, it is well known that the transfer function from the
torque input to the tip position output of a single-link manipulator is, in general,
non-minimum phase [36]. For a causal controller, the non~minimum phase prop-

erty hinders perfect asymptotic tracking of a desired tip trajectory with a bounded
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control input. Thus, for a causal controller and perfect tracking, the flexible sys-
tem should be minimum phase. The minimum phase property may be achieved by
output re-definition, as done in [36], [37], [38], or by a redefinition of the output
into slow and fast outputs as done in the previous chapter. In [36], the reflected
tip position was proposed as the output for a single-link manipulator. In [37], the
region of sensor and actuator locations for achieving the minimum-phase property
for a single-link manipulator was investigated using a linear transfer function of the
link. In [38], a region of outputs having the minimum phase property was given
for a two-link manipulator. However, the approach is restricted since it consists of
numerical calculations for a specific manipulator with two flexible modes.

In this chapter, after deriving the zero dynamics of a certain class of multi-
link flexible manipulators, we will develop a control strategy based on input-output
linearization of the flexible-link system. Modeling uncertainties have been taken
into account, and it is further assumed that the vibrations are mainly lateral vibra-
tions about the axis of rotation. In other words, for each link it is assumed that a
considerable amount of potential energy is stored in the direction of bending cor-
responding to the axis of rotation of that link, and that the potential energies due
to deflections in other directions are negligible. This may be achieved by proper
mechanical structure design. A planar manipulator with rectangular cross sections
in which the height to thickness ratio of each cross section is large is an example of
such a system.

The results are applied to a two-link manipulator. In particular, regions cor-
responding to the minimum-phase property are obtained and compared under dif-
ferent load and damping conditions. The control strategy is also tested on flexible

single- and two-link manipulators.

57



3.2 Input—Output Linearization

The input-state map of flexible-link manipulators is not in general feedback lineariz-
able [56]. However, the system is locally input-output linearizable. Input—output
linearization in nonlinear systems theory is essentially based on the developments
described in [18] and [19]. In order to apply this technique to flexible-link manip-
ulators, let us first consider the dynamics of a multi-link flexible manipulator [29]

) -
0

where ¢ is the n x 1 vector of joint variables, § is the m x 1 vector of deflection

with structural damping added, i.e.,

wldly f1(q,9) + 91(q, 4,6,8) + Erg
8 f2(qsq)+g2(q347678)+E25+K6

variables, fi, f2,91, and g, are the terms due to gravity, Coriolis, and centripetal
forces, M is the positive-definite mass matrix, £; and E, are positive-definite
damping matrices, K is the positive-definite stiffness matrix, and u is the n x 1

vector of input torques (clamped mode shapes have been assumed). Let us define

i, Hy Hi . .
H(q,0) = M~'(q,6) = . Then (1) can be written in the state-space
Hy  Ha
form
z = f(z) + g(z)u (3.2)

flz)= E
—Hu(fi+ 91+ Er1q) — Hi2(f2 + g2 + K6 + Eq6)

| —Hyu(fi+g + E1q) — Haa(fo+ g2+ Kd + 525) ]

O(m+n)xn
g(.’t) = Hll((h 6)
H3(q,9)
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Figure 3.1: The output of link 7 (y;).

Following [38], since the beam deflection is usually small with respect to link length,
we have from Figure 3.1,

vi=gt+ade/li,1=1,2,---,n (3.3)

In (3.3), o is a variable which takes values between —1 and +1, with «; = 1,0, 1
corresponding to tip, joint angle, and reflected tip positions respectively.
The tip deflection d;. can be written as
die =) ®i5(L:)6; (3.4)
1=l
where ®;; is the j-th mode shape function of the i-th link and §;; is the j-th mode

of the ¢-th link. Thus, for the output vector, we have (see also Appendix B)

y=q+ Unymd (3.5)
where
-v;r o ]
b - oT --. oT
0T o7 T
(vl = [ ®u(l) - <p,-,,,.(1.-)],i=1,---,n)

U~
~
i
I_"—II_-IN
[—

AT ] (3.6)
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with A, being the vector of the deflection variables of link ¢, defined as
N . (3.7

Now consider system (3.2), with the output defined by (3.5). To perform
input—output linearization on this system we take time derivatives until the inputs
appear. In our case, two differentiations are required, after which all inputs appear

simultaneously. After some manipulations we have,
j = a(a,z) + Blayq,8)u (3.8)

where

T
(a4 =[al .o an],

B(a, q, 6) = Hll + \DnXmH219

a(a,z) = —(Hu + VHn)(fi + 1 + Erg) — (Hi2 + VH2,)
x(f2 + g2 + K& + E5é). (3.9)
Now suppose that a and ¢, have been selected such that B(a,¢,,0) is nonsingular

(¢- denotes the desired reference trajectory to be tracked by y). Then continuity

implies that, on a finite domain around z¥ = [¢7 0 ¢7 0], taking u as

u= B Ya,q,8)(v—a(a,z)) (3.10)

results in

y=v (3.11)

which is an input-output linearized system with a new input vector v. Note that
the dimension of the unobservable dynamics is 2m. Now consider the state trans-

formation

2=T(z) = Drz (3.12)
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where z := [z 2T], and
T _(,T,T
2, = [zol 202

T _1.,T T
zu—[zulzuZ

Inxn \I’nxm Onxn Onxm

On n Onm [nn ‘I’n m
DT= X X X X

Omxn [mxm Omxn Omxm

Omxn Ome Omxn [mxm

=

Because of the nonsingularity of Dr, (3.12) is a global diffeomorphism, and will

transform (3.2) with output given by (3.5) into
éol = 202
2,2 = a(a,z)+ B(e,q,8)u
ze = C(z)+ D(z)u

Yy = 2a

(3.13)

where C(z) and D(z) are matrices corresponding to f(z) and g(z). To find the zero

dynamics, z,; and z,, are set identically to zero, which after some manipulations

leads to an explicit relationship for the zero dynamics, i.e.
éul = Zu2
Zw2 = [—Ha+ Har(Hy + VHy) Y (Hiz + ¥ Hj,)) | (wi,ws)

X [fa(wr, w2) + g2(w1, w2, w3, ws) + Kzu1 + Epzy2)
where
wy = —Wzy1, w2 = —Wzyp, w3 = 241, Wy = 242
Linearizing (3.14) about the equilibrium point z,,, z,2 = 0 gives
Zyl = Zy
2o = [—Hyp+ Hau(Hu + UHy) ' (Hiz + Y Hi)] |20,200=0
X (Kzy + Eazy2)
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The following result is now concluded from the above discussion:

Condition for Minimum—Phase Behavior: Let the vector ¢, and the matrices

H(0,0), K, and E, be such that the matrix

0] I
Ala) = (3.17)
-P K —-RFE,
with Py given by
Po = [Hy — Hot(Hy + VHoy )" (Hyz + ¥ H2)l(00) (3.18)

is a Hurwitz matrix. Then the origin of (3.16), and hence (3.14), is locally asymp-
totically stable, and the original nonlinear system is locally minimum phase. This
result follows by noting that the eigenvalues of A are the modes of the linearized
zero dynamics of the system. It is interesting to note that « = 0 (joint posi-
tion output) guarantees Fp to be a positive definite matrix, which makes A a
Hurwitz matrix. This can be shown by using the Lyapunov function candidate
V = 2l Kz, + 2L, Py ' 2,5 for (3.16) and applying LaSalle’s theorem.

Now suppose that, due to modeling errors and truncation of modes, we cannot
exactly get u given by (3.10). Furthermore, since the damping terms E; and E,
are not commonly modeled exactly, we include them in the uncertainties. Thus in
the previous relations, it suffices to put £; = E; = 0 and account for them in the

uncertainties. Let us define

u=B"Y(,q,8)(v — (e, 7)) + K5(q)d + K;(q)b (3.19)

where B = B—ABand a = a— Aa, with AB and Aa representing the uncertainties

in B and a respectively !. Then, from (3.8) we have

j= BB+ (I — BB ")a- BB'Aa + BK;s(q)é + BK;(q)é (3.20)

!Note that B is at our disposal. For example, it may be obtained from a model with two flexible
modes while the actual plant may be described by three flexible modes.
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In view of (3.13) with u given by (3.19) and choosing
v=y+ Kye + Kyé (3.21)

where e = y, — y (yr is the desired trajectory for the output), yields

E = AgE + dg(a, z, , t) (3.22)
with

dg(e,z,t) = ([ — BB™')(Kye+ Kqé+ . —a)+ BBAa — BK;(q)s + K;(q)é
o = [ o]

0 I
Ag = (3.23)
-K, —Ky
Similarly (3.13) can be written in terms of the new u, that is
A= Ap(QA+ (3.24)
Ga (:z:, t)

where

Ga(z,t) = HuoBy'(iir + Kpe + Kaé) + Haro(—By a0 + By lao) + O(6%, 4, 4)
0 I

—P(q)K — H210K5(q) —H210K;(q)

AT = [§T §7) (3.25)

Aa(g) =

and O(8%,q,q) indicates that the remaining terms are of order 82, and Hoyo =
H7(q,0) (the same notation is adopted for the other H;; (i,j = 1,2) submatri-
ces in the sequel). Furthermore, matrices K5(q) and K;(q) are selected such that

Aa(q) is a Hurwitz matrix for the range in which q is varied and

P(q) = [Haz0 — Ha10(H10 + ¥ Ha10) ™ (H120 + ¥ Hago)) (3.26)
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Noting that Ag and Aa are Hurwitz matrices, it may then be shown (using a
Lyapunov analysis) that the trajectories of the closed-loop system given by (3.22)
and (3.24) converge to a residual set with small tracking errors e and ¢ and bounded
§ and é provided that certain conditions are satisfied. The following theorem sum-

marizing the above results may then be stated.

Theorem 3.1 Let the control law (3.19) be applied to the original nonlinear
system (3.1) with B nonsingular on the domain of interest, then assuming that the
desired trajectories and their time derivatives (at least up to order 2) are continuous
and bounded, it follows that the trajectories of E, ;A (€1 is a positive number
typically less than one), starting from a specific set, converge to a small residual set
provided that certain norm conditions in a bounded region of the state space of E
and A, containing the origin are satisfied.

Proof: The above result is proved in Appendix A.2.

Remark 1: Singular B Matrix

Here we have assumed that B(a,q,d) is nonsingular. In case B is singular the
decoupling method described above cannot be achieved by static state feedback.

However it may still be possible to find a dynamic compensator of the form
z = dz,z)+ Ec(z,2)U
u = fda,2)+Ge(e,2)U (3.27)

with z € R", U € R", such that the extended system described by (3.8) and (3.27)
with output given by (3.5) is decoupled from U to y. The theoretical developments
for general affine nonlinear systems are given in [68]. From a practical point of
view in our application, employing this method may have the drawback of requiring
acceleration (or higher derivative) measurements.

Remark 2: Tip—Position Tracking Errors

In Theorem 3.1, we mention redefined output tracking errors which have been de-

noted by e; and e;. The redefined outputs are near the tip positions. The controller
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Figure 3.2: Tip position and redefined outputs of link z.

tries to achieve small tracking errors at these points. The additional tracking errors
at the tip positions are therefore a result of the effect of moving the nearby redefined
outputs along the desired trajectories. An approximate relationship for the addi-
tional tracking error between the redefined output of link z and its tip position can
be found as follows. Refer to Figure 3.2 where point A corresponds to the redefined
output and B corresponds to the tip—position of link :. Thus the additional error
corresponds to the angle ZBO;A in this figure which can be obtained from
122k Dika, Ok

LBO;A = tan
al,-

ta

-1 Lk 4),{“6,: _ (3.28)

L;

where ¢ and ¢;1q, denote the kth shape function of link 7 evaluated at the tip po-
sition and the redefined output of link ¢, respectively. Assuming that the deflections

are small compared to the length of the link, (3.28) can be written as

(BOA=Y Mak (3.29)

& a,'l,

Now if (3.29) is normalized to the deflection of the link at the redefined output
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Figure 3.3: Variation of the approximate relative error é%% (vertical axis) with

the o; of the redefined output.

(measured from the rigid body angle ¢;) we have

LBO;A _ ikt — Gika, )0k

[A0C = Tadumde (3:30)
Since the desired trajectories are usually smooth, the first flexural modes are excited
more than the rest, i.e., §; > §2 > ---. Therefore an approximation to (3.30) can
be found as

LBO:;A - a;ibire — Pra;
LAO.C ~ e

(3.31)

3.2.1 Derivation of H(0,0)

It is noted that in order to use (3.17)-(3.18), H(0,0) (or M(0,0)) should be known.
Fortunately, since only M at ¢ = 0 and é = 0 is required, the calculation of M is
greatly simplified and a general method can be established for deriving M(0,0) with
any number of modes. This was done for a planar two-link manipulator used in our

case study. To do so, it is sufficient to find the kinetic energy K. of the system when it
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passes through ¢ = 0 and é = 0 and then use K.(0,0) = 1 [ gt o7 ] M(0,0) [ Z ]

to find M(0,0).

3.2.2 A Model for the Damping Term F,

In this section we establish a model for the term E, introduced in (3.1) and used in

(3.17). Considering (3.1) and eliminating ¢ from the equations, we get
Né + By + K6 — My M3 (Vi + Erg) + Vo = — My M u (3.32)
where V; and V; are the terms due to Coriolis and centripetal forces, and
N(q,8) = Mn(q,8) — Ma(q,8) My (g, 6) Mra(g, 6) (3.33)

Considering the dynamics of flexible modes ((3.32)) at ¢,¢ = 0, and linearizing this

equation about &, = 0 gives
N+ Exb+ K8 = f := —My M u (3.34)

where f is the total resulting forcing function and N, = N(0,0). Physically, (3.34)
describes the dynamics of the flexible modes of the system when all the joints are
locked at ¢ = 0. Note that the matrices in (3.17)-(3.18) were evaluated at ¢ = 0
and § = 0. The damping term can now be postulated as F; = ayN, + Bx K where
ay and B are constant positive scalars. This model is known as Rayleigh Damping
in vibration theory (see e.g. [33]). Thus the damping factor of each mode is given

[33] by & = %‘{, i=1,2,---,m, where w? is the i-th eigenvalue of N K.
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3.3 Case Studies

3.3.1 Regions having the Minimum—-Phase Property for a
Two—Link Manipulator

A planar two-link manipulator is studied in this section and the regions of output
locations for achieving the minimum-phase property are obtained. The manipula-
tor consists of two uniform bars with rectangular cross sections and considerable

flexibility with the following numerical data
11 = 12 = 0.7m, Al(:z:l) = A2($2) = 7.44em x 0.46cm,

p = 2700kg/m? (6061 Aluminum), M, = M, = 0.52kg,
E =693 x10°N/m?, J, =J, = 0.17kgm?

where /; and [; are link lengths, A; and A, are cross sectional areas, E and p are
modulus of elasticity and mass density, and M, , M,, J; and J, are masses and mass
moments of inertia at the end points of each link.

