INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

Persistent Object System

Ba-Nguyen Tran

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfilment of the Requirements for
the Degree of Master of Computer Science at
Concordia University

Montréal, Québec, Canada

April 1997

© Ba-Nguyen Tran, 1997

of Canada du Canada

Your file Votre rdférence

Our file Notre référence

L’auteur a accordé une licence non
exclusive permettant a la

Acquisitions and Acquisitions et .
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Waellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada

The author has granted a non-

exclusive licence allowing the

National Library of Canada to

reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni Ia thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-26020-8

Canadi

ABSTRACT

Persistent Object System

Ba-Nguyen Tran

A persistent object system (PO-system) is a system used for storing and retrieving
persistent objects. Such systems already exist, but they are programming language
and database dependent and, in many cases, difficult to use. We have designed and
implemented a persistent object system which should be simple, inexpensive and easy
to use.

A client/server networking model was chosen to implement the system to make
it independent of the applications’ platforms and programming languages. The im-
plementation of the system is written in the programming languague C on the UNIX
platform. PO-system provides a server called PO-server. An application program
uses the Application Programming Interface (API) to communicate requests to the
PO-server. In this way, the application program can obtain persistent object services

without requiring any knowledge of the underlying mechanism of the PO-system.

111

Acknowledgments

The author wishes to express the deepest gratitude to his supervisor, Dr. Peter
Grogono, whose supervision and encouragement has led this work to a successful
outcome, an educational and pleasant experience for the author.

The author would like to thank his friend, Loc-Nguyen Vuong, who has partici-
pated in discussions to stimulate the interest of the project and has taken responsi-

bility for a part of the project.

v

Contents

List of Figures

1 Introduction

1.1 Concept of Persistence and Pickling
1.1.1 Persistent Data and Persistent Objects
1.1.2 Pickling System

1.2 Qutlineof the Thesis

1.3 Motivation of Project

2 Background
2.1 Historical Aspect

2.2 Object-Oriented Programming

......................

......................

2.2.1 Object Encapsulation
2.2.2 Inheritance
223 Polymorphism.
2.3 Client/Server Networking Model

)]

(1]

-~1

-~}

2.4 Persistence

2.6 Our Solution

...............

..................

2.4.1 The Need for Persistence
2.4.2 Persistent-Objects
Solutions e e e e e
2.5.1 Object-Oriented Database Systems
2.5.2 PicklingSystemo

Persistent Object System

3.1

3.2

3.3

Requirements

Discussion of Requirements

3.2.1

3.2.2

The Partition of Project

3.3.1

3.3.2

.............

.....

..................

..................

..................

Platform and Computer Language Independency

Type Safety
Efficiency
Security
Consistency

User-Friendliness

..................

..................

..................

Data Orientation of the Applications

Persistent Object Server . . .

..................

..................

Persistent Object Administrative Client

API and Sample Applications

vi

..................

10

10

11

11

12

14

15

16

16

17

18

18

19

22

22

23

23

24

3.4 Design e e 25
341 Server e 25
3.4.2 AdminstrativeClient 27
3.4.3 Application Programming Interface (API) 27
3.4.4 Sample Application Programs 29

3.5 A Solution for Encoding/Decoding Methods 33
3.5.1 Non-Recursive Structure Objects 33
3.5.2 Recursive Structure Objects 33

4 Implementation 39

4.1 Implementation Specifics 40
4.1.1 Programming Languages 40
4.1.2 Network Protocol 40
4.1.3 Communication Synchronization 41
4.1.4 Application Protocol 41

4.2 Persistent Object Server, 46
1.2.1 Data Structures and their Usages 46
4+.2.2 Security Implementation 51
4.2.3 Concurrency Control 54
4.2.4 Resource Availability Control 35

4.3 Administrative Client (AdminClient) 56

4.4 Application Programming Interface (API) 37

vil

4.5 Sample Applications

Simple Class Application Program

...........................

.............

.............

4.5.1
4.5.2 Inherited Class Application Program .
4.5.3 Acyclic Recursive Structure Program .
4.5.4 Cyclic-Structured Application Program

Assessment

3.1 Sample Applications

52 Security

53 API

54 Time-out Clean-up

5.5 Concurrency

56 Consistency

Conclusion And Further Work

6.1 Experience.
6.2 Advantages and Disadvantages.
6.3 FurtherWork

Quick Start and Test Scenarios

A.l Terminologies
A2 QuickStart,

A.3 Test Scenarios:

.................

.................

.................

.................

.................

.................

.................

.................

.................

.................

.................

.................

38

59

61

63

65

66

66

67

67

68

69

76

76

78

A32 Concurrency e e e e e e e e 81

A33 Security e 82

A.3.4 Shutdown-Request 82

A35 Time-OutClean-Up 82

A4 Application Client 83

B Common Header File 88
C API Header File 95

ix

List of Figures

2.1

3.1

3.8

3.9

1.1

The externalization and image resulting from the pickling system

Client/server Model of PO-system.
PO-server’s Security.
The partition of the project.
General algorithm of PO-server’s main-loop.
Algorithm for sample AdminClient.
Algorithm for sample application programs.
A Cyclic Traversal Algorithm
Different trees can be reproduced from sequential format data.

Trees of different shapes will be encoded differently.

The architectural model of the PO-system.
A request-response for AdminClient and PO-server.
A request-response for an application client and PO-server.
Application communication header.

AdminClient communication header.

12

17

19

24

26

27

37

4.6

4.7

1.8

4.14

4.15

4.16

Al

The global structure in server program: PKserver. 47

Client-table in server program. 49
Class-table and object-table in server program.. 50
File-header structure declaration. 51
User-Password checking for AdminClient request. 52
Algorithm for loading and unloading an object. 53
Cleanup Client algorithm. 56
A sequential format for an object of the simpleclass 39
A sequential format for an object of the inherited class. 61
A sequential format for a tree structure 63
A sequential format for a cyclic structure. 64
AdminClient Menu. 79

xi

Chapter 1

Introduction

1.1 Concept of Persistence and Pickling

1.1.1 Persistent Data and Persistent Objects

Data created by a program are sometimes needed when the program is not executing.
We call them persistent data. Hence, persistent data are data that exist beyond the
lifetime of the application programs that create or manipulate them.

In object-oriented programming, data are grouped into objects. We have a similar
concept of persistence applying to objects. A persistent object is an object whose
existence exceeds the lifetime of the application programs that create or manipulate
it. It is important to note that we use the term “object” to refer to a logical entity that
consists of data attributes and methods that can manipulate the attributes. However,

when we use the term “persistent object”, we refer to only the data attributes of the

object.

1.1.2 Pickling System

The term pickling system was used in an article written by Daniel H. Craft, [Cra93],
to refer to a persistent data or object system. We (Loc-Nguyen Vuong and I) found
this article very interesting, and it was the starting point of our project. In the project
and my thesis, the name Persistent Object system (PO-system) has been used to refer

to our Pickling system.

1.2 Outline of the Thesis

o Chapter 1, Introduction, contains a brief introduction to the concepts of persis-

tence and pickling, the outline of this thesis and the motivation of the project.

o Chapter 2, Background, provides background for our design and implementation
of a persistent object system. This chapter includes also a brief historical aspect
of the evolution of the software development, the need of persistence, and the

surveys of some related works.

o Chapter 3, Solution, describes our solution for persistent objects. This chapter
contains the requirements and the designs of a persistent object system, the
design of an application programming interface (API) of the system, and sam-
ple application programs that cover the most general data structures used in

application programs: simple class structure, inherited class structure, linked

2

(acyclic) structure, and cyclic-structure. This chapter also discusses a general
approach to store and retrieve linked structure and cyclic structure persistent

objects in sequential storage media or data stream.

e Chapter 4, Implementation, describes the implementation of the system. It in-
cludes details of the communication specific choices, application communication
headers, main routines of the server, the API and the sample application pro-
grams. Because the system and API was written in C programming language
on UNIX platform and the sample application programs were written in C++
programming language, the content of the chapter relates to C and C++ on

UNIX. Some design details are also discussed in this chapter.

e Chapter 5, Assessment, discusses the success, failure and limitations of the

project verifying with testing results.

e Chapter 6, Conclusion and Further Work, summarizes my work on the project,
and the advantages and disadvantages of the usage of PO-system to the end-
users. Finally, a list of further work is suggested for the improvement of PO-

system.

1.3 Motivation of Project

The primary goal of the project was to introduce a simple and friendly solution for the

enhancement of existing programs to store and retrieve their persistent objects, and

hence to reduce software maintenance cost. I have designed and implemented most
parts of the system. During the implementation and testing phases, I kept revising my
design to make the product simpler, more efficient, and also to get around difficulties,
or to eliminate some inconsistencies.

Although the main goal of the project was on the persistent object system, I have
been concerned, equally to the system’s implementation, about the usefulness of the
system to its end-users. The major difficulties that an application faces while working
with persistent object usually include the storage and retrieval of objects that contain
pointers to other objects. Such objects are usually part of the representation of a
list, tree, or other data structures that may include cycles. So part of my research
was on the techniques and algorithms that an application program can easily apply

in order to use the system.

Chapter 2

Background

This chapter provides background on some subjects relating to the project. It includes
a brief introduction of historical aspects of software development, object-oriented
programming, and client/server networking model, the need for persistence and some

existing solutions.

2.1 Historical Aspect

Computer science has been evolving rapidly during the last few decades. Its applica-
tions spread widely, deeply and quickly, all over the entire spectrum of research areas
and professions. The discovery of structured programming technique promised the
capability of building complicated programs and reusing modules [Ses96].

However, the maintenance cost for software constructed using the structured pro-

gramming paradigm is high, because a minor modification may cause the need of

revision of many modules [Pit97]. A new programming technique, object-oriented
programmaing, was introduced to avoid problems of this kind. In object-oriented
programming, data are encapsulated together with methods that can be applied to
manipulate those data in a logical entity, called an object. Modifications or enhance-
ments to an object-oriented program can be made at the level of objects.

