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ABSTRACT

o

. ANALOG/HYBRID SIMULATION OF - NON-DARCY FLOW
- "IN ROCKFILL STRUCTURES

Peter Ludwiq Kotiuga

This thesis presents a one-dimensiona] analog/hybrid model for
-non-Darcyqf1ow in rockfill structures. The model is used to determine

the family of phreatic surfaces within the rockfili due to an exterhé]
X /

;

impact wave; the rockfill is bounded by an imperﬁiou§ core at the down-
stream end. . 3

The impact wave‘is classified as "slow drop" or "fast drop"
depending resgectiQe]y on whether or not the fall rate of the externai
‘wave is slower or faster than the maximum seepage velocity. The movement\'
of the outcrop point was'determined for the more complex "fask drop” case
for one wéve period using five fechniques: MIMIC, numerical, analytic,
approximate, and analog. The inputs were taken' from earlier experimental
data (reported by Nasser [35])for four rSEk types. ‘ |

The outcrop point movement represents a boundary condition for
the main model. The main model is based on the continuity and momentum

"equations for long, shallow water waves. These equations }hrm a system

of quasi-linear hyperbolic partial differential equations; the'mgthod of

¢+
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characteristics is'app]ied to'renaer the equatjbns stable from an error

- ' v

propagation point of view. .The time var%able isdisgretized to'produce
) N A - |
-ordinary differential equations in the spatial variable only. These are

solved iteratively to satisfy the zero normal ve1oéﬂ%y boundary condition , o

i I3

at -the core. ’ ' - b
‘ Comparisons with éxperimenta1 results are given where applicable i
. o " . N i
and readily available. , " !
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CHAPTER 1

INTRODUCTION

1.1 DerFiINITION OF THE PROBLEM

‘As a wave attacks a rockfill st%ucture, a maximum amplitude
reférred to as the maximum run-up and a minimum watér Tevel referred to
as the 1imit of rush-down will be encountered on the interface; these
two levels constitute the impact wavelheight. Part of the incident wave's
'kinetic energy is consumed in fhe uprush, part is reflected on the rock'
face and the remaining energy is trans%itted into the rockfill. Within
the rockfill the flow is usually in the non-Darcy reg%me and further dis-
sipation of the wave enengy occurs due to high damping effects.

The model used is based on a rockfill embankment with an imper-
vious core (Fig. 1). By the t%me the wave reaches the core it will have
1ost‘mo$t.9f its energy so that the transmitted wave height at the core
will be g}gﬁﬁfican£1y smaller than that of the impact wave. Simulation
of the successive phreatic Tine profiles Qouid provide a better under-

standing of interior wave motion. I

1.2 OBJECTIVES

The main objective of this thesis is to develop. an analog/hybrid

‘model to simulate the phreatic line profiles within a porous breakwater
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or a rockfill dam. A gontinuous-Space Discrete-Time technique is utilized
to generate a family of phreatic iines for given boundary conditions.

In determjning the oscillating phreatié lines within the
structure, the movement of the‘outc;op point re]ativé éo an assumed sin-
usoidal impact wave is utilized as an Entrance poundgrx condition. The
vertical rate of fluctuation of the impact waJe’is classified as eithér
"sTow" or "fast" dropping. A slow drop case is one in which the oscilla-
tioens of the external wave and the outcrop point are synoﬁymous. A fast
drop case is one in which a surface of seepage occurs at the rockfi]i
interface because the maximum’fa1] ye]ocity of'the internal wave is 1éss
than that Sf the external wave.

This study eémphasizes the digital and analog analysis of the
more complex fast drop case boundary condition and the subsequent genera-

tion of the internal phreatic surfaces for a complete wave period.

1.3 MoTIivATION

3

Very few attempts have been made using hybrid simulation for
specific engineering field problems governed by hyperbolic equations.
Vichnevetsky has published two excellent papers: one déa]ing with a
.river flooding problem and another simulating electrical-transmission
lines. Civil engineers have shown very little interest in hybrid program-
ming and hence there exists a ;héllenge to fi1} that vacuum. Due to.lack
of exposure to hybrid computing by most enginegrs, the fhesis will attempt
to present some of the frustrations likely to be encountered in solving.
problems,by this method. Since the method is solved from a civil engin-

eering point of view, many complexities of the system will not be empha-

sized.




. becomes a probleh. The two system equations are modified into character-

- wave entrance conditions. Analytic, numeric, ﬁgproximate, and analog

»

¥
s The importance of this study is manifested in its practical |,

application. Attainment of the stated objectfve could leacd to a more

rational approach for estimating the freeboard on the face and core of
a dam, thereby resulting in better control over the maximum allowable

reservoir 1eye1. Further, the height of such shore protection struc-

tures as gabion walls could more effectively be established. Tracing .
the unsteady water surfabe profiles is of va!ue in determining the,

pressure distribution within the embankment.

[ .
1.4 APPROACH IN GENERAL ~ - .o

?&

Analog‘computers can only inteqrate one independent variable
and since two independent variables exist (space and time), one of them

must be discretized. If the time is .chosen to be continuous, then the

method is known as Discrete-Space Continuous-Time (DSCT) or the Parallel
method. This method requires too many components if solved only-on the
analog computer or a special multiplexer! if solved on the hybhrid computer;‘
The method chosen is the Continuous-Space Discrete-Time (CSDT) or the

Serial method. There is an economy of components but error propagation

istic equations. These resulting ordinary differential equations have
ch;mumerisﬁcs of opbosite sign but are integrated in the same
direction. The development of the boundary conditions plays a
major role in the accuracy of the solutions. A separate

study of the movement of the outcrop point was m%de to provide the




N ¥ results are compared in the study. ‘The cont1nuous output derived from

the plotters yields a family of. curves showlng the unsteady water sur-

a

“ face profiles. . These profw]es are compared with the results obta1ned

by Nasser and McCorquodale [33, 35].
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2.2 Frow ReGIMES IN Porous Mepia

CHAPTER 2

LITERATURE REVIEW,

Non-Darcy flow problems have been treated by a few analytical-

or numerical techniques [19, 33, 35].

2.1 Score

-

Nasser [35] recommended that the aha]og simulation of long
water waves introduced by Henry [23] might be adapted to solving the !
differential eqguations governing wavé-induced unsteady non-Darcy flow.
This chapter reviews prominent contributions to the wave pﬁenomenon of
non-linear flow in rockfill structures and the hybrid imp]emeﬁtation of
hyperbolic partial d{fferehtial equat%§p5\£Z?E). The governing equations
are intro@uced after a brief description of \the nature of flow in porous

media. Different methods of solution of non-Darcy flow are then reviewed.

A summary of the various hybrid techniques deveTPped for hyperbolic

. PDELs is: presented, .the reasons justifying the choice o{ the method.

employed in this work are emphasized. -\ .

\
\
\

i

N

In-1856 Darcy first proposed his familiar law which expresses

the relationsﬁip between the 'macroscopic' velocity, q, and the hydraulic"

g
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gradient,- i, for. linear (or laminar) fﬂow in a porous medium, viz.

< x
- q = ia . . e ¢ D

°

where 'a' is a resistance coefficient.
It was not until 1901 that Forchheimer [16] published a paper
indicating that Darcy flow does not universally characterize flow in

porous media. He proposed the following %qudtion which incorporates both

Tinear and non-linear flow behaviour [1].

i = aq + bg? e e e e e . . (2.2)
\ N .
where 'b' is a non-Darcy resistance coefficient.
|

Other éxpressions for flow resjs#aﬁce in non—Darcy flow have
also been proposed [11, 1 : 31, 60]. fn equation 2.2, a large a/b
rat1o suggests a predominant;y laminar f]ow‘whereas a very Tow ratio sug-
gests turbu]ent flow. Transitional flow wou]d contain various intermed-
jate values Q__a/b There is another reg1on of non-Darcy flow where
extremely 16; flows exist. - Kovacs [29]'rep§esen§s this microseepage
regime by: ' |

-i:-io+aq P oeL.e e s e e e ¢ . 0(2'3)

where i, is a threshold gradient. - The var%ous possible regimes of flow

in porous media can be represented graphicalfy after+Kovacs as in

K}

Figure 2.1.

-

As the flow increases in the transitional regime, the viscous
effects decrease and_ hence the stable streamlines in the pores through
which the flow propogates, start to break down and the inertial effects

become predominant. In the case of rockfill structures such as break-

4
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waters, the interstitial spaces tend to‘be guite large, thereby furnigﬁ-‘
ing greater prbpensity for inertial than viscous gfféétsf

For the present study, both the coefficients a and b are
essent1al 1nputs The data available on different experin@ﬁta) values
is very 11m1ted " the va]ues determined by Nasser [35] were chosen for
convenience. Nasser used a steady flow permeameter to estab11sh the
Darcy and non- Darqyé?beff1c1ents, a and b. A least squares technique
was used to correlaieffﬁ/q and g in Equation (2.2) and deduce the
intercept a and the slope b of the line of best fit. Nasser also
pooled his data w1th that of Lane, McCorquoda]e, Dudgeon and Ng. Empiri-
cal or sem1—emp1r1ca1 expre551ons for a2 and b are genera]]y considered

constants for a particular medium, fluid and flow regime.

2.2.1 State of the Art on Non;Darcy Flow

A comprehensive descr{ptlgn of the studiesAperformed on Darcy
and non-Darcy flows can be foun& in»references [33, 34, 35]. The present
analysis has been main)y-influenced by the work of Dracos, McCorquodale,
and Nasser, ‘ o

Dracos [10] presented astudyof Tinear flow in an infinite rectang-

u}ar sandrmedium. He uses the classical method of characteristics to

solve the Darcy flow equations:

3 A 9 ' .
3% + U 5% + g 52 + mn-% =0 e e e (2.8)
an an N du .
3% + u X + (hO + n) ™ 0 e e e e s (2.5)

where m = porosity
g = acceleration due to gravity

-




horizontal pore velocity

u =
n= perturbatién height with respect to the mean water lével

hg = mean water level ) |
K = conductivity for Darcy flow. Ao '

His solution is verified by experiments performed in a He1e—ShaQ appara-
tus. He bresents the analysis of the movement of the outcrop po}nt, i.e.,
" the point atewhich the phreatic Tine intersects the boundary of the sand
medium. Dracos shows that the outcrop point movement may undergo differ-
ent phases depending on whether the maximum fa¥l rate of the phreatic

Tine within the rockfil}] structure is faster or éloﬁer than the fall rate
of the free water level. Nasser [35] extended Dracos' analysis to the
more complex non-Darcy flow regimes. Apbendices A and B d%ve the

detailed analysis and solution éf the in%tia]-value problem. Five solu-
tioq methods arq\igxggiigaxed and ;ompared with special emphasis on ;he
benera] anglbgﬂsolutiqn. Computer programs and plots illustrate the types
of possible initial conditions. ) . .
‘ McCorquodale [33] uses a finife element model to study the
problem of wafe propagatfanthrough a rectangular rockfill embankment
witﬁ an impervious core. He represents the tailwater piezometric boun-
Qary condition by a periodic function and uses triangular e]emgnts in
discretizing his so1uti6n domain. Afteh‘each time increment, the po;i- =

tion of the free surface is calculated from the known previous value

and the surface particle velocityvduring that increment. -~

Nasser [35] uses the method of characteristics coupled with a

finjte difference technique to great wave motion in porous structures.

8



equations r »ective1y as:

(R

v -

More recently, Hannoura and McCorquodale [19] combine the fin-

ite element and method of characteristics to determine the phréatic line

and internal pressure distribution corresponding to maximum run-up. The

results proviée useful information for studying the stability of seawalls

under both static and dynamic Toading conditions. They indicate that

about 60% less CPU time is Feqﬁired in comparison to the implementation -

of a purely finite element method.

~ The use of analog/hybrid techniques to solve this problem is’

t@issing from the literature. Some hyperbolic wave-type systems havé been

solved Sn the hybrid computer but none for porous media problems.

2.2.2 The Nature of the System Equations

Henny‘[23] bresents the digital applications of a method devised

orig%na]ly to facilitate the analog and hyBrid simulation of hyperbolic

PDE's. The method was originally used to discretize the space variable

1

and integrate with respect to time.- He considers the pr6b1¢ﬁ of tidal |,

. L : . ).
motions in rivers and estuaries and the response of coastal inlets to

tsunamis, both of which are long wave phenomena governed\by hyperbolic

equations. MNe introduces the continuity and general dynam%c equilibrium

<

oh, yoh, ,2u . - ‘
5t +u 3% + h ™ q e e e e e e e (2.8)
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Nasser, [35] introduces a porosity term and a representative

]

resistance term in the momentum equation. His equations in a matrix

™3
water Tevel
horjzontal .velocity

L}
lateral inflow.

= chaﬁbe] stope

friction slope.

form are: - < )
R
hg +M '
Fa 0 u/m
| 1 gm
, dx dt 0
0 T dx
where F =a+ bq

This is a hyperbolic system of equations; setting the 4 x 4 determinant

of the matrix of coe?ficignxs to zero yiéqhs the positive and negative

' .
characteristi

~

¢ equations:
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po= Pl = U "\lg(hOh‘) e (2.10)
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Nasser then determines the equations of motion along the characteristic

directions, o and B8, respectively as: . 0

‘ 7%? ( % + 2 Ng(hytn) ) =-¢gFfu on o . ... .. .. (2.11)
‘ . _dc_]t_:. (_l%_ 2 g(h0+n) ) = -gFu on o (2.12)

rd

He utilizes a finite difference approach to’reduce the time consumption
on & digital cgmputer.
. Nasser's basic equations will also be used,in this study with

the appropriate manipulation for a hybrid procedure.

2.3+ HyBriD MeTHoDS FOR HYPERBOLIC -PDES

In the 1950s when computers werg beginning to develop; the
power and relative ease ofﬁprogramming of analog computers 1ﬁ simdﬁation
studies presente& a sustantial advantage ovér digital tomputgré. Analog
computers were known for their speed, their para]]e] nature of operation,

their man-machine interaction, the continuous-output produced and their

ability to integrate, a feature of prime importance in differential equa- -

tions [4]. ' '

-

\
reducing digital hardware and increasing the speed, accuraqy and memory

|  Throughout the 1950s and 1960s, great strides gre made in f
I~ §
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capébi]ities of the digital computers. The theoretical aspects of numeri-
cal solutions of differential equations were developed so rapidly that
the digital computer was accepted as the general-purpose research tool.
More time and money was invested into the digitalﬂﬁarket so that fhe
analog simulations became obsolete to most researchérs. There are vir-
tually onfy a handful of analog computer producing companies today com-
pared with the many in existence in the i9505.

Hybrid ﬁomputers were produced in the early 1960s basically
out of economic moti%?tioﬁ. Analog methods tenqed to‘require large d
amounts of hardware while numerical techniques were often too time con-
suming. Hybrid computers combine the advantages of the analog computer,
i.e., speed and integration, with those of the digital computer, i.e.,
accuracy and memory capabilities. It must be remembered that the aﬁalog
computer can integrate with respect only to one indep;ndent variable,
Therefore, all the hybrid techniques for treating PDEs involve the reduc-
tion of the PDEs into a system of ordinary differential equations (ODEs).
These techniques will be described shortly.

qichnevetsky [54] suggests two reasons for pfeferring a hybrid
so]utiﬁn of PDEs to_the numerical solution:

a. the PDEs are only a part.of a larger systeh, where some other
p;rts are represented by ODEs and the use of an analog/hybrid
system has been dfctatea by over-all economic requirements;

b. dthe nﬁmerical implementation of the PDE, more or less by

itself, 1slprohibitive1y Tong and expensive.

-]

i

In these cases, hybrid computers have been shown to have the potential

! N . i
to be several hundreds of times faster and cheaper (per solution) than

*
A we = g i
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digital computers.
It is emphasized that the primary concern in this study is
not the economic justification of the use of a particular method but

rather the exploration of the potential for utilizing a technique not

waSley F BT

commonly adopted today in civil engineering practice. More detail
regarding the advantages and disadvantages of analog computers as well
]

as a description of their major components cip,be found in Appendix C.

2.3.1 Methods of Lines [54, 62]. r .

Methods of lines are those where PDEs are approximated By ODEs
along a certa%n uni-directional path of integrationror"line' within the
space-time domain. The path of integration may be along one of the
following directions (considering the space-time domain):

a. parallel to the time axis

b. parallel to the space axis

¢. along a characteristic direction.

The first method is the classical ané]og discrete-space
continuous-time (DSCT) method. It is also referred to as the Paraliel

. method since the whole system is analyzed with increasing time. Its

hybrid nature is mainly associated with the multiplexing of components.

The second method is commonly referred to as the CSOT or

Sl o 48 Lacy i T 3 RS

serial method. This method, which is'truly hybrid in natufe! will be
discussed later in greater detail.
The method of characteristics (MOC) has not seen much direct

application in analog/hybrid computation. However, the fheory asso-

ciated with the characteristics an&"their properties in hybrid problems:
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has been an important tool in the analysis and development of other
methods of lines {mainly for CSDT methods).

Schuchmann [46] presents a general paper covering all aspects
of analog, hybrid and digital simulation of PDEs. The PDE must be
redué;d to‘ODEs since only onhe continuous variable can be treated by the
analog computer. Independent variables can be classified as continuous
(C), discretized (D), or transformed (T).

McCann [32] observes that twq independent variables with the
above three classifications result 1in nine combinations as shown in
Table 2.1.

Since only one variable can be represented continucusly, the
first combination is no longer valid. The transformatiop of variables
(T) by Laplace or Fourier series was not considered in the present prob-
{em since the method did not get support from any/pﬁ the simulations of
practical problems in the literature. A DSDT (discrete-space discrete
" time) framework would be handled more easily on a digital computer. This
leaves the two main methods already‘méntioned: DSCT and CSDT.

Schuchmann [46] conc]ﬁdes that the PSCT method seems too coarse
for an application to flow and wave-type systéms and that the hybrid

CSDT method .seems to be the best for real time simulations of Ssystems con-

taining flow terms, i.e., hyperbolic equations.

2.3.2 DSCT (Parallel) Method [62].

This is the traditional technique used for solving PDEs. The
equations are reduced to a set of ODEs in time by using a suitable numer-
ical approximation for the spaée derivative and the resulting set of

- equations are solved in parallel.

5,
i
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TaBLE 2.1

. H
CLASSIFICATION OF 2-D PROBLEMS o ;

e

Combination Space Variable Time Variable
1 c c
2 c D
3 C T
*
4 D C
] D D
6 0 T
7 T c !
8 T D '
9 T T
¢

C = continuous

D = discrete

T = transformed

(.

“
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In principle this method offers the fastest solution yie]Jﬁng

time histories of the system behaviour at selected points in the domain.

T

The resulting equations are normally stable and the boundary conditions

are rapidly solved on the analog computer. The main difficulty arises

£
§

in the amount of analog equipment needed. Adequate accuracy requires
that a sufficient number of spatial grid points be provided, eaéh of
which must be represented by a set of differential equations. Even for
simple prob]gms, the equipment requirements can become excessive making
the method suitable only to the 1ar§est analog instailations.

Two important éontributibns are worth noting; Henry [23] refers -
to a paper by Hsu and Howe [24] in aeriving his numerical sectioning pro-
cedure. Hsu and Howe replaced the a11~para11e] analog solution with a
series-parallel combination. Instead of using many ana]qg components, -
by the}r multiplexed DSCT method, they employ a relaxation technique.

Their method involves integrating a subset of the continuous time finite
differenci differential equations for the whole period of timé and then
iterating through the diffgrent subsets'to satisfy the coup?ing solution,

This method is a special form of cell multiplexing; it retains most of

the advantages of the DSCT methoq except that the speed of solving the

problem is reduced due to thg iterative process. Hsu and Howe use the
jterative DSCT method to so]Qe various diffusion-type equations. Due to
the lack of a suitable hybrid computer systep, their soiution is simulated
on a digital computer._ Since their work is é pre]ihinary investigation
with manyvqnanswered question§ regarding implementation of field problems,

it was not seriously considered as a method of soluttpn.

!
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Wright and Muffi [62] utilized a multiplexed DSCT mefhod to
model the hyperbolic nature of unsteady fluid flow %ystems. Their prob-
lem dealt with systems subjected to time-varying flow, of compressible
fluids (quasi-linear hyperbolic PDEs). BecéUSe of difficu]t%es encoun-
tered ip the breakdown of solutions at sonic flow or stagnation points
(i.e. fluid velocity is zero),‘they concluded that the CSDT method 1is
unsatisfactory for unsteady compressible fluid flow problems. The
general consensus is to try the CSDT method first and then switch fo other -

méthods if it is not applicdble.

'2.3.3 Method of Characteristics

In the method of characteristics; at every point in the space-
time (x-t) plane, there are two characteristic directions in which the '
PDEs reduce to equations invo]vihg\tota1 differentials only. In these
directions, the equations are not éomp]icated by the, presence of partial
derivatives in other directions. This method is especially suited for
the\analyse;Jof ﬁ&perbo]ic‘PDEs since the two characteristic direc£1ons
are real and of opposite sign (whereas for elliptic eﬁuations, theré are
twdlimaginary.directions and parabolic equations yield two real and equal
directions) [48].

The stapdérd hybrid MOC solution inQolves integration along one
family of characteristics with finite differencihg along the other family
[62].‘ A subcomputer block of computing elements is required to integrate
alang one characteristic aqd hence N blocks ére necessary to handle N
charact;}isticst In addition to the minimum number of blocks needed to-

maintain numericaldaccuracy, the number of computing elements per subcom-

buter block can becomé Targe when the characteristics are. functions of

5 [ JRE G —— e e e




20 -

the solutions. Therefore, the MOC as a hybrid technique reassembles the
DSCT method in that it requires a large number of analog components.

Paul and Ahmed [43] developed a continuous-characteristics
approximation technique that slightly differs from the finite difference-
differential method described. In their pro;edure, the charactgristics
of the equation are used to scan and give aata”on the initial line, ghere—
by allowing the boundary Eonditipns of the problem to be introduced.

Although their subcomputer b]ocké contafﬁ more complicated
set-ups than the standard method, they note that there is a saving in
the use of fewer blocks and claim.that their method is an improvement
upon similar digité] techniques because of the increaseqﬁﬁpeed of integra-
tion and the continuous nature of integration élong one of the charac-
teristics. Paul et al present worked examples which deal with super-
sonic and compressible flows. The CSDT method ié'ﬁét recommeﬁded for
solving such problems as was noted éarlier. . *

‘McAvoy's [31] uses a modification of an error ana]yéis deve]—’
oped by BosgrdaﬁiBuis [5] which results in a perfect frequency response
relative to the exact solution. He concludes that the MOC can handle
problems where discontinuities may arise in the solution. The drawback
of McAvoy's method is that it does pot uée the full potential of the
hybrid computér, i.e., the integration brocess. In his somewhat unusual
hybrid implementation, the digital computer is used for function storage
and playback while the analog computer solves a system of algebraic equa-

tions and determines whether a storage point has been reached. It is

only hybrid in the sense.that the algebra is performed in paraliel.

[ N e - e e
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A mechanical distributed parameter system with a non-linear
force was studied by Eygita et al [17] using the theory of characteristics
and a finite dif%erence approximation technique. He comments that his
method is.very useful to such practical problems: his methog‘is not out-
lined in the paper but in essence it resembles the MOC finite difference ‘
differential equations. Upon determining the characteristic lines and

J making some substitutions, the second order system is reduced to simul-
‘taneous first order PDEs. These are then reduced to simultaﬁeous differ-
.ence equations by using certain transformations and’finite difference
approximations. Repetitive corrections are then carried out on the non-

linear friction force term. - This method is not generally applicable as

_Fugita suggests.

-

Gentina and ‘Cleret [18] propose a methad of solving hyperbolic'
equations using quasi-Tinear hybrid methods. They use McAvoy's character-
istic method to yield the boundary conditions of the problgm. They then
use a second method of integration using the boundary conditions stored
by the MOC solution to yielq the total solution. The second method‘of
resolution incorporates various speeds of integration and track/store

Y

devices. The method is not clearly presented.

In summary, ‘the MOC hybrid technique can be used in problems
where discontinuities may arise or in scanning the domaih of a problem to
determine the boundary conditions. This method’is not generally pursued
due to ifs Timited applications and fhe quantity of analog components

.

required. Thus, the most&viable and truly hybrid technique remains to be

" discussed.
y

&




2.3.4 CSDT (Serial) Method

‘'Since its introduction [26] in 1961, the serial method has
sfeadi]y been growing in popularity to the poigt that today it is the
standard hybrid appréach of computatioh. The method consists of.reducing
the PDEs to ODEs in space by a suitable numerical representation of the
time derivative. This reduces to a boundary value prob]em which must
be solved at each time step of the time-marching integration process [52].