The damping model was chosen as discussed in the previous section. It was
assumed that the damping ratio of the first mode, £, is given, and ay , 3k contribute
equally to this damping ratio. The extreme cases where either ay or Sk are zero
were also considered. The results were similar. Here, results are presented only for
equal contribution of ax and Bx. The vector a in (3.9) has the form of = (o a2].
The terms «; and a; were varied from —1 to +1 and the matrix A in (3.17) was
tested for eigenvalues in the left half plane. Figure (3.4) shows the results for the
region near the tip positions from a = 0.9 to @ = 1. Three flexible modes were used
in Figures 3.4a-3.4c, but for the rest, four flexible modes were used. The damping
ratio was chosen as 1074, 10~7, and 10~2. When the damping ratio is very small,
i.e. 107!, the regions of minimum-phase behavior are not reliable. A change in

load configuration (Figure 3.4e-3.4i), or the number of flexible modes will change
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Figure 3.4: Regions of outputs for minimum-phase behavior (dark areas). Horizon-
tal axis: a;, Vertical axis: az. (a, b, c) Regions for §; = 107!4,10~7, 1072 respectively
when three flexible modes are used (M; = M, = 0.52kg, J; = J; = 0.1Tkgm?).

(d, e, f) Same as a—c when four flexible modes are used. (g, h, i) Same as d—f but
with different loading, i.e., M1 = M; = 1.55kg and J; = J;, = 0.51kgm?.
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this behavior. However, note that the damping ratio (&) is of the order of 0.01
for commonly used metals. It is also interesting to note that the behavior does not
change much when we change ¢; from 10~7 to 10~2. Moreover, there are points
(e.g. a1 = 0.9, az = 1) which will preserve the minimum-phase property in spite of
changes in load configuration (M;, M3, J1,J,), damping ratio (£;), and the number
of flexible modes. The discontinuities in Figure 3.4 are as the result of the resolution

by which « is varied.

3.3.2 Inverse—Dynamics Control

A Single Flexible Arm
The control law developed in the previous sections was applied to a single-link

flexible Aluminum arm with the following data
l=13m, A =8cm x 1.5mm, M, = lkg, J, = 0.002kgm?, J, = 3 x 10~ °kgm?

where [, A, M,, J,, Ji denote the length, payload mass, payload inertia and hub
inertia respectively. The a-vector is now a scalar, and it was selected as a = 0.85
designed based on a plant model with three modes. The control law (3.19) was then
designed based on a model with two flexible modes with K, = 9 and Ky = 6. In
this way the performance of the controller is tested for higher frequency unmodeled
dynamics. Figure 3.5 illustrates the simulation results. It is interesting to note that
to achieve tip position tracking the hub angle has to evolve in an oscillatory fashion.
In this case, the closed—loop system was stable for K5 = K; = 0, but this is not the
case in general, as discussed in the next example.

A Two—-Link Planar Manipulator

A two-link planar manipulator is considered in which the first link is rigid and the
second link is flexible. In this way significant nonlinearities are introduced in the

dynamic equations compared to the single-link case. The two-link data are
[y =0.2m, [, = 1.3m, A; = 4.8387 x 107°m?, A, =0.9975 x 10™*m?
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Figure 3.5: Simulation results for a single-link arm using inverse dynamics. (a)
Input torque (Nm) vs. time (sec) (b) Flexible modes (m) (first mode:—, second
mode:——, third mode: not shown) (c) Joint position () and reference trajectory
(-..) in radians (d) Tip position () and reference trajectory (...) in radians.

p = 7860kg/m?> (Steel), My = M, = lkg,
E =206 x 10°N/m?, J, = J, = 0.002kgm?, Jy = 3 x 10-5kgm?

The two-link system is modeled by the assumed modes method with two flexible
modes. Further F; and E, are assumed to be zero. Using (3.17), a was chosen
to be close to 1 and such that the zeros are purely imaginary. This gave a critical
value of o = 0.943. Then Kjs(q) and Kj;(q) were chosen such that at each point g
(the second joint position variable), the matrix Aa(g) in (3.25) is a Hurwitz matrix.
This was achieved by solving a pole placement problem at ten points and using
linear interpolation to obtain Kj(q) and Kj;(q) at other points. It is important to
choose the eigenvalues of Aa(q) close to the jw axis so that small K5(q) and K;(q)
are obtained for better robustness (see Appendix A.2). Setting these gains to zero
resulted in an unstable system. The maximum torque required for tracking was

about 5 Nm which was reduced to less than 1 Nm when a was reduced to 0.9. The
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Figure 3.6: Simulation results for a two link manipulator (z — azis: time (sec)). (a)
First actuator torque (Nm) (b) Second actuator torque (Nm) (c) First flexible
mode (m) (d) Second flexible mode (m) (e) First tip position trajectory (-)
and reference trajectory (...) in radians (f) Second tip position trajectory (-) and
reference trajectory (...) in radians.

results for @ = 0.9 are shown in Figure 3.6.

3.4 Conclusion

The control strategy discussed in this chapter yields sufficiently small tip-position
errors and good robustness properties. This may be attributed to the decoupling
effect of the input—output linearization technique. The control strategy was designed
for a special class of manipulators in which the major deflection coordinates are in
the same direction as the joint coordinates. A possible solution to the more general
case is either through proper mechanical structure design or by introducing extra
control inputs to affect flexibilities in other directions. From the two-link example
it was also found that controlling the flexibility effects of the second link by the
input control of the first link is hardly ever achievable and stability problems may
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arise. Thus the solution to the more general case may be offered by adding extra
control inputs and better mechanical design. A drawback of this strategy may,
however, be the requirement for full measurement of the states. Practically, joint
positions and their rates as well as deflection variables (§) are measurable but § is
not directly measurable and should be estimated or reconstructed from deflection

variable measurements (see e.g. [55]).
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Chapter 4

Observer—Based Decoupling

Control

In this chapter, we focus on the design of an observer-based inverse dynamics control
strategy that results in sufficiently small tip—position tracking errors while main-
taining robust closed-loop performance for a class of multi-link structurally flexible
manipulators. The control design is essentially based on the method described in
Chapter 3. As part of the control design, a nonlinear observer is introduced to
estimate the rates of change of flexible modes. By a proper choice of control and
observer gains, the error dynamics are guaranteed to consist of a stable linear part
plus a bounded perturbation term that results in asymptotically stable observation
and closed-loop system stability with small tip position tracking errors. Experi-
mental results are given for the case of a two-link flexible manipulator that further

confirm the theoretical and simulation results.

4.1 Introduction

Accurate knowledge of state variables is required by many advanced control algo-

rithms for flexible multi-link robots, e.g. see [57], [8], [79]. It is possible to measure
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joint positions, velocities, and flexible modes of manipulators using shaft encoders,
tachometers, and strain gauges [64], respectively. However measuring rates of change
of flexible modes cannot be easily or accurately accomplished. One method is to
integrate the outputs of accelerometers installed along the arms or to use analog dif-
ferentiation of the deflection variables [55]. The former approach may be restricted
from economic considerations and the latter because of noise problems. Thus a
nonlinear state observer is desirable in these circumstances. Several authors have
studied the development of nonlinear observers in the general context of nonlinear
systems or specifically intended for (mainly) rigid robot manipulators [60], [61], [62],
(63]. In [58] the so called psendo-linearization technique was used where the nonlin-
ear robot dynamics are transformed into a linear model by a nonlinear state-space
change of coordinates. Sliding techniques were introduced in [60], [61] where the
attractive manifold concept was employed.

The organization of this chapter is as follows. First, the control strategy
described in Chapter 3 is employed to choose points near the tip outputs such that
stable zero-dynamics are achieved. As before, it is assumed that the vibrations are
mainly lateral vibrations about the axis of each link. Second, an observation strategy
is developed by studying certain characteristics of the dynamics of flexible modes
of structurally flexible manipulators. In particular, the observer requires that joint
angles and velocities as well as flexible modes are available in order to estimate the
rates of change of flexible modes. It is also shown that sliding observer techniques
such as those in [60], [61] can be easily incorporated in the design. The observation
strategy is quite general and is applicable even if the above assumption regarding
the arm shapes is relaxed.

A closed-loop stability analysis is performed and conditions for achieving sta-
ble closed-loop behavior are stated. The theoretical developments are further en-

hanced by experimental studies for a two-link flexible manipulator with promising
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results. In particular, stable closed-loop performance with small tip position track-
ing errors is achieved with readily available and economic sensor equipment. Fur-
thermore, relatively large control gains can be used, resulting in reduced closed—loop

system sensitivity that would otherwise not be achieved by conventional methods.

4.2 Inverse Dynamics Control

Consider the control strategy discussed in Chapter 3. For convenience let us again
re-write the dynamics of a flexible multi-link system given by (3.1) without the

damping coefficients, i.e.,

q ’ 7 ) .1 675
Mg | 1| +| S@dta@sd |
é f2(9,9) + 92(q,4,6,6) + K¢ 0
(4.1)
Now, defining the output vector (see Chapter 3), i.e.,
Y=g+ Unum(a)S (4.2)

where ¥(«) is a matrix depending on modal shape functions and the vector al =
[a) - - - an] defines physical output locations on the links for achieving stable zero—
dynamics [69]. The input-output description of (4.1) with the output described by
(4.2) is then obtained by differentiating the output vector y with respect to time

until the input vector appears, which is given by
y = a(a,z) + B(a,q,d)u (4.3)
where B(a,q,8) = Hyy + ¥Yyxm Hay and
a(a, z) = —(Hu + Y Ha)(f1 + 1) — (Hiz2 + VHa2)(f2 + g2 + KO) (4.4)

Now let us define a finite domain around the desired reference trajectory g, ¢. given
by
O ={z:]q—q <k, [§—G <k, |6]|< ks, |§]< K} (4.5)
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where «; (¢ = 1,---, 4) are some positive bounds. Also assume that B(a,q,d) is
nonsingular in .. This is a controllability like assumption and is guaranteed to

hold when for instance o = 0. Now, let u take the following form
u= B! (a,q,8)(v — a(a, 7)) + K5(q)S + K;(q)é (4.6)

where Kj;(q) and Kj(q) are gain matrices that are to be specified later and intended

to make Aa(q) given by (4.24) a Hurwitz matrix. It then follows from (4.3) that
§ = v+ BK;s(q)d + BK;(q)é (4.7)

which is an input-output linearization of the system when Kj(q) and Kj(q) are
zero. As discussed later, these terms are added to enhance robustness and should
usually be selected sufficiently small. In the above formulations, it is assumed that
§ is available. This assumption is relaxed later on by replacing & with its estimation

from a nonlinear observer.

4.3 Observer Design

In this section our proposed observation strategy is introduced. Three cases are

considered as described below.

4.3.1 Full-Order Observer

Consider the dynamics of a multi-link flexible manipulator given by (4.1). Defining

8, =6 and &, = 4, the dynamics of flexible modes are written as

(5.1 == 62
82 = —Hun(q,6:)(f1(q:9) + 91(z)) — Haa(q, 61)(f2(g, §) + g2(2)) + K &)
+ Ha(g,d1)u (4.8)
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where z7 = [¢q7 ¢T 6T 67F] as before. Let us choose the following structure for the

observer dynamics

4 = 5:2+L1(51—<§1)

b = —Hnulq,8)(fi(:9) + 1(=c)) — Haz(g, 81)(fag,9) + 9a(2c) + K1)
+ Hau(g,61)u + (—Haa(g, 6:1) K + L3)(61 — 61) (4.9)
where zT = [¢7 ¢T 6T 52T] is the available state vector that may be used for control

purposes and L; and L, are observer gain matrices to be selected. Defining the
estimation errors 6:1 = § — 51, 6; = 0y — 6}, the observer error dynamics can be

obtained by subtracting (4.9) from (4.8), i.e.,

§ = A + bs(z, 62) (4.10)
where 67 = [&T 5~2T] and
[ L, I
A; = '
i —Ly O
A [ 0
bg(z,d;) = . ., |(4.11)
| Ha(—38 |, 62+ O1(82))) + Hao(—22 2 |5, 02+ 02(%2))

The terms in (4.11) have been obtained by using the Taylor series expansions of ¢;

and g, and noting that é:2 =dy — 6}, i.e.,

9 . )
9z = aled5,8) -3¢ |s &+ 0u&)

. 17)
ga(z) = g2(0,661,8) — 52 ” 15 & + 04(8,7) (4.12)

[t should be noted that since the components of §; in g; and g, are at most of
second order (centrifugal terms), the above Taylor series expansions terminate after
the square terms. Moreover, considering a finite region (2, around the desired point
(z,82), it follows that |65z, 6:2)” < k||8)). If L, is of the same order of magnitude as
Hj, and Hj,, the coefficient & is typically small. This follows by noting that A
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and g—g |5, are 0(63). Moreover, the matrix A; can be made Hurwitz by a proper
choice of the gains L, and L,, e.g., by selecting L, and L, to be any positive definite
matrices. Thus, choosing a Lyapunov function candidate V, = 7 P;8, where P; is
the solution of the Lyapunov equation
Agpg + PsA; = —Q; (4.13)
it follows that V, < —(Amin(Q5)—~2Amaz(P5)k)||8]|?. Hence, provided that Amin(Qz) >
2kAmaz( FPs) it follows that the error dynamics are locally asymptotically stable. Note
that if parametric uncertainties are included, the error dynamics will converge to
a residual set around the origin as shown in the sequel. In this case, assuming
a bounded input vector u, it follows that ||bs|| < k||d]| + k., where k, is an up-
per bound on all the terms due to parametric uncertainties. Then assuming that
’\min(QS) > 2k’\maz(P§)’
Vo < =(Amin(Q5) = 2Amaz (PRI + 2Amaz (P5)kull3] (4.14)
Furthermore, V, can be written as
Amin( PN < Vo < Amas(P5) 1612 (4.15)
It then follows from (4.14) and (4.15) that for all & € Q, we have
Vo < -V, +1V}/? (4.16)

where 71 = (Amaz(@5) — 2Amaz(F5))/ Amaz(P;) and v2 = 2A ez (P5)/ Amin(P5). Con-
sidering (4.16), we can conclude that if V,(0) > 42/4?, then V, < 0. Thus the
smallest residual set can be defined as Ty, = {8 | V, < 72/72} C Q, for which 42/42

is minimum.

