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Abstract

etection for DS-C

Combined Adaptive Multiuse

YISHU GUO

The inadequacy of the conventional Code Division Multiple Access (CDMA) receivers in a
multiple access interference-limited mobile radio environment has spurred research on
advanced receiver technologies. This research investigates the use of adaptive receivers for
multi-user detection to overcome some of the deficiencies of a conventional receiver and,
hence, suppress the multiple access interference (MAI) and narrow band interference (NBI)
in DS/CDMA wireless systems. The MAI is a major factor influencing the communication
guality and the capacity i;} CDMA wireless systems. Hence, suppression of MAI and NBI
are essential for an efficient performance of a CDMA wireless system and to enhance the
system capacity. Analysis of the conventional detector and minimum mean-squared error
(MMSE) detector is carried out to provide a better understanding of the effect of the channel
parameters on the performance of the detectors and to explain the near-far resilience of the
receiver. The performance of these detectors are compared and analyzed. The derivation of
the relationship between the minimum mean-squared error detector and minimum output
energy (MOE) detector is developed in order to provide an adaptive implementation of the

later.

The limitation of the existing RLS blind algorithms for MMSE detector in AWGN channels
is analyzed. In order to improve the performance of the existing schemes and to eliminate the
requirement of training sequences, a scheme combining the blind adaptation and MAI
cancellation 1s proposed. The performance of this algorithm is analyzed and compared with
the existing schemes. Extensive simulations have been carried out to demonstrate that the
proposed scheme 1s more reliable and it provides an effective resilience to the environment

changes.
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1.1 General

The tremendous strides achieved in wireless communications over the past decade have been
spurred by an equally huge increase in the demand for wireless connectivity. The path from
the wireless telegraphy to the third-generation personal communications has been a long one,
and the stretch spanning the last decade has seen the most rapid progress with no indications
of the pace reducing in the near future. The rapid developments are primarily due to the
growth 1n very large scalé integration (VLSI), which has led to the availability of greater
computational capabilities for lower costs, thus making the implementation of novel

technologies feasible.

The industry has increasingly supported the development of new technologies that improve
the guality of wireless communications. Due to the finite amount of allocated radio spectrum
and the evolution of several wireless communication applications in recent years, the
wireless industry is seeking new ways to meet the demands of mobile radio subscribers.
Since the ultimate objective of the industry is to establish ubiguitous wireless mobility , there
is greater cooperation between industries and research institutions to achieve this goal. The
competition between industries has further spurred this progress. Thus, it has been possible
for novel and ingenious technologies to be realized commercially. The research presented
here was motivated by this perspective of the industry and is a contribution to the cycle of
supply and demand in mobile wireless communications. The objective of this research is to

propose new technigues for interference suppression in direct sequence code division

multiple access communications systems and to analyze these and the existing techniques.
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Evaluation of technigues is achieved through both mathematical analysis and computer

simulation.

1.2 Multiple Access Technigues

In any wireless communication system, there are many users who need to communicate
simultaneously. Therefore, the available radio frequency (RF) resources must be distributed
among these users in a way that allows them to access the communication system. In a
coordinated system, such as a cellular network, the allocation of these resources requires

extensive planning.

Perhaps the most natural and fundamental way for multiple users to communicate
simultaneously is to allocate a different subband of the RF spectrum to each user. A simple
bandpass filter at the receiver would then select the bandwidth of interest. This method,
frequency division multiple access (FDMA), is the oldest method for multiple access, dating
back to the invention of broadcast radio. Different channels in 2 FDMA system are simply
assigned different frequency bands that do not overlap, as illustrated in Figure 1.1. One of the
main features of FDMA is that each channel is narrowband, allowing either an analog or

digital modulation-scheme.

&
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Figure 1.1: Frequency division multiple access
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Instead of splitting the RF spectrum into subbands for each user, multiple non-overlapping
time slots can be created and assigned to each user. The receiver synchronizes to the correct
time slot to recover the user's information. Figure 1.2 shows rescurce allocation in a time
division my tiple access (TDMA) system, which is somewhat more compiex technology.
Since all users occupy the entire RF bandwidth, TDMA channels have much wider
bandwidths compared with FDMA channels, usually necessitating equalization to overcome
degradation due to multipath. One key source of complexity is the multiple levels of
synchronization necessary to recover the information for each user. Due to the nature of

TDMA, digital modulation schemes must be used.

4

User 1
User 2

User 3

Time

User X

Frequency

Figure 1.2: Time division mukiple access

The most recent multiple access technology is code division multiple access (CDMA), based
on direct sequence spread spectrum (DS/SS) communications. Unlike TDMA and FDMA,
CDMA users occupy the entire bandwidth all the time. Users are distinguished from each
other through the spreading codes assigned to them (Figure 1.3). The spreading code acts as a
signature for the user and allows the user's receiver to extract the desired signal from all of

the multiple access interference (MAI). Thus, the codes must be sufficiently different, ie.,
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they must have good crosscorrelation properties, to reduce the interference. Section 2.2

explains the impact of MAL

User i

User 2

Usar k

Freguency

Figure 1.3 Code division multiple access

In a system employing CDMA, all the users within a cell concurrently share the same
bandwidth. The most common CDMA flavor is called direct sequence CDMA (DS-CDMA).
In DS-CDMA, the signal from each user is multiplied by a unique signature waveform prior
to transmission, a process known as spreading. Since the signature waveform has a much
larger bandwidth than the information bearing signal from the user, the CDMA signal

constitutes a spread spectrum signal.

At the receiver, the sum of all the transmitted broadband signals is received. Conventionally,
the signals from different users are extracted by cross-correlation with the respective
signature sequences. Under ideal conditions, the spread spectrum signals corresponding to

different users are orthogonal at the receiver. The output of each correlator is then the
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transmitted signal of the desired user. This correlation receiver is known as the conventional

recejver.

In practice, the spread spectrum sitnals corresponding to different users are non-orthogonal
at the receiver, and the outputs of all correlators have contributions from all the transmitted
signals. This interference is known as multiple access interference (MAI) in the CDMA
literature. Still, the conventional receiver works well under the following two conditions:

1) The correlation between the signature sequences is small.

2) The signals from different users are received with approximately the same power.

The first condition can be fulfilled by a careful design of the signature waveforms The
second condition can be fulfilled by accurate power control, which implies that the receiver
measures the received power and instructs the transmitter to adjust its output power to obtain
the desired performance. Without power control, the powers of the received signals may
differ significantly. This. is the so-called near-far problem: A strong signal, typically

originating near the receiver, will outpower a weak (far) signal.

Wideband CDMA technology has been proposed for the third-generation wireless personal
communications [1] - [4]. A wide range of services will be provided by these systems, with
the key being a unified radio infrastructure. Third-generation systems will improve the
technology and services provided by second generation systems. Furthermore, a great deal of
flexibility is being provided to allow for the evolution of technology. One of the special
attributes of the proposals for wideband CDMA is the provision for advanced receivers. The
novel aspects of wideband CDMA allow for the implementation of interference suppression
and cancellation schemes. It will be seen in Chapter 4 that adaptive receivers may be
employed in DS-CDMA systems to perform interference suppression and to improve the
system performance. More extensive discussions of multiple access technologies can be
found in [5] and [6]. Some recent developments in multiple access technologies have been

presented in [7].
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1.3  Cellular Communications

In the last decade of the 19th century, the world was brought into the era of wireless
communications. In 1901, messages had beev. able to be transmitted across the Atlantic
successfully. In 1909, radio transmitters had already been installed on ships all over the
world. The wireless telegraph was a blessing for the maritime fleet: for the first time, it was
possible to send distress calls irrespective of the weather conditions. It also became possible

to receive weather reports and other messages from shore.

During the next few decades, radio transceivers found their way into more and more areas. In
1946, the world’s first public mobile telephone system [8] was introduced in St Louis. The
idea with this system was to supply the same services to mobile terminals that were available
in the fixed telephone network. Within a year, 25 other American cities had mobile networks
in operation. Bach city had one base station, which was designed to cover as large area as
possible. Every mobile in this area communicated with the base station, which relayed the

calls through its connection with the fixed network.

With this system, the number of simultaneous calls that can be handled is Iimited by the
available spectrum. Another disadvantage is that the transmitter power of the mobile
terminals must be rather high to reach the base station. Already in 1947, a solution fo these

two problem was devised: the cellular system.

The cellular concept

The starting point was this: How do we provide private wireless communication services 10
mobile customers within a certain area? The original solution with a single powerful base
station transmitter is depicted in Figure 1.4. The system has access to N frequencies, which

can be used to communicate with the mobiles in its coverage area. Half of these frequencies
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are used for transmission from the base station to the mobiles, and the remaining frequencies
are used for transmission from the mobiles to the base station. The former link 1s known as
the downlink or forward link, and the latter is called the uplink or reverse link. In total, the

system can accommodate N /2 users.

Figure 1.4: A celiular system with a single cell

Ancther solution is to build several base stations within the area, as depicted in Figure 1.5.
Each of the base stations can now use N /6 frequencies to set up communication with at
most N /12 mobiles in its coverage area. The system as a whole can thus still handle (at

most) 6 x N /12 = N /2 simultaneous calls.

However, since each base station covers only a smaller area, it is possible to reduce the
antenma height and the transmitter power so that the range of the base stations is reduced.
This leads to reduced interference from neighboring iransmissions, making it possible to
reuse the frequencies. Taking the network in Figure 1.5 as an example, base stations A and F
may use the same frequencies, and so may base stations C and D. The available frequencies

can then be divided into only four groups with N /4 frequencies in each. The system can
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then handle 6 x N/8=3N/4 simultaneous calls. By building additional base stations, we
have thus increased the system capacity. As a bonus, the mobiles can lower their transmit

powers, and hence, their power consumption, which extends the battery life time.

Figture 1.5 A cellular system with & cells

This is the cellular concept. A geographical area, which can be arbitrarily large, is divided
into a number of cells. With each cell, we associate one base station, which provides wireless
access to all mobiles in the cell. The base station is equipped with a transmitter and a receiver
and is connected to a fixed network. The frequencies used by the base station for
transmission and reception are reused by a base station some distance away. The smaller the

reuse distance, the larger the system capacity.

When a mobile moves across a cell boundary, control of the call must be transferred from
one base station to another. This process is known as handover or hand off. Making a
handover without interrupting the telephone call was one of the major problems that delayed

the introduction of a fully automatic commercial cellular system until the early 1980s.

In the system we have described so far, the users are granted exclusive access to a
communication channel by assigning to each user a different frequency. We have noted this
method in Section 1.2 as frequency division multiple-access (FDMA), and was used in the so-

called first generation systems. These systems used analog technology and frequency
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modulation. Examples of such systems are the Nordic standard NMT6, the British standard

TACS7 and the North American standard AMPSS.

Modern cellular systems are digital and use a combination of FDMA and TDMA/CDMA.
Examples of cellular systems which use TDMA are GSM9, the North American standards
IS-54 and IS-136 which are sometimes collectively labeled as D-AMPS10 and the Japanese
standard PDC11. All these systems belong to the second generation of cellular systems. All
major operational CDMA based cellular networks are based on the IS-95 standard [9]. For
the upcoming third generation of cellular systems, CDMA is the multiple-access method

chosen for most proposals.

A over FDMA and TDMA

1.4 Advantages of Cellular CDM

In a single cell scenario in an additive white Gaussian noise (AWGN) channel, the capacities
of FDMA, TDMA, and deterministic CDMA, where the spreading waveforms are assumed
orthogonal [10], are equal [10] - [12]. However, the potential advantages of CDMA are fully
realized in a multi-cell system in the presence of fading multipath radio propagation

channels.

The advantages of CDMA are primarily a result of spread spectrum technology [10] - [13].
Spread spectrum provides resistance to frequency selective fading due to multipath through
spectral diversity, and robustness to MAIL The variance of the signal-to-noise ratic (SNR) at
the receiver is lower for CDMA than for narrowband FDMA when operating in frequency-
selective fading channels [11]. This applies to most practical CDMA systems where the
signal bandwidth 1s significantly larger than the channel coherence bandwidth. CDMA is less

susceptible to degradation due to inter-symbol interference than is TDMA [11].
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One of the principal factors that influence the increase in the system capacity in CDMA
systems is universal frequency reuse [14], [15], which means that the same spectrum can be
used in all cells, i.e., the reuse factor is 1. This also eliminates the need for frequency
planning. The higher the reuse factor, the lower the system capacity. A typical reuse factor
used in TDMA and FDMA cellular systems is 7. Furthermore, the impact of cochannel
interference, which results from other cells using the same frequency, is greater for TDMA
and FDMA systems than for CDMA systems with accurate power control. Power control m
TDMA and FDMA systems helps reduce interference. However, power control 1s a more
serious problem in CDMA systems. In the absence of fast and accurate power control, the
near-far problem can cause much stronger signals received from users closer to the
basestation to jam weaker signals received from mobiles at the edge of the cell. The

processing gain of the spread spectrum signal slightly mitigates the impact of interference.

CDMA allows for the exploitation of multipath energy with a Rake receiver [16]. The Rake
receiver provides a means of constructive combining of multipath. Distinguishing multipath
components is possible because the coherence bandwidth of the channel is much lower than
the signal bandwidth or, equivalently, the delays of the components ére much larger than a

chip duration.

To improve the capacity, CDMA may take advantage of the low voice-activity of normal
speech. Humans speak only about 35-40% of the time during a conversation and listen for the
rest of the time. If transmission is blocked during the periods of silence, then the interference

can be reduced, thus increasing the capacity [15].

When a user moves from one cell to a neighboring one, the signal must also move from one
base station to another via handoff. The Rake receiver can be used to monitor the signal
powers from two (or more) base stations carrying the same user's information. The gradual

transition to another serving base station is carried out through a process known as sofi

- 10 -
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handoff [5], [17]. Soft handoff usually allows for fewer dropped calls and a more consistent

coverage area [18].

Another attribute of CDMA is its soft capacity limit, which results in 2 “soft blocking”" of
calls and a graceful degradation in performance. TDMA and FDMA place a hard limit on the
number of users in a cell, resulting in “hard blocking”". With CDMA, however, there is a

graceful degradation in voice quality when the number of users exceeds a certain limit.

1.5 Concept of Multiuser Detection

Maultiuser detection (MUD) is a technique that can be employed to improve the capacity and
coverage in a CDMA systems. In theory, MUD can provide an improvement in capacity by a
factor of almost three in additive white Gaussian noise channels, but in practice the
improvement depends strongly on the detection scheme, channel estimation and delay
estimation. It has been shown that MUD 1s able to exploit the structure contained in a multi-
access interference signal and in that way can be near-far resistant. Hence, a practical system

design could be undertaken without depending on high precision power control.

Research in the area of multiuser detection started in the late 1970s and followed along a path
typical to numerous other techniques. In the early stages, optimal solutions with best possible
performance in Gaussian noise channels were investigated and developed. Unfortunately, the
complexity of these schemes increases exponentially with the number of users, which is not
suitable for practical applications. This problem has been tackled subsequently and resulted
in less complex sub-optimal multi-user detection algorithms such as the decorrelating
detector, the multistage detector, the decision-feedback multi-user detector and other sub-

optimai detectors.

- 11 -
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1.6  Scope and Organization of the Thesis

With CDMA rapidly establishing itself as the multiple-access technology of choice, the need
for improving the technology has arisen. This is especially important given the strong
backing for CDMA in the third generation personal communications systems {PCS). The
obiective of this research work is to provide a thorough analysis of this new and the existing
interference suppression technigues under the conditions of a practical radio environment and
develop a new adaptive multiuser receiver for suppressing both the MAI and NBI in DS-
CDMA systems. It is well known that the multiuser receiver improves the capacity of CDMA
systems and provides some resistance to the near-far problem. This work unifies different
approaches of multiuser detection within the same system model and exploits this model to
improve the performance of an existing interference suppression technique. The numerical
and simulation analyses are carried out to demonstrate the superiority of the MMSE
detection, which leads to an adaptive implementation, over other techniques. The review of
the canonical representation of MMSE linear detector paves the way to present the blind RLS
adaptive version of multiuser detection. This work provides a crucial information necessary
for the practical implementation of interference suppression under a realistic environment.