CSDT methods are inherently dependgnt on the capabf]ity of store
and playback functions. This severely taxes thg[hybrid interface hardware
and the high speed of the analog computer is only possible to the degree

allowed by the time for information to be read in and out of the digital

computer. Therefore, this method is usually reserved for complex PDEs.

This method has the fo{iowing advantages over the classical DSCT
method [20]:

1. It allows for higher resolution and accuracy without a prapor-

tional increase in equipment and as such is important in dealing

with non-linearities in equations.

@

Greater use is made of the high-speed computational capabilities
of the analog éomputer.

The integration interval of the continuous space variable can

be controlled so that problems with moving boundaries are

"easily solved.

The major set-back with CSDT methods is the problem of error

propagation. Typical hybrid errors result from truncation of results

and inaccuracies in gnalog equipment. These errors can be controlled to

\ a certain degree and do not drastically_change the results. The CSDT

PR Y Bl ok w1 20




method has the disadvantage that the system equations are inherently

unstable, i.e., the errors will accumulate rapidly and become substantial.
Various techniques have been devé1opéd to overcome this drawback.

The target-shooting method consists mainly of iteratively

. e s T

correcting quessed values. It suffers from serious error instability

properties and is not frequently ‘used.

Calza-Bini et al [52] uéed a superposition technique whereby
the solution of the homogeneous equation is added to the computéﬁ solu-
tion 50 that the boundary condition is satisfied. The ergbr iﬁstabi]ity
is reduced because there is no iteration but the problem still ;xists.

Witsenhausen [52] expressed the so]ufipn as a functional or
definitg integral of the sgace variable with the use of Green's functions.

Vichnevetsky's paper [51] introduced the Decomposition Method g
in 1968 anq was in¥rumental in estabkishing the CSDT method as the
standard hybrid approach. ‘His method decomposes an unstable problem of

the second order into problems of the first order that can Be made stable

by the proper choice of the spatial direction of integration.

. The method can be best illustrated using & linear coefficient
parabolic equation, viz.. ; 3
3
- w2y (2.13) ‘
at "é;f s N , ..
.Discretizing the time yields . .
di,uj+'| uj+] u"j i ) \\\
- S e R 38 1§
dx kAt kit
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,L = T RRE e (2.15)
may be decomposed into the product:
‘ | _ |d d .
L= ‘H}" a% ax - aB) =Llptly e : (2.16) .
where aF : .__-l...._.__ . ap = _i__

’ B
Y KAt YKat

A particular solution of the system may be obtained by solving

two computationally stable initial value problems:

d Jj
Lpyr = a%l" aFyl =Y

- T(H— p F s s 4 s o » (2]7)

integrated in the forward direction (x = 0 to xmax) and

lgy= P2 %roy, L (2.18)

integrated in the backward direction (x = xmax to 0) or

dy2 Y2 - _ i
a{:;y + B y1(x)

The same analog cell can be used twice to represent these

equat1ons as can be seen 1n Figure 2.2.

Vichnevetsky also introduced an 1nterpo1ated form of Equation

2.13 to reduce the time-skew effect which results in a truncation error .
of order At. ‘ ‘ N
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where ® is the’ interpolation factor,
which is reduced to
d"u‘i+1 ‘ ujH ijj ¢
dx%’ - K‘jAt - - _G_R‘-AT -------- ‘- - . LY - (2'2}) *
LA
i satisfiks the recurrence relation :
B o 1 s S
D \UJ 1 = U‘] + 5 (U‘]+] - UJ) ............. . (2.22),~.
: S : T 4 .

A detailed analysis of thjs Process would show that a necessary and suf-
ficient condition foy time-marching stability is 1/2 <g<1. i
Latef in 1968, Hara and Karplus [20] introduced their CSDT

version for\so]ving PDEs with stable equations. A control function is

‘digitally gerierated and is‘imposed as a forcing function upon the analog

circuit. A steepest descent opt1m1zat10n rqut1ne is then used to m1n1m1ze
2

~F

the errors 'of the control forcing function. They feel, that the high speed
computational capabilities of the hybrid conputer, can offset the more
comp11rated f§§pt1ona] opt1m1zat1on prqb]em and hence more hardware, =&
introduced L their method * i. ' SN

The introduttion of novel computing serial schemes reached a
peak in 1970. . Vichnevetsky and Tomalesky [58] so]ved a time dependent
river pol]ut1on -probie which was bas1ca1]y an: thenSIOH'D} V1Ehnevetsky S
prevjous work In order to reduce the computgr time consumption, they
1ntroduced a techn1que by which truncat10n efrors induced by taking

larger grid-time steps could be corrected for in a semi-exact fashion.

In 1969, Vichnevetsky [53] intrhduced a different method appli-
S

éqg;e only to guasi-1inear hyperbolic problems. He presehted a second




order hyperbolic system, viz: o

] A - ‘ ‘
.%%»= f(u) -?&+ g(x.t\ e . (2.23)

where u is'a two dimensional vector of dependent variables, f.is a

squarg{matr{x of functions of u and g(x,t) is the external or forcing

function, thus, °

-

u1(X,t)

u = i flu)

uz(x,t)

ihe system can be transformed to its characteristic form:

oW

N

oW

f11(u) f12(u) gi(x,t)
) g
f21(u) f22(u) g92(x,t)

.
b

y 3t Al T G(xst) .. e (2.25)
where W is the ve!kor of transformed dependént variables '
A I is the identity matrix ' .

A is the vector of eigenvalues

¢ G -is the resulting forg¢ing functions, i.e., N

Wy(uy, up) . . ’ '
W= .. a2 AWy, W) Aa(Wy, W2)] o o . (2.26)

Wa(uy, uy) .

. Upon discretizing the time variable iniEqugtion 2.25, the

resulting boundary value problem reduces to two initial value ODEs with
s%able e}ror propagation propertfés. The équations are decoupled by a
time interlaced integrated scheme which can bé’!een in the computer block

diagram in Figure 2.3.

) | | I



J J - -1
dwy WP w6 s
A% AT N BT " Boundi:z gogd6t1on
. +] 3 1,,3-1
W= o -
kY
Y
ul y
J+ j o3 j- 2 .
dwy ° +.'Wg oo WL T L6 Boundary Condition
d(-X) - At A2t A2 in X = Xmax
1] -2 v
Wg‘]*] = %NZJ*:‘ . 1 wzJ 3 a

L]

' Fig. 2.3 — Computer Block Diagram of Interlaced Integration

- ‘ »
WY = wy (X, 1)

: 1 -

. 1 . '|
Wg*ﬁﬁwz(xstri)

- .

Scheme.

"
{A
.




‘.

tion is carried out whereby the equations to be solved at each time

.29 -
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Vichnevetsky uses a river %1ooding'problem to illustrate his
method. This method cannot ihdiscriminate]y be applied to the present
study despite the similarity in the problem definitions. This is due to
the fact that Vichnevetsky's flood wavgfhas no downstream constraint, 3
i.é., the wave is allowed to freely dampen out along its course whereas
the ‘'solution domain in the present study is constrained by the core which
not only iﬁhibits further f]o@ but also introduces wave reflection.

Vichnevetsky's method permits the decoupling of the discret-
ized characteristic equat%ons because the wav{ disturbances propagate
in different directions. His initial value equations are simpler tﬁan
the two poinf boundary va]ué problem at hand. An'iterative procedure
was found necessary to evaluate the downstream condition in this study.

André [2] suggested two methods similar to Vichnevetsky's.

In the first method, given first order PDES, a similarity transforma- ’

period on the analog are totafly decoupled ahd hence solved simultan-

\eously. In the second method, he applies the method of characteristics

[}

(MOC) to quasilinear hyperbolic equations. He uses increments in both

time apd space 91mensions and c]a%ms that accuracy is not sacrificed
at discontinuities. ~ -~ \ ' |

Né]son [38] presented a prelimina}} study into the use of
invariant bedding. ‘This technique is essentially a method Lf cpnvertipg‘
a two-point bgundafy value problem for a 1inear“system of ODEs to an

equivalent initial value problem for an associated non-linear system

of ODEs. A progress report on a digital solutiod’appéared later in the

year [39]. They felt it was a highly effective method for solving some
types of PDEs. : , \

'




‘This method involved taking both time and spatial increments (as did

Silvey -and Barker [47] presented a decomposition-iterative

method that uses one trial run and two correcting runs at each time step
to satisfy the boundary conditions Fo within b.] per cent. They felt
their method was more accurate -than Vichnevetsky's decomposition-
superposition method but at the expense of computing time.

Bosgra and Bﬂis'[5,6,7,8] introduced a directional difference
method which was generally applicable to sets of hyperbolic equations.
They found the deéomposition-iterative method very impractical and
searched therefore for a better method of solution. Assuming a suffi-
ciently smooth fuqction, they chose a point lying on a straight line

joining two solution points for whith the mean value theogﬁﬁ was valid.

André) and could be considered more general than Vichnevetsky's scheme.

By choosing the proper ratio of space-to-time grid sizes, stability could
be ensured for the }inite difference-differential equapions. Bosgra et al
present error analysis in both the physical and nuggricd1 sensé: the
suitability of the method as a too]'for the deve]dpment of new classes

of methods, etc. is dfscussed in subsequent papers. A cqmplex multi-point

hybrid CSDT difference approximation is introduced that eliminates the

problem of inversion of the coefficient matrix,as«wéll as the suitability L

probiem. . |
' In 1971, Nelson and Altom [40] published their hybrid solution

using their method of %nvariant imbedding. For the parabolic problem con-

sidered, they fgund their technique slightly less efficient (efficiency -

being measured by the number of operations) than the decompositibn-

superposition method but considerably more efficient than the decomposi- ————— ¢

tion-iteration method. They feel their method is at least competitive with

-
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other stable serial methods for some problems.

Appolovicova and Babirad [3] in 1973 solved a-general hyperbolic
system by a method of distribution. The resulting eguations and formula-
tions c1o;e]y péra]]e] the decomposition-superposition method. The dif-
ference lies in their definition of two optional and arbitrary functions
in the solution that must be chosen in such a way that the final solqtion
must’ fulfill the initial and boundary conditions. This method does not
appear_ generally applicable to this study. l

In 1974, Vichnevetsky and Tomalesky [59]‘presented a computer

*\\ealgorithm for treating hyperbolic PDEs with special application to the
simulation of electrical trqngm%;;ion Tines. Truncation errors cause a
spurious &iffusion term to be introduced into the problem. This papef,
¢imilar to the one in 1969, introduces a time-centered approximation which
results in a-new recurrence algorithm. Incremental values are transferred
across the interface to alleviate the effects of roqnd-bff errors.

0'Brien and Edge [42] in 1975 extended Vichnevetsky's work to
yield a hybrid solution of the water quality in an estuary. Their graph- '
ical results were very instrucfive.

Stockton [49] solved the wave equation in isotropic and aniso-

. Y
tropic medi$ by employing MOC. He obtains satisfactory results for the

isotropic case by using a predictor/corrector estimator for the unknown
boundary conditions. For the anisotropic case, he'imp1emen$s a method
whereby a solution is obtained from two computationally independent solu-
tions. He indicates that the hybrid procedure is significantly superior

to the digital procedure with respect to execution time. ~w >
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In 1976, Janac [25] presented CSDT methods to sé]ve PDEs in
several space dimensions. The schemes are unconditionélly stable with
no truncation error in relation to the space variables. He makes use
of the 'weak approximation' theory to approximate two-dimensional prob-
lems (in space) by two one-dimensional problems. He th?n uses a Crank-
"‘Nicolsen scheme [48] to deve]op the recursive equations. He solves the
boundary value problems for a system of ODEs (these can be solved in
parallel). He claims that a very fine space discretization is ‘possible
without accumulating larger errors and without the need for more accurate
computationg.

In summary the CSDT method is the most versatile, truly hybrit
technique but has a problem of computational instabitity. Numerous

techniques have been developed to overcome this problem, some Highly

specia]ized; others very general in application. In particular, the work -

of Vichnevetsky and O'Brien et al have influenced the present study. .

i
{
i




CHAPTER 3

THEORETICAL DEVELOPMENTS

This chapter will describe the development and modification
of the noniDargy flow equations to suit the CSDT ‘method of analysis.
The theory presented considers a }ectanqu1ar embankment; however,

sloping configurations would basically differ in the geometric treatment.

3.1 GoVERNING EQUATIONS

" The derivation of the basic continuity and momentum équations
for unsteady flow can be found in numerous references [9, 22, 35].

Fig. 3.1 shows an impact wave with a mean water level, hys

]

and a maximum amplitude, Ay, attacking a rockfill structure;x the
resultant interior flow has a horizontal velocity, u. Within the pofous
media, the wave gradually loses its kinetic energy due to friction; the
-height of the phreatic surface with respect to the mean water level is

termed n, so that the actual depth, y, of the phreatic surface is

y = ho +n N ¢ A '

-Since hy is constant, the differential héight of the phreatic

surface is \

| dy = dn e \ ..... - (3.2)
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The porasity, m, is the ratio of the volume of the voids to the

total volume of the medium and can therefore be taken as a measure of the -
actual cross-sectional area through which the water can flow. Hence, the

actual pore velocity, V, is

UV rewePNER

V = u/m [ P!

3.1.1 Continuity Equation

Henderson [22] gives the continuity equation for a long sh9110w

“water wave (Fig. 3.2), i.e.

aV
9y Yy =
st P L sx D=0 (3.4)
s Where: : . . *
D = hydraulic depth = y for rectangular channels ~ 3
x = spatial horizontal direction
t = time.variable.

Substituting Equations 3.1, 3.2, and 3.3 into the above equa-

tion yields the continuity equation for wave motion in rockfill:

an, fu) e, (h +n) 3lum) |
at+(m) 3 b O /’:2// 0 ...... (3.5)
or the equation given by Nasser [35], viz.
re _ .
B h +n) ’ ‘ ' .
an, fu)au, P00 au
at +(m) X + m 3X 0 e e e e e (3.6)

To simplify the analysis, it is helpful to introduce the celerity;—c;—
being the velocity of a wave relative to the veloﬁﬁty of flow. For small

gravity waves, the celerity is defined as:
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c = Qg(h0+n) T Y 2

where g = acceleration due to gravity

980.6 c¢cm/sec?

or

c2 = g(hg +n) S I )|

Taking the differential of both sides of the equation results in:

N\ 2 cde=dlglhg + n))=gdn ... . .. . (3.9)

or

dn=‘—29£dc e L (3.10)

Upon substitution of equations 3.7 through 3.10 into equation 3.6,

the. continuity equation reduces to the form:

W

: u ac . )
3t m x T om % 0 ... (3])

3.1.2 Equation of Motion

¥

Assuming a prismatic channel, Henderson [22] gives the équation

*

of. motion for unsteady, open channel flow (Fig. 3.3) as:

% g_‘é + %‘L%‘)’? + %Q So- St L. e . (312)
where o is the energy coefficient ;assumed to be unity)
So is the channel bed }/Iope -
S¢ s the energy line s]oée. )
\

) 1 e e
e AU LN 50
.
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Substituting equations 3.1, 3.2, and 3.3 into 3.12 and rearrang-
ing results in the following interior flow equation:

~,

- £ !
u . u mon - S -
3t ' m \+ 97 3x gm {So Sf)

>
The right hand side resistance term must be a function of the

osity, gravity, hydraulic gradient icgiarticle properties and\velocity.

Among the various resistance formulae awgjlable, it has been determined .-

[, 34, 315] that the Forchheimer equation is the most convenient qaé%ressi@tf

¢~

available, i.e. . v
i =aq +bg’

-]

Since thg hydraulic gradient is dimensionTess and suitably

describes the energy loss, it will be used6 to describe the slope terms

]
in equation (3.13), viz.

u

u P .
rrl 5)—(—+gm—q=—gm1

X

The hydraulic gradient can also be expressed as:

i=Fu
where F = a + blul. .-
The equation of mo}:\idn can easily be expressed in terms ‘of
velocity and celerity:
au ac

4 U du ac
§E+max+2°"’ax




&

. \
Both equations 3.11 and 3.16 are quasilinear ngﬂtial diffe;entia]

equations which when coupled formﬁkypérbo]ic system. This suggests that

V1chnevetsky s [53] special procedure for solwving quasilinear hyperbolic , ~

PDE's 15q apphcab1e to this study.

W -
tad * '

- -

3,2 BouNparRY GONDITIONS . Lo ‘

A time dependent function- that describes the movement of the
&

outcrop point is usw as the boundary cond1t1onaat the water rockfili
_interface. The derwatmn and solution of this time dependengfunctmn

is given in Append1x;J.\. Five solution methods are presented. The dis-
) cr’ete points cdmprising the ou-tcrop point curve are stored and us'éa as . "

the 1nput data for the boundary cond1t1ons described by the hyperbolic

a

f
system. . ‘

N 7

At the 1mperv10us c&re, the boundary condition of no normal
ﬁux is sfated, i. e. . the homzontal velocity must be zeros thus d

A .

) - ‘ Cultyx )= 0 .4 (3.17)

n
. ax’ | Fg

. : ‘! \
\ Because a boundary condition is specified at each énd of the

N s'ojut,vib'n domain, the phleznoménon is a bounday ‘value problem and there-

Y.
fore an iterative procedure may be used to satisfy the downstream condi-

. R . . t
tion of zero velocidy.
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5.3 In1tiaL CondITIONS .

o

Originally the water is considered totESatJestwith the reservoir.

Therefore, the velocity is zero and there will be no bertqrbation. There-

»

N
5y et <2

. fore the celerity of the wave initially is given as:

- % ’

¢(0,0) = ﬂgh0 ...... .. ... (3.18)

2.4 HyBRID FORMULATION /i,.

There exists a wide range of hybrid techniques tO/é;1ve‘fhe

existing problem but due to coﬁstraints‘of qpa]og hardware, efficiency,
. complexity, §tc., thg CSDT method was ch&seh. For the reasons mentioned
in Chapter 2, Vichnevetsky's method of 1%nes [53] was deemed beit sufted

invenalyzing the governing equations< J

’
3.4.1 Characteristic Transformation

°

. The conservation of mass (3.11) and momentum’(3.16) equations

can be written in matrix notation, viz. :
a' u u/m ¢ - 2cm 5 fu -gmFu .
= + 3 = \ . .. (3.19) s
cl. c/2m u/m c 0
The eigenvalues are determined by ig}ving for: -
det lTu/m - x 2cm s u 2
=AM-D b st =0
, c/em Cu/m- A} ’ - .
...... (3.20) .
or )
. Ny, © u/mt ¢ . .. (3.21) 8
D)
< >
3

e ——— .“ o T T ’ . se— }

L
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The adjoint-eigenvectors, w! and w® are defined as:

1 C 1

Wy oo W, =0
ot RS W o=0 (3.22)
which yield
wo= 1
v 2m
w2 o= 1 i
v ’ ’
\ -2m S e e e e e (3.23)

These two real matrices are linearly independent vectors. By
multiplying 3.19 by the transpose of w' and w?, two equivalent eqlations

are obtained but in a new set of dependent variables. This yields the

characteristic form of the-equations. For example, multiplying the

transpose of w! by 3.19 yields:

S o,u TS T k.
, ot Fomoax tame gy tamgy togp * 2uges

Ao (3.24)
Rearranginggthe terms and performing a little algebra yields
the integrable form:’ - /

%f (u + 2mc) + (u/m + c) 5% (u+®mc) = -gmFu . . .....,.(3.25)
/

¢ : £

v Rl RS et g v T



A similar expression can be obtained by mu]tip]ying the trans-

pose of w? and rearranging the terms, viz.
, g

a

PR TSR S S

5%—(u - 2mc) + (u/m - c) 5§~(u - 2mc) = angu ...... (3.26)

~

Equations 3.25 represents the forward propagation of a wave, |

Wy = u-2mc, at a velocity of u/mtc, whereas 3.26 represents a backward

5

wave propagation, W, = u-2mc, at a wave velocity of u/m-c.
)

The original variables and the characte}istics can now be

expressed in terms of the new independent variables W; and W,:

. . ' )
Wy + W . T ?
N u- = —‘—-—2—'— ............ (3 27) ‘
‘ ) w1 -~ Nz
s c = P (3.2%)
CS 2, ‘
1 Wy - W .
=gl e (3.29) ,
. My + W, ,
M= o= ym D (3.30)
t
: u W, + 3W, '
" A = m- c = T ........ ‘ v (3.3])
k.
é : ‘ Equations 3.25 and 3.26 can be expressed in terhs of the new ,
} . ' : .
i | independent variables, ie,




Vichnev.e'tsky states that an equation of the form of 3.22 is
computationally stable from the error propagation ‘point of view when
integrated in_the forward direction, iLe. from x = 0 to X = Xmax B
Equation 3.33 would then have to be .integrated in the backward direction,

i.e. from x = x to x = 0. In his example, the equations can be

max
- decoupled but in the present study such is not the case and therefore
his serial interlaced integration is not applicable. The two characteris-

tic equations must be solved simultaneously either by a matrix method or

by an‘i;erative procedure,

= . .
- ' ¥ 3.4.2 CSDT Formulation ) i

i Since the CSDT method is being applied,” the time is discretized

by .intervals of At. A typical time frame is expréssed as: '

f ‘ oot = jat e e e e (3.34)
where j =0,1,2, ...

The waves' are denoted as:

W= (o td) ' '
Wos w(x,td) e % . .. (3.35)
- \ -
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Introducing a backward finite difference scheme for the two time
derivatives results in the following discretization:

' 4

My, wjr'z - wll:;
SLLY B - R ... (3.36)

t)

. b
where subscripts 1,2 indicate the applicability of equation 3.36

to W; and W,.

Upon substitution of equatfon 3.36.into 3.32 aﬁd 3.33 and

rearranging, the fo]]owing equations are obtained:

. i \
] W .
dWy 1 - ] j-1 _ gmF .
M TR Y Y ot M 2%y (W, + W) .. .. (3.37)
oW .
- 1 j-1 _ gnf X
dx * Aa2At oAt W3 222 (Wh + Wy) ... . (3.38)

At time tI, both equatibn; 3.37 and 3.38 become ordinary differ-

~

ential equations with respect to the spatial direction x.

3.4.3 Solution Method ' ,

Equations 3.37 and 3.38 stétg that the dependent variables are
coupled with respect to wave velocities and Fhe resistance term. This
suggests that the equations must be solved simultaneously. This is -
achieved on a digital computer by utilizing a Runge-Kutta and/or a predictor-
co;}ector method fpr a system of ODE's. On an analog computer, the two
equations are patched up with the proper cross connections of the two

variables and solved in a continuous fashion because only one independent.

’
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variable exists. Both variables are updated from one time'frame to another,
The initial condition, ie. t = to, for the system in terms of

W1 andW2’i' . > /

u{0) + 2mé(0) 2m Nghg /

~——
1t

W2(0)

u{0) - 2mc(0)

-2mNghg .. . ... L. (3.39)

Because of the time differencing, the system can only begin to
be solved at t = t'. At this second time frame, the celerity is known

from the outcrop point movement but the macroscopic velocity is unknown, ie.

%

Wi(t?) = u(t') + 2m AJg(ho + plt?))

:-;r_-_g“* .-

Wo(t') = u(t!) - 2m NJg(ho + n(t‘)) R -1

\ Since u(t') is not known, it must be given a trial value such
that at the end of the integration of the two eqqqtions, 3.37 and 3.38,

the downstream boundary condition is satisfied, viz.

Wi (t?, Xiay) = - Nz(tJ,xmax) ......... (3.41)

If the trial value does not satisfy equation 3.41, a new guess
is required. On the digital computer, this is achieved by spe¢ifying the
Timits on the velocity, entering an initial guess and changing one 1imit g
depending on whether the velocity u (or (W, + wz)(z) is positive or

negative, and thereby converging to the correct solution. This Bisector

Search Method can yield a solution quickly if the initial guess is close

. \
enough (Fig. 3.4). - . A
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period of the outcrop point movement.

. on-the EAI 690 ana]ogfhybrid computer.