4.3.2 Reduced—Order Observer

It is possible to obtain a reduced-order observer using a similar technique as above.

To this end, consider the following observation law

5:2 = —Hx(q,61)(f1(q,9) + gi1(zc)) — Ha2(q, 61)(f2(q, @) + g2(zc) + K&y)

79



+ Hyul(g,8)u+ G(é; — &) (4.17)

where G is 2 Hurwitz gain matrix and z. is as defined previously. The above equation
reflects the fact that &, = 6:1 is not measurable. However, by taking Gé, to the left-
hand side of the equation and defining the auxiliary state variable = &, + Gé, it

may be shown that

2 = G— Hu(q,8)(f1(9:9) + a1(zc)) — Han(9, 81)(f2(a,9) + ga(c) + K1)
-+ HZl(q’ 61)'& —_ G261 (4.18)

Similarly, defining an auxiliary state variable for the system dynamics as z = §; +
G4y, and subtracting the second equation in the resulting dynamics from (4.18), it
follows that

é: = Ge, + by (z,6) (4.19)

where bz, (z, §3) is the second element of bg(z,cfg) given by (4.11) and e, = z — 2.
Thus, if G is a Hurwitz matrix the error dynamics are stabilized locally. Note that
(4.18) is now implementable. Thus, once 3 is obtained then 4, may be obtained
from &, = # — G6,. When parametric uncertainties are present a similar analysis as

before can be developed to guarantee asymptotic stability of the error dynamics.

4.3.3 Sliding Observer

The sliding technique introduced in [61] and mentioned in the Introduction section
may be incorporated in the full-order observer design established earlier. Towards
this end, let L, and L, be positive definite diagonal matrices with diagonal ele-
ments l; and l;, ¢ = 1---m, respectively. Then, by adding terms Ksl,-sgn(&,-)
and K,y;sgn(d%) (sgn(.) is the signum function) to the observation laws (4.9), the

resulting observer dynamics can be written as
b = —libii + 8ai — Koisgn(8y:)
32:' = -lzigli - szisgn(gli) +Afi, 1=1---, m (4.20)
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Figure 4.1: Phase-plane trajectories for the sliding observer.
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where A f; contains perturbation terms and modeling uncertainties. Then for each
31,-—5'2;, the sliding condition is satisfied in the region 89; < Kag1;+ 11614, if 81; > 0 and
b2 > —Kiy1i + l1:014, if 81; < 0. The dynamics on the sliding patch (| ba; |< Ky ;) are
derived from Filippov’s solution concept [66], i.e., S;,- = —(Ksai/ K,u)Sz; +Af;. Now
if K2 is selected such that | Af; |[< K, the phase-plane trajectories are in the
form given in Figure 4.1. Note that the slope j; affects regions of direct attraction
to the sliding region.

In the rest of this chapter we will incorporate the observer strategies introduced
above into the inversion based control law given by (4.6). The developments are
carried out for the case of a full-order observer. However, a similar analysis can be

done for the reduced-order observer.

4.4 Observer Based Inverse-Dynamics Control

In this section we use the control law introduced in section 4.2 except that & is

replaced by ) given by one of the observer strategies discussed in section 4.3. Since
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the redefined output velocity is not available we use its estimated value from ¢ +
Wé,. Thus, the estimated redefined output velocity tracking error can be defined
as é = y — (@ + \1182) and the redefined output tracking error by e = y, —y. In
these relationships y,. and y, are the reference trajectory and its velocity profile,
respectively. Choosing v = g, + Kpe + Ké with K,, K determined by the output

position error dynamics, yields

E = AgE + dg(a, zc,t) (4.21)
with
de(a,ze,t) = —BKs(q)s — BK;(q)8 + O(| Kal) + 0(553)
- [ ]
0 I
Ap = (4.22)
-K, —Ky
Moreover, (4.8) can be written in terms of u given by (4.6), that is
. 0
A= Ax(g)A+ : (4.23)
GA(:B» 67 t)

where

Ga(z,8,t) = HuB7'(§ + Kpe+ Kaé) — P(q)(f2(q,9) + g2(zc)) + O(8) + O(63)

Aa(q)

0 [
[ —P(q)K - HmoKS(Q) —H210K3(Q)
AT = [6T 67 (4.24)

in which H210 = H21 (q,O) and
P(q) = [Haz0 — Hato(Hiio + ¥ Ha10) ™' (Hi20 + ¥ Hazo))- (4.25)

Furthermore, matrices K;(q) and Kj;(q) are selected such that Aa(q) is a Hur-

witz matrix for the range in which q is varied. This can be guaranteed if the pair

82



(Baos Aa,) is locally controllable on the domain of interest with

Ani(q) = 0 I
40\q) = —P(q)K 0

and

0
Ba,(q) = [ } . (4.26)

210

Noting that Ag, Aa, and A; are Hurwitz matrices, it can then be shown (using
a Lyapunov analysis) that the trajectories of the closed-loop system converge to a
residual set with small tracking errors e and é and bounded & and § provided that
certain conditions are satisfied. The following theorem summarizes the above results

Theorem Let the control law (4.6) be applied to the original nonlinear system
(4.1) with B(q, 9, a) nonsingular in Q. (see (4.5)) and the pair (Ba,,Aa,) given by
(4.26) controllable in Q.. Consider sets R, S and T given by (A.87). Provided
that the desired trajectories and their time derivatives (at least up to order 2) are
continuous and bounded, it then follows that the trajectories of E, €A and & (e is a
small scaling factor as discussed in Appendiz A.8), starting from S — R converge to
a residual set T that can be made small by proper choice of controller parameters, if
de and Ga given by (4.22) and (4.24), respectively satisfy certain norm conditions
((A.32) and (A.33)) in a bounded region §; (given in Appendiz A.3) of the full state
space (E, A, 3)

Proof: The proof of the above result is established in Appendix A.3.

Remark: Choice of Observer Gain Matrices

It is revealed from the analysis in section 4.3 that to ensure asymptotic sta-
bility of the observer dynamics, the ratio r = Apaz(P;)/Amin(@5) has to be made
sufficiently small. This will also reduce the size of the residual set. To this end, let

us consider Q5 = [ (see e.g. [65]) and choose L, = [;] and L, = [51, where [, and
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Figure 4.2: Plot of r versus observer gains.

l are positive scalar parameters. A plot of r versus {; and [/, is shown in Figure
4.2. It follows that observer gains have to be increased to achieve better observer
robustness. For the sliding observer, these gains are infinite during sliding and are
reduced outside the sliding region. Note, however that increasing the observer gains
will increase sensitivity with respect to measurement noise. Thus, there is a limit as
to how much the gains can be increased. Under certain noise conditions, Slotine et
al. [61] have shown that sliding observers exhibit superior behavior when compared

to Luenberger or Kalman filters.

4.5 Implementation of the Control Law

In this section the practical implementation of the control strategy discussed in
this chapter is considered next. Figure 4.3 shows the schematic diagram of our

experimental setup. The flexible link is a stainless-steel 60cm x 5cm x 0.9mm
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Figure 4.3: Experimental setup for the flexible-link robot.

rectangular bar with a 0.251kg payload attached to its end point. The mass of the
bar is 0.216kg that is comparable to its payload. The first link is a 20cm rigid
aluminum bar. The two-link set up has significant nonlinear and non-minimum
phase characteristics and its dynamics exhibit nonlinearities that are similar to the
case where both links are flexible.

The first two flexible modes of this system when linearized around zero joint
angles are 5.6 and 27.6 Hz. The roots corresponding to the linearized zero dynamics
(when the tip position is taken as the output) are at +;76.9 and +16.0. This setup
is essentially the same as one described in Chapter 2 (Figure 2.6) except for the
rigid first link. The sensory equipment consists of three strain gauge bridges, two
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tachometers and two shaft-encoders that are used to measure the flexible modes of
the link, joint rates, and joint positions, respectively. The signals from the strain
gauge bridges and the tachometers are then amplified using low—drift amplifier stages
and further passed through anti-aliasing filters. These signals are then fed into the
XVME-500/3 analog input module from Xycom. The actuators are 5113 Pittman
DC brushless servomotors which are direct driven by 503 Copley PWM servo—drive
amplifiers. The digital hardware has been selected based on the idea of a reconfig-
urable sensor-based control application as described in Chapter 2. The tip deflection
is again constructed based on the measurements obtained from the strain gauges (see
Chapter 2).

The differential equations corresponding to a given observation strategy have
to be solved numerically for a digital implementation. The numerical algorithm has
to be fast enough so that the results are computed and made available well before the
end of each sampling period. The procedure adopted here is the modified midpoint
method [74] which was also used in Chapter 2. The implemented algorithm took
approximately 2 msec on the MC68030 Ironics processor board. Thus, a sampling
frequency of 350 Hz was used. This rate was sufficient to allow computation of the
control law as well as the data acquisition and trajectory generation tasks while
maintaining closed-loop system stability.

Due to mechanical imprecisions in the physical construction of the manipulator
the arm is not completely level in the horizontal plane. This can lead to considerable
errors due to the fact that the magnitude of the required torque for control is small
specifically at stopping points. The problem can be resolved to some extent by
adding a compensating torque in the form of a Taylor series expansion of the static
gravity torques up to the third power of joint angles. The Taylor series coefficients
were thus estimated by measuring the balancing torques at several joint angles and

using the least-squares algorithm.
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4.5.1 Experimental Results

The control law for the two-link system was obtained based on the dynamic model
given in Appendix C.2. The model was obtained by using the symbolic manipulation
software MAPLFE [35] but only one flexible mode was used in system modeling
for control design. It would be reasonable to expect that the control performance
based on a model with two flexible modes should result in better performance.
However, it was found that the model based on a single mode gave better results.
The explanation for this is that the mass matrix of the flexible-link system becomes
more ill-conditioned as the number of flexible modes is increased. As a result, the
inverted matrix becomes more sensitive to modeling errors and uncertainties, leading
to poor or even unstable performance.

Figure 4.4 shows the condition number of the mass matrix as a function of time
for a quintic trajectory tracking control of the second flexible arm shown in Figure
4.3. The problem can further be explained as follows. In practice the estimates B
and a of B and a respectively in (4.6) are at our disposal. Also note that these terms
are both affected by the inverse of the mass matrix. Thus taking B~! = B~ — AB,
and a = @ —Aa, where ABy and Aa are the error terms, the tracking error dynamics

can be obtained from (4.7), i.e.,
é+ Kié + Kpe = ABj(v — a+ Aa) + B™'Aa + B(K5(q)é + Kg(q)g) (4.27)

Now, with a more ill-conditioned mass matrix the error terms, A B; and Aa are likely
to increase and destabilize the system. Thus there are two conflicting requirements
in this regard: The ill-conditioning due to an increased number of modes and loosing
control over higher flexural modes due to neglecting them in the control law. Both
these factors can lead to instability. Therefore, the question of how many modes to
take for satisfactory performance is difficult to quantify and should be decided in

practice.
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In all experiments, the redefined output of the second link was chosen to corre-
spond to the angle from hub to the point at 0.8/, (I, is the length of the second link).
This location was obtained to be as near the tip position as possible while maintain-
ing the non—-minimum phase characteristic (as described in Chapter 3). The output
of the first link is the joint angle itself. However, in all of the figures, the tip output
is reported instead of the re-defined output. Figure 4.5 shows the results when a
reduced—order observer is used to estimate rates of change of the deflection modes
and the control goal is to track a 3 second quintic polynomial trajectory with a 2
second tail of zero velocity and acceleration. The observer gain was G = —120 and
the error dynamics gains were K, = 22.1[542 and Ky = 9.41542. K;s and K; were
zero since the small damping of the flexible-link was enough to guarantee stability.
Similarly, the results for the other observation schemes are given in Figures 4.6 and
4.7 with Ly = 100[5x2, L, = 190001242, K, = 30.313x2, K4 = 11.0[,x, for the
full-order observer and l;; = 1, l; = 600, K,y = 5, K21 = 600, K, = 22.1154,,
K4 = 9.41,x, for the sliding-mode observer. K5 and K; were 0 and 0.2B7!, respec-
tively for the full-order observer but were chosen as 0 and 0.1 B! for the case with
the sliding-mode observer. The choice of K; and Kj; in this way is first to ensure
that Aa(q) given by 4.24 is Hurwitz and second to ensure that these terms are not
too large in 4.6 as this will destabilize the closed-loop system.

It is observed from all the figures that even after the 3 second quintic trajectory
is over there is some control activity. This is due to the gravity effects that bend
the link at the stopping point and result from the compensation provided by the
controller.

For the reduced-order observer, the closed-loop system became unstable when
G was increased. Similar results were obtained for the other two observers. This can
be attributed to the increased noise sensitivity for higher gains. In the sliding-mode
observer the ratio K3,/ K,;; had to be chosen sufficiently large for system stability.
This is mainly due to the fact that on the sliding patch the disturbance terms have
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Figure 4.4: Condition number of the mass matrix vs time (s) for the flexible arm:
Two mode model (-- ), one mode model (—), rigid model (— — —).
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Figure 4.5: Experimental results using the reduced—order observer (z — azris: time
(s)). a) Strain measurements at points 1 (—), 2 (——=), and 3 (---) (m/m) b)
Actuator inputs (Nm): 1 (—), 2 (—=—=) c) Joint velocities (rad/s): 1 (—), 2 (——)
d) First joint angle (—) and desired trajectory (---) (rad) e) Second link tip angle
(—) and desired trajectory (---) (rad) f) Trajectory tracking errors (rad): 1 (—),

2 (——).
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Figure 4.6: Experimental results using the full-order observer (z — azis: time (s)).
a) Strain measurements at points 1 (—), 2 (——), and 3 (---) (m/m) b) Actuator
inputs (Nm): 1 (—), 2 (——) c) Joint velocities (rad/s): 1 (—), 2 (——) d) First
joint angle (—) and desired trajectory (---) (rad) e) Second link tip angle (—) and
desired trajectory (---) (rad) f) Trajectory tracking errors (rad): 1 (—), 2 (——).
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Figure 4.7: Experimental results using the sliding-mode observer (z — azis: time
(s))- a) Strain measurements at points 1 (—), 2 (——), and 3 (---) (m/m) b)
Actuator inputs (Nm): 1 (—), 2 (——) c) Joint velocities (rad/s): 1 (—), 2 (—-)
d) First joint angle (—) and desired trajectory (---) (rad) e) Second link tip angle
(—) and desired trajectory (---) (rad) f) Trajectory tracking errors (rad): 1 (—),

2 (——).
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Figure 4.8: Unstable experimental results using conventional inverse dynamics PD
controller (z — azis: time (s)). a) Strain measurements at points 1 (—), 2 (——),
and 3 (---) (m/m ) b) Actuator inputs (Nm): 1 (—), 2 (——) c) Joint velocities
(rad/s): 1 (—), 2 (—=) d) First joint angle (—) and desired trajectory (---)
(rad) e) Second link tip angle (—) and desired trajectory (---) (rad) f) Trajectory
tracking errors (rad): 1 (—), 2 (—-).
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Figure 4.9: Experimental results using conventional inverse dynamics PD controller
with reduced gains (z — azis: time (s)). a) Strain measurements at points 1 (—),
2(—=), and 3 (---) (m/m) b) Actuator inputs (Nm): 1 (—), 2 (——) c) Joint
velocities (rad/s): 1 (—), 2 (——) d) First joint angle (—) and desired trajectory
(---) (rad) e) Second link tip angle (—) and desired trajectory (---) (rad) f)
Trajectory tracking errors (rad): 1 (—), 2 (——).
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to be rejected. Moreover, the operation of the controller was associated with control
chattering. Although the bandwidths of the actuators were small enough not to pass
the high frequency chattering signals, the operation of the closed—loop system was
more oscillatory than the other observers. The problem was resolved by replacing

the sgn(.) with a saturation nonlinearity of the following form with € = .05

1 T >E€
sat(z,e) =4 zfe —e<z<e
-1 < —¢€

Overall, the full-order observer was found to result in a better closed—loop perfor-
mance with little tuning of the control and observer gains.