Orthogonal to programming, persistence is a requirement of some software. It has
nothing to do with the program’s code. It is the requirement that some data of the
program continue to exist after the program has terminated.

Parallel to the demand of the development of new and powerful programming
languages and applications, communication between machines has become more and
more important. Computer networking was born and evolved rapidly to fulfill the
demand for machine communication [Mil91]. It is just another dimension of develop-

ment of computer technology.

2.2 Object-Oriented Programming

Object-oriented programming techniques promise high reusability and reduce mainte-
nance cost by combining the best ideas of structured programing with several powerful

new concepts: object encapsulation. inheritance and polymorphism [Sch90).

2.2.1 Object Encapsulation

A class defines a scope within which the attributes of an object are declared. It
provides also means for manipulating some of these attributes outside of the class.
An object is an instance of a class [Gro91]. In other words, an object is a logical entity
containing data attributes and methods that manipulate those attributes. Objects are
natural to use to model the real world, because the real world’s entities contain both
data and functions that manipulate on the data. For example, an object, student,
can have attribute address and a function to alter address; an object, professor, can

have attribute office and a function to change the office.

2.2.2 Inheritance

In an object-oriented program, a class can be declared to inherit another class. A
new class inheriting an existing class will inherit its parent class’ properties plus its

own. Hence object-oriented programming promotes reusability.

2.2.3 Polymorphism

Polymorphism of object-oriented programming languages allow a name to be used for
different methods in classes, and depending on the type of the data, a specific instance
assigned by that name will be invoked. This property makes the enhancement of a
object-oriented program much simpler.

The polymorphic property in object-oriented programming languages is not just

function overloading, it is 2 consequence of dynamic binding [VC90]. Some functional
languages, such as Ada, have function overloading feature, but function calls are
bound at compile time. For object-oriented programming languages, dynamic binding
allows objects to be bound to their functions at run time. Dynamic binding combines
with polymorphism in object-oriented programming languages is a wonderful tool for
software reusability and enhancements, because it allows us to build class libraries
easily. For example, we can have classes Menui , Menu2 derived from class Window.
Classes Window, Menul and Menu2, each defines a method (function) display() of
their own. A polymorphic pointer pol._ptr is declared as a pointer of class Window.
Latter in the program, pol_ptr can be used to point to object menul of Menul or
menu2 of Menu2, and then invoke display(). At run time, depending on the object
that pol_ptr is pointing to, when invoking display() from pol_ptr with the call

pol_ptr->display(), the proper method will be invoked.

2.3 Client/Server Networking Model

Computer networking is the interprocess communication among processes running
on different machines. Therefore the fundamental entity of computer networking is
process [Ste90].

The client/server networking model or simply client/server model is an architec-
tural model for distributing applications. In the client/server model, processes are

divided into two groups, clients and servers. A server is a process that waits for

requests sent from clients, performs operations (services) requested, and then replies
or responds to the clients. A client, on the other hand, is a process that may generate
and send requests to a server.

The client /server model is useful for applications where resource-sharing or informatior
sharing is required, such as when a printer needs to be shared among several work-

stations, or a database is shared between several banking-machines.

2.4 Persistence

2.4.1 The Need for Persistence

In practice, many application programs require data to exist beyond their current
executions. For example, let us say, research on the Fibonacci series is carried out by
running a program with an infinite-loop of computation until some specified condition
becomes true. After running the program for a few days, the system crashes for some
reason. [f the computational results were persistent data, then when the system is
re-booted. the researcher’s program can continue its search without having to start
from scratch. Another example of persistent data is a banking account. When Mr. A
goes to a bank to open an account and deposit $500. a teller uses the bank’s program
to create an account and deposit $500 for Mr. A. Thereafter, no matter what happens
to the bank’s system, the existence of an account with $500 balance for Mr. A in

that bank has to be kept.

2.4.2 Persistent-Objects

In object-oriented programming, data are grouped into objects. Hence, persistence
of data in object-oriented programs is provided on the basis of objects. A new
application programming domain implies new requirements. An object may belong
to a class that inherits from other classes (its parent classes) and its parent classes
may have data attributes too. Furthermore, an object can have pointer attributes to
another objects, which in turn may have a pointer attribute that points back to the
original object and forms a cyclic structure. The storing and retrieving of objects
having pointer attributes can be difficult. For example, in a linked list, object a has
a pointer to object al, object al has a pointer to object a2, and so on. When we
want to store object al, if we store its pointer to a2 as reference (address of a2), then
when we retrieve al, the referenced address may have been reallocated to another
object. If we store al and the object a2 pointed by the pointer of a1, we still have
the same problem with a2, because a2 has a pointer to a3, and so on. Eventually,
storing an object in a linked list will result in storing the entire linked list. It is even

more difficult to store and retrieve cyclic structures.

2.5 Solutions

Solutions for persistent-objects have become an interesting research topic and devel-
opment. Many of them have been implemented. Here are some examples of those

solutions.

10

2.5.1 Object-Oriented Database Systems

There exist some object-oriented database languages and systems that provides sup-
port for persistent objects. GemStone, for example, is an object-oriented database
system for SmallTalk-80, ODE systern and Exodus system are database systems for
C++. GemStone adds to Smalltalk persistent object management facilities and other
database features such as concurrency control, transactions, etc., to handle persistent
objects. ODE system defines a database for database programming language O++,
and O++ is an extended version of C++. Exodus has a component, E language, that
is also a version of C++ programming language used for writing software to support

persistent applications [Hug91].

2.5.2 Pickling System

A pickling system is a project aiming to “lightweight, easily comprehensible, 80%
solution of persistent data need” . The project proposes a scheme to traverse and ex-
ternalize data structures at run-time using type information available to the garbage
collector [Cra93]. A data structure is externalized by executing corresponding pick-
ling codes depending on individual data types. Figure 2.1 shows an example of such
a scheme !.

The image is an external representation of an object. It will be stored on disk or

passed to a remote program. Type checking is done at compile time to ensure data

'This example is simplified from an example in the research paper.

11

(a) internal data (b) code executed for pickling

PROFILE pickle PROFILE
name : Dan Craft pickle STRING (name)
phone : 1234567 pickle INT (phone)

(c) Image resulting from pickling
data$"Dan Craft" data$1234567 .

Figure 2.1: The externalization and image resulting from the pickling system

accessed to be placed correctly as they appear for internal format. It requires also
run-time type-checking to ensure that unpickling performs correctly. For abstract
data types, the programmers have to augment their abstract types with two routines
(methods): encode/decode for each type. In general, a pickling system requires good

programming environment support, especially a type-safe language.

2.6 Our Solution

The solutions mentioned above are computer-language dependent, not easy to use,
and hence not really suitable to use for the enhancement of existing applications.
They are formal approaches to the solutions that are not concerned with the system’s
construction. On the other hand. we are interested in developing a simple persistent
object system that would be easy and cheap to use for object-oriented applications.

The system is neither a new database, nor requires a new language, but is a new

technique toward an inexpensive solution for persistent objects.

13

Chapter 3

Persistent Object System

We started with the idea of building up a persistent object system of our own, that
would probably be useful and cost less for its users in terms of maintenance. The
project of building up a Persistent Object System (PO-system)! is started by setting
out a brief requirement list.

The project is intended for object-oriented application programmers as its primary
users. There were two reasons for this choice. Firstly, we wanted to narrow down
our research topic. since the project should not be too big for two master students.
Secondly object-oriented application programs were much easier to enhance than
non-object-oriented applications, and one of our goals was to promote an easy way

to enhance existing programs to make use of our system.

1VWe called it Pickling system (PK-system) at the beginning of the project.

14

3.1 Requirements

1.

o

Language and platform independent design: The design of the system should

be independent of programming languages and platforms.

Type safety: The system should do type-checking somehow to guarantee type

safety for persistent objects.

Efficiency: The performance of the system should be reasonably efficient. The
resource (main memory and secondary storage medium) should not be unrea-

sonably wasted.

User-friendliness: The application programmers should be able to use it with

minimum amount of learning effort.

. Security: The system should include some security features to protect its objects

against unauthorized accesses.

. Consistency: The system should never be in an inconsistent state. If a persis-

tent object had been succesfully stored and followed by a successful retrieval
operation of the same object, then the retrieval operation has to get back ex-

actly the object that was stored.

Data orientation of the applications: The system is designed for object-oriented
applications. It should mainly focus on object-oriented application users and
show that object-oriented application programs can significantly benefit from

the system.

3.2 Discussion of Requirements

3.2.1 Platform and Computer Language Independency

It is fine for the design of the system to be platform and computer language inde-
pendent. However, for example, if a system following the design is implemented in
language A on platform B, then the question is “will the implemented system be
able to function on a different platform, let us say C, where the application programs
are written in D ?”. The Client/Server network model gives us a “YES” answer to
this question. If we consider the tasks of the system as somebody’s job, then his/her
role in the system is the server and each running application program which requires
services from the system is a client of the server. Therefore the heart of the system
is the server, and the server does not care where its clients are running, and in what
languages they were coded.

The client/server model introduces concurrency that not only improves the effi-
ciency of the system but also increases the complexity of the system. The server is
capable of serving several clients running concurrently. It also has to take care of
concurrency concerns such as concurrency-control, data consistency, etc.

Therefore, the PO-system will have a server as the heart of the system, that
provides services to its clients. The services include all services needed for persistent
object storage and retrieval. The server is called the persistent object server. or PO-

server for short.

16

Application

Application
client#n

Application

client # 1 client # 2

Persistent-Object

Server

> Process

——

Message-passi

Figure 3.1: Client/server Model of PO-system.

3.2.2 Type Safety

In client/server architecture, the server and its clients may operate on different plat-
forms, hence type checking should be done by a special client, called an administrative
client of the system or AdminClient in short. which runs on the applications’ platform
and provides local service for type-checking of local clients and clients’ registrations
to the server in order to ensure the availability of the server’s resources before the
application clients start running. Therefore, each platform needs an administrative

client.