Once a solution is obtained- for a partibu]qr‘time frame, the
variables are converted back to the original parametérs to yield a plot
of the variation of the water level with distance, ie. the phreatic surface
within the rockfill structure.  The time advances one frame, using the ref-
erence values of W; and W, at the mean water level, and the procedure 1is

continued until a family of phreatic surfaces is obtained for one complete

This method was first programmed on a .COC' 6600/Cyber digital

computer to remove all the programming obstacles and then was implemented

. )'[

i

i

!

s
;
!
4
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CHAPTER

ANALYSIS

A number of methods were attempted to solve the characteristic.
equations of this study (Eqs. 3.32 & 3.33). Vichnevetsky [53] suggested
that his serial-interlaced solution could easily be implemented using a
standard Runge-Kutta 4th order subroutine. This would enable the program-
mer to obtain a fully digi%é] solution from which proper scaling of the
analog circuit could be es}ab]ished; thus, an accurate solution could be
determined and used as a check against the hybrid solution, This tech-
nique proved helpful in this study since the hybrid program was not con-
veniently edited with the existing facilities. It was as;ETed that once
the numerical program was correctly formulated, transferrring the function-
ing a]gqrithm to the hybrid computer would be relatively easy. Hence, it
is imperative that the digital formylation bé emphasized as a prelude to °
the hybrid solution; obtaining the proper algorithm presented the biggest

challenge.

4,1 PROGRAMMING CONSIDERATIONS

[ ' .
Vichnevetsky's [53] serial-interiaced solution was attempted

first to obtain some more information on the nature of the broblem. It was

quickly realized that a purely Runge-Kutta solution would be quite time

-'49 -
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| ‘ : A
consuming because the method utilized four function evaluations for each
value calculated. However, the method is a sélf-start one and can easi?y
be programmed. Predictor/Corrector methods only required tw> funétion
calls for each va{ue calculated for the same order of accuracy. Thus,
they were less time cOnsuﬁing but were nat self-starting. " Therefore,
the numerical integration was performed utilizi?g a2 Runge-Kutta method
to obtain the first four integration values and the solution was then
proPagated using an Adams-Moulton predictor/corrector method; the computer
pr&grams are given in Appeé&ix b.

It was also found that one defining function statement could

be used to model both characteristic équafions.

Vichnevetsky's method did produce a propagating solution but
it was noticed that: (a) the velocity term, u, was not satisfying the
zero velocity criterion at the core; (b) theuVelocity generated was too
high, %n fact unrealistic; (c) the damping of the water-wave at the
maximum run-up was minimaliand: in some cases the phreatic surface even
sloped Upwards (a physical 1mpossibility).. Further, the W, wave was
‘not adequately accounted for, \

In order to satisfy the downstream boundary cbndition, a term
was introduced to force the velocity to zero at the core. This method
was not acceptable even though it apbeared to generate a p]gg§3blé golu-
tion, because the system behavipur was far more complicated than the
forcing function indicated and there was instability fn the equations
that required very small space increments. To'éhis end, it was decided

<~ to re-evaluate Vichnevetsky's/work. - | /

b




Vichnevetsky's claims,were based on the definitipn of his problem:

the routing of a flood wave. Since he had no downstream constraint, an

input wave was 9110wed\to dampen out to its steady state value sufficiently

FENPRE WERS T

far downstream. His problem statement was consistent with the hydraulics

¢

of a flood disturbance generating wave fronts upstream and downstream

(W, and W, waves respectively). Hel integrated the‘Wi wave in the positive

downstream direction and the W, wave in the negative’upstream direction
beginning with his input at his original axis'as in Fig. 4.1. Hence, his
Wy and W, waves were also indepéndent of each other which was not the case
in the present study.

Because of‘the interdependence of. the equations in this study, '
both the variables W, and W, were needed simultaneously to satisfy the down-
stream condition; this is a typical-boundary value problem as opposed to |
Vichnevetsky's initial condition probiﬁb. .Because both Qariab]es had to
be solveg simultaneously, a‘more elaborate integrating. subroutine had
to be deyised. Instead of solving for each variable separately inaserial

fashion, both variables had to' be uﬁdated simy]taneously. This called

for g matrix sé]ution method or a trial and error procedure. The latter

method was used because of its ;onvenient 1mp1ementafion‘in th;'present
study: A typical slow drop case was used, for comparison purposes, in
model1ing all the problem features correctly. The range or ;he envelope
of the phreatic lines for one reference slow drop case is given in Fig. 4.2.

' Experimental findings []0{ 35] indicated that the water wave =~ .

continued to entef the breakwater even after the maximum run-up has been

reached, i.e.: the water wave velocity changes direction some time after

the crest has been reached. This can be sgen'in Fig. 4.3 which shows the

<
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Fig. 4.2 — Typical Envelope of Phreatic Lines for

Drop Case.
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' ,must necessarily dampen towards the~§9re, and

- .55 -

4

variation of the sign and magnitude of the velocity at the outcrop section

with respect to the input wave profile.

¢

The definition of thé velocity, u = (W, +W,)/2, suggests that

the W, and W, terms reach the same magnitudé at the core where the résult-

-

Sap s bt 6T

ant velocity is zero. Fig. 4.4 serves to illustrate how the W, and W, - v

. waves of representétive time exposures A and B must have sequal magnitude

bu opposite signs, i.e., W, = -Wa.- . 15}

As noted previously, Vichnevetsky integrated his waves in their

~
respective forward directions. When.this same procedure was_ uded in the

°. ‘present stﬁdy, it,was found that the velocity at the outcrop had ‘to be
zero to satisfy the downstream conditions. This was not acceptable. How-
ever, upon integrating the equations in the same positive downstream direc-

- 1
3 tion, realjstic vélocity distributions but unrealistic W, profiles resqlted.

e o < 4t

} Based on the previous discusgion, a quaiitative descri%tion of
the phenomenon can be formu]afed. Tﬁe solution must satisfy thg fo]]owihg S
conditions: (1) the velocity within the Foékfill mu§t~be.1ess than the -
max i mum fall . rate, V; 0(2) the ho}i;onta] velocity hﬁst chande'directioﬁ at
a time delay after the maximum run-up or minimun rush down; (3) the wave
(4) zero velocity at

the core must be maintained. ’ R SRS :
‘ J . ) ) N
. 5 :

. . <

< ‘
- . *
- . ’
L} :

.

?

4,2 TiME DISCRETIZATION

™~ ¢
ey

Explicit numerical techniques for solving PDE are generally
hampered by instability problems. Nasser [35) adopted the following stabil-

ity criterion for his finite diffqrence~formulation, viz,. =~ ¢
. .‘ ‘u - : 4 . s *
. \ ' \ ,

| n%, ” ' . . ‘0 s
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At 1 u !
K < —2" (IF + C) L I O L (4-])

£ N
where At and Ax are the respective time anq‘spétia1 increments. o

This criterion was not applicable in lhis study. ,
The numer1cal integration necess1tated small spatial increments 2.

“but time increments were determined. ieparately for the outcrop po1nt move-

ment. It was d1f?1cu1t to determine an upper Timit on the size of At.

The value of At used, based on-experimentation, ranged between .022 sec.

and 114 sec“;'depending on the value of the wave peraod, the average At 4

used was in the.neighbourhood of .05 sec. The vaHue of Ag was kept rela-

tively constaﬁt for any solution case to minimize ve]oqity fluctuations, -

With finite difference techniques, the solution should continue for a few

wave periods to ensure that the non-linearities are prbper]y accounted

for. The nonlineariti®s associated with the equations and downstream condi-

tiens were determined, in this study, by direct integration and iteration,

r;;pectively. The time effect was %qre difficult to analyzer \

Oridinally, it was fé]t that a backward djfferencing scheme

~wouhe logically account for the W/ot term in the governing equation:

x - TR (/at ngG) e e e e e e (4.2)

"

-

The main difficulty Was;dssgciated with the proper differkncing of the -

-~ w
term; . -
‘ R A T T U TI
at Atj At ) 3 0“" [} L] .; L ] L] N .

. - g v
where j dénotes the time period under study.

Sian the first tesm, i.é., wP ~, would be the continuous variable, the

problem shifted to the definition of the previous value, wﬁ“] . This

t

-
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term was investig;ted in numerous ways. Originaliy, wﬁ“ wds taken as
the previous initial value of w? for a working solution. This yielded:
unreasonable answers; only the -criteria of zero velocity at the core and
r;asonab]e vélocities in the solution were realized.

The next step was to store the complete previous profile to
better simulate the continuous nature of the problem. This did not
improve the solution but did in;rease the memory §torage requirements and
time consuﬁption. . /- ’

It was then reasoned that 'since all systems when left alone,
seek the stable sta;g, then successive profiles should not be compared
with each other but rather with the mean water level. This resulted in
more reasonable profiles but there was fo time lag of the change in the
directioﬁ of the horizontai velocity. A sample output showing typical
results for a half wave'period using this method is given in Fig. 4.5. )

The finat solution utilized a term that needs special explan+
ation. It is diffiCUlt to determine the. point at which the horizontal-
Qelopity changes direction but it is known thgl at the time con;:;nt ti,
ksee Appendix A),‘the water begins to leave the rockfill embankmenfu
It is assumed thét this is the point at which thqhﬁbrizontél velocity
will change. Simi]ar]y,‘the time consfant te defines the point at
which the external wave meets the outcrop point and both~rise together‘.
Thus, %his is the point at which water will re-enter the rockfill, pro-
vided ﬁhat\ te is greater than three quarters of the wave period.
Fig.‘4.6 répresents the region in which the water is leaving the rockfill
;t its‘maximnm'vertical veloéity (né% necessan%ly at a maximum horizontal

v@ocﬂyh»-
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Based on the assumption of change of velocity direction at

times t, and tc, W, and W, can be determired, viz.

wl(tl) = -wZ(t1) = 2m :\Igh(tl) | ¢ & o s e & o« o e s (4.4)
Wilte) = -Waltc) = 2m ,Igh(tc) ........ .. (4.5)

\
The initial conditions are also known, i.e.,

#

Wi(0) & Wa(0) = 2myfong ... ... . (406)

-

An assumpt}on is made of a constant w9‘1 along the length of the embank-
ment at each time increment since it§ variation with length cannot bé

known in advance. According to the preliminary investigations attempting
the storége of complete wave profiles, the difference in‘resblt did not
seem to indicate any s%gnificant change. Ig.simulate a change in the varia-
tion between the known values of W, and W,, 1ipear interpo]atfons of the
wﬁ" term wer; used. Tﬁese modifications were intrbduced into the hybrid
model. The fo{]owing three conditions pertain to the time discretization:

- ’ .
WH-] = (W (0) e (ty - t) + Wi(€y) s ty)/ts fort <ty ... . (4.7)

W = (t0) « (b= )+ Wa(te) - (t -t D
. for t1'<t\< tc‘. .« o e (4.8)

¢

-

D70 = (Wt ) (Er T-t) # Wy (t0) = (t-t /Gty 4 T-tc)
For t <t<tuT.. . (4.9)
\

. . . \
A curve representing the variation of Wy ! for one wave length is given in

Fig. 4.7. The value of t¢ should npt be below 3/4

e+ AT s o
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4,3 ANALOG/HYBRID PROGRAM

The hybrid program differs from the numerical prcgram in that
the analog circuit replaces the integrat%on routine and special library
subroutines must be called to activate the EAI 693 Interface Unit. Refer-
ences 12, 13 and 14 give all the explanations éf the use of the hybrid
FORTRAN software uSed.

The digital program reads in all the relevant parameters encoun-
tered in the program, makes any necessary -calcuations or checks, provides
a means of printing out digital answers,\and controls the operation of
the analog computer. The analog computer, Besides infegfating the charac-
teristic equations simultaneously, prgvides the means for obtaining the

-—

continuous plot of any of its variables for a given time increment.

4.3.1 Analog Circuitry .

\ Fig. 4.8 shows the pot and amplifier combonents comprising
the analog circuit used in. this study. The circuit can be subdivided into .
five sections as. illustrated in Fig. 4.9. Box B contains the A/D and D/A
signals required; boxes A aﬁd E.contain the circuits for W, and W, respec-

tively; box D shows the components shared commoﬁly in the characteris-

tic,eguations by ~A and E; and box C illustrates some components required\
for plotting. Select variables are included at the output of certain
amplifiers to'acquéint the reader with the functi®ns performed.

4.3.2 AnaJoq‘Sca1iqg O

At the outset, amplitude scaling posed a problem due to
the large values of W, and W and their small summations. The resistance
term a]sa presented a challenge. In this study, the values of W,,, never

*
i

Hantibinis
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greatly exceeded the value of the celerity which was direéi]y related to

the depth of flow. It was decided that a scale factor of 1/300 would

suffice in dealing with ‘the most extreme cases. This scale was thus intro-
duced throdﬁhout the solution, Since the output at amplifier A05 was
always small, its gains were incregsed to 10. Potentiometer P12 was then
multiplied b.y 30 to yield a scaled al’ue of m+b |u | at the output of
All. Potentiometer P06 had to be divided by 500 to obtain a pot coeffic-
jent less than 1.0. Thus, the scaling at the outputyof P06 was 1/15,000.
This neeessiteted P01 to be divided by 50 to yield A similar sca]ih;. P00
&had a value of 1/6 to maintain a consistent scale factor through in;egrator N
A0D. Fig. 4.10 displays the.scaling fractions at the appropriete loca-
tions in the circuit, -
The, problem did not need to be time scaled. . It was decided to * i
use a slow integration hime to better analyze the problem and ohtain

~ - B A
i ‘adequate plots, The time of integration can be chos¢n hccordiqg,;o the @
. * - i
needs of the prob]em . L\\) / . y

The output of,the analog computer cou]d Be measured cont1nuously

by a strip chart recorder or occas1ona11y by an XY/recorder The output

wou]d have to be properly scaled to give accurate Hesu1ts. There are two
sets of scaling in determining the output of a payticular component: the \ 7

-scalings introduced by amplitude scaling and tho e introduced by the p]ot-

ting machine itself. For instafce, amp]ifier 38 yields a scaled fraction 9

' “offthqﬁghﬁhuwi?’the depth to be solved for. he circdit currently t%kes
. . “Ef'j‘.?, W :
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<. . - 68 - .
» ’ ) - ‘\‘-
r, = - x
Ty .. 1 output of A38 S - 4+(300)* \ ‘\
! ° g 98 .6 16 m? :
Q a ' . 4 N . 0‘ 4
" | B = ,22&945’ [o&tput of A38] ¢
‘ 3 TS ot : F L . (4.15)
- N “ '
4

"The 1nd1v1dua1 graph would have‘to be scaled to the sens1t1v:¥y

‘s

and speed of the chart recorder or pen on the XY recorder. The whole aspect

of determ1n1ng the sca11ng factors and 1nterpret1ng output causes a great N

r-

inconvénience. Th]s a]so Jintroduces greateg chance for errors to be

introdueed into the_sclution. | 7
. ‘ v
The pot coefficients for this hybrad program are automat1ca11y

{ -
determ1ned in Subroutlne Pots included in the computer 115t1ngs of Appen-

-

-~

dix 0. =~ T . ~ - ' z

2 '; ';.' . :

.4 Resutrss ‘ S | ‘ *
- * * ' ' "

‘ -
The analys1s-of the outcrop po1nt movement covered in greater

ﬁ,f deta1l 1n Appendwces A and B, provwded excellent results. The success
oof the qna]og so1ut1on in treat1ng the full range of fast drop cases:
. » !
studied proved the uprth of the method asa v1ab1ea1ternat1ve'u>other more

. /7 popular techn1ques. Compar1son of the results indicate con51sfent1y exael-
TR ,
;0,;:, « lent agreement among ‘the various methods apphed d \. A

The analog solution neverthe1ess had- an:advantage over, the dtgital

sy

solution in that the contr1butxons of the various parameters of the damp-

ing equation (A 12) could be agalyzed. In particular, an investigation o
)carried out determined-the roles of each oflthe two resistance coefiﬂcients o~

0 a; ‘and b, .. This was easily done by disconnecting /pe outputs of pots P03

e

.

. anchoz representinl a, and b, respectively (see Fig. B. 1) Disconnect ing
. . . " ’ B




’

~

[

treat embankments of short lengths. .” -

pot P03 had no apparent effect while disconnecting P02 completely altered
the yascous damp1ng curve., (A typical case is deﬁ%cted in Fig. 4 11)
This 1nd1cates that the non- 11near damplng term b1 s more prominant in
the so]utnén and therefore the “interior f]ow'1§ tru]y non-Darcy. This

behaviour could be deakrmined from the digital solution but not in the

same dramatic fashion. This is™attributed to‘the'fact that analog compu-

ters, ohéeup}dberly'sca]ed, would be more flexible in studying changes in

the' parameters. The analog solution was more- interactive and better simu-
] P ’ . L

lated the physicdl nature of the outcrop Point movement.

7

’ With the'encodragiﬁb resu1t§ of the odtcrpp point movement, a

Jimited attempt was,made to broceed t6 show how the hybrid analysis can

be” extended to simulate the interior wave motion. A digital formulation
. . )

3
.

Was tﬁen“deve]oped to furnish a basis for the hybrid simulation (see Appen=.
. L.

dix D). .It is noted that the digital program in its present form-can only
. . N -~ ‘ \

The results of twh typical cases are prggented. Fig. 4.12 gives

ngrtlnent information about case H-2 (see Appendix E far deta1ls on the

s te

organ1zat1on of the data);, and Fig. 4/13 show$™ a plot of its Outcrop Point

'quément;\ Fig. 4.14 illustrates the family of'phreatic profiles obtained

from one wave period} Similarly, Figs. 4.15 through 4,17 represent results

for case K-2. i

*, The genéral nature of .the phreatwc profi]es conf1rms the trends
obserVed by Nasser [35] Fig., 4.18 shows‘fhe variation of velocity at
the outcrop sectien for one period. Sample output of th; wave.profi[e
is given in Table 4.1. It .can be'seen that thé‘yelocity nevep exceeds

the maximum fall' rate. ; P
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- -

| ,
| - A CASE H-2.
’ /-
6 I VEN CALCULATED
[ N
A = .0170 APRIME = 8.1017 .
8 = « 0330 BPRIME = 766433 '
PERIOD = 2.6300 TSR = 1.0151
POROSITY = e 4860 TSR1 = 1.6149
‘GRAVITY = 980.6000 HYD. COND.(K) = 5.2533
SLOPE (RAD) = 1.570 [FREQUENCY = 2.3890
< AMPLITUDE (A0) = 6o * . 'TANGENT PT. = 41,9407 .
- . DEPTH (H) = 38. MAX. DEVIATION =\ 11,3974 -
Y(Q) = 35.4567 VEL(OF = <10.8092 AGCEL(0) = «0168
W o= «7541 DEL 701.7189 PK (X) = 11.6'052‘
¥4&¥!l4¥llt’%l!!-'»l-l-!-‘l4!4;!!'4!4!!¥l¥¥’¥§¥¥!¥!¥!~¥\¥l'~¢l§‘¥&
POT SETTING KO = 17(45,) °
F fee /) ceecaa- KL = 1/(154)
BETA = 10,
PCO «0333 \
7206 : .
116.6488 .
8.1017
2.2890 *
2.3890
) Y 41333 .
2402 -
BlLiy
.1000 'y
«1000 ,
210.5157
«1000
L . "«1015 . ¢
. . .1615 ¥
\\ P X2 X &!;‘!l;%!#!#l#‘l"!\*!l ‘4.¥¥¥‘¥!¥¥%f!‘!¥!!!l!"!!!ll
4 SECOND ORDER DIFFERENTIAL OAMPING
L FOR|H = .00800 AND N = 7 T
. - % DIFF
NUM ANAS APPROX YooT ANAL, APPROX
146149 35,4567 35,4603 35,4567 =.7206 -.01 0.00
1.8709 3448534 34,7815 35,0027 -.7128' .21 A
147269 3442643 34,1564 345487 ~-.6867 e31° .83
) \ 1.7829 33.7050 33.5962 34.0948 -.6418 «32  1.16
’ 1.6369 33.191‘0 33-1110 33-6‘408 "‘577‘0 .2‘0’ 1“-35
’ ' 148949 32.7410 32.7097 33.1868 -.4910 10 +1.36
. . 149509 323740 32.3995 32.7328 . ~.3779 =.08 1.11
', . 240069 32.1168 32.1860 32.2788 ~.2263 -.22 50
i 240629 32,0150 32.0731 31.32u4B 0067 =,18 =.59
’ - . ’ ‘ . ‘
Fig. 4712 Perinent Data for Case H-2 ‘ )
» ) l ) ’
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Vo é
CASE K-=2
6 I VEN , CALCULATED

A = <0100 APRIME = 3.6969
8 = .021¢ BPRIME = 2.9268 .
PERIOD = . 2.6206 TSR = « 9065
POROSITY = 3770 TSR = 1.7135
GRAVITY = 980.6000 HYDe COND.(K) = 6+.6667
SLOPE (RAD) = 1.5708 FREQUENCY = 2.3982
AMPLITUDE (AQ) = 13.0000 TANGENT PT, = 40.7065
DEPTH (H) = 30.0000 MAXe DEVIATION = 71420
Y(0) = 2644356 VELU(D) = ~-17.6835 ACCEL(O) = LT
N = «5672 DEL = 137.3000 PK (%) = 274603

LR LRI Y I R I N Y P Ty Y Yy ey SREEZF B RANNERE SR S RS SRS E LRSS

1/71(45,)

POT SETTING KO =
- . 7KL = 171254)
' RETA = 10.
a POY «0556 . >
PO1 .7073 A
. PC2 73.1701 ’
/ P03 3.6969
. PQS‘ 2!3982 * .
'; Q07 2.3962 '
. PO7 .2889 .
. ‘ P08 «3930 .
°. P10\ - 06667 '
R P31 <1000
L P35 «1000
R, P36 2447140
' P62 " <1000 )
X P64 .0906 X
P9 1714 '

.

*h

N

- J

¥

(XA R R Y )] "i##l“-#‘ L X 4 .l'.!‘.‘Olll'&!”‘l!!l!!!l'#“""4!4

SECOND ORDEhLDIFFERENTIAL DAMPING

FOR H = .00900

AND N = 6

TIME NUM ANAL ‘APPROX
1.7135 5875 <5876 * L.587S
1.7675 «5663 « 5640 5715
1.8215. 5453 +5413 +5556
1.8755 5249  .5199 «5397
1.9295 5053 5002 5238
1.9835 <4868 « 4826 «5079
2.0375 <4699 «4676 ' .492¢
2.0915 4549 o 4549 00161
2.1455. olls 24 NYT 4601
2.1995 <4334 6392 NYY
282’ 05363 2083

242535 ‘
Fig. 4.15 Pertinent Data for esse K-2
\ ) g.

[}

7 DIFF

YOOT ANAL APPROX
=-e7073 -«02 «00
- 7040 «39 .«93
=+6915 73 1.89
-«6690 ¢35 2.83
~e6361 1.01. 3.67
-+5918 87 Le33
~e5345 ,o53 “o’ﬂ
‘o“51& ‘o°1 “cﬁs
-e3691 ' -,70 b0t
=e2462 =1.43 2»58
~0626 1,089
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‘the points on the maximum and minimum phreatic envelopes with those deter-

‘to treat wider embankments by resorting to" a non-dimensionalized form of

The validity of the digital formulation was tested by comparing ,

'4

.

mined experimentally by Nasser*{%% . It can be seen from-Table 4.2 and
Fig. 4.14 that there is excelfent agreement for the maximum envelope whereas ,
the valu S of the m1n1mum enve]ope are con51stent1y lower than thé exper1-

t

menta] results:

Tables 4.3 and Fig. 4.17 reflect the same discrepancies for . p
S ! . to N
case K-2. A closeMagreement with the experimental results can be cbtained
L}

if an asymmetric wave form is used to 'describe the impact wave.

* . It is believed that the digital formnlagibn can be beﬂﬁ;improved o

‘the governing equations. Further, non-dimensionatization ef the equatlons
would lead to a n&re versatile program. A poss1b1e non-d1m€‘§1onal form
is given in the next section.