Figures 4.8 and 4.9 show the experimental results with the conventional com-
puted torque PD control when the effects of flexibility are neglected in the plant
model. This is done to assess the performance improvement of the proposed scheme
over a conventional method. Figure 4.8 corresponds to the case when the same K,
and K, are used as before. The control input was disconnected due to instability
of the closed-loop system. On the other hand, reducing the gains to K, = 1 and
Ky = 2 results in large tracking errors and increased sensitivity of the closed-loop
system to uncertainties as shown in Figure 4.9.

Due to several factors the tracking errors are not as small as those predicted
by simulations which were run in the absence of modeling imperfections, actuator
dynamics, discretization effects, sensor noise, and computational delay of the control

law.

4.6 Conclusion

A control strategy based on nonlinear inversion was proposed for a class of struc-

turally flexible robot manipulators and experimentally tested on a two~arm flexible
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setup. Three observation strategies were also introduced to estimate the rates of
change of flexible modes that are not conveniently or economically accessible. The
observation strategies are applicable to the general case of flexible robots and tend
to cancel certain nonlinear terms that are present in the dynamic equations so that
linear observation error dynamics are obtained. The flexible robot was also tested
with a conventional control method based on rigid-link inverse dynamics PD con-
trol. The proposed scheme shows promising results for stable and small tip position

tracking error performance.
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Chapter 5

Inverse Dynamics Sliding Control

In this chapter, we modify the control strategy based on dynamic inversion discussed
in the last two chapters such that a more robust performance is achieved in the pres-
ence of considerable parametric uncertainties. Motivated by the concept of a sliding
surface in variable structure control ( VSC) [75], a robustifying term is developed to
drive the nonlinear plant’s error dynamics onto a sliding surface. On this surface,
the error dynamics are then independent of parametric uncertainties. In order to
avoid over-excitation of higher frequency flexural modes due to control chattering,
the discontinuous functions normally used in classical VSC are replaced by satu-
ration nonlinearities at the outset. This also facilitates analysis by the standard
Lyapunov techniques. The controller performance is demonstrated by simulation on

a two-link flexible manipulator with considerable amount of parametric uncertainty.

5.1 Introduction

Because of the infinite dimensional nature of the dynamics of flexible-link manip-
ulators and in order to obtain less complicated models for control design, approx-
imations are usually made in the modeling phase. These approximations may be

the source of parametric uncertainties which may in turn lead to poor or unstable
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performance. Payload variations can also significantly change the dynamic equa-
tions hence causing similar problems. One way to deal with this issue is employing
concepts from variable structure control [75], [76] which features excellent robust-
ness properties in the face of parametric uncertainties. This has been successfully
applied for trajectory tracking control of rigid robot manipulators [77]. In the case
of flexible-link manipulators, one has to deal with the non-minimum characteristic
of the plant and to ensure that the control law is smooth enough not to over excite
higher flexural modes of the plant.

Control design based on sliding surfaces is considered in this chapter. By
defining a desired sliding surface and partitioning the control input, a control law is
developed to ensure attractiveness of the surface, boundedness of the flexible modes,
and tracking of the re-defined outputs. For simplicity we assume that all the states
are available for control. Obviously the observer structure introduced in Chapter 4
may be employed to obtain flexural rates if desired.

A similar closed-loop stability analysis is performed and conditions for achiev-
ing stable closed—loop behavior are derived. The control scheme is further tested by

a numerical simulation for a two-link flexible manipulator.

5.2 Control Based on Input—Output Lineariza-
tion

Let us consider the control strategy discussed in section 4.2. Assuming that the
nominal vector a,(z) and matrix Bn(a,q,d), representing a(a,z) and B(a,q,d)

respectively, are at our disposal, (4.3) can be written as
¥ = an(z) + Ba(g,d)u + n(z,u) (5.1)

where n(z,u) = Aa(z) + AB(q,d)u and Aa(z) = a(a,z) — an(z), AB(q,8) =
B(q,d) — Bn(q,d). Let us define a desired trajectory profile y,, %, and ., the
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tracking errors e = y. —y and é = g, — §, and an additional state e; = f; e dt. Then

in the 3n-dimensional space of (er,e,é) define a linear n-dimensional switching

surface
o= Kper+ Kye + ¢ (5.2)

where K, and K are positive-definite matrices that, as will be seen later, determine
the error dynamics in the sliding mode. Our goal is to design a control law such that
two conditions are satisfied: First, on the sliding (switching) surface the dynamics
are independent of the uncertainties, and second, the surface is an attractive mani-
fold. As discussed in [80] in order to obtain smooth action let us define a boundary
layer around the switching surface o and measure the distance of each point to this

surface by
S¢g =0 — Qsat(%) (5.3)

Then inside the boundary layer, s, and s, are zero, while outside the boundary

layer we have
S =€+ Kyé + Kpe (5.4)
Substituting § from (5.1) in (5.4) yields
S¢ = Yr + Kye + Kpe — an(z) — Bn(q,d)u — n(z, u) (5.5)
Let us partition the control input as
U= Uy + Uy + Up (5.6)

where u, is the nominal control, u, is to provide more robustness to uncertainties,
and up = Ks5(q)d + K 35, as will be seen later, guarantees boundedness of & and 4.
Assuming that the nominal B.(q,d) is nonsingular on the domain of interest,

let us take
un = B;Y(q,8)(—an(z) + §r + Ksé + Kye) (5.7)
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Then substitution of (5.7) in (5.5) yields
$¢ = —Bau, — n(z,u) (5.8)

Thus to make s, an attractive manifold in the presence of parametric uncertainties

let us choose
u, = —B;'Ksat(['s,) (5.9)

where K = diag(ky,---,kn), I' = diag(m1,-- -, =) and sat(.) is the saturation vector
function. Substituting (5.9) in (5.8) yields

5. = Ksat(T's;) — n(z,u) (5.10)

Note that u is now a function of z, s,, t, or equivalently a function of ¢, €, &, 5, Sqy L.
Consider a bounded reference trajectory and e, ¢, §, and 4 inside a closed bounded

set Q* C R?™*?™ then
= Ksat(T's,) + AB*Ksat(T's,) + 7"(e, &, 6, ) (5.11)
where AB* = ABB;! and
n"(e, ¢,6,8) = ~Aa(z) — AB (—an + §r + Kué + Kpe) — AB(K;(q)S + K;8)5.12)

Representing the elements of AB* by AB?;, (5.11) can be written as

‘lJ’

84, = (1 + AB;)k;sat(viss,) + Z ABk;sat(v;sq,) +n7, t=1,---,n (5.13)
J=1,j%

Now for all (e, ¢,4,8) € Q" assume that | AB;; |< b;j and 0} < ¢;. Hence for all

Sqs; € R the sliding conditions can be individually ensured [66] if
S—ﬂilsag '1 ,Bi>0, i=17"'7n (5'14)

Sqg;Sa;

Noting that s,;sat(yiss;) <| so; | it follows from (5.13) that (5.14) can be ensured

under worst case conditions if k;’s are such that

(1 —bu 1 Z bqk -G >ﬂt (5-15)

J=1,j#¢
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Considering the equality sign in (5.15) we have the matrix equation (I — B*)k* = d
where B* is the matrix with elements b;; and d is the vector with elements ¢;+3; > 0.
Following Frobenius—Perron theorem (see e.g. [66]) a unique solution for k&~ can be
guaranteed with all its elements positive if the largest real eigenvalue of B~ is less
than 1. In particular, if b;;’s are chosen such that B* is symmetric, the eigenvalue
condition translates into the norm condition ||B*||; < 1. Moreover, if such a solution
exists for k”, choosing the elements of k larger than &= will result in larger 8;’s, hence

speeding up attraction when the trajectories are outside s,, = 0.

5.2.1 Stability of the Closed—Loop System

To prepare for a stability analysis of the closed-loop system with the aforementioned
control laws, let us first substitute (5.6) into (5.1) by utilizing (5.7) and (5.9). Then

arranging the expressions in terms of e and ¢ yields
E = AgE + dg(E, A, 54, t) (5.16)
where ET = [T &7], AT = [T §7], dg(.)=[0T DZL(.)|T and

de(E,A,s,,t) = —(I+AB)Ksat(Ts,) + (B, + AB)(Ks(q)s + K;4)
+ ABB['Y(—a, + - + Kye + Kyé) (5.17)

and Ag is a Hurwitz matrix given by

0 I
-K, —K,

Ag = (5.18)

For the part of dynamics due to the flexible modes, starting from (4.3) and substi-

tuting u will lead after some manipulations to

§ = —({Hz2 — HyB™Y(Hy + U Hy,)(f2 + g2 + K8) + Hu (B 'a — B 'a,)
+ HuB;'(jr + Kpe + Kié — Ksat(T's,)) + Ha(Ks(q)d + K;(q)6)  (5.19)
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Equation (5.19) is strongly linear in terms of § and . Thus expanding the terms
around § = 0 and § = 0 results in

A = Ax(q)A+ga(E, A, s,,1t) (5.20)

where ga = [07 G%]7 and

0 I
Aa(q) =
—P(q)K — HxnoKs(q) —Ha10K3(q)
P(q) = [Ha20 — Hazo(Hiro + ¥ Hzo) ™ (Hi20 + ¥ Hao)] (5.21)

where Hijo = H;j(q,6 = 0) (z,7 = 1,2). Moreover G, is given by

Ga(E, A, s5,t) = HnB'(3 + Kpe + K4é — Ksat(I's,))
+ Hu(B'a-— B,—1la,) + 0(4,q,q) (5.22)

The reason for writing this portion of the dynamics in the form just described is
that (5.20) can be shown to be related to the zero-dynamics of the system with
re—defined outputs which is made stable by an appropriate choice of the outputs
and matrices Ks(q) and Kj;(q) [69]-

The stability proof can then be achieved by considering the composite Lya-

punov function candidate
V = ETPgE + AATPA(q)A + 0.5 s, (5.23)
and finding the derivative of V along the trajectories of the system. This analysis

is further detailed in Appendix A.4 and results in the following theorem

Theorem 5.1 Let the control law (5.6) be applied to the original nonlinear
system (4.1) with B,(q,d) nonsingular and let the flezible dynamics given by (5.20)
be controlled by choice of Ks(q) and Kj(q) on the domain of interest. Consider
sets R, S and T given by (A.48). Then assuming that the desired trajectories and
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their time derivatives (at least up to order 2) are continuous and bounded, it follows
that the trajectories of E, ea/ and s, (ea is a small scaling factor as discussed in
Appendiz A.4), starting from S — R converge to a residual set T that can be made
small by proper choice of controller parameters, provided that dg and ga given in
(5.16), (5.20) satisfy certain norm conditions ((A.44), (A.45)) in a bounded region
Q; (given in Appendiz A.4) of the state space of (E,A,s,) containing the origin.

Proof: The proof of the above result is established in Appendix A.4.

5.2.2 Numerical Simulation

In this section the controller performance is tested using a numerical simulation
for the model of the two-link experimental setup that was discussed in section 4.5
(Figure 4.3).

The nominal model used in the numerical simulation is based on the case
where no payload is attached at the end point while the plant model is based on the
full payload of 251kg. This results in a significant difference between the parameter
values of these models (of order of 2-6 times). Figure 5.1 shows the simulation
results for K = 6000, =2/, K, =1, K4 =2, =17x10"*, Ks; =0and K; = 1.
The output of the first link was the joint angle while for the second link the output
was chosen as the pseudo-angle corresponding to the point at 0.80L, (L, is the
length of the second link). It is observed that the tracking errors are small. Several
other simulations were also performed by changing the gain parameter values and
similar results were obtained. To compare the performance of the sliding controller
introduced in this chapter with the control strategy in Chapter 3 similar simulations
were performed. The closed-loop system consisted of a control law based on a plant
model with zero payload while the actual plant model was based on a payload of

0.251kg. The closed-loop system was unstable despite various changes made in
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Figure 5.1: Simulation results for a flexible two-link manipulator using the proposed
controller (Horizontal axis: time (s)): a) First joint torque input (Nm) b) Second
joint torque input (Nm) c) First flexible mode (m) d) Second flexible mode (m)
e) First joint angle (—) and reference trajectory (---) (rad) f) Tip position of
second link (—) and reference trajectory (---) (rad) g) Tracking error of the first
link joint position (rad) h) Tip position tracking error of the second link (rad).

controller gains. This result further demonstrates that the sliding controller is more
robust than the controller introduced in Chapter 3 when parametric uncertainties

are significant.

5.3 Conclusion

The decoupling control strategy discussed in chapters 3 was modified by using the
concept of sliding surfaces so that more robustness to parametric uncertainties is

achieved. Two main factors contribute to the robust performance of the closed-loop
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system in this case: The input—-output linearization that tends to approximately de-
couple the dynamics, and the sliding control component that causes the off-manifold
trajectories to be attracted to the surface. Full state measurements were necessary
in the developed scheme; however, in a practical situation 8 can be estimated by

using a nonlinear observer as described in Chapter 4.
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Chapter 6

Optimum Structure Design for

Control

In this chapter, an optimum structure design methodology is proposed for improv-
ing the dynamic behavior of structurally flexible manipulators. The improvement
in the dynamic behavior is achieved through an optimization scheme where a cost
function associated with the lowest natural flexible mode and an index defined as
modal accessibility, is optimized subject to certain constraints. The formulations
are carried out by assuming a singularly perturbed model of the flexible-link system
as this system possesses two—-time scale properties. The methodology is then ap-
plied to design a two-link, non—uniform, planar, flexible manipulator with improved

performance characteristics as compared to a uniform manipulator.