Chapter 2 provides overview of CDMA systems and its encoding process. Interference
suppression concepts are also introduced. The limitations of a conventional receiver are
explained and the minimum mean-squared error (MMSE) receiver is introduced for
overcoming the limitations. The relative merits of multiuser and single user receivers are

discussed, motivating the investigation of the adaptive multiuser receivers.

Multiuser detection (MUD) has been widely discussed in the literature. Chapter 3 provides a
discussion on the different approaches to linear multiuser detection of CDMA signals in
additive white Gaussian noise channels. Linear MUDs are detectors that operate linearly on
the received signal statistic i.e., they perform only linear transformations on the received

statistic. Expressions for the different detectors in additive white Gaussian noise channels are

-12 -
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derived in terms of the cross-correlations between the spreading codes of the users, the
interference-to-signal power ratios, and the signal-to-noise ratio of the desired signal.
Simulations on these detectors are carried out and the analysis of the simulation resulis is
presented to provide a comparison between the various detectors. Finally, it concluded that
only minimum mean squared error detection can lead to an adaptive implementation of the
interference suppression. The adaptation is achieved through a training sequence of data

symbols.

Minimum mean-squared error receivers are implemented in practice by allowing an adaptive
filter to learn the characteristics of the radic environment and to converge to the optimal
solution. Adaptation algorithms, which aim at reducing the need for a training sequence to
implement the adaptive MMSE receiver, are discussed in Chapter 4. This chapter also
presents an adaptive code-aided technique for the simultaneous suppression of narrow-band
interference (NBI) and multi-access interference (MAI) m DS/CDMA systems. This
technique is based on the blind RLS version of the MMSE algorithm for multiuser detection.
The steady-state performance of this algorithm in terms of signal-to-Interference ratio (SIR)
is also reviewed. The limitation of this technique is discussed. In order to further improve the
performance of blind RLS MUD in a more practical environment, a new combined adaptive
MUD scheme is introduced in this chapter. The derivation of the proposed interference
suppression scheme and then further cancellation of remaining MAI are presented. The
performance in terms of steady state SIR and convergence of the proposed interference
suppression and cancellation scheme are investigated, to show the superior features of the

scheme over those of the existing schemes.

Chapter 5 provides extensive simulation results to demonstrate the performance of the new
proposed scheme in terms of the steady state output SIR, system convergence, tracking
capability, resilience to interference, and system stability. Comparisons between the new

proposed technique and the scheme given in [66] are presented as well.

- 13-
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Chapter 6 provides a summary of the investigation undertaken 1n this thesis and offers some
important conclusions of this research. Some suggestions are also made for the future

research in this area.

-14-
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2.1 Overview of DS/CDMA System

Code division multiple access is a spread spectrum technique that uses neither frequency
channels nor time slots. In CDMA, the narrow band message (typically digitized voice data)
1s multiplied by a large bandwidth signal which is a pseudo random noise (PN) code. All
users in a CDMA system use the same frequency band and transmit simultaneously. The
transmitted signal is recovered by correlating the received signal with the PN code used by

the transmitter.

CDMA technology was originally developed by the military during World War IL
Researches were spurred into looking at ways of communicating that would be secure and

work in the presence of jamming. Some of the properties that have made CDMA useful are:

e Signal hiding and non-interference with existing systems
e Anti-jam and interference rejection

e Information security

e Accurate ranging

e Multiple user access

e Multipath tolerance

-15.



CHAPTER 2 ADAPTIVE RECEIVER FOR CDMA SYSTEMS

2.1.1 General Structure

In contrast with TDMA and FDMA, where time or frequency is partitioned among users, in

CDM A all users occupy the same frequency band simultanecusly. Each user is assigned a

distinct signature sequence (or waveform) with which the user employs to modulate and

spread the information-bearing signal. The signature sequences also allow the receiver to

demodulate the message transmitted by muitiple users of the channel.
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Figure 2.1: General structure of 2 CDMA system
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Figure 2.1 gives a block diagram of the general structure of a CDMA system. In this figure,

b, and b,(t) are the binary information bit of user i and the corresponding digital waveform

at the output of the digital modulator; s,(¢), p,, A are the signature waveform, the

transmitted power and the channel gain between the transmitter and receiver of user i; n{z)

is an additive white Gaussian noise; 7, is the bit duration of the transmitted information bit;
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and K is the number of users in the system. A binary baseband DS/SS signal is derived by
multiplying a binary level (1) information signal with a binary level spreading sequence,
that is signature waveform. The spreading signal s(¢) exhibits the constant modulus property
given by

s(n)] =1 @1

where |. | denotes the absolute value.

Assume that all the users in the system are synchronous. We can express the transmitted

signal of user 7 in one information bit interval as
4,(0) =P, (D5,() (22)

As mentioned above, BPSK modulation scheme and rectangular waveform are used for

digital modulation. Then b,(?)is a rectangular waveform with amplitude +1 or -1. Therefore,

(2.2) is equivalent to
q:(1) =/ p;bys, (1) (2.3)

At the receiver side, the received signal can be expressed as

i

1) = i Jo,JB Bis(0) + () (2.4)

i

which is then demodulated with the matched filters of the users. At the cutput of the matched

filter of user 7, we obtain

¥o= jnn r(t)s (Ddt = ‘\/E’V/};bipii + Z'\/—E‘»jﬁ: b.p; +n, (2.5)

J=i
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where p, = f s(t)s (t)dr is the cross correlation between the signature waveforms of
W :7’;7 J

user 7 and user j, and n, = | #(f)s,()dris a Gaussian random variable. In (2.5),
.] H - AN i

N D \,/,;?1—. b.p, represents the signal component of the desired user, Z\; P~/ b, p,represents
J=i
the interference caused by other users to the desired user and is called multiple access

interference (MAI), and »n,represents the interference caused by AWGN. We will see later

that MAI has an important effect on the performance of a multiuser CDMA wireless system.

If the signature waveforms satisfy orthogonality, i.e.,

(1 i=j
Py = | 05 0de =1, (2.6)

then (2.5) reduces to

v= \/E\/Ebi T 2.7)

In (2.7), the interference due to other users or the muitiple access interference, is completely
eliminated. Thus, with a careful design of the signature waveforms, a multiuser CDMA

system can achieve the performance of a single user system.

One of the most important concepts required to understand the spread spectrum technigues is
the idea of processing gain. The processing gain of a system indicates the gain or signal to
noise improvement exhibited by a spread spectrum system by the nature of the spreading and
despreading process. The processing gain of a system is equal to the ratio of the spread
spectrum bandwidth used, to the original data bit rate. Thus, the processing gain can be

wriiten as

-18 -
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L= B (2.8)
B Vme o
where BW,. is the transmitted bandwidth after the data is spread, and BW,, 6 is the

bandwidth of the information data being sent.

2.1.2 CDMA Forward Link Encoding

For the forward link, from the base station to the mobile, a CDMA system can use a special
orthogonal signature wave sequence, also called the pseudo random noise sequence (PN
codes). One such popular sequence is Walsh code, which separats the multiple users on the

same channel. This code 1s based on a Walsh matrix, which is a square matrix with binary

elements and dimension which is a power of two. It is generated from the basis that
Walsh(1) =W,=0 (2.9)

and

(2.10)

where W, is the Walsh matrix of dimension n. For example, W, and 7, can be obtained as

n

W—P 9] 2.11
2%, UE 1D

-
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{0 0 0 0}

%;QO 1 0 1 212
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0 11 0}

Walsh codes are orthogonal, which means that the dot product of any two rows is zero. This
1s due to the fact that for any two rows exactly half the number of bits match and the half do

not.

Each row of 2 Walsh matrix can be used as the PN code of a user in a CDMA system. By
doing so the signals from each user is orthogonal to every other jser, resulting in no
interference between the signals. However, orthogonality is lost when all users are not
synchronized to a single time base. This results in inter-user interference. For the forward
link, signals for all the users originate from the base station, thus allowing the signals to be

easily synchronized.

2.1.3 CDMA Reverse Link Encoding

The reverse link is different from the forward link in that the signals from each user do not
originate from the same source as in the forward link. The transmission from each user
arrives at a different time due to the propagation delay and synchronization errors. Due to the
unavoidable timing errors between the users, there is litfle point in using Walsh codes as they
will no longer be orthogonal. For this reason simple pseudo random sequence, which are

uncorrelated but not orthogonal, are used for the PN codes of each user.

The generation of PN sequences for the reverse link is a topic that has received considerable

attention in the technical liferature. By far the most widely known PN sequence is m-
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sequence, which is a maximum-length shift-register sequence, has a length of » =2" —1 bits

and is generated by an m -stage shift register with a linear feedback.

Ideally, the PN sequences among the users should be mutuallv orthogonal. However, the PN
sequence used in practice exhibit some correlation. As for m-sequence, its cross-correlation
peak values will increase to an undesirable level when the number of sequences in the
selected set increases. Although it is possible to select a small subset, the number of
sequences in the set is usually too small for CDMA applications. Gold code has been
proposed by Gold (1967, 1968) and Kasami (1966), which is derived from m sequences and
exhibits better periodic cross-correlation properties. Throughout this thesis, Gold codes are

used in all the relevant simulations as the spreading sequence for the above reason.

Because of the differences in modulation, the capacity is different for the forward and reverse
links. The fact that the reverse link is not orthogonal, results in a significant inter-user

interference. For this reason, the reverse channel sets the capacity of the system.

2.2  Interference Suppression in DS/CDMA wireless System

2.2.1 MAI suppression

In CDMA wireless systems, mobile users transmit information bits which are modulated by
the signature waveforms of the users. The base stations then demodulate the received signal
with the same signature waveform for each user. Due to the effect of channel distortion in a
wireless environment, no matter how carefully we design the signature waveforms, the
orthogonality condition in (2.6) does not hold in most cases. Thus, at the receiver side (base
station), the MAI term of the matched filter output in (2.5) always exists. This non-zero MAI

term has asignificant impact on the performance of the system.
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Consider the case in which the desired user is far away from its assigned base station while

the interfering users are close to that base station. Since the channel gain is proportional to

the inverse of the a” power (o is the path loss exponent) of the distance between the
transmitter and the receiver, the received powers of the nearby interferine users can be much
greater than that of the desired user far away. Thus, due to the non-zero MAI, at the cutput of
the matched filter receiver, the nearby interfering users can dominate the desired user in
terms of received power. This can make a reliable detection of the information bits of the
desired user almost impossible. This phenomenon is called the near-far problem of CDMA

wireless system.

In 2 CDMA system, all the users occupy the same frequency band all the time. There is no
absolute allocation of resources (time slots or frequency bands) among the users in the
system. Thus, the capacity of a CDMA system depends directly on the average interference
levels, rather than on the number of time slots in the TDMA system or the number of
frequency subbands in the FDMA system. However, as seen above, the non-zero MAI can
cause undesirable interference and result in the near-far problem. Suppression of the MAl is,
therefore, essential to the performance of a CDMA wireless system. It can not only improve

the communication quality, but also increase the capacity of the system.

In conventional CDMA systems where matched filters are used as receivers, the MAT term as

seen from (1.4), 1s Zx/rp—wfi_z: b.p, . Since the receiver (matched filter) structure Is fixed

e
after the signature sequences are assigned to the users, p; cannot be changed. Since %, and
b, are independent of the system design, the only way for us to mitigate the MAI is to reduce
P, the transmitter powers of the interfering users, as much as possible while at the same

time maintain a certain QoS (quality of service) requirement for each user in the system. This

MAT suppression approach is called the power control.
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In practice, the power control is implemented in the form of a feedback control. The base
station receives signals and estimates the transmitter powers of the users in the system. Based
on the estimation, it then calculates the optimal transmiftter power needed by each user and
send power update commands back to the users through the forward-link wireless channel.
Upon receiving the power update commands from the base station, mobile users update their
transmitter powers to their respective optimal levels. For matched filter receivers, power
control is an efficient and the only approach to MAI suppression. It has been proved feasible

in practical CDMA systems such as IS95.

2.2.2 NBI Suppression

Code-division multiple-access implemented with direct-sequence spread spectrum signaling
is among the most promising multiplexing technologies for cellular telecommunications
services, such as personal communications, mobile telephony, and indoor wireless networks
[13], [19] - [22]. The advantages of the direct-sequence spread spectrum for these services
include superior operation in multipath environments, flexibility in the allocation of
channels, the ability to operate asynchronously, privacy, and increased capacity in fading
channels. Also among the attractive features of spread spectrum CDMA is the ability of the
spread spectrum systems to share bandwidth With narrowband communication systems
without undue degradation of either system's performance. In particular, the ability of the
spread spectrum to provide a reliable performance in severe signal-to-noise (SNR)
environments and its low energy profile make the sharing of the frequency bands by multiple
and disparate users a real possibility. This ability provides a means by which to alleviate the
overcrowding in the radio frequency spectrum, as well as to allow more user flexibility in the

choice of the modulation format.

In a direct-sequence spread spectrum system, a data signal is modulated with a binary

pseudonoise (PN) signal having a nearly flat spectrum before transmission, so that the
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transmission bandwidth is much greater than the message bandwidth. At the receiver, the
incoming signal is “despread” by correlating it with the PN signal. This process is illustrated
in Fig. 2.2. The binary pulses comprising the PN signal are known as chips to distinguish
them from the binary bits of the data signal. The number of chips per data bit, G, is the
spreading ratio or processing gain of the system given in (2.8). The noise immunity improves
with increasing G. Each user in a spread spectrum CDMA system has a distinct PN code that
allows the receiver to distinguish it from the other users in the system. Again, increasing the
processing gain (and hence, the transmitted bandwidth) allows for the accommodation of
more users, since it results in lower cross-correlations between the PN signals of the multiple
users [23]. For the demodulation of CDMA signals, the despread data signal can be
processed via one of several multiuser receiver algorithms, including simple sign extraction

[241, [25], decorrelation [24], [25] or maximume-likelihood sequence detection [26].

T Channel —{%———
JRn i

PN sequence PH sequence

Noisy data

Figure 2.2: Spreading/despreading procedure

As noted above, the spreading of the data signal's energy over a sufﬁcienﬂy wide bandwidth
allows it to co-exist with narrowband signals with only a minimum of interference for either
signal. Obviously, the low spectral density of the spread spectrum signal assures that it will

cause little damage to the narrowband signal beyond that already caused by the ambient
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wideband noise in the channel. On the other hand, although the narrowband signal has a very
high spectral density, this energy is concenirated near one frequency and is of very narrow
bandwidth. The despreading operation of the spread spectrum receiver has the effect of
spreading this narrowband energy over a wide bandwidth, while at the same time it collapses
the energy of the originally spread data signal down to the original data bandwidth. Thus,
after despreading, the situation is reversed between the original narrowband interferer (which
is now wideband), and the original data signal {(which is now narrowband). A bandpass filter
can be employed so that only the interferer power that falls in the bandwidth of the despread
signal causes any interference. This will be only a fraction, 1/G, of the original narrowband
interference that could have occupied that same bandwidth before despreading. This process

is illustrated in Fig. 2.3.

Thus, spread spectrum communications is inherently resistant to the narrowband interference
(NBI) caused by the co-gxistence with the conventional communications. However, it has
been demonstrated that the performance of spread spectrum systems in the presence of
narrowband signals can be enhanced significantly through the use of an active NBI
suppression prior to despreading [27] - [29]. Not only does the active suppression improves
the error-rate performance [30], but it also leads to increased CDMA cellular system capacity

[3] and an improved acquisition capability [31].

