Real-Time Reactive Systems Measurement Tool

TROM-QM: Design and Implementation

Manjiang Zhuo

A Major Report
In
Department
Of

Computer Science

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Computer Science
Concordia University

Montreal, Quebec, Canada

November 7, 2003

© Manjiang Zhuo, 2003



3

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliotheque nationale
du Canada

Acquisisitons et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-91164-0
Our file  Notre référence
ISBN: 0-612-91164-0

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this dissertation.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the
dissertation.

| Lol ]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de ce manuscrit.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.



i1



Abstract

Real-Time Reactive Systems Measurement Tool

TROM-QM: Design and Implementation

Manjiang Zhuo

Software engineering is a discipline whose aim is the production of quality software,
delivered on time, within budget, and satisfying user expectations. The control on
the software development process and products would allow increasing the quality
of the final product. Software measurement is the required mechanism to provide
feedback and assist the quality control on the software development, testing and
maintenance. As measurement procedure is both time and resource consuming
procedure, a tool for automatic quality measurement and gathering of
measurement data is being designed and implemented. This major report
describes the design and implementation of the TROM-QM, software quality
measurement system for real-time reactive systems development in the
TROMLAB environment. Java has been chosen as the implementation language.
TROM-SCMS, the complexity measurement component of the TROM-QM, has
been designed, implemented and integrated into the TROM-QM. The main feature
of the TROM-QM is its flexibility allowing the integration of more measurements
when developed. The integration of additional measurements procedure is outlined.

The user manual for the system is included.

- iii -



Acknowledgement

I would like to thank my supervisor, Dr. Olga Ormandjieva. She gave me helpful
guidance and advices all along the way.

I would also like to thank Dr. V.S Alagar as examiner for this report.

Also, 1 would like to thank my husband Jinyue and my son Zhuo for their patience,

understanding and love.

-1V -



Table of Contents

LIST OF FIGURES ...t e e s s e s s senesnnees VII
LIS T OF T ABLES .o oo r e ee s eas IX
CHAPTER 1 INTRODUCTION ...ttt ens 1
1.1 THE IMPORTANCE OF SOFTWARE QUALITY MEASUREMENT ......c.eevvvvunenens 1
1.2 PURPOSE AND PROBLEM STATEMENT ....uuiittttteteeerieeeeerrasseeersrneerssnneness 2
1.3 REPORT QOUTLINE ....oetmeeeeteeeeeeeeeeteeeeeemeesesesenneeeeesssesesssssnesesnrnsessssnnnns 2
CHAPTER 2 BACKGROUND ... 4
2.1 REAL-TIME REACTIVE SYSTEMS....ceeteteereeertreeeereseseeeeeessrisssssssssssssssesssennns 4
2.2 TROM FORMALISM ...eveetemeeeeeiieeeuneeeueeesensresersnsersasessnssesssresssssssssessssnnns 5
23 TROMELADB ... eeeeeeeeseseeeeesessessassesseereesssrassessessssees 10
CHAPTER 3 COMPLEXITY MEASUREMENT ......cccoevvivinennnns 12
3.1 COMPLEXITY MODULEINTROMLAB ....ccoovvviiiiiiiiiiiiievieeeeeeieeeevevvvvanans 12
3.2 ARCHITECTURAL COMPLEXITY MEASUREMENT ....coeuviivriiiirieeineervnenns 12
3.3 DESCRIPTION OF THE MODULE FUNCTIONALITY ...cvvvuueieeiieneeeeenerereennnss 21
3.4 DESCRIPTION OF THE COMPONENTS IN THE TROM-SCMS ..o 21
3.5 ARCHITECTURE DIAGRAM ....ueteeeeeeeeee et eeeeeee e esaeeseaeeeeneessnneenns 22



3.0 DATA FLOW DIAGRAM ....coovveeeeeeieeeeerteeeeseeeenieeeserersssssersrsesssssssessesnnnns 22

3.7 CLASS DIAGRAM ...coocoiivnreerririereeeeereeeeeeisissnesesesesesssssrnereeseesessssssenssssssses 23
3.8 SEQUENCE DIAGRAM......uuvvieiiieeeeeeeeeeieninrereeteeeeseeineeneereeeeeeesssosossnsnsnns 24
3.9 ALGORITHMS USED IN TROM-SCMS MODULE.........ttvvieeeeeeeeeeeeccnenvnnens 26
CHAPTER 4 TROM-QM MODULE..........ccccooiiiiiiiiiiiiinnins 36
4.1 INTRODUCTION TROM-QM.......ooiriietieniiinirereeeeenreeesiresnircsnes e 36
4.2 TROM-QM USER INTERFACE.......c.ccociiiiiiiniinieicerecre et 36
4.3 DESCRIPTION OF THE COMPONENTS IN THE TROM-QM...........ccc..ce...e. 41
CHAPTER 5 INTEGRATION GUIDE AND USER GUIDE...... 49
5.1 INTEGRATION GUIDE ...ooveieeiieeeeeeiiiieieeeeeeeeeeeeeeeeeeeeeesesesesaseesaseaeeesenneanenes 49
5.2 USER GUIDE ..o eeeeeeeieeeeeeeeeeeseersssnsaaeaeseesssnsssssasssnnnnsssssesssssnnssseenes 50
CHAPTER 6 CONCLUSIONS & FUTURE WORK.................... 52
REFERENCES ... oottt ee e e e e eae e e srae e e eaans 53

-Vl -



List of Figures

Figure 1 LSL Trait for Set.......cooeeniiiiiiiiiiciceere e 7
Figure 2 Anatomy of a Reactive ObJect ..o 8
Figure 3 Template for GRC €lass......c..cocooeiiiiiiiiiiiiiicerie s 10
Figure 4 Templates for System Configuration Specification...........occoceceiiieiiiininnnnan, 10
Figure 5 Collaboration Diagrams for a Train-Gate-Controller2 Subsystem..................... 17
Figure 6 Train-Gate-Controller2 Subsystem Configuration Specification ....................... 18
Figure 7 Train-Gate-Controller2 Subsystem: graph for communication links ................. 19

Figure 8 Object-Predicate Table Abstractions for the Connected Components for figure 7

................................................................................................................................... 19
Figure 9 the Architecture Diagram of AC modules ..........cooviiniiiiiiis 22
Figure 10 the Data Flow Diagram of AC Module ...........ccocoiiininiiiiiiiiicieens 23
Figure 11 the Class Diagram of the AC Module...........ccoooniiiii, 24
Figure 12 the Sequence Diagram for AC Module ..........cocooiiiiiiiiiniii 25
Figure 13 User Interface - Measurement Tools USer ..o 37
Figure 14 User Interface - View of Measurement Results -1 ..., 38
Figure 15 User Interface - View of Measurement Result — 2 ..o, 39
Figure 16 User Interface - View of Measurement Result -3 ... 40
Figure 17 Save as the results in table view to Excel file........coooooniiniininn 41
Figure 18 Select SCS file event handling function. .........c.ccoceevviniiiiiiinii, 42
Figure 19 OK event-handling functions..........ccccevvriiiiiiiniininnniecce e 44

- Vil -



Figure 20 Calculating the Architectural Complexity function
Figure 21 Designs of View Measurement Results..................

Figure 22 Result Table Design View .........cccoevvvinininiininne.