6.1 Introduction

In every control problem, the designer is concerned with devising control laws that
provide appropriate operation of the closed—loop system. A basic philosophy that
has been pursued by systems and control engineers for some time encourages design-

ers to alter the plant characteristics whenever feasible so that less stringent control
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actions will be required (e.g. in aircraft and other complex navigational systems).
The same philosophy may be applied to the case of robotic manipulators. The de-
sign process regarding arm shape design to achieve characteristics such as low mass
and moments of inertia and high natural frequencies generally requires solution of
an optimization problem, such as the one introduced in [21] where the optimum
torque application point and structural shape for a single flexible arm have been
obtained. There are a few other published works in this area (e.g. [82], [22]) that
address the design problem for a single-link flexible arm without its extension to the
case of multi-body dynamics. Parallel to this line of research, the use of advanced
and intelligent materials in arm construction is worth mentioning [28].

In this chapter, a design methodology is proposed for improving the dynamic
behavior of structurally flexible manipulators. The improvement in the dynamic be-
havior is formulated as an optimization problem so that the lowest natural flexible
mode and an index defined as modal accessibility are optimized. The term modal
accessibility is adopted from [34] where, in certain robot configurations denoted as
inaccessible robot positions, one or more of the flexibilities may not be accessed
directly by the actuators. This condition may significantly deteriorate system per-
formance and may even cause instability. This issue is not currently incorporated
in structural design in the published literature. Moreover, an increase in the low-
est natural frequency of the flexible system is often desirable. Undoubtedly, these
improvements should be achieved without sacrificing the system’s inertia character-
istics.

The organization of this chapter is as follows. In section 5.2, the optimization
problem is formulated in general by employing a singular perturbation model of the
flexible-link system. In section 5.3, further details are discussed in the design of
a flexible two-link planar manipulator. Also in section 5.3, the results of different

optimization procedures are given and compared by examples of two-link structures.
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6.2 Statement of the Problem

The optimization problem is formulated within the context of singular perturba-
tion theory [81], due to the fact that the dynamics of flexible-link manipulators
exhibit two—time—scale properties. To this end, consider the dynamic equations of

the manipulator (see e.g. [8])

ZI. = —HII(Q7 5)(f1(‘11 Q) +gl(Q1 q.v 67 J))
- le(q, 6)(f2(‘17 q) +g2(Q7 47 61 6)) - HlZ(‘Ia 6)KJ+ Hll(‘la 6)” (61)
S = _Hzl((b 6)(f1(q7 Q) +gl(Q1 q.v 63 6))

—  Hn(4,0)(f2(4,9) + 92(q, 4, 6,0)) — Haa(q,6)KS + Hnr (g, 8} (6.2)

where ¢ € R" is the vector of joint position variables, § € R™ is the vector of flexible
modes, fi, f2, g1, and g, are the terms due to gravity, Coriolis, and centripetal forces,
H is the inverse of the positive-definite mass matrix M with M;;, H;;, 1,7 = 1,2,
being the submatrices corresponding to the vectors q and ¢, and K is the positive
definite stiffness matrix. As is Chapter 2 let us define the variables

8 )

T, =q, ZI2=4q, =2 2= (6.3)

where ¢ is the singular perturbation parameter defined as

1
P e — 6.4
Amin(H220K) (64)

In (6.4), Apin(H220K) is the lower bound of the minimum eigenvalue of Hy K eval-

uated at d = 0 (i.e. Hazo = Ha2(gq,0)) over the range in which q varies. The system
described by (6.2) may then be written as

T, = g

z; = a(z1,z2,6%21,62) — A(z1,6%21)21 + Hyy(z1,6%21 )u (6.5)
€21 = 2z,
ey = b(z1,22,6%21,€25) — B(z1,6%21)21 + Ha (21,6221 )u (6.6)
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where z;,z5, € R", 2,2, € R™ and

a(zh za, 5221,622) = —Hufl - lefz - Hugl - H1292
b(z1,z2,€%21,62;) = —Hafi — Haofo — Haugi — Hazge
Hia(z1,6%22))K
A(z,e%z) = /\12(. (lezoz)
H. ,€22,)K
B(z,6%z)) /\24"’(‘}[2202) (6.7)

In the above formulation, let us adopt a composite control strategy ! [44] , i.e.,
u=1us+up (6.8)

In (6.8), uo is the rigid body or slow control law, and uy is the fast control law that
acts whenever the system behavior deviates from the rigid body dynamics. The
system described by (6.5)-(6.6) may be decomposed into the quasi-steady-state

slow subsystem

ry = T2

Z; = M (z1,0)(=fi(Z1,22) + uo) (6.9)

and the boundary layer fast subsystem

i
dr 2
dfz H220K -~
_— = —— H. 6.10
dr _’}.min(H220K)ZI+ 2oty ( )
where
21 = 21—51
22 = 22—22

z B7Y(zy,0)(b(z1,22,0,0) + Ha10uo)
zZ =0 (6.11)

Untuitively, other control schemes may be considered as comprising two parts, that is, slow
control for rigid body motion and fast control to compensate for the effects of elastic vibrations.

N
)
il
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Now if the fast subsystem (6.10) is properly stabilized, then (6.9) describes the rigid-
link manipulator dynamics, and is a zeroth order approximation to the original
system (6.5)-(6.6) (cf. [81], [42]). Let us consider (6.10) and re-write it in the

following form

d?z .
dT; = —N,3 + Haous (6.12)
where
HzK
N, = Ny(z1) = ————— 6.13
( l) Am{n(H22OK) ( )
Consider the eigenvalue problem
Nyv; =wiv;, i=1,2,---, m (6.14)

where w? is the i-th eigenvalue of the positive-definite matrix N,, and v; is the
associated eigenvector. Using the transformation %, = V,y, where V, is a matrix

whose columns are v;’s, will transform (6.12) into

y=—Aoy+Touy (6.15)
where
Ao(z1) = diag(w}.w},--- w3)
Fo($1) = ‘/O-IHNO (616)

The joint variables q (or z;) are treated as frozen (fixed) parameters in the fast time
scale (cf. [81], Chapter 2). For this reason the subscript “o” is used to indicate ma-
trices which are functions of q (or z,). Now consider [, in the decoupled subsystem
(6.15). Each row of the m x n matrix ', characterizes the way the input u; affects
the corresponding eigenvalue associated with that row in A,. Thus, if the Euclidean

norm of the i-th row is very small, it implies that w? is not affected much by u; -

3
this is equivalent to requiring a large uy to affect w?. The large requirement for uy
is disadvantageous from robustness considerations, as high gains are likely to cause

stability problems (cf. Chapter 2). This observation follows from the same lines
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as those in [34] and should be distinguished from the controllability property that
merely indicates whether system modes can be affected by control inputs without
any regard to the magnitude of the control effort. In particular, it may happen that,
at certain positions, a robot can maintain full controllability while its flexible modes
are inaccessible by its actuators (cf. [34] for more details). This condition may
significantly deteriorate system performance and may even cause system instability.
Consequently, it is important to incorporate these issues in mechanical structure
design of flexible links. Furthermore, to obtain a manipulator that has a I, with
relatively high row norms is desirable not only from a control effort minimization
point of view, but also from a robustness point of view. Another desirable feature in
terms of manipulator dynamics is that the first flexible natural frequency should be
well above the operating speeds of the manipulator. Conventional control strategies,
in general, work well when the closed—loop bandwidth is well below the first struc-
tural frequency of the manipulator. In the context of singular perturbation theory
this is equivalent to decreasing € in (6.4) to allow for a better time-scale separation,
and a better margin of closed-loop stability when a composite controller is employed
[81].

Now suppose that a mechanical design parameter vector p is at our disposal.
This vector may comprise of parameters related to the geometry (lengths) of the
links, or material properties such as mass density or material modulus of elasticity.

Following the discussion above, let us define the following objective function

Y(a,p) = e1y/Amin(Hazo(g, D) K(P)) + c2\/trace(To(q, )WTT((g,p))  (6.17)

where W is a diagonal positive definite weighting matrix. The first term in (6.17)
accounts for the time-scale separation, and the second term accounts for the acces-
sibility of flexible modes by the fast control component. The constraints that may
be incorporated in the optimization problem include workspace requirements such
as link lengths, and constraints on link masses and the mass moments of inertia ex-

perienced by the actuators. The bounds on the constraints should be selected such
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that a feasible solution exists. An obvious choice for these bounds may be specified
from a manipulator with uniform links. Thus, starting from a parameter vector py
corresponding to the case of a uniform manipulator, it is desired to find p such that

the objective function
Y(p) = [ y(a,p)da (6.18)
q

is maximized subject to the constraints specified earlier. The integral term is taken
over the range in which g (the vector of joint variables) is defined for two reasons:
First, to obtain a smooth objective function, and second, to ensure that all the

points in the workspace are considered in the objective function.

6.3 Formulation of the Optimization Problem
for a Two—Link Manipulator

In this section the optimization strategy introduced in the previous section is applied
to design a planar two-link manipulator as shown in Figure 6.1. This manipula-
tor is modeled using the assumed modes method and clamped—free mode shapes
by employing the symbolic manipulation software MAPLE [35]. The details of this
derivation are outlined in Appendix C.3. [t is assumed that the material type
is given (aluminum) and the link shapes are to be designed appropriately. To-
wards this end, each link is divided into n sections with each section parameters as
shown in Figure 6.2. The value of n may be decided from a signal analysis point
of view. In particular, considering a specific total length for each link, a large n
corresponds to more samples of the link shape which is equivalent to the possibil-
ity of richer (higher frequency) geometric link shapes. However, a fast-changing or
high—frequency link profile may introduce practical manufacturing difficulties. Thus,
a compromise should be made between these issues in selecting n. For now it is as-
sumed that n = 3. However, the case with larger n will also be addressed later. It

is worth pointing out that when n is large there is no need to consider the L; terms
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Figure 6.2: Schematic view of section i for each link (z = 1, 2,---, n) with appro-
priate definitions for the parameters L;, c;; and cy;.
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as optimization parameters since ¢); and c¢;; basically define the structural shape.
As discussed in section 6.4, it may be more advantageous to employ concepts from
spline theory in order to obtain smoother link shapes. Lengths L;, ¢;;, and cy; of
each section are the design parameters. Thus, the parameter vector p described in
the previous section consists of 18 variables. To formulate the optimization problem
the mass matrix M(q,d) (d is the vector of flexible modes) is first found for three
flexible modes for each link using MAPLFE. The mass matrix thus obtained is only a
function of g, and 4, and ¢, does not appear in this matrix. Consider ¢, varying from
0° to 180°, and choose three representative points in the workspace at q»; = 30°,

q22 = 90°, and q23 = 150°. Define the following objective function (see also (6.17)),

Y(p) = é{cl il \/’\min(szo(fhi, p)K(p)) + c2 Zﬁ: Vtrace(To(qai, P)TT ((g2:, ) }
- = (6.19)

This objective function is selected based on the guidelines used for the function given
by (6.18), but (6.19) requires less computation. The optimization problem may now
be summarized as follows
mazimize Y (p)
subject to :
(%) Lh+l=1Lr
(%) Mz(p) < (M7) |u
(22) Jmotor-1(P,90°) < (Jmotor-1) |u
(iv) Jmotor—2(P) < (Jmotor—2)u
) > i Horol gz VK@) 2 (3 i Hrol ) )

=1 i=1

(vi) i‘; Vtrace(To(gz, p)IT (g2, 7)) > (i Vtrace(To(qzi, P)TT ((g2i, p))) lu
(6.20)

where M7 is the total mass of the two links and the subscript u denotes that the

variable is computed when a uniform manipulator is considered. The first constraint
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is an equality constraint that is imposed by workspace requirements. In view of the
fact that lower inertia links result in less energy consumption, three constraints are
imposed on mass and mass moments of inertia of the links. Thus, constraint (zz)
restricts the total mass of the links and constraints (zi7) and (iv) specify bounds on
the inertia experienced by the motors. The inertia experienced by the first motor

(Jmotor—1) is in general given by !

Imotor-1(Pyq2) = S +J2+Jn+ lf(Ml + M) + l§M2 + 2M3ll; cos g2
L
+ /02 pAa(z2) (1 + 22 + 21y, cos q2)dz; (6.21)

Since the sign of the cosine term is indefinite, the ¢, independent terms have been
considered in constraint (2i7) (i.e. g2 = 90°)) as a measure of the moment of inertia.
The second motor experiences a constant moment of inertia. The constraints (v)
and (vi) are introduced since, compared to the uniform case, we are interested in
achieving improvements in at least one of the terms of (6.19), i.e., higher natural
frequency and/or better modal accessibility. These constraints are imposed after
experimentally observing that, in some cases (and without constraints v and v1),
one of the terms in the objective function is improved whereas the other term is
worsened when compared to the uniform case.

Several simulations were carried out to obtain an intuitive understanding of
the characteristics of the flexible-link system. First of all, considering the mass
matrix of the flexible system, it turns out that as the number of flexible modes is
increased in order to have a more accurate representation of the system, the mass
matrix becomes more ill-conditioned. This behavior is illustrated in Figure 6.3 by

using the following data in the simulations

Jp = 3x107%kgm?, Jy =J, =2 x 103kgm?, M, = lkg, M, = 2%kg, Lt = 1.4m,
ci = ¢;=0023m, :=1, 2,3 (for both lznks)

For simplicity, the effects due to flexible modes are neglected and only the dominant effects
due to rigid coordinates are considered in (6.21).
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Figure 6.3: Variation of the condition number of the mass matrix M(q.,0) (y—axis)
vs g (z—axis, degrees) for [; = [; = 0.Tm. (One mode: ---, Two modes: ——,
Three modes: —)

ag; = 0.06985m, i1=1, 2,3 (for both links) (6.22)

The ill-conditioned mass matrix may be problematic in the optimization problem.
Specifically, note that this matrix has to be inverted to obtain the terms in the
objective function (6.19). Thus the terms in the mass matrix have to be computed
as accurately as possible so that computational errors are minimized. The main
sources of errors in the computations of the mass matrix arise from the integral
terms (cf. (6.21)). Thus efficient and accurate numerical integration routines should
be employed.

