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Abstract

New communication properties of Knodel graphs

Calin Dan Morosan

Knodel graphs W, of even order n and degree d, 1<d <|log,n |, have been

introduced by W. Knddel as a result of their good properties in terms of broadcasting and
gossiping information in interconnected networks. In particular, Knédel graphs of order
2¢ and degree d have been widely studied because of their remarkable number of vertices
to diameter ratio characteristic, which competes with hypercubes and circulant graphs of
the same order.

In this thesis, a general definition of the Knodel graphs is given, based on a
theorem of isomorphism, and a new family of complete rotations is found. Based on the
Cayley graph definition of the Knodel graph, a new hierarchical structure is defined and
its rotational properties are studied.

Although Knodel graphs have high symmetry properties, the diameter of the

Kndodel graphs is known only for W

¢ » and the shortest path problem in logarithmic time,

is an open problem. In this thesis, a logarithmic algorithm for the shortest path in W, . 1s

proposed, for a subset of the set of vertices, and a heuristic is given for the remaining
vertices. The method described here opens the way of finding the shortest path in general

and for solving the general problem of finding the diameter in every Knédel graph.
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Chapter I

1 Introduction

The dissemination of information is not a new field but the development of new
type of networks as ad-hoc wireless, satellite communications, supercomputers, Internet,
etc., brought not only the need for new and powerful algorithms but also for new and
reliable network architectures. Among these, the regular networks play a key role in
implementing powerful algorithms for routing, broadcasting, parallel and distributed
computing.

From the point of view of dissemination of information the Knodel graph stands as
one of the most suitable network architectures. Therefore, in this thesis, new properties of

Knddel graphs are studied.

1.1 Dissemination of information

1.1.1 Definitions and notations

In order to define the problem of dissemination of information, a network can be
modeled as a graph G = (V,E ) where V is the set of vertices (nodes) and E is the set of
edges (communication lines). Throughout this thesis we will consider only the undirected
graphs as model of communication and we will not specify this, unless a possibility of

confusion may arise.



Two vertices, u,v€ V , are adjacent if there is an edge e€ £, such that e = (u,v).
In this case we say that u and v are neighbours. The degree of a vertex v, 5(v), is the
number of neighbours of this vertex. The degree of the graph G, A(G) is the maximum
degree among all vertices: A(G)=max{d(v)|ve V}. A graph G with all vertices of same
degree is called a regular graph. A path P in a graph G is a sequence of nodes of the
form P = (v,v,,...,v, ), n>1, so that every (v,,v,,, )€ E, 1<i<n. The length of the path
is the number of edges of P. The length of the shortest path between two vertices v and u,
is the distance between them, d (v,u). The diameter D(G) of the graph G is the
maximum distance among distances between all pairs of nodes of the graph:
D, = max{d (v,u)| v,ueV}. A graph G = (V,E) is connected if there is a path between

every two nodes in G.

1.1.2 Models of dissemination of information

Communication in networks can be classified regarding the ability of the vertices
to communicate simultaneously with their neighbours in [7]:
- Processor-bound called 1-port or whispering, in which a vertex can
communicate only with one neighbour at a time.
- Link-bound, called n-ports or shouting, in which a vertex can call all its
neighbours simultaneously.
Obviously, between these two extremes we can have the case in which one vertex can use
only a part of its links at a time.

Another issue in characterizing the communication in networks is the necessary



time for a message to be prepared, to travel along an edge and to be received. There are

two models widely used in the literature:

- constant model, in which the time needed to transmit and receive a message is
constant T = const.

- linear modei in which the time needed to communicate is modeled as T = S+ L7,
where £ is the cost of preparing the message, L the length of the message, and 7 the
propagation time of a data unit length.

In this thesis we consider the 1-port constant model, in which the time of
communication between every two vertices is equal to one time unit. This model is
simple and can be efficiently utilized when small messages are exchanged and over a
small distances. Also we consider here that the whole network acts synchronously, that is,
all vertices will transmit and receive at well defined moments of time, called time-slots.

A protocol or a communication strategy in such a network will consist in defining
the vertices which will transmit and receive the information, and the time slots for each
action.

There are four main problems, regarding information dissemination, widely
studied in the literature [6,10]: broadcasting, accumulation, gossiping, and multicasting.

- Broadcast problem

Let G= (V,E) be a graph and let v be a vertex in G. Consider now that v

knows a piece of information, I(v), which is unknown to all other vertices in
Vv \{v}. The broadcasting problem is to find a communication strategy, called

broadcast protocol, such that all nodes from G learn the piece of information

I(v) in minimum time possible.



Accumulation problem

Let G=(V,E) be a graph and let ve Vbe a vertex in G. Let each vertex
ueV know a piece of information I(u), and let, for every x,y€ V, the piece
of information I(x) and I(y) be “disjoint” (independent). The set [/ (G) where
1(G)={I(w)| we V} is called the cumulative message of G. The problem is to

find a communication strategy, called accumulation protocol, such that the
node v learns the cumulative message of G. It is clear that the accumulation

problem is the inverse of the broadcast problem.

Gossip problem

let G= (V,E) be a graph and let, for all verticesve V, I(v) be a piece of
information residing in v. The gossip problem is to find a communication
strategy, called gossip protocol, such that all vertices in V learn the whole
cumulative message in minimum time possible. A gossip protocol will exhibit
also a broadcasting protocol since we can consider that all the vertices from V,
except v, know the “null” information and then suspend all the calls from the

gossip protocol which carry “null” information.

Multicasting problem

Let G = (VE) be a graph, let ve V be a vertex in G, and let I(v) be a piece
of information residing in v. The multicasting problem is to find a
communication strategy, called multicasting protocol, such that some vertices

from G, ue€ S'CV, learn the message I(v) in minimum time possible.



1.1.3 Minimum broadcast graph problem

Let G= (V, E ) be a graph and v be the originator for the broadcast problem. Let
b(v) be the minimum time necessary to broadcast the information I(v) to the rest of
vertices of G, called broadcast time of v. The broadcast time of the graph G, b(G), will
be the maximum broadcast time among all vertices of G, that is: b(G)= max{b(v)|ve V}.

The problem of finding the minimum broadcasting time for an arbitrary vertex in
an arbitrary graph is NP-complete, as is proved in [8] by showing to be equivalent to
another NP-complete problem: the three-dimension matching (3DM) [9].

A broadcast protocol, for a particular vertex v from G, consists of constructing a
spanning tree in G, rooted at v. Each edge of this tree can be labelled according to the
time-slot in which will be used in order to communicate. If we have d time-slots, and we
consider that in each time-slot every informed vertex will announce a new one, the
maximum number of informed vertices can be n =2¢. Thus, a natural lower bound for

the broadcast time of a graph with n vertices is:
b(G)=[log,n]| (1.1)
A graph G =(V,E) with the broadcast time b(G)= |_log2 n| is called a broadcast

graph, or shortly, a bg. Let us consider now the following problem (minimum broadcast
graph problem): given a number of vertices n, find a graph G, with minimum number of
edges, which has the broadcast time b(G)=[log, n]. Such a graph is called minimum
broadcast graph, or shortly an mbg.

The number of edges of a minimum broadcast graph is denoted by B(n), where n

represents the number of vertices. There are only two known infinite families of mbg’s,



for n=2* with B(2')=d2"" and for n=2*-2 with B(2*-2)=(d-1)(2"" -1). The
exact value of B(n) is known only for a very limited number of values of n <63 [21,42].

Various heuristics and methods have been proposed for obtaining new minimum
broadcast graphs or upper bounds for the value of B(n). Some of them are based on

compounding previous known broadcast graphs, which consist of taking two or more
copies of known minimum broadcast graphs and join some of the non-adjacent vertices

[11,15,16,17,18,19,20,28,29]. Other upper bounds for B(n) has been obtained by direct

constructions [13,20].