- Viil -



Table 1 Object Predicate Table

List of Tables

Table 2 Port-Port CommuniCation TabIe .....eeeee e eociiirreieirerrerertrereereressessssssssseasasesees

-ix -



Chapter 1 Introduction

1.1 The importance of software quality measurement

In software industrial practice, the high cost of development process of large-
scale software has put emphasis on the need to increase the quality of software
development. The quality control in earlier phase is essential for the economics
of the software development. Hence, it is necessary to have precise, predictable,
and repeatable control over the software development process and product. In
the context of real-time systems, which are mostly safety-critical, the quality
control is a must. Examples of real-time software systems include alarm systems,
air ftraffic control systems, nuclear reactor control systems and
telecommunication systems. Any error occurring in these software systems will
course a serious consequence, such as human life loss, or living environment
damage. The real-time software system usually is inherently complex. This Major
Report describes the design and implementation of a measurement system for
managing complexity in real-time reactive systems. The proposed approach is
applicable to real-time reactive systems modeled as timed labeled transition
systems, and developed according to the process model shown in Figure 1. The
Major Report discusses the complexity measurement for developing real-time
reactive systems, and describes the design and the implementation of a tool for

automatic measurement and data gathering at the design specification level.



1.2 Purpose and Problem Statement

The main goal of this major report is to automate the measurement methods for
complexity and reliability, and integrate them into TROMLAB [AAM98], a rigorous
framework for the development of real-time reactive systems based on the
TROM formalism [Ach95]. The measurement methods are described in [Orm02].
The main contributions of the report are:
e Review and adjustment of the complexity measurement method proposed
by Dr. Olga Ormandjieva [Orm02];
¢ Implementation of complexity measurement algorithms and the
maintainability profile (TROM-SCMS);
e Testing the implementation on the gate-train-controller case study and
compare the testing results to the theoretical ones;
¢ Design and implementation of a flexible measurement system TROM-QM;
¢ Integration of the complexity and reliability under a common user interface

to capture the input to the module and display the measurements results.

1.3 Report Outline

The major report is organized as follows: Chapter 2 reviews briefly the TROM
formalism, and gives an overview on the TROMLAB environment. Chapter 3
explains the complexity measurement, and illustrates it on a case study. The
designs of the complexity measurement component TROM-SCMS, and the key
algorithms used in the architecture complexity quantification are also included in
Chapter 3. Chapter 4 introduces the TROM-QM system, the user interface and
the integration of the measurements modules for complexity and reliability.

2



Chapter 5 describes how to integrate the other modules to the system. The

conclusions and the future work are outlined in Chapter 6.



Chapter 2 Background

The complexity measurement theory is derived from TROM formalism in the
context of TROMLAB. The goal of this chapter is to give an overview of the
TROM formalism and the TROMLAB environment for development of real-time

reactive systems.

2.1 Real-time Reactive Systems

Real-time reactive systems are largely event-driven; interact intensively and
continuously with the environment through stimulus-response behaviour and are
regulated by strict timing constraints [Orm02]. Their behaviours are controlled by
strict timing constrains. The term reactive introduced by Harel and Pnueli [HP85]
distinguishes the systems that continuously interact with their environment from
the interactive and transformational systems. Real-time reactive systems
possess two important properties: Stimulus synchronization and Response
synchronization. These two properties distinguish them from other real-time
systems. Stimulus synchronization means that the system is always reacting to a
stimulus from the environment. Response synchronization means the time
elapsed between a stimulus and its response is acceptable to the relative
dynamics of the environment, so that the environment is still receptive to the
response.

The main issue in the development of safety-critical systems is to produce a
reliable design. The real-time system design is a conceptual solution to the

domain problem and is the basis for an implementation of the solution. To

4



achieve a high level of reliability, the design must be supported by a rigorous
formalism. The formal object-oriented method TROM [Ach95] has been studied

as a formal basis for the development of real-time reactive systems.

2.2 TROM Formalism

TROM formalism [Ach95] is founded on merging object-oriented and real-time
technologies, and provides a formal basis for specification, analysis and
refinements of the real-time reactive systems design.

2.2.1 Reactive Object Model

A reactive object is modeled abstractly as a finite state machine augmented with
ports, attributes, logical assertions on the attributes, and timing constraints
[Ach95]. Synchronous message passing mechanism is being used among the
reactive objects communication. Events are defined as external events (input or
output) and internal events. An external event can only occur at a reactive object
of a specific port type; an internal event occurs at so called null port. Two ports
are compatible if the set of input messages at one port is equal to the output
messages at the other port. A port link connects two compatible ports. All valid
messages exchange among the objects in a subsystem is through the port links.
A generic reactive class (GRC) is a collection of reactive objects. The GRC has
port types, attributes, logical assertions on the attributes and time constraints.

All the reactive objects, which are generated from the same generic reactive
class, have the same attributes. From the object-oriented perspective view, a

generic reactive class is a class declaration. Each individual reactive object is an



object of that particular class. TROM formalism is the basis used to specify
GRCs and thus reactive objects in a system.
TROM is a three-tier formalism; each tier has its own output and processing

mechanism.

2.2.2 First Tier — Larch Formalism

Larch [GH93] supports a two tier specifications. One tier is Larch Interface
Language (LIL), which is tailored to a specific programming language. The other
tier is Larch Shared Language (LSL), which is an abstract algebraic specification.
Typically, LIL uses the declaration syntax of a specific programming language,
and adding annotations to specify the behaviours of the operations. These
annotations consist of pre and post conditions.

LSL is a language for specifying state-independent mathematical abstractions of
a system. An LSL trait is used to describe a mathematical theory. A trait is a
basic unit of specification. In each trait, operators are introduced and defined
with a set of equations that defines which terms are equal to one another, and
may assert additional properties about the sorts and operators. A trait can use
another trait by including it in the includes section of the specification. Figure 1

shows an example of the Set trait:



SetTrait(Set, E) : trait
includes Inieger
introduces

emptyset =— Set

insert : E, Set — Set
delete : F, Set — Set
unionn : Set, Set — Set
member 1 E, Set — Bool
subset : Set, Sel — Bool
size 1 Set — Ini

asserts
Set generated by emptyset, insert
Set partitioned by member
Voauy:E st: Se

—{member(z, emptyset))

member(z, insert(y, 8)) == (z = y) A member{z, 3)
member(z, delete(y, 8)) == (x # y) A member(z, 3)
member(x, unionn(s, t)) == member(z, 8) V member(z, t)

subset(emptyset, s)

subset (insert(z, 8), 1) == member(z,t) A subset(s,t)
subset(delete(z, 8),t) == subset(s,t)

unionn(s, emptyset) == s

unionn(s, insert(z, 1)) == insert(z, unionn(s, 1))

size(emplyset) ==

size(insert(x, 8)) == if member(z, 3) then size(s) else 1 + size(s)

implies

Sel partitioned by subset

Vaz,y:E,st: Set
insert(z, insert(z, 8)) == insert(z, 5)
insert(x, insert(y, 8)) == insert(y, insert(z, 8))
subset(s,1) = (member(z, s) = member(z,1))

converts delete, unionn, member, subset
exemptingVi: FE
delete(i, emptyset)

Figure 1 LSL Trait for Set



2.2.3 Second Tier - TROM Class

A TROM class is a hierarchical finite state machine augmented with ports,
attributes, logical assertions on the attributes and time constraints. Figure 2
shows a TROM object. All the reactive objects generated from generic reactive

class communicate with its environment by synchronous message passing.

Stémlux

pid Incoming

ﬁ Interaction

Attributes | AH. Fund  Stotes

it ® e
! £
s B
i
Port E
{fmzéiilim s = '_. Transition
port A

H
Fnable Time-Constrained '}mv}'é?ie??i
""""" 2 Reactions Y g emenent

F@ Crlobad ciock

pid Outgoing
Inderaction

Kespon

Figure 2 Anatomy of a Reactive Object

A TROM object is made of a set of events, states, attributes and its related
functions, transitions and a set of timing constraints. There are three types of

events: external input, external output and internal and they are represented

8



symbolically by e?, e! and e respectively. A TROM object communicates with its
environment by synchronous message passing, which occurs at a port.