Considering the terms in the objective function (6.19), let us define the fol-

lowing

1 3
Waue = EZ\/’\‘IM"R(H220K) |Q2i

=1

3
Age = %z \/trace(FoFZ) - (6.23)

=1
These may be interpreted as the average lowest natural frequency and the average

modal accessibility index respectively. These terms are plotted in Figure 6.4 when
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Figure 6.4: Variation of W,,,. (rad/s) (a) and A,,. (b) when [, is varied from 0.5 to
0.9m.

the length of the first link is varied and the total length of the links is fixed at
Lt = 1.4m. Three flexible modes are used per link for this case. When two modes
are used, the natural frequencies are slightly higher. The modal accessibility index
is of course lower since there are fewer terms involved in A,y..

Figure 6.5 shows the variation of W,,. versus the joint position ¢, for different
combinations of link lengths. It is observed from Figure 6.4 that for /; near 0.7m
(o = Lt —h), Waye is maximum, and Figure 6.5 shows that Winin := \/Amin(H220K)
is significantly larger for the case when {; = [, = 0.7m. Figure 6.6 illustrates
the behavior of the modal accessibility index Agq.. := \/m for the same
conditions as in Figure 6.5.

Another major consideration in the design of the mechanical structure should
be directed towards the torsional and lateral vibration effects (about the y-axis). In
our planar two-link example there are no control inputs to affect flexibilities in these
directions. Therefore, the structure should be such that these vibrational effects

are minimized. Towards this goal, it can be shown from elastic potential energy
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Figure 6.6: Variation of the accessibility index A,.. for uniform links when ¢, (hor-
izontal axis) varies from 0 to 180°,a) [; =lp =0.7m b)l; =02, [, =1.2m and
c)l =12, [ =0.2m.
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considerations (cf. e.g. [29]) that making the ratio of the cross—sectional height
to its thickness large, reduces the potential energy contribution of these deflections
with a factor proportional to the inverse of the square of this ratio. A ratio of at

least 10 has been used in our simulations.

6.3.1 Results of the Optimization
Case I: n =3

The initial starting point for the optimization problem corresponds to two uniform
bars with equal lengths {; = [; = 0.7m (close to the maximum in Figure (6.4-
a)). The numerical data used for the simulations are given in (6.22) with L — i
initialized to 0.23m for all sections of each link. The geometrical constraints used

in the optimization are given by
0< L; <0.92m, 0.lem <¢; <£0.32cm, —0.6em < cy; <0.32cm

These figures are chosen to match the length specifications of a 6061 aluminum bar
with 0.63 x 7.62cm cross section and also meet the height to the thickness ratio
requirement for the cross section as discussed earlier in Section 3. The ¢, and c;
terms are set to normalize each term of the objective function to one at the starting
point. When ¢; and c¢; are both nonzero this accounts for proportional weighting
of the terms in the objective function. Moreover, the cases where ¢c; = 0 and
constraints (v) or (vz) in (6.1) are removed are also considered. The results are
summarized in Table 6.1. The results in this example show that the links appear
to be thicker in the middle parts, but no general conclusion may be drawn from
this observation. What is happening here is that due to the constraints imposed
on the mass and the mass moments of inertia, the mass matrix does not change
significantly. However, the stiffness matrix, K(p), changes from the diagonal matrix
for the uniform case to a non-diagonal matrix for the optimized case such that

better W,,in and modal accessibility are achieved. Consider the first entry in Table
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Case Link Namberj L, L, Lj[c,; €p €5 €5 Cyy € ,{ Objective Function | Active
(cm) (mm) (mm) iitial| finad | Constraints
C,, C.40
2 1 170 312 352 1.0 3.2 19-6.0 32-60
Constraints: 2 | 365 | i, v
b i, i, iv 2 259 23 Z&ﬂ 10 32 1.0 6.0-6.0 60
v, Vi
¢ I 1200 285 215{32 32 1.0 603260
Constraints: 1 2 | iy
b 1 i, g (119 339 242|10 32 1.0]-6.0 3260
iv, vi
¢ 1 (175297 22532 32 1.0|-6032 60
Consraint: | o1 | i
b B, i 2 |17 320 21.3{32 32 10[-6.03260
iv

Table 6.1: Results of the optimization for different cases (see equation ).

6.1. Plots of the minimum natural frequency W, and the modal accessibility
index Agc. are given in Figure 6.7 when ¢, varies from 0° to 180°. Also shown are
the characteristics for a uniform flexible-link manipulator. Since constraint (v) is
active, the natural frequencies are approximately the same. However, the modal
accessibility index for the nonuniform arm has improved to approximately 2.5 times
that for the uniform arm. Figure 6.8 shows the results for the second and third
entries in Table 6.1 along with the original uniform case. Note that when the
constraint on control is removed W,,;, will only increase slightly as compared to the

case when this constraint is present. In both cases, the major improvement occurs

for Whin.-

Case II: Large n

A two-link manipulator is considered in which the first link is rigid and the second
link is flexible. The lengths of the links are fixed at 0.2m and 1.3m for the first and
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Figure 6.7: Comparison of the optimized (—) and the uniform (——) flexible links,
a) Lowest natural frequency Wi,;,, rad/s vs ¢; (degrees), and b) Modal accessibility
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Figure 6.8: Comparison of the results of optimization for the second and third
entries in Table 1 (entry 2: —, entry 3: -- -, uniform case: ——), a) Lowest natural
frequency Whin (rad/s) vs q; (degrees) and  b) Modal accessibility index A, vs
q2.
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second links, respectively. The number of sections is selected as n = 20. In this case
L; is fixed at [2/n, and a rectangular cross section is assumed for which the ratio of
height to thickness is 20 at each point. The optimization problem is then solved by
starting from a uniform manipulator. Figure 6.9c shows the thickness profile of the
second link where the z—axis passes through the beam center. In this case the overall
normalized objective function is increased from 2 to 6.91 (W,,. from 11.5 rad/s to

30.6 rad/s, and A, from 1.60 x 10° to 6.76 x 103).

Optimization Using B—Splines

In order to obtain smoother shapes for the link profiles, the optimization problem
can be formulated in terms of certain parameters defining B—form splines or B-
splines [83], [84]. A spline is defined by its (nondecreasing) knot sequence and its
B-spline coefficient sequence. The elements of the knot sequence can be selected
such that certain smoothness conditions are satisfied at each knot (determined by
the multiplicity of each knot and the order of the B-spline). Thus, considering
points within a certain interval (a certain knot sequence), the B—spline coefficients
model the function they represent. For a specific knot sequence and by considering
these coefficients as parameters, the geometric description of the link shapes are
then at our disposal. Then the mass and stiffness matrices required in (6.19) are
obtainable. Thus the optimization problem may be formulated in terms of the B-
spline coefficients that now represent the parameter vector p in (6.1). Figures 6.9a,
6.9b, and 6.9d show the results of the optimization when third order B-splines are
employed with the same initial parameters as in Section 4.2. A comparison of the
results obtained shows that smoother shapes as well as better overall performance
may be obtained compared to the case when rectangular cross sections are used
(compare Figures 6.9c and 6.9d). It should be mentioned that the lower and upper
limits of the thickness profiles were selected as one—third aund three times the initial

value of the thickness at the initialization point, respectively. In Figure 6.9 the
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x10° a) Percentage of improvement: 212%

Figure 6.9: Thickness profile of the second link (z-y axis in m)(optimized case: —,
uniform and non-optimized case: ——) (In each figure the percentage of improvement
refers to the improvement in the objective function as compared to the uniform
case), a) Knot sequence {0,0,0,{,/8,2[2/8,...,7l5/8,13,1,1,} and seven coefficients
for the parameter vector, b) Knot sequence {0,0,0,(,/5,2.,/5,...,{3,l5,l} and ten
coefficients for the parameter vector, c) Case for n = 20 using rectangular sections,
and d) Knot sequence {0,0,0,/,/18,2[,/18, ...,12,12,1,} and twenty coefficients for
the parameter vector.
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Figure 6.10: Comparison of the dynamic behavior for the optimized non-uniform
manipulator (——) and the uniform manipulator (—), (a,b) First and second actu-
ator torques (Nm) vs time (s), respectively, (c,d) The first two flexible modes (m)
vs time (s), respectively, and (e,f) Tip position outputs and reference trajectory
(- --) in radians for links 1 and 2, respectively.

lower limits are all at 4.66 x 10~*m. If this limit is reduced better performance is
achieved as long as other physical constraints such as the maximum allowable stress

(strength) are not violated (cf. e.g. [86]).

Comparison of the Dynamic Performance

A two-link manipulator similar to the previous case is designed with (n =)4 sections
and the dynamic behavior of the optimized and uniform cases are compared for
tracking the same reference trajectory by using the computed torque control law
based on the rigid part of the dynamic equations. The complete nonlinear dynamic
equations are taken into account using two flexible modes. The results are shown
in Figure 6.10. The optimized manipulator shows better performance although the
controller needs to be improved to obtain better tip position tracking (e.g., by more

advanced control laws such as those introduced in the previous chapters).
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6.4 Conclusion

The results for different software optimization scenarios show that improvements are
achieved over the case of a manipulator with uniform links. The results are valid
locally. The improvements are obtained based on the lowest natural frequency of the
flexible modes, or the modal accessibility of these modes, or both. This is achieved
without exceeding the constraints on the mass of the links or the inertias experienced
by the motors. Because of the above requirements, the optimization parameters
change in such a way that the mass matrix of the manipulator is not significantly
different from the uniform case. However, the changes are mostly present in the
stiffness matrix that is no longer diagonal for the nonuniform optimized manipulator
(assuming that orthogonal shape functions are used). Finally, a comparison of the
dynamic performance between uniform manipulators and optimized non-uniform
manipulators shows that, subject to the same control strategy, the optimized non-
uniform manipulators exhibit improved dynamic behavior. There is certainly a
limit as to how much improvement may be achieved by the optimized structure.
Further improvements can be accomplished by more advanced controllers such as

those designed in the previous chapters.
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Chapter 7

Concluding Remarks and

Suggestions for Future Research

It is now for nearly more than a decade that researchers in control and robotics
have been investigating the problem of controlling robotic mechanisms with consid-
erable structural flexibilities. Nevertheless, it seems that, from a control and design
perspective, this issue will remain an open research area in the years to come. As
was mentioned earlier, several factors contribute to the complexity of the problem.
The dynamic model complexity, uncertainties in modeling, ill~conditioned nonlinear
dynamics, and nonminimum-phase characteristics are among the major factors.

In this dissertation we have focused on two nonlinear model-based design
methods for trajectory tracking control, and have considered a structural shape
design. The control strategies were implemented and tested on an experimental
two-link flexible setup that was constructed in the laboratory. This system pos-
sesses interesting nonlinear and nonminimum-phase features that can be found in
other systems such as aircrafts, underwater vehichles, large flexible satellites, and
some other under-actuated mechanical systems. Although the control goals may
be different, many similarities exist between these systems. Therefore the control

methods can be applied to other cases once proper modifications are made. The
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main advantage of the control strategies studied in this dissertation over the con-
ventional control methods is robust closed-loop performance with sufficiently small
tip—position tracking errors. These two features are not convenient to achieve with
ordinary control schemes. However, the price to be paid is more control complexity
and the need for faster real-time computation engines. Based on the experience
gained in the course of this research the following routes may be taken for further

work.

1. Control Using Integral Manifolds

One problem with this control strategy is the complexity of the controller. This is a
major problem, specifically if the number of links is increased. One way to deal with
this issue is to use some kind of function approximation by using neural networks
or Spline functions. Splines can be used to represent functions that cannot be rep-
resented in closed-form and can be used to represent nonlinearities in plant models
and nonlinear controllers {89]. Further improvement of this control strategy lies in
devising or modifying the control law to deal with parametric uncertainties and pa-
rameter variations. In this regard adaptive techniques may be considered. However,
these techniques may further raise complexity issues in control implementation and

should be studied along with the function approximation described earlier.

2. Input—Output Decoupling Control

The control strategy based on decoupling and using observers for estimating flexural
rates is generally less complicated, in terms of implementation, compared to the
integral manifold method. One problem that arises here is that the ill-conditioned
mass matrix and parametric uncertainties can cause instability [91]. The lines that
can be followed towards resolving this issue include using dynamic decoupling [68],

[72], and robust designs such as sliding techniques [75].
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3. Structure Design

As discussed previously, a major goal in structural shape design is achieving better
robustness in a closed-loop control system. It is possible that a better optimiza-
tion index can be defined if controllability and observability properties can also be
incorporated in shape design. Increasing the structural natural frequencies has to
be kept as one of the optimization goals as before. In addition, as the number of
optimization goals increases consideration should be given to employing appropriate
schemes for multi—objective optimization.

In this research, we have only considered mechanical shape design. While this
is an important aspect, one should not overlook smart techniques that facilitate the
controi problem by designing material type, actuators and sensors (see e.g., [28]).

In the author’s view, a successful solution should be an integration of control
and structure/material design. As far as the control design is concerned, one may
follow classical techniques, intelligent methods (fuzzy logic, neural networks, neuro—
fuzzy), or a combination of the two. A successful control strategy should consider
robustness to parametric uncertainties as well as higher frequency flexural modes
while maintaining desired performance.

UIndoubtedly, more extensive benchmark comparisons have to be made be-
fore any conclusions can be drawn concerning the superiority of an approach over

another.
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Appendix A

Stability Proofs

The stability analysis for the various key results obtained in this research are given

in this appendix.

A.1 Proof of Theorem 2.1

The stability analysis follows along the lines developed in [53]. Consider the open-
loop system (2.5)-(2.6) with the control laws obtained from (2.10), (2.11), (2.25),
(2.35), (2.41), and (2.42), that is

Us
Uo
Uy

U2

EW

ufs

us(z,€,t) + uy(z, z)

ug + €ug + €%uy

Mi1ovo + fi(z1,z2)

Moy

Muio(ve + d(z1, 22, £2 |e=0, Uo, o) — Thio)

Ayv + by(Yr, €,€)

F(z\)w + G(z1)ys

M(z))w (A.1)
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Substituting the above control laws into system (2.5)-(2.6) and adopting the

same definitions for e and Z as before, after some algebraic manipulations, yields

e = A.e+b.(z,2w,v,e,t)
v = Ayv+ by(Yr,e€,¢)
Ef’ = Aﬂ(xl)n + b,,(.‘l:, 21 w,v,t) (A'z)

T

where nT = [37 wT], and b,(j,,e,€) is the same as before, and

0
— 82Kz 4+ HioM(z:)w — e(HioGu + H120G21)22 + 04 (¢?)

be(zv 27 w? v’ 6’ t)

—Esillg
bo(z, 2, w,v,t) = —€(H210G11 + H220G21)22 + 02(52) (A.3)
ESG(IB[)‘I/(hll + €h12)

Noting that the matrices A., A,, and A,(z,) are all Hurwitz, we can write the

following Lyapunov equations

AZPe + PeAe = —Qe
AZ'P‘U + PvAu = _Qu
AT (21)Py(z1) + Py(z1)An(z1) = —Qy (A.4)

where Q., Q., and @, are positive definite symmetric O(1) matrices. Choosing the

positive definite Lyapunov function candidate
V =e"P.e+ 5TP,o +enT Py(z1)n (A.5)

where © = e?v [42]-[43], and computing the derivative of V along the trajectories of

(A.2) yields

V = —eTQ.e — 37Q,d — nTQun + 2eT P.b.