1.2 Knodel graphs survey

Besides hypercubes and recursive circulant graphs, Knodel graphs W, of even
order n and degree d, 1<d <|log n|, are among the most powerful regular networks from

the dissemination of information point of view. They have been introduced by W. Knédel
in [1] as a result of their properties regarding broadcasting and gossiping the information
in interconnected networks [3], and many of the graphs given later as examples of
minimum broadcast (gossiping) graphs [15,14,23] were in fact isomorphic to Knédel

graphs [4]. They have been formally defined as follows [2]:

Definition 1 (Knodel graph — one-layer representation)

The Knodel graph W,, of order n and degree d is the graph G =(V,E) with an even
number of vertices, |V| =n and:

E={(i,j)li+j=2"-1modn,0<ij<n-11<r<d} (1.2)

6



We can see from the definition above that Knodel graphs are regular graphs of
degree d. Throughout this thesis we will refer to this definition as one-layer

representation (fig. 1) or also “classic” representation.

Figure 1 - Knodel graph of dimension 3 and order 8, W3’8 - one-layer representation

Table 1 - Broadcast and gossip properties of Knédel graphs

Type of graph Properties
Minimum broadcast graph [12]
W, Minimum gossip graph [1]
Minimum linear gossip graph [2]
Minimum broadcast graph [15,14]
W i, Minimum gossip graph [23]
Minimum linear gossip graph [2]
W Minimum gossip graph [23]
e Minimum linear gossip graph [2]
W s Minimum linear gossip graph [2]
Broadcast graph [24]
Wk—Z,n

Linear gossip graph [25]

el < <a.0k2 _
2 +2<n<3-2 4 Gossip graph [24]

W Broadcast graph [24]
o Linear gossip graph [25]

D2 gk
32 dsn<2 -4 Gossip graph [24]




In particular, for every n =2, and for every n=2"" -2, Knodel graphs of order
n and degree d, turn out to be minimum broadcast, gossip, and linear gossip graphs. Table
1 is a survey of some Kndodel graphs and their properties, in terms of broadcasting and
gossiping.

From definition 1, the bipartite character of the Knddel graph is not very obvious.
We can formally give another definition which is more suitable to exhibit this

characteristic:
Definition 2 (Knodel graph — two-layer representation)

The Knddel graph on n =2 vertices (n even) and of maximum degree d, 1< d < |_log2 nJ
is denoted by W, . The vertices of W, , are the pairs (4,7) withi=0,1 and 0< j < g -1,
and the set of edges:

E:{((O,i),(l,j))[j —i+2 —1m0d%,0£i,j$%—l, 0< rSd—l} (1.3)

Throughout this thesis we will refer to this definition as two-layer representation (fig. 2).

layer 0 000 01) (02 (©3) (04) (05)
— e 4
‘._" . -~
E dimension O
........................ dimension 1
------- dimension 2
layer 1 . \:'

(1L,o A.H (12 @3 14 (@5
Figure 2 - Knddel graph of dimension 3 and order 12, W3‘12 - two-layer representation

We can translate the labelling between one-layer representation and two layer

representation by following mapping:



(0,y)— (1-2y)modn =i (1.4)
(Ly)=2y'=j (1.5)
Indeed, summing i and j we obtain the one-layer definition:
i+j= (1— 2y+ 2y')modn
=(1-2y+2((y+2" ~1)modn/2))modn
= (2" ~1)modn (1.6)
We can also define Knddel graphs in terms of Cayley graphs:
Definition 3 (Knodel graphs as Cayley graphs) [27]
For every evenn and 1<d < |‘10g2 nJ, W,, isa Cayley graph on the semi-direct product
G=7,xZ,,, with the set of generators S = {(1,2’), 0<i<d —1} and the multiplicative
law (x,y)x',y')= (x +x,y+(=1) y'), where x,x'€ Z, and y,y'€ Z ,,.
Kndédel graph has good compound properties. For example we can construct

W12, from two copies Wyand W, of W, , by the following procedure [26]:

a) Re-label the vertices of W,:

- £(0,i)=(0,2i) for every i€ {0,%—1} ;

- f(l,i) = (1,21' +1) forevery ie [Og— —1} .
b) Re-label the vertices of W,:

- £{0,i)=(0,2i +1) forevery ie {0,—3——1}



- f(l,i)z (1,2i+2) forevery i e [0,%—1]
¢) Do a perfect matching between the vertices of W, and W,, that is, add the edges

(f(O,i),f(l,i)), forevery ie [0,112-—1},

We observe that the edges from dimension i in W,, will become edges of
dimension i + 1 in W,,, ,, (figure 5). Note that, in particular, if 2n=2"andd +1=k, this

give a recursive construction of W _, starting with K, .

00 O @©on O ©2 02 O Vertices of W,

Q\ ..\ Q\ ,.._ ,Q ,.
1Ny TN s \y/ ’ ,/ )
EURE L B DACNN I YA L2 @ Vertices of W,
k b K NS oe A B R
AN B s s N e P
T8 AT P AN I
NV BRSNS Dimensions
PE ! P N A k old new
, L N AN V2 \
Y R, R KR 3 N
X /",, N // \\ N 0 e 1
'S [ N N
7 /’ L 7\ N N
s , I R K DOk [ S 2
¢ ¢ €& © e D
(12 1o @o &) @, 12 - _— 0

Figure 3 - Constructing W, ,, from two copies of W,
We can extract this compound property from a more general definition:
Definition 4 (Compound graph)
A compound graph of a graph G and a graph H, denoted by G[H], is a graph obtained in
the following way: we replace the vertices of G by copies of H, and add edges to some of
the vertices of two of these copies iff the corresponding vertices of G are adjacent.

By this definition we observe that W, , =K, [Wd,nJ, for every even n and

J: K,[K,[K,[..[K,]]]] for every k >2

k — times

1<d <|log, n|. In particular, W =K, [W

k—1,2¢7

10



Finally, among other properties of Knodel graphs, we mention below some of

them, which are connected with this thesis subject:

a) Forevery d =2, the diameter of W, is D, = [%—l [5].

b) Foreveryevennand 1<d < |.log2 nJ, W, , is vertex transitive, since Cayley graphs

are vertex transitive.

c¢) For all even n, such thatn #2¢ -2, W\ iog, nJ« 18 MOt edge transitive [30], while in the

casen=2"-2, W

i 2k_?_is edge transitive [27].

We note here that a graph G is vertex transitive if there is amap f :V(G)— V(G), such

that {u,v}e E(G) iff { f(u), f(v)} € E(G).

1.3 Thesis outline

In the first chapter definitions and general properties of Knodel graphs are given.
The first section considers the broadcasting and gossiping phenomena, models, and
previous results. Section 1.2 is focused on Knodel graphs, their previous definitions,
general properties, and previous results, from the point of view of dissemination of
information.

In chapter 2 a Knodel graphs drawing theorem is given, a more general definition
of Knddel graphs is proposed, based on a theorem of isomorphism, and a previous
sufficiency theorem is tested against broadcast protocols in Knddel graphs.

In chapter 3 a new family of complete rotations of Knodel graphs is described, a
new hyper structure based on Knodel graphs is defined, and its rotational properties are

studied.

11



In chapter 4 a logarithmic minimum path routing algorithm is proposed, for a
subset of vertices in Knodel graphs, and its correctness is proved. Also, a heuristic is

described for the remaining vertices and its effectiveness is analyzed.