An attribute of TROM object can be either one of the following types:

e Abstract data type imported from the first tier

e Port types
Each reactive object instance can have multiple port types. A port is an abstractly
modeled bi-directional access point between environment and a TROM object. A

port can only process a set of messages defined by its port type. The signature

of a port type K is denoted as & K. The relationships between attributes and

states are defined by attribute functions. A transition function describes the state
change due to a particular event. A transition is caused by the occurrence of
either an internal event or an external event. A timing constraint on a transition
specifies the constraint of response to stimulus in terms of time.
A TROM object is an 8-tuple (P&, 0, X, £, ®, A, I') such that P represents a
finite set of port-types, & is a finite set of events, © is a finite set of states, Xis a
finite set of typed attributes, £ is a finite set of LSL traits, ® is a function-vector, A
is a finite set of transition specifications and I is a finite set of time-constraints. A
template of a GRC class is shown in Figure 3.
Class<name>

Events:

States:

Attributes:

Traits:



Attribute-Function:
Transition-specifications:
Time-Constraints:
End
Figure 3 Template for GRC class
2.2.4 Third tier — System Configuration Specification
Each subsystem is the collaboration of the objects instantiated from the second
tier. A system configuration specification (SCS) is defined to specify a reactive
system or subsystem by composing reactive objects or by composing smaller
subsystems. A template for a system configuration specification is shown in
Figure 4.
Subsystem <name>
Include:
Instantiate:
Configure:

End

Figure 4 Templates for System Configuration Specification

2.3 TROMLAB

TROMLAB is a framework for real-time reactive system development built on
TROM formalism. The framework includes a number of tools to promote a
rigorous development of real-time reactive systems.

The current architecture of the TROMLAB consists of the following components:

10



e Rose-GRC Translator — [Pop99] module which maps graphical model
in Rational Rose to formal specification based on TROM,;

o Interpreter — [Tao96] performs syntactically verification on specification
and generate an internal representation of it;

e Simulator — [Mut96] creates animation of a subsystem based on
internal representation generated by the interpreter;

e Browser for Reuse — [Nag99] an interface to a library which helps the
user to navigate, query and access system components during the
development;

e Graphical User Interfface — [Sri99] an interface for the system
developer to interact with the TROMLAB environment;

e Reasoning System — [Hai99] Debugging facility that allows the user to
query the'system behaviour based on interact queries;

e Verification Assistant — [Pom99] an automated tool that extracts
mechanized axiom from real-time reactive systems;

e Test Cases Generator — [Zhe02] and [Che02] an automated tool for
generating test cases from specifications. |

This Major Report describes the design and implementation of the TROM-QM, a
new TROMLAB automated tool for software quality measurement and
measurement data collection and analysis.

The next Chapter introduces the design and implementation of the TROM-SCMS,

complexity measurement component of the TROM-QM.

11



Chapter 3 Complexity Measurement

3.1 Complexity Module in TROMLAB

The complexity measurement system proposed in [Orm02] includes testability,
functionality, complexity and reliability measures. One of the main goals of this
Major Report is the implementation the complexity measurement component
responsible for evaluating the complexity of a real-time reactive system based on
SCS specifications in the TROMLAB environment. Architectural complexity is
viewed in terms of how the software components interact through message
passing mechanism, without considering the complexity of its components. The
architectural complexity measures have to quantify objectively the amount of
information exchanged between the objects.

For the architectural complexity measurement purposes, all the information
related to the interaction between objects via message exchanges, has to be

extracted from the TROMLAB design specification.

3.2 Architectural complexity measurement

The complexity measurement and management in real-time reactive systems
proposed in [Orm02] quantifies the level of complexity of a system specified in
TROM formalism.

3.3.1 Approach

A system in TROMLAB is assumed to consist of a collection of reactive objects
and there is interaction among these objects. The object behaviour is concerned

with its state changes and interaction with other object (message passing). The

12



total structural complexity of the software system is a function of the internal
complexity and the architectural complexity. This report is considering the
architectural complexity only.

The architectural complexity could be simply to view in terms of how the software
components interact through message passing mechanism. The information
transfer between the components is synonymous with the complexity of
interactions with the software system. So measuring the amount of information
transfer is assessing the complexity management in real-time reactive systems
[Orm02].

3.3.2 Mathematic Model for Architecture Complexity

The purpose of the architectural complexity measurement is a comparison of
different designs in terms of the complexity of interactions within the objects. All
the information related to the interaction between objects via message
exchanges has to be extracted from the TROMLAB design specification. The
architectural complexity measures quantify objectively the amount of information
exchanged between the objects [Orm02]. An object-predicate table is abstracting
the interactions between the objects. Each row in the table represents an object
in the system, and each column represents a communication port. The formal
definition of the object-predicate table is given below:
1, if port; belongs to object;

Object_Predicate_Table(object;, port;) = or is linked to a port of object;,
0, if this is not the case.

13



The concept of excess-entropy was introduced to quantify the complexity of
information exchange based on the object-predicate table abstraction. The
excess-entropy C is defined as the difference between the sum of the entropies
of parts (subsystems, or partitions, from which the system is composed) and the
entropy of the whole (system).

The formulas for calculating the entropy H and the excess-entropy C are:

(A): H=logn — 137, n;logyn;

m L=l
(B)=C‘=E?.-.15i - H
(C)' Hgf:]@gézﬂg’ — %Zﬁ;pjlﬂgzl’i

Where m is the number of partitions in a system with n objects. Each partition m;
has n; objects forming a subset of the set of n system’s objects. Hi is the entropy
calculated on the object-predicate table abstracting the partition;. k; is the number
of different rows configurations in the object-oriented table corresponding to the
partition;, p; is the number of rows with the same configuration in the partition;.

And
g = Z?;fg b;

Architectural Complexity is defined as

C

C max

AC =

Cmax =(n-1) logz n

14



Local Architectural Complexity (LAC) is evaluated as a relative contribution of
one object’s interactions to the architectural complexity of a design.

If the given object belongs to only one set of partition, The LAC is defined as:

If the given object be longs to at least two partitions, then LAC is defined as

N7

3.3.3 Architectural Slice Extraction

Software maintenance is the modification of a software product after delivery to
correct faults, to improve performance or other attributes, or to adapt the product
to a changed environment. Maintenance can be difficult if the coupling in the
architectural design is unjustifiably high. In [Orm02], the maintainability is
estimated based on the complexity of interactions between the objects in the
design architecture.

There are two aspects of complexity of modification: a) primary modification due
a given change; b) secondary modification describing the system’s parts affected
by the primary modification due to the effect of a given change.

An approach in assessing quantitatively the maintenance effort is related to the
secondary as proposed in [Orm02]. A new static analysis technique -
Architectural Slicing - useful in design complexity comparision is proposed.
Architectural slicing extracts all the design objects relevant to the computations of

a given one.

15



The algorithm for extraction of the architectural slices is defined as follows
[Orm02]:

1. The given object belongs to only one set of interacting objects. In this case,
the above set of objects would define the architectural slice for the
participating objects.

2. The given object belongs to at least two sets of interacting objects. In
general, one object may belong to different sets of interacting objects, in
this case, the architectural slice is the union of the sets to which the
interacting object belongs.

We illustrate the complexity measurement and maintainability assessment on a

case study in the following section.

3.3.4 Gate-Train-Controller Case Study

The Railroad crossing problem has been considered as a benchmark example by
researchers in real-time systems community. In this section, we illustrate the
theoretical computation results of the architectural complexity on the Gate-Train-
Controller case study. Here we only introduce the information related our
purpose. For more detail information of the problem, please refer to [Orm02].