17

3.2.3 Efficiency

Efficiency is measured against two criteria: speed and space. In general, algorithms
can satisfy either one of them but not both. However, we are not deeply concerned
about this issue, because it is not a major goal for the project. As long as we can show
that the system has good mechanisms to move data forth and back between main
memory and secondary storage medium, using dynamic memory allocation scheme for
big chunks of data storage for space efficiency and using tables for static information

storage for fast access, this requirement will be satisfied.

3.2.4 Security

The system has to preserve somehow the security of its persistent objects against
unauthorized accesses and modification. In other words, PO-system has to include
features that implement security checks against unauthorized accesses of persistent
objects under its protection. One way to do this is to implement a security mechanism

on the server as shown in Figure 3.2. This mechanism is used for:

e applying object-authorization: each object has an owner, and only the owner
of an object has full-access rights to the object, other clients are restricted to

read-only access through the server;

¢ applying encryption/decryption mechanism to avoid by-pass server accesses of

objects of some clients (read directly from the storage medium); and

e applying user-password check for clients.

18

Input-request message Reply message

l T

L Security - check J

1

Processing - Request

/

L Encryption / Decryption J
4 ' N
g Write / Read Operations)

Figure 3.2: PO-server’s Security.

In this way, if a client wants to access a persistent object, it cannot do so by
reading the object directly from the secondary storage, because the encryption, and
format of the object in there is known only to the server. This scheme enforces the

accesses of persistent objects of the system to be controlled by the server.

3.2.5 Consistency

In order to deal with concurrent accesses of objects, the system has to preserve the
consistency of objects under its protection.

To clarify the problem, let’s take a simple example. An object named 0bj of class
Cls. can be accessed by program Clt1l and program Clt2. Obj contains a string
called name, and an integer named number. Cls has a method get_number() to

output the object’s member number, a method increasenumber by(i) to increase

19

number by i, and a method decrease number by(i) to decrease number by i. As-
sume the original value of Obj.number is zero. Programs Clt1 and Clt2 has been

coded as following:

program Clt1l

b = Obj.get_number();

Obj.increase_number_by (10);

Obj . show_number() ;

program Clt2

c = 0bj.get_number();

0bj.decrease_number_by (S5);

Obj . show_number() ;

The result expected for statement 0jb.show number in C1t1 is (b+ 10), and that

in C1t2 is (c—3). However, the results seen in C1t1 and C1t2 after running statement

20

Obj .show number() may be different from what each individually expected if both
programs run simultaneously. For example, the object is accessed by two programs

in the order shown below:

step Clt 1 Clt2

1 b = 0bj.get_number

2 c = 0Obj.get_number

3 Obj.increase_number_by(10)

4 Obj .decrease_number(5)
5 Obj .show_number()

6 Obj . show_number ()

For client C1t1, b is zero, so the expected number shown by method show_number ()
is 10, but the result is 5. For client C1t2, ¢ is zero, and hence the expected number
is —3, but the real result is 5. One way to solve this problem is by serialization
[Alm94]. However, we can serialize only two transactions or two atomic operations
from two programs, but not two programs’ executions, otherwise the parallelism of
the system is destroyed. Unfortunately, for our case, the serialization of transactions
does not give us a satisfactory solution. The example above does the same as the
transaction serialization if we consider each method invocation is a transaction or
an atomic operation on the object, but the results are not as expected. The reason

is because our system works differently from that of a typical banking database. In

21

a typical transaction, a record is locked when it is accessed to ensure the consis-
tency of the database, but for us, in order to do so, we have to serialize executions
of the application programs, because we have no prior knowledge of the application
programs.

For simplicity, we can solve the problem by setting out our own system restrictions:

1. Only one process is allowed to run a program at a time.
2. Each object has an owner, who is the client who creates the object.

3. Only the owner of an object is allowed to modify the object.

These restrictions should be enforced by the system itself as much as possible, not

by the obedience of application users alone.

3.2.6 User-Friendliness

A simple Application Programing Interface (API) should be provided to minimize the
application users’ task as much as possible when using the system. Hence the API
will be provided as a set of high level procedures to maximize information hiding and

user-friendliness. A friendly menu should be provided for client-registration too.

3.2.7 Data Orientation of the Applications

Persistent data itself has nothing to do with the data orientation of the applications
(object-oriented or non-object-oriented). However, the use of the persistent object

system is related to data within a logical entity, which is more naturally related to

22

the object-oriented data model than the non-object-oriented data model. For existing
big programs, involving this persistent object system relates to the extensibility of
the programs on persistent data entities. This kind of extensibility is simple and
natural for an object-oriented program; for a structural program, on the other hand,

the extensions may require elaborate modifications.

3.3 The Partition of Project

The PO-system consists of two main components: a persistent object server and a
persistent administrative client. The project also includes the implementation of a
PO-system application programming interface and sample applications. The project
was carried out by two master students: Loc-Nguyen Vuong and me. It was parti-
tioned into two parts, as shown in Figure 3.3, such that each one could carried out

and finised his own without waiting for the completion of the other.

3.3.1 Persistent Object Server

PO-server is the heart of the system. Its main tasks are:
e to provide service to Administrative clients;
e to provide service to Application clients;
e to manage local resources; and

e to provide security for objects under its protection.

23

Loc-Nguyen Vuong Ba-Nguyen Tran (me)

Design and Implementation of: Design and Implementation of:
- AdminClient and - PO-server,
- all its subcomponents. - API,

- sample applications, and

- sample AdminClient.

Figure 3.3: The partition of the project.

3.3.2 Persistent Object Administrative Client

AdminClient is a local platform manager for the PO-system. It has to accomplish

the following main tasks:

e providing a means by which application clients can input client-registration

information to the server;
¢ providing type-checking for local application clients; and

e sending client-registration information to the server and interpreting the return-

code from the server.

3.3.3 API and Sample Applications

Application programming interface and sample applications are not part of the sys-
tem. They are needed as the complement part of the project. They are:

24

e a set of application programming interface modules (API); and

e sample application programs that cover general cases of data structures in

object-oriented programming.

3.4 Design

This section discusses only the preliminary design of the system, leaving some details
in Chapter 4, where the design details are somehow affected by the implementation

specific choices, such as network protocol, platform, and computer language.

3.4.1 Server

The algorithm for the main loop of the server is shown in 3.4, which consists of the

following main modules:

e process_admin_request():
® process_register_object_request();
® process_retrieve_object_request();

® process_store_object_request();

process_client_terminate_request();

Program POserver:

open communication channels

initialization of

global data structures

while NOT shutdownCommand OR
there are application clients in execution state.

wait for a coming message
if the sender is AdminClient
check adminPassword
if password is correct
reply_code = process_admin_request

else

reply_code = MSG_ADMIN_PASSWORD_ERR

send
else

response to AdminClient

if (message_id == REGISTER_ID)

else

else

else

else

send

reply_code = process_register_object_request
if (message id = RETRIEVE_ID)

reply_code = process_retrieve_object_request
if (message id == STORE_ID)

reply_code = process_store_object_request

if (message id == TERMINATE_ID)

reply_code = process_client_terminate_request

reply_code = UNKNOWN_MESSAGE_ID

response to the sender

Figure 3.4: General algorithm of PO-server’s main-loop.

26

Program AdminClient:

while not shut_down_command
display menu

get inputs

if input_command == shut_down
send shut_down_command to the server
exit

else

/* should have done the local type-checking here*/
send client registration to the server
interpret reply code from the server

Figure 3.5: Algorithm for sample AdminClient.

3.4.2 Adminstrative Client

Figure 3.5 shows the algorithm used to implement a simple administrative client
sample. This sample AdminClient does not do the local type checking and displays
only a simple menu to get user’s inputs. It has been provided for testing purpose only.
A complete administrative client will be designed and implemented by Loc-Nguyen

Vuong.

3.4.3 Application Programming Interface (API)

The application programming interface consists of the following functions. The API
is computer language dependent. Here we provide a set of C language declarations of
the API functions. It should be noted that the provision of this functional interface
does not violate the first requirement of the system, computer language indepen-

dence. because the main components of PO-system consists of only PO-server and

[SV]
~]

AdminClient.

int PK_register_obj (char *object_owner,
char *class_name,
char *object_name,
char *buffer,

int #*send_receive_length);

int PK_retrieve_obj(char *object_owner,

char *class_name,

char *object_name,

char *buffer,

int =*send_receive_length);
int PK_store_obj (char *object_owner,

char *class_name,

char *object_name,

char *buffer,

int *send_receive_length);

int PK_terminate (char *cltname);

Before an application client can use the PO-system, it has to register itself with

the PO-server through an administrative client. Before it terminates, it has to inform

28

the server through the PK_terminate() function call.

Before an application client can store an object to or retrieve an object from
the server, it has to register the object with the server. The actions of registering
object, storing object, and retrieving object can be done by making function calls to

PK.register obj, PK_store_obj.and PK_retrieve_obj respectively.

3.4.4 Sample Application Programs

The sample application programs are simple programs that output neccessary traces
to illustrate the results for verifying the correctness of the system.

The general algorithm for the application programs used for testing are shown in
Figure 3.6.

The show method is not new to object-oriented application programmers. Only
the encode method and decode method are new tasks for them when making use of
the PO-system. The encode method will write all data of an object in a buffer, in
some format, and decode method will do the reverse. These two methods are also the
only new methods for the enhancement of an object-oriented program to integrate
with PO-system. Users can choose any format and algorithm for the implementation
of these two methods. However, I will discuss my solutions in the next section.

In order to provide testing application programs that will cover the most general
cases for object-oriented applications, we have classified objects’ data structures into

four categories:

1. Simple data structure objects are objects of a class that does not inherit from

29

Application program:

initialize the object (either with a comstructor or not)
invoke object.show to show the initial objected
invoke object.encode to translate data of the object into a stream
of data in a buffer
invoke PK_register_obj to register the object
invoke PK_retrieve_obj tc retrieve the object
invoke object.decode to decode data in the buffer received
invoke object.show to show the retrieved object
compare the result with the initial one.

make some change for the object

invoke object.show

invoke object.encode

invoke PK_restore_obj to store the object
invoke PK_terminate

Figure 3.6: Algorithm for sample application programs.

any other class and do not have pointers to other objects.

o

Inherited data structure objects are objects of a class that inherits from at least

one parent class, and do not have pointers to other objects.