2.3 Adaptive Receivers

Since the origin of DS/SS technology, the classical technigue of matched filtering has been

used for the detection of DS/SS signals. The principal assumption that the background noise

.25 .
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Figure 2.3 Spectraleffect

is white makes the matched filter the optimum receiver in the sense that it maximizes the
SNR assuming perfect synchronization. Furthermore, when the noise 1s Gaussian, the
matched filter is also the maximum a posteriori (MAP) detector. Thus, no receiver can
provide a lower probability of bit error, or bit error rate (BER), than a matched filter based
receiver when detecting a DS/SS signal in AWGN [16], [22]. The correlation receiver is
merely a realization of the matched filter. In practical DS/SS CDMA systems, the assumption
that the desired signal is received with only AWGN is not true and thusv there exist better
receivers than the matched filter. Understanding the operation of the conventional receiver is

helpful in explaining the need for adaptive receivers.
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2.3.1 Multiuser Receiver

Since the conventional receiver is far from optimum, a question naturally arises: “what 1s the
optimum receiver?” One approach to obtaining the optimal or near optimal receiver is to
demodulate the signals of all of the users in the system. The receivers belonging to this class
are known as multiuser receivers. A vast amount of research work exists in this area. Verdu
[33] has shown that a maximum likelihood sequence detection approach minimizing the
probability of sequence error can provide a solution to this problem. Minimum probability of
bit error can be achieved by implementing the optimum receiver as a backward-forward
dynamic programming algorithm [34]. It turns out that the structure of the multiuser receiver
consists of a bank of matched filters followed by the Viterbi algorithm [16], [35]. The
computational complexity of the optimum receiver grows exponentially as the number of

users increases and is prohibitive for practical implementation.

From a practical standpoint, a sub-optimum receiver with a much lower complexity is
desirable. The decorrelating detector [36] is a relatively low complexity linear receiver. The
decision statistics are obtained by a linear transformation of the vector formed by the outpuis
of the bank of matched filters. The transformation matrix is the inverse of the
crosscorrelation matrix. The complexity of this receiver is linear in the number of users. The
decorrelating detector outperforms the conventional receiver in most cases of interest and is
near-far resistant [37]. The detector has a higher complexity for an asynchronous channel
than for a synchronous one and an accurate knowledge of the signal delays 1s essential.
Furthermore, recomputation of the crosscorrelation matrix and its inverse is required
whenever a user leaves or enters the system. Finally, there can be problems with matrix

inversion with fixed-point arithmetic.

There are also nonlinear sub-optimum multiuser receivers. One such receiver performs

successive interference cancellation and uses decision feedback [38]. In this receiver, the

.27 -



CHAPTER 2 ADAPTIVE RECEIVER FOR CDMA SYSTEMS

signals from all of the users are ranked according to their powers (based on their detected
amplitudes). The strongest user is detected by a conventional receiver and the corresponding
spread signal regenerated, the strongest interference signal is subtracted out of the received
signal, and the process is repeated for progressively weaker signals for all of the signals.
Multistage receivers differ from this receiver in that the decisions made at the outputs of the
initial matched filters are tentative, and the users’ signal estimates are made in parallel rather
than in succession [39] - [41]. A multistage Rake receiver [42] can cancel the interference as
well as combine the multipath. These schemes also exhibit near-far resistance [43], [44] and
their complexities are linear in the number of users, but they again require accurate
knowledge of the spreading codes of all of the users, their phases, and their delays. A
detailed discussion of multiuser receivers can be found in [44] and [45], and the performance

comparison of various multiuser receivers is addressed in [43] and [44].

2.3.2 Classification of Adaptive Receivers for CDMA Systems

CDMA receivers may be categorized 'broadﬁy into multiuser receivers and single-user
receivers. This classification is based on the receiver structure, i.e., based on whether the
receiver demodulates a single user or jointly demodulates some or all of the active users in
the system. In the literature, receivers which we call “single user” receivers are often
classified under multiuser receivers when a number of them are used in parallel to separately
demodulate the multiple users. Here, the term “multiuser receivers” is used to describe
strictly those receivers that need to demodulate the multiple users even if only one user is of
interest. Buehrer [44] and Duel-Hallen et al. [45] discuss the classification of multiuser

receivers in detail. Figure 2.4 shows the general classification of multiuser receivers.
During the late 80s and early 90s, a significant amount of research addressed the problem of

reducing the computational complexity of multiuser detection. A key approach to this

problem is to restrict the optimal detector to be of the form of a linear multiuser detector, in
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which the data is demodulated by a scalar quantization of a linear mapping on the
crosscorrelation matrix of the spreading sequences. This type of detector comprises a linear
filter applied to the received waveform, followed by a scalar quantizer. Two types of lnear
detectors of interests are the decorrelation detector (or decorrelator), which chooses the linear
filter to have a zero output MAI [49], and the minimum mean squared error detector, which
chooses the linear filter to have minimum output energy within the constraints that the
response of the filter tos (r —iT —7,) is fixed [50]. Such detectors can be shown to satisfy
other optimality criteria as well. Although such detectors fall short of optimal (maximum-

likelihood) detection in terms of the error-probability, they are still far superior to the

conventional detection in terms of the error-probability performance in interference limited

environments.
Multiuser
receiver
P ——
Optimal .
a 1
MLSE ubophimal
| 5
Linear Non-hnear
H
I i ! !
Decision Successive
Decorrel gor MMSE Mulnstage L interference
-feedback i
cancellation
Figure2.4: Classification of multiuser yecdvers for CDMA systems
The major challenges for MUD systems are as follows:
° The high DSP load in the receiver which increases rapidly with the number of users
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° The need for an accurate channel information and timing for each incoming user

Currently, there are a number of schemes and implementation methods for MUD; these
include. maximum-likelihood [48], decorrelator [49], MMSE [501, multistage detectors [51],
decision feedback detectors [52], and successive interference cancellers [53]. Since they all

require a large signal processing overhead, suboptimal solutions must be considered.

2.4 Summary

The objective of this research is to develop adaptive multiuser detection algorithms for
Wideband CDMA systems that can cope with non-stationary, non-ideal conditions m a
mobile radio environment. This chapter has provided a motivation and an overview of
DS/CDMA system and adaptive receivers. It has been shown that the conventional matched
filter receiver 1s not optimal when a signal 1s received in multiple access interference. The
near far problem in cellular CDMA systems occurs when a strong multiple access
interference completely jams a weak desired signal. Multiuser receivers, which
simultaneously demodulate signals from multiple users, are able to alleviate the problems
arising from multiple access interference and are near-far resistant. Adaptive receivers, can
perform interference rejection with reasonable complexity. A classification of adaptive
receivers has also been provided. The details of the commonly used multiuser receiver

structures are presented in the next chapter.



In direct-sequence code division multiple access (DS/CDMA) systems all the users
concurrently share the same bandwidth. The users are distinguished by assigning to each user
a unique code or signature sequence, whose bandwidth is much larger than that of the

transmitted information. This code sequence is used to modulate the data stream.

Conventionally, the transmitted information is retrieved at the receiver by crosscorrelation
with the signature sequence, followed by a symbol rate sampling. This matched filter or
conventional receiver is optimum in the single-user case or when all the signature sequences
are orthogonal at the receiver. The first case is obviously of no interest, and the second one is

practically impossible to achieve.

In practice, the detection is adversely affected by multiple-access interference. When the
powers of the received signals from different users are approximately equal, the detrimental
effect of MAI is relatively small. However, the conventional receiver is unable to detect
weak signals, typically originating far from the receiver, in the presence of strong (near)

interferers. This is the so-called near-far problem.

In Chapter 2, we have seen that the power control alleviates the MAI and the near-far
problem by using a fixed matched filter receiver structure. However, the matched filter
receiver is optimal only when the signature sequences of the users in the system are
orthogonal to each other, which is normally not the case in wireless communication. To
further suppress the MAI we must use a more complex receiver structure, namely multiuser

detector, to demodulate the received signals.
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Maultiuser Detection is a scheme of estimation/demodulation of transmitted bits in the
presence of MAE, MAI occurs in multi-access communication systems {CDMA/ TDMA/
FDMA) where simultaneously occurring digital streams of information interfere with each
other. Conventional detectors based on the matched filter treat the MAI just as an additive
white gaussian noise (AWGN). However, unlike AWGN, MAI has a nice correlative
structure that is quantified by the cross-correlation matrix of the signature sequences. Hence,
detectors that take into account this correlation would perform better than the conventional
matched filter-bank. MUD is basically the design of signal processing algorithms that run in
the black box shown in Figure 3.1. These algorithms take into account the correlative

structure of the MAL

g Matched filter (User 13 \5:& j: B %
P Matched Hlter {User 2} \z\ j[ gl 2
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Figure 3.1: A typical maultiuser detector

In this chapter, multiuser detection approach to MAI suppression will be discussed. We will

first review the matched filter bank detector, which is the conventional and simplest way of
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demodulating the CDMA signals (or any other set of mutually interfering digital streams).
The multiuser detector 1s a term that is used generically for any receiver that attempts to
exploit the structure of a MAIL This term includes the receivers that are interested in a
reliable demodulation of a single user. I= this chapter, the decorrelating detector takes the
matched filter one step further by taking into account the correlative structure of the MAL
The minimum mean square error (MMSE) linear detector is then studied which is a

compromise between the matched filter approach and the decorrelating detector.

3.1 System Model

In this chapter, the basic K-user discrete time synchronous model is used for a CDMA
system. BPSK modulation is applied to modulate the user information. The Gold code is
chosen as the pseudo-random signature sequence. For the system simulation, a small
spreading sequence of length 31 was used. In all the simulations, a perfect power control is
assumed (i.e, the received amplitudes of all the users are assumed to be the same). The signal

at the receiver is given by

L
M) =D A bs, (O +n@) 1€[0,T] (3.1)

k=1
where, b, € {-1,1} is the input bit of the k" user, 4, is the received amplitude of the ¥" user,
n{t) is additive white gaussian noise with PSD N,. And s, () is the signature waveform of
the k" user (s, is normalized to have a unit energy i.e., < s,,s, > =1). For BPSK spreading

with a Gold-code of length 31, the signature waveform is defined as

31
s =Y a,p 1 —kT,), (3.2)
k=1
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where, T 1is bit period, 7 is chip interval, a, represents the normalized spreading seguence,

and p(7)1s a rectangular pulse of duration 7.

For the sake of simplicity, a perfect synchronous CDMA system is considered. It is assumed
that the receiver has some means of achieving a perfect chip synchronization. The cross-

correlation of the signature sequence is defined as
G ]
p; =<S§5,>= Zsj(t)sj(l) (3.3)
k=1

where G is the length of the signature sequence (31 in this case). The cross-correlation matrix

is then defined as

P P Pk

_ Py Pn 7 Pag _

R={p;} o (3.4)
P Pxo ° Pir

R is a symmetric, non-negative definite, toeplitz matrix.

3.2 The Matched-filter Bank

This section introduces and analyzes the matched filter bank detector that is the conventional
and simplest way of demodulating CDMA signals {or any other set of n;m?:uaﬁy interfering
digital streams). The matched filter also forms the front-end in most MUDs, and hence, an
understanding of 1iis operation is crucial in appreciating the evolution of the MUD

technology.
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3.2.1 Receiver Operation

in the conventional single-user digital communication systems, the matched filter is used to
generate sufficient statistics for signal detection. In the case of a multi-user system, the
detector consists of a bank of matched filters (each matched to the signature waveform of a
user in the case of CDMA). This is shown in Figure 3.2. This type of detector is referred to as
the conventional detector in the MUD literature. It is worth mentioning that we need the
exact knowledge of the users signature sequences and the signal timing of the desired users

in order to implement this detector.
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Figure32: A matched filter bank recever

The decision statistic at the output of the kth matched filter is given by
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no= | yOs ) (3.5)
where r(t} and s, (Z) is given by (3.1) and (3.2). Expanding (3.5), we have

T X
=] (24, by, 1) + n(O)s ()

K
= A, bp, +n, (3.6)
=t
where
T A=
", = L n(1)s, (1)t (3.7)
Since p,,= 1, (3.6) simplifies to
K -
o= Ab o+ D A b+, (3.8)
=t
Jek

The second term in (3.8) is the MAI, which is caused by the cross-talk between users. The
matched filter treats the MAI just as a white noise. The noise variance at the output of the

matched filter is given by

E6i7) = £] [ n@)s, @t [ nOw)s, (w1
= j j n(t)n(w) s (B)s, (w)dtdw

:! Jﬁ N S(t —w)s, (t)s, (w)dedw
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7 7
= [ Nestdi
=N, (3.9)
Similarly, the noise covariance can be shown to be

E(nn,)=N,p; (3.10)

Hence, the noise covariance maitrix can be defined as
Elmn’1={N,p,} =N,R (3.11)

l]Jij

where R is given by (3.4) and n =[n,,n,,.,n,]" . Stacking up (3.8) for all the users we get

Ty 7
7’1} Py P P[4 0 0] }'biil O
7 L P A A + 1
i_iﬁk} !_Pm Prr " P LO o - AKJ Lka LR
Thus, in matrix notation we have,
r=RAb+n (3.13)

3.2.2 Simulation Results for 2 Matched Filter Bank Receiver

To be consistent with other approaches to linear multiuser detection, the system model will

be the same as the one presented in 3.1 in all the simulation throughout this chapter. Figure



CHAPTER 3 MULTIUSER DETECTION

3.3 shows the BER (bit error rate) performance for the matched filter bank receiver. In this
example, 2 CDMA system with perfect synchronization is considered. The plots of BER
versus SNR (signal to noise ratio) illustrates the performance of the same system with
different users. The spreading gain is 31, The spreading codes are Gold code, which were

generated using two m-sequences, and found to have Gold-like properties.

BER

SNR (dB)

Figure 3.3: BER performance of the matched—filter bank detector

It is observed that the MF receiver performance is tolerable when there are only two users. In
such a case, the BER degrades dramatically as the signal power increases. As the number of
user increases up to 10, the performance is extremely poor with the BER remaining 107, no

matter how much the signal power is increased. This is because the detector ignores the
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cross-talk (that is the MAT) between the users as white noise. Thus, it is severely limited by
the near-far problem even in the presence of a perfect power control. Good MUDs, as
described in the following sections, take into account the correlative property of the cross-

talk.

3.2.3 Limitations of The Conventional Detector

As we have seen in the previous subsections, the conventional detector makes the wrong
assumption that 7, is a sufficient statistic for detecting b, by ignoring the MAI as

background noise. This is one reason for the poor performance of the matched filter bank

when the number of users is large.
Another serious limitation of the conventional detector is that it is seriously affected by the
near-far problem. This causes a significant degradation in the system performance even when
the number of users is very small. This fact will now be illustrated with an example. This
example adapts (3.8) to the 2 users scenario. We assume that the user 1 is the user of
interesting.

7

v = Ab + Ab,p, (3.14)

It is now obvious that the bit error probability for user 1 is given by

The probability of bit error is then readily bounded as
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(3.16)

The fact that Q is a monotonically decreasing function has been used to get this upper bound.
If the interferer is not dominant 1.e., 4,0, < 4,, the bit error probability is less than one-half.
But, if the interferer is dominant (near-far problem), ie., 4,p, > 4,, the bound becomes
greater than one-half. Consider the case when there is no noise in the system (i.e., No= 0)
and the interferer is dominant, then (3.16) gives P, =1/2. This is because the output of the
matched filter outputs is now governed by b, rather than b, . Hence, we see that in the

absence of noise, though highly hypothetical, the matched filter receiver reduces to flipping a
coin and deciding the output bits. This is an undesirable feature of the conventional detector.
As a matter of fact, the conventional detector may perform better in the presence than in the

absence of noise.