+ 26%9P,b, + 207 Py(z1)by + en” B, (z1)n (A.6)
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A detailed inspection of the terms b,, b,, and b, reveals that on bounded regions
Q1,Q, Q3 C R**2m+ around the origin of the (e, v, n) state space, and by assuming

a C? desired reference trajectory, we may write

1Bl < vellmll + €%l + Lullell + Lallnll),  Y(e,v,n) €

[l < % + vodllell,  V(e,v,n) € Qe

[6all < (9 + arllelDlInll + €*(L2 + Laslle]] + Lallnll),  V(e,v,m) € Qs
(A7)

where [}, l3, {11, L2, l21, l22 are upper bound constants specified in the regions ),

and Q3. Furthermore

Hi0K
T"E = ”[-%, —e(H110G11 + H120G21), HioM(z1)]llmaz on 0,
A1AGT .
7 = |l 2 Yrllmaz
A AT
Yod = || 1622 [Kps K|l
Yo = |[H210G11 + H220G21lmaz on @, e=0 (A.8)

Similarly, for all (e,v,n) € Q4 C R"™*+2m+ we have
1Ba(z)ll < s (A.9)
Thus defining
Ae := Amin{@ch,  Av = Amin{Qu}, Ay = Amin{Qn} (A.10)
and making use of (A.7) and (A.9) in (A.6) results in

llell llell
V< =lllell 181l ImlA | Q3] | +2a7 | 5] |» Y(e,vam)eQr  (A.1D)

Il linll
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where 0y = Q; N QN Q3 N Q4 and

of = L[ Pell Pl LallPoll]

Ae = 262 ||Pe]| ~2vpdllPoll  ~¥&|Pell = evny 1Pl = 2 (Laa2llPell + Las[|Pa]l)
A= —e29pdl|Po| Av 0
~7EIIPell = €0y 1Pall = (L2 IPell + La1 [ P4l]) 0 An = e(2Aall Pall + 1) — 262153[| Py}

Noting that vp4|| P, || will remain O(1) as € tends to zero, we conclude that if A\, >
ve|| Pe||?, then A will be positive—definite for all € € (0, Emaz), Where €maz is the
upper bound for €. Assuming that ¢ lies in this interval, let us apply the coordinate

transformation
llell
X={ ) | -A"'a (A.12)
lInll

that when substituted in (A.11) yields
V< —XTAX +aTA™ e Y(e,v,n) € Q (A.13)

Consider the case when XTAX = aTA~'a. This is the equation of an ellipsoid in X
coordinates. Furthermore, using the spectral theorem of linear algebra, A may be
written as A = QT A4Q, where @ is a matrix whose columns are the orthogonal eigen-

vectors of A, and Ay is a diagonal matrix of the eigenvalues of A. The equation of

the ellipsoid may then be written as (QTX)TA4(QTX) = a’A~'a. Thus the largest

and smallest diagonals of the ellipsoid are given respectively by \/ aTA-la/Amin(A)
and \/aTA-la/Amaz(A).

To show the boundedness of solutions, let us consider the following sets

R = {(e,t,n)| XTAX <aTA'a}NQy
{(C,f), 77) l V(es 6, 17) S Cl} C Q[
T = {(es v, 77) I V(ea v, 77) = CZ} C Q (A.14)

O
i
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where 0 < ¢; € ¢ and c; is the smallest constant such that R C 7. Since the
trajectory defined by y,, g-, ¥ is bounded and A is positive-definite, R is uniformly
bounded. If the initial state is outside S — R, where V < 0, it follows that there
exists a finite time ¢ such that any solution starting from S — R, at ¢ > 0, will enter
T at t;, and reside in T thereafter for all ¢ > ¢;. The residual set 7~ encompasses
the ellipsoid. Thus the size of the residual set is on the order of the maximum
diameter of the ellipsoid. Since A is O(1) and « is O(£?), the residual set is of O(e?).
Therefore e, 9, and 7 remain bounded up to O(e3) after ¢;. Thus, v will be O(1) in
the steady state. This completes the proof of the theorem stated in Section 3.

A.2 Proof of Theorem 3.1

Consider the dynamic equations of the closed—loop system given by (3.22) and (3.24).

Since Ag and Aa(q) are Hurwitz matrices we have the Lyapunov equations

ALPg + PgAp = —Qg
AZ(9)Pa(q) + Pa(q)Aa(g) = —Qa (A.15)

where Pg, Qg, Pa(q), Qa are positive-definite matrices. Let us choose the positive—

definite Lyapunov function candidate
V =ETPgE + ATPA(q)A (A.16)

where A = ;A with ¢ being a positive constant (typically less than one). Then V

is given by
V=-ETQgE — ATQAA + 2dLPgE + 2, APAGA + APAA (A.17)

Consider a continuous bounded reference trajectory (at least C?) and a bounded
region {}; containing the origin of £ and A. Then for all (E,A) € Q; C R™*" we

can write
lall < & +LIEN + LIA[, I~ BB™|| <6, [BB|||Ad| < e (A.18)
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where [;’s and ¢;’s are certain bounds with ¢’s being typically small quantities.
Further, let

IK, Kdlll =14, |[BKs BKG]ll <ls, -l < ls (A.19)
to get A
Al

€1

”dE“ S €3 + 62([1 =+ ls) + 62(12 + l4)”E” -+ (15 + 6213) (A.20)

Similarly, for all (E,A) € Q, C R™*" where (2, is a finite region containing the
origin of (E, §), we have

”H2IOBO-1” ~1, ||H210(—Bo-1&0 + Bylag|| < es(ls + I7]| EJ|), 10(&%,q,9)ll < ls
(A.21)
Thus

IGall < ls + LI[ENl + ealls + LA EN) + ls,  V(E,A) €Qy (A.22)

A detailed analysis also reveals that for all (E,A) € Q3 C R™*? where Q3 is a
finite region containing the origin of (E, §), we have ||Ps(q)|| < ls. Hence, letting
Q: = 0 NQ, N Q3 and substituting the previous inequalities in V given by (A.17)
and rearranging the right-hand side of the resulting inequality in terms of || F|| and

I[A||l will, after some algebraic manipulations, yield

. R E E
v<-peniana | N e | B v ayean am)
1Al Al
where
A = e = 2ex(l2 + La)|| PE|| Usta0)IPell 4 ¢\ Pal|(Ls + ealr)
UstablPell 4 ¢ || Pa (s + ealr) Aa—lg ’

7T = [(es+ el + )Pl ellPall(ls + s + €als)], Ae = Amin(QE), Aa = Amin(Q2
(A.2

Now consider the case where there are no parameter errors. Provided that Aa > g,

and A.(Aa — o) > ls]| Pg||/e1 + €1ls]| Pa|, the matrix A is positive definite. It then
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follows that for a certain range of parameter variations in this neighborhood, A

remains positive definite. Assuming that this condition holds, let us define the sets

R = {(E,A)[ [IE| JAATIEN AT < 24" (1EN AN} N
§ = {(B,48)]| V(E,A)<a}c
T = {(E,A)| V(E,A) =} Cc (A.25)

where 0 < ¢; < ¢; and c; is the smallest constant such that R C 7. Since the
trajectory defined by y,, y,, 7. is bounded and A is positive—definite, R is uniformly
bounded. If the initial state is outside S — R, where V < 0, it follows that there
exists a finite time ¢ such that any solution starting from S —R, at ¢ > 0, will enter
T at ty, and remain in 7 thereafter for all £ > t;. The residual set 7 encompasses
an ellipse in [|| E]| JJA|[] coordinates with its diameters being \/'yTA'l'y/ Amin(A) and
\/7TA"17//\,,,,,,,-(A). Since A = €14, it follows that A is of the order of ;11- on this

residual set. It is possible to obtain an optimum value of ¢; by setting the parameter

errors to zero in A, which gives ¢; = \/l; | Pe|l/(la]| Pall)- Some qualitative robustness
measures may be obtained from this analysis. In particular, making the norms of
Pg, K;s(q), K;(q) small and reducing the parameter errors yield a better margin of
robustness. Note however that the lower limit of Kj(q), Aj;(q) is not zero since A

should be a Hurwitz matrix.

A.3 Proof of Theorem 4.1

In what follows a closed—loop stability analysis is established for the case of a full-
order observer. A similar analysis can be given for the case where a reduced-
order observer is used. Consider the dynamic equations of the closed-loop system
given by (4.10)-(4.11), (4.21)-(4.22) and (4.23)-(4.24) which are repeated here for

convenience
§ = A6 + bs(z, 62) (A.26)
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E = AgE + dg(a, z.,t) (A.27)

A =Ap(q)A + .
GA(za 67 t)

0 } (A.28)

Since A;, Ag and Aa(q) are Hurwitz matrices, the following Lyapunov equations

are satisfied

A}:Pg + PA; = —Q;
ALPg + PeAp = —QE
AX(9)Pa(q) + Pa(q)Aa(g) = —Qa (A.29)

where P;, Q3, Pe, Qr, Pa(q), @a are symmetric positive-definite matrices. Let

us choose the positive-definite Lyapunov function candidate
V =ETPgE + ATPA(q)A + 6T P (A.30)

where A = €A with € being a small positive scaling constant (typically less than
one). The scaling factor is introduced as a result of from the stability requirement
that £ and § converge to small values near zero while A remains bounded. Thus,
the scaling factor allows us to show that £, § and A converge to small values, hence
A converges to A /.

Taking the time derivative of V yields

V=—ETQpE—ATQaA-8TQ;+2dE P E+2bT P +2eAPAGA+ APAA (A.31)

Consider a continuous bounded reference trajectory (at least C?) and a bounded
region 2, containing the origin of (E, A, §). Then for all (E,A,d) € Q; ¢ Rm+4n,
from (4.22) we have

ldell < ZUA + e8] (A32)

where ¢ depends on Kj(q) and Kj;(q) and should be sufficiently small by proper

choice of these maitrices as we shall see shortly. The ¢, term is affected by || K,|| and
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the higher order terms in (4.22). Similarly, for all (E, A,$) € Q, C R™*+4® where
Q, is a finite region containing the origin of (E, A, §), from (4.24) we have

IGall < la, + LB Ell + 2|Al + eslldll,  Y(E,A,5) € 2 (A.33)
€

where [4, is mainly affected by the reference trajectory and (g is affected by K, and
K. Constants ¢; and €3 correspond to O(8) and O(88) terms in (4.24), respectively.
A detailed analysis also reveals that for all (E,A,d) € Q3 C R™+" where Q3
is a finite region containing the origin of (E, A,3§), we have ||Pa(q)]| < la,. This
can be shown by noting that PA(q) has a finite growth rate with respect to ¢ (see
e.g. [67], Problem 5.21) and the reference trajectory is bounded. Hence, letting
Q: = O NQ, N Q3 and substituting the previous inequalities in V and rearranging
the right~hand side of the resulting inequality in terms of || E||, |A|| and ||8]| after

some algebraic manipulations, yields

HEI HE|

V<—[ENNANIBINA | A [ +27 [ 1A | V(E. A0 e (A34)
181l 1811

where
Ae 2 + lge|| Pal| e Pell
A = | @ 4ipe|lPall Aa —la, —2||Pallez  eea||Pal| ,
el Pell ees| Pal| Ao — 263 Pz ||
AT = [0 e, ||Pall 0], (A.35)

and Ae = Anin(QE), Aa = Amin(Q@a), Ao = Amin(A4;)-

Now consider the matrix A. This matrix will be positive-definite if Ay > la,,
Ao > 2€3|| P}l and the ¢;’s are sufficiently small (which may be achieved by proper
choice of the gain matrices). Note however that ¢ appears only in the off-diagonal
terms of this matrix. A very small € will increase the A(2,1) element while a very

large € increases A(2,3) and A(2,1) elements. The element A(2,1) is minimum for
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€ = y/eo/(lg|| Pa]|) which should typically be made small by design. As explained
earlier, €o depends on Ks(q) and K;(q). On the other hand, the element A(2,1) is
directly affected by 5. Thus a reduction of ¢y will be desirable since it will result in
a smaller off diagonal term.

For € = /eo/ (]| Pall), it is easy to obtain a condition on the elements of A

so that it is positive-definite, i.e.,

Ae(Aa — la; — 2||Palle2)(Ao — 2¢3|| P|[) + 4| Pelll| Palleoes >
4(Xo — 23| Px ol Bl Pall + co(Ae€3l| Pall® + (Aa —la; — 2l Palle) | Pell*)/ (el Pall)
(A.36)

It should also be noted that the effect of |Ky|| appears in the form of a product
term with || Pg|| (in (A.35)), and since ||Qg|| is constant the variation of ||Kyf| will
not much affect the corresponding A(1,3) term.

Now, suppose that for a given system and controller parameters, A is positive

definite. Let us define the sets

R = {(E,A8) | [IEN AN NSNANEN NAL NSINT < 24TUEY 1A 16117} N 0
S = {(E.A )] V(E,A.8) <} C O
T = {(E,A8)]| V(E,A8) =c} Cc (A.37)

where 0 < ¢; < ¢; and c; is the smallest constant such that R C 7. Since the
trajectory defined by y., ¥, ¥r is bounded, and A is positive-definite, R is uniformly
bounded . If the initial state is outside S — R, where V < 0, it follows that
there exists a finite time ¢; such that any solution starting from $ — R, at ¢t > 0,
will enter 7 at ¢;, and remain in 7 thereafter for all ¢ > t;. The residual set
T encompasses an ellipsoid in [||E|| |A]| [|4]]] coordinates with its bounds being
\/7TA"1‘7//\,,.,-"(A) and \/7TA—17/A,M,(A) which are both of order e. Since A = €A,

it follows that A is of the order of % on this residual set. As discussed earlier,

controller parameters should be chosen such that A is positive-definite. To this end,
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some qualitative robustness measures may be obtained. In particular, making the

norms of Pg, K;(q), K;(q), P;, Pa small yields a better margin of robustness.