The UML model for the Train-Gate-Controller problem has three generic reactive
classes: Train, Controller and Gate. Each of these classes has aggregate of port
types. There is an association between two port types, if the corresponding of the
two generic reactive classes exist communication, since the GRC communication

is through its port type. All communication information between the GRC are

16



defined in subsystem configuration specification file. Figure 5 illustrates the
collaboration of a Train-Gate-Contoller2 Subsystem with five trains, two gates

and two controllers.

traint : Train train2 : Train traing ; Train fraind : Train traind : Train

AN [
[actiad] [mciad [esec] [as.ed]

[@pP2:@p] |@P3:ae] {@Pa@_| |@ps.op| |@es.oe|

e N

Controlterd : Controller

Contrallsr? | Controller

Gl &G 52 L @G
BS1 . @S S2.@9
zatsd @ Gate Gale? : Gate

Figure 5 Collaboration Diagrams for a Train-Gate-Controller2 Subsystem

The formal specification of the above subsystem configuration is as shown in

Figure 6.

17



SCS TrainGateController

Includes:

Instantiate:
gate1::Gate[@S:1];
gate2::Gate[@S:1];
train1::Train[@C:1];
train2::Train[@C:1];
train3::Train[@C:2];
train4:: Train[@C:1];
train5::Trainf@C:1];
controller1::Controller[@P:3,@G:1];
controller2::Controller[@P:3,@G:1];

Configure:

Controller1.@G1:@G<->gate1.@S1:@S;

Controller2.@G2:@G<->gate2.@S2:@S;

Controller1.@P1:@P<->train1.@C1:@C;

Controller1.@P2:@P<->train2.@C2:@C;

Controller1. @P3:@P<->train3.@C3:@C;

Controller2.@P4:@P<->train3.@C4.@C;

Controller2.@P5:@P<->train4.@C5:@C;

Controller2. @P6:@P<->train5.@C6:@C;

End;

Figure 6 Train-Gate-Controller2 Subsystem Configuration Specification

18



The interactions between the objects in Figure 6 are represented as a graph in

Figure 7:

Cl €2 €3 C4 C5_ ©Cb
. o

Pl P2 P3| P4 PSC P6

G110 G20

Sy S24
Figure 7 Train-Gate-Controller2 Subsystem: graph for communication links

The object-predicate tables for the two connected components of the figure7 are

shown in Figure 8:

o2 |83 | cd | gd 316 |15 el | gd
cifl 1 1 =1 1
2 1 1 (5 1 1
3 1)1 6 141
pifi1 1 Paf 1 1
P2 1 1 5 1 1
3 1] 1 P 1|1
1] 11 G2 11
51 11 52 11

Figure 8 Object-Predicate Table Abstractions for the Connected Components for figure 7

19



In this example, the total number of components n is 16, the number of partitions
m is 2. ny = 8 in partition m,, n, = 8 in partition my ki = kz =4, and p;= 2 for Vj in

[1..4].

AC = 2(log, 8 — 3 Yy 2loge 2) — (loga 16— %Z;zﬁgloggg)
15log, 16

e LAC for the objects ty, tp, ¢4, g1 :

A7 =— Hi  —
LAC = 7= =10.03

e LAC for the objects 4, t5, C2, 92:

LAC = 2. =003

Conaz

e LAC for the object T3 :

; Y - § HHa :
LAC—%%“%%—Q.M

Architecture Slice

The GRC objects in the system are t1, 2, {3, 14, t5, ¢1, c2, g1 and g2. By the
definition the slices for the objects t1 and t2 consist of the objects {t1, 12, 3,
c1, g1}. The slice for the object t3 consists of the objects {t1, 12, t3, t4, t5, c1,
g1, c2, g2}. The slices for the object t4 and t5 consist of the objects {t3, t4, t5,

c2, g2}.

20



One of the main goals of the major report is to develop TROM-SCMS - a system
to compute the architectural complexity, local architectural complexity, and the
maintainability profile. The implementation of the complexity measurement

component is described in the rest of the sections of this chapter.
3.3 Description of the module functionality

The TROM-SCMS is not a standalone module. It is integrated with other
measurements in TROM-QM module, part of the TROMLAB environment.

The input to the TROM-SCMS system is the system’'s SCS file, which is
generated from Rose-GRC Translator [Pop99]. The TROM-SCMS provides the
APIs to get this file as input data and output Architectural complexity result, local

architectural complexity and architectural slices.

3.4 Description of the components in the TROM-SCMS

The TROM-SCMS consists of four main components: Evaluator, OPTable,
ObjectAndPort, and Scs_Parser.

Scs_Parser. AC and reliability modules share this class. It has a function to
parses the SCS file, to get the ports, objects and the relationship between the
ports and the objects. (Here the objects represent GRC object, ex: train1, gate1.
the ports are port object, ex: P1, G1).

ObjectAndPort. Encapsulate objects and ports with the object name and it's
class name (for example, train1, P1 are object name, and Train and P are the
class name).

OPTable: Encapsulate a table by two vectors (port list and object list) and a two-

dimension array.

21



Evaluator: This is most importance component in the TROM-SCMS system. It
possesses two tables, one is the object predicate (object-port) table, and another

is port-port table. All of our results are come from these two tables.
3.5 Architecture Diagram

The architecture diagram of the TROM-SCMS system is shown in the Figure 9.

<<Controls>>] [ 1 [ 1

<<Creates>>
GUI SEC_PARSE OPTABLE

<<Controls>> <<Contains>>

\_l

EVALUATOR

AC Module

Figure 9 the Architecture Diagram of AC modules

3.6 Data Flow Diagram

The TROM-SCMS module takes an input file (SCS) from client (GUIl), then

parses the input file to produce OPTable objects, which are aggregated by the

22



Evaluator. The module’s client then could get the result from Evaluator, which

has several APIs to provide the results.

SCS file

OPTable

AC Results

Figure 10 the Data Flow Diagram of AC Module

3.7 Class Diagram

The class diagram is shown in Figure11. It illustrates all classes in the AC

module and their relationships.

23



SCS: Parser

gm:gg:tplf:r;?abg?e StringProcessor
S5m evaluator
&m_symbolTable :aifgnﬁtring()ro

moout o el R alignNumbe
%m:ﬁle """""""""""""""""" ®removeW hiteSpace()
%GetEvaluator()
Sparse() -
$setOutputFile() T~
$getFileName() BN ObjectAndPort
:parselnstantiate() e &m PortType

parseConfigure() Name
gSetPortTablelinks() TN @m_Type

\

Evaluator N $SetName()
&m_PontPortTable AN :23‘:}/990
&m_ObjPortTable N %e:Tame()
&m_SubSystemsList N ‘Se ype()

; \ etPortTypelist()
& m_SubSystemTablelList \ SOutPoriTooalict
&m_arrDirtyIndexMark AN etPortTypeList()
Ssm K. _PList ‘ " 7
&m_objectVector AN
&m_entropy \\
%ComputeEntropy{) “
PExcess_entropy()
WMaxExcessEntropy() OPTable
PAC(H '&m_ObjectList
9GetArchitecturalSlice() [ &m_PortList
SPutLACtoMap() T - x| @m_Table
EPPutSlicetoMap()
@PSearchSubSystem() ®SetTalbeElement()
gPPartitionSubSystem() #GetTableElement()
$GetSubSystemList() %CompareTwoRow()
BGetOjpectCount() $GetObjectList()
SGetObjectNameAt()
¥GetLAC()
£»BuildTable()
£PBuildKPTable()
EPSumSubSysEntropy()
&P CalculateSubSysEntropy()

Figure 11 the Class Diagram of the AC Module

3.8 Sequence Diagram

The sequence diagram dynamically illustrates the flow of the control of the AC
component.