3. Linked structure objects are objects that contain pointers to other objects, such

as a linked list or tree structure.

4. Cyclic structure objects are objects that contain pointers to other objects, and
the child objects in turn are allowed having their pointers back to the parent ob-
jects. It is the pointers back to the parent object that form the cyclic structure

for the objects.

30

According to this classification, we need at least four sample application programs,
one for each criterion. A class in each criterion should be declared and include the

implementation of some methods as shown below:

1. for simple objects:

Declaration:
Declaring a class including the following methods:
show : to display data of object of the class.
encode : to encode the object to a stream of data.

decode : to decode a stream of data to an object.

2. for inherited objects:

Declaration:
Declaring a parent class to include the following methods:
show : show object belongs to the class.
encode : encode the object to a stream of data.

decode : decode a stream of data to an object.

Declaring the child class to include methods as follows:
show should call the show method of the parent class and then
display the child class’s specific data.

encode should call the encode method of the parent class and

31

then encode the child class’s specific data
decode should call the decode method of the parent class and

then decode the child class’s specific data

3. for linked structure objects:

Declaration:
Declaring a binary tree class to include the following methods:
show : to display the tree object starting from the root of
the class
encode : to encode the object to a stream of data.

decode : to decode a stream of data to an object.

4. for cyclic-structure objects:

Declaration: We can construct a cyclic structured object by
reusing the tree declaration and direct some pointer of some

successor back to their ancestors.

Declaring a cyclic-tree class to include the following methods:
show : to display the cyclic object starting from the root
of the class.
encode : to encode the cyclic object to a stream of data.

decode : to decode a stream of data to a cyclic object.

32

3.5 A Solution for Encoding/ Deéoding Methods

3.5.1 Non-Recursive Structure Objects

The encode method transforms the data of object into linear format and the decode
method does the reverse. It does not matter what format we choose for the encode
method, as long as we can guarantee the decode method will give us back the object
with correct data.

Example: An object of some class has the following data:

wheels : 4
passengers : 6
name : HONDA

The object can be matched to a buffer without data field separators as 4 6 HONDA.
It can also be matched to a buffer using commas as separators between data fields
like: 4, 6, HONDA; and so on. Depending on the object’s data structure, a user can

always choose an appropriate linear format.

3.5.2 Recursive Structure Objects

The major difficulty for the PO-system users is how to select an appropriate linear
format for recursive-structured objects and so obtain the algorithms to implement
encode/decode methods. Should we store the pointer to the object or the object

referenced by pointer? The former is not suitable. because the address of an object is

33

dynamic and subject to change for different runs of a program. The latter technique
has the major disadvantage of the possibility of working with a huge amount of
data unneccessarily. For example, the storage of one single object at a node of a
binary tree may result in the storage of the entire tree. Only the programmers know
what they need, a node or a tree, and hence only the programmers can code and
invoke appropriate methods. A good algorithm of traversal of a recursive structure
containing cycles is needed for implementing both encode and decode methods, and
an appropriate format of the storage of recursively structured objects is not trivial

either.

Cyclic-Structure Traversal

The implementation of a cyclic structure traversal algorithm shown in Figure 3.7,
requires the implementation of set set0fNode. This traversal algorithm will traverse
a recursive structure and visit each node exactly once. Since the setOfNode here is
a temporary linear data structure for the visiting check only, we should implement it
as a linked-list of pointers of node_type, but not a copy of nodes [GS93], [GC94].

Let N be the number of nodes of the structure, L. be the number of links of a node.

The statement set0fNode = setOfNode Union with {node} requires O(1) time,
if we maintain a head pointer and a tail pointer for the linked list, and each addition
of one element is added at the end of the list.

The statement if (node->1ink[i] not in setOfNode) requires O(N) time in

the worst case. The function visit_linked _struct will be called N times. Hence

34

set0fNode = {}
int visit_linked_struct(node_type *node){
if (node == NULL)
return O;
visit(node);
set0fNode = set0fNode Union with <{node}
for each link i of the node
if (node->link[i] not in setOfNode)
visit_linked_struct(node->link[i])
else
return 0;
return 0;

Figure 3.7: A Cyclic Traversal Algorithm

the total time complexity is

O(N * (O(1) + L « O(N)) = O(N?)

For a recursive structure containing no cycles, we do not have to implement the
set0fNode to check if a next node (node->1ink([i]) of a current visiting node has
been visited or not, hence the algorithm has only O(N) time complexity.

However, if it is not known whether the structure contains cycles, then checking

whether the structure contains cycles will also take O(N?).

A Sequential Representation of a Recursive Structure

The sequential format of a recursive structure is quite tricky. The example shown in
Figure 3.8 illustrates the point that the choice for the sequential format for a recursive

structure is crucial.

O

Tree-1 Tree-2

A SEQUENTIAL REPRESENTATION OF Tree-1 and Tree-2 :

Figure 3.8: Different trees can be reproduced from sequential format data.

Tree-1 and Tree-2 do not have the same shape, although they may have the
same sequential representation A’ ‘B’ °C’. An inappropriate choice of this sequential
format will lead to the existence of a deterministic encode method but not for the
decode method. The equality of two structures is defined not only by the equalities
of objects in one structure and those of the other (structural data equality), but also
by the equalities of the pointer relations among the objects inside each structure
(structural shape equality). We can define the equality of two recursive structures

more formally as follows: structure S1 is said to be equal to structure S2 if and only

if

1. for every object al in S1i. there exists an object a2 in S2 such that a2 is an
exact copy of al (except pointers in the objects, because pointers of an object

in S point to objects in S1, and so for pointers in an object in S2).

36

Tree‘l Tree_z

Tree-1 isencodedas: A23B00CO00
Tree-2isencodedas: A02B03C00

Figure 3.9: Trees of different shapes will be encoded differently.
2. for every object al and object b1 in SI, there exist object a2 and object 62 in
52 such that if a! has a pointer to 61; a2 and b2 are the exact copies of a! and

bI respectively, then a2 has a pointer to 52.

The trick of the choice for an appropriate sequential representation for a recursive
structure is to include the pointer-relations of objects in the structure as part of the
data of the objects.

The sequential representation for a recursive structure described below is a one-
to-one mapping between a recursive structure and its sequential representation. The
way it distinguishes the sequential representations for tree-1 and tree-2 is to include
the pointer-relations of objects in the sequential representation. Each node is given
a unique label, a pointer of an object to another labeled by n will be stored as an
integer n. [DD95], [MAMS83]

Recalling the tree example, if we label each node with a number as shown in

37

Figure 3.9, we can encode Tree-1 and Tree-2 as 'A’23'B’00°’C’ 00 and ’A’02°'B’

0 3 'C’ 0 0 respectively.

38

Chapter 4

Implementation

The implementation of the persistent object system was written in the programming
language C for the UNIX operating system. The heart of the system is the server. The
server is supposed to be able to provide services for concurrent application clients.
The most important tasks of the server are the capabilities of serving concurrent
clients. providing persistent object storage management and security. The system
has been designed, implemented and tested with several simple test cases. It is,
nevertheless, a prototype implementation, and further work would be required to

obtain a production quality version.

39

4.1 Implementation Specifics

4.1.1 Programming Languages

C language was chosen to implement the system and API, and C++ language was
chosen to implement sample application programs. We made these choices, because

the languages are available, widely used, and because we know them.

4.1.2 Network Protocol

The system uses the socket interface known as Berkeley Socket Interface available on
UNIX to accomplish its communication task. Berkeley Socket Interface is a socket

interface that supports the following protocols [Ste90]:
e UNIX domain protocol;

¢ Internet domain protocol (TCP/IP); and

o Xerox NS domain protocol (XNS).

The choice of domain does not affect the application code, because only the values
of some parameters of the socket functions are different, but all socket functional
prototypes remain the same. For the simplicity of the project, and the availability
of the system and computer account [have had, I have chosen the UNIX domain
protocol to implement the project, knowing that the conversion from this domain to

the others (TCPI/IP or XNS) is simple and can be done quickly, if there is a need.

40

4.1.3 Communication Synchronization

The communication model chosen for implementing the PO-system is depicted in
Figure 4.1. The message sent from a client to the server is called a request; and
a message sent back from the server to the client who sent the request is called a
response or reply. For synchronization of message passing between clients and server,
a client always sends a request to the server first and then waits for a response to
return from the server. The server, on the other hand, is waiting for requests. So one
request will always generate one response from the server. A request is composed by
a message header defined by PO-system. A response is similar. These protocols will
be discussed in the next section.

The processing of a request-response pair between an application client and PO-
server is slightly different from that between an AdminClient and PO-server. Figure
4.2 describes the processing of a request-response pair between AdminClient and PO-
server, while Figure 4.3 is for a request-response pair between an application client

and PO-server.

4.1.4 Application Protocol
Application client communication header

The application client communication header is defined as shown in Figure 4.4, where:

41

Application

Client -

A
(Application Programming Interfacej

Application
PO-system: Client #1
AdminClient)
4

(Berkeley Socket Interface on UNIX)
[

PO-system: PO-server

—

Secondary storage

Figure 4.1: The architectural model of the PO-system.

1 (Input Menu
PO-system: T .) .
AdmmCﬁent/ 4 client registration ...
6

2 5
\ 4 (~
Process
PO-system : PO-server) AdminClient-Request

3 L

Steps of a complete request:

1. Getting inputs

2. sending request

3. processing request
4. returning result

5. sending response

6. displaying result
Figure 4.2: A request-response for AdminClient and PO-server.