3.2.4 'The Conventional Detector as a Front End to MUDs

The front end of any MUD has a section to convert the received continuous-time signal to its
discrete-time version. This is usually done by sampling, it can also be done using the

matched filter bank. As seen earlier, the conventional detector takes the received signal
r(r)and outputs the statistic {#, 7, .., 7, . It has been proved [55] that the matched
filter bank sacrifices no information relevant to the demodulation. Hence, r{f} can be

replaced by » without any loss in system performance. Most MUDs, therefore, have the

matched filter as the front end.

With the matched filter at front end, the objective of MUD can be stated as follows: Given

the statistic { Fa By e r.,} at the output of the matched filter, find an estimate for the

K
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transmitted bits { b, b,, .., b} that minimize the probability of the error. The

probability of the error is chosen as the optimization criterion, since it is the most important

criterion for measuring the efficiency of a digital communication system.

3.3 The Decorrelating Detector
We have seen in Section 3.2 that due to the vulnerability to the near-far problem of the
simple matched filter receivers, it is impossible to completely suppress the MAI with

matched filter recelvers in wireless communications.

It was noted that the matched filter bank may provide erroneous detection even i the
absence of background AWGN. This is not a very attractive property for any receiver. An
optimal receiver must be capable of decoding the bits error-free when the noise power is
zero. In this section the decorrelating detector 1s investigated. This detector makes use of the
structure of MAI to improve the performance of the matched filter bank. The decorrelating
detector falls into the category of linear multiuser detectors, which has a linear computational
complexity but does not exhibit the vulnerability to other user interferences. This fact is

substantiated as this section progresses.

3.3.1 Receiver Operation

As shown in Figure 3.4, the decorrelating detector operates by processing the output of the

matched filter bank with the R™ operator where R is the cross-correlation matrix as defined

in Section 3.1. Again a synchronous CDMA system is considered.

The received signal vector r that represents the output of the K matched filters is described

by

o

Y
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r=RAb+n (3.17)

The noise vector has a covariance given by
E{nn7}=i\;ﬁR (3.18)

Since the noise is Gaussian, r is described by a K-dimensional Gaussian pdf with a

mean of RAb and covariance of R. Thus, the probability of error 1s

Xp ——L(r—RAb}TR“(E’MRAb) (3.19

1
b) =
i) J(N, ) detR ) N,

gl Matched flter (User 1) :F B él
P Matched filter (User 2) '_'IE B Z;
7
r{#} AN Matched flter (User 3) :f: 5 én
—B

LR RN
Y R R

p.  Matched flter (User k)

L_}.‘
:

Sync signals

Figure 3.4: Decerrelating detecior
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The best linear estimation of bis the value of b that minimizes the likelihood function given

by

A(b) = (r -RAB)' R™'(r -RADb) (3.20)
The result of this minimization yields
b =R7r 3.21)

The detected symbols are then obtained by taking the sign of each element of b”, that is,

b =sgn(b®) (3.22)

By substituting (3.21) into (3.22), the output of the decorrelating detector is given by

b = sgn(b’)
=sgn( R7(RAb +n))
=sgn( Ab+R'n) 3.

12
NS
{4
o

When the background noise is absent, 1.e., N, =0,

b =sgn{ Ab) =b (3.24)

Hence, we observe that in the absence of a background noise the decorrelating detector,

unlike the matched filier bank, achieves a perfect demodulation. One advantage of the
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decorrelating detector is that it does not require the knowledge of the amplitudes of the

received signal.

For the case of K=2,

-

o
Cd

where pis the cross-correlation between the normalized signature waveforms of user 1 and

user 2. Thus, we have

bor } (3.26)
4

The received signal is given by

- L AD, + pA,b, + 1, G.27)
PADb, + 4,b, + 1, '
After some manipulation, we have
b°=R7'r
1 [1 pll4b + pdb, + ?21_]
== i
1-plp 1] inAlb, + 4,b, +n, |
_| Ady O = ) 1= p7) (3.28)
Ab, +(ny — prn,) (1= p?) | ‘
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From (3.28), it is clear that the interference components between the two users are eliminated
by performing a linear transformation on the vector of the correlator outputs. Thus, the

computational complexity is linear in K.

We see that the decorrelating receiver performs only linear operations on the received
statistic r, and hence, it is indeed a linear detector. The decorrelating detector is proved to be
optimal under 3 different criteria: least squares, near-far resistance and maximum-likelihood

[54].

It is also interesting to note that the result similar to the one given by (3.28) is obtained if we

correlate r with the two modified signature waveforms given by
5,(8) = 5,(8) — ps, (1) (3.29)

53(0) = 5,(8) = s, (0) (3.30)

This means that, by correlating the received signal with the modified signature waveforms,
we have decorrelated the multiuser interference. Hence, the detector based on (3.21) is called

a decorrlator detector.

3.3.2 Simulation Results

Consider a CDMA system presented in Section 3.1. For simplicity, we assume that the
channel is synchronous. The BER versus SNR plots have been obtained for the cases of 2
and 10 users and are shown in Figure 3.5. The simulation scenario is as déscribed in Section
3.1. Comparing Figure 3.3 and Figure 3.5, we note that for the case of 10 users, as the SNR
increases, the performance of the decorrelating detector gets better, since the linear

transformation has been performed on the vector of correlator outputs and eliminated the
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MAL This makes the MAT suppression possible in decorrelating detector. It is observed that
at low SNRs, the matched filter performs better. Hence, the decorrelating detector is only an

sub-optimal detector [16].

BER

SNR (dB)

Figure 3.5: BER performance of the decorrelating detector.

From the simulation results given above, it is noted that the decorrelating detector (modified
matched filter orthogonal to the multiaccess interference) is sufficient in order to achieve

optimum resistance against the near-far problem (for high SNR).
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3.4 The

IMISE Linear Detector

In Section 3.3, we noted that the only mformation required by the decorrelating detector was
the cross-correlation matrix R of the spreadi: sequences. At low SNRs, the matched filter
bank performs better than the decorrelating detector as observed from Figures 3.3 and 3.5.
Hence, it might be possible to improve the performance by incorporating some interference
information in the MUD algorithms. In this section, one such approach is investigated, where
the mean squared error between the output and data is minimized. The detector resulting

from the minimum mean square error (MMSE) criterion is a linear detector.

In mobile CDMA systems, the knowledge about the transmitted data of the user of interest
and interference signals is hardly available. An adaptive solution of detection problem that
requires a minimal information about the user of interest and the interference signals is
highly desirable. As we will see in the following chaptei's, a major advantage of MMSE
schemes, relative to other previously proposed interference suppression schemes, is that an
explicit knowledge of interference parameters is not required, since filter parameters can be
adapted to achieve the MMSE solution. This feature will lead to a blind adaptive
implementations of a CDMA system. Also, the complexity of these schemes, measured in
terms of number of filter coefficients, can be adjusted to achieve a given level of

performance.

In this section, we will study the characteristics and the performance of the linear MMSE
detector, which will pave the way for a blind adaptive implementation of MUD for a CDMA
system. The MMSE linear detector for a pulse-amplitude modulated data signal, in the
presence of interfering data signals, consists of sampling the channel output at the chip rate
and using a K-tap adaptive FIR filter to minimize the mean squared error (MSE) between the

transmitted and detected symbols, where K is the processing gain [55].
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3.4.1 MMSE Linear Detector in an AWGN Channel
In the previous discussion, an estimate was derived by performing a linear transformation on
the output of the bank of correlators or matched fiiters. If we seek the linear transformation

b’ = Wr, another solution can be obtained, in which the K x K matrix Wis to be

determined to minimize the mean squared error (MSE) given by

J(b)=E[(b-b") (b-b")]
= E[(b- Wr)" (b -~ Wr)] (3.31)

Assuming that user 1 is the user of interest, the objective function (the mean square error) for

this user 1s defined as
K‘ -~
E[(b, — Y wir)*] (3.32)
i=]

which can also be expressed in a compact form, using convenient matrix notations, as
¥(w) = E[(b, - w'r)’] (3.33)

where, r = {1, 1, ..., 1.}’ is the output of the matched filter bank sampling at the symbol
rate, and W = {W,, W,,.., W, } is a vector consisting of K weights that minimize the MSE

defined in {3.32), and operate on the received statistic r .

Using the linearity of the expectation operator, we have

Y(w) = E(p?) - EQhw'r) + E{(w""g)(w%}’ ? (3.34)

J
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Since the bits of user 1 are 1.1.d, E(])=1. Therefore, we have

Y(w)=1-2w E(br) + E{ WTH‘TW}
=1-2w E(br) + w E{ rt fw 3.

2
Lh
e

From (3.13), we have
r=RAb+n
Now, consider

E(br) = E(bRAb + bn)

( ;
b,
=RAE|b| [ || +E(bm)

+ b, E(n) (3.36)

Since the transmitted bits of any user are i.1.d and are uncorrelated with the bits of other

users, we have

j@, i

E(bb,)= L
(s =7

(3.37)

Using (3.37) and the fact that the noise n has a zero mean i.e., E(n}=0 in (3.36), we have
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E(hr) =RA[l 0 0 - 0] (3.38)

Using the definitions of A and R from (3.4} and (3.12) yields

- ek
E P Pu pm}?‘éz 0 9}315
L Py Pn v P || 0 4 0 EO!
EGr)y =+ :Jif EJU
} i
!J%’x Pra = Prx L0 0 Ay LOJ
E—pHAl‘l
__i Paiy
o (3.39)
|
kalAiJ
Now, consider the part of the second expectation term in (3.35) as given by
1 T T T
E{rr"|= E{(RAD)(RAD)" }+ E(an’ )
— E{ RAbb’ AR’ }+ E(un” ) (3.40)
Using the fact that A and R are symmetric matrices, we get
RAE{bb" }AR + N,R
=RA’R+N,R (3.41)
Substituting (3.39) and (3.41) in (3.35), we have
Y(wy=1-2w"[p 4 p,4 - pa Al +w [RAR+NRlw  (3.42)
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Eauation (3.42) gives the objective function that should be mimimized according to the

MMSE criterion. Performing a matrix derivative operation on {3.42), we get
V.Y(wW)=-2[p, 4 04 - pud]l +2ARAR+NRw (3.43

We have used the fact that [RA’R + N R] is a symmetric matrix to get (3.43). The optimum
weights that minimize the MSE can be obtained by setting V ‘¥ (W) to zero. Hence, we

have
- z{pHAI :DZKA] pKlAI]T + ZERAQR_‘_NOR]Wmmse = O (344)
Solving (3.44), the optimal weights are obtained as

W :[RAzR’i"NoR]ul (o4, pud - pKEAl}T (3.45)

mmse

To calculate the optimal weights for user m, we can just replace p, by p,, for all i and

in (3.45). Equation (3.45) can be written in a more general and compact

i

replace 4, by 4
form as

W =[R+NA7T]" (3.46)

muose

where, W_ isa K x K matrix, whose £” column is the MMSE solution for the 4" user as

MmSC

shown in (3.45), and

r
y /
w20 2 2| aa)

1
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Figure3.4: MMSE Bnear detector

Equation (3.46) explains the operation of the receiver. The receiver simply weights the

received statistic with W, and makes a decision as shown in Figure 3.1. This leads to the

mmse

receiver architecture shown in Figure 3.6.

Equation (3.46) reveals the dependency of the optimum solution of MMSE detector on the
cross-correlation matrix R defined in (3.4) and diagonal matrix A . In order to obtain the

optimum W we need the information about the signature sequences and amplitudes from

all the users. Furthermore, for practical implementations of the MMSE detector, the
algorithm employed, whether LMS or RLS algorithm, requires a reference signal to update

the weight vector and produce the optimum W Obviously the best choice for the

reference signal is the data symbol transmitted, which is practically unavailable. In many
cases the use of a training sequence is a relatively simple solution. But in a constantly
changing mobile environment, the system performance and stability may not be ideal by

applying a training sequence. The knowledge of the signature sequence and amplitude of
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active users in the system is available only at the cost of additional complexity. We are
seeking a possible solution of MMSE interference suppression, which is achievable in
practice while keeping the additional complexity as low as possible. Such a solution will be

presented in the next chapter.

It has been shown in [55] that the MMSE receiver maximizes the output SIR. As we know,
the conventional matched filter receiver is optimized to fight the background white noise
exclusively, whereas the decorrelating detector eliminates the multiuser interference
disregarding the background noise. In contrast, the MMSE lmnear detector can be seen as a
compromise solution that takes into account the relative importance of each interfering user
and the background noise. In fact, both the conventional receiver and the decorrelating

receiver are the limiting cases of the MMSE linear detector. If we hold 4 fixed and let

A, ., A — o, the firstrow of [R+ N,A7]™ tends to

T~ A.?f
AT +o
which corresponds to the matched filter for user 1. As o grows, [R+ N,A™]" becomes a

strongly diagonal matrix, and the MMSE detector approaches the conventional detector as

G —> 0,

If we hold all the amplitudes fixed and let o — 0, then
[R+NAZT' > R™ (3.48)

Therefore, as the signal-to-noise ratio goes to infinity, the MMSE linear detector converges
to the decorrelating detector. This fact implies that the MMSE linear detector has the same

asymptotic efficiency and near-far resistance as the decorrelating detector.
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3.4.2 Simulation Results

‘H~ ~— 40 users
SO 2 USers

BER

SNR (dB)

Figure 3.7: BER performance of MMSE linear detector

Figure 3.7 shows the BER performance of the MMSE linear detector in an AWGN channel

with K=2 and K=10. The simulation scenario is identical to the one used in section 3.3.2

Figures 3.8 and 3.9 show the probability of the error achieved by the MMSE detector, the
matched filter bank and the decorrelating detector for K=2 and K=10, respectively, with
identical crosscorrelations and perfect power control. The direct-sequence signature

waveforms with G=31 are randomly chosen.
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Figure 3.8: BER performance comparison for K =12

For K=2, as shown in Figure 3.8, the matched filter bank receiver has a tolerable BER
performance. As the number of users increases, the matched filter bank converges slowly.
But the MMSE detector and the decorrelating detector converge faster as X — 0. Also, a
large gap in the performances between the MMSE detector and the matched filter bank 1s
noted even when K is small. Figures 3.8 and 3.9 also show that the bit-error rate of the
MMSE detector is better than that of the decorrelator for various levels of background

(Gaussian noise, the number of users, and the crosscorrelations.

Figure 3.10 is a zoomed version of the BER plot of Figure 3.9. From 3.10 and 3.9, it is clear
that the performance of the matched filter receiver is better than that of the decorrelator for

sufficiently low signal-to-noise ratios. The MMSE detector also makes the performance
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improvement at low SNR, and it is truely a compromise solution that takes into account the

relative importance of each interfering user and the background noise.

CrTooionjooIiizooooooriciizoiiiznos
—+— MMSE tner detecor
—0— Decorrelating detector
~=%- Matched filter bank

SNR (dB)

Figure 3.9: BER performance for K =10

3.5 Summary

Although the matched filter bank, decorrelation detector, and MMSE receiver have been
investigated in the literature, there is a need to study the relationship between them and their
capabilities for the interference suppression. Moreover, the investigation of the dependence
of the MMSE detection on the crosscorrelations between the spreading codes of the users in

the system will pave the way for deriving the adaptive MMSE solutions.
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Figure 3.10: Zoomed versien of Figure 3.9

The matched filter bank receiver treats other users signals as noise (self noise). This self
noise limits the systems capacity and can jam communications in the presence of the strong
nearby signals. It has been shown that the matched filter bank may carry out the detection
erroneously even in the absence of background AWGN. However, operating on the output of
the matched filter bank has some advantages. The sampled signal constitutes a sufficient
statistics of the received continuous-time signal. This feature makes the matched filter to
form the front end in most MUDs. Also, it is observed that, with a few users active in the
system, the martched filter bank reduces the number of measurement signals considerably,

resulting in lower complexity.
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By exploiting the structures of MAIL the decorrelation detector provides a considerable
performance gain at high SNR. But, when the SNR is at lower level, its performance is not as
good as that of the matched filter bank in terms of BER. This is due to the result of ignoring

the existence of the background noise.