24



1: Create SCS_Parser

2: Create ObjectAndPort |

|
|

T 3: Create OIPTaUe

|
|
| 1)
|
|

T {4: itiate Evaluator
| [

Figure 12 the Sequence Diagram for AC Module

From the sequence diagram we can know that the GUI creates SCS_Parser
object; inside of the SCS_Parser, the ObejctAndPort objects are created to
initialize the OPTable objects. With the OPTable objects, Evaluator object could
be created. At last the GUI could get the resuits from Evaluator object.

The following section introduces the algorithms implemented in TROM-SCMS.

25



3.9 Algorithms used in TROM-SCMS module

This section describes key algorithms used in computing AC, LAC and getting

the object’s slice in detail. The key point in TROM-SCMS system is dealing with

two tables; one is object-predicate (object-port) table; another is port-port. We will

use the Gate-Train-Controller case as example to explain the key algorithms

used in this module.

3.9.1 Algorithm of producing the object-port and port-port tables

As the Gate-Train-Controller case example, the object predicate table and port-

port table are shown as table 1 and table2.

In Table1, each column represents the GRC object, and row represents the port

object. Since the port C1 is belongs to object train1, so there is a link between

them, mark as 1 in the table. C1 is link to P1 and P1 belongs to object controit,

so C1 has a link to control1 too. This is according to the object predicate table

definition [Orm02].

Trainl

Train2

Train3

Traind

Train5

Train6é

Gatel

Gate2

Control

Control

2

1

1

P1

C2

P2

C3

P3

U U [FUREN U e

C3

P7

ot | et | e | pnand

C4

P4

Cs

P5

Co

el el e e R

26




P6 1 1
S1 1 1
G1 1 1
S2 1 1
G2 1 1

Table 1 Object Predicate Table

In Table2 both column and row represent port object. This table is obtained by
parsing the configuration section in SCS file. If the pair of ports exist a link in
configuration, we put a link in the table between the two ports. Since the
controllert and controller2 have two types of ports, there exist links between
these two types of a port. Thus we have link between G1 and P1, P2, and P3,; G2
and P4, P5, and P6.

We will use this table to find the partitions and generate the subsystem table.

Cl[P1|C2|{P2 C3|P3|C3|P7/C4 P4 CS5|P5/C6|P6;S1 |Gl |82

G2

C1 1

P11 1

C2 1

P2 1 1

C3 1

P3 1 1

C3 1

P7 1

C4 1

P4 1

Cs 1

PS 1

Coé 1

P6 1

S1 1

Gl 1 1 1 1

S2

G2 1 1 1 1 1

Table 2 Port-Port Communication Table

27




3.9.1.1 Data type to represent the table

We define a data type OPTable to represent the table. In OPTable, there are two
Vectors: One stores the objects in the column; another store the objects in the
row, and a two-dimension integer arrays to represent the link between the
column and the row. We also define ObjectAndPort data type to represent the
GRC object and port. Both GRC object and port object have name and type.
GRC has aggregated of port types. We define ObjectAndPort data type with
name, type and port types list to encapsulate both GRC objects and ports object.
3.9.1.2 Produce the tables

The input data for the TROM-SCMS is SCS file. The TROM-SCMS system gets
the file, and parses it to produce the object predicate table and port-port link table.
There are two functions to parse SCS files and produce two OPTable objects.
Function Parselnstantiate() only produce the objects vector.

Function parseConfigure() has produced the port vector and set links in object

predicate table and port-port link table.

Pseudo code:

Pre-Condition: {The SCS file is in correct format}

Post-Condition: {Object predicate table and Port-port table is produced}

28



Void Parselnstantiate()

Begin

Loop read a line from SCS file

Parse text in the line to find the GRC object name and type in
“Instantiate” section.

Create an instance of ObjectAndPort; initiate with the name and
type.

Parse port types, which belong to the GRC objects.

Set the above instance’s port type list.

Add this completed GRC object to column (GRC object list) vector

in object predicate table

End loop

End Parselnstantiate

Void parseConfigure ()

Begin

Loop read a line from SCS file under the “Configure” section.

Parse string before the symbol “<->" in the line

Get GRC object and its port name and port type.

Create an instance of ObjectAndPort; initiated with the port name
and port type.

Add above instance to row (port list) vector in the object predicate
table.

29



Find the column index in the object predicate table by using the

GRC object name.

Set link at the object predicate table by using the column index

and current row.

Add above instance to column (port list) in the port-port table.

Add above instance to row (port list) vector in the port-port table.

Parse string after the symbol “<->” in the line

Get GRC object and its port name and port type.

Create an instance of ObjectAndPort; initiated with the port name

and port type.

Add above instance to row (port list) vector in the object predicate

table.

Find the column index in the object predicate table by using the

GRC object name.

Set link at the object predicate table by using the column index

and current row.

Add above instance to column (port list) in the port-port table.

Add above instance to row (port list) vector in the port-port table.
End Loop

Set link at Port-port table.

End parseConfigure

30



3.9.2 Algorithms for Calculating AC, LAC and Generating the Object

Slice

Component Evaluator is responsible for calculating Architecture complexity and
local architecture complexity, and find out the list of GRC object slices. By the
definition of the AC and LAC, we have to heavily use the object predicate table
and port-port table. Hence we define two OPTable objects in Evaluator

component.
3.9.2.1 Data member in evaluator component

Two OPTable objects ( m_PortPortTable, m_ObjPortTable). One represents
object predicate table; the other represents the port-port table.

Vector m_SubSystemTableList. The system could be partition to several
subsystems. Each subsystem has its own object predicate table. This vector data
member m_SubSystemTableList holds all of the subsystem objects predicate
tables.

Vector m_K_Plist. In calculating the partition entropy H;, we have to find the p;
which is the number of rows with the same configuration. The vector data
member m_K_Plist stores p;. If there are five kind of different configuration, the
total elements in the vector m K Plist are five. The number of same
configuration k; is stored by each element.

Vector m_SubSystemsList. before we can calculate the architecture complexity,
we have to partition the system to subsystem and build an object predicate table

for each of the subsystem. The ports in subsystems are exclusive. We use a
31



vector to store the subsystem’s ports and add all of these vector objects to the

vector m_SubSystemsList.
3.9.2.2 Calculate Architecture Complexity

The main functions for calculating the architectural complexity are
PartitionSubSystem(), SearchSubSystem() and buildTable().
PartitionSubSystem(). Partition the system to subsystem, output is the vector
m_SubSystemsL.ist, which holds the subsystem ports list.

SearchSubSystem(). this is a key function used to partition the system. It takes
two parameter as inputs, one is the row; the other is a subsystem (Vector). This
function will loop the row from first column to last column to find the links. If there
exists a link in the [row, columnj], and the column; is not existed in the subsystem,
add the column; to the subsystem. Pass the column; as a parameter to the
SearchSubSystem function. Let it recursively search the links. At last, all ports
existed an interaction with the port in this row will be found and the index of the
column of the ports will be added to the subsystem vector.

buildTable(): build the subsystem’s object predicate table. With the result of
PartitionSubSystem(), we have the number of partition of the system (size of
the m_SubSystemsList ), then we could build subsystem’s object predicate table.
Slice() : a Slice’s constructor. It takes a GRC's object name as parameter and
produces a slice into data member m_vectorSlice. The two data member is
defined as public; this class is private for the Evaluator class. So after
constructor Slice, we can get the GRC object’s slices

Pseudo code:

32



Pre-Condition: {The system object predicate table and the port-port table have
built properly.}

Post-Condition: {Subsystem table is produced}

void PartitionSubSystem()
Begin
Loop port-port table’ port list (column)
if current row is marked as dirty then

create a Vector aNewSubSystem
SearchSubSystem( column, aNewSubSystem),
Add the aNewSubSystem to m_SubSystemsList.
Mark the current row as dirty
End if

End loop

End

Void SearchSubSystem ( int aRow, Vector aNewSubsystem )
Begin
Loop port-port table’ port list (column)
If there is a link at [row, column;] then
If the NewSubsystem not contain the index of the column;
then

Add this index to the NewSubsystem.