A.4 Proof of Theorem 5.1

Consider the dynamic equations of the closed-loop system given by (5.13), (5.16)

and (5.20) which are repeated here for convenience

Sq; = (1 + AB)k;sat(viss,) + Z AB5k;sat(visqe,) +n;, i=1,---,n (A.38)

I=15#t
E = AgE +dg(E, A, 54, t) (A.39)
A = Ap(Q)A + ga(E, A, 5, t) (A.40)

Since Ag and Aa(q) are Hurwitz matrices the following Lyapunov equations are

satisfied

ALPg + PsAs = -Qg
AL (q)Pa(q) + Pa(q)Aa(e) = —Qa (A.41)

where Pg, Qg, Pa(q) and Qa are symmetric positive-definite matrices. Let us

choose the positive-definite Lyapunov function candidate
V = ETPgE + A?Pa(q)A +0.55s, (A.42)

where A = ep A with ea being a small positive scaling constant (typically less than
one). The need for this scaling factor arises from the stability requirement that E
and s, converge to small values near zero while A remains bounded. Thus, the
scaling factor allows us to show that E, s, and A converge to small values, hence

A converges to A/ea.
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Taking the time derivative of V yields
V =—ETQgE — ATQAA + 2dEPgE + 2¢AAPaga + APAA + 5,5,  (A43)

Consider a continuous bounded reference trajectory (at least C?) and a bounded
region (), containing the origin of (F, A, s,). Then for all (E, A, s,) € Q; C R2m+3n

(with ||s¢]|1 < 1 as described later)
ldell < & + LA+ BILE] (A-44)

where, as far as the design parameters are concerned, [; is affected by K and the
reference trajectory, {, is affected by K5 and Kj, and I3 by K, and Ky. Note that
all the norms in the previous inequality and subsequent discussion are 1-norms.

Similarly for all (E, A, s,) € Q, C RZm+3n
lgall < la+ L]|A] + 6] E]| (A.45)

with /4 affected by K and the reference trajectory, and lg by K, and Kg.

A detailed analysis also reveals that for all (E,A,s,) € Q3 C R?™+3" where
Q3 is a finite region containing the origin of (E, A, s, ), we have || Pa(q)|| < la,. This
can be shown by noting that Pa(q) has a finite growth rate with respect to ¢ (see
e.g. 67], Problem 5.21) and the reference trajectory is bounded.

As discussed previously the surface s, = 0 is attractive for s, € R and other
state variables in a closed set Q~ defined earlier. Thus for any s, € R, there is a
finite time after which s, will be small enough such that ||s,|| < 1 (or ||s. || > ||so|%)-
This time can be made short by increasing 3;’s in section 2.

Hence, letting ; = Q; N Q2 N Q3 and substituting the previous inequalities in
V and rearranging the right-hand side of the resulting inequality in terms of || E||,

|A|l and ||s,|| will, after some algebraic manipulations, yield

HEl I El
V< =IEIA] salA | 1A | +297 | 1A V(E,A,s;) €% (A46)
llsol lisa |l
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where

Ae— 2|\ Pl AZEl 4 lgea||Pall 0

A = | 2Bl g enlg)|Pall Aa—L—2(|Pallls 0 |,
0 0 ﬁmiﬂ.
¥' = [LllPell eald|Pall 0], (A.47)

where Bmin = min(fB1,---,0n) and Ae = Anin(QE); Aa = Amin(@a), Ao = Amin(Aj).

Now consider the matrix A when no uncertainty is present. In such a case
it is positive-definite if Aa > l7 + 2[5|| Pal| and A.(Aa — 7 — 205)| PAl]) > (!2_11(%11 +
lsea ]| Pall)?. Thus a neighborhood of the case with no uncertainty can be found such

that A is positive—definite. Let us define the sets

R = {(E,A,s0) | [IEN AN s INAWEN NAN s T < 24TNIEN HAL s« T} 0 &
= {(E,A;s, | V(E,A,s,) <} C
T = {(E,A,s)| V(E,A s,)=c} C (A.48)

V)

where 0 < ¢; < ¢; and c; is the smallest constant such that R C 7. Since the
trajectory defined by y,, yr, ¥ is bounded, and A is positive-definite, R is uniformly
bounded. If the initial state is outside S — R, where V< 0, it follows that there
exists a finite time ¢; such that any solution starting from S —R, at ¢t > 0, will enter
T at ts, and remain in 7 thereafter for all ¢ > ¢;. The residual set 7 encompasses an
ellipsoid in [|| E|| JA|| ||8]|] coordinates with its bounds being \/'yTA“'y//\min(A) and
\/'yTA“'y/ Amaz(A) which are both of order €. Since A= ead, it follows that A is of

the order of & on this residual set. As discussed earlier, controller parameters should
be chosen such that A is positive—definite. By considering the terms affected by these
gains some qualitative robustness measures may be obtained. In particular, making

the norms of Pg, Kj(q), K;(q), Ps, Pa small yields a better margin of robustness.
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Appendix B

Kinematic Description

The various terms used in the manipulators considered in this paper are illustrated
here for a two-link planar manipulator as shown in Figure B.1. Assuming that
the deformation of each link is small compared to its length, the length of each
deformed link is approximately equal to the length of the line-segment joining the
two ends of the link. Axis X is defined to be the tangent line drawn from the tip
of the first link. Thus, angles y; and y, are defined as y; = ¢ + 3; ¢1:(/1)d1:/1; and
Y2 = G2+ 3 $25(l2)02;/l5. where ¢y; and ¢,; represent the modal shape functions of
the links (clamped shape functions have been assumed). The control laws derived
in this paper result in small tracking errors for y; and y, defined above. However,
if a Cartesian trajectory is specified, it is convenient to define another output for
y2 as follows: Extending the line AB, let us define y,, as the angle between lines
BD and BC. Thus, the new y; can be written as y2n = y2 — y1 + 1 + ¥1. The
angle ¥, is the slope of the tangent at B and is given by ¥, = 3°; ¢;,.61;, where ¢,
is the spatial derivative of the i-th shape function at [;. Thus we have yo, = q2 +
3, #2i(12)82;/la +3; (61;c — b1i(l1)/11)61: which together with y; may be represented
in the form given by (2.8).
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Figure B.1: Kinematic description for a flexible two-link manipulator.
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Appendix C

Dynamic Models

C.1 Dynamic Model of the Single-Link Arm

The dynamic model used in designing the controller for the experimental setup is
derived based on the assumed modes method with clamped-mass shape functions

given by
@i(z) = cosh(Miz[l) — cos(Aiz /1) — vi(sinh(Aiz /1) — sin(\z /1)) (C.1)

where ! is the length of the link, z is the position variable along the link and A,’s

are obtained from
M, ) :
1 + cosh(A;)cos(A;) + Fz\;(sznh(x\;)cos()\;) — cosh(A;)sin(X;)) =0 (C.2)

where m = 0.210kg is the mass of the link, and M, = 0.251kg is the payload mass.
The first three A;’s are: 1.2030, 4.0159, and 7.1243.
The mass and stiffness matrices and Coriolis and centrifugal terms obtained

by using MAPLE [35] are as follows (see Section 2 for the definition of the terms)

m(8) 0.1863 0.0208
M(q,8) = | 0.1863 0.2655 —7.1518 x 105
0.0208 —7.1518 x 10~5 0.2162
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‘ _ [ 7.5340 —0.0004
| —0.0004 755.5287
i G61(0.26678; + 4.2261 x 108,) + G6(0.53085, + 4.2261 x 1074;)
9(9,4,6,8) = —0.5¢2(0.26678; + 4.2261 x 10~45)
—0.5¢%(0.53086, + 4.2261 x 10-44;)

(C.3)

where m(8) = 0.1334 + 0.265462 + 0.214962 + 4.2261 x 10~46,8; and g(q,¢,6,8) =
[¢F ¢f]T. The natural frequencies obtained from this model can be derived as
1 . _ . .

3=\ €tg(HaoK) = 5.2059, 21.7267Hz, which are close to the experimental values
5.5 and 20 H=.

C.2 Dynamic Model of the Two—Link Manipu-
lator

The dynamic model used in designing the controller for the experimental setup is
derived based on the assumed modes method with clamped-mass shape functions
given by

@i(0) = cosh(Aia[l2) — cos(Xio[l2) — vi(sinh(Aio /1) — sin(Xio/l3)) (C4)
where [, is the length of the flexible link, o is the position variable along the link,
and the A;’s are obtained from

1 + cosh(A:)cos(A;) + %z\;(sinh(z\;)cos(/\;) — cosh(A;)sin(A;)) =0 (C.5)

where m = 0.210kg is the mass of the second link , and M, = 0.251kg is the payload
mass. The first three A;’s are: 1.2030, 4.0159, and 7.1243.
The elements of the mass and stiffness matrices and Coriolis and centrifugal

terms obtained using MAPLE [35] for one flexible mode are as follows
M(1,1) = m; + macos(qz) + m3d?

145



M(1,2) = M(2,1) = m4 + mscos(qa) + med®

M(1,3) = M(3,1) = ms + mgcos(qs)

M(2,2) = mg+ myed?

M2,3) = M(3,2) =my

M(3,3) = mu
AL +a(1) = 3sin(g)[(mie — ms)d2 + masds — (msd + madadi)]
AQ2)+91(2) = sin(q)[d(ms + mua)dr — (msd} + madadr)]
(1) + g2(1) = —sin(ge)[msgi + 0.5m13d] + m1adad] (C.6)

where M(z,7) represents the (i, 7)th element of the mass matrix and L)+ a(9)
represents element 7 of the :-th Coriolis and centrifugal terms.
The numerical values of the parameters in (C.6) are given below in appropriate

ST units, i.e.,

my = 0.2255, my = 0.1090, m3; = 0.2654, m4 = 0.1332, ms = 0.5453

mg = 0.2654, m7 = 0.1862, mg = 0.0727, mge = 0.1332, m;o = 0.2654

my = 0.1862, myy; = 0.2654, my3 = —0.14542, m,q = —0.7271, K = 7.5340.
(C.7)

C.3 Derivation of the Dynamic Equations

Consider the manipulator sketched in Figure 6.1. Assume that link 1 has cross sec-
tional area A;(z;), length [;, with flexible modes represented by 811, d12, -+, Gim,-
Similarly, link 2 has cross sectional area Az(z:), length l;, and flexible modes
021, 022, -+-, O2m,, where m; + m; = m is the total number of flexible modes.
The X — Y frame is the stationary world frame, ¢, is the angle of the tangent at
z1 = 0 with respect to the X—axis, and ¢, is the angle that z,—axis makes relative

to the slope of the end point of link 1. The modal shape functions are assumed to
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be clamped at the actuation end (clamped-mass or clamped-free).

Using the above kinematic description the dynamic equations can then be
obtained by utilizing the Lagrangian formulation. Towards this end, first the kinetic
energy of the system is obtained. Let us denote the description of a point on link 1,

written in the X — Y plane, by r(z,¢). Then

ri(z1,t) = Ti(q) i (C.8)
Lt Sri(z1)du

where T'(q1) is the rotation matrix of the z,~y; frame, i.e.,

cosqy —sing
Ty(q) = [ o ' } (C.9)
sing;  cosqy
Therefore the kinetic energy due to link 1 is given by
1 i .T.
Ty, = 5/0 pAi(z1)r] Mdz; (C.10)

Similarly the description of a point corresponding to z, on the second link is given

in the X-Y frame by

l[ I
rl(xl,t) =Tl(q1)(|: :| +T2 [ ) (C.].].)
yi(l1) Y2

where

my

y(l) = Z: 1i(l1)du;

T, - cos(qz + i1 Bliedri) —sin(q + T H1:01:)
sin(ge + ity Ahidis)  cos(qz + X2 4)ic01i)
d
lie = d—zl(ﬁbli(xl)) |=i=t, (C.12)

Hence the kinetic energy due to the second link is

1 rb .T. ,
Tk, = oA pAz(z2)F] Fodzs (C.13)
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The hub kinetic energy is given by
I .
Ty = §th'2' (C-14)
where

G=a+ Y 805 (C.15)

i=1

Since ¢7;(0) = 0 for clamped mode shapes, we have
| S
Th = §thf (C.16)

The kinetic energy due to M; and J;, which denote the mass and mass moment of

inertia of the case and stator of the second motor, is given by

MF{#1 oty +5 Jl(q1+2¢1,,6u (C.17)

=1

BN | o=

Timee =
And finally the payload kinetic energy is

T = "M27'2 T2 Ilg += JZ(QI + (I2 + Zﬁbheah + z¢2,¢62:)2 (C18)

2 =1 =1

This the total kinetic energy is obtained as
Te = Tkl + Tkz + T, + Tkm“ + Tk,, (Clg)

The elastic potential energy is obtained from

1 m) my mp
=3 Z Z Sudukin + 5 3 z > Gaxbarkor (C.20)
i=1 k=11=1

which can be written in the matrix form V, = -21-5T K§ and

_fh L pi(z) Pdu(zy)
ki = A El.i(z) dz? dz? dz;

_ [ P a(z2) P dau(z2) 9
k2kl = 0 E‘[zz(zg) d:z:% d:z:% d:L‘z (C...].)

where E is the modulus of elasticity of the material and I,,(z;), I.2(z2) are the area

moments of inertia about the axis of rotation z;, z; at z; and z,. Note that for a
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uniform manipulator the cross product terms in (C.21) are zero if orthogonal shape
functions (e.g., clamped—free) are used. If gravity is present, the potential energy
due to gravity can also be added to V.. However, we derive the dynamic equations

in the absence of gravity. Denoting the degrees of freedom by
2T =[q g2 611 12 -+ bim, 621 Ga2 -+ Sam,] = [qF 87] (C.22)

the Lagrangian equation for the system is given by

L=T,-V.= %(éTMé —2TKz) (C.23)
from which the system dynamics can be obtained using
ddL OJL

where 7, is the generalized vector of torques which, for the case of clamped mode

shapes is given by

n=| 7 | r=gr (C.25)
O2x2
where 7 is the actual torques at the joints.
The mass matrix of the manipulator can thus be obtained by writing the
kinetic energy given by (C.20) and putting it in the form 127 M(q.8)z. Then. using

the Lagrangian (C.24), it follows that
M(q,8)z + f(z,2) + Koz = QT (C.26)

where the :-th element of f(z,2) is

. 2 M. 1. OM. .
ﬂ(Z,Z)=€?;Zj'a—sz—-2-ZTa—ZiZ, l'—'l, ey, m+2 (027)

with e; the unity vector !, f(z,2) containing the centrifugal and Coriolis terms, and

K, is given by

02x2 02xm

K, = (C.28)

0mx2 Kme

1A unity vector e; is a vector with all its elements zero except for the i-th element; which is 1.
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The above steps were coded to obtain the dynamic equations using the symbolic

manipulation software MAPLE [35].
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