Processing
application-clien
request

ﬁ\
AP

=

files on disk

Application

PO-server

-

client 6

Steps of a complete application-request:

1. sending request

2. processing request
3. storing objects to disk-files

4. loading objects from disk-files
5. returning result
6. sending response

Figure 4.3: A request-response for an application client and PO-server.

43

typedef struct {

int msgid; /* message id */

char cltname [MAX_CLIENTNAME_LEN] ;/* APP client namex/
char clsname[MAX_CLASSNAME_LEN]; /* class name */

char objname[MAX_OBJNAME_LEN]; /* object name*/

char owner [MAX_OBJNAME_LEN] ; /* object’s owner namex*/

}ComHeaderStruct ;

typedef union {

struct {
ComHeaderStruct hd;
int dlen;
char data[MAX_DATA_BUF];
} com;

char recvbuf [MAX_BUF_LEN] ;
} cppDataComStruct ;

Figure 4.4: Application communication header.
e msgid contains a message code !, in reply, the server will use this field for a

reply code (OK, error,..).

A valid request msgid is one of the following:
— REGISTER_CMD_ID.
- STORE_CMD_ID.
- RETRIEVE_.CMD.ID.

— PROCESS_.TERMINATE_ID.
e cltname is the name of the client who send the request.

e clsname is the name of the object’s class in the request.

1 Message codes are defined in common utility header file comutils.h.

44

e objname is the name of the object in the request.

e owner is the owner of the object. If the client is also the owner of the object.

then this field will be the same as cltname.

e dlen is the length of the data in field data.

data is the data stream of the object.

Administrative Client Communication Header Structure

The administrative client communication header is shown in Figure 4.5, where:

e msgid is the message code in the request (only REGISTER_.CMD_ID or SHUT-
DOWN_CMD.D is a valid msgid in the request). In reply, this field contains

a reply code (OK, error,..).
e cltname is the administrative client name.
e xprogname is the application client name.
e adminPassWord is the administrative client’s password.

e uFlag is the running option of the application client (pickling or initialization).
Pickling is the option for an application client to unpickle all its persistent
objects of last run for the current run; and initialization is to override them

with the current run’s objects.

e num.objs is the total number of persistent objects (PO-objects) in the applica-

tion’s program.

typedef struct {

int msgid;

char cltname [MAX_CLIENTNAME_LEN]; /* admin user name*/
char xprogname [MAX_FILENAME_LEN] ; /* APP client name*/
char adminPassWord [MAX_PASSWORD_LEN]; /* admin password*/
uFlag u; /* APP running option*/
int num_objs; /* APP PK objects*/

int num_cls; /* APP PK classes*/
}UiComStruct;

Figure 4.5: AdminClient communication header.

e num cls is the total number of persistent classes (PO-classes) in the application

program.

4.2 Persistent Object Server

4.2.1 Data Structures and their Usages

The server uses one global structure, PKserver, and three tables, namely Client-table,
Class-table and Object-table, to store information, manage data and control request
processing.

Server Structure

This global structure PKserver is used to keep track of the current state of the server.

The declaration of the structure is shown in Figure 4.6, where:

46

struct PKSERVER {

int num_clients;
int num_classes;
int num_objs;
int door;
unionf{
struct {
ComHeaderStruct hd;
int dlen;
char data[MAX_DATA_BUF];
} com;
UiComStruct uicom;
char recvbuf [MAX_BUF_LEN];
}u;
}PKserver;

Figure 4.6: The global structure in server program: PKserver.

¢ PKserver.numclients: is the number of client slots reserved for the registered

clients.

® PKserver.num classes: is the number of class slots reserved for the registered

clients.

® Pkserver.num objects: is the number of object slots reserved for the registered

clients.

® PKserver.door: is the communication state of the server (open, shutdown).

® PKserver.u.recvbuf: is the server’s buffer (used to receive request and send

reply to a client).

Client-Table

The client-table is used to keep information about the clients’ registration. The

declaration of the client table is shown in Figure 4.7, where:

e cltname is the client name.

e send_addr is the address of the client.

® obj_index is an array holding indices of objects in the object-table that is

currently using by the client.

e u is the running flags of the client. This flag is included in a client-registration
request sent from AdminClient. A user register for the client to AdminClient
can make a choice for the client’s running flag. The choice can be either ini-

tialization or unpickling.

1. Initialization running flag informs the PO-server to override the objects of

this client by the objects this client uses to do object-registration.

2. Unpickling running flag informs the PO-server to load the objects this
client stored at previous execution and send each one of them back to the

client for the first object-retrieval request for each object.

e numobjs is the total persistent object in the client program.

e numcls is the total persistent classes in the client program.

¢ timestamp is the time of the client registration.

48

struct CLT_TAB_SLOT {

char cltname [MAX_CLIENTNAME_LEN];
char send _addr [MAX_SOCK_ADDR_LEN];
SFlag u;

int obj_index[MAX_0BJS];

int num_objs;

int num_cls;

time_t timestamp;

} clt_tab[MAX_CLIENTS];

Figure 4.7: Client-table in server program:.

Class-Table

The class-table is used to store information of classes of objects currently allocated

in object-table. Each entry in the class table, Figure 4.8, has the following fields:

e clsname is the class name.

¢ num _objs is the number of objects in the object-table belong to this class.

Object-Table

The object-table is used to load objects from object-files or to store objects registered
or stored from application clients. and other information of the objects. The object-

table’s declaration is shown in Figure 4.8. where:
e objname is the object name.
e owner is the owner of the object.

e cls_index is the index of the object’s class in class table.

49

struct CLS_TAB_SLOT{

char clsname[MAX_CLASSNAME_LEN];

int num_objs; /*overwritten allowed only if O obj */
} cls_tab[MAX_CLASSES];

struct OBJ_TAB_SLOT{

char objname [MAX_OBJNAME_LEN] ;

char owner [MAX_OBJNAME_LEN] ;

int cls_index; /* index to class table */
int num_clts;

int dlen;

char *data;

} obj_tab[MAX_OBJS];

Figure 4.8: Class-table and object-table in server program.

e num clts is the number of clients in the client table that access this object.
e dlen is the length in bytes of field data.

e data is a pointer to the data stream of the object. Its size is equal to dlen and

its space is dynamically allocated at run time.

File header structure

When receiving a process-termination message from a client, all objects owned by
the client will be encrypted and then written to the file system, under a file name
defined as OBJECT_DIR/object_name.class_name.client_name.

Each file will contain non-encrypted information header as defined in Figure 4.9,

where:

typedef struct {
char clsname[MAX_CLASSNAME_LEN];
char objname[MAX_OBJNAME_LEN] ;
int length;

} file_rec_header;

Figure 4.9: File-header structure declaration.

e clsname is the class name.
e objname is the object name.

e lengthis the length of the data stream.

4.2.2 Security Implementation

The server does two things for security implementation: user-password checking for
AdminClient’s requests, encryption for object storage in files, and the restriction of
read-only (retrieving) for objects that are not owned by the client.

User-Password Checking for AdminClient

For simplicity, the client name of the AdminClient and its password are hard-coded.
This information will be checked for AdminClient requests as shown in Figure 4.10.
Encryption/Decryption

The encryption and decryption is applied on each byte of a data stream, using the

following equation:

if client name is "ADCLT" then
if password is not "pk" then
security_error
else
security_ok

Figure 4.10: User-Password checking for AdminClient request.

encryptionData = 255 — data

Hence. the decryption process will call the same routine as the encryption’s

data = 255 — encryptionData

It would be straight forward to replace this trivial encryption scheme with a more

secure system.

Loading/Unloading

Each object eventually will be stored in a file in /OBJECT_DIR/ directory. An
object’s file name must uniquely identify the object. The identity of an object consists
of object’s owner name, object’s class name, and the object name. It is important to
note that the owner name is the name of the client that is the owner of the object,
and the client name is chosen by the user for an application program that requires
persistent object services from PO-server. A user can run concurrently more than
one application program that requires persistent object services from PO-server, as
long as the user selects different client names for them. Hence, choosing the object
file-name as a composition of its owner name, class name and object name will surely

be unique. An object o0bj of class cls of client (owner) clt will be stored in a file named

Loading an object:
open the object file
if not exist
return error_object_not_exists
else
read the file header to get the data length
allocate memory space
read data block with data length
decrypt the data block
return OK

Unload an object:
open object file (if the file not exist, create one)
construct file header and write to the file
encrypt data
write data to the file

Figure 4.11: Algorithm for loading and unloading an object.

: /OBJECT_DIR/obj.cls.clt. Figure 4.11 illustrates the algorithms for loading (read)

an object from a file and unloading (write) an object to a file.

Object’s Authorization

Clients who wish to access an object owned by another client, are restricted to read-

only for the object. In other words, they are subjected to the following restrictions:
e They are not allowed to do a storing request for the object.
¢ They are not allowed to make a registration request for the object.

¢ They can register themselves through the Adminclient only with option unpick-

ling.

This implementation scheme is also used for concurrency control of the server.

4.2.3 Concurrency Control

The concurrency control of the server is done by serialization of the requests, object
authorization, and concurrent client restriction. In the current version of PO-system,
the server is a single process that queues requests and serves them in FIFO sequence.
Furthermore, a stored object can be accessed by at most one writer at a time. This is
sufficient to ensure consistency of the PO-system. In a more complex implementation
of PO-system, with multiple server processes, it would be necessary to serialize write

requests.

Serialization

All clients can run concurrently, but their requests are serialized on the server site.
Only one request is served at a time by the server. The queueing is done at the socket

level, so no extra effort is need for the server.

Restriction on Concurrent Clients

The reason for concurrency control for the server is data consistency. The object’s
authorization alone does not guarantee the multiple-write to an object in case the
same program is executed twice, one immediately after the other. Furthermore, if an
unauthorized client of an object is executing concurrently with the owner client of the

object. then the owner client may modify the object at some point of its execution,

54

and may create an inconsistent view of the object for the other client if the other client
does retrieving requests for the object before and after the modification of the object.
The server restricts its current clients not to have the same name. One program uses
only one client name, and the server does not allowed two clients of the same name
to run concurrently. Let say, client clt1 is running, for some reason, we want to
run the cltl again, when we register for clt1, we get a rejection message from the
server. saying that clt1 is in running state. For the scenario of the inconsistent view
of an object for two consecutive retrievals from an unauthorized client, we assume
that the client should be aware that between two retrievals of an object, the object

may be modified by its owner.