12



Chapter 11

2 Generalized Knodel graphs

2.1 Drawing Knodel graphs

Drawing graphs, beside embeddings, planarity and patterns in graphs, is a problem
often considered in graph theory. It has many applications in geometry, network design,
electrical engineering, etc. Also, a “good” drawing could reveal symmetry and
isomorphism properties that are not very transparent in an algebraic formalism".

According to the “classic” definition of Knddel graphs (1-2), the set of edges is
defined:
E={(,j)li+j=2 -1modn,0<i, j<n-1L1<r<d} @.1)

In order to draw the Knodel graph of order n and dimension d, one should solve

N = %’Z equations of the form:

i+j=2"—-1modn, 0<i,j<n-1, 1<r<d (2.2)

For example, for the Knddel graph Wd L« We have N =d2"! equation to solve,

which is exponential in terms of d. In general, for the Knddel graph W, ,, we found that

we can do this drawing solving only d equations and then applying a special procedure

described in the theorem below:

" I found myself the isomorphism described in the next section just drawing the Knodel graph in a “nice”
way

13



Theorem 1

Let {0,1,...,n —1} be the set of vertices of W,,,with 1<d < |_10g2 nJ in this order. We

take the following steps:

i) Spread the nodes along a circle line, in order, at equidistance, clockwise.

ii) Find the d pairs of nodes (O, j), with1 < j <27 —1, which are adjacent in the graph,

that is, which respect the relation0+ j = 2" —1, where r € {1,...,d}, and union them.

iii) Draw all possible parallel segments with the segments from step ii), that bind, each, a

pair of nodes.

After step iil), the graph is complete.

Proof:

ii) This search is equivalent to finding all the j labelled nodes that respect the general
definition of edge set and it takes d steps. After this step we have d edges of
form(O, j), more precisely (0,2’ —1), withre {1,...,d}.

iii) Let (0,) be an edge obtained in step ii). Then, all possible pairs of the form
(~p,j+p), withpe{-29"+1,..01,...,n-2}, will satisfy equation (2.2), (all
additions and subtractions are done modulo »):

(-p)modn+(G+ pymodn=j=(2 —1)modn, with re {1,...,k} (2.3)
At the same time, because we add and subtract the same number p, we move

forward or backward along the circle, depending on the p sign, with the same arc length.

That means that all the resulted edges ((~ p)modn, (j+ p)modn) will be geometrically
parallel each other.

The number of segments generated at step ii) is d and the number of parallels

14



generated at step iii), for each initial segment from step ii), will be {—EJ =% (since n is

always even), thus, total number of edges will be 2122 which is the number of edges in our

graphW, . 0O

The following example illustrates the procedure of drawing for W, ¢ (figure 4).

5 0 1
® e
14 Lo 2
Y N )
\\
~
13 ¢ ‘e 3
e ®4
° °
11 3
L )
10 o 6
®
9 e 7
8

Figure 4 - W3,16 after the second step ii) (left) and after the third step iii) (right)

2.2 Previous definitions

In the previous chapter we saw four definitions for the set of edges in Knédel
graphs:
— One-layer representation:
E={(i,j)|i+j=2"-1modn, 0<i,j<n-1, 1<r<d} (2.4)

— Two-layer representation:

15



Ez{((o,i),(l,j))lj —it2 —lmodg,OSi,jsg—l, 0< r.<_d—1} (2.5)

As Cayley graphs [27]:

E:{(g,gs)|gEZZXZn/Z;SGS}, (2.6)

with S ={(1,2')|0 <i<[log, n]}, and the multiplicative law

(6, ) (') = (x4 2,y + (1)), 2.7
where x,x'€ Z, and y,y€ Z, ,,.

— Modified Knodel graphs [3]:

E= {((0,i),(1,j))|j =i+2 modg,OS i,jsg—-l, 0<r<|log, nJ} (2.8)

2.3 Generalized definition

Let us represent first, in a two-layer representation the same Knédel graph as

yields from (2.2) and (2.5), say, for example, for n =14 and d =3 (figure 5):

0.0) (0.1) (02) (0.3) (©.4) (0.5 (0.6) 0.0) (0.) (0.2) (03) (0.4) (0.5) (0.6)
e e 9 .

N N

RN

! 3 s D
(RN EAEN FRN D Y (R e
PV ECN ARSI EX AN b 13
LN TN TOONET N g
i3 5 5 A v

N3 y NG
v, >\ r‘st‘. N,

AN
kd ke "<\\\\\
¢ & ¢ 0 e b ® ; \ )
L0 (LD (12) 43) 14 19 (16 @O @D (12 13 14 15 (16

N

e

A
N/

Figure 5 - “Classic” (left) and “modified” (right) Knédel graph on 14 vertices, W3,1 4
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Now we shift to the left with one position the vertices from layer 1 in the

modified Knodel graph and we set the location of vertex (1,0) in the previous location of

(1,6). After that, we do a re-labelling in layer one:
2.9

(1,i)— [1, (i- l)modgj

We can see the result in figure 6:

0.0) (0.1) (©2) (0.3) (0.4) (0.5 (0.6)

00 (0.1) (02) (03) (04) (05) (0.6)
A \ ".\ .=\ 4 /.. ,.--"). %\ .-,\ ‘:\ .\ z.._ T v
EA T CO S LA L0 Y P e FN CO N LA N A0 M LA - e
AN RN AN EARN L 4 RN L N RN R NP EA
\;."-. \\"'-./”\."-./f:i"z':/’ E M Y -,,"\'"-,/__.- ;.~,.=’, :
: 5_:(\, i\’ =/< \‘ W }/_'\’ :( AN Y
B e, Nt s 2% N v N 1 VAT S SR SN 7% N LY 3
L T SO YA A 3 s Le AR v pbe L N 3
-._‘/ r'_"...-'-,( '\\ '-.?r\\ L IR \\ N - \\ ._?,\\ \\ . \\
R BV A IR Ny RN AT I A IERNAY W NG
PR R4 HIP2AR NG Ny N PR R4 | o~ \“ N \b S
¢ & 6 9 9 o P ¢ ¢ 0 | J »
(1.0) (1.1) (12) (1.3) (1.4) (1.5) (1.6)
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Figure 6 - The modified Knodel graph after “shifting” (left) and re-labelling (right)

We observe that the last figure is identical to the “classic” Knodel graph on the

same order and dimension. We can also formally prove the isomorphism between the

“classic” and the modified Knodel graph on the same order and dimension using the
following vertex mapping in the modified Knodel graph:

0.j) if i=0
14)= (1,(j—1)modg} if i=1 210

This observation suggests a more general definition of the Knédel graphs:

Definition 5 (Generalized Knodel graph; two-layer representation)

The generalized Knodel graph, GK,,,, on even order n and dimension d, 1< d < |_log2 nJ,

is the graph with the vertices of form (I, j), with [ € {01} and 0<j S—IZZ— 1, and the set
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of edges:

Ez{((o,i),(l,j))|j=i+2'—smodg-; OSi,jS%—l; 0<r<d-1; Vse z} 2.11)

Theorem 2

The generalized Knodel graph GK,;,, on even order n and dimension d, 1<d < !_log2 nJ,

as defined in (2.11), is isomorphic to Knddel graph on same order and dimension.
Proof:
We can do the following mapping that will affect the vertices from layer 1:

0.5) if i=0

116.1)= (1,(j+s—1)modg—) if i=1 -12)

We observe that the re-labelling is consistent since the new labels cover the whole set of
vertices from layer 1, {0,...,n/ 2—1}, and, after that, we meet the usual Knodel graph

edges definition:
E:{ ((0.5).(Ly+2 —1modn/2))|os y<n/2-10<r<k—1; se Z} 4 2.13)

As we will see in the next section and, especially, in the next chapter, the
modified Knodel graph definition seems to be the most suitable for Knodel graphs study
because of the strong connection between binary representation of the vertices labels and
the routing problems, including broadcasting and gossiping.