33



Mark this column; as dirty.
SearchSubSystem(column; , aNewSubsystem)
End if
End if
End Loop

End SearchSubSystem

Void buildTable ( Vector subsystemList, OPTable aNewTable):
Begin
Loop subsystem’s port list
Get the port’s index from the subsystem port list (this index is the index of
row in the object predicate table)
Loop object predicate table object list (column)
If there is link in [row, column)] then
Add this GRC object to aNewTable
End if
End Loop object predicate table
End Loop subsystem’s port list
Set the links in subsystem object predicate table

End buildTable

Slice( String Objectname )

34



Begin
Loop m_SubSystemTableList (number of tables)
Search the Objectname in each table.
If found Objectname in the table then
Add all the GRC objects in this table to m_vectorSlice.
End if

End Slice

35



Chapter 4 TROM-QM Module

4.1 Introduction TROM-QM

The quality measurement for real-time reactive systems in TROMLAB quantifies
and analyses several aspects of software quality, such as testability, functionality,
complexity and reliability. Each of them is implemented independently. However,
a measurement tool to measure a real-time system quality is required to integrate
all of these modules together and provide a graphical user interface for ease of
use. The main goal of this report is to integrate the measurement components,
and to design and develop a common user interface. The provided by TROM-QM

User Interface is described in the following section.

4.2 TROM-QM User Interface

There are two main components for the GUI user interface in TROM-QM. The
first frame is the Measurement Tools shown in Figure 13. User can optionally
select one or more of the testability, functionality, reliability or complexity
measurements to assess the complexity or/and reliability of the system being
developed at the design phase. When one is selected, the corresponding
browsing file button will be enabled, and then user could chose input files.
Reliability needs three kinds files: GRC specification files, synchronous product
machine specification file and system configuration file [Lee03]. The Select GRC
file button allows the user to multi-select files. Other file browse buttons are

single file selection. The text boxes display the files path chosen by the user.

36



The input file for the Architecture Complexity is SCS file, same as the one in
reliability measurement. Hence, if the reliability is selected, there is no need to
browse files for Architectural complexity. The button of Select SCS file for AC is
disabled in this case. It will be enabled only when the Architecture complexity
option is selected and Reliability option is unselected.

We have error checking functionality included in this interface as well. If a
measurement is selected, but the text fields (file path) are empty, it will display

error message when pressing the OK button.

[&i Measurement Tools

. Cantel

Figure 13 User Interface - Measurement Tools User

37



The second frame displays the measurements results. There are three different

views of the results.

The first view is text view shown in Figure 14. It displays the selected

measurement results in text description.

aDizplay the leasureieni Result from Result table

Reliability

AC =

Obiject
Gate2

Gatel
Controllerl
Controller2
trainl
train2
train3
traing
trains

0.0667

LAC
0.0333
0.0333

0.0333
0.0333
0.0667
0.0333
0.0333

0.6793

0.0333
0.0333

Figure 14 User Interface - View of Measurement Results -1

Following is Complexity Measurement Results:

3lice
GateZ;
Gatel;

Gatel;
Gatel;
Gatel;
Gatez2;
Gate2;

Controller2;
Controllerl:

traind;
trainz;

Gatel; Controllerl;
Gate2; ControllerZ:;

Controllerl:;
Controllerl;
Controllerl:;
Controllerz;
ControllerZ2:

train2;
train2;
train2:;
traind;
traind;

trainb:
trainl;
traing;
traind;
trainl;
trainl;
trainl;
train5;
trainb:

train3;
train3:
trainl; trai
trainb; trai
train3;
train3;
train3; Gate
train3;
train3;

The second view is the graphic view, which displays the measurement results

graphically. The right bar graph shows the LAC values. The left graph shows the

result of reliability and architectural complexity. The range for both reliability and

architectural complexity are 0 to 1 by default. In some case we may get the

measurement results are too small to display in the graph. We design to let user
38



reset the upper bound of the range. Thus increasing the percentage of the
measurement result and it could display properly in the graph. From the Figure
15 we can see there is a set upper bound check box. If user checks this box,
the four edit boxes for AC, Reliability, Testability and Functionality will become
editable, and the Update button will be enabled. Then user could set appropriate
values, and press the Update button, the upper bound value will update to the
bottom table and the graphic will be adjusted. This value will also be updated to

database.

E,%Display the Neasurement Result from Kesult table

U Reiiabiiity
LTestability
'Functionability

Figure 15 User Interface - View of Measurement Result — 2

39



The third view shows the database in table (Figure 16). This table is same as the
database table, except the measure time. The measurement time value in the

database is represented with millisecond, in this table it is formatted to normal

time expression.

K

festl . . 2003.11.02,13 :
testt AC 0.0 0.1 0.0687 2003.11.02,135..0 i
test2 Reliability 0.0 0.7 0.6783 2003.11.02,14.0..}
test2 AC 0.0 0.1 0.0667 2003.11.02,14:0...
Subsystem 0 AC 0.0 1.0 0.0667 2003.11.23,135..}
Subsystem 0 AC 0.0 1.0 0.0667 2003.11.23,14.0.1
Subsystem 0 AC 0.0 1.0 0.0667 2003.11.23,14:0.
Suhsystem 0 AC 0.0 1.0 0.0667 2003.11.23,14
Subsystem 0 AC 0.0 1.0 0.0667 2003.11.23,14:3.
Subsystem 0 AC 00 1.0 0.0667 2003.11.23,14:4,
MyNewsystem Reliability 0.0 1.0 0.6793 2003.11.23,14:4.
MyNewsystem AC 0.0 1.0 0.0667 2003.11.23,14:4,
azaaa Reliability 0.0 1.0 0.6793 2003.11.28, 22:1.

asas Reliability 0.0 1.0 0.6733 2003.11.28, 2211
asas AC 0.0 1.0 0.0867 2003.11.28,22:1.
Subsystem 0 AC 0.0 1.0 0.0687 2003.11.28,22:2.
Subsystem 0 AC 0.0 1.0 0.0667 2003.11.28, 22

asas Reliability 0.0 1.0 0.6793 2003.11.29,18

asas AC 0.0 1.0 0.06B7 2003.11.29,18:5.
a53s Reliability 0.0 1.0 0.6793 2003.11.29,19.0.

a5as Reliability 0.0 1.0 0.6793 2003.11.28,19:2.

as5as AC 0.0 1.0 0.0667 2003.11.28,19:2,
Subsystem 0 AC 0.0 1.0 0.0000 2003.11.28,19:2.
Subsystem 0 AC 0.0 1.0 0.0000 2003.11.28,19:2.
Subsystem 0 AC 0.0 1.0 0.0000 2003.11.28,19:2. .2

Figure 16 User Interface - View of Measurement Result -3

The Save as button is disabled if the results view is not database table view.
When the table view is visible, the Save as button is enabled. If user presses it, it
will pop standard Save as Dialog shown in Figure 17 to allow user save the table

view as a Microsoft Excel file.