The MMSE detector exploits the MAI structures and also takes into account the existence of
background noise. It can be seen as a compromise solution between the matched filter and
decorrelation detector. It improves the performance both at low and high SNR, and provides

the significant performance gain over the conventional matched filter detection.

The theoretical analysis has shown that the MMSE solution allows an adaptive
implementation of the multiuser detector. This multiuser detector operates directly on the
received signal, sampled during each chip period. However, adaptive receivers that employ
the MMSE algorithm require a training sequence and the signature waveforms of all users in
the system. Though the training sequence technique is used in many cases of practical
implementation today, the frequent uses of training sequence cause the system unstable.
Thus, an adaptive MMSE mutiuser detection that alleviates the need for training sequences is
highly desirable. In the next chapter, we will present two implementations of MMSE
detection, one requiring training sequence and the other only the signature waveform of

active users.
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Various existing multiuser detection approaches were discussed in the previous chapters. It is
clear from these discussions that the demodulation of CDMA signals by the conventional
matched filter receiver suffers from the near-far problem: because of the non-zero
crosscorrelaiton between the signature sequences for different transmissions, any sufficiently
powerful interferer can severely degrade the demodulation of the desired signal. In the
DS/CDMA format, the MAI represents a wide-band form of interference. Over the past
decade, a significant amount of research has been directed to address the problem of
multiuser detection. Recently, the MMSE linear multiuser detector has been considered in the

context of suppressing the MAI in CDMA networks [55], [58] - [60].

One of the main advantages of the spread-spectrum communications system 1s that the wide-
band signals can share a channel with narrow-band communication signals, without one
unduly interfering the other. As noted in Chapter 1, the spread-spectrum communications 1s
inherently resistant to the NBI caused by coexistence with conventional communications, but
substantial performance gains can be achieved through the use of active NBI suppression

prior to the despreading and demodulating.

Adaptive interference suppression is currently receiving particularly intense scrutiny because
of the key practical role it plays in the emerging vision of “anywhere, anytime”
communications promised by the systems such as personal commumcatiéﬂs, digital cellular
telephony, and mobile computing. The adaptive receivers applying interference suppression
mechanisms have been proposed by a number of authors at approximately the same time

[55], [58], [59], which are all based on the linear MMSE criterion. As noted in Chapter 3,
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The MMSE detector requires an exact knowledge of the signature sequences and that of the
amplitude of the received signals of all the users in the system to detect the information bits
of the user of interest. However, the conventional matched filter receiver requires only the
owledge of the signature sequence of the desired user to complete the detection m a
synchronous system. If we can eliminate the need for the knowledge of other users in the
MMSE detection, it will make the MMSE detection more valugble in practical

implementations.

In [55], an adaptive MMSE multiuser detector was proposed, which replaces the need of a
priori knowledge of all other users by using a training data sequence for each user in the
system. The operation of the adaptive MMSE detector requires that each user at the
beginning transmits a training sequence that is used by the receiver detector for initial
adaptation. After the training phase ends, adaptation for actual data transmission is realized
by making use of the transmitted data. However, at any time when there is a dramatic change
in the interfering environment, which is not unusual in wireless communications, the
adaptation based on the transmitted data becomes unreliable, and data transmission must be
temporarily suspended, requiring a new training sequence. The frequent use of fraining

sequences is certainly a waste of channel bandwidth.

The foregoing observations suggest that the need for a blind adaptive receiver is even more
desirable in multiaccess channels than in single-user channels which is subjected to
intersymbol mterferrence. Therefore, it is of great value if the need for training sequences can
eliminated. The goal of this chapter is o derive an adaptive receiver, which does not require

a training sequence and uses only the signature waveforms of active users in the system.

In the following sections, a blind adaptive MMSE detection in térms of canonical
representation that requires the same received data knowledge as that of a matched filter
receiver to demodulate the information bits will be reviewed. Then, an adaptive

implementation of a DS/CDMA system using a blind RLS adaptation rule to suppress both
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MAT and NBI will be studied. The lmitation of the blind RLS adaptation algorithm
presented. Next, a new combined adaptive mterference suppression scheme is proposed 10

deal with the Iimitation of blind RLS adaptation algorithm in a more practical situation.

4.1 Blind Adaptive Multiuser Detection

In Chapter 3, the MMSE detector was derived. An attractive feature of the MMSE detector is
that it can be implemented in a decentralized fashion where only the user or users of interest
need to be demodulated. It also paves the way for an adaptive or even blind adaptive
implementation. To develop the blind adaptive detector, we first need to introduce the
canonical representation of a linear multiuser detector.

4.1.1 System Model

To be consistent with the discussion in Chapter 2, we use the same system model as given in

Chapter 3, where the BPSK modulation scheme is implemented, The received signal through

a synchronous CDMA system in one information bit interval is given by

K
r() =Y Abs(+n(ty 1€[0,T] (4.1)
k=1

where, s, (¢)1s the signature waveform of the &” user and is normalized to unit energy, i.e.,

fj s, (t) =1, andis givenby

G-1
s, ()= s, [JIH{E—kT) (4.2)

J=0
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where, H(?) is a normalized chip waveform of duration 7, =7/G, G is the processing gain,
{s[j137, is the signature sequence of user k, 5,[j]€ {+1,—1}, T is bit period, 7,is chip

=0

interval, a, represents iiie normalized spreading sequence, K is the number of users, b, is the
input bit of the &, user, b, € {-1,1} with equal probability, 4, is the received amplitude of the

k, user, and n(r) is additive white Gaussian noise with zero mean and o’ variance.

Note that { H{t — kT, )}f;cl forms a basis for the signal space. Therefore, we can express the
signature waveforms with G-dimension vectors. Let s, =[5j{0], s S‘/[G—E]]T

denote the vector of the signature sequence of user j. In terms of the signal vectors, the

received signal can then be written as
<
r=> Abs, +n (4.3)
k=1

where n is a Gaussian random vector with E(nn’ ) = oI .

In the following, we will discuss the multiuser detection problem in the framework of the

system model given by (4.1) and (4.3).
4.1.2 Canonical Representation of Linear Detectors
This Canonical approach is based on the decomposition of the linear multiuser detecior as the

sum of two orthogonal components. One of the components is equal to the signature

waveform of the desired user which is assumed to be known and fixed.
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For convenience, we assume that user 1 is the user of interest. An arbifrary linear multiuser

detector d,(¢) € L,[0,7 ] can be represented as

di(t)  Bls(t) +x,(t)] (4.4)

where # > 0is a scalar, 5,(f) is the signature waveform of user 1, x,(¢)is the component of

d,(t)orthogonal to 5,(¢), i.e.,
<s,x>=] O 5, ()%, (H)dt =0 4.5)

Note that in situations where users are to be demodulated simultaneously, it is equivalent to
consider a linear multiuser detector as a multidimensional linear transformation or as a bank

of single-user detectors.

Fa

The system given by (4.4) and (4.5) is a canonical representation for the MMSE detector of
user 1. Since the decision making at the linear detector output is invariant to £, without loss
of generality, we restrict our attention to linear multiuser detectors whose inner product with
the signature waveform of the desired user is normalized to 1, 1.e., f= 1. It has been shown

in [50] that any linear multiuser detector can be represented in its canonical form.

As it was noted in Chapter 3, the MMSE detector is a linear detector that mmimizes the mean
square error between the decision statistics and the transmitted information bits. But the
adaptive implementation of the MMSE detector requires a training sequence. Using the
canonical representation, we will have a linear detector that is equivalent to the MMSE

detector, which is more convenient for obtaining a blind implementation.

4.1.3 Mipimum Output-Energy Linear Detector
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In this subsection, we will use the canonical representation of a linear detector to show that
the linear detector that mimimizes the mean oufput energy of the detector is the MMSE

detector. Let d,(¢) be an arbitrary linear de*-ctor of user 1. From the discussion in the
previous subsection, we know that 4,(¢) can be expressed in canonical representation as
d, (1) =s,(1)+x,(t). At the receiver's side, (), the received signal given in (4.1), is

correlated by linear detector d,(¢). We define the mean output energy of the detector as
MOE(x,) = E{(< 7,5, + x, >)*] (4.6)

Let d,(t)e L,[0,7 ] denote the MMSE detector of userk. The received signal »(z) is

correlated byd, (?) to generate the decision statistics. The output of the MMSE detector of

user k& is thus given by
T
<rd, >= j‘o r(t)d, (f)dt (4.7)

Thus, we can express the MMSE detector as

d (1) = argmin E[(A4,b,— <r,d, >)°] (4.8)

dyely{0.T ]

Correspondingly, the decision on the information bit of user % is given by
ISk =sgn(<r,d, >) = sgn( gof )d, (t)dz) ' (4.9)

It is clear that when d, (¢} = 5,(¢), (4.8) becomes the conventional matched filter detector.

- 54 .
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As described by (4.8), the mean sguare error of the detector for user 1 can be written as

MSE(x,)) = E[(4B,~ <75, +x >)°] {4.10)
Since the transmitted information bits of the users are independent to each other, it is
adequate to assume that the signals of the interfering users are uncorrelated with the signal of
the desired user. Therefore, we can express (4.10) as

MSE(x,)= A" + MOE(x,)—2A% <s,,5, +x, > 4.11)
From (4.10), we obtain that

MSE(x,) = MOE(x,)— A} (4.12)

From the structure of (4.12), we find that in an canonical representation the MSE function
and the MOE function of the linear detector differ only by a constant, and the arguments that
minimize both the functions are the same. Therefore, the linear multiuser detector with
minimum output energy is, in fact, the MMSE detector. Thus, the MMSE detector in (4.1.7)
reduces to the minimum output-energy linear detector, which is defined as

dy(1) = 5,(5) + x,(1) (4.13)

x,(t) =argmin MOE (x,)

el 0T ]

=argmin E[(<7,s, + x, >)°]
x1€l,10,7 ]
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The simple observation that the mean-square-error and the mean output energy differ by a
constant in terms of the canonical representation of the linear detector has the consequence
for its adaptive implementation. The arguments that minimize both the functions are the
same. This means that (in contrast to the MMSE criterion) it is not necessary to know the
data transmitted in order to implement a gradient descent algorithm for the minimization of
mean-square-crror. This sidesteps the use of training sequences and leads to the blind

adaptation rule presented in the next section.

4.2 Adaptive Implementation of Blind MMSE MU

As noted previously, the linear MMSE mutiuser detector has the capability of simultaneously
suppressing both NBI and MAI and it allows a blind adaptive implementation. Therefore,
this technique is well suited for practical use in mobile communication applications. The
recursive least-squares (RLS) adaptive algorithms are known to converge extremely fast, and
have excellent tracking capabilities in a time-varying environment. In this section, we review
the RLS blind adaptive version of the linear MMSE multiuser detection algorithm for the
simultanecus suppression of NBI and MAI Optimum performance of such receiver requires
a perfect synchronization of the spreading or pseudonocise (PN} code. Synchronization
includes both the initial code acquisition as well as the code tracking. This alone is a vast and
important research area. To limit this research to a reasonable scope, it is assumed in the rest
of this thesis that a perfect synchronization is achievable. References [62] - [64] provide

excellent overviews of the techniques for code acquisition and tracking.
4.2.1 System Model
Consider a synchronous K-user binary communication system signaling through an additive

white Gaussian noise channel. The received baseband signal during one symbol interval in

such a channel can be modeled as
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K
H6)=> 4bs (D+ 1)+ N@),  te[0,T] (4.14)
k=1

where 7(r) represents the narrow-band interference signal. Which NBI signal is added to the
system model to show how the blind adaptive MMSE detectors cope with the mobile

environment with NBI and MAI, N(7) represents the ambient channel noise, Xis the
number of users, 7 is the symbol interval, {4,} denotes the amplitude of the received signal
of the kth user, {b } denotes data bit of the k¢h user, {s,(¢);0 <¢ < T} denotes normalized
signaling waveform of the k¢ user. It is assumed that s, () is supported only in the interval
[0, T] and has a unit energy, and {b,} is a collection of independent equiprobable =1

random variables.

By passing through a chip-matched filter, followed by a chip-rate sampler, the received

signal r(r),1€[0,7] is converted to a vector of G samples of chip-matched filter outputs

within a symble interval T, where G is the processing gain. The received signal r is given

by

K
rzz.\/;;bksk +i+o,n (4.15)
k=1

. . . . T
where, s, is the normalized signature sequence vector of the krh user, ie, s,'s, =1,

P, = A} is the received power of the k#/ user, i is the NBI signal sample vector, which is

assumed to be wide-sense stationary with a zero mean and covariance matrix R, o, is the

variance of the noise samples, and n is a white Gaussian sample vector with a zero mean and

covariance matrix I, where I is Gx G indentity matrix. It is assumed that {b,}, i, and n

are mutually independent.
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4.2.2 Linear MMSE Detector and RLS Blind Adaptation Rule

We assume that user 1 is the user of interest, and we will use the notations P = P,s =5, and

b =b,, corresponding to user 1.

The linear MMSE detector has the form b = sgn(€’r) , where € is given by

[

s'R7's (4.16)

In (4.16), R represents the autocorrelation matrix of the received discrete signal ¥, as given

by

.
R =E{rr}=Y Ps;s; +R, +0]1 (4.17)

k=1

The signal-to-interference ratio is a performance measure which is defined to be the ratio of
the energy in the decision statistic due to the desired signal to the energy due to the
interfering users plus the background Gaussian noise. The output signal-to-interference ratio

(SIR) of ¢ is given by [65]

E* &'} _

SIR" = .
var{c r}

P[s"Z7's] (4.18)

where
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X
Z=R-Pss’" =) Ps;s; +R, +0.1 (4.19)
k=2

As we noted earlier, the mean-square-error and the mean output energy differ only by
constant in a canonical representation of the linear detector. The arguments that minimize the
both functions are the same. This implies that we can solve the problem by seeking a

minimum mean-output-energy detector instead of a minimum mean-square detector.

The mean output energy (MOE) of €, defined as the mean-square output value, 1s

= 1 1
=E{@'r)}=tRC=——=P+——— 4.20
¢ =E{{c'r)} TR 7 (4.20)
The mean-square error at the output of T is given by
£ =E{Pb-¢€"1)*}
= _r = 1 ‘
=P+&-2P(C s)=§——P=STZ_1§ (4.21)

Next, an RLS adaptation rule for adapting the weight vector ¢ is considered. The
exponentially windowed RLS algorithm selects the weight vector ¢(n) to minimize the sum

of exponentially weighted output energy as

Minimize Z e (myr(n)])

i=1

Subject to sTe(n) =1
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where 0< A <1 is the forgetting factor, and 1-4 <<1, which ensures that the data in the
distant past are forgotten in order to provide the tracking capability in a nonstationary

environment. The solution to this constrained optimization problem is given by

1 4 45y
C(i’l}—-mR {n)s (4..2}

where
R(m) = 3 A" (0 (1) (4.23)

i=1

A recursive procedure with complexity O(N?) for updating ¢(n) are obtained as follows:

R (n = Dr(n)

) = T R (= Dr(n) (429

hin) =R (n)s = ;—[Eﬁ(n ~ ) =-k()r’ (Wb -1)] (4.25)
N

() = 7 0 (4.26)

R (n) = %{R" (n—1)— k()" (R (- 1)] (4.27)

In contrast to the conventional RLS algorithm, the adaptation rule defined by (4.22) — (4.27)

requires no reference signal, and therefore, result in a blind RLS adaptation.
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4.2.3 Steady-State SIR of Blind RLS Adaptation

Based on the work in [66] the steady-state output SIR of the RLS blind adaptive algorithm is

given by

SIR® = Tlim 2 " (me(n -1}
noo var{r’ (n)e(n-1)}

SIR”

= 4.28
(I+d)+d-SIR" (428)

where d = l5_/{1—(6? —1), and SIR” is the optimum SIR value given in (4.18). Usually, the

RLS algorithm operates in a range such that d << 1. Equation (4.28) shows a severe
degradation of the steady-state SIR for the blind adaptive algorithm from the optimum value

SIR™, especially when SIR">>1.