Also, we can extend this general definition (2.11) from the two-layer to one-layer

representation:

Definition 6 (Generalized Knodel graph — one-layer representation)

The generalized Knddel graph, GK;,, on even order n and dimension d, 1< d < [_1og2 nJ,
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is the graph with the vertices i, with 0 <i<n -1, and the set of edges:

Ez{(i,j)‘i+j=2’ —qmodn/?2; OSi,jS—Z———l; 1<r<k;qe Z, q—odd} (2.14)

Indeed, we can map the two-layer representation in one-layer representation as follows:
(0,y)—>1-2ymodn =i (2.15)
(Ly)—>2y'=j (2.16)

We can verify now that i and j satisfy the relation (2.11):
i+j= (1 -2y+ 2y')modn
=({1-2y+2((y+2" ~s)modn/2))modn.

=2 —(2s—1)modn , with g =251 (2.17)

2.4 Broadcasting and gossiping in modified Knodel graphs

One of the main characteristic of the modified Knodel graphs, denoted by KG,, is
that the number of dimensions is d =|log,n|, where2? <n<2%'. It has been

introduced in [3] as result of a consistent algebraic description of the gossip and,
implicitly, broadcast phenomena, using a special set matrix representation, whose
elements are sets. Multiplication of these elements will be replaced by set addition and
addition of the resulting products will be replaced by set union. By the definition, two

calls in dimensions i and j will be represented by the matrices:

_(fo} {-2})
M"‘({zt} {o})’ ’ =19
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{0 02
2y {0}

(2.19)

A sequence of calls in dimensions i and j will be then represented by:

(o} {-2R({o {-2}

M,. =M. -M, = =

SERREI NIRRT (EINRT

_ [{0{2;12}’} %(_);:221}}] (2.20)

Thus, a set of calls, say in dimensions i, ...,i;, denoted by w(il,iz,...,it), will be a valid

gossip (broadcast) protocol if:

X X n
M@)=M, M, .M, M, = ,where X =1 0,1,...,——1 (2.21)
1 -1 2 t X X 2

Using these properties, in [3] are presented general results regarding gossip
(broadcast) protocols for modified Knddel graphs and, implicitly, due to the isomorphism
theorem 2, for generalized Knddel graphs on same order and dimension.

We have to mention here some specific notations and properties regarding
gossiping (broadcasting) protocols in modified Knodel graphs, consistent with those

presented in [3]:
Definition 7 (dimensional gossip protocol)

We will call s(z, Ty sns T, ) @ gOssip protocol in KG,, withd = |_log2 n_], if, in the ¢ time-
slots, with 1<t < d , every informed vertex will transmit all the messages that it knows to

its 7z, -dimensional neighbour, and, in the last time slot, i.e. time-slot d + 1, every

informed vertex will transmit its information to its 7, -dimensional neighbour, that is, the
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first call will be repeated.

We call here u a 7, -dimensional neighbour of a vertex v, if v=u+2'modn/2 or

u=v+2'modn/2. As we mentioned in section 1.1.2, every gossip protocol can be
translated into a broadcast protocol, respecting the same “dimensionality” property as

described in the definition above.
Definition 8 (valid permutation)

We will say that s(7zl ,ﬂz,...,ﬂd) is a valid gossip (broadcast) protocol, called also a valid
permutation, in KG,, with d = I_log2 nJ, if, after d + 1 calls, all the vertices are informed.

The term permutation comes from the fact that s(7,,7,,...,77, ) is a permutation of
(0,1,...,d - 1). We recall here some of the most important results needed from [3]:
Lemma 1 [3] The permutation (O,l,...,d —1), is a valid permutation for KG, .

Lemma 2 [3] Every cyclic shift of a valid permutation is also a valid permutation.
Lemma 3 [3] The reverse of every valid permutation is also a valid permutation.
The most general result from [3] is the following theorem, which gives a

sufficiency condition for a permutation to be valid:

Theorem 3 [3] The permutation (7z1 ,7[2,...,7Z'd) is a valid permutation for KG, if:
1) 27 — 2" is relatively prime to % , and

2) { 27 — QM DT QM | DM DT DT 2”1} =

{27 —om {20 2,20} (2.22)
Since condition 1) gives some families of gossip protocols for particular values of

n (see theorem 4 from [3]), we found that condition 2) is too strong, even for the well
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known gossip (broadcast) protocol (0,1,...,d —1).
Theorem 4

There is no valid gossip (broadcast) protocol that satisfies condition 2) (2.22), if
n#2 -2,
Proof:

Assume that we found a valid protocol (7zl Ty s 7T, )Which satisfies condition 2).
Then, by lemma 2, mentioned above, we can assume that 7z, =0, since, otherwise we can

circularly shift the protocol until7z, =0.

Depending on the value of ) we distinguish two cases:

Case 1 - %even

We can split the condition 2) into two sets, left part, denoted with S, and right part

denoted with Sk. In this case, the left part will be:

S, ={2%-2%,2m -7, 2% — 2% g -2 ) =
={2°-2m, 2% —2m, 2% 2% 0m - 00) =

={1-2%,27% —27,. 2% —2% 2% —1} =

=10 1om gm _om | gme _om gm g (2.23)
2 N——
[ — odd

odd

According to condition 2), this set must be identical to:

Sp={2% -2n}+{2°,2',. 27" ] =
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)22,

{2
[ov —1f+{2°,2",. 2" } =
={(

2”1 B 2,,1 _1)21’”.,<27[d _1)2d—1 } =

:{ 2% —1, (2% —1)2',..., (27 —1)2¢ } (2.24)

odd

We obtain a contradiction since S; has two odd members and Sk has only one.
Case 2 - %odd

We will split again the condition 2) into two sets, left part, denoted with S; and
right part denoted with Sg. In this case, the right part will remain the same as in previous

case. The left part can be written as:

S, ={2"-2%,2% —2m . 2% — 2% 2% - 0h ] =

={ 2002 oM M | DT QM QM _ 20} =

{1— 2™ 0™ 2% DNt QM o —1} =
H_/ H—/

odd <0 odd >0

=z +1-27 2% =2% 27 Q% 27 ] (2.25)
2 S——
odd >0

even

Since the right part, Sg, has only one odd member, the only possible case is when

all the members of Sy, except the last one, are even, thus, positive. That means:
2™ —2™ >0

2" -2 >0
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2% 2% > () (2.26)

Since7z; =0, we must have:
Ty, >y >..>,  >T7, (2.27)

Because {7[1,7[2 voos T, 1 ={0,1,...,d — 1}, the only possibility is:

7z, =0;
T, =d-1,
z, =1 (2.28)

Let us assume that the protocol (0,d —1,d —2,...,1)satisfy condition 2). The left part:
SL :{ 20 _ 2(1—1’2(1—1 - 2(1—2,.”’22 _ 21’21 _ 20} —

—{20 201 202 o1 20} (2.29)

The right part will be:
Sp={2'-2"}x{2°,2",..,2"" } =

={20,2",..,2" } (2.30)
Since we must have, S; = Sg:
{2020 202 2t 20)={20 2" 20} (2.31)

That is equivalent to the following set of equations:

20 _pd _ pd- mod% (2.32)

B of1—pdt =gt
2 (2.33)
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L T
2 (2.34)

n=2"-2 (2.35)
But this contradicts the theorem’s hypothesis which states thatn # 2" —~2 . Thus,
there is no valid protocol that will pass condition 2) from theorem 3. o
We have to mention here that for the casen = 2¢"' —2 , theorem 5 from [3] states

a strong result, based on the same algebraic description of modified Knodel graphs:

Theorem 5 [3]

The only valid permutations for KG are the cyclic shifts (and reverses) of the

2(l+l_2

form0,k,2k,...,(d — 1)k , where 2* -1 is relatively prime to2? —1 .