40



testl iabili . . 2003.11.02,13:5..
testi - 3.11.02,1356
tesi2 =3 nay 3.11.02,14.0
test2? 3.11.02,14.0
Subsystem 0 3.11.23,135
Subsystem 0 - .. §03.11.23,14:0
Subsystem 0 3.11.23,14:0..1
Subsystem 0 3.41.23,14:3. L
Subsystem 0 3.11.23,143..]
Subsystem 0 3141.23,144..0
MyNewsystem [3.11.23,14:4. |
MyNewsystem 03.11.23,14:4
aaaaa 3.11.28,22:1
asas 2 - o “ . 311.28 221, ¢
asas 3.11.28, 221 .4
Subsystem 0 3.11.28,222..0
Subsystem 0 3.11.28, 22:2...;}%
535 3.11.29,185..1
asas . p— - . ) 3.11.29, 18:5...
a5as Reliahility 0.0 1.0 0.6793 2003.11.28,19:0...
asas Reliability 0.0 1.0 0.6793 2003.11.28,18:2
asas AC 0.0 1.0 0.0667 2003.11.29,19:2
Subsystem 0 AC 0.0 1.0 0.0000 2003.11.29,19:2
Subsystem 0 AC 0.0 1.0 0.0000 2003.11.29,19:2
Suhsystem 0 AC 0.0 1.0 0.0000 2003.11.29,19:2...

Figure 17 Save as the results in table view to Excel file

4.3 Description of the components in the TROM-QM

The TROM-QM contains three classes. MyApplication1, Frame1, and
CardDeck. The three classes are specified as follows:
MyApplication1: contains main function to run the application.
Framef1: this is the key component. It presents the user interface to accept
the user input files, parse the files and call the corresponding
measurement modules to calculate the resuit and update the result to

database

41



CardDeck: Display the result in different views, which includes text view,
graphic view and table view. It also provides user to save as the results in

table to Microsoft Excel file.
4.3.1 Measurement Tools Interface

The Frame1 gets the input files from user’s action and parse these files. Browse()
function call the JFileChooser to pop the standard choose file dialog. Each
Select file button has event handling function to set the file paths to the file path
fields. Figure 18 shows an example of the event handling function of Select SCS

file button in architectural complexity.

void Browser_actionPerformed(ActionEvent e) {
Vector viileName = new Vector();
if ( IBrowseFile(vfileName, false))
return;
File file = (File) vfileName.elementAt(0);
String strPath = file.getPath();

jTextField6.setText(strPath);

Figure 18 Select SCS file event handling function.

BrowseFile() function takes a vector and a Boolean as parameters and pop Open
file dialog. If the Boolean parameter is true, then open dialog allows multi-
selection files. The selected files will add to the vector parameter. If the Boolean
parameter is false, the open dialog only allows single file selection. Thus the

vector has only one file. In this example, we pass false to BrowseFile, so the

42



vfileName vector only has one file. We get this file’s path and set it to the text
field in GUI user interface.
Ok button event handling function performs the following jobs:

e Connect database

e Call corresponding calculating function if it is checked.

¢ Update database if any measurement occurred.

¢ Create Measurement Results Dialog to display the resuilt.

Example of the function of OK_actionPerformed() is shown in Figure 19:

void OK_actionPerformed(ActionEvent e) {
ConnectToDatabase();

if (bjCheckBox1Sel ){
ComputerTextability(); //not implementation yet
UpdateDatabase(1);
}
else
m_resultTable.put(sTest, "0");

if (bjCheckBox2Sel){
ComputerFunctionality(); //not implementation yet
UpdateDatabase(2);

if (bjCheckBox3Sel){
InitGRCY();
InitGrid();
initSCS(true);

ComputerReliability(); Wcalculate Reliability

if (scsFileCreated_only){
ComputerAC(); //Calculate Architectural Complexity

UpdateDatabase(4);

43



m_ResultFrame = new CardDeck(this);

Figure 19 OK event-handling functions

In the OK_actionperform() function we have put the function ComputerTextability()
and ComputerFunctionality(), which are not implemented in this major report.

In this TROM-QM we now have two functions for quantifying correspondingly the
architectural complexity and reliability. ComputerAC and ComputerReliability().
Before we invoke functions ComputerAC() or ComputerReliability() we have to
parse input files and initiate some objects. We have InitGRC, InitGrid and
InitSCS function to deal with the input GRC specification files, synchronous
product machine specification file and system configuration file respectively. The
following example show the InitSCS() function.

void initSCS(boolean bilsReliability){
String strFile;

strFile = jTextField6.getText();
File file = new File (strFile);

m_scs = new Scs_Parser(file);

It gets the file path from the text fields and create a file object; then pass to
Scs_Parser constructor, which parse the SCS file and generating a object of

Evaluator.

44



ComputerAC() is responsible to calculate architecture complexity and local
architecture complexity by using the evaluator object. The results are put into
data member m_resultTable (Map) in order to display the result in the next
interface. The slice result is put in another data member m_Slice Talbe (Map).

private void ComputerAC()
{

evaluator = m_scs.GetEvaluator();

double AC = evaluator.AC();

DecimalFormat form = new DecimalFormat("##0.0000");
m_resultTable.put(sAC, form.format(AC));
evaluator.PutLACtoMap(m_resultTable);

evaluator. GetArchitecturalSlice();

evaluator.PutSlicetoMap(m_SliceTable);

Figure 20 Calculating the Architectural Complexity function

Evaluator class is a component in the AC module. It is well constructor by the
Scs_Parser class. With the Evaluator object we could get the result of AC, and
the objects’ slice. Here we put the AC result to m_resultTable data member and
put the slice to another data member m_SliceTable. We use two Map data
members here, since the object's name is a key in both m_resultTable and
m_SliceTablle.

ComputerReliability() is responsible to calculate system reliability. The
reliability module is a ready component. We just integrate this module to the
TROM-QM. The ComputerReliability function is the interface to reliability
module. When we get the result we have to put the result to m_resultTable in
order to display it later.

45



UpdateDatabase() is responsible to update the measurement database when
there is any measurement occurred. This function accepts an integer as a
parameter. It is updated the database according to the parameter passed in.

We use Microsoft Access database and the table is predefined. We have to
register the predefined database as ODBC data source. The measure time in the

database table is primary key. We get this value from system time in millisecond.
4.3.2 Design of Measurement Results Interface

All measurement results display in the Measurement Results Interface. We
design this frame by using CardLayout layout manager to arrange three
components (panels) into a “deck”. Only the top card (panel) is visible. So we
have three different views of the results: text view, graphic view and database
view.

Class CardDeck is derived from JFrame. It takes the Frame1 as a parameter in
constructor. All necessary information of the calculation results is got from the
parameter.

There are two panels on main container, button panel and deck panel shown
in figure 21. Button panel is on the north of the container; and deck panel is on
the south of the container. There are four buttons on the button panel.

Deck panel: we deck three panels on the Deck panel: text panel, graphic panel
and table panel. Text panel is visible by default. When a button in the button
panel is pressed, an action is performed to make a corresponding panel on the
Deck to be visible

Text panel: it shows the measurement result in text format.

46



Graphic panel: it shows the measurement result in graphic, which contains three
panels: set upper bound value panel, graphic drawing panel and table view
panel. The graphic drawing panel is responsible to draw the two graphics.

Table Panel: it shows all the measurement results stored in database. The table
view is same as the database except the measure time field. We format it as a
normal time representation in the display table instead of the milliseconds. When
this panel is on the top of the deck, the button Save as will enable. When the
Save as button is pressed, it prompts uses to enter a file name. After the Save is

pressed, the result in the table will be saved as a Microsoft Excel file.