In [66], a solution has been suggested to address this dilemma. By using decision feedback,
the system would be able to take the advantage of the conventional RLS algorithm to have
the steady-state SIR much closer to the optimum value, after the initial blind adaptation
converges. During the stage of using the conventional RLS adaptation rule, the data symbols

b(n) are assumed to be known to the receiver,

4.2.4 Steady-State SIR of Conventional RLS with Known Data Symbols

The RLS algorithm is a mature subject, extensively applied in diversity displines [67]. Using

the system model described in Section 4.2.1, the conventional RLS adaptation rule can be

found in as follows:
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R™(n - Dr(n)

s Y (4.29)
e, (n) = Pb(n) - " (m)r(n) (4.30)
e(n) = e(n~1) + e, (Mk(n) (431)
R7'(n) = %{R"(n - =k(mr’ ()R (n - 1)] (4.32)

where ¢, (n)is the prediction error at time 1, and k(#)is the Kalman gain vector [67]. The

adaptation rule given above is used to choose the weight vector ¢(n) to minimize the cost

function given by

}iﬂ‘f[ﬁb(z‘) — T ()] (4.33)

i=1

From [66], the output SIR 1in the steady-state can be expressed as

SIR® = lim £AT (el =1}
n>evarfr’ (me(n -1}

_ SIR®
(I+dy+d/SIR’

(4.34)

where d =¥(G—i).
24

-T2 -



CHAPTER 4 A NEW ADAPTIVE MMSE DETECTOR

It is seen from (4.34) that, in the extreme case of having the perfect estimation of data
symbols b(n) from the first stage using the blind RLS adaptation, the steady state output SIR

1s close to its optimum value.

4.2.5 Limitations of the Blind Adaptive Interference Suppression in [66]

The main purpose of the blind adaptive scheme presented in [66], and discussed above was to
apply the RLS blind adaptive algorithm in linear MMSE interference suppression for DS-
CDMA systems. From the above discussion, it can be seen that MMSE multiuser detection to
suppress both MAI and NBI is able to be implemented in the RLS blind adaptive version.
This implementation reduces the requirements for a training sequence and the signature
waveforms and amplitudes of other users in the system as the interference. In other words, it
reduces the dependence of the MMSE solution on the training sequence technique and the
crosscorrelations between the spreading codes of the users in the system. It takes the linear
MMSE interference suppression one more step further towards the practical

implementations.

However, the derivation of its steady-state SIR reveals a drawback of this implementation.

Let us look again of the steady-state value of SIR, which is given by

SIR”

SIR® = .,
(+d)+d SIR*

(4.35)

-1 .. .
where d = Y (G -1}, and SIR is the optimum value of SIR. Usually, the RLS algorithm
A :

operates in the range such that 4 << 1. When SIR™ >> 1, especially when 1/d << SIR", the

steady state value of SIR is far less than its optimum value S/R", and is upper bounded by
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1/d . In other words, the performance of the blind adaptive algorithm suffers form severe

degradation of the optimum value SIR’.

In Section 4.2.4, a solution was given in [66] to overcome this problem by switching to the
conventional RLS algorithm that uses decision-directed adaptation after the initial blind
adaptation converges. To realize the implementation of the conventional RLS algorithm, [66]

an assumption was made that the data symbols b(n) were to be known to the receiver, and

this condition could be achieved by using a training sequence.

As we have discussed earlier in this chapter, MMSE linear detection admits adaptive
implementation by using a training sequence in the beginning of the transmission. However,
in the frequently changing mobile environment, adaptation based on the transmitted training
sequence may become unreliable. Therefore, data transmission must be temporarily
suspended, requiring a new training sequence. The frequent use of training sequences is

certainly a waste of channel bandwidth.

The scheme presented in [66] is the blind adaptive version of MMSE detection, which
overcomes the drawback of using training sequence. To improve the systems, steady state
value SIR”, it switches to the decision-directed adaptation at the second stage, which uses a
training sequence. It seems to have less practical meaning by doing so. Furthermore, when
the received signal changes, it has to switch back to the first stage to use blind adaptation,
since the second stage adaptation require the data symbol to be known. At this moment, the
steady state value 8IR™ drops down again. The frequent switches between the two stages
may cause the system to become unstable. The conventional RLS adaptation in the second
stage depends on an assumption that the data symbols are known at the receiver. No matter

which estimation scheme applied, this condition cannot be realized in practice.

We are seeking a solution to the MMSE interference problem that will improve the system

performance with more practical meaning. In the next section, a new combined adaptive
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scheme is proposed, which does not depends on the condition of having data symbol known
at the receiver, and no training sequence is required. The new scheme improves the steady-
state value of SIR significantly. It pays some prices to require the knowledge of the signature
waveforms of the other active users, however, it does not require the use of a training

sequence in a dynamic mobile environment

4.3 Proposed Combined Blind and Conventional S Adaptation

Scheme

It is noted from the discussions of the previous section that blind adaptive scheme has the
steady state SIR degraded from its optimum value. In other words, there are certain amount
of interference still remaining after the detection. As we have studied in Chapter 3, MMSE
multiuser detector has thé ability to suppress the NBI and background noise. In this section
we focus on the cancellation of some of the remaining MAI to achieve further improvement

on the estimation.

In the new proposed scheme, we take advantage of the blind RLS adaptation rule in the first
stage. In the second stage, we add another conventional RLS adaptation mechanism in an
attempt to remove of the remaining MAI from other users’ in the received signals before
making data decision. The conventional RLS adaptation introduces a weight vector to
minimize the squared Euclidean distance between the received signal and the weighted sum
of the estimates of all users’ signals during a bit interval with respect to the weights. The
estimates of all users’ signals come from the estimation of the first stage. Using the weight
vector from the RLS adaptation, the maximum amount of MAI can be reconstructed. By
reducing the reconstructed MAI from the received signal, the desired signal with the less
interfered signals produced, and a more reliable decision is then made based on it. Neither a
training sequence nor decision feedback is needed. Also, no assumption is made on the

transmitted symbol.
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4.3.1 System Model

To be consistent with the previous discussion, we have the same system model as presented
in Section 4.2.1, where a synchronous K-user binary communication system signaling

through an additive white Gaussian noise channel is given by
K
rB)=Y Abs(O+I)+N(@), 1€[0,T] (4.36)
k=)

In the above equation, 7(¢) represents the narrow-band interference signal, N(r) the ambient
channel noise, X the number of users, 7 the symbol interval, {4,} the amplitude of the
received signal of the kth user, {b,} data bit of the kA wuser, and {s5,(£);0<:<T}
normalized signaling waveform of the k¢h user, It is assumed that s, (7) is supported only in
the interval [0, T] and has a unit energy, and {b,} is a collection of independent equiprobable

+1 random variables.

By passing through a chip-matched filter, followed by a chip-rate sampler, the received

signal »{¢), 1€[0,7T] is converted to a vector of G samples of chip-matched filter output

within a symbol interval 7, where G is the processing gain. The received signal r is given

by

K
r=> pbs, +i+o,n . (4.37)
k=1
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where, s, is the normalized signature sequence vector of the kth user, ie., s, s, =1,

P, = 4] is the received power of the k#k user, i is the NBI signal sample vector, which is

assumed to be wide-sense stationary with a zero mean and covariance matrix R;, o, 1s the

variance of the noise samples, and n is a2 white Gaussian sample vector with a zero mean and

covariance matrix I, where 1 is GxGindentity matrix. It is assumed that {b,}, i, and B

are mutually independent.

As we have mentioned before, here we are focusing on the MAIT cancellation. To simplify the

notation, the received signal can be expressed as
K
r= \p.bs, (4.38)

which is actually r,,,,, the received signal containing only MAL The m"” chip-bit of the

G samples of the received signal r,,,, within one bit interval can be written as

(m) = iﬁ{ b,s, (m) (4.39)

4.3.2 Adaptation Rules and Decision Making

We assume that user 1 is the user of interest, and we will use the notations P=F, s=s,, and

b =b,, corresponding to user 1.
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For the first stage, the blind RLS adaptation is applied to produce the estimate for the second

stage. Therefore, adaptation rule given in Section 4.2 are applied:

K(n) = — R 1= L) (4.40)
A+r (MR (n—Dr(n)
h(n) = R™(n)s = —i—{h{n —1) = k()" (h(n - 1] (4.41)
() = <7 ) (4.42)
R (n) = ;—[R‘} (1= 1) = k(m)r" (R (2 - 1)] (4.43)

where 0 < A <1 1s the forgetting factor (1-4 << 1).

In the second stage, the conventicnal RLS algorithm is applied to minimize the cost function

as

minimize E[| r(m) —w’ (m)f(m) ['] (4.44)

where, W = (w,, W,, ... w,)' is the weight vector. f(m) the m” chip-bit vector of the

estimate of the received signal, which is defined as
t{m)=.p, E;ksk (m) (4.45)

where, b, is the estimate of data symbol b, from the first stage. The adaptation rules are given
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R (m - D#(m)

K = T R (= D) (4.46)
e, (m) = r(m) — w' (m)i(m) (4.47)
w(m) = w(m —1) + e, (m)k(m) {4.48)
R™(m) = %[R”I(m - 1) - k(m)" (m)R™ (m - 1)] (4.49)

where w(m)is the weight vector for the conventional RLS adaptation, ¢,(m) the prediction
error at time n, k(m)is the Kalman gain vector [69], F(m) is the input vector of the RLS
algorithm at m" chip-bit interval, for k" user is defined in (4.45). R(m), correlation matrix

of input vector r(m) is defined by

R(m) = i AR BT (4.50)

=1

Using the results from [69], we conclude that the mean weight vector w{m) converges o iis
optimum value w', i.e., E{w(m)} = w ,as n — oo. This w_ is used as the weight in the

MAI cancellation. For user 1 as the user of intereste, at m” chip-bit interval, the MAI

cancellation is carried out as

o () = 7) = 3 W, (), () 4.51)

j=2

279 .



CHAPTER 4 A NEW ADAPTIVE MMSE DETECTOR

where w,(m) is used to construct the maximum amount of MAI for the user 1. By

subtracting this amount from the received signal, the remaining 7, ., (m) will be the less

2

interfered signal, which produces a2 more reliable decision on the transmitted data symbeol as
A G-1
brr = Sgﬁ{ z ‘Vdesz'red (?’:‘2)5{”3) } (452)
m=0

where I;,,. is the estimate of transmitted data symbol, and s is the signature sequence for user

1.

It is clear that the new scheme includes a blind RLS adaptation in the first stage to produce
estimate for each desired user and the conventional RLS adaptation in the second stage to
reduce the remaining MAI and to produce 2 less interfered received signal for each user of
interest. A more reliable decision of the data symbol for the desired user is made based on the
detected received signal. Since the reliability of the data estimation from stage 1 varies from
one user to another and from bit to bit depends on the MAI levels, different weight vectors

are obtained for each user, instead of a single weight vectors for all the users.

We noted from (4.51), the power of transmitted signals is assumed to be unity. This
assumption can be achieved by employing a power control at the transmitter which 1s a
common technique used in cellular radio systems today. It is also observed that the signature
waveforms of other users in the system are required to further reduce remaining MAL This is
the compromise to be made between canceling the MAI to have better performance and
having a lower cost scheme to have a less accurate estimate. The knowledge of the signature

waveform of other users can be achieved at the cost of additional complexity.

The new scheme at the second stage requires more knowledge of users in the sysiem than the

first stage does where only signature waveform and amplitude of desired user are needed.
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Obviously, the new scheme is no longer blind adaptation. Instead, it is a combination of the
blind and conventional RLS adaptation, it is also a combination of interference suppression
and cancellation. It reduces the need of a iraining sequence from the adaptive implementation
of MMSE detector, which we discussed in Chapter 3. It also reduces the need for aining
sequence and assumption of having data symbo! to be known in the scheme given in [66],
which we studied in Section 4.2. Furthermore, since the second stage cancels the remaining
MALI, it makes a significant performance improvement than the blind MMSE interference
suppression scheme. The scheme proposed in [66] uses decision—directed adaptation to
improve the performance. However, decision-directed adaptation is subject to a catastrophic
error propagation in the case of a sudden change in the environment. The new scheme
proposed here is not affected by any training sequence, it takes advantage of the fast
convergence and tracking ability of conventional RLS algorithm to produce the optimum
weight, and to reduce the remaining MAIL Therefore, it provides a better resistance to a

changing environment.

4.3.3 Convergence Analysis of the Combined RLS Adaptation

The combined RLS adaptation consists of two stages of adaptation rules, namely blind RLS
and conventional RLS adaptation. For the first stage, only blind RLS algorithm is applied.

The recursive relationship between the weight vectors e(n) and e(n — 1) is given by [66]

e(n) =c(n—-1)—e(n)k(n) + AL (n)e(n)h(n) (4.53)

where

e(n) =r’ (nye(n-1) = a(n - Dr’ (n)h(n -1) (4.54)

is the g priori least-square (LS) estimation at time #.
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Let 8(n) be the weight error vector between the weight vector ¢(n) at time n and the optimal

weight vector €, that is,
f(n) =c(n)—¢. (4.55)
Afier some manipulation, (4.55) becomes
§(n) = [A+T k(mr  (m)(n -1 + @ - Dk()r’ (n)T (4.56)

Equation (4.56) is the recursive equation that the weight error vector #(»)satisfies for large

.
Taking the expectation of both sides of (4.56), we have

E{6(m)}= AE{8(n—1))}+ T E{ k(n)r" ()} E{6(n - 1))}
+ (@ —~DE{k@m)r’ (n)}c

= AE{8(n —1)} (4.57)

Therefore, the expected weight error vector always converges to zerc. That is to say, the

weight vector e{n) always converges to the optimal weight vector €, and this convergence

is independent of the eigenvalue distribution.
At the second stage, the conventional RLS adaptation is enforced. The convergence analysis

of the conventional RLS algorithm is given by S. Haykin in [67]. Applying it in this system

model, the prediction error is given by
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e, (m) = r(m)—w" (m)i(m) (4.58)

PY . . .
where w  is the optimum regression parameter vector. The expected value of w(m) can be

expressed as
Elw(im)]=w, m>K (4.59)

Equation (4.59) states that the RLS algorithm is convergent in the mean value for n 2 K,

where K is the number of taps in the adaptive transversal filter.

4.3.4 Steady-State SIR

Since the new scheme takes advantage of the blind RLS algorithm described in Section 4.2.2
for the first stage, we have analysis of steady-state SIR similar to that in Section 4.2.3. An

expression for the steady-state SIR of the blind RLS adaptation in terms of the optimum

value SIR™ is given by

SIR”

SIR® = i
(+d)+d-SIR

(4.60)

We have already analyzed the disadvantage of a severe degradation from the optimum value

of the system having such steady-state SIR, especially when S/R*>>1.
As we have seen in Section 4.3.2, the conventional RLS produces a weight vector, which is

employed to further cancel MAI components. It results in reducing the interference power

has been reduced from the estimate in the first stage. Therefore, the steady-state SIR of the
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second stage is improved over the first stage. Equation (4.60) provides the lower boundary

for the steady-state SIR in the proposed scheme.