It still remains open the interesting problem of finding a necessary condition for a
gossip (broadcast) scheme to be valid, based on this algebraic description of
dissemination of information in Knddel graph. Also, an interesting problem remains

open, if such a description can be applied to Knédel graphs on smaller dimensions.
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Chapter III

3 Algebraic properties of Knodel graphs

3.1 Complete rotations in Knédel graphs

Knodel graphs, as Cayley graphs, present some general properties of symmetry.
One of these properties, called complete rotation, has been used in [31] and [32] to derive
algorithms or properties of the underlining graphs, such as optimal gossip protocols and
construction of edge disjoint spanning trees.

The notion of rotation in graph theory was first introduced in the context of
embeddings (see [33], [34], and a good survey can be also found in [35]), and it consists
of a special graph automorphism generated by a cyclic permutation of all the vertices
adjacent to a vertex, corresponding, in the Cayley graphs, to a cyclic permutation of the
elements of the generator set.

In order to extend the notion of complete rotation and to present a new family of

complete rotation over the Knodel graphs, we give some definitions below:

Definition 9 [27] (Cayley graph)
Let G be a group with unit / and S a subset such that 7 ¢ S and the inverse of elements of

S belong to S. The Cayley graph Cay(G, S ) is the graph with vertex set G and with edges
set {(g,gs) | gel,se S}.
We can see that W, = Cay(Z, % Z,,,,S) with S ={(1,2')|0<i<d~1}. Also we

mention that if G is generated by S, denoted by G = (S > , then Cay(G, S) 18 connected.
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Definition 10 [27] (complete rotation)
Let Cay(G,S ) be a Cayley graph with G = <S> A mapping @ :G — G is a complete
rotation of Cay(G, S) if it is bijective and satisfies the following two properties for some
ordering of § :{silOSiS d—l}:
a(l)=1 (3.1)
w(gs,)=w(g)s,,, forevery xe G and i€ Z, (3.2)

It has been found in [27] that the Knodel graph W, has the following

242
complete rotation:
@(x,y)=(x.2y) (3.3)
Indeed, for the natural order of S={(1,2°),(1,2')....,(1,2¢" )}, we have:
@(0,0)=(0,0), and (3.4)
@ (gs,) = ((xy)(1.2)) =@ (y+Lx+(-1) 2) =
= (1204 (12" = (6.29)127 )= B (x, s, (3.5)
We can generalize this result to a family of complete rotations of Knodel graphs,

under certain conditions:
Theorem 6
The mapping @ : W, , — W, defined as @(x,y)= (x,2” y) is a complete rotation of W, ,

if p is relatively prime to d, and 2”1is relatively prime to n/2.
Proof:
First we have to find an appropriate order for set S. For this, we consider the

following set S’:
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s'={{L,27™)0<i<d -1} (3.6)
To show that S =.5’, we have to prove that:

{01,...,d-1}={0- pmodd, 1- pmodd...., (d —1)pmodd} (3.7)
Assume that there exist i and j, 1<4, j<d -1, with i # j, such that:

ipmodd = jpmodd | (3.8)

(i- j)pmodd =0 (3.9)
Since i — j #d , and p and d are relatively prime then i = j(contradiction). Thus, the two

sets must have the same cardinality and, by the pigeonhole principle they must be the

same.

The condition from (3.1) is always satisfied. Let us verify condition (3.2):

m(gsi ) = w((x, y)(l, ipmodd )) = w(y +1,x+ (—l)y Qipmodd ) =

=y +1,27 x4 (= 1) 26 = (x 20y )1, 20 00mad ) - (i ) (3.10)
We can prove the injection by contradiction. Assume that exist there are g1 and g in W, ,

such that g, # g, , with andw(gl)z w(g2). Thus, we have:

27 x.3)=0"x,.,) (3.11)
2P x, =2"x, mod% (3.12)
2°(x, —x2)=0mod% (3.13)

Because 27 is relatively prime to % by hypothesis, andx, — x, # g, we may conclude

that x, = x,. Since y, = y,, we obtain g, = g, (contradiction).
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To show the surjection, we have to show that for every g =(x,y)eW,,, there

d.n?
exist g'= (x', y')e W, .., such that w(g') = g . But this is obvious since, according to the

definition of Cayley graphs, we can label the edges according to the set of generators.
Because the Knodel graphs are regular, each vertex has d incident edges, labelled, in this

case, by {O,pmodd,..., (d—l)p modd}. Thus, g’ will be the vertex from the opposite
layer connected with g by the edge labelled ” pmodd ”. o
We mentioned that, in [27], the w(x, y)=(x,2y) complete rotation of W, , has

been proved for n = 2 -2 and d =k —1. Based on theorem above, we can extend this

particularly complete rotation for every d > 1:

Corollary 1

The mapping @ : W, , — W, defined as w(x, y) = (x_,2 y) is a complete rotation of W, if
n/2 is odd.

Proof:

Considering p =1 in theorem 4, the second condition from the hypothesis
imposes that 2 to be relatively prime to % , which is equivalent to condition g -odd. o

An interesting question remains open if these extensions of the complete rotations

in Knodel graphs of every order could yield to new gossip and broadcast protocols since
in [3] has been proved that, for n=2%" -2, the only valid protocol will be of form
(O,p,2p,...,(d—1)p), where p is relatively prime to d and, for all n<2%" -2, the

protocol (0,1,2,...,d - 1) is a valid protocol.
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3.2 Hyper-Knodel graphs

As it is mentioned in chapter 1, one method to obtain new broadcast graphs is by
compounding known broadcast graphs using different methods: perfect matching, vertex
cover matching, etc. In this section it is proposed a new structure based on Knoédel
graphs, which preserve some of the basic Knddel graphs properties, in particular, the
complete rotation.

For the beginning, as a particular case, let us consider the Knodel graph W, , ina
two-layer representation and defined as Cay(Z,xZ, ,,,S), with § = {(1, 2! )| 0<i<d- 1}.

For example, the vertex (0,0), from the layer O, will be connected with the vertices

{(1,20), (1,21 ),...,(1,2‘1'l )}, from the layer 1. Take now n/2 copies of W, and add to the
end of the old label a number between O and E—1, corresponding to the new level.

Connect the vertex (x, y,z) with all vertices (x', y,z') such that z'= z+(— 1)x25, where
0<i=<d-1. We will call this, the 2-hyper Knodel graph, denoted by 2HW,, .

It turns out that this structure is also a Cayley graph Cay(Z,xZ,,, XZ,,5:5),

where the generators set is:

s, =1,2°0)if j=0
S=9s; " ( _)lfj and 0<i<d -1y, (3.14)
s, = (L021)if j=1
and the composition law is:
(v,3,2) (¥, ', 2) = {x + 2,y + (= 1)y 2+ (1) 2) (3.15)

As an example, you can see in figure 7 the 2HW,, layout and some

representative edges.
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level 2

level 1
——
level 0 LEGEND:
_—
lr .
edges in the
, 0 , 0) @ ’ )
0 ) & hyper-dimension 1
g edges in the
layer O hyper-dimension 2

Figure 7 - The 2HW, ; , 2-hyper Knidel graph and some representative edges
Following the definition of 2HW, , we can generalize this structure for % hyper
dimensions:

Definition 11 (hyper Knodel graph)

The h-Knddel graph denoted by hHW, , of order n and dimension d, with n-even and

1<d< |_log2 n_l, is defined as Cay(Z2 x(Z,,,), S), where the generators set is:

S = So.p

Sep = (1,0,...,21,...,0} 0<a<d-10<f<h-1;, (3.16)
B

and the composition law is:
(x’ Yosrs Yna )(x")’o'v---’y'h—l): (x+x'v)’o +(“ l)x Y'oreees Vi +<_ l)x y'h—l) (3.17)
with x,x'€ Z,and y,,...,y,,y",-. Y, € Z,,.