4.2.4 Resource Availability Control

There is a bottleneck effect for the design. Since the server is the sole process that
serves all its clients, the performance can deteriorate if there are too many concurrent
requests waiting for service. In order to prevent this possibility, the server limits itself
to serve up to a certain number concurrent clients (MAX_CLIENTS), and to keep up
to a certain number of classes (MAX_CLASSES) and objects (MAX_OBJECTS) in
memory. At client registration, the total number of classes and the total number of ob-
jects are checked to guarantee these limits. Live-lock may occur because of these lim-
itations. For example. if a client registers with max_objects set to MAX_OBJECTS,
and never starts running, then none of the other clients can register. In order to

prevent this, the server applies a time-out check if a client-registration failed because

count_cleanup_clients = 0;
time(&now);
for (i =0; i <MAX_CLIENTS; i++){
if (clt_tabl[i].executing == FALSE)
diff_time = (double) now - (double)clt_tab[i] .timestamp;
if (diff_time > MAX_WAITING_TIME){
cleanup_inactive_client[i];
count_cleanup_clients = count_cleanup_clients + 1;
}
}

return count_cleanup_clients;

Figure 4.12: Cleanup Client algorithm.

one of the limits is reached.

When a client register request fails because of the shortage of resources
(CLIENT_FULL, CLASS_FULL, OBJECT_FULL), the server will check all cur-
rently registered clients to do a time-out-cleanup as shown in Figure 4.12. If a
client who is not in executing state, and its registration timestamp has passed
MAX WAITING.TIME 2, then its registration will be canceled (clean-uped). If
client.timeout_cleanup() results in cleaning up one or more clients, then the server

will resume the client registration request.

4.3 Administrative Client (AdminClient)

The implementation of the client is just a sample program used to test its counter-

parts, the server and application clients.

2Defined in header file pkser.h.

4.4 Application Programming Interface (API)

Let us recall the API prototypes defined from Chapter 3. Three functions:
PK register object(), PK_retrieveobj(), and PK_store_obj() have the same
function prototypes (parameters). PK_terminate() can be considered to have the
same prototype, except object_owner, class_name, object_name, buffer all set to
NULL and *send_receive length is set to zero. All API functions execute the

following steps:
1. allocate send_buf.
2. construct application communication header.
3. move data from buffer to header->data.
4. set header->data_len = *send_receive_length.
5. send content in send_buf to the server.
6. wait for response from the server.

. strip header.

-1

8. set *send._receivelength = header->data_len.

9. move header->data to buffer for header->data_len.

10. free send_buf.

11. return header->msgid.

(W]
-~1

4.5 Sample Applications

There are four sample application programs each for one criterion of the data struc-
ture of the objects. Appendix A includes a document, named QuickStart and Test

Scenarios, as the demonstration document of the PO-system.

4.5.1 Simple Class Application Program

Program progl.cpp declares a class as follows:

class PK_road_vehicle {
int wheels;
int passengers;
char *name;
public:
void set_wheels(int num) { wheels = num ;}
int get_wheels(void) {return wheels; }
void set_pass(int num) {passengers = num;}
int get_pass(void) {return passengers;}
void set_name(char *name2) {
name = new char [strlen(name2) +1i];
strcpy(name, name2); }
char *get_name(void) { return name; }

void encode_send(char *buf);

Object data:

wheels : 18
passenger : 2
name : TRUCK100

A sequential format of the object:

data [18 2 TRUCKIOOJ

type ' int ’ int I string
Figure 4.13: A sequential format for an object of the simple class

void decode_recv(char *buf);

void show(void);

Since an object of this class has no pointer, and there is no parent class, a sequen-

tial format chosen for this object shown in 4.13 is sufficient.

4.5.2 Inherited Class Application Program

Program prog2.cpp declares an inherited class as follows:

class PK_road_vehicle {
int wheels;
int passengers;
public:
void set_wheels(int num) { wheels = num ;}

int get_wheels(void) {return wheels; }

39

void set_pass(int num) {passengers = num;}
int get_pass(void) {return passengers;}
void encodel(char *buf, int *len);

void decodel(char *buf, int *len);

enum type {car, van, bus};
class PK_automobile : public PK_road_vehicle {
enum type auto_type;
char *auto_name;
public:
void set_type(enum type t) { auto_type = t;}
void set_name(char *name){auto_name = new char [strlen(name) +1];
strcpy(auto_name, name);}
char *get_name(void) {return auto_name; }
enum type get_type(void) {return auto_type ; }
void show(void);
void encode(char *buf, int *len);

void decode(char *buf,int *len);

60

objectl object 2

parent class’ data [wheels 1 18 | [wheels 1 4

passengers : 2 passengers : 50

child’s data struck_size : 200 auto_type : bus
|__truck_name : TRUCKO] (__auto_name : autobus]

sequential representaion of :

objectl L]
18 2 200 TRUCKO1
type l int l int ' int l string
object2 [}
4 50 bus autobus
type l int i int ‘ enum ‘ string

Figure 4.14: A sequential format for an object of the inherited class.

An object belonging to this class will have to consider its parent’s data (the data
declared in the parent class) and its own data (data declared in the child class) as a
whole, the object’s data. The parent class needs its own encode and decode methods,

and so does the child class. A choice for this specific example in shown in Figure

4.14.

4.5.3 Acyclic Recursive Structure Program

A tree structure is created by program tree.cpp. A class is declared as follows:

class PK_tree{
char *name;

PK_tree *]1;

61

PK_tree xT;

public:
void set_name(char *name2) {
name = new char [strlen(name2) +1];
strcpy(name, name2); }
char *get_name(void) { return name; }
PK_tree(char *s);
PK_tree *get_left_ptr(void) { return 1;}
PK_tree *get_right_ptr(void) { return r;}
void set_left(PK_tree *left) { 1 = left;}
void set_right(PK_tree *right) { r = right;}
void print_tree(){
cout << name << "\n";
if (1 '= NULL)
1->print_tree();
if (r !'= NULL)

r->print_tree();

A sequential representation of the tree shown above is :

(AA'12 BBOO CC45DD 0 0 EE 0 0)

Figure 4.15: A sequential format for a tree structure

This is a kind of recursive structure. A choice of sequential format of a recursive
is discussed in Chapter 3. Since a tree does not contain any cycles, a tree traversal
algorithm, mentioned in many text-books, is sufficient for coding the encode and

decode methods.

4.5.4 Cyclic-Structured Application Program

Program cyclic.cpp reuses the declaration of a tree, but the cyclic structure is
formed as shown in Figure 4.16, by allowing pointers of some successors to their an-
cestors. The print method in PK_tree class is not suitable to use for cyclic structure,
because it will make an infinite-loop at run time. A new print_cyclic method will
be needed instead.

The cyclic-traversal algorithm discussed in Chapter 3 is used to code the encode

and decode methods. and also for the print_cyclic method.

63

A sequential representation of the cyclic structure shown above is :

(AA22BB36CC45EEOS5FF40DD31)

Figure 4.16: A sequential format for a cyclic structure.

64

Chapter 5

Assessment

The PO-system has been implemented and tested. The final demonstration of the
project showed the success of the project. However, there are still limitations. In this
chapter, I would like to discusss the success and limitations of the PO-system through
our test scenarios. The test scenarios include the tests of the sample applications,
the security, the application programming interface (API), the time-out clean-up

processing, the concurrency, and the consistency of the system.

5.1 Sample Applications

Simple tests were conducted with a single application at a time. The system has
been tested successfully with four typical sample application programs. Each of the
sample application programs represents one typical application data structure. The

data structures are simple, inherited, linked and cyclic structures.

5.2 Security

The security of the system is enforced by a password check for the administrative
client, the encryption/decryption of object forwards and backwards between server
and the storage media (disk), and object authorization.

The password check and encryption/decryption works well. Object authorization
has been tested with several application clients to ensure that a client can access
objects of its own and is restricted to read-only for objects of the other clients.
Testing results of object authorization are also sufficiently good with one exception.

The exception will be discussed below in Section 5.6.

5.3 API

A simple API written in C programming language is provided. Only application
programs written in a programming language that can bind with C modules, such
as C++, can bind to these functions. For application programs written in other
programming language that can not bind with cross languages option (i.e., not able
to bind with C modules), then it will be necessary to build similar API function sets

in their own programming languages.

66

5.4 Time-out Clean-up

A scenario where starvation may occur is when application clients do client-
registrations to the PO-server and never start running (inactive). Because after a
successful registrations, the server will reserve space (object slots in object-table and
class slots in class-table) for the registered application client to start at any time,
if the client does not run then the reserved slots will never be used by others. and
eventually, the server will be short of space for other client registration. So time-out
clean-up procedure is a procedure used to get rid of inactive client registration and
use the reserved space for a new client. This scenario has been simulated and tested

successfully.

5.5 Concurrency

The PO-system is designed for concurrent applications. The system has been tested
with several application clients running concurrently. The results of the tests from
the traces provided by all application clients were the same as each individual running
in series. However, the performance was not quite as good as expected.

In general, the more clients running concurrently, the slower the PO-system will
be. This is known as a bottleneck effect of the design, and it occurs when one server

process serves many client processes.

67

5.6 Consistency

The consistency of concurrent accesses of a persistent object is ensured by serialization
of requests and the PO-system’s user restrictions as set out in Chapter 3. The
consistency of persistent objects in the PO-system has been verified through a set of
the programs.

The outcomes of the tests conformed with the consistency of the PO-system as
discussed in Chapter 3. However, the first PO-system restriction, one process is
allowed to run a program at a time, is not enforced at run-time. The violation of this

by mistake will not be detected but may cause inconsistent scenarios.