:It was not ‘possible to test ;he hybrid program for interior '

wave profi]es\Qecause of hardware malfunction, . \ 1

U5 THE Proposep Non-DiMENsIONAL Form

The original differential equatipn can be written as: I

7‘ ’

) : dwl,{_ - m B Awl,z ,w1+wz W« Wo * ‘
o dx .75w,,2¢ W, ot T 9"’(3 b |17 "2 S
~ ) . ’ Lo Y . E
& . "' L N ) s . (4.]0)

‘ v . .
The variables, W, and W,, have the units of a velocity. Thus, the best

- m—t

term to serve as 3 reference would be the éeIerity corresponding to the
[ ¢
mean water level, i.e, ¢

' o
. v N
A




. 1.
Table 4.2 Comparison of Results for Case H-2

Theoretical, Depth’ Expem’men\ta] Depth

Fa x

Distance | Maximum  Mindmum Max i mim Minimum
(em) | (em) = “gefcm) (am) (am)

< -
7

0.0 44.00 | 32.06 45,00 |  35.50
2.5 43.07 32.06 ' 43,30 36.50
R 42.70 | 32.06 7 43.00 36. 50
7.0 42.66 32.06 43.00 36.00

Table 4.3 Comparison ef Resulfs for Case K-2' o
Theoretical Depth Experimental Depth §
\

Djstanée Maximum Minimum Maximum  Minimum
\
(em) | (em)  (cm) _ (cm) (cm) =

[

0.0 )) 43.00 1949 43,00 |. 26.00
XS5 _/ 41.20 19:90 43.00 26. 20
8.5 40,66 19.99 40.80 . 26.20
6.5 | 40.53 19.99; 2.7 |  26.70




- ) (4.11)-
'Q .

e o

. \ .
The\spat1a1 and time- variables are'be§$~descfiﬁ§8,in relation to

the length of embankflent, L, and wave béribd;-T, respectively. <Therefore,
N» * ‘ X ' ' ’ L
, = g N C A
% . L S S ( ) P
- . 6 R . “ . \
N . - A ; N
; prr= ARy “ Ced e (8203)
+ i ) ” & "p’ ;\l ’
v ’ / ‘ v , h
The two remaining terms aret“gma and gmb..with units of (time)'] and

respect1ve1y, suggest]ng the Jast two dimensiorless groups to

(length)
> . be gmaT '‘and gmbL,.. Thus, the d1mens1on1ess, govern1ng character1st1c
-~ equation for W, is: e "Qo e ) . ‘
..’ o ’ ] Lo - ) r o - .-
dWi* -m’ P A k; o]} fur v w2} |
o " mweenE |t (9'"‘”‘ 9"“’}" .0\ Z /|
. . o . . o ‘
° / . "' 3 ; A e e v e (’4.]4)
;" ’ A A : “ oot
f w\\\‘ .. ,,? w ¢ —_ - ’-:
L ¥ e
A similar expression for W. can be obtained by interchanginé W and W .
o, '
I},6. GENERAL REMARKS . ‘ . ;
! “ R . .‘J

Chapters 1 and 2 sumnarize the reasons for attempting the method

2 e
f\ of solution used in thls §tudy’but this section w1]1 coacentrate on speci-
'z
fic frustratvonsic1v1] englneers might encounter in purswing ana%@glhybride

’

1
S

simu1ation for the analys1s of their probTems. @ of the setbacks are !
) :

loca11zed while others are of a unlversal nature’
A d1sadvantage of the hybrid computer is that the accur cy .

of the so\ution is governed by the.least accurate electronic coupaneng.

.
~
v . f
. . -, ’ O
. . e ,
N “'.
. . .}"»
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Further, a malfunction in one componént can affect the entire solution, ﬂ
° An apparent error in the time delay sagrdgtinelca]1 from the diditél.
) ' .f\compﬁter‘prevented the reporting of any\spécific analog/hybrid results for
the gimu}§tion of the interior wave. Thé hyperbolic nature of the gquations
‘plus the interactive procedure required prevented the manual implementation.

-

of the program on the .analog computer only. This reinforced the need ?br

hybrid simulation for the preSent study.

W’

Literature dealing with analog/hybrid %imu]agion‘has made few
inroads into making enginegrs aware of its potential. .Most of the books
written date back to.the late 50’§ and early 60's, suggesting no substan;
tial growth of the hybrid simulation field. Most hybrid techniques have

- only been developed within the Tast decade so that good references are hard
4 . . to pome by. \

At the'same tiﬁe,.there are few people who are actually us{ng ’
hybrid!computers to'simu1qte ;DES and therefore'theré is little or no
exchange of idgés or feedbaqﬁ among the users. Further, equipment f§s
seldom updateﬂ and hence teéhnologida] advances in hardware ha&e,very
little impact on the market. .

Civil engineers would have to become more familiarized with
basic electronics'jusi to develop é'fjner sense”of the 1imitations and
the sensitibity of the analog component hardw§qe.

A crucial €eature of analog simﬁ1ation is the scaling of~thq
circuit to ensure that np compgnents overload. This often requires

r a digital solution to determine the range of variables and hence the

. scale factors. The circuit must then be scaled at.every component.

L

«

o e < 3 e W

This.becomes difficult as the complexity "of the differential equation
/ , Lo : .
; increases. . ‘

v Y
’
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Since the circuits have to be ﬁhysicq]1y patdhed\o;\}\Rétch panel,l.
the progr;m has to be checked bé%ore using. This is done py a stgt{c
- check tést. This necess%tates storing'ana1og circuits which presents aﬁ
inconvenience as far as other users are Eoncernéa.

The facilities at Concordia have rather unsophistibated methods

»

of loading the digital progfams required for the hybrid simulatson.

Creating or editing files are not conveniently done.-

i i v % i .

There ~are many qyestioﬁs as to the future of hybrid computa;
tion. Rubin gt al [45] present a vefy optimiﬁtic view; they mention the
development of a hybrid programming language calléd SIMTRAN whose objec-
ti&e‘iggfo Tower the fiied cost of progfam preparation,ldebugging and ’ s

checking. This would considerably. Tower the brbak-even péint in relation

_to digital computers (see Fig. 4.19). SIMTRAN would enable the hybrid

/

user to enter his source program in a remote batch terminal and have /
' /

cal programming and check calculations done automatica11y. . ‘ g
‘ {

Rubin et a1%bresée the features‘of next generation of hybrid
computers to include autqmafic-patching, high language programmability’ .
and local and remote, terminals. This would decréase the variable cost
of simulation to produce even more efficient combuférs. Far down the
road, they expect hybrid computers to contain smaller circuitry, Have

Tower costs, more integrators and faster speeds (Fig., 4.20). . .
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CHAPTER 5 |

*

. CQNCLUSIONS AND RECOMMENDATIONS | - ‘

¢

5.1 ConcLusioNs -

D e I

Based on this study, the following conclusions are drawn:

1. A combination of a Runge-Kutta and Adams-Moulton predictor/éorrector .

¢

method is successfu]]y‘imp1emen{ed in the.numerical simulation of

the phreatic profiles. It is, nevertheless, not a replacement ~
. . o
for the more economic and efficient hybrid program. = ¢

2
2. Ah ana]og/hybria simu]ation.of the analysis of wave motion i& rock-
N embankments is a viable alternative to the Finite Elemeﬁt and
| Finite Difference Metﬁods. The adjustable integration rate‘associa-
ted with analog simulation represents a definité advantage over -

. . /
numerical integration. .

3. The various methods used to calculate the OutcroP Point Movement
are successful. The solutions obtained can automatically be plot{ed

on a strip chart recorder, an XY plotter, a Tektronix graphics ter-

minal or Decuwriter terminal.

v ey

%
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Experimentation with/tria] cases confirm Nasser's [35] observations .

MY . ' . e .
of increasing wave transmission to the impervious core with incrgas-

sing conductivity and decreasing wave steepness and embankment width.

rd
¢

The findings of this study indicate that’the maximum water level

at the core falls significantly below the maximum run-up level at

«

the outcrop section. This could lead to a more economical. design.

than the current practice.,

5.2 RECOMMENDATIONS . g

ing recommendations:

,,\f ‘ .

Possible extensions of this work are Summarized in the follow-

A

The analog/hybrid technique used ought to be reéfined to improve the
simulation. A possible approach\is to-resort to a backward differ-
encing of second order accuracy. It is also worthwhile to investigate

4

other hybrid téchniques such as the hybrid method of characteristics

“or the scheme devised by André (2].

There ié a definite need for’a-review acquainting Civil Engineers
with the advantages of available hybrid techniques. Such aireview
should focus on the classification of the techniques in terms of }he ‘
minimum size of the'hybrid system required, the type of hardware
needed, the expected time 6f computat{en aﬁd the simplicity of jmple-

mentation.

3. The analysis of the Qutcrop Point Movement should be adop\\? to simu-

late the exit conditions of a continuous breakwateﬁ. The introduction

S o e R e A
-




tion would lead to a. definite improvement: N

For the class of non]fnear‘waves'considered Jn this §tu§y,
a better approximation of the seepage face could be achieved if
the analysis of the outcrop'ﬁoint mavement 1is-based on anraQymmétric

extefna] fluctuation of the input wave. This would also improve

/&u-

Voo

« o |

the simulation of the interior wave.

b. A challenging undertaking would be an attempt to apply an analog

technique to layered dams with various geometries and porosities.
\

. ‘ ~

5. For a purely digital solution, it would be worthwhile o consider a

~

th h

Burlisch-Stoer integfation method. It features from 6°" to 12°

accuracy, variable step size, three possible error‘criteria, and
4 PR

is very stable for highly nonlinear problems.

°

order .

"
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CoomPENDIX A

OUTCROP POINT MOVEMENT '
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APPENDIX A
OUTCROP POINT MQVENENT

.

*The wave induced unsteady non-Darcy flow under consideration
in this study requires‘the‘outcrop point movement fe]ative to the
external wave as a boundary conditiop (Fig. A.1). ‘ "

When a water wave attacks a porous siructure, the wave reaches’
a‘maximum run-up position nn the face of the structure and recedes to
a minimum rush-down Tevel: these maximum and minimumvlevels constitute
the impaét wave height. Experiments done.by Nasser [35] show that a
sine w$ve can be used to rep;esent the impact water Wave. Assuming.a

sine function to describe the external water level fluctuation, then:

Y¢ = hg + Ay sim(wt) ... .. .. L. (al1)
where  Y¢ = elevation of the free water level at .the interface with
respect to the channel bottom
ho = mean water level
Ap = amplitude of the water wave
w = frequency of oscillation
t = time ’

Dracos [10] states that "as long as water flows into a porous

body, the phreatic line and the free water level meet at the same point

e . T ———
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on the boundary". When, however the water ex1ts from the porous body,
a seepage surface may be 1nterposed between the free water level ang
the phreatic Tine: seepage surface will not occur unless the 1nterna1
fall rate is less than } aTi‘Pate.Q} the external water leveJ The

vertical velocity of fluctuation, Vf,1s the dgr1vat1ve of equat1on

(a.1) or: '

Vi = Agcoslwt) L. '(a.2)
And hence the maximum fall rate, meax’.is

‘meax = whq L e e e e e e e ’(a.3)

The maximum internal fall ve]qcity, V, is given by Dﬁécos as:

sin%e S S -3

[
h ]
alx

porosity

where m

non-Darcy hydraulic conductivity

<
1]

angle of ihc]inatigh of the structure face with the

horijzontal

1/(a + bmjV]) A )

-~
u

‘The value of V can be calculated directly from (a.4) and

(a.5) to be:

_.‘2[34,»&;)“ %2-9] ........ (a.6)

The drop rate of the free water level can be classified as

'slow' if _ -
k

Ve<V = 'ﬁ-sinze Ce e e K (a.7a)

or 'fast' if:




.92 .

. -\._I_(. .'.2' o
;f Vf >V = msinfe Lo (a.7b)

a sloy drop case implies that the outcrop point'movement coincides with /

4

the free water Tevel. , !
. / ‘
Comparing equation$ (a.7) and (a.2) and iﬁtrodqcing the

dimensionless parameter

k
W= f e e e e e e e e (a.8)
onm )
yields: // » )
R , cos{wt)/W< - sin2g for slow drop / ........... (a.9a)

. N /
cos{uwt)/W> - sin?@ for fast drop/ . . ... . ... ... (a.9b)

/
. / , .
‘Equatings the terms yields the time, t,, during which internal - Ca
and external movements coincide:
tr= LeosTM(-Wsin®0) . ... .. .. (a.10)

“This now provides some information in determining the outcrop
point movement (see Fig. A.2).
1. For W sin?0 > 1, ty cannot exist or else it is equal to

T/2, where T is the wave period. This condition defines

1 . 4 et

. a slow drop case. = . o
2. 'For W sin®0<1, & number of cases arise which must be . g//’//f({
/ s

studied 5eparate1y.

A. For't<t;,/fhe water is entering the porotis media and

) therefore/the outcrop point movement is identical to
the movement of the free water level or region I in.

Fig. A.2.

R N, RITERTTY
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The required inifia] cond{iions for this equation:are:
?c(tz) =y =

yc(t?) = h& + Ao Sin(mtz) T V(tz‘tl)

e

H

¢

J

B. For tp<t<t,, the outcrop point falls at the maximum internal
- 4

velocity V as represented by the slope at time t2 in
‘region 11. Point t; (or T-t;) is the time at thch there
is a maximum deviation,'AYJ, betweén the outcrop point and -
?thq free water level. The equation representing’t@j§~[§9jpn
is: “ ' ; ’

v Y =hg + Ay sinwt, + V(t-—t‘]) S (a.11)

w L)
\

-

\

Region 111 for ti<t<t, L

At t = t,, the outcrop point will have reached its maximum:

deviation, AYp, from the free water/}é§e1 curve and hence
a . & ..
the two curves will start to converge. The non-linear viscous

damping effect is de;cfibed by a second order differential

equation: .
Y + (a; + b,IYCf)YC +38 Yo = 5F(t) BRI (a.12)
- .
where a; = gma P
b, = gn’b . vl
o v
§ = g sin*6/8Yp ' ) ?
BYp =2 Ro sin(ut;) - V(to-ty) )
f(t) = hy + A, Sinfut)

(") refers to the time derivative

-k
. m

»

Ay

P

v m——————— e

sin2e _ R N € W &) I g

e e e e e e . {a.19) '.:

X
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o, " This region is the most difficult to analyze. Five solution

.{methods were investigated and will be covered .in depth.

-’

“

D. Region iV isarepetitionof Region| where the water is once

- again entering the porous media and hence the outcrop point

L . -
rises with the free water level.

/

SOLUTION OF VISCOUS NON-LINEAR DAMPING EQUATION (REGION III)
L

Three parameters were used to analyze and describe the nature

*a

~ of the fast drop'cases particularly in the region of non-line# viscous

2. damping. These parameters are:

"
EY . . )‘ 2 N ) '
: 1. W, from equation (a.8), is a dimensionless parameter that varies between

&

Ov(zero) and 1/sin%0 for fast drop cases. The lower the value of W,
" the greater the damping. As W increaseé, the ca§e~approaches'the

. s]ow‘drdb state. ) . 4P

2. & , given in equation (a.9) and possessing the units sec”?, is of

‘prime importance in the analog solution because it~ is a pot Sgtting.

”

In the cases studied, its value varied between 4 and 111,000. Low

°

R . values of & represent a highly damped system whereas high values,

[2

i.e; 6>800, resemble slow drop’ cases.. .
. * , .

3. A practical-dimensionless percentage was developed to indicate_q%anti-

. %atively how much the fast drop case differed f}om the slow drop case.

. . This number is given as: .
. N AY

g L o Pk= zEx 100 | —......f..(a.15)




¥

s

.—‘()6 -

”,

.

Pk varied between 0 (zero) and 85% in the cases studied. A Pk
'value of zero is-identical to the slow drop case. . High values

’ i ) i) .
indicated substantial deviations from the slow drop case and ..~

- therefore represented highly damped cases.

-~
3

Five methods were used 'to det solutions,in region IIl: MIMIC,
analytic, nuﬁerica1,'approximation and analogs Each of these methods

provided & solution for th; reéioﬁ of viscous damping.
1. MIMIC

MIMIC is a parél]e1 simulation language } t numerically solves
differential equations. Its advantage lies in the ease of grogramming and
convgﬁient b]ots of the éo]gtion. A majé} disédvantage of the Mimic
package available at Concordia University i; the'inaccuracy and unrelia-
bility o% the solutions. Largg errors were introduced into the solution
when the\MiMIC program congistently deterﬁined an jnitia1 acceleration of

500 cm/sec? at time t, instead of a zero acceleration. For low values

of 8, the general form of the solution curve was obtained but at high'a

- values, the solution broke down. With the existing software, it was not

possible to obtain one continuous curve for the four regions described.

42. Numerical: | - i
g -

Since the MIMIC simulation péckaqe was inaccurate, a Runge-Kutta
fourth order method was usedﬁ An adequafe]y small step was required
(Ah < .01) to obtain any solutfon. A program was developed to piece

together the total outcfop'point curve and plot the results.. The results

»

-

were very good. ~

[PV v
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3. Analytic :E\ution o S

Dracos gave an analytic solution in terms of an external cosine

water wave but Because‘of an error in'chqosing a proper dimensionless
numb;; X, his solution was wrohg. The x term chosen for this, stydy

yields results in close agreement with the numerical soluti;; but exhibits
large errors for cases with’1ow06 values in sloping rockfaces. The general
computer program developed givés a comparison of the_ﬁnalytic and numer-
ical solutions.

The solution subject to the given initial conditions of the dif-

ferential equations’in region III is:

D-Chy Ailt-t2) _ D-Chy Ap(t-to)

V= Ai=As A1-As * ho
’ + Asinwt - B coswt . Lo ... (a:16)
 where A = —-%% (l - di) ................ . (a.17) ’
A2 = ~521X(1+4I) .............. . . (a.18)
AY !
_ 4K cin2n_ P
X 1 'gms"‘eAT G e e e e e e (a.19)
| . .
TKG = 9%9 . e e e et (2.20)
, ) .
w = %-TL ...... e e e e e e e e (a.21)
02
s= BB (a.22)
p . ’

3
‘
}
i
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. 5(6~12)
A = Ao TKGZ + (d_mz)z L N L . .‘ « e (a.23) . .
+ ) h '
_ TKG ‘
B= A '(S—_—wz)- . . .,. .......... K (3-24)
" C= (A + A)sinuty + Booswty + V(tz - t1) .. .. ... T . (a.25)
* ~
+ ) ' ° N ~
D = -wAcoswt: + wBsinwt; +V . . . oo (a.26) i
T X is bnly a little smaller than unity so that\; becomes small '
and A, bécome;fh large negative number. The large negative number A, causes
the second term of the solution to tend to zero very fast and it can safely
" be disregarded. - Therefore, the outcrop point movement in the viscous damp-
ing region is given by the modified equation: i b

\

. D-C a(t-ty)
Y S e

.
]
;

+ Asinwt - Beoswt . . . . ... ... (a.27)

‘When this function equals the external sine function
(Yo =hy ¢ Aosinwt), then the two curves rise again as the water will be

)

entering the porous body from the reservoir. . [

4, Approximafe Solution :

Nasser [35] found that a drop rate of about one half of the maxi-
mum fall velocity, V , would give very close va1ue§\to those obtained by -
his finite diffevence solution of the damped equation.

In th1s study, 147 fast drop cases were analyzed to compare the ,

actual drop rate to the maximum velocity. Since the numerical and analog

results were in flose agreement, the approximate slopes were catculated




from [Fig. A.3 as:

ratio needed:

Ratio =

linear drﬁp rate = Y2 -J3

This was then compared to the maximum drop rate to determine the

Xz___%i w -t
3

- g9 -

t, - t,

i

a
. e QTR ™ 2 3 e bt ol b pe ey,

.........

Y - Y2 .

Based on the 147 cases studied, the following information was

revealed:
, , mean =" 0.7567 o
std dev. = 2.60 é
| highest ratio = .836 : . « i
. - lowest ratio = .676 | J

Therefore, an approx{ﬁate solution would be to use a drop rate
of 75 per cent of the maximum fall veloc1ty rather than the half value

repoﬁted by Nasser.

3

5. Analog Solution - ‘ . ,

The analog solution most truly represents the system in pro-
gram preparation and-during computer operation. Essential to the proper
calculation in this simulation was the digital logic, amplitude scaling,

time scaling and the propg) system diagram.

o The versatility of the analog computer, once properly programmed

(the programming procedures are dealt with in detail in Appendix B), lies

Y

in the ease of studying the whole system or parts of it separately. A pre-

liminary study was made to measure the effect of the linear Darcy coeffi-

[
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cient, a, in equation (a.12). In most cases 'a' was of very little signi-
ficance in the solution whereas the non-Darcy coefficient, b, was indispen-
sible. This supports the assumption that the flow is turbulent in the fast
drop cases (i.e. ‘} = ad + bg?). The more weight that is put on coefficient
b, the more turbulent the flow will become. _ o~
Because of its parallel nature, the analog computgr produces con-

tinuous solutions which can be monitored on a strip chart recorder, oscil-

loscope or on an X-Y plotter. X-Y plots proved to be very helpful since

. L)
. the outcrop point curve could be superimposed on thé sine wave which pro-

vided an excellent basis for comparison. These plots sto monitored the

difference in solution with or without certain variables such as ‘'a' or 'b'.

These plots were only used for final comparisons and resu]fs. Intermediate
results were obtained on the st}ip chart recorder. .
After proper scaling, a vast range of cases were studied, from

sloping dams with low & values of 4 to vertical breakwaters with values of &

-

as high as 111,000. Figures A.4 to A.11 show the difference between the

outcrop point movement and the input'éine wave for varyinghvalues-of .
High values of & approach the slow drop case. The author believes that
since deviations of 5% are not uncommon in the field, simu]atihg fast drop
cases with very high values of & might be very impractical. It is sugges-
ted that a cut-off factor be intnoduced so that any transition drop cases
(fast drop cases sufficiently close to slow drop cases) can be treated in
a special manner. For Pk less than 5%, the differences between Y. and Yf
curves are negligible as can be seen in Figures A.12 to A.15.

The main disadvantage of the continuous or analog solution is

that it is scaled and hence its accuracy at any point“}s only as good as

a

e e o s x

U
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the accuracy of the components and the method of interpreting a point.
Nevertheless, the solution can usually be read accurately to four decimal
places. This is more than adequate for comparison with numerical and analy-

\

tical solutions.

6. Comparison of Results

Meaningful comparison of the methods is best based on the point
where the Y. curve meets the Y¢ curve. The analog solution yields one dis-
tinct point of intersection because of the continuous natﬁre of éhe solu-
tion whereas the numerical and analytical methods provide so]Ltion§ at dis-
tinct points which may or may not be the points of intersection. The step
sizes for the digital methods were determined such tﬁat about 51 points
would represent the total outcrop point curve (thi; prbvided a convenient
graphfca] plot on an 8 1/2 by 11 sheet of paper). For example, fast drop
cases with periods of 5.0 and 1.7 seconds wodﬁd have print-out step sizes
of .1 and .035 seconds respectively. Therefore, most of the discrepancies
between the analog and digital techniques can be attributed to this factor
of uncertainty of the digital intersection point. The Runge-Kutta method
used has some inherent errors due to approximation but these are of the
order of Ah*. _The actual stép size Ah was always less than .01 so that
these errors are negligible. The analog errors can generally be attributed
to the accuracy of the components (.1 - 1%) and in the proper scaling of
the recording device. A 2-4% error may be expected.

A brief comparison of seven cases studied shows tﬁe mean, standard

deviation and the correlation coefficient for the intersection points by the

analog, analytic and numeric techniques. The correlation coefficient suggests

as " . e £ n

o wwem e
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a good correlation between the three methods even though some cases showed

.

a wide varianée (Table A.1). .
In review, the analog yielded the best graphical sofutions (i.e.
provided the superimposed curvés) whereas the numerical sqlutioﬁ provided
discrete points.' The analytic solution wou]d‘be mosf uséful if one pér£
of the curve needed to be studied more closely. The approximate solution
would yield a good first approximatiop of the differenti?l damped p&(tioh

of the curve. Each method contributes worthwhi]e_informétion to the study

of the outcrop point movement. "
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TABLE 1{.1

COMPARISON OF ANALOG, ANALYTIC AND NUMERIC ANALYSIS FOR POINT t

[

y Mean and ,
Coordinates Std. Dev. Correlation
Case Pericd | Time Depth Time Depth Coefficient
Studied (1) “Me thod (tc) (y) (t) (y) (R)
' Analog 1.338 970 |y 335 | 3u.90 '
B-1 . 1.4 Analytic | 1.330 | 32.925 010 1.106 -T165
Numeric 1. ﬁo 34,676 &
’ i : Analog 1@5 13.650 | ) ace | 13.568
Cc-1 2.5 . Analytic 13875 13.552 027 076 ~.8989
. Numeric 1/. 869 13.501
. Analog 2.550 22.730 2.53h 22.662 .
N-7 2.52 Analytic 2.495 22.177 o3b 45k -95k2
Numeric 2.556 23.078
Analog 2.350 3.150 2.417 ) 3.787
A-2 3.2 Analytic 2.460 k,1k2 058 553 9943
Numeric 2.440 h.070
. Analog 3.450° | L8.130 ‘;.W’) k5,286
< 0-4 ., .28 Analytic 3.313 39.821 0.760 473 .9988
) 4 Numerie 3.439 47.907 :
\ 1
A ‘ ) Analog 2.910 15.300 |, oo 15.326
D-6 3.6 Analytic 2.916 15.312 015 035 .9996
e Bumeric ¥ | 2.9385 | 15.366 ‘
R Analog 4.4oo 4.500 b.205 b.195
D-7 5.5 Anslytic b.125. l,050 1.455 264 .9762
Nuneric k,180 4.036
“
. o ’ i )
.
o *
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APPENDIX B
ANALOG SOLUTION OF OUTCROP POINT MOVEMENT

[

Programming the outcrop point prablem on the analog computer
« ,‘ N
required special circuit diagrams, digital logic, scaling and various
oiher steps. This\appendix recapitulates the basic steps involved in

setting up the brob]em.