We denote here (Z,,,)" =Z,,,x..xZ,,, h times.
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Let us note that, in particular, for Cay(Z2 x(z ,)',S ), the set of generators can

be also written as:

S:{&

where @ represents the position of 27 in the sequence (0,...,2ﬂ ,...,0) starting with

!
a

s, =(1,0,..., ﬂ,...,o], a{ﬂ and ﬂ=imodd;0£i£hd—l},(3.l8)

position O from the left side.

3.3 Rotational properties of the hyper Kniédel graphs

Using the same technique as in section 3.1 we can find a complete rotation for the
hyper Knodel graph. First we have to define an appropriate order for the set of generators

which is different as that given in 3-16 and 3-18:

S:{&

Now we can define a complete rotation € for the new structure:

o

si=[l,0,..., /’,...,o], ﬂ:FJ and a:imodh;OSiShd—l} (3.19)
o h

Theorem 7

The mappingQ: AW, — hW, , defined as Q(x, Voreos Vi ) = (x,2yh_1 s Vooeeor Yioo ), with
the generator set as in 3-19, is a complete rotation of AW, ,.

Proof:

Considering g€ hW,  , let us verify condition 3-2:

Q(gs[) = Q((x, Yor--s Yoy )(1,0,...,2&,...0]} =

o
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X

= X,th__l, y()’-"’ ya + (_1)
n

= (x,zyh_l,yo,...,yh_z)(l,o,...,gi,...o] =

a+l

=Q(x,yo,...,yh_l)[l,O,...,ai,...O):Q(g)sm | (3.20)

a+l
The injection can be similarly proven as in theorem 4 and the surjection is a direct
consequence of edge labelling in Cayley graphs. o

This rotational property can be extended in a similar manner as in theorem 4 to
Q(x, yo,...,yh_l): (x,2”yh,l,y0,...,yh_2) whenever p is relatively prime to d, and 27is
relatively prime ton/2, with an appropriate order relation for the set of generators.

We note that this structure also presents interesting partial rotations for each
hyper-dimension, similar to the rotations around the axes in the 3-dimensional space
geometry.

We have to mention that the structure can be degenerated, preserving its property

as Cayley graph but not the property of complete rotation:

Definition 12 (Degenerated hyper Knédel graph)

The degenerated Knddel graph denoted by hHWn‘Z"""‘hfl" of order (no,...,nh_l) and

..... n

dimension (do,...,dh_l), with n;-even and d, 21, 0<i < h -1, is defined as:

Cay(Z2 XZ, X.XZ, ,S], where the generators set is:

2 2
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Sag :[1,0,...,@;,...,0) 0<a <d,-1,0< f<h-1 OSiSh—l} (3.21)

Sz{sa,ﬂ

and the composition law:

(x, Vgs-ees yh_l)(x', Vo seees y'h_l) = (x+x', Yo +(-—1)x Yoo Yoo +(—1)x y 'h_l) (3.22)

with x,x'€ Z, and y,,y', €Z, ,,0<i<h-1.
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Chapter IV

4 Shortest path problem in Knédel graphs

4.1 Problem description

Let Cay(G, S) be a Cayley graph over a group G, with the set of generators S, and
8,8'€G two vertices. If g'=gs;s,..s, with 5,€ S, 1<i<r, then the sequence
5,,8,,...,8, defines a path from vertex g to vertex g’, with the edges labelled by
$,,85,...,8, [35]. Thus, finding a path from g to g’ is equivalent to finding a path from
g~ g'=s5,5,...5,to I. This problem is equivalent to the minimal word problem in groups:
for a given element g€ G, find s,,s,,..,5, with 5, € §, 1<i<t, and ¢t minimal, such
that gs;s,...s, = 1. This problem has been proven to be NP-complete in [36] if the set of

generators is not fixed in advance.
Although Knodel graphs have been introduced 28 years ago as an interconnection

network, its diameter is not known in general. In particular, for 2¢ vertices and degree d,

d

it has been proven recently in [5] that D(W Zd)z[%—‘. Their proof method (by

contradiction) does not yield an algorithm for computing the minimum path between two

vertices in W

¢ » and hence the problem of finding such a path remains open.

In general, let I'= Cay(G,S ) be a Cayley graph of order n = 2¢ and degree d.

Since I' is vertex transitive, the minimum path between every two vertices and,

implicitly, the diameter can be obtained by constructing a breath-first search tree from the
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vertex 1. This can be computed in O(dn) = O(d 2") time complexity and with the same

space complexity, which remains exponential in terms of d. In section 4.4 we present an

algorithm for finding the minimum path between vertex (0,0) and a subset of vertices in

W, . in O(d) time and space complexity.

4.2 Paths in Knodel graphs and binary representation of vertices

In the following descriptions we will use the generalized definition of the Knddel
graphs as described in definition 5 (2.11) with s = 0, where the set of vertices is described

by:
E:{((O,i),(l,j))|j=i+2’ mod%; OSi,ng—l; OSrSd—l} 4.1)

This two-layer representation has the great advantage of dealing only with powers
of two. Every time we move from layer O to layer 1 we have to add to the vertex label a
power of two and every time when we move from layer 1 to layer O we have to subtract
from the vertex label a power of two, corresponding to the dimension of the edge. Note

that all the additions and subtractions are done modulo »/2 and the labels go, in each

layer, from O to %~— 1.

For example, in figure 8, for W, ,¢, in order to move from vertex (0,0) to (1,2) we
have to add 2' (i.e.0+2' =2) and to move from (1,2) to (0,2) we have to subtract 2°
(i.e. (2 -2’ )m0d8 = (-6)mod8 =2). Also, in order to move from vertex (0,0) to (1,0) we

have to add 2° (i.e. (0+23)mod8:O) and to move from (1,0) to (0,4) we have to
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subtract 2° (i.e. (O -2? )mod8 =(-4)mod8 = 4),

(0.0) 0.1 (0.2) (0.3) 0.4 0.5) (0.6) 0.7

(1.3) (1.4) (1.5) (1.6) (1.7 (1.0)

Figure 8 - Two pathsin W, (0,0) - (1,2) - (0,2) and (0,0) - (1,0) - (0,4)
We generalize the path expression in Knodel graphs in the following lemma:
Lemma 4

Letbe W o the Knédel graph of order 24 and dimension d. Then, there exist t and w,

with 0<r<d,and 0<w<d -1, such that:

1) Any vertex from layer 0, (0,v) # (0,0), can be written as: v = (2 (2” -2 )) mod 27",

r=1

with 0<i,,j Sd—landi #j .

t
2) Any vertex from layer 1, (l,v), can be written as v = [2‘” + Z(T’ — 2 )] mod 2“7,

r=1
with 0<i ,j ,w<d-landi #j,.
Proof:

Let b(v) be the binary representation of v. Note than v<2%" and we need maximum
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d -1 digits to write b(v).