47



] | | |

button panel

Deck panel

Container

SN

Text panel Graphic panel Table panel

/
/

Set Upper Bound Panel

Display Results in
Text

Display ali results in
table

-
o

Drawing Graphic Panel

Drawing the graphas

Display current
measurement result
in table

Three panels on the
Graphic panel

Table panel

Graphic panel

Figure 21 Designs of View Measurement Results
In this chapter, we have introduced the key components of TRO-QM in detail. In
the following Chapter 5 we emphasize on the steps of integration a new modules

to TROM-QM.

48



Chapter 5 Integration Guide and User Guide

5.1 Integration Guide

The measurements of architecture complexity and reliability are already
integrated to TROM-QM. The testability and functionality modules could be
integrated to TROM-QM when they are ready, following the steps as described in
this Chapter.
In the Frame1 class: the main jobs include:
¢ Provide an API to get the calculated result;
e Update OK button event handling function
e Update the function UpdateDatabase() to make the measurement result
into database.
In the CardDeck class: the main jobs include:
e Write FormatTestResult() and FormatFuncResutl() functions in order to
display the result in text view.
e Update DrawCircle() function.
e Update UpdateDatabase() function.
The function ComputeAC() and ComputerReliability could serve as examples
for the new API of ComputerTextability() and ComputerFunctionality(). Inside
these APls function the result should be put into the data member
m_resultTable (Map). The key for testability and functionality are already defined
as sTest and sFunction. The entire jobs related to the quantification of testability

and functionality should be done inside the APIs.

49



5.2 User Guide

The steps of running the TROM-QM are as follows:
o Create a Microsoft Access Database file; the file name is not important.
For example measurement.mdb
o Create a table “Result “ with the design view as figure 22. The name of

the table and the name of the columns are hardcode in source code; we

should use the exact table name and column name like figure 22.

Neasur

Reliability 0.0 0.7 0. 1067789451465

Jtestl AC 0.0 0.1 0. 0667 1067799451480
test? Reliability 0.0 0.7 0.6793 1067799677199
test2 AC 0.0 0.1 0. 0667 1067798677215
Subsystem 0 AC 0.0 1.0 0. 0687 1069613832059
{Subgystem 0 AC 0.0 1.0 0. 0667 1069614158659
{Subsystem 0 AC 0.0 1.0 0. 0667 1069614316293
0 AC 0.0 1.0 0. 0667 1069616238686

0 AC 0.0 1.0 0. 0667 1069616302655

0 AC 0.0 1.0 0. 0667 1069616485748
Reliability 0.0 1.0 0.6793 1069616690452

AC 0.0 1.0 0. 0667 1069616699483

Figure 22 Result Table Design View
e Or copy the measurement.mdb from this Major Project folder to the hard
disks on your PC.
e Registering the measureasure.mdb as an ODBC Data Source. The Data
Source name should be “MeasurementTools”, which is hard code in

source code too.

50



Run the batch file RunMeasurement.bat in the major project folder. The
Figure 13 will display. Select the measurements you want to calculate and
choose the appropriated input files.

For the Architectural complexity, the input file is system configuration
specification, which produced by the TROMLAB system. For Reliability,
the input system is GRC specification files; synchronous product machine
specification file and system configuration file. The GRC specification files
could be multi-selection.

If Reliability is checked, the SCS file in AC is not needed to select again.
Press the OK button, the measurement results will display in a text format
(Figure 14).

By press Graphic Display button user could view graphic results. In this
view, user could reset the upper bound range of the measurement result
by selecting the Set upper bound check box. The edit boxes and
Update button will be enabled. By set the values in the edit boxes, and
press the Update button, the new upper bound values will reset in bottom
table and the graphic.

By press the Database view button user could view measurement result in
database, and the table could be saved as Microsoft Excel file. The file

could be viewed and edit by using Microsoft Excel.

51



Chapter 6 Conclusions & Future Work

This project is design and implementation of complexity algorithms and
maintainability profile (TROM-SCMS) and integration of the complexity and
reliability under a common user interface (TROM-QM). TROM-QM and TROM-
SCMS are working in TROMLAB environment. The theories on the architectural
complexity computation and the main algorithms used for calculation, as well as
the integration of the measurement modules are presented in this Major Report.
A case study has been introduced as an example to show the complexity
calculation algorithm. This Major Report also describes in detail the TROM-QM
user interface design and implementation, and introduces how to integrate the

other modules into this system.

The future work should consider the following enhancements:
e The testability and functionality should be integrated to TROM-QM.
e The TROM-QM is using the output files from TROMLAB Translator Tool
and the Simulator Tool. TROM-QM should be integrated to TROMLAB.
e We assume the input files format is correct, so the error checking and
handling are not sufficiently implemented.
e The statistic data analysis for the measurement results should be

implemented when there is enough measurement data collected.

52



References

[AAM98] V.S.Alagar, R.Achuthan, D.Muthiayen. TROMLIB: A Software
Development Environment for Real-Time Reactive Systems. (first version
1996, revised 2001), Submitted for Publication

[Ach95] R. Achuthan, A Formal Model for Object-Oriented Development of
Real-Time Reactive Systems. PhD. thesis, Department of Computer Science,
Concordia University, Montreal, Canada, October 1995

[Che02] M. Chen. The Implementation of Specification-based Testing
System for Real-time Reactive System in TROMLIB Framework. Master
Major Report, Department of Computer Science, Concordia University, Montreal,
Canada, December 2002

[GH93] J.V. Guttag and J.J. Horning. Larch: Language and Tools for Formal
Specifications. Springer Verlag. 1993.

[Hai99] G. Haidar. Reasoning System for Real-Time Reactive Systems.
Master Thesis, Department of Computer Science, Concordia University,
Montreal, Canada, December 1999

[HP85] D. Harel, A. Pnueli. On the Development of Reactive Systems. In Logic
and Models of Concurrent Systems, NATO, Advanced Study Institute on Logics
and Models for Verification and Specification of Concurrent Systems Spring
Verlag, 1985

[KKKC96] Kim E., usumoto S., Kikuno T., Chang O. Heuristics for Computing
Atrribute Values of C++ Program Complexity Metrics. IEEE Transactions on

Software Engineering, 104-109, 1996

53



[Lee03] F.A Lee Reliability Measurement Based on the Markov Model for Real-
time Reactive Systems: Design and Implementation

[Mut96] D.Muthiayen Animation and Formal Verification of Real-Time
Reactive Systems in an Object-Oriented Environment. Master Thesis,
Department of Computer Science, Concordia University, Montreal, Canada,
October 1996

[Nag99] D.Muthiayen Real-Time Reactive System Developemnt — A Formal
approach based on UML and PVS. PhD Thesis, Department of Computer
Science, Concordia University, Montreal, Canada, January 2000

[Orm02] O. Ormandjieva, Deriving New Measurements for Real-Time
Reactive Systems. PhD. Thesis, Department of Computer Science, Concordia
University, Montreal, Canada, 2002

[Pom99] F. Pompeo A Formal Verification Assistant for TROMLIB
environment. Master Thesis, Department of Computer Science, Concordia
University, Montreial, Canada, November 1999

[Pop99] O. Popistas. Rose-GRC Translator: Mapping UML Visual Models onto
Formal Specifications. Master Thesis, Department of Computer Science,
Concordia University, Montreial, Canada, April 1999

[Sir99] V. Srinivasan. Graphical User Interface for TROMLIB Environment.
Master Thesis, Department of Computer Science, Concordia University, Montreal,

Canada, December 1999,

54



[Tao96] H. Tao. Static Analyzer: A Design Tool for TROM. Master Thesis,
Department of Computer Science, Concordia University, Montreial, Canada,
August 1996

[Zhe02] M.Zheng. Automated Generation of Test Suits from Formal
Specifications of Real-Time Reactive Systems. Ph.D. Thesis, Department of

Computer Science, Concordia University, Montreal, Canada, 2002.

55