4.4 Summary

As seen from the discussion in the Chapter 3, the adaptive MMSE detector requires a training
sequence to achieve the interference suppression. To eliminate the requirement for the
training sequence, several approaches of adaptive detector are exploited. In this chapter, the
canonical representation of linear detector in the designed system model has been derived.
The minimum output energy linear detector in this system model has been discussed. The
impulse response of the linear receiver has been decomposed into the signature waveform
component of the desired user and the orthogonal adaptive component. By using the
canonical form of linear.detector, it has been shown that the linear detector that minimizes
the mean output energy of the detector is the MMSE detector. Although, the theory for this
kind of detector already exists, the analysis of the system model carried out in this chapter
provides a new insight into the blind MMSE solution for multisuer detection, justifying the

use of a linear MMSE detector for blind adaptation.

The fact that the mean-square-error and the mean output energy of the linear detector differ
by a constant in terms of the canonical representation of the detector leads to a blind adaptive
implementation of the MMSE detector for the CDMA system. A blind RLS version of the
MMSE multiuser receiver to suppress both MAI and NBI has also been reviewed, which
reduces the need of a traming sequence. The steady state performance of this algorithm in

terms of the signal-to-interference ratio has been studied.
It has been seen that this algorithm has a fast convergence and good iracking abilities, but it

suffers from a severe steady-state SIR degradation in that this value is significantly smaller

than the optimum value when the optimum value is greater than unity. One solution to
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address this deficiency, which applies a decision-directed adaptation mode after the initial
blind adaptation converges has been reviewed [66]. This solution has a condition that the
data symbol is assumed to be known at the receiver by using a {raining sequence. The use of
a training sequence in a rapidly changing mobile environment, causes the system to be
unreliable and an inefficient use of the channel bandwidth. It is difficult to meet the
estimation demand of a mobile environment by applying training sequence at this stage.
Moreover, the decision-directed adaptation is subject to catastrophic error propagation in the
case of sudden change in the environment. The system applying decision-directed adaptation
is not suitable to the mobile communications. Also, a perfect estimation cannot be achieved
to produce the detected symbol as accurate as the data symbol. In other words, the

assumption that the data symbols are known at the receiver is not realistic.

In this chapter, a new scheme consisting of a combination of blind RLS algorithm and
conventional RLS algorithm, which provides an adaptive MMSE solution to the detection
problem and results in a improved steady-state value of SIR without assuming the knowledge

of the data symbols, has been proposed.

The proposed scheme consists of two stages. The first stage takes the blind RLS adaptation,
which realizes the adaptive MMSE implementation in CDMA systems to suppress both MAI
and NBI and provides an estimate on data symbol for the second stage. The second stage
employs the conventional RLS adaptation to produce an optimum weight vector to further
cancel the remaining MAL In the second stage, a less interfered received signal is yielded,

which is the base of making more reliable estimate on the data symbol.

Unlike the scheme presented in [66], the new scheme combines both interference suppression
and cancellation using blind and conventional RLS adaptation to detect the desired signal,
instead of having a blind RLS adaptation first and then assuming that the data symbols are
known as the reference signal for the conventional RLS algorithm. Consequently, when the

received signal changes, the system does not have to suspend the conventional RLS
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adaptation and goes back only to the blind adaptation stage. It increases the system ability of
resilience to sudden changes at the cost of additional complexity to achieve the signature
sequence of other users in the system. However, it improves the steady state SIR from the
blind adaptation without using a training sequence or making an unachievable assumption
about the transmitted data symbol. Furthermore, it solves the problem of decision directed
adaptation on the catastrophic error propagation. Therefore, this scheme is better suited for

DS-CDMA systems.
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5.1 Introduction

The increasing interest in CDMA systems for mobile radio has spawned a great deal of
research in recent years to exploit multiuser detection to mitigate both MAI and NBI. As 1t
was seen in Chapter 3, the performance of the conventional matched filter receiver is
susceptible to degradation caused by near-far effects, since it is not capable of performing
any interference mitigation as the number of interference increases. The decorrelation
receiver is capable to improve the performance at high SNR level by exploiting the MAI
structures, its performance degrades as the SNR level becomes low. This is because of that
the decorrelation detector simply neglects the existence of background noise. The use of the
MMSE multiuser receiver for CDMA interference suppression has also been investigated.
Some of the important results on the MMSE receiver have been provided in [55], in which

the authors have discussed the MMSE in terms of code cross-correlation.

As seen in the previous chapters, a multiuser MMSE receiver can reduce the MAI vielding
significant performance gains over the conventional receiver. It provides a compromised
solution for multiuser detection by taking into account the background noise as well as MAI
structure. Furthermore, the important advantage of the MMSE detector is that it admits itself
to adaptive implementation. However, the adaptive receiver that employ the MMSE
algorithm require a training sequence, which may mot be feasible in a dynamically changing

mobile environment.

The purpose of this work has been to follow the existing approaches of the multiuser

detection and to derive an adaptive MMSE solution with more practical meanings. In Chapter
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4, the relationship between the MMSE detector and MOE detector is revealed in terms of
their canonical representations. With this relationship established, it is easy to study the
dependency of MMSE adaptive solution on the signature waveforms and amplitude of the
user of interest and on the interference in the system. As we have seen, the linear detector
that minimizes the mean output value of energy of the detector is the MMSE detector. This
observation leads the MMSE detector for the blind adaptation, in which only the signature
waveform and amplitude of the desired user are required at the receiver for the

implementation of DS/CDMA systems.

The recursive least-squares (RLS) adaptive algorithm is known to converge extremely fast,
and has excellent tracking capabilities in a time-varying environment. A blind adaptive linear
MMSE multiuser detector based on RLS algorithm has been proposed in [66]. As seen in
Chapter 4, the SIR performance of this version exhibits a significantly lower steady-state
value of SIR than the optimum value. In [66], 2 solution to this problem has been provided
by switching to the conventional RLS algorithm that uses a decision directed adaptation after
the initial blind adaptation converges. As we have seen in Chaptér 4, when the adaptive

algorithm makes use of the known data symbols &(n), the steady-state output SIR is close to

its optimum possible value.

The idea to have the system switched to the conventional RLS algorithm, after the
convergence of initial blind RLS is a good one. But the assumption that the fransmitted data
symbols b(n) is known to the receiver may not be true in reality. Even though the technique

to achieve this condition by using a training sequence or using a decision feedback 1s used in

practice, the estimated data symbels 1;(;1} are not as accurate as the fransmitted symbols b(n).

In Chapter 4, a new scheme of combined blind and conventional RLS algorithms to improve
steady-state SIR has been proposed. The new scheme does not simply switch to the

conventional RLS adaptation stage. In fact, it uses the blind and conventional RLS together
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to attain a adaptation of the linear MMSE detector in order to provide a better performance in

the steady state.

The new scheme takes advantage of the blind RLS adaptation rule in the first stage, which
requires only the signature waveform of the desired user. In the second stage, the system
makes another adaptation, which uses the conventional RLS algorithm to produce an
optimum weight vector to further cancel the remaining MAIL Thus, the system improves the
steady state SIR over the blind RLS adaptation and does not have to switch back to the blind

adaptation only when the received signal changes.

Table 5.1: System parameters for Experiment 1

n { Number Adaptation Signal MAI NBI SNR Signature
of rules (Random) (AR) (After sequence
iterations ) despreading) (Desired
signal)
0 - 500 Biind RLS 20dB | Two 10dB | One 20 dB 20 dB Gold code
I 500-1000 | Conventional | 20dB Three One 20 dB 20 dB Gold code
RLS of 10dB

In this chapter, the experimental results for the combined adaptive RLS scheme are presented
and discussed. First, we will see that the steady state SIR of the proposed scheme makes a
significant improvement over the blind RLS adaptation without assuming the knowledge of

the data symbol, or using a training sequence. Afterwards, the tracking abilities of the
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proposed scheme are studied. The system resilience to the dynamic changes is also presenied.

The comparisons with the scheme proposed in [66] are made in terms of the various features.

5.2 Experimental Results for Steady-State SIR

We consider a synchronous DS-CDMA system with processing gain G is set to be 31.

Time averaged SIR (dB)

10 L
100 200 300 400 500 800 700 800 800 1000

Mumber of iferations

Figure 5.1: Time averaged SIR versus time for the blind adaptation and the conventional RLS adaptation
{ Three 10-dB MAIs)
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Experiment 1

The first set of experimental parameters are given in Table 5.1. There are three 10-dB MAI
signals, each with a random signature. In a<dition, there is a 20-dB NBI signal, which is a
second-order AR signal with the both poles at 0.99. The signal power to background noise
power is 20- dB. These interference signals form a strong near-far environment. The blind
adaptation 1s used for the first 500 iterations. During the iterations 501 — 1000, the system has
the construct presented in [66], which use decision-directed conventional RLS adaptation
only and assume the data symbol is known at the receiver. A training sequence or decision

feedback is used to achieve this assumption.

Table 5.2: System parameters for Experiment 2

n ( Number Adaptation Signal MAI NBI SNR Signature
of rules (Random) (AR) (After sequence
iterations ) despreading) {Desired
signal)
0~ 500 Blind RLS 20dB Three One 20 dB 20 dB Gold code
10dB
5060-1000 | Blind RLS + 20dB Three One 20dB 20 dB Gold code
Conventional 10dB
RLS for MAI
cancellation

Figure 5.1 shows the plot of time-averaged out put of SIR versus time for the different

adaptation rules. An AWGN channel is chosen in the example, and perfect synchronization is
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assumed. From Figure 5.1, we observe for the first 500 iterations, the steady state SIR is
about 8 dB, which is far less than its optimum value of MMSE detector, 18 dB in this case.
This can be explained by (4.28), the steady state SIR of blind RLS adaptation has the
degradation from its optimum value. For the iteration 500 — 1000, the steady state SIR is very
closed to the optimum value. This can be explained by (4.34) that the conventional RLS
adaptation with the known data symbol as the reference signal has the steady state SIR close

to its optimum value.

Experiment 2

The second example we consider in this section has the parameters given in Table 5.2. This

example has the same signal parameters with Table 5.1. During the 1terations 501 — 1000, the
blind adaptation 1s still active to produce the estimate l;k (n), which is the input signal for the

conventional RLS to regenerate the estimated MAI signals. At the same time, the MAI
cancellation employing conventional RLS adaptation is forced to produce more accurate

estimation.

Figure 5.2 shows a plot of time-averaged output of SIR versus time for the different
adaptation rules. From Figure 5.2, we observe for the first 500 iterations, the steady state SIR

is about 8 dB. For the iteration 500 — 1000, the steady state SIR is improved to 14 dB.

Comparing Figure 5.1 and Figure 5.2, we observe that the conventional RLS adaptation with
known data symbols has a higher SIR than the combined remaining MAI cancellation
scheme. The difference is about 2 dB. However, the assumption that the data symbol is
known at the receiver is not realistic, and decision-directed adaptation can cause catastrophic
error propagation when the mobile environment has sudden changes. We will consider such

example in the next section.
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Time averaged SIR {(dB)

100 200 300 400 500 800 700 800 900 1000
Number of itergtions

Figure 5.2: Time averaged SIR versus time for the blind adaptation and the combined RLS adaptation
{ Three 10-dB MAls)

Experiment 3

The third example we are going to look at has the experimental parameters given in Table

5.3.
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Table 5.3: System parameters for Experiment 3

n { Number Adaptation Signal MAI NEI SNR Signature
of rules (Random) (AR} {After sequence
iterations ) despreading) (Desired
signal)
0-500 Blind RLS 20dB | Two 10dB | One 20dB 20dB Gold code
One 20 dB
500-1000 | BlindRLS+ | 20dB | Two 10dB | One 20 dB 20 dB Gold code
Conventional One 20 dB
RLS for MAI
cancellation

In this example, we change the number and the power of MAls. There are two 10-dB MAI

signals and one 20-dB MAIT signal, each with a random signature. In addition, there is a 20-

dB NBI signal which is a second-order AR signal with the both poles at 0.99. The signal

power to background noise power is 20 dB. The interference signals components have been

changed. The blind adaptation is used for the first 500 iterations. From 501 to 1000, the blind

adaptation and conventional RLS are employed to make more reliable decision.

The time-averaged output of SIR versus time is given in Figure 5.3. From Figure 5.3, we

observe for the first 500 iterations, the steady state SIR is about 8 dB. For the iteration 500 —
1000, the steady state SIR is improved to 14 dB.

-84 .




CHAPTER 3 EXPERIMENTAL RESULTS

Time averaged SIR (dB)
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Figure 5.3: Time averaged SIR versus time for the blind adaptatien rule and the combined RLS adaptation

{ two 19-dB MAIs and one 20-dB MAI)

Experiment 4

In this experiment, we investigate the effect of different numbers of MAIs to the proposed
system. The parameter set for this experiment is given in Table 5.4. What makes this

example different from example in of Figure 5.3 is that it has six MAIs, each with a power of
10 dB.
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The result 1s given in Figure 5.4. From Figure 5.4, we observe for the first 500 iterations, the
steady state SIR is about 8 dB. For the iteration 500 — 1000, the steady state SIR is improved
to 14 dB.

Table 5.4: System parameters for Experiment 4

n ( Number Adaptation Signal MATI NBI SNR Signature
of rules (Random) (AR) (After sequence
iterations ) dispreading) (Desired
signal)
0-500 Blind RLS 20dB Six 10dB | One20dB 20dB Gold code

500-1000 | Blind RLS + | 20dB Six 10dB | One20dB 20 dB Gold code

Conventional

RLS for MAI

cancellation

By comparing Figures 5.2, 5.3 and 5.4, 1t is observed that the SIR levels during the iteration
from 500 to 1000 are at the same level. There is no obvious difference between them. They
are all significantly improved over that using the blind RLS adaptation. Thus, different
numbers and power of MAIs in the system has very little impact on its performance.

Therefore, the proposed system has very good resistance to MAIs.
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Time averaged SIR (dB)

100 200 300 400 500 800 700 800 900 1000
MNumber of iterations

Figure 5.4: Time averaged SIR versus time for the blind adaptation rule and the combined RLS adaptation
{ six 10-dB MAIs)

5.3 Experimental Results on the Convergence and Tracking Abilities of

the Proposed Scheme
In this section, we study the tracking abilities of the proposed scheme. To show the reactions

of the system to a dynamically changing mobile environment, different environments, where

the number, type and power of interferers vary with time, are simulated.

.67 .



CHAPTER 5 EXPERIMENTAL RESULTS

Table 5.5: Experimental parameters for Experiment 5

| 1 ( Number Adaptation Signal MAI NBI SNR Signature
of rules (Random) (AR) (After sequence
iterations ) dispreading) (Desired
signal)
G- 500 Blind RLS 20 dB Three 20 dB Gold code
10 dB
500-1000 | BlindRLS+ | 20dB Three 20 dB Gold code
Conventional 10dB
RLS for MAI
cancellation
1001-1500 | Blind RLS+ | 20dB Six One 20 dB 20dB Gold code
Conventional 10 dB
RLS for MAI
cancellation
1501-2000 | Blind RLS+ | 20dB Three One 20 dB 20 dB Gold code
Conventional 10 MAI
RLS for MAI +
cancellation one 20 dB

Experiment 5§

Again, we consider a synchronous DS-CDMA system with processing gain G is set to be 31,

The first example in this section has the experimental parameters given in Table 5.5.
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Time averaged SIR (dB)
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Figure 5.5: Time averaged SIR versus time for the blind adaptation and the combined RLS adaptation

In this example, the signal power to background noise power is 20 dB. At the time instant
n = 0, the simulation starts with one desired signal and six MAI signals, each of power 10
dB. To compare the performance of blind RLS adaptation and the combined RLS adaptation
with MAI cancellation, from time 0 to 500, we use only blind adaptation. After wards, we
use proposed combined scheme to detect the data symbols until n = 2000. During the time
duration n=500 to 1000, the signal components remain unchanged. At time n =1000, a
strong NBI signal of 20 dB is added in the system. At timer = 1500, another strong MAI

signal of 20 dB is added. The desired user’s signature sequence uses Gold code, and the
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signature sequences of the MAls are generated randomly. The NBI signal 1s a second-order

AR signal with both the poles at 0.99.