68

Chapter 6

Conclusion And Further Work

The project gave me valuable, practical and educational experience. Nevertheless,

the final product is not perfect, and needs to be improved.

6.1 Experience

Persistence is an interesting research topic. The implementation of the project was
a valuable experience of research and practice for me.

[started the project by asking myself the following questions:

1. What is persistent data?
2. What are the existing solutions for it?
3. What can be a new solution?

4. What would be the advantages of this new approach?

69

5. What could be done to make this new solution more attractive?

[t was the answers to these questions that made up the primary goals for the
project: simple, user-friendly, secure and inezpensive solutions for particular appli-
cations.

The specific design of our PO-system relates to other issues, including concur-
rency. consistency, efficiency, object-oriented programming, data management, data
structures, distributed domain application, security. So the project also gave me
practical experience. The implementation of the project is actually programming
practice. The software development process starting from requirement analysis to
final testing has been practised. Feedback from testing was used to alter the design,
the modification of the design required the modification of the code and then further

testing, and so on until we obtained satisfactory results from the tests.

6.2 Advantages and Disadvantages

The PO-system shows great advantages for the enhancement of existing object-
oriented applications.

We chose synchronous communication to implement the PO-system, because of
its simplicity. A request sent from a client will always be responded by the server.
This synchronization scheme causes some overhead, especilly when data encryption
or decryption is required. The time taken for a request-response pair is proportional

to the request-processing time on the server site. However, the system still has many

70

advantages.
In general, the usage of the PO-system has the following advantages and disad-
vatages for its end-users:

Advantages:

e Programming language independence: the application clients can be written in

any programming language.

User-friendliness: usage of the PO-system is quite simple compared with other

existing systems.

o Security: the system was implemented with object-authorization, user-password

check, encryption/decryption mechanisms.

o Inexpensive system: the construct of the system is quite simple.

Disadvantages:

¢ Encryption and decryption overhead: the PO-server has to process the encryp-

tion and decryption when loading and unloading objects.

e Concurrency restriction: only one process is allowed to run an application pro-

gram at a time.

¢ Additional task for application users: two additional (encode/decode) methods
are required for each persistent class, and the coding of theses methods manually

is error prone.

6.3 Further Work

The project should be considered as a first version of a new solution toward the
persistent object issue, but not a commercial product. Improvement of the product

is needed and I would suggest the followings:

o Performance: This is the principal area in which improvement is required. Since
the server is the sole process that serves all clients, the server itself is the bottle-
neck of the system. This bottle-neck can be eliminated by creating one server
process to serve one client process. This modification will surely improve the
performance of the PO-system. The server program may not get bigger, but the
scenarios are more complex, because the serialization of requests on the server
site is not true anymore. This change is a major change, and may require the
revision of the entire server design to make sure that the new server can work

as properly as the previous version does.

e Client termination detection: It is necessary for the server to know when its
client terminates, for some reason, without sending a process-terminate request
to the server. One way for the server to detect this is to check periodically the
communication with its clients. Within a predefined period of time, if a client
does not send a request to the server, then it is considered to be terminated on

the server site.

o Security: Security applcation in the PO-system is too simple (user-password
pair verification for edminClient and encryption for storing data). Further-

72

more, the name of the AdminClient and its password were hard-coded, and the
encryption algorithm used only a simple formula (255 — data). A future version

can use more sophisticated mechanisms to do the job.

Application Programming Interface: although we keep saying that the API is
not part of the PO-system, we provide an API written in C as an example
for the users. C++ users can make use of this API without difficulty. For
programming languages that are compatible with C, users must build their

own APIL It would be nice to build similar API for other languages.

Aids for encode and decode methods: Fully automatic encode/decode methods
provision for the PO-system users is not our intention, because it is too com-
plicated. It is a solution that requires the combination with a compiler like A
Pickling-system or E language for C++, and hence language dependent. How-
ever, in order to ease the task of programmers in coding these methods for
persistent classes, we could provide some generic functions in a library that a

user can use in their encode and decode methods.

Bibliography

[Alm94]

[Cra93]

[DD95]

[GC94]

(Gro91]

(GS93]

[Hug91]

Almasi/Gottlieb. Highly Parallel Computing. The Benjamin/Cummings

Publishing Company Inc., RedWood, CA., 1994.
Daniel H. Craft. A study of pickling. JOOP, 5(8):54—66, January 1993.

Danilo Dabbene and Silverrio Damiani. Adding persistence to objects

using smart pointers. JOOP, 8(3):33-39, June 1995.

Peter Grogono and Patrice Chalin. Copying, Sharing, And Alliasing. De-

partment of Computer Science, Concordia University, 1994.

Peter Grogono. Issues in Design of an Object-Oriented Programming Lan-

guage. Department of Computer Science, Concordia University, 1991.

Peter Grogono and Philip Santas. Fquality in Object-Oriented Languages.

Department of Computer Science, Concordia University, 1993.

John G. Hughes. Object-Oriented Databases. Prentice Hall International

(UK) Ltd, 1991.

[MAMS83] Paul Cockshott Malcolm Atkinson, Ken Chisholm and Richard Marchall.

[Mil91]

[Pit97]

[Sch90]

[Ses96]

[Ste90]

[VC90]

Algorithms for a persistent heap. In Software-Practice and Ezperience,

volume 13, pages 259-271. John Wiley & Sons Ltd., 1983.

Mark A. Miller. Internetworking. MT Publishing Inc., 1991.

Robert I. Pitts. Learning to program the object-oriented way. SunEzpert,

8(1):36-71, January 1997.

Herbert Schildt. USING TURBQO C++. Osborne McGraw-Hill, Berkeley,

California, 1990.

Roger Sessions. Object Persistence Beyond Object-Oriented DataBase.

Prentice Hall, New Jersey, 1996.

W. Richard Stevens. Uniz Network Programming. Prentice Hall, New

Jersey, 1990.

Greg Voss and Paul Chui. Tutor C++, Disk-Tutor. Osbone McGraw-Hill.

Berkeley, 1990.

Appendix A

Quick Start and Test Scenarios

A.1 Terminologies

e PO-system: (Persistent Object system) is a persistent data management sys-
tem. It is implemented as a set of intercommunicating processes (programs),
in which one is the PO-server, one is the administrative client (AdminClient).

and the others are application (APPC) clients.

o PO-server :(PO-system server) is the server that provides services to its APPC
clients and its AdminClient. The services for APPC clients include registration,
retrieving and storing persistent objects. The services for AdminClient include

APPC client-registration, and PO-system “shutdown” request.

¢ AdminClient: (Administrative client) is the client that communicates with the

PO-server to register (client-registration) for an APPC client, or to request

a “shutdown”of the PO-system. AdminClient also provides means for APPC

clients to input client-registration information.

APPC client: (application client) is an object-oriented application (program)
client, running independently to PO-server, that requires persistent object ser-

vices from the PO-server at run time.

client name: is a string of characters used by a client to identify itself to the

PO-server. The name must be unique with respect to other clients.

PO-class: is a class in an object-oriented program, whose object(s) will have to
be used to register, retrieve or/and store to the PO-server during the execution

of the program.
PO-object: is an object of a PO-class.

Client-registration: is a request sent from the AdminClient to PO-server to

register (reserve space) for an APPC client.

Object-registration: a request for storing a PO-object sent from an APPC
client to PO-server with the object’s initialized value. This has to be done at

the beginning of the program right after the object has been initialized.

Object-storing: a request for storing a PO-object sent from an APPC client to

PO-server.

Object-retrieving: a request for retrieving a PO-object sent from an APPC

client to PO-server.

A.2 QuickStart

This section shows the usage and testing of PO-system step by step through sample
application programs.
1. Step 1: open a window to run pkserver:

cd /mnt/logicl /grad/banguyen/proj/

prompt> pkser

o

Step 2: open a window to run AdminClient and then register for some applica-

tion clients

cd /mnt/logicl/grad/banguyen/proj/
(a) prompt> adminclt
you will be led to a menu with a list of choices.

(b) select option: enter “1” in the menu shown in Figure A.1, because this is

the first time the client communicates to the PO-server.
(c) enter clientname
client name :progl

(d) enter the maximum number of PO-objects for the client (in cppl, there is
only 1 PO-object)

max PQO-objects :1

78

select a running option for the APPC client or shutdown server request
0: unpickling objects

1: initialization (first run of the APPC client)

2: ignoring pickling objects of the APPC client’s last run

3: shutdown PO-server

option : (0/1/2/3)

Figure A.1: AdminClient Menu.

(e) enter the maximum number of PO-classes for the client (in cppl, there is

only 1 PO-class)

maximum PO-classes :1

(f) enter AdminClient password (“pk” is hardcoded as the password of the

AdminClient)

Admin client Password :pk

3. Step 3:

open a new window to run the application client.

cd /mnt/logicl/grad/banguyen/proj/

prompt> progil

After the execution of progl. we can do the following:

79

(V]

. verify results through traces appearing in windows:

window 1 (trace for PO-server), window 2 (Admin Client), and

window 3 (application client progl).

. repeat step 2.1 to 3 again with different options (except option shutdown) to

see what will be in the traces.

repeat step 2.1 with option shutdown Pkserver through step 2.6 (step 2.2, 2.3,

2.4 will be skipped.) to see how PO-server reacts.

repeat step 1 through 3 with other application clients:

e prog2:
client name : prog2
max PO-objects:2
max PO-classes:2
e tree:
client name : tree
max PO-objects: 1
max PO-classes: 1
e cyclic:
client name : cyclic
max PO-objects: 1

max PO-classes: 1

80

A.3 Test Scenarios:

A.3.1 Simple Tests

Simple tests are done by running application client programs that do not access
objects of other clients, one at a time. If we go through the guidelines in the previous

section, we have tested the following:

1. simple class object.

o

inherited class object.
3. linked structure object.

4. cyclic structure object.