A. SYSTEM EQUATIONS AND DIAGRAMS

Three bas1c equations comprise the generat1on of the outcrop

'

point curve: (the parameters were previously def1ned)

Yo = hy+ A sin{wt) . . ... . .. .. e e e e (b.1)
Yl = h0+ AO Sin(wtl) + V(t"t)) ............ (b.Z)
Y = (A |V DY oY, = 5F(t) SRREE (b.3).

_ Figure B.1 shows the compiete analog diagram which ‘incorporates the above

equations. To obtain one continuous curve, digitﬁi logic was éequired

to operate the two track/store,devices and three comparators. The first
equation was simulated by the components in box A (Fig. B.2). At the
first time constant t,, the va]ue of Yf was stored and the multiplying
circuit {box B) took over to 51mu1ate equation (b.2). At the second time

constant, t,, the value of Y, was stored and the second-order differential

£
.

H
|
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Fig. B.1 Analog Circuit Diagram for Outcrop Point Movement '
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Fig. B.2 Components of the OQutcrop Point Equations. = —J//




2 -

damping circuit (box C) began operating. A comparator was ysed«to compare

the signals out of amplifiers A65 and A30 so that when the value of Yf

LY

was greater than Yc’ the first equation took over once again' (Fig. B.3).

]
]
1

This represented the rising water wave.

B. DIGITAL LOGIC s

- -

Figure B.3 shows the basic logic diag?am to control the operation
of the computer. Two additiona] compardtors were needed to ensure switcﬁing
at the proper time constants. The Jogic hardware to operate the.amplifiers
(i.e., AQO, A30, A35) and the track/stores (i.e., T31, T41), has two holes:

. one for initial conditions (IC) and the other for operate (OP). When the OP
lead is high,.the amplifier goes into the operatg mode. This is essential
for the differential damping circuit where integrator; A00 and A30 should

not, operate before the second time constant ﬁl.

C.- AMPLITUDE SCALING

Analog computers have a range of 10 volts reference (sometimes -

100 volts) but the variables are scaled to values in machine units (1 machine

unit = reference voltage). The original differential equation was modified

4

after int?oducing'the appropriate scale factors to yield: -

g b Dt - ()
A a,+.K1L|K,YCl SRR o CRNT ... (b.4)
where K, = (1 machine uﬁit)/(?CInax)
K, = (1 machine unit)/(Yclnax)
-,

K, and K, were determined automatically within the general pro-

gram develqped after it was noted that chmx ) and.chmx is always less
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Fig. B.3 Digital Logic Diagram . - . .
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<\ v DM TIME SCALING

than ho‘ + Ao To be on the safe side, the.Yalues of K, and Ky were

deaemined respectively as:

0 o

L4
=
n

L = VONT((ve 2.5)/5+8) ... L. o (be8)

=
"

o = V{INT((hg+ Ag+ 5)/5)x5) e (b.6)

a

(inNg "1:'. the inteper value of the number).

< The generahzed form of a linear second order differential dequa-
)

tion (similar to the non-1inear equation (b.3) is given 633:

V o+ 2 i +u) vosowR(t) L. . (b.7)
: cvb . : ’ . “
where a \ . ) . .
o = damping ratio , ,
\ wo = undamped natural frequency
: ./ .
w = \I]-uz Wamped natural frequency of oscillation
\ . £

Equations withk w_in the range 0. 1<w <10 usuaﬂy have solution

rates suitable for recordmg on strip chart and XY recorders For s_ystems

3] * .‘ - \

outside of this range a tnne sca]e factor, B, should be chosen such that

01 <(u /B)<TO |

~

The 1nteg(it\1§ rate-is proportmnal to the gain of the mtegrator
" Therefore, time sca];hng is simply a gain- ad.]ust'mg operatwn for aH th -

: integrators ‘by the same amount (L/8). When ﬁ- 1, computer‘hme and real
timé are one and the same°¢whén B is émaﬂer than um‘ty,. the solution rate
‘is speeded up} when g >1 ‘the soﬁ)twn rate is s]owed down

, - Comparmg equations (b.3) and (b 4), it can be seen that

w, = '3 and«therefore “the foHom ng time scaling consfants were used:

*
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0<s <8l g = 1
81 <§ <4000 °~ B = 10
/ 5 > 4000 8 = 100 ... .. .+ . (b.8) ' ]

It is to bg,noted that time scaljnq\vas only required for the
second order, differential damping segment of the systém. The frequency
of the rest of the system was dictated by the frequency term, w, in the -

forcing-function Yf = h Aosin(wt). No time scaling was necessa}y here

(8]

since the frequency was always less than 10 cps.

E. ADDITIONAL SCALING ,

. - Reaéonab]e poienti;ﬁeter settings are in the range ?f;>05 to .95.
Two pot seftings creatéd additional problems in that their values were
always much greater-than unity. The firsl pot in question, P36, g;d a

value of > Ky which varied enormous]y‘éﬁncé § varied from 4 to 111,000.

B
Also pot P03 proved trqub1esome Qith a setfing of by/K which yie]?ed values
ranging from 20 to 115. To cit;umvent these problems, these pots were |
reduced vbgsettings_less than uni?y and then the appropriate gains on ampli-
fiér§ AQ0 andiABO wére édjusted. Integrators have gaihs of 1 and 10 but
in the digital logic_there is‘space prov%ged for pins which when inserted

into the F slot, increases the gain hy 10, into the MS slot increases the

gain by 1000, and into both slots increases the gain by 10,000. This yas

.very important Tn the scaling of the circuit. Table B.1 shows examples

[

of scaling for a wide range of Svalues.: .o
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TABLE 'B.l

SAMPLES OF ANALOG SCALING OF P36 AND P02

* y
Case ~Pot Settings-— | — Gains From ~ — Pins On —
Studied | 8 | & P36 P02 P36 ] P02 AGQ A30
B8-1 ' 1 37 70 b 10 10 F -
J-5 1 75 165 72 - 1/10 MS -
-6 " | 10 158 32 68 - - MS F
F-5 10 | W6 | .99 | 12 - 10 13 F
c-1 10 075 151 69 ‘10 -\ NS F
H-10 L‘ 10 | 1222 180 | 115 - - P45 F
. o v oS )
.-
E
- B

can

S
Lo i L s okt LA o i st it

%




F. STATIC CHECK

Before running any problem on an analog compufery a static check
was performed to see that the analog component§ functioned up to par.
Basically, this involved putting arbitrary values on the pots and following
the c%rcuit to check what theoretical outputs could be expected at any
amp]if%ers. Ihese calculated values were then cg’!led against the outputs
measured on the analag computer while in the static test mode. The 6rogram-
mer could thereby determine whether certain components were fau]fy or locate
an error in patching.' Table B.2 and Fib. 4 show the calculations of a sampfe
static check. |
The beauty of the analog cbmphter becomes evident once the circuit
is in operation. The programmer can tap the solution aé any point in the
. 'system, freeze the system and note thé values at all points in the system,
and modify the parameters to search for an optimal'sq]ut{on. Although the >

,solution is restricted to a scaled four-digit accuracy, that is sufficient

for most preliminary engineering analysis or design.

s
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TABLE B-2
/ _ SAMPLE STATIC CHECK i
- - i
|
Calculated Values Measured Values
~ Amplifier Function Derivative | Amplifier Derivatiye Amplifier i
AOO integ .3400 | .5000 ‘33 .5000 i
AOY inv -~.2000 " -.2000 '
AQ2 inv -.5000 -.5000
A04 inv .2000 .2000
A0S integ ,5000 .0000 .5023 -0000
A06 sum -.2500 ~.2500 K
, RO7. integ ~ .0000 -1.0000 .0001 .9999
A0 sum’ . 3000 P .3000 .
. A30 integ .3000 -.2500 .3013 -.2500
\ - - .
A3l inv 0000 .0000
A32 iny ‘ .0000 . 0000
A33 mult -.1250 -.1355
. A34 inv .2500 .2501
. A35 integ -.1000 .00b0 -.100k .0000
A6 . sum .5500 .5500
) A37 inv , 0000 L0000 .
A38 mult . 0000 .0001
MY sum - 0000 .0000 .
A60 integ ' . 0000 ~ | %0000
A64 inv -._3600 ~-.3000
. s
integ * integration
inv = inversion .
: : ) mult = multiplication
sum = summation
< ! )
b
\ .
- — - R | /5
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Fig. B.4 Static Check Circuit Diagram
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APPENDIX C

A NOTE ON ANALOG AND ANALOG/HYBRID COMPUTERS fe7, 28, 443

E]eg@ronic differentia) analyzers (EDA) commonly referred to
as analog computers comprise only a small segment of the vast anaiog
simu]ati;n-fie]d. Most people are familiar with_scale models and their
value in estimating real conditions: Special purpose mathematical models
are often confined to research where the governing equations of one physi-
cal system are used to simulate another system. ~Electronic analog compu-
ters are c1éssified as denera1 purpose because of their more inherent
mathematical nature (Fig. C.1).
‘‘‘‘‘ Analog computers, és referred to in this thesis, implement math-
ematical reldtiohs between physical variables with electronic computing
"elements that operate simultaneously. Each element can perform a\wa;hema-
tical operation such as addition, s;btéaction, multiplication, div%ijon,
and integration with respect to time. The solutions are measured vo!&gges
.at any point of interest within a circuit. A circuit or program is es%ab-
lished by interconnectinéxvarious computing elements with wires called
"patch cords". '
Ané]og #omputers exhibit many features that render it suitable

for simulation. There is a close correéponden;e between the real and the

simulated problem not only in the solution but in ¢%e solution technique.

_]30-r
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The components of the system operate in parallel and thus the answers are
immediately available. Corvections and adjustments to parameters are
easily made, thereby enhancing the flexibility of man-machine interaction.

The integrating capability and the continuous nature of output are import-

ant advantages for ané]og computers. .

Despite its advantages, the analog computer has lost gro;nd to
the digital computer because it is not as accurate (1imited to .01% for
each elementary operation), it is defficient in memory storage and it lacks

the capability to perform logic operations. Hybrid computers have combined

the advantages of both computers, ie. accuracy, memory, programmability,
speed, flexibi]ity, and decision making capability. They ‘have sophisticated
interface systems that not only transfer.ana]og and digital signals but
allow tﬁe digital program td control the analog system. Perfunctory manual
operations are executed automatically, such as .setting pots. The digital
program could also contro1.sdccessive simuiation runs‘w§th recorded results,
optimizing parameters during tﬁe runs, etc.

The hybrid computer is an invaluable simulation tool. Once the
basic components are understood, they are not too difficult to program.
The rest o% this Appendix describes the basic analog'and hybrid components
found on the EAI 690,yh1ch was used in the present study.

References 4, 12, 13, 14, 21 and 61 can be consulted to get

further descriptions of the components described below.
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ANALOG COMPONENTS i

1. Potentiometers (Pots) (Fig. C.2)

~

PR 1 T P

Pots ére used to multiply a given voltage by a constant between
zero and unity. ~ They consis} of a resistance with one .end grounded and

a sliding contact. They have a resolution of 0.01 'per cent and can thus

be set to four decimal digits. Pots can be either hand-set or sérvo-set,

\
ie. 'set by a servo-mechanism within the analog computer. It is recommended
haintaining pot values between 0.25 and .80.

2. Operational Amplifiers (Fig. C.3)
,  The operational amplifier is the basic functional unit in an
electronic analog cemputer. The fundamental equation governing the output
,of an operational amplifier is: -
Vi T
VO = - Zf . .Z—- ------------ (C.])
| X '
where Z; = input impedance ‘ .
Z; = feedback impedance h
vy = input voltage ' AN \

0 output voltage

<
1

By varying the input and feedback impedances, the output is N
forced to behave in some desired way.  These operational amplifiers find
application in inverters, summers, integrators, high-gain amplifiers and

\\

track/store units. They will automatically invert the‘éign of an input

/

voltage.
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3. Inverters (Fig. C.4)
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Inverters change the sign of the incoming voltage(s) and can
thus be used for subtraction, ije. a voltage is inverted and then added

to other voltages.

-

4. Summers (Fig. C.5)

[

Summers will algebraically sum the incoming voltages and inzgrt
the sign. Most summers have up to six inputs with gains of 1 and 10.

These components are controlled to qive four-figure accuracy.

5. High Gain Amplifiers (Fig. C.6)

These are basically summers with their Teedback resistances
removed. \{Dey are only used when external\fgedback is provided. The out-

put vo]tage‘ﬁg such that the sum of the dinput vo1tage§ must be equal to

zerag.

6. Intéqrators (Fig. C.7)

This component differs f}om a summer in that its feedback'
component is a capacitor instead of a resistor. It will integraté a sum
of voltages and inverf the sign. It is, thqrefore,lof immense value in
solving differential equations. The EAI 680 i§ equipped with fou; differ-
ent‘feedback capacitor values for every integrator. This is useful in

sblving problems with a wide range of time constants, for high-speed

repetitive and iterative operation, etc. The integrator can be charged

J!‘r to an initial voltage to represent the inﬁ}iai conditions of the differen-

*>
tial equation.
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7. Multipliers (Fig. C.8)

P T

The two most common methods of multiplying voltégas in general-

purpose analog computers are servo:multiplication and quarter-square, , )
- ‘ >

S

i

biased-diode multiplication. . /

" Servo-mechanisms are c1o§ed loop control devices that control

Jin accordance with input signal loads that are (i?ﬁ]ed to th
are basically following devices that must respond~quickly and precidel 5 A
changes in inputs. A servomultiplier is an electromechanical servo wh ag' T

. . v : :
provides products of aq‘hgg variables. . ‘ *

. i #
The EAI 680 Uses quarter-square multipliers. The name stems

ﬂvmt?'anHy: .

)

Xy = %[§X+y)f - (x—y)ﬂ R .‘. Ce e e (c.2)"

The quarter-square multiplier contains two squaring networks: one to

generate the first term on the rigﬁt hand side of the identity and thé -
"other to éenerate the second term. This requires four. input signals
(fx, ty) to satisfy all poésible outputs. The output signal ﬁay or may

not be inverted depending on the arrangement of the input signals.

Ry

D
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8. Track/Store Device (Fig. €.9) ' '

This device provides some memory capability to the analég compu-

ter. It is controlled by digital logic in such a fashibh that it behaves

-

as a regular summer while in the tracking mode and holds the output\gS::

stant in the store mode. Arbitrary initial conditions can be inputted\..

A
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. 9. Limiters (Fig. C.10)

LT Comparator (Fig C.11) B - //
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A

\ This device basically sets a range in which fhg output voltage

can exist. It is helpful in-ensuring a circuit does not overload or in

finding absqiutg values 'of voltages.

DIGITAL: LOGIC ELEMENTS - . -
~ R ;

<

The comparator compares _the sum of two anaioéazuitagzs and pro-
duces a high digital output sign§$~UyHﬂﬁgri) when their sum i p051t1ve

LN

and a low signdl (binary\o) whé& theiv¥ sufi is negative. In the outcrop prob-

lem, edmparators were used to control the timing sequence and yield a con-

tiquou% curve.
“

2. mgitglnverter (Fig. C.12)

-

7/
This _component produces the binary complement of the input digital
’
51gnal, ie. when the 1nput is high, the output is low and vice versa.

[ .

™

3. And Gate . (Fig. C.13)

v

The And gate performs the fundamental logic multiplication oper-

)

!
ation. Both inputs must be hiqh for the output ;p be high Either the

direct or the inverted output may be selected.

4. Digital-Analog. Relay Switch (iig, C.14) .

This providesffor the logical switching of two analog inputs. ‘

A high digita] 51gnal closes the switch and a low signal ‘opens the switch.

" The logic ‘control input is terminated on the digitai patch panei

< . i . »
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Fig. C.11, Comparator Symbol

™~
=

Fig. C.12. Digital Inverter Symbol

Fig., C.13. And Gate Symbol

o 4 A

Fig. C.lﬁ’ Relay Switch Symbol

(Note: N denotes address)
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INTERFACE COMPONENTS  (Fig. c.(s)

1.. Senselines
Senselines are flip-flops controlled b& digital Togic signals

on the analog console that caﬁ be interrogated by the digital computer.

-,

2. Control Lines
Control Tines représent flip-flops located on the analog-logic

panel that can be set and reset by the'digital computer.

3. Analog/Digital (A/D) Cenverters
\‘ .
. \} Analog/Digital converters are devices which translate pulses

having an amp]itude'pfoportional Qo an analog voltage into.the binary- -

)

coded equivalent of this amplitude.

4. Digjtal/Analog (D/A) Converters .

Digital/Analog (D/A) Converters are devices which accept

input data in binary form and generate ah analog vo]tagg proportional to

the binary number, -

5. Interrupts
Interrupts serve almost the same purpose as the sense-lines.

When the input dgenerated is high, an interrupt is set at the leading edge.

Once triggered, the EAI 640 branches to whatever location is specified
by the pointer stored in the interrupt trap cell. The users program is

executed.

b
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if X=S, then a sense line

=C, then a control line
=I, then an interrupt line

A\l

Analog/Digital Convérter
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' DAC : \
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Digital/Analog Converter = o

Fig. C.15. 1InteYrface Symbols ’
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_APPENDIX D
: COMPUTER PROGRAMS

N

Four proérams were developed for this study. The first one is
a Mimic simulation of the Qutcrop Point Movement; however, since certain
features of the Mimic package did not work, the results were not reliable
and one continuous output curve could not be obtained. The variabies

.

used are consistent with those ofhthe study except that P is utilized
as the period of osci]]aé%on. Sample inputs are given at the end of the
listing and include the seven esseritial parameters, a, b, m, 6, P, Ay, hp.
Qégirtial sample output is included. '

The second program, "PROGRAM WAVE", was developed as a substi-
tute for the Mimic program. "It is interactive in nature and has various
options available to the programmer. The program first determines whether
a case is's16y or fast drop. If the latter case app]ies, the program
prints out 5]1 the pertinent constants and parameters necessary for the
analysis of the outcrop point:movement, otherwise the program stops. These
calculations are determined in Subroutine "Fidst". Included in the sub-
routine is an option to printout the ﬁof settings needed for the analog
simulation and the appropriate scale facfors. The potentiometer addresses
and its corresponding values are printed out.

4th order technique

Subroutine "Differ" contains a Runge-Kutta
to solve the second order differential daﬁp'ng equation (region III in _

Figure A.2, Appendix A) numerically. Only the\step size and the printout

- 143 -
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APPENDIX D
COMPUTER PROGRAMS

N

Four proérams were developed for this study. The first one is
a Mimic simulation of the Qutcrop Point Movement; however, since certain
features of the Mimic package did not work, the results were not re]iab]e‘
and one continuous output curve could not be obtained. The variables
used are consistent with those ofnthe study except that ‘P is utilized’
as the period of osci]laé%on. Sample inputs are given at the end of the
Tisting and include the seven essential parameters, a, b, m, 6, P, Ay, hg.
Q~E3Etia1 sample output is included.
' The second program, "PROGRAM KAVE", was developed .as a substi-
tute for the Mimic program. "It is interactive in nature and has various
options available to the programmer. The program first determines whether
a case is'slby or fast drop. If the latter case app]ies, the program
prints out 511 the pertinent constants and parameters necessary for the
analysis of the outcrop point-movement, otherwise the program stops. These
calculations are determined in Subroutine "Fast". Included in the sub-
routine is an option to printout the pof settings needed for the analog
simulation and the appropriate scale faciors. The potentiometer addresses
and its corresponding values are printed out.

Subroutine "Differ"” contains a Runge-Kutta 4th order technique
to solve the second order differential daﬁp'ng equation (region III in _

Figure A.2, Appendix A) numerically. Only the\step size and the printout
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frequeﬁcy have \o be specified.

Subrouti e'bAnalyt" contains the analytic and approximate solu-
tions alsa corresponding to Region 111 of’the Outcrdp Point Movement. A
printout of the comparisgn of the numerical, ana]ygic and approximate
solution is optional. Ihe |nalytic solution is not very accurate for
certain sloping cases but is much more accurate than Dracos' solution as
given in Wegpaper [10].

Subroutine "Fitcurv" joins the various Regions of the Outcrop
Point Movement to yield one complete period of oscillation. The p(intout
of thé numerical solution is optional. Two dffferent plotting routines
are available for the program, one to yield a digitaﬁ plot that
wi1l'fi11.an°8 1/2 x 11 sheet of paper and another that will yield a Calcomp
p]ot on a Tektronix terminal. Figures A:4 throuéh A.15 were obtained
uswng the latter method. .

Subrout1ne "POTS" determines the pot settings needed for thé
analog circuit of the main analog/hybrid program. Semp]e outputs of this
program illustrating its various options‘are included at the end.

The third program, "PROGRAM ODE", can be used as a subroutine
and added to the previous program. This program has two variations that
will yield the solution of the family of phreatig profiles within the rock-
fill for er complete wave period. It uses the outcrop point movement
detérmined in the preQious program as the boundary conditions. The program

o

uses a Runge-Kutta 4th order method to calculate the first four values l
of the integration whereupon an Adams-Moulton Predictor/Corrector Method

is utilized to continue the -solution. This method is adopted to reduce

the number of function calls to the derivative function DERFN. The program
uses a bisector seargh method to converge to the solution. Tape 5 is used

14
»

POTRPRC R

ey




as input, Tape 6 yields the sclution profiles at each time increment,

Tape 7 contains the values of the-gradient of the W, and W, curves at all
times. and space locations and Tape 8 stdrés the intermediate profile %
‘calculations for eash iteration. An option is included to manually
guess the prdfi]efgg]ution. ‘
| The other variation of the program is a non-dimensionalized form
lwhifh would overcome the limitations of units, and decrease the problem
of determining adequate numerical integration intervals. At present, the
program is not fully operational. The need for this program emérges from
the ‘ at the proper scaling factors.for the analog program ara\not' !
known in advance and hence they must be determined. The ﬁumerica] integ-

‘ i

ration consumes too much.computer time to be viable as a solution technique

i
!

(ranging from 51 secs. for a 100 steps of a unit embankment to about 160
secs. for 700 integration steps). This is where the economy of the analog/
hybrid computer solﬁtion becomes apparent.

The fourth program is the hybrid program that will yield the

phreatic line profiles. The program is intetactive in that it asks the
programmer to read in the proper d;ta. It controls the -operation mode of "
the analog computer and contains options for the amount of printout the
programmer feels is necessary. Once the program yields a solution, the
computer pauses and gives the operator an opportunity tp p%ot the solu-
tion on an x-y plotter? ‘ K

The analog solution can be obtained without the aid of the

digital control but the method would be awkward and very time consuming.

This is due to the fact that the solution for any particular time incre-
/

ment is determined in an iterative manner,
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“MIMIC STIMULATION OF THF OUTCROP POINT MOVEMENT

COMSTANTS AMD PARAMETRERS AND THEIR DEFIMITIONS

PARCALR M, THFETA) cl
PARLP HN L AN)

A NARCY COTEFICIENT

B NON-NDARCY CORFFICI™NT

Y PORNOSITY

THETA = ANALE OF DICLIMATION OF ROCKFILL

P \= PERINDOF OSCIILATINON

O = YEAN NATER LEVEL

AN = AMPLITUNE DF I[MPACT WAVE -

B

uonon

4

IMPORTANT QUAMTITIES NFEDEN IN THE SYSTEM SQUATINYS

=080.6

=3.14159

=A/ (RxY)
=SUHHTH=TA)

=SNN(ARYXARY+4 *ST*%T)/(”*N*B))
MAXIMUM INTERMAL VELOCITY (V)
=(-NIS+ABY)/2.

COEFFICI™NT OF PERMEABILITY PELATIMC TO Vo(K)
=1, /7(A+RAYURAIS(V)) .