1) If v is in layer O, we can write it as:

V= [Z 2 Jmod 27" = (i(zmr“ -2" )jmod 2 4.2)

r=1 r=1

1) If v is in layer 1, we can write it as:

V= [Z 2" jmod 2 = (2"" + i(z”’r“ -2m )J mod2" o (43)
r=1 r=1

We will call this kind of decomposition, in which the number of positive powers
of two is equal with the number of negative powers of two, symmetric decomposition,
respective quasi-symmetric decomposition for (4.3). We have to stress here that, in

general, the symmetric decomposition is not unique.
For example, 6 = 01102 can have the following symmetric decompositions:
6= (23 -2? )+ (27‘ - 21) or 6= (23 - 21). Each of them corresponds to a path in the Knodel

graph W, ., as you can see in the figure below:

(0.0) (0.1) 0.2) (0.3) (0.4) (0.5) (0.6 0.7

(1.1) (1.2) (1.3) (1.4) (1.5) (1.6) (L.7) (1.0)

Figure 9 - Two different paths (0,0) - <0,6) in W,

Analogous, a path between (0,0) and a vertex from layer 1 can be drawn based on
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quasi-symmetric decomposition (4.3). For example, the vertex (1,7) can be written as

7=0111: and could have the following quasi-symmetric decompositions:
7=2%+ (22 - 20) or 7=2"+ (23 - 21). Each of them corresponds to a path in the
Knodel graph W, |, as you can see in the figure below:

(0.0) (0.1) 02) (03 (04 (0.5) 06) (0.7

hH a2 a3 14 @S 1 A (10

Figure 10 - Two different paths (0,0)— (1,7) in W,

Every path between two vertices in Knodel graph will correspond to a symmetric
(quasi-symmetric) decomposition of the label of vertices. Thus, we can reduce the
problem of finding the minimum path to the problem of finding the minimal symmetric
(quasi-symmetric) decomposition. As we will see in the next section, this last problem is

closely related with that of minimal redundant expansion of integers.

4.3 Minimal redundant expansion of integers

In order to understand the redundant expansion of an integer and its connection

with the minimum path problem in Knddel graphs we give the following definitions:

Definition 13 (redundant expansion of an integer) [37]

For every integer n, the redundant expansion of # in base g is :
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t
R (n)= {8 = (8,,...,80)| te NeeZ,n =Zé‘iq’} (4.4)

i=0

Definition 14 (cost of representation) [37]

The cost of a representation €€ R, (n) is defined as:
!
ce)=clegne,) =t +1+ Y |&] (4.5)
i=0

Definition 15 (relaxed cost of representation) [37]

The relaxed cost of a representation €€ R, (n) is defined as:

c(e)=c'(eye, )= 2|gl.| @.6)

For example, the number 99 =1100011, has one of the redundant expansions in
the system {-1,0,1}: 10-10010—1. Indeed, 99=1-27 +(-1)-2° +1-2% +(~1)-2°. For
the notation convenience, we replace -1 with 1 in the redundant expansion. Thus, we will
write: 99 =10100101 in the redundant base 2. Note that, in general, this representation is

not unique. For example, we can write 99 = 1100101, with the same relaxed cost.

The problem of optimizing the costs ¢ or ¢’ has applications in the optimal design
of arithmetical hardware [38], in coding theory [39], and especially in cryptography [40].
It has first been studied in [38] for ¢ = 2 and was generalised for every g in [37].
Although there are many algorithms for optimizing the relaxed cost ¢’ [40, 41], the one

presented in [37] by Heuberger and Prodinger is one of the most simple and powerful. It

gives a minimum relaxed redundant representation of an integer » in O( logn ) time and

space for every base g, and is proven to have the minimum relaxed cost, even this

representation is not unique.
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Their algorithm scans the usually binary representation of an integer n at which a

“0” digit is appended artificially at the left side, from right to left, and has as output the

digits of the relaxed redundant representation which can be with at most one digit longer

than the binary representation.

We adapted here lemma 3 from [37] and the relaxed representation algorithm

(algorithm 2 in [37]) for redundant base 2:

Lemma 5 (Heuberger-Prodinger relaxed representation [37])

Let n be a fixed integer (input) and £€ R, (n)= (Ss,gx_l,...,gl,go) the relaxed reduced

representation (output) in base 2. Let:
a=nmod?2

n—a

b= mod?2

Then, the first output digit will be:

. a ifa<l or (azlandb<1)
*la-1 othervise

4.7)

4.8)

4.9)

Heuberger-Prodinger relaxed algorithm for base 2 (¢ = 2) [37]

e—()

m<—n

while m >0 do

a <—(mmod2)
(*) if ((a =1) and ({m/4} 21/2) ) then

a<—a-2

end if
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(**) m(—(m—a)/Z
E—ake

endwhile

Note that, {x} represents the fractional part of x, {x}=x— |_xJ, and a & & means

that a is concatenated with &, at the left side.

4.4 Minimum path algorithm

In order to find the minimum symmetric decomposition (lemma 4) our intention is
to use the Heuberger-Prodinger algorithm for redundant base 2 in special conditions. We

will consider first the case of minimum path between (0,0) and a vertex from layer 0. The

symmetric decomposition will be of form: v=2(2i' —2’4’)mod2d‘1 (4.2). Thus, we

r=1
have to ensure that the number of 1I's will be equal to the number of —1’s in the

algorithm’s output. We can easily see that this is not the case for all vertices. For

example, 21=10101,, will generate an identical relaxed minimum redundant expansion

via Heuberger-Prodinger algorithm (10101).
Let n be an integer with the binary representation b(n) We define the extended

binary representation b'(n), the number obtained from b(n) appending a 0 on the

rightmost side and a 0 on the leftmost side: b'(n)=05(1)0. The next two theorems will

ensure a symmetric (quasi-symmetric) output in some cases.

Theorem 8

Let n be an integer with the extended binary representation b'(n). The output of
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Heuberger-Prodinger algorithm for b(n) will be symmetric if 5'(n) does not contain
neither 101 nor 010 as a sub-block.

Proof:

First we must note that, always throughout the algorithm’s run, the last two digits
in the m’s binary representation are taken into account because of the test: {m/4}>1/2.
Let us analyse the first output of the algorithm. We can group the last two digits in three
cases:

Case 1 (@ and fﬁ)

Every time when a = 0 (last digit in m’s binary representation), a “0” will be
appended because the test (a = 1) will be evaluated to FALSE. That means that a block of
0’s as input will always generate the same block of 0’s as output.

Case 2 (ﬁ )

A 01 block as input will generate “01” as output because the test {m/ 4}>1/2

will be evaluated to FALSE (i.e. {m/4}=1/4<1/2), a =1 and will remain 1 after (*).

Thus, the last tow digits of m will be revaluated to: m'01 = (m 021_1 =m'0 and case 1)

follows.

Case 3 (1_1)

A 001......11 block will generate 010...... 0-1 as output if r 22 (if r=1 we are in
— —

r—digits r—digits
the case 2). Indeed, at the first occurrence of 1, the statement (*) is evaluated to TRUE
(@=1and {m/4}=11/4=3/421/2). Thus, a will be revaluated to —1 and m will be

revaluated by (**) to (m + 1)/2. That means:
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v D S ——
(%) m e —zdss____ rodsn G5 (4.10)
2 2 (r-1) digits

After (r—1) iterations, in which a will be “0” conform case 1), we meet again the case 2)

and the last two digits of the output will be “01”.

Now we can see that the conditions from hypothesis will exclude all the numbers

that have blocs of 1’s or blocs of 0’s with length 1. For example the numbers 110001110

and 011100110011 are valid inputs but 11000100 and 11101110 are not, the first for a

010 occurrence and the second for a 101 occurrence. If these occurrences are excluded,
we cannot be in the cases 1) and 2). The case 3) will ensure us a symmetric

decomposition. O

Theorem 9

Let n be an integer with the binary representation b(n) and extended binary

representation b'(n). The output of Heuberger-Prodinger algorithm for b(n) will be

quasi-symmetric if:

1) b'(n) contains exactly one 010 as a sub-block and does not contain 101 in the
remaining digits, or

2) b'(n) contains exactly one 101 as a sub-block, which is not contained in a 0110110

sub-block, and also does not contain 010 in the remaining digits.