Table 5.6: System parameters for Experiment 6

n { Number Adaptation Signal MAI NBI SNR Signature

of rules {Random) (AR) (After sequence

iterations ) dispreading) (Desired
signal)

0 - 500 Blind RLS 20dB | Six 10dB 20 dB Gold code
500 - 1000 Blind RLS 20dB | Six10dB | One 20dB 20 dB Gold code
1001-1500 BlindRLS , | 20dB | Six10dB | One20dB 20 dB Gold code

+
One 20dB
1501-2000 Blind RLS 20dB Three One 20 dB 20dB (Gold code
10 MAI
+
One 20 dB

Figure 5.5 shows a plot of time averaged output SIR versus time of the blind RLS adaptation

and combined scheme. From this figure, it is observed that the proposed combined scheme

has very good convergence and tracking ability. In Sections 4.2 and 4.3, we observed the

good convergence properties of both the blind and conventional RLS adaptations. Figure 5.5

reflects these features. Since the new propesed scheme employs both the adaptations, the

blind adaptation provides the initial estimate and then the conventional one minimizes the

remaining MAIs and produces more reliable estimate. There is a time difference between the
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derivation of the initial estimate and the final one. In Figure 5.5, there is a delay of about 10
to 20 more iterations for convergence of the combined scheme than in the case of the blind
adaptation. The combined scheme has to make additional computation. However, since the
RIS algorithm has a fast convergence and tracking property, the delay caused by these
computing is still tolerable. The performance enhanced by the proposed scheme is about 7 to
8 dB. It is also noticed that after the convergence of the combined system, the output level

of SIR are all at the same level. This fact indicates that the combined system has the ability to

effectively resist the environment changes.

10°
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Time averaged SIR (dB)
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Figure 5.6: Time averaged SIR versus time for the blind adaptation

- 101 -



CHAPTER 5 EXPERIMENTAL RESULTS

In Section 4.2.5, we analyzed the limitations of the blind RLS adaptation scheme proposed in
[66]. One of them concerns the stability of the system. Since the system employs decision
directed adaptation to improve the steady state SIR afier the convergence of the blind
adaptation, it has to switch back to the blind adaptation once there is a sudden change in the
environment. But the frequent sudden changes are not unusual mobile communications.
Therefore, the system becomes unstable because of the catastrophic error propagation of the
decision directed adaptation with the varying received signal. In the following examples, we

will see how the new proposed scheme overcomes this drawback of the conventional scheme.

Experiment 6

The set of parameters for the second example presented in this section is given in Table 5.6.
For the system simulated using the parameters given in this table, we apply blind RLS
adaptation to estimate the data symbols since the first stage of proposed scheme is based on
this adaptation. In this example, the signal power to background noise power 1s 20 dB. At the
time instant n = 0, the simulation starts with one desired signal and six MAIT signals, each
having a power of 10 dB. At n = 500, a strong NBI signal of 20 dB is added to the system.
At n =1000, another strong MAI signal of 20 dB is added. At n = 1500, three of the
original 10-dB MAI signals are removed from the system. The desired user’s signature
sequence uses a Gold code, and the signature sequences of the MAIT are generated randomly.

The NBI signal is a second-order AR signal with both the poles at 0.99.

Figure 5.6 shows a plot of time averaged output SIR versus time of the blind RLS adaptation
and combined scheme. In this figure, we observe that the system applying only the blind RLS
adaptation has a fast convergence and a good tracking ability. But it suffers from a low SIR

output at steady state. We also note that, at n = 1500, the removal of three 10-dB MAIs has
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almost no effect on the system, which shows the ability of the system to be resistant to MAIs.

This is a property providing a good estimate based on further cancellations of the MAIs.

Table 5.7: System parameters for Experiment 7

n { Number Adaptation Signal MAI NBI SNR Signature
of rules (Random) (AR) (After sequence
iterations ) dispreading) (Desired
signal)
0-250 Blind RLS 20dB Six 10dB 20 dB Gold code
251 -500 Conventional 20dB Six 10 dB 20 dB Gold code
RLS decision
feedback ’
300 - 750 Blind RLS 204dB Six 10dB | One 20dB 20 dB Gold code
751 - 1000 Conventional 20¢B Six 10dB | One20dB 20 dB Gold code
RLS decision
feedback
1001-1250 Blind RLS 20dB Six 10dB | One20dB 20 dB Gold code
+
one 20 dB
1251 - 1500 Conventional 20dB | Six10dB One 20 4B 20dB Gold code
RLS decision +
feedback one 20 dB
1501-1750 Blind RLS 20dR Three One 20 4B 2048 Gold code
10 MAT
+
one 20 dB
1751 - 2000 Conventional 20 dB Three One 20 dB 20dB Gold code
RLS decision 10 MAI
feedback +

one 20 dB
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Experiment 7

The Third example presented in this section has the same environment as that of the
proceeding example, with the only exception of the adaptation mechanism used, which is
presented in [66] and studied in Section 4.2. Afier convergence of the blind adaptation,
system employs the conventional RLS having the decision directed adaptation using a

training sequence or a decision feedback to obtain the data symbols. The data symbols are

assumed to be known at the receiver.

Time averaged S5IR (dB)

10

i i ;
200 400 600 300 1000 1200 1400 1800 - 1800 2000
MNumber of iterations

Figure 5.7: Time averaged SIR versus time for the conventional RLS having decision directed adaptation in a

dynamicaily changing mobile environment
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Puiting aside the implementation feasibility of in the scheme in [66], let us focus on its
performance. The sets of experimental parameters are given in Table 5.7. Figure 5.7 shows a
plot of time averaged output SIR versus time for the scheme presented 1n [66] and using the
decision directed adaptation. In this figure, one can observe the indentation of output SIR
value, caused by the switching between the blind RLS adaptation and the conventional one.
The system switches to conventional RLS adaptation after the blind adaptation converges in
order to improve the steady state SIR, and then switches back to blind adaptation when there
is any changes in the environment. This is done, since the previously trained system is no
longer suited to detect the changed signals. The conventional adaptation has to be suspended
and to wait until the convergence of the blind adaptation stage is achieved. As we can see,
there is a need to check the status of convergence of the blind stage, which increases the
complexity. Also, there is a time difference between the switching from blind adaptation to
the conventional one, which is difficult to estimate. However, by comparing the time delay of
the proposed scheme, which (Figure 5.5) is 10 — 20 iterations, the time delay in checking the
convergence status is rather long. Furthermore, the stability of the system and the resilience

to environment changes make the system given in [66] unsuitable to mobile environment.

Experiment 8

In the last example of this section, we present the performance of the proposed system in
terms of convergence and stability to a varying environment. For the purpose of comparison
the signal component and dynamic environment simulated are the same as given in Table 5.6.

The complete set of experimental parameters are given in Table 5.8.

Figure 5.8 shows a plot of time averaged output SIR versus time for the proposed combined
scheme. In this figure, it is observed that the system is recovered very fast from signals
changing. And there is no output SIR indentation from time to time as in the case appears in

Figure 5.7

- 105 -



Table 5.8: System parameters for Experiment 8

CHAPTER 5 EXPERIMENTAL RESULTS

n { Number Adaptation Signal MAT NBI SNR Signature
of rules (Random) (AR) (After sequence
iterations ) dispreading) (Desired
signal)
0-500 Combined 20dB | Six10dB 20 dB Gold code
scheme
500 - 1000 Combined 20dB | Six10dB | One20dB 20 dB Gold code
scheme
1001-1500 Combined 20dB | Six10dB | One20dB 20 dB Gold code
scheme +
one 20 dB
1501-2000 Combined 20dB Three One 20 dB 20 dB Gold code
scheme 10 MAI
+
one 20 dB

Comparing Figure 5.8 with Figure 5.6, it is observed that the proposed combined scheme

yields a performance gain of about 7 dB over that of the blind adaptation. The convergence

of proposed scheme is fast to the varying environment. The output steady state SIR remains

at the same level after the convergence, which indicates a good resilience to different

interferences. It is also noticed from Figure 5.8 that there is a fast convergence to the steady

state after the removal of three 10 dB MAI signals at » = 1500 . In the proposed scheme, the

detection of the data symbols using the conventional RLS MAI cancellation can also resume

right after the first data symbol is produced by the blind adaptation.
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Time averaged SIR (dB)
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Figure 5.8: Time averaged SIR versus time for the propesed combined scheme

By comparing Figure 5.8 and Figure 5.7, it is even more clear that the system using the
combined scheme has superior stability than that of the scheme in [66]. There is no switching
required. The second stage is still able to perform well when the environment changes unlike
the system of [66], since it does not have to wait for the convergence of the first stage and

then be trained to be able to detect the data symbols. The catastrophic error propagation

problem is solved by the scheme proposed.
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5.4 Summary

In this chapter, an extensive simulation study have been undertaken to demonstrate the
superior peiformance of the proposed combined scheme, which uses the blind RLS
adaptation in the first stage to produce the initial estimate and conventional RLS in the
second stage to minimize the remaining MAIL Comparisons are also made between the
proposed scheme and the one presented in [66] to see the performance improvement in terms
of the steady state output SIR, system convergence, tracking ability, resilience to

interference, and system stability.

The proposed scheme has been shown to yield a performance gain of about 7 dB over the
blind RLS adaptation of [66] in synchronous AWGN channels. This value is 2 dB lower than
yielded by the conventional RLS scheme in [66] under an unrealistic assumption that the data

symbol is known to the receiver.

The convergence rate of the proposed scheme is fast and the tracking ability is very good in a
dynamically changing environment. There is a time delay of about 10 to 20 iterations in the
convergence in the proposed scheme in comparison to that using the blind adaptation. If
compare the time delay in the scheme presented in [66], where one has to wait for the first
stage to converge, use fraining sequence, switch to the second stage and then to acquire its
steady state in order to estimate the data symbols, the time delay of the proposed scheme is

only negligible.

The proposed scheme yields a significant improvement in terms of system stability over the
one presented in [66]. Because of the poor performance of the decision-directed algorithm in
the scheme of [66], the system is subject to catastrophic error propagation with a varying

environment. The proposed scheme solves this problem by minimizing the effect of the
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remaining MAIs, to provide more reliable estimates. The proposed scheme require neither a

training sequence nor switch between two sets of adaptation rules.

Overall, it has been seen that the combined adaptive scheme improves the system
performance in a practical mobile environment. In contrast to the decision directed scheme,
the proposed combined adaptation algorithm has a little lower steady-state SIR, but it does
not require the assumption that the data symbols are known to the receiver and provides a
better resistance to the environment changes. Therefore, the proposed scheme is better suited

for practical applications.
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6.1  Contributions of the Thesis and Concluding Remarks

The work reported in this thesis has been undertaken in support of moving the current
knowledge of the adaptive CDMA receivers towards making them more relevant to practical
wireless systems. The objective has been to analyze the existing techniques in the area of
adaptive CDMA receivers and to develop a novel technique. While the new technigue
presented in this thesis that is more practical to overcome some of the drawbacks of the
existing adaptive receivers, the theoretical and experimental analyses of the existing
techniques assist in a better understanding of the influence of the radio environment on the
performance of adaptive receivers. The following paragraphs summarize the contributions of

the thesis and the conclusions drawn from the results presented therein.

The matched filter bank receiver is optimum when the additive noise is Gaussian but it fails
to exploit the structure in the MAIL and thus, the system performance degrades when the
interference is non-Gaussian. This disadvantage of matched filter bank receiver limits the
system capacity and can jam the communication in the presence of strong nearby signals. As
a linear receiver, the decorrelation detector is adequate to provide an optimum resistance to
the near-far problem caused by the MAIL But, when the SNR is at a lower level, its
performance is not as good as the matched filter bank, since it ignores the existence of the
background noise. By exploiting the structures of MAI and taking into account the existence

of the background noise, the MMSE detector makes improvements with both low and high

SNRs, and improves the performance significantly over the matched filter bank receiver. The
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decorrelation detector can be considered as a special case of the MMSE detector when the
background noise level goes to zero. However, the MMSE detector lends itself to adaptive
implementation more readily than the decorrelation detector. In Chapter 3, an extensive
analytical and experimental study has been undertaken on the similarities and differences
among the various multiuser detectors employing the same system model. Although the
individual studies on these detection do exists in the literature, the unified investigation
carried out in this chapter provides an insight into the dependence of the MMSE detector on
the system parameters, and the relative merits that can lead to different possible

implementations.

A limitation of the MMSE mutiuser detector is that it requires a training data sequence for
every active user to provide an adaptive interference suppression. After the training phase,
the receiver can continue to perform in a decision-directed mode. However, in a drastically
changing mobile environment, the decision-directed adaptation becomes unreliable. An
attempt has been made in [66] to solve this problem by using a blind RLS version of the
MMSE multiuser receiver, which does not require training sequences. This algorithm has
lower steady-state SIR than its optimum value. A solution to this problem was suggested in
[66] by using a decision-directed adaptation after the initial blind adaptation is converged.
However, this solution requires the use of a training sequence technique, and, in a drastically
changing mobile environment, the frequent switching of the adaptation mechanism makes the

system unreliable.

The proposed adaptive scheme in Chapter 4 has been devised to overcome the above
weaknesses by combining the blind RLS adaptive interference suppression and the
conventional RLS adaptive MAI cancellation. Instead of assuming known data symbols for
the second phase, the proposed scheme uses the output of the blind RLS adaptation of the
first stage as the initial estimate in order to produce the optimum weight vector by using the
conventional RLS adaptation. Then, based on the optimum weight vector, a less interfered

received signal is produced, which results in a more reliable decision.
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The proposed scheme overcomes the drawback of the existing technique presented in [66],

and increases the system reliability in a drastically changing mobile environment.

In Chapter 5, simulation results have been furnished to demonstrate that the proposed scheme
is robust against a continuously changing mobile environment. Experimental results for
different numbers of MAI and NBI signals have been provided to demonstrate the merits of
the proposed algorithm. These results have shown that the combined scheme of blind and
conventional RLS adaptive adaptations for the interference suppression has a fast

convergence rate and an excellent tracking capability.

6.2 Recommendations for Future Work

For the sake of limiting this research to a reasonable scope, it has been assumed in this thesis
that a perfect synchronization is achievable. It would be interesting to extend this work to
asynchronous systems. In multiuser detection problems, asynchronous systems in practice
use the so called “one-shot” approach, in which a particular transmitted data bit is estimated
based only on the received signal within the symbol interval corresponding to that data bit.
An asynchronous system of N users can then be equivalently viewed as a synchronous
system with 2N - 1 users [56]. Alternatively, an asynchronous CDMA system can be
considered as a special case of the more general dispersive CDMA system in which the
channel introduces intersymbol interference (ISI), in addition to the presence of MAI [70].
Joint suppression of both MAI and ISI may help to extend the results obtained for

synchronous system to asynchronous system [71].
In this thesis, it has been assumed that a given DS-CDMA system has a fixed channel gain

during the information bit interval. However, in a dramatically changing mobile

environment, channel variations do exist, often with large amplitudes. Future research can
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explore the impact of imperfect channel estimation on the performance of the proposed
algorithm. It is noted that the suppression of ISI deals mainly with the channel distortion
recovery. Thus, it would also be challenging to develop a technique that can jointly suppress

MAI and ISI in an imperfect channel estimation environment.
For the reason of simplicity, an AWGN channel has been assumed throughout this thesis. It

would also be interesting to extend this research to a multipath fading channel, which

exploits the correlated nature of the multipath.
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