FRFOUFMCY OF FHE WaveE (OM)
=2, 401 /0

UAX!MUM OEVIATION BETYREN CYTFQNAL AND INTﬁRNAL YAVES
=2 RAOXS IM(N4+ TSR +V* (TS -TSR)

OTHER TMPORTAMT QUAITITIFS ' e
=GANA .
=Gk MaA xR :
=KxP/(2.%xPIx"%xAD)
=G5 T*ST/NELYP

IMPORTANT TIME LOMGTA“TS (TSR, TSR
=ACS(~ N*ST*ST)/OM
=p-THR

AN

EOUATIONS DEFINI“G THT SYSTFY

=N+ ANKS T T ON*T)

20+A9%S TNCOU* TSR +V* (TSR =TSR)
=N+ ANAS [HHOM* (THTSR ) _
=110+A0+S [ M(OM* TSR ) +V*(T=TSR) .
a=(AL+RI%ABS(NYCT )I*OYC1=NEL*YCI+NSL*YF2
= [HTC(NAMP V)

=INT(DYCH L YFI)




*

IFLAG

JELAG
JFLAG
KIFLAG

NOTJK

"My
2.0
NP’
2.5
009
S
*

1FILAG
MIFLG
YC
JELAS
NUELS
UHEN]
JOIN
KFLAG
YC

*NKFLS

NOTJIK
YC

NTHAYX
DTN
nT

015
22,
015
2.
015
aq,

. {
- '?7 - 1 - / A\
y
,//
-
LOGIC T PISCE TOGETIER THE QUTCROP POINT CURVE
=FSW(T-TS+ .15, TRUE ,FALSS . FALSR)
=NOT(IFLAG)
=YF
=FSW(T-TS | ,FALSE , TRUE, TRUF)
=NOT(IFLAG)
=AND(MIFLG, NJFLG)
=YCI-YF y
=FSW(JINTM  TRUR,FALSE, FALQF) /
=YF
=HOT(KFT A%) \
=ANN(JFLAG . NKFLG)
=YGl '
!
FIN(T,4.5) '
=.01
=.n05 - ‘
=1 , r . ’
OYTPUT
HDR(T,YF, YC,YCI ,NaXP, rwcn
OUT(T,YF,YC.YC1 ,NAMP,DYCT)
PLOCT YF,YC,YCI , NAMP IYCT)
TTPC  MOVEMENT OF OQUTCROP POINT)
TIYCEXTERNAL SINF WAVE.AND OUTCROP)
TTX(TIME=SECONNS)
END
SAMPLE INPUT DATA.
43 1.570% C
18, ,
432 1.5708
8.5 ‘
A43 1.570% . .
a5 A . b
1 ) z
N :
!
N A -
.

-
-
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PROGRAN WAVE (INPUT,OUTPUT,TAPE6=OUTPUT ,TAPELK)

COHMON /BL1/M,G/BL2/ AR/ BLG/THETA OELYP, KyK1/3L6/H,N/BLP/XL
COMMON /BL3I/HOAD TSRy TSRy ViOMEGA,HANT (5) 4DEL #T 4 X0
COMMAN /BLSZAPRIME ,BPRIME ,Y81,CASE .
DIMEMSION X(30G),YC(300) - ’
REAL MyKoKCoKi,CASE

N

INPUT THE NECESSARY DATA (INTERACTIVELY)
1 PRINT 2 '

REAO 3,CASE . i

“READ *yMsAyB,THETAToHO »AQ . :

IF (M. EQa1.)STOP

IF (THETALNE.90) GO TO S

PRINT &

READ *4XL .
5 THETA=THETA*3.14159/180. .

HRITE (144 18) GASE.MyA¢B, XL,HO

TRY=T/50 -

PRINT 64TRY

READ *,H4N \

PRINT 7

READ *, WANT (1) ,WANT(2) , WANT(3) 4 HANT(4) 4 WANT (5)

rAYL EaAcr
CALL areceo gy, V)
CALL SERIAL(X,YC)
60 TO 1

o

. -2 FORMAT(IML1,10X,*ENTER IN FREE FORMAT QND IN ORDER, EACH OF®,

*7411X,*THE FOLLOWING QUANTITIES®®,/,15X,*1, A TITLE®
+* FOR THE CASE UNDER STUDY®,7,19X,*(MUST BE ENTERED ON A%,
+% SEPARATE LINE)*,/,15X,* 2 POROSITY (IF M={, THE®
+* PROGRAM STOPS)'.I.15X.'3. A (DARCY COEFFICIENT)®*,/,15X,
"L, A (NON-DARCY COEFFICIENT)I®,/,15X,*5. SLOPE OF THE DAN®
+* INCLINE (IN DEGREESI®s/+15X+®*6. PERIOD OF OSCILLATION®+/,15X,
#%7. MEAN WATER LEVEL*,/,15X,%8. WAVE AHPLITUDE®Y

FORMAT (A10)

FORMAT (/411X ,*ENTER THE LENGTH OF ROCKFILL®)

FORMAT(/+11X+*FOR THE NUMERICAL 'SOLUTION, ENTER THE STEP SIZE®
+% (He . 01)* /411X, ®*ANO THE FREQUENCY OF PRINTOUT !INTEGER) SO THAT®
+% THEIR®,/,11X,"PROOUCT L[S *F7.5)

T FORMAT(/,11X,*ENTER § FOR EACH OF THE FEATURES QESIRED *,

+* (OTHERNWISE ENTER 0)%,/415X,%A. POT SETTINGS®*4/.15X,
+*8, PDM’ARISON OF NUMERICAL AND ANALYTIC RESULTS"I'15X.
+*C. ANALOG SCALING OF QUTPUT® ./« 15X, .
+*0s HUMERIGCAL QUTCROP POINT MOVEMENT®,/, 45X,
%€, OO OF OUTCROP POINT MOVEMENTY,/, ‘
#11%4A SAHPLE INPUT IS 1.041,1,0%)
10 FORMATUIX+AL0+F08,342F8.04F8,1,F81) '
END

o & W

o . T
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SUBROUTINE FAST

COMMON /3L1/M,G/BL2/A¢B/BLG/THETA (DELYP,KeK1

COMMON 79 3/H0, A0 TSR1 y TSReV,0HEGA,HANT (51 ,OEL T, X0

COMYON /8L5/APRIME, HPRIME, YCi.CAsE

REAL M,K,K04K1oCASE . p
CALCULATION GF FAST OROP PARAMETERS -
6=940.6

ABM=A/(B*M) )
VZ=(=ABM+ LABHP*2, 44 *SIN (THETA) ¥ 2,/ (N*H®R) ) ** 5) /2,

. K=1/7CA+3 N2 ABS(V))

H=K®T/(6. Z&Jlg'ﬂ'ﬁﬂ’
IF(ADIS(H*SIN(THETA) **#2) .GT.1.)GO TO 20
D1=X1=INTU{ABS(V)#+7.5)/5)25,

Q¥=KI=[NT ((HO+AQ+5)/5) *S.

K0=1/K0

Ki=1/Ks
TSR=T/6426319%ACOS(~-HW*SINITHETA) **2)
APRIME=G*M"A s

RPRIMC=GIN*HE] .
OMEGA=2.,%3.14159/T ’ )
TSR1=T-TSR
DELYP=2,*A2*SIN(OMEGA*TSRI*V*(TSRL~TSR?

NF) =G /N YORR TN (TR TAVE S D
WFE=UNLANICTNINMEGASTSR) Vi
YC1=YF1+V?*(TSR1-TSR)

YFC1=HO+AT*SIN(QHEGA*TSRL) ‘
ACCEL=-(APRIME+BPRINE®*ABS (V) ) *V-DEL*YCL+0EL"YFCL
PK=DELYP*SQ/AD

PRINTOUT- OF RELEVANT FAST, DROP PARAMETERS

© PRINT 8,CASE+AsAPRINE »8,8PRIME ST+ TSRyMsTSR1 4Gy
*Ky THETA,OMEGALAQ,YF} QHU\' DELYP
PRINT za.vc1.v.azcsL ,
PRINY 249 4H,DEL,P '

IF (MANT (1).€Q.C) RETURN o “

DETERMINING THE POT SETTINGS ANO SCALE FAGTORS

RETA=1, ‘ '

IF(DEL.GTe81) BETA=10 ‘

IF (DEL.GT.4G00? BETA=100 , ‘
"POO=1/BETA®KO/KY '

POL=KL%ABSIV) ' A
PO2=APRINE/KYL ° o
PO3I=APRINE

PO5=N3730MEGA

'PO7=KI*AQ

PO8=K3*ABS (V) .




M,r
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P10=K0*HQ

P31=1/8ETA

P}S‘ci . N -
P36=1/BETATKL/KO*0EL .

PE2=.1

PB4=TSR/10 ,

P94=TSR1/10 : ¢ °

PRINTOUT OF SCALED POT SETTINGS : ..
WRITE(64+206) QG,01,BETA,P30,POL,PO2,P03,P05,0Q07,P07, puu.qu.Psx.
+P35,P36,P624PEY 4P I4: 5 '

RE TURN

23 PRINT 21 ’ ' _

t

6 FORMAT(LIHL,/.T37,8104//,72%,°G 1 V E N"TSIQ'CALCULRTED"/'.

c#T20,9ULM=) , TS14400LH=) /7 oT129%A =%,T30+F8.0.T4b,
$PAPRIME =%, T61+FBalre/eT124%8 =% TI0FBele Thi,
+*RPRIME =*,TB1sFBalsy/yT12,*PERIOD =7, T30,FB8.byThty,
+*TSR =¥,TB1,FB. k.z'fiz"POQOSITY 2% TI0oFB.beThb,
+P*TSRL =®sTOL1sFBeUe/sT12,*GRAVITY =¥,T30, Fo LeTlhY,
#*HYD. CONDW(K) =*4TH1,FBatty/,T12, *SLOPE (RAD) =%, T304F8ab,Tlh,
$*FREQUENCY =%,T61.F8.44/+T12,%*AMPLITUDE (AC) =%*,T30,F8.4 Jb“v
+PTANGENT PTe =%, T61F8elsy/4T12:*0EPTH (H) =%4T30,F8.4sThk,
+*MAX, DEVIATION =®,T61,F3.4s7)

e TIRNATI/9 11X *SORRY, THIS IS NOT A FAST DROP CASE!®,//411X,
57 iin%)) )

23 FORMAT(L1X.*Y(0) = *,FB.4+2X,*VEL(D) = *4FB.Ue2Xy

2% FORMATI(T12,°HW =

+2ACCEL(O0) = *,FiCelry/) o
FF8.l o 2XP0EL = F4F1flehe2Xs
+*PK (%) =¥ F1Gales /7911 Xe57(1LH"))

200 FORMAT(//+T224"POT* ¢TI0 e*SSTTING® JTU54%KD = 1/ (*,F2,0,%1%,/,

AT22 P »==¥ T ¥ rmmaawa?  TUG, "KL = 1/7(*,F3,0,%1%,/,TU5,%8ETA = ¥,
+Fh . G.I.TZZo‘POC'.T2? FlU 09/.?22"”01'qu7 FIQ “','
+T224%P02% s T27+F 10 Us /e T22+°P03%,T274F1C0.4s/y

$T22,%0C5% 127 ,F1C0abo/eT22,%Q07%,T27,F10eb4/ ' \
*TZZ"pU7‘vTZ7.F10-Wv/oTZZp'POB’.TZT'FIO.“'/'
*T22,%P10%,T27,FL0.ty/ .
FT22+4"P3L%oT274F10.40/eT224%P35%,T274F10ole/» :
*T22,%036% yT274F10ale/sT22,%PE2%,T274F10ebo/y

CT220%PoU* g T2T o Fl0alig/eT224%FO4%,T27,F10ale//+11X45711LH*))
RE TURN .

END

’
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', IF(HANT(IH £Q.C) Q1=00= 1
IF (HANT(2) .EQ.0) coro 115 .
PRINT 110.H.N

115 X{1)=XX=2X0=XIN® ‘ ; ' "‘
LY (LYY= QYN .
. YDOT(1)=P=PO=PIN e N »
. . * KO UNT=0 . “
} i = N
v - 125 ‘KOUNT;KOUNFGI Ja
O, L Kl]-u"’ N
L1= H'ACCEL(P.XX,YYI
. . XX=X0+H{2 »
. YY=YI K172 °
« > P =POMLL2 »
K2=H*P ) .
Tt - L2=H®ACCEL (P4 XX, YY)
YY=Y04K2/2 ’ °
e P "PU*LZIZ N . .
‘ K3=H*p * :
L3=W*ACCEL (P, xx.vn g
. T XX=XS M . '
‘ - YY=VY(]¢K3 ) N
s . ; P =POeL3 ’ . ' |
L ﬂ,/ . Kl =HEP * ) N
- . L4 =HP ACCEL (PyXX s YY) ) B . .
e o - Ki=(X1429K242%KIPKG) /6 ’ »
= R Cd L1 LIN20L282°L 300 /6 : - I
: ~.. AX=XD=X0¢H g .
: . YY=YDSYOHKL . - ‘
. - y P =P0=P0sLY ‘ .- ’
e - IF (XOUNT.LT¢1) GO TO 125 P '
e JEKOUNT/N#1 LN
: v X€J)=2xX R ‘
. . , Y(JIaVY

. N & .
A o
. . . ¢ ?
N ‘ ’ 9
l‘ ” o , . -
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. ) © . SUBROUTINE DIFFER{X.YDOT)
S v : T~ gomeeeeecccccismccncenc e ccc e hmemmeemam—-
. c SUBROYTINE TO CULATE THE NUMERICAL SOLUTION
N BY A RUNGE-XUTTA-4 HETHOOD AND TO COMPARE IT TO
* SR R AN APPROXIMATE ANALYTIC SOLUTION
‘ - c LT TT Ty
Tl e . o COMHMON /8L3/H0 Al XIN,TSR4PIN, W HANT(5) ,0EL,T,Q0
-, . , COMMON ABLS/A.BoYINyCASHE/BLE/H N
¢ ¥ DIMENSION X (3001,Y(300),Y00T (300),YC(300).
. . RE L Klnfz K3.KB.L1'LZ QJOL“vKoHvCASE
w0 . 'AcchP.x n=-umwasxp)WHDEL'moonn'smm'xy-n

NUM‘RIC&L FRAMEHGRK FOR SECOND OROER DIFFERENTIAL EQUATION

< R e et L e DL LS L L L

LTI K-

3

g a P
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150 CALL ANALYTIX,Y,Y00T.J)

' .o ) ’ '
. YooTtH=p . 3
s . IF (XX.GE. (111°T)) GO TO 150 !
: I =1 ¢N . : . {

: GOTO 125 3

t

+ 110 FOQHAT(/.Z&X.’SECOND ORDER OLFFERENTIAL QAMPING®*,//,
+TL12,%FOR H =¥ ,F7.5¢% AND N =*4104s/4T53.*% OIFF*,/
R i 071&.'T[ME'.T22.‘NUH'.TJi.'ANAL'.T39.'APPROX'.rkq.'YOOT'
; ’ +T57 PANAL®*,T63,*APPROX® 4/} '

170
176
115

RETURN , -
END . .

SUBROUTINE ANALYTU(X,Y,YOOT,J)

COMMON /BLL/M,G/BL3I/HD 4 A0, TSR TSRy VoW HANT (5) 4 OEL T, 00
MION /783LL/THETASDELYP ,K,01

DIMENSION X(330),Y(300),YDOT (300

REAL K¢M

APPROXIMATE ANALYTICAL SOLUTION S

TK=K/(H*N) ~ -

IKG=6/TK

CHI=1- (M‘K'SIN(THETA)"Z'DELYP)I(G‘H‘AO‘TI
XLAMDAL==G*M* (1= (CHL**5) )17 (2*CHI) . ,'
XL AMDAZ==G¥N* (1+CHI**,5)/(2%Ci:I® v . :
COEFFASADROEL® (QEL -H"* D)/ (TKG** 25 {GTL-WT"25772)
COEFFR=COEFFA*TKG/ (DEL=-H®*2) .

COEFFC= (AQGCOEFFA)'SIN(H‘TSR)&COEFFB‘COS(H'TSR)OV'(TSRI TSR)
COEFFN=-W*COEFFA*COS (W* TSR} ¢H*COEFFB*SIN(N*TSRI ¢V

-PART1=(COZFFD- COEFFC'XLAHOAZ'/(XLEHGAI - XLANDA?

PARTS=(COEFFO- COEFFC'XLAMDAI)/(XLAHUAI-XLAHDAZ)
IF (WANT(21.EQ.F) GOoTo 176

00 170 [=1,J ' -

TIME=XI(]I) : g i ,
PARTZ= PAQri-rxp(xLawoax'(rtnE TSRlll B
PARTS=PARTSYEXP (X| AMDA2 *(TIME=-TSRLI?)

PARTL= HatFOEFFA'SXN(H'TIHE)-CDEFFB'COS(N‘TINE)
26=PART2-PART3¢PARTY ‘

IC=PART2¢PARTY ,’ e

: .

DIFF=(Y(I}-ZC)*100/Y(I) L .o
SINE=HO+AI*SIN(H*T IMES . ,

APPROXIMATE SOLUTION
APPROX= HCOAO'SIN(H‘TSR)OV'(TSRi TSRVW TS'V‘(YIHE TSR1)
DIRF2=(APPOOX=-Y (1)) *100/7Y (]}

PRINTY 175.X(I).YfIl‘00.ZB‘QO.A“PROX'OU.YDDT(I)'DloDIFFoUIFFZ
[F(SIMNF.GT4Y(I)IGOTO 176

o ’ .

v

CONTINUE
CALL FITCURV(X,Y,YDOT,HM) : ) .o
FORMATIT12,F6abyh (X sFBab) 2 (1XgEB2)) )
RE TURN . = : .
END : Fe
: e | '
2 . .
\ ‘ .
, ' .
' . . t\
W .
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SUBROUTINE FITCURV(X,Y,YC) .
SUSROUTINE TO FIT TOGETHER THE VARIOUS COMPONENTS

OF THE outcasp CURVE TO GET ONE CONTINUOUS CURVE
L L L D R R R R N L L L L L R L oYy

COMMON /RL'/HO ADyTSRLs TSRy Vo We NANT(5) 4DEL T+ KO/BLE/H N
COMMON /BLA/Y

DIMENSION x(300|.¥(300».vc«xso».rrnstssu)

REAL K0 ] .

00 23 I=1,150

YCUIN=0.

TIME(1) =0,

YC (1)=HD

HzH*N ’

DT=H

I=L=1

YT1=HI+AQ*SIN(N*TSR) -

YT22Y(1) N

(I LT ELELEE LRI PR RS PR Y Y L Y )

THE RISINC PART OF THE OUTCROP POINT

R E VU CTERVBR DD BRDE B W W W W W W @ W

T=141 ) . \
TIMEC(I)=TIME(1) +H* (I ~1)

LA T A R N e L L eI omcewaa ‘

THE MAXIMUM FALL RATE OF THE QWISRUY PULNY
IFCTINELI) o GELTSR) GOTO &8
Yc(Il”ﬂoonc'SIN(H'TIHE¢I))

GOTO 38
YCII)'HGOAO'SIN(ﬂ'TSR)&V'(T[ME(Ii-TSR) .
I+t

TIMECEY=TIME(L) +H* (I 1)

IF(TIME(I).GE.TSRL) GOTO 60

GOTO o8 .

AL L L EL LA AI L L ER I EE LT L P LT R Y TR r Y

NON-~LINEAR DIFFERENTIAL VISCOUS DAMPING

P N E AR N NN B DD " P DD W G D B

IMECTYI=X(L) .

YC(I)=Y (L) s Y .
YSIN=HD¢AJ®SIN(N*TIME(I))

[FLEYCLIV-YSINIoLELQ.) GO TO 76 . ] r

I=Isg . . .

L=t ey : .

GOTO 60 s : . T

THE OUTCROP POINT RISES AGAIN WITH THE EXTERMAL VE .

D - - e D I W D D D D D P ! D WD AR W D W W DWW )y
L}

Th TYC=TIME(D)

‘75

YTC=Hi¢AQ SINIH®TYC) . . -
YC(IN=HO*AT*SININ*TINECLD )}

’
"

S .
T Y B3 EECI M I

O « ~ . -
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97
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102

95

96

- 99
101
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I=T¢1
TIMECT)=TIHE(L) ¢H* (1 =1)
IF(TIME(T).GTLT) GOTO 90
GOTO 75

1=t

YC(I)‘HO#A"S[N(H‘TIME(I’!

‘L=II-INT(E/H) =L
GoTO 93

II=1~-t

L=1

—

/

PRINT 95,TSR¢YTX,TSR1,YT2,TYC,YTC -

WRITE(L1L,105) TSR, YT1,TSRLHYT2,TYC,YTC ° .

IF (MANT (4) .EQ.C) GOTO 97
PRINT 96

D0 100 J=L,II

M=J-L#l

X(M)=TIME (M)=TIMNE(J)

YF‘(HUOAO'SIV(H‘YIHE(JDl)‘Kq

YC(M)=YC{J)2K0
IF (WANT (4) .EQ.0) GOTO 100

PRINT 99,M, TIME(M) ,YFyYC (M}

CONTINUE
ThLL PATSLOT)

o0 472 I=24M

-

WRITE(14,121) TIME(I)I-TIME(I=-1),YC(I)

IF (WANT(5).EQ.0) RETURN

CALL PLOTIY,YCyTIME ##,55,0}

FORMAT(/7/T28,%T1 = #,F8.4,TUl *Y(T1) = % F8.b,/

ST28,%T2 = *, FB.lbyTlkh,*Y(T2)
W28,°TC = *oFB.4yThl,*Y(TC)

-
=

-
=

¥oFBaly/

*,F8.04)

FORHAT(lHi-IoTZi-'I‘.TSZ-‘TIHE'.THQ.'SINE WAVE®,

+T60,*0UTCROP®,//)
FORHAY(19XoIZ'3(SXoF}G.h))

FORMATE(EX +2(F10k,5X%})

.

§g5 FORNAT(/Ti"TI ='.F0¢Q'TZS.‘Y(TL):'.FB:#.I

DPT2 I8, FB.bsT25,*Y(T2)2%,FBoly/

RETURN |
ENO -

‘fTS.’TC 3%,F8. b;T?S.‘Y(IGl".FO-b)

/’\\

B PN, s - .