Note that two 010 sub-blocks or two 101 sub-blocks may overlap in maximum
one digit in order to be excluded.
Proof:

Let us separately consider »'(n) in the above cases:
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1) In this case we will subtract from b'(n) the power of two corresponding to the position

of the 1 from 010. The obtained number will satisfy the conditions from theorem 1,
which means that there is a symmetric decomposition for it. Adding the subtracted power

of two to this symmetric decomposition we obtain a quasi-symmetric decomposition.
2) In this case, since we cannot have a 010 sub-block in the remaining digits, the 101

sub-block can be contained in the following sub-block: 1...101...1, with x>2 or y>2.
T
x y

We have two cases:
a) If x>2, we subtract the power of two corresponding to the rightmost 1 from the
left sub-block.
b) If y>2, we subtract the power of two corresponding to the leftmost 1 from the
right sub-block.
In both cases, the conditions of theorem 8 are satisfied for the number obtained after

subtraction, and we obtain again a quasi-symmetric decomposition. O

For example 1001110 is a valid inputs for theorem 2 since 10100111 is not.

4.4.1 Layer 0 —layer 0 minimum path

First, let us assume that we are in the conditions of theorem 8. In this case a
symmetric decomposition is ensured and we obtain a minimum path of even length. For
example, an input 102 =1100110 will generate the output (10101010). This can be

translated in a minimum path in Knodel graphs as follows: in every Knodel graph W, .,

with d > 8, the minimum path between vertices (0,0) and (0,102) will follow the edges

in dimensions 7 — 5 — 3 — 1, in this order. We have to note that we can always permute
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the edges of same sign and the result will be the same. For example, in the previous case

the 7—1—3— 5 path also connects (0,0) with (0, 102).

If we are in the conditions of theorem 9, we can obtain a symmetric

decomposition of length 27 +1 as follows (we skip the modulo operations for simplicity):

t t t+1

b(n)=2"+ Y (2" —27 )= 2 —2* + Y 2" —27 )= 2" - 27) (.11
r=1 r=1 r=1

Thus, we obtain a path of length 2(t+1), which is one longer that the length of a

minimum path guaranteed by the Heuberger-Prodinger theorem. Any symmetrical

decomposition smaller then 2(¢ +1) will have at most 2¢ terms. This will contradict the
mentioned theorem, which claims a minimum decomposition with 2¢+1 terms. For
example, an input 307 = 100110011 will generate as output (101010101). That means that
the minimum symmetric decomposition is: 307 = (29 - 28)+ (26 - 24)+ (22 - 20) and the
minimum path will follow the dimensions 9 — 8 — 6 — 4 — 2 — 0 or any permutations

of dimensions of same sign.

4.4.2 Layer 0 —layer 1 minimum path

In this case, we are looking for a minimum quasi-symmetric decomposition since
all the paths have odd length. If we are in the conditions of theorem 1 we obtain a
symmetric decomposition. For transforming it in a quasi-symmetric decomposition, we

proceed as follows (we skip the modulo operations for simplicity):

t =

b(n) :Z(zi’ —2j’)= 11(2i' —-27 )+(2"' 2 ) =

r=1 r=

-
L

=S -7 )+ 20 )2 =2 Y 2 — 2 ) (4.12)

r

fl
o~

r=1
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We obtain a path with cost 27+1. Any quasi-symmetric representation, smaller than
2t +1, will have at most 2¢ —1terms. This contradicts the Heuberger-Prodinger theorem,
which states that the representation with 2¢ terms is the minimal representation for this
case. If we are in the conditions of theorem 9 we obtain directly a minimum quasi-
symmetric decomposition.

A natural question arises: how many cases are covered by this algorithm? The
problem of sub-block occurrences in redundant representation was considered in [37] and
[43] and there is no exact formula for the sub-block occurrences. In [43] they obtained an

average frequency of occurrences of a given sub-block amongst the numbers 0,...,n—1
described by const-log, n +5(10g2 n) +0(1), with a multiplicative constant of log, n,

and a periodic function, ¢ (log2 n), of period one, depending on the given sub-block.

4.4.3 A heuristic for the minimum path

The minimum redundant decomposition, as it comes from the Heuberger-
Prodinger algorithm can give us a path for all the rest of vertices, which did not pass the
conditions from theorems 8 and 9.

Note that the algorithm output must contain at least one positive power of two.

X Y .
Assume that we have x of 1’s and y of -1’s in output: b(n)= Z2i' —22" . We have
r=1

r=1
three cases:

a) x> y.In this case we can obtain a symmetrical decomposition as follows:

-
<

r=1 r=1 r=1 r=1

r=y+1 r=1 r=y+l1

b) x<y.Inthis case we can obtain a symmetrical decomposition as follows:
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b(n)=i2i’ _221} :izi, _izl} _ i 24 Zi(zl} __2j,)+ i (2!', _2j,+1) 4.14)
r=1 r=1 r=1 r=1

r=x+1 r=1 r=x+1
¢) y=0.In this case, we produce first a negative term as follows:

x=1

b(n) = zx:zfr = iz"r D IVAS VAR AE ijzfr - izf'r : (4.15)
r=1 r=1 r=1 r=1

r=1
The obtained form follows case a).
This method of expanding will give us a logarithmic heuristic for the vertices

excluded by the theorems 8 and 9.
Note that the length of the path obtained from heuristic, can be at most | x—=y l +1
is

greater then the length of a minimum path. Since the diameter of Knddel graph W,

[(d +2)/2], the difference between the actual length of a minimum path and the length
of the path obtained from our heuristic is at most [(d +2)/2]+1.

Both, the algorithm and the heuristic, take as input the binary representation of the

vertex label and analyse each digit from right to left. Thus, the time complexity of the

algorithm is O(logn) for W

ey which is logarithmic in terms if n, the number of

vertices in graph. Since the only number needed to be stored is the vertex label, the space

complexity is O(logn) as well.

Observations:

a)  We can extend the algorithm for all Knddel graphs W, .|, but, in this case, we

have to analyse the binary decomposition of both, positive and negative forms of the

vertex label I: b(l)or(——b(l))mod%. For example,819 =1100110011 yields to a
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symmetric decomposition 10101010101, which means a path of length 6. Taking
(-819)mod847 =11100, we obtain a symmetric decomposition 1000100, which
means a path of length 2.

b)  The lower bound for the diameter of Knddel graph W, . is a consequence of the

method presented in this paper. The maximum relaxed cost, as yields from this

algorithm, for a d digits number, is |_d/2-|, for a binary form 101...101 or 0101...101.
Assuming that {_ dl 2_] is even and we want a path between different layers, we obtain
a length of |_d / 2‘|+ 1. If |_d / 2-| is odd, and we want a path between same layers, we

obtain a length of [d / 2‘| +1. Thus, the diameter must be at least ]—d / 2_] +1.

Conclusions and future work

Although Knddel graphs have been introduced 28 years ago, there are still many
open questions regarding their algebraic and routing properties. In this thesis we partially
solve three of them:

— the general definition of Knodel graphs
— the families of complete rotation in Knodel graphs

— minimum path routing algorithm for Wd e

Among the remained open problems we mention here:

— minimum path routing in Knédel graphs W,
— the diameter of Knodel graphs W, , for n# 27,

Because of their remarkable number of vertices to diameter ratio characteristic,

which competes with hypercubes and circulant graphs of same order, Knodel graphs
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become a useful candidate for communication networks, especially in supercomputing,

where parallel algorithms are heavily employed.
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