A.3.2 Concurrency

Simple concurrency test is done by running two (or more) independent applications
clients simultaneously, providing that none of these clients require the access of ob-
ject(s) of others.

That is to start the PO-system, and register for prol, prog2, then run progl,

prog2 concurrently in two windows and verify expected results with the traces.

81

A.3.3 Security
Object Authorization

Object authorization can be tested by running an application client that requires the
access of object(s) of other client(s) that are not currently running.

That is to register progll and run progll, then look at the trace to verify the
results (progll is the same program as progl, except that it accesses an object of

progl. Similarly, prog2l is the application program that accesses 2 objects of prog2.)

Object Authorization and Concurrency

The combination of object authorization and concurrency test scenario can be created
by running two application clients concurrently, one requiring objects of the other.
That is to register progl and progll, then run progl and progll concurrently,

and verify the results from the traces. Then test the same for prog2 and prog21.

A.3.4 Shutdown-Request

Select “shutdown” request from AdminClient’s menu to see if PO-system can shut-

down smoothly.

A.3.5 Time-Out Clean-Up

Time-out clean-up function will be called only when the server is short of resource.

We can create this condition as follows:

82

o Register for the first application client with high max PO-objects or PO-
classes (to simulate the out of resource condition for the next register of an-
other client). Wait for one minute for the time-out condition becoming true

(MAX_WAITING_TIME is set to one minute).

o Register for a second client with also high max PO-objects or PO-classes to

simulate a condition of out of resource.

ei. 1st max PO-objects + 2nd max PO-objects > MAX_OBJECTS (= 50)

or

ei. 1st max PO-classes + 2nd max PO-classes > MAX_CLASSES (= 20)

e Run the first client and observe the results. The client should get a return
code as it has not been registered, because its registration has been cancelled

by “time-out” condition.

A.4 Application Client

[n this demonstration. all application programs (clients) are provided (progl progl2.

prog2. prog2l, tree, cyclic).

83

If a user wishes to build up his/her application or modify an existing OO applica-
tion program to make use of this PO-System, then read this section and verify with

the sample programs.

A typical Pk client program should look like this :
// class declaration

PO_classl ..

main(){

PO_classl 0Obji, obj2;

int ret_code = 0K;

// register the objl
objl.encode(buffer_ptr);
ret_code = PK_register_obj(...);

// do first retrieve obj
ret_code = PK_retrieve_obj(...);

objl.decode(buffer_ptr);

/1.

// do last store obj

ret_code = PK_store_obj(...);

84

// inform PO-server that the execution of the program
// terminates here.

ret_code = PK_terminate(...);

Your program should include cpplib.h and bind with cpplib.o in order to call

the following functions:

int PK_register_obj (char *client_name,
char *owner,
char *class_name,
char *obj_name,
char *buffer_ptr,
int =*buf_len);

int PK_retrieve_obj (char *client_name,
char *owner,
char *class_name,
char *obj_name,
char *buffer_ptr,
int *buf_len);

int PK_store_obj (char *client_name,
char *owner,

char *class_name,

char *obj_name,
char *buffer_ptr,
int *buf_len);

int PK_terminate (char *client_name);

o client_name is the name that you use for AdminClient to register your program
to the PO-server. client_name can be any string but it should be different from

other clients.

e owner is the name of the owner of the object named obj_name of the class named
class name. If the client is also the owner of the object, then the client_name

and owner in the parameters should be the same.

o class_name (string) is the class name as it appears in the program.

e obj_name (string) is the object’s name as it appears in the program

e buffer_ptr is a pointer pointing to the buffer that contains the encoded data of

an object and buflen is the length of the data in the buffer.

It is the application programmer’s task to encode an object into a stream of data
in a buffer before doing an object-registration or object-storing; and to decode the re-
ceived stream of data into an object after doing an object retrieved. There are many
ways to implement the encode/decode methods. The ways chosen to implement the

encode/decode methods in the sample application programs are not unique. I do

86

not attempt to prove they are the best way for implementing encode and decode
methods. An application programmer should keep in mind that encode and decode

must be one-to-one functions.

Object A <==decode/encode==> stream of data of object A

Appendix B

Common Header File

/*

/*

/*

/%

/*

Project

Filename

Discription :

Pickling System
comuitls.h

Common header file

Ba-Nguyen, Tran

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/types.h>

88

#include <sys/socket.h>
#include <sys/file.h>
#include <unistd.h>
#include <time.h>

#include <errno.h>

#define 0K O

#define FALSE 0

#define TRUE 1

#define TMPDIR "/tmp/"

#define SERVER_LISTEN_ADDR "/tmp/PKList"

#define oops(msg) { fprintf (PK_output, msg); exit(-1); }
#define MAX_CLIENTNAME_LEN 50
#define MAX_CLASSNAME_LEN 50
#define MAX_OBJNAME_LEN 50
#define MAX_SOCK_ADDR_LEN 50
#define MAX_FILENAME_LEN 50
#define MAX_PASSWORD_LEN 50

89

#define MAX_BUF_LEN 2000

/*buffer length + msgid + client+class+obj names lenghts*/

#define MAX_DATA_BUF 2000 + (4+50+50+50)
#define FIRST_MSG_ID -1
#define HANDSHAKE_MSG_ID 0
#define REGISTER_CMD_ID 1
#define STORE_CMD_ID 2
#define RETREIVE_CMD_ID 3
#define REPLY_MSG_ID 4
#define LAST_MSG_ID 5
#define SHUTDOWN_CMD_ID 6

#define PROCESS_TERMINATE_ID 7

#define MSG_ERR 100

#define MSG_ID_OUT_OF_RANGE_ERR MSG_ERR +1

#define MSG_RECV_ID_ERR MSG_ERR + 2
#define MSG_RECV_LEN_ERR MSG_ERR + 3
#define MSG_CLIENTS_FULL MSG_ERR + 4

90

#define

#tdefine

#define

#define

#define

#define

#define

#define

#define

#tdefine

#define

#define

#define

#define

#tdefine

#define

#define

#define

#tdefine

MSG_CLIENT_EXIST

MSG_OBJS_FULL

MSG_CLASSES_FULL

MSG_CLT_NOT_YET_REG

MSG_ADMIN_PASSWORD_ERR

SOCK_OPENED

SOCK_CLOSED

SOCK_ERR

SOCK_OPEN_ERR

SOCK_NOT_OPEN_ERR

SOCK_BIND_ERR

SOCK_LISTEN_ERR

SOCK_CONNECT_ERR

PROTOCOL _FORMAT_ERR

SOCK_ACCEPT_ERR

SOCK_WRITE_ERR

GENERAL_ERR

UNKNOWN_TYPE_ERR

NEG_LENGTH_ERR

MSG_ERR + 5

MSG_ERR + 6

MSG_ERR + 7

MSG_ERR + 8

MSG_ERR + 9

200

SOCK_ERR + 1

SOCK_ERR + 2

SOCK_ERR + 3

SOCK_ERR + 4

SOCK_ERR + 5

SOCK_ERR + 6

SOCK_ERR + 7

SOCK_ERR + 8

300

GENERAL_ERR + 1

GENERAL_ERR + 2

91

#define CLT_NOT_REG_ERR

#define CLS_NOT_REG_ERR

#define OBJ_NOT_REG_ERR

#define OBJ_CLS_OWNER_ERR

#define OBJ_CLT_OWNER_ERR

#define PICKLING_OBJ_NOT_EXIST

#define STRING_SEPARATOR

typedef struct {

unsigned init_cls:
unsigned init_obj:
unsigned unuse:
} RunningFlag;
typedef union {
RunningFlag rflag;
int iflag;
}uFlag;

typedef struct {

GENERAL_ERR + 3

GENERAL_ERR + 4

GENERAL_ERR + 5

GENERAL_ERR + 6

GENERAL_ERR + 7

GENERAL_ERR + 8

)#J

1; /* 1 OR 3 => INIT CLS*/

1; /% 2 =>

30;

92

INIT OBJ */

FILE *sock_id;
int flag;

} SocketStruct;

typedef struct {

int msgid;

char cltname [MAX_CLIENTNAME_LEN] ;

char clsname [MAX_CLASSNAME_LEN] ;

char objname [MAX_OBJNAME_LEN] ;

char owner [MAX_OBJNAME_LEN] ;
}ComHeaderStruct ;

typedef struct {

int msgid;
char cltname [MAX_CLIENTNAME_LEN] ;
char xprogname [MAX_FILENAME_LEN] ;
char adminPassWord [MAX_PASSWORD_LEN] ;
uFlag u;
int num_objs;
int num_cls;

}UiComStruct;

93

typedef union {

struct {

ComHeaderStruct hd;

int dlen;

char data[MAX_DATA_BUF];
} com;

char recvbuf [MAX_BUF_LEN] ;

} cppDataComStruct ;

typedef struct {

char *clientname; /* progname */

char *sock_addr; /* /tmp/progname */
SocketStruct send_sock;

int send_msgid;

SocketStruct recv_sock;

int recv_msgid;

cppDataComStruct u;

char *format;

} Session;

94

Appendix C

API Header File

/* = */
/* Project : Pickling System */
/* Filename : cpplib.h */
/* Discription : header file needed for a C++ client*/
/* program */
/* */
/* Ba-Nguyen, Tran */
/* */

#include <string.h>
#include "comutils.h"

#define PK_output stdout

int PK_register_obj(char *cltname, char *owner, char *clsname,
char *objname, char *buf, int *sendlen);

int PK_retrieve_obj(char *cltname, char *owner, char *clsname,
char *objname, char *buf, int *sendlen);

int PK_store_obj(char *cltname, char *owner, char *clsname,
char *objname, char *buf, int *sendlen);

int PK_terminate(char *cltname);

96

EEE
SEEE

Er]
 EEEEETT

2l

I

|

e: 716/482-0300

716/288-5989

ochester, NY 14609 USA

hon
ax:

-@Cow

14
150mm
6

125

L 1IN L) \\JH-J}

© 1993, Applied image, Inc., All Rights Reserved