I~
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SUBROUYTINE PLOT(ITY,YsZsN+XSCALE,IPRINT)

- oA e <A

It Bt on oy e

c -------- cemvcconsromitie cmca- .- W D e DD T D D D o b AD W D WD D W WD W
c PROGRAM TO PLOT A SET OF X-VERSUS-Y VALUES
€ ° X IS THE SYMAOL USED TO MARK THE POINT OF NfERSECTION
Ce Y IS THE DEPENDENT VARIABLE ARRAY
c Z IS THE INDEPEHDENT VARIAHBLE ARRAY
c . N IS THE NUMBER OF OATA POINTS, IN EACH ARRAV \
] XSCALE IS THE NUMRER OF COLUMNS USED TO PRINT THE X SCALE
c IPRINT EQUALS t IF THE SCALED DATA POINTS ARE TD BE ORINTED OUT
c --------------------- R <--—--A--------——-~-A-------.-_-q-<‘
DIMENSTON YN}, Z(N),TY(ICO0),LINE(132),ITY(300), TX(SOO)
REAL LINE ALANK,DOT,MARK \
INTEGER XSCALE,XSCALY \
¢ DATA sLANK.DOT HARxlxu 11H IH®/ l{
c CREATE TEHPOQARY STORAGE FOR ARRAYS (A=TY AND 8=TX GENERALLY;
c - - D P D W D DD G HD U R R R D D AR D P A . A A A W Wy D S
00 1C0 I=L.N
TY(I)=Y¥(D) ( *
100 TX(I)=24D) -- ‘
R c . - D P n D - D D DD D D D D S ot W e an R R TR R R
c _FIND THE MINIMUM AND MAXIMUM ELEMENTS IN EACH ARRAY
e c T L X L T T Py RSP,
1Y XH[N=YHIN=10."10
XMAX=YMAX=z~1D,"*9 p
00 520 I=1,N
IFETXLT) SGTLXMAXY XMAX=TXII)
Lrerv (D) GTLYHAX) YMAX=TY(D) ’ N
IFI(TX{I)aLToXHMINY XMIN=TX{I) B
IF(TYUI) o LT YMINY vnIn:tvtt)
5006 CONTINUE
PRINT 987 ,XMIN,XMAX,YMIN, YMAX
c ----- R WD D W A WS GRS WD A S - L AR A A A K E A B E L A L X S L 4 L L L L 2 L 2 X XK X X ¥ F¥3
c SCALE ELEMENTS IN X ARRAY IF NEGATIVE OR LESS THAN ONE
c Ll i Ll DL D R A Rl S e e L e L e R D D)
00 691 [=1,N
| 501 TX(II=TX(I)=-XMIN®1.0
XMAX=XMAX-XMIN¢t1.0 -
XMIN=1,.0 *
i c O-‘---Q—-‘-‘-ﬂﬂ------‘--—-----"“--C-‘.-'-----’--‘--".
-0 SCALE ELEMENTS IN Y ARRAY. 1F NEGATIVE OR LESS THAN ONE
Cc S B RS BB BTN EGRE DD D D o D D D W D R
. DO 622 I=1,N
602 TYII)=TY(I)=-YMIN+L.0 .
YMAX=YMAX-YMIN®1.0 . <
YMIN=1.0 ¥
c - s s W e W D e A b e A S W W s .- - /
c FORM THE SCALING RATIOS FOR X ANO Y AXES //
c T W B B BN D D WD WD DD GO D D up Dy WD R GRS W NS
5 RANGEY=YHAX=-YHIN
. “RANGC2=2KSCALE~-L .
RANGE X=XYAX-XMIN
PRINT 984 ,RANGEX4RANGE2,RANGEY
» v c P P R PN PP RPN DG E WRET NGB E BN WS-
c SCALE THE ELEMENTS OF THE ARRAYS .
) s’
¢ ( D ’ )
' o » .
¥
. 4 .
N L :?' ’ i3 ,
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Co 700 I=1,N
TYCII=4, 0+ (TX(I)=-XMNIND *RANGE 2/RANGEX

700 TYCI)SA0. 0% (TY(I)-YMINI*704 /RANGEY

PLOT THE SCALED DATA ARRAYS

CREATE AND PRINT THE Y AX[S AS DOTS

DO 378 I=t,9
398 LINE(I)=BLANK

00 400 I=17,83
400 LINE(I}=0OT

HQITE(e 401 (LINE(I),I=1,83)

------ T P L L T Y T

INITIALIZE PRINT vecroR‘
D0 %02 J=1,83 : ‘
402 LIME(J)=ALANK
LINEC10) =DOT .
XSCAL1=XSCALE+1
I1=1
00 8030 I=1,XSCALL.
LL=1
K5=0 - ' o
802 JJ=TXUID) N
‘IF(JJNE.I) GO TO 861
K5=1
KK=TY(II)
LINE(KK)=MARK
ITY(LLY =XK
LL=LL ¢t .
[I=10s4 . ) : 0

MH=TX(I])
IF (MM.EQ.1Y GO TO 802 , .
801 HWRITE (6401} LLINECIJK) yTIK=1,480)
IF(K5.EQ. Q) GO TO 305
LLtstt-1 . Q
DD 834 NN=1,LL1 '
TOITYL=ITYINND N
804  LINECITYL)=BLANK . )
805 KX5=0
LINE(L0) =00T . -
800 CONTINUE : ‘
IF (IPRINT.NE.1) GO TO 3900

X33 X3)

QOO0

— 00 9351 I=1,N

901 WRITE(6,902) T TX(I),TY(L)
990 CONTINUE

W01 FORMAT(1H ,83A1)
902 FORMAT(IS,2F15.7)
987 FORMAT (1H1,9Xy* XMIN=®,F 9.4, ux.'xHAx='.F4.k,bx.‘YHIN-'
T BYHAX=Y \F9.4) .
988 FORMATE/,170X, *RANGEX 2%,F13.4,° RANGEZ =#,F13.4,
+*  RANGEY 3%,F12,447/) :
RETURN
END ‘ 9 :

.Fs.b.bx/’

o

4 i sigm

bt b

3%
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SURRQUTINE POTS(OT)

THIS SUBROUTINE WILL GIVE THE PROPER POT SETTINGS
FOR THE HYWRID PROGRAH DEVELOPED

COMMON /BL1/HM, G/BLZ/A B/BL7/XL

REAL M , ’ »
PO0=P31=1/6. ‘

P012P3621/(50%0T) ‘ C
Pg2=P32=.75 ’

P03=P33=p v -
P06=PJ8=1.9612%N

P10=A

P12=3)"8

P30=P35=,25

FACTOR=1.

IF(XL.GE.10) FACTOR 1 .
P50=,1/FACTOR

P65=XL/ (10*FACTOR) .
WRITE (L14s5) PLL4PICsPOLPIL,P02,P32,PC3,P32,P06,P35,
4008,%36,P17,P6C,PL2,PES

<

5 FORMAT(/TS5,*P(C=%,FB8.4,T25,%P30 = *,F6e4,

w

$/T54%P01=%,F8,6,T25,%P3L = »,F7." ,°77,°022 =, 7.,
$T2S5,7P32 = P 4F8.by /TS5, POX=¥ FI.54732:"733 ~ ToFBaly
’/TS"°c6=.'F60“'T25"P35 = .UFB-QQ/TSU.P(]G:. Fa'b' .
0725.’936 = "FO.‘Q./TS.‘,910="F5.“.TZE.‘PGO = .'FB.“'
$/T5,"P122%,F8.4,T25:%P565 = *4F)at//)

‘RETURN

, END

' oo “uq
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PROG2AM ODE (INPUT,OUTPUT, TAPES, TAPES, TAPET,TAPES) .
SOLUTION TO FIRSY ORDER DIFFERENTIAL EQUATION BY RUNGE-KUTTA

DIMENSTON WW2Cu)oHHLlL), RESULTS(?Ol.&)‘TIHE(SZ).DEPTH(SZ’ '
REAL M '

DEFINE DERIVATIVE FUNCTION

DERFN(Y ZoYMLI==1,/(,75%Y 4, 25‘2)‘(H'(Y*YHI)/OTO.S‘G‘(AOB'
+ABSUY+Z)/2V* (Y+I) *H*N)

READ IN PARAMETERS

ISTEP=1 ’

PRINT 202

READ IN TAPES

READ(5,%) MyA,B4XL, ua PTA,PTB,U . )
PRINT *,20H INPUT T1,Hi,T2,H2,T . -
LREAD *,T14H1,T2,H2,T

D0 15 J=i, !

READ(5,%) “TIME(J) 4 DEPTH(J) .
IMAX=701

CHIXLZ/Z(IMAX-1)

I10=(IMAX~1) /710

IML=TMAX -1

6=980.6

FAC=16"*N*NYG . '
YRITE(7,210) ‘

DEFINE THE CONDITIONS AT INITIAL T[ME

HiC=2*H* (G*HO)**,.5

Hi1=2¥MP (GPHLYI* %5 :

Wi2= Z‘H'(G'HZ)"oS .
TYME=C. —

G0 TO 2
PTA=U®+1,5
PT8=U~1.5 .

[ i
1]

MOVE ON TO THE NEXT TIME INGRENENT
PRINT 203 , :
OT=TINE (ISTEP) \

TYNE=TYNE+OT

IF(TYME,GT,T) STOP '

IF (TYMERLE.TL) W10=(NL10® (T1-TYNED #W11*TYNE)I/TL
IF(TYMELGT.TLoAND. TYMELLELT2) WLO=(HL1® (T2-TYME) ¢H12% CTYHE-T1))
+ 7(12-T1)

IF(TYME,GT.T2) W10= (H12%(ToT1-TYME) tN11® (TYNE-T2) )/ (TeT4-T2)
H20=-W10

IF(OT.LE.0) STOP

C=(G*DEPTH(ISTEP)) ¥¥,5 ' , ‘

ICOUNT=g . > .

GO TO & ;

. . '
f | o
’ . :
. B - ’ ' !
. . - . &
[ N ' :
L2 —
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¢ NEFINE THE LIMITS AND THE INITIAL VALUE OF THE VELOCITY U
300 13 I=1,IMAX,INML ’
13 PRINT 2400, QESULTS(I-i)'(RESULTS(I.Jl'J‘2'6$
PRINT 204
REAQ *, PTA,PTB.U
IF(PTA.EQ.100) SToP
ICOUNT=1
& X9=0
=1 ¢

s

L] -

c COMPUTE FOUR VALUES BY, RUNGE~-XUTTA AND PRINT OUT

WHL(L)=WL=U+2*M*C .
WH2 (1Y =H2=U-2%M*C ‘
CALL STORE(RESULTS,X0,Hi,H2,FAC,M,I,INAX)
DO 13 I=2,4 ‘
FK1}= bDEQFNtwi.wz Wi0)
FK12=+DERFN(H2 s H1,H20)}
FX21=¢DERFN(W1#.5*FK11,H2+.5%FK{2,H10) .
FK22=+DERFNIHZ #45*FK12,H1#.5"FK11,H20)
FK31=¢CERFNINL#45*F K21 H2#,5%FK22,W10)
. "FK32=¢DERFN(W2+ +S*FK22, W1+ 5%F K21 ,HW20)
FKL1=FDERFN (WL #FKIL, N2+FK3I24 HLO)
FKG2=¢BERFN (N2 #FK32,HL+FKIL, W20) -
X0=X0 eH :
NHL1C(I)=WLPHR(FKL1+2.PFK2142. *FK3IL+FK41) /6, P)
CNH2(ID=H2¢HY (FK12+42, *FK2242. *FKI2+FK421/64 ’
Wi=WWL(I) N
HW2=WH2(I) .
CALL STORE(RESULTS,X0sHL1,4H2,FAC,M 4T 4INAX)
10 CONTINUE ‘ . .
F1=0ERFN(WHL{L1) 4WH2 (1}, W10} N
F2=0EREN (WAL (2) s HH2(2) 4 W1 0D
FI=DERFN(HHL (3D 4WHZ(3),H10) o :
Fu=0FRFN{HWL(6) 4HK2(4) 4 W10)
FE=0SRFN (WH2 (1) pWHL (1),,'H20) -
FT=02FN (UH2(2) o HHL (2) ,W20)
FB=DEFNCHH2 (3 ) 4 WHL {3) ,W20)
FO=DSRAFN(UN2 (6) 4 WH1 {4}, H20)
WRITE(T,211) ISTEP,ICOUNT,F1 Fb6.F2:F72F3,F8, Fu.F9
I=6

C ADAHS—HOULTON PREDICTOR/CORRECTOR METHOD

30 I=I+
PHIZWLPHP (55°FL-59*F3+37*F2-9"F1) /24
PH2=W2+H* (55%FO.-59¢F3+3T7%FT~9%Fb) /26
FS=DERFN(PW1,PW2,K10)
FO=DEFN(OW2 4PH1,H20) '
CHLIZWL1¢H® (O*F5¢ 19%F4-5%F3IsF2) /24 !
CH2=W24H* (O%F(Q+19%FI-SYFB+FT) /24 J
W12CH1+19%(PHL~CW1) /270
W2=CH2¢19*(PW2-CN2) /7270

i -

o AR a0
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32

35

37

49

4

X0=X0+H

F1=F2 .
F2=F3

F3=F4 : ,
FU=DTRFN(HL W2, H10)

F6=F7

F7=F8
F8=F3
FO=DFRFN (W2, W1, ®20)}

TFII/ZI10°T1C.ECL I} WRITE(7+212) I4Fb,F9

CALL STORE(RESULTS,X0,Wi4HW2,FAC,H,I; IMNAX)

IF(I.LT.INAX) GOTO 3O - v ) "

03 -

[N -

BISECTOR SCARCH FOR THE CORRECT VELOCITY FOR
THE ROUNDARY VALUES PROBLEN

R= (WL ¢W2) 22 . '

IF (ABS(R) .LE..01) coro “0

IF(RY 25,25,32

LOWER LIMIT IS AoJUSTEo UPHARDS

veonsae o----—----------—---------

PTR=VL -

G0 10 35 . .

UPPER LIMIT IS ADJUSTED DOWNWARDS

PTA=U :

THE NEW YELOCITY IS COHPUTE" .

U= (PTASPTB)Y /2

ICOUNT=ICOUNT#+{ . .
DO 37 I=1,IMAX,T10 W
WRITE(A,201) (RESULTS(I¢Jd)yJ=1,6)

IF (ICOUNT.LE.10) GO T0 & ,

PRINT u7? .

G0 10 3 ) - ‘ ~

SUCCESS!! YOU HAVE CONVERGED TO A SOLUTION.
PREPARE TO MOVE ON TO THE NEXT VALUE

HRITE (6442) ISTEP, ICOUNT

WRITE(6,60)

00 L& I=1,IMAX,I10 !

HQTYE(G 214) RCSULTS(I413,RESULTSII2)

WRITE(6+20C) RESULTS(IoIJo(RFSULTi(I JY ¢J=246)
ISTEP=ISTEP#}
GO To 1
¢ .
A -
. . .
|" .

ot B .

ot NI Vi

.
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FORMAT STATEMENTS ' .

42 FORMAT(//+* STEP NO. *,[3,* REQUIRED *,I3,™ ITERATIONS®*/)

L7 FORMAT(//* SOMETHING IS WRONG, YOU ARE NOT CONVERGING®,
+* FAST ENOUGH.*/* TRY READING IN A NEW VALUE OF Uy®*/)

60 FORMAT (7 Xo®*X® 12X o " Y o1l X oMU 913Ny PC 412X s*HL®,12X,%KH2%,/)

200 FORMAT (FLl0.4,3X FlO7,64(3X,Fl0elk)) .

231 FORPMAT (B6(2X,G1C«3)) .

202 FORMAT (/% ENTER POROSITYI(M), COEFFICIENTS(A,B), LENGTHIXL),®,
v/ "fEAN WATER LEVEL(H0)., UPPER ANO LOWER {IMITS OF VELOC[TY'
/7 AND THE INITTAL GUESS FOR THE VELOC[TY(U,'/’

203 FORMAT(/* ENTER THE INCREMENT ANO THE NEW IBITIAL HEIGHT*/).

206 FORMAT(/® ENTER NEW UPPER AND {OWER LIMITS®,
e% AND THE ACTUAL VELOCITY®/) !

210 FORMAT(1H1.5X,*THIS TAPE? GIVES THE VALUES OF THE OERIVATIVE®,
#/6X¥AT EACH STEP OF THE INTEGRATION. THIS OF VALUE FOR THE'
+/6X,*ANALOG/HYBRID SIMULATION.®/BXs60(1H=))

211 FORMET(/5X,®STEP NOo®yIt,4X,*ITERATION NOo®, I 477, \
$15Xe® 1%, 5%, 2616a7/ 15Xy *2%,5X 0261 a7/15X, *3%,5X, .
$2G14.7/15X, 4% 5Xe2G1b07) - .

212 FORMAT(L13X+13,5X+2G1be7) 9

214 FORMAT (10X 4F5.2,3X,F10.%) . :
215 FORMAT(®<====e-= STEP NO. *,I4,% =-====== [TERATISE NO. *,

$[Hhy? ~mcwcveena¥)

ENO ) .

' o~ Yo \,_.,.

-

SYBROUTINE STORE(RESULTS,X0,H1,W2sF ACSPORE,NUM INAX)
DIMENSTION RESULTS(IMAX,6)
RESULTS (NUM,1)=X0 ’
RESULTS (NUH,2)=(H1 -H2) **2/FAC . : o
ESULTS(NUMs3)=(HL+H2) /2 -
RESULTS (UMt )= (WL ~H2) / (4 *PORE)
RESULTS (NUM,5)=H1 s :
o RESULTS(NUM.6)=HZ P
RE TURN .o :
ENOD
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‘

1~ ANALOG/HYORIU SIMULATION OF NON-QARCY FLOW - ¢

IN ROCKFILL STRUCTURES

]

DEVELOPED BY PETER KOTIUGA WITH THE HELP OF DAVID MARGREAVES.

°

~TﬁIS PROGRAM CALCULATES THE PHREATIC® SURFACES OF THE WAVE
MOTION WITHIN RCCKFILL STRUCTURES USING A CSOT HYBRIO

APPRILCH.,

THE CONTENUITY AND HOFMENTUM EQUATIONS HAVE SEEN

TRANSFORMED TO THEIR CHARACTERISTIC FORM AND ARE INTEGRATED

SIMULTANEOUSLY.

QECAUSE IT IS A AOUNDARY-VALUE PROBLEM,

AN ITERATIVE BISECTCR SEARCH YETHOD HAS BEEN IMPLEMENTEO

TO YIELD A SOLUTION AT EACH TIME FRAME.

AN QPTION TO PLOT

THE PHREATIC SURFACE AT EACH TIME FRAME IS GIVEN AND THEN

THE VARTARLES ARE UPQATED.
ONE COMPLETE WAVE PERIOD-

COMMON rx.ux.r;.uz.eps.sanE
REAL M .

SELECT ANALOG CONSOLE ( :
CALL GSHYIN(IER,680) . .

. CALL QSCI(1,1ER)

PLACS ANALOG IN POT COEFFICIENT MODE
CALL QSPCUIER) ., -
cALL QHQLL(i'.FALSE-.IERl

ENTER THE PARAMETERS =
TYPE 10
FORYAT (67H ENTER THE PERIOD, M.

ACCEPT 1S54T4KHL yMyEPSeSCALE

TYPE 15,T4HL.MEPS,SCALE

FORMAT (2F542,2F6s4oF6al) ¢
» TYPE 20 ‘

Holes POROSITY, EPSILON
+50H ENTER THE SCALE FACTOR (ABOUT 300) *4/) R

THE SOLUTION IS OBTAINED FOR
s~

L

.
ol

N L

-4

/
20 FORMAT (604 ENTER Ti.ngTZ'HZ (4F10. QD"I) Y :

\

ACCEDT ZD|T1|H10T2&“2
TYPE 25,T1,HL,T2,H2

25 FORMAT (4F10,.4)

-

6=98%.6 : .
- s

CALL PHREALG,ToHO,M) .

TP | e

ENO . e

-~

b S5 b o s
(
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' 4 .
2 SUBRIUTINE TO‘"SOLVE FOR THE PHREATIC PROFILES

SUBROUTINE PHREA(GyToHO o) L .
DIMENSION HIN(GL),HOUT (2)

COMMON T1,H1,T2,H2,EPS,SCALE ’

LOGICAL SENSW

REAL M

WO0=2.*M¥SNRT (G*HO) /SCALE o s
W1=2,*M*3SIRT (G*HL1/SCALE :
W2:2,*M*SORT(G*H2) /SCALE ~
TIME=Q. ’
READ IN IMPORTANT PARAHETERS

TYPE 20 . ' . .
FORMAT (60H ENTER THE NEW TIME INCREMENT AND DEPTH'®,./) ,
ACCEOT 25,0T,YN [
TYPE 25,07,YN ;
FORMAT (2F8.04) ‘ i
IF(YNJLEL0s) RETURN .
TYPE 30
FORMAT (604 ENTER RANGE OF VELOCITIES AND IN'TIAL'

+2CH SUESS'y/) - . C A

35

ACCEPT 35,VELA,VELB,VEL . -
FORHM’(JF‘O 1 . v &

DEFINING THE INITIAL VALUES .

CEL=2: *M*SORT (G*YN) /SCALE . ‘ - 0

VELAZVELA/SCALE . - : .

VELS=VELR/SCALE // .

VELSVEL/SCALE ‘ .

WIN(1)=VEL¢CEL °

WIN(2)=VEL-CEL .

IF(TIME .GT.T) RETURN ‘ .

IF(TIME.LELTY) HIN(S)*(HO'(TI-TIHE)oTIHE'HZD/Ti - ‘

IF(TIME.GTeTL AND.TIME SLE.T2) WINE3 =(WL® (T2~ T;HE)&YIHE'HZ)I\ S

IF(TIME GTaT2) WIN(I)=(H2P(TL+T-TIHE)+TIME®HLI /(T LeT) .

WIN(4)==-WINC(3). ’

INTEGRATE ON THE ANALOG GOMPUTER - : : @y

CALL RUN (WIN, HOUT) . :

nrsecron SEARGH MEHTOD TO seex SOLUTION ) .

VELN= (WOYT éﬁ%ﬂOUtcz»)/z. . X

trg ok BaNSE(1)) GO TO 45 ‘ ,

Y IN=( (¥ (2)15SCALE/ (e o PHPG)) #*2, . N - Co
FCAR0LT (2) ) SSCALEY (h ot HoGII P22, o .

UINS(HIN(LY oM Y /2. ‘e -

CIREMIN(LI-NING2 A/t ) - A - : g

COUT=(NOUTTL) =N r(zr)/cu.;nn ‘ B -

e

LTI Ry TR e
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70 FORMATU/,12X47HTINE =

©

3

3  SUSROUTINE TO SOLVE FOR THE PHREATIC PROFILES

164 -

-

'

.

TYPE 70, TIME, YIN,UIN,CIN,YOUT,VELN,COUT

+F8.3)

.FB-Z./.ZX.SHY(0)=F8.‘0'5X'5HU10I=
+5X 4SHCLQ)=4F8. 3;/‘2X09HV(L!=0F8.luSX.5HU(L)=.F7.‘0,5“C(L)=.

45 IF(ABS{VELN).LE.EPS) GO TQ 55
[F(VELN.LT.0.) VELB=VELN"

IF(VELB.G6T.0.) VELA=VEL
VEL=(VELAWVELB) /2,

55

HIN(L)=VEL+CEL
HIN(2)=VEL~-CEL

CALL QWSDARTWIN,1,2,leR)

GO TO 40

PLOT THE CURVE FOR THE PRESENT TIME FRAME

PAUSE (1

GALL PUN(MIN,HOUT) "

_ PAUSE 02

GO TO THE NEXT TIME FRAME
TIME=TIME+OT

GO TO 17 :
END

w
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b N ' PAGE b SUBROUTINE YO TRANSFER ANALOG AND DIGITAL SIGNALS e !

. ‘e N ~ o

- d

N sueaourrwf RUN(HINy uourl “ a {

C tos “. DIMINSION WINU(G),HOUT(2). . P - ?
U T : sLocxtgL R i

. ’ 4

. 4 CALL QW3IDAR(WIN.{,&,IER) ; . ° -
* cal.osToa. - - f )
.t € . PLACE ANALOG IN If MDOE - .
] ! CALL QSIC(IER) © - L Co

¢ . ser rue caffs ano Hnnnsrea SIGNALS « o » &

T - C  LOOP TO DSTERMINE A PHREATIC SURFACE .
- . CALL QSGLYR(500.,[ER) .. . .
o . . CALL "QSOP{IER) . . .
. . CALL QR;LL(LVAL.O.IER) LN
S \ .1 48 CALL, ORSLL(LVAL,T,IER) 5, : .
: , . IF(.N@T.LVAL).GO TO 45 { .
A
o > c TREAD THE A/0 CHAMMELS ' - . . :
) : R CALL QRIADRYHOUT 1420 IERD
A ; CALL QSIC(IER) ~. . °
. , RETURN: : G .
’:" ‘ ‘END : * - ’ £y i

AYS




-

PS-Y - 4

e

c
.

C

c

L S

. .
3 SN \
L] . ~
// ' 166 - .
’ 2
¥
- ‘ . >
- - o~ - ' *
' » : . - a
~, . i ' ‘
v/ "N e \
d ~
‘\\ -

PROGRAM OUE([NPUT QUTPUT,TAPES , TAPEG, TAPE 2, TAPES)
SOLUTION TO FIRST ORDER O[FFERENTIAL EQUATION 9Y RUNGE KUTTA

CIMENSION WH2CGL) JUHL (4) JRESULTS(106146)
COMMON GHO,XL . ‘i

REA}P\ e - -
osrxuc DERTVATIVE: FUNCTION .

4
DERFN(Y.Z YH1)=~H/( 75%Y4,25%Ty* ((V~ YEI)IUTO S'IGHATF 5%
+ GHBL'ABS(Y'Z))‘(Y’Z)) -

- READ IN PARAHETERS )
ISTEP=Y n ia .

_ PRINT 202 .
READ(5,.%) n.A.B.xL.uo PTA,PTB,U

L -

* . PRINT 2019 : . .

READ *, TileoTZo"Z'f

PRINT®, «uH . - ENTER THE VALUE OF TOLERANCE ON"VELOCITY ,
READ*,EPS . v . . ‘ -
IMAX3101 . _ ' .
I1C=(IMAX~-1)/40 X L ‘
IMiSIMAX-1 ) ‘

H=1e/ (IMAX-1) :
‘6G=980.6 . - ' s
FAC=1E¥4eM3G g -

‘~ GHO=(G*HQ)**,5

GMAT=GPN*A®T
GMBL=G*H*A*XL
PTA=PTAZGHO

PTB=PTB/GHO .« .
UsU/GHO . . .
uknsn.zm

OEFINE THE CONOITVIONS AT INIT[AL/3¥HE

© Wigm2eN - :
H11=(2%4% (GTHL)*%.5) /GHO /- - 7
W12=(27H% (G¥H2) *%.5) /GHO ‘
\TIHESO , Ld . : . .
€0 10 2 . . .
1 PTA2UMLS, . o ' — '
PTAz2U-1.,5 4 Y . .

RE%D IN THE INCREHENT ANO ‘THE NEW INITIA\\?EIGHf

2 PRINT 203 2N . P
READSS+*) OT4HL ' - L
TIME=TINEOT, . s
oT=0T/T7 . . -
IF(TINE.GT.T) STOP ‘ : ‘
IF (TIMELLE.TD) MO:(HiO'(Ti*T[HE’0"11"1’["5)»/". g . o e ?'\

o
v . ) 3
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IF(TIGE.GT T1.AND. TIRELLE. 121 HLO=(HL1*(T2=-TIME) ¢W12%(TIME=TL)

. /7(T2-T1) T
CIF(TEMELGT.T2) HIO=(WL2® (T1+T-TIME) +H11*(TINE- TZ)!/(T&Tl‘TZ’ ,
W20z-H10

- C=16*41) **,5/GHO ’
e ' ICOUNT=1 “ :
‘ . Q'QHNIO‘*'HI(]‘BH TIHE + TINME «
. . GO TO & . .
3 D0 43 I~1.max.1n1 ) + :
o 43 PRINT ZOO.RESULTS(I 1;.(RESULTS(I.J,.J-2.5) , C

SR

c *DEFINE THE LIMITS ANO THE INITIAL VALUE OF THE VELOCITY U

PRINT 204 \ .
© READ ®,PTA,PTEsU,0PT :
. | IF(U.GT.60) STOP

. PTA=PTA/GHD . -

] . PTB=PTB/GHO

U=U/GHO B &

A 1CODNT=1 . : e
6 X0=0

I=t v

c . COMPUTE FOUR VALUES BY RUNGE-KUTTA AND PRINT OUT

v — ke

oY HW1(1 =W{=Us2*M*C ’
: WH2 (1) =W2=U-2*M*C ~
CALL STORE(RESULTSsX0sH19H24 FACeH oI 4 INAX}Y
00 10 I=2,4
: FX11=+DERFN (N1, H2,H10)

P FK12=+DERFN(¥2, H1,H20) ' \ » .
FK2L=+0ERFNINL* «S¥FKIL, W2+, 5°FKL2,W10) v
FK22=¢CERFN(H2+ . S¥FK12, W1 +.5%F K11 ,1H20)

v . F31=*DERFN(NL+.5*FK2L,N2+.5¢FK28,H10)
FK32=+0ERFNIH2+45%FK22, W1 +.5%FK21,W20)
, , o FXG1=4CERFNINLEFK3 L, H2 +F K32, W10) S ¢
FRW22 tDERFN (H2¢FK324 HL#FK3L,H20) f~
X0 =XJ *H .
\ JHAL (DI SHL SHO (FRLL 02, 9FK21 02, PFK3L4F KLY /6
HHZ(!)'HZOH'(FKlz02.'FK2202.‘FKJZOFKMZ)IBo
. - , H1=HRLLT) .
N : T W2awwziry - o
caCL STOQE(RESULTS.XO.H!.MZ FACyMoI, rnAx»
10 CONTINUE ) M )
w @ FLSDERFNIMHL(L) NH2(1), W10) B o ,
F2aDERFNIUWHLI(2) , WH2(2) NLO) ; . T I
FI=OSRAFN1WW] (3 WH2 (3),W10) ° o K. K
FlesOERFN (WAL (L) yWH2 (4 K10 v : P
. . FOE=OERFN(WM2{1) JWHL (1), W20 ¢ . _ . ‘ “ -
s ’ " FTSOERFNIHW2 12D WWL (2D N20) ‘ ) ' T i
' . o FOSOTRFN (WA2(3) 4 WW1 £3), H20) ‘ . , v
o FO=DERFN (WW2 (41 4 UMY (4], M20) ‘ Ce ‘

I MM
"

{
".
H
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WRITE(7,211) xerP.xcodnr.rx.Fe F2 FT F34F8,Fb,F9

I=4
ADAMS -MOULTON PREOICTOR/CORRECTOR METHOD

I1=1I¢1

PN1=HS +H (559F - -59%F 3437%F2-9%F1) /24
PA2=W24H¥ (559FQ=59¢F 8437*F7-9%F6) /24
FS5=0ZRFN (PHL14PH2,H10D},
FO=DERFN(PWZ,PNL,H20)

CHIZWLeH® (I*F501Q%F4 -G¥F3+F2)/ 24
CH2=W2Z+H" [O%F)+19%FI-S*FB4F7) /24
Wi=CHL1¢19%(PWL=-CH11 /278
W2=CH2¢19°%(PU2-CH2) 7270

X0=X0eH

FL=F2

F2=F3

F3=F&4 ' kg .

Flo= oEoFNtua.wz,Htoi )

. F6=F7

25

32

35

37

{

F7=F8

-F8=F9

FI=0CRFNEHZ,RL, H20)

IFLI/110°110.€Q0.1) HRITE(7,212) I,FQ.FQ
CALL STORE(RESULTS,X0sH1sW2eFAL Ml 1MAX)
IF(L.LT.IMAX) GOTO~30

BISECTOR SEARCH FOR THE CORRECT VELOCITY FOR

THE, BOUNDARY VALUES PROBLEN
R= (WL +H2) /2 :
IF(OPT.EQ.1) GO TO 38

IF (A5 (R) .LELEPS) GOTO 40
IF(R) 25,25,32

LOHER LIMIT IS ADJUSTED upPHARDS i
————— “---O‘----‘--r-*--uo--- ..
pre u < .

GO 10 35 "
UPPER LYMIT IS ADJUSTED oounwng;s

-.-.-.co.--.--..ccoo-—o-------- -

PTA=Y

THE NEW VELOGITY IS 'COMPUTED
U (PTASPTBI /2

ICOUNT=ICOUNT sy

00 37 I=1,IMAX.I10 -

WRITE (8,419 lRESULTS(!oJ)oJI!nS)
IF(ICOUNT.LE.106) GO TO &

PRINT &7

GO T0 3

.
“a
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' ' 38 PRINT 150,U%GHO R*GHO A

150 FORMAT (*VELOCITY GUESS =*,G1L.7,* VELOCITY AT CORE =¥,
*Gl4.7/% ~ INPUT { IF SATISFIED, 2 TO TRY AGAIN, 3 TO sTOP*)
.+ ICOUNT= ICOUNé\l
“ READ *,0ECID
IF (DECIDE.EN.3) STOP . .o
IF(DECIDE.SQ.1) GO TO 40 :
PRINT®, 25H INPUT THE NEW VALUE OF U

«
Y

READ *, U
- . U=U/GHO . K
: GO TO &
o c SUCGESS!! YOU HAVE CONVERGED TO A SOLUTION
. MC . PREPARE TO MOVE ON ro THE NEXT VALUE
c P L T T T T T T TR P P T L LT T Y e
' 40 WRITE (6,42) - [STEP, ICOUNT )

. WRITE (£,60) .
D0 44 E=1,TMAX,I10
' NRITE(8,216) RESULTS(I,1) 4RESULTS (1,2}
b WRITE(6,200) RESULTS @11, (RESULTSITeJ) 9J=2,6)
© ISTEP=ISTEO+L
GO TO 1

bg’FORHAT(//.‘ STEP NO. *,I3, REaUIREO *yI3,* ITERATIONS*/)
LT FORMATI(//7* SOMETHING IS WRANG. YNU ARF NNT INUUFPRTNA®,

- . . #% FAST ENOUGH.*/% TRY REAQINR TN a NFw VAIUE OF i]'l)
\ 60 FORMAT(7X,¥X*%,12X,¥Y¥,14X,%U¥, 13x.'C‘.12X.'Hi‘.xzx.'wz'.l)
199 FORMAT(6(2X,G1l1.4)) .
200 FORMAT(F100443XeFlae7s4(3IXsF1044)) - °
201 FORMAT(/* FNTER THE VALUES OFMTIME AND DEPTH ‘AT THE®/
. ’ #% TWO TIMS CONSTANTS Ti AND TC FROM THE OUTCROP ANALYSIS®*/°
* - » +#* AND THE WERICO OF OSCILLATION, T*/)

o 202 FORMAT(/* ENTER POROSITY (M), CORFFICIENTS(A,9)s LENGTHIXL) (%,
#/% ¢ MEAN WATER LEVEL (HO), UPP AND LOWER LIMITS OF VELOCITYv
) ‘b #7* _ AND THE INITIAL GUESS THE VELOCITY(U)®*/)
203 FORMAT (/% SNTER THE INCPEMENT ANQ THE NEW INITIAL® HEIGHT®/)
. N 204 FORMAT(/® INPUT (A) UPPER LIMIT, (8) LOWER LINIT,.®
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The 9gper1mental datqcaved in th1s study after Nasser (35), con- -
sists of four types of porous med1a 4.4 cm, 1 7 Cm,,O 7 ctm cryshed rock '

and 4.6 cm rounded quarﬁz There were e1ght parameters of part1cu1ar~

l\

interest for each rock type ,seven qf wh1ch are listed in Tab]e E.1,

l L4

along w1th their resp%cthve ranges: f R ghe 11near res]stance coeféicient;

b, the NongDarcy res1stalce coeff1c1ent* m, the por051ty, T, the periad

. ~| ..
of oscillation; L, t9g$lepgth of rockf111 hb,the mean water'18gel; .
Ao the maXimum wave amp11tude; and 6, the slope of the embankment R

There were 15 ¢ sq,gfoups among tH& four rocg tyﬁes There wass

—

‘one sloping embankmenﬁ case group for each-of the four media; i.e. case

groups L, ‘M, N, 0. These had a constant slope of 26.565 (i.e. 1:2).
A1l the remaining cases welfe vertical embankments . ‘ 4 o )
L The data is broken down into individual cases identified by ¢

/

a 1¢%t§£ desiénatinq the graup followed by a number, eg. Case C-3. Ea¢h°

case grouﬁ refers to a par icular.robﬁﬁtyﬁé that has(iaentical a, Bﬁ m, L
: ¢ - e’ .
and 9- va]ues, as can be sken in Tab]e'E.Z.' Therefore only T, hy and Ag &

vary within ‘a group.. s o Vot

- X . »

- The case groups are d1vided into fast drop and sloq'drop cas!%

b}

to avoid confusion ’ Tables E.3 thrqugh E 9 show the pertinent variables J,;HJ;

» . - - “
~ ’ .
. [N +
. - . . o ¢ .
L ! - - ‘ .- . L4
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]
. . ! L | o«
for the fast drop cases while Table E.10 summarizes the slow. drop cases.

The fast érpp cases have tbrée ektra malcu1a£ed parameters listed Whicﬁ-
are helpful =in the anaiysis of the ouégrop point movement: W 1s‘the dimen-
sionless parameter that determines whegher a case is fast drop, its valué
beiné neéessarﬁ]y 1é§; tﬁan l/s}nze;' 8 i§ introducéd into one of the pot
settings in the analog simu]gtion and has a very wide (anéé of values
yhich creates scaling problems; Pk, another dimensionless number ‘that indi-
é;tes the percentagg deviation of\the fast drop case from the slow drop
case. | )

To gummarize, there were 2@4 cases studked, 165 fast drop cases
and 59 slow drop. “Of the 165 fast Hrgp cases investigated, 92Thad vertical

embankinents. Only 2 slow drop cases had sloped embankments .

¥ . L

- . B T N :
’ e, B SR T LS

e gt

s

m e el i g

i e pppne e




.. ' . "
. . “z
+ ' ~N v
' ) -
, . TasLe E.1 .
. .
PROPERTIES OF MEDIA AND RANGE OF VARIABLES g
. - s {
’ Medium ) -
. : "4.40 cm 1.76 cm 0.7 em ~ 1.60 cm :
Parameter Crushed Rock Crushed Rock | Crushed Rock . Rounded Quartz ;
1 a (sec/cm) - 0.00h 0.009 0.017 . 0.010 . ;
b (sec/cm)? . 0.005 0.015 0.033 0.021
e .
‘Range of:_ ‘ ' 1 . : i
m A6 - g b 2 - b3 .5 - 486 .35 - L3717
L (cm) 4b.5 - 90.5 | 16.5 - 90.5 749 16.5'2 90.5°
P T (see) 1.1 -5.8 132 -5.8 .| 15-5712 . 1.1 - 5.75
ho (cm) 22 - 38 22 - 38 22 ~ 38 . 22 - 38
- M - - + . o
3 Ao (cm) .. 35-3 b-30 | 5.5-17.7 29 , /
Case Groups . A,B,L ' ¢,b,EM .G, H,N S 1L,a,K,0 -
1 ;
' L)
e s ¢ ’ k]
4 . . .
' LY
. .
* ‘
- . \5 . ° ' .-
L] [ N
. ) L
\ \ . -
. - % ‘- %::’“ - :'A A-';‘:‘ - ; Y r‘ - '\\ o ot -




\ r »
> . ) '
N s
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| TasLE E.2 . .
; ~ PROPERTIES OF THE TEST CASES 3
o Rock Type oL T a b "
Group . (cm) {cm) m (sec/cm) (sec/cm)? (degrees)
A L 4 90.5 | .49 .004 005 90
) B 4.4 4.5 | w49 .004 .005 90
c . T 0.5 | .432 .009 .015 90
o ! ‘ 1.7 s2.0 | .43 .009- .015 90
't W 165 | 443 TL009 .015 90 '_
F. 0.7 .0 | .a8 .017 .033 90
6 0.7 21.0.+| .482° .017 .033 90
T W 0.7 7o | s | o7 | .om 9.
. 1 1.60 90.5 | .376 .010. .02, 90
g 1eq - 7l s0.5 | .72 " .010 ..021 90 ¢
K 1.6Q 6.5 | .377 ’.010 021 - 90 |
Lo 4.4 - .46 .00l .005 26.56
L 1.7 / - .42 /: .009 .015 26.56
N '0‘7 - .loSQr/ 017 . .033 26.56
. o 1.6Q - .35/ .010 ' .021 26.56
°, ’Q = Quartz _. .
' -
v '
¢ v
) . ;
.




TaBLe E.3

4.4 cm ROCK RECTANGULAR EMBANKMENT -

o a4

' hy A, 5 '
(sec) (cm) (cm) W (sec.”2) Py

A- 1] 1.2 "22 12 L4465 102 40.00

2| 3.2 22 18 .7938 305 8.92

3l 4.0 22 22 .8119 286 7.76

al 3.4 y 22 16" .9489 2,805 1.69

5| 4.4 30 32 .6140 66 J 23.08

6] 3.8 30 P 1 .5303 ) 31.12

7| 2.8 30 16 .7814 34 ¥ i 9.93

8' 1.2 30 ¢ 12 4465 102' “. 40.00°

8] 1.3 38 10 .5805 87 16.3>

0] 1.2 38 16 .3349 s7 .| sa.0s

nf 3.4 . 38 , 16 .9628 4,528 0.68

12] 5.2 s 32 .7259 m 13.75

.
) .

B~ 1 1.4 38 22 . 2842 - 38 ,59.43
2| 35 38 20 " L7814 252 9.75 .

3| s ., 30 32 7534 11 | 12.69

4] 2.7 30 13 .9274 2,038 1.85

5] 1.2 30 12 L4465 102 40.00

6| 1.2 2 - 10 .5358 160 | 30.s5

) .

o




-,

-

1
i - 183 -
. TaBLE E.4 , X
i lj cM ROCK RECTANGULAR EMBANKMENT .
{
L ho %o 8 —ar P
(§ec) (em) - (em) W (sec.” ?) k
-1 2.50 22 8.5 .8528 1,075 5.35
2 a6, |, 22 12 ,7587 361 ° 11.31
3 4.12 22 13.5 ,8849 981 3.70
. :
.4 .15 <30 21 L4349 56 41.30
]
5 1.70 30 5 * ©,8859 61,673 .16
6 1.78 ,38 8.5 .6072 243 23.65
. 1
0- 1 3.46 38 16 .6300 142 21.65
2 2.50 38 .9.5 .7666 480 11.76
3 1.80 38" 7.3 \7183 470 14.30
4 1.70 . " 30 5 .9904 111,432 .09
5 2.60., 30 12’ L6312 190 21.50
6 3.60 30 . | 16 .6554 158 * 19.42
7 5.50 22 18 8901 789’ 3.46
.
8 4.20 22 13 | .eam 2,793 1.35
9 2.52 22 8.5 | .8636 1,207 "4.78
E- 1 510 18 15.5 . 9304 1,819 cjms
2 3.50 18 16 . 6185 135 22.67°
3 2.50 38 <10 . 7069 323 15.19
) 1.80 38 6 .5655 197 27.50
5 2.60 30 15.5 L4743 86 9.30
6 .76 | 30 24 .4430 51 40.40
7 4.20 22 14 .8483 624 - 5.62
8 2.50 22 g .7854 575 9.45
Y
r/'

VS

v

NI S S

A N i Feir it x-
"

2
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,
etk WA

. 0.7 ROCK RECTANGULAR EMBANKMENT - ' i

* _ : [/ L

. - T ho Ao k ‘ T s - P { ?
¢ . (sec) (cm) {cm) ./\N {sec.”?) k %
L ‘ Fal 2.21 30 10.5 3666 | 95 . 49.00 :
TN . 2 4.24 30 | 0.5 .7034 " 302 15.45 ‘ :
‘ 3 5.6 ° 30 1 .8931 1,345 3.32 ‘
) 4 5.64 2 | u .5779 109 26.65 | . ..
: . ‘ 5 _1..37., N Y M Ty 426 450 o
v 6 z.< 22 5 L4645 143 38.00
: L - — )
6- 1 5.64 18 13.8 089 236 15.03 4
.2 3.50 38 13.8 4399 Y 40.74 o
- " 3 5.08 38 15 .5875 128 25.54 . §
' o 4 1.75" 38 17.5 1 .ams 38 74.26 ;
» 5 2.52 38 11 .39%4 v 98 45.59
SR 6 1.50 30 16 -1626 40 75.78 ’
r 7 2.24 30| o.s 4030 117 IRV '
1. 8 4.30 30 13.5 4 .5525 126 - 28.90 .0
9 5.70 " 30w 15, | .62 St 19.10 N
10 5.70, 22’ " 16.5 .5952 122 YT KN
' 4.20 22 13 ﬂ‘.seoa o134 28,137 |, 3
12 2,20 22 5.5 .6938 549 16.23
o H- 1 1.79 38’ 9.5 3241 95 94.38 )
) 2 2.63 38 6 7541 702 .65 |
. 3 3.82 38 10 .6572 254 19.27 , 0
7 4 5.12 B , 14 | .6292 161 2172 N
5 5.70 38 13.8 w6 | 239 14.90 .
6 5.72 % 10 19840 25,738 Q.19 .
7 417 30 9.5 .9551 se | .57 |
) '8 2.56 130 15 .3028 57 . si.06 "
9 2.62 2 5.5 .8195 1,221 7.30
\ 10 4.58 22 T T 770 6.70
]
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TABLE EG :

<1.6 cM QUARTZ RECTANGULAR EMéANKMENT

g ot 2 e,
5 D3 b g A,

T h Ao s _ p
(sec) (cm) (cm) W (sec.”2) k
I-1 .46 ° 22 11.5 .8490 765 5.57
2 2,60 22 12 ITTA 175 23.31
3 1.72 38 . 12.5 .3883 84 46.65
4 2.45 8 1 .6385 205 21.77
' 5 3.45 8 15.5 L6281 145 21.80
' 6 5.72 30 16.% .9783 9,813 Il
7 3,60 30 17 .5976 1nz 26.59
8 2.62, .30 12 .6161 179 22.89
9 170 0 5.5 .8722 2,057 4.33
. 1
J- 1 . 170 38 15 323 60 54.50
2 3.48 8 16 .6204 136 22.50
3 5.00 38 15 .9507 3,143 1.04
4 5.74 30 18 9095 1,057 2.57
5 3.60 30 20 .5134 75 32.85
.6 . 2.65 10 12.5 L6047 164 23.93
7 1.70 ( 30 5.5 .8816 2,306 3.86
8 4.15 \ 22 164 L8455 607 5.77
J

K- 1 2.50 18 10.5 .6701 257 ., 18.17
2 2.62 30 13 .5672 137 27.47
T3 1.72 30 s ] .9682 18,261 .54
4 3.46 22 13 7491 314 12.00
5 5.60 22 18.5 .8671 577 4.59

6 1.70 22 14 L3417 67

_ )
 J
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TasLE E.7

4,4 cm ROCK ‘SLOPING. EMBANKMENT

. R | ’ . hy - Ay . - P
: (sec)" {cm) {cm) W (sec.”?) k
) L- 1 " 5,20 T 23 2.322 1m.21 18.0
N 2 3.80 8 20 1.952 ° 10.56 46.4
B s 38 20 1.715 9.42- | «52.0
R ) 8 | . 1.60 38 12 1.370 13.45 61.8°
' 5 5.00 - 1w | 155 3,313, 33.64 18.8
6 250 38 16 1.605 11.19 56.8
. 7 1.25 38 <10 1.284 15.57 63.0°
o, '8 2.60 38 6 4.451. 473.46 3.5
. 9 e | 38 8 | 32.02 38.3
10 2.60 50 7 "3.815 127.20 1.0
n 1.75 10 7, 2.568 42.66 2.9
. 12 i 1.10 30 9‘; 1.255 17.10 63..8_._
13 2.80 " fo 1 .2.212 18.64 * 40.5
14 3.80 30 12, Jd.252 41.18 ‘ 19.9 -
15 L0, 30 9 ' 1.940 23.3 46.7
16 5.75 - 30 {7 3.474 35.71 16.2
17 3,80 30 17 2.296 14.94 8.6
: 18 4.40 30 18 2.511 16.01 3.0
19 3.40 YR 9 3,880 107.77 10.1
’ 20 5.60 22 16 3.595 43.00 14.3
¢ 2 3.30 22 10 3.389 55.94 17.6
. 22 2.60 22 12 2.225 20.34 40.2
) 23 | L 22 9 1.312 27.51
24 1.70 22, 6 2,910 62.74
i3 2.90 22 7 4,255 256.44
' . i
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1.7 anp 0,7 .cv ROCK SLOPING EMBANKMENTS -
. 4
: Py Ay 6 )
(sec) (cm) {(cm) W {sec:"?) Py
M- 1 5.76 22 20 1.836‘&% 9.98 49.2
'_2 3,46 2 16 1.378 10‘.&:‘;‘\ 60.5
3 .16 - 22 14.2 1.418 11.61 59.5
. s 4.16 22" 16 1.657 '11.46 - 53.5
-5 : 112 2 gl 649 os 80.5
6 ? 2.62 22. T 4,5 3.1’ 174,17 12.5
1 1.32 ETIE BT .59‘2. . 841 82.1
‘g 1.76 10 7 1.602 - |5 25.54 5.9 -
-9 2.63 30 95 .838 6.53 75.1
f 2.20 ) k] 20 J701 6.21 8.9
gl .27 0 20 1.042 7.06 69.5
12 Y420 30 "o ;.071 5.71 6.7
- 13 5.73 ’ 36 22 . 1,660 8.34 53.4
14 5.73 38 12.5 2.922 . 30,37 25.8
: 15 5.15 38 0 1.094 4.80 68.0
R 38 1 2.410 2%.67 . 16.2
17 3.30 38 1 ° 2 .751 4.52 17.5
18 1.32 18 14 .601
19 1.78 — 15 .756
20 2.60 38 9 1.841
N- 1 2,23 30 14.5 ".603
2 - 2.87 10 8.5 1.324
3 4.10 30 10.5 1.531
4 5.68 30 17 1.310
5 | 5.68 2 | 13 1.485
6 4.26 ) 17.7 .944
7 2.52 2 | 9.5 1.040
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. ) TasLe E.9
\ , “
1.6 cv QUARTZ SLOPING EMBANKMENT
- L : , ) s »
W1 hy C Ay . A , )
. (sec) ‘{em) (cm) W (sec.”?) Pk
0-1 1.30 38 15 .563 7.88 82.9
| 2 1.72 , 38 | L4 .798 9.19 76.2
3 2.48 38 .13 1.239 1176 64.2
: 4 3.28 38 I 29 .735° 4.34 78.0
, 5 R Bt 38 D16 2.091 14.19 43.2
; 6 5.20 38 27 2.111 14.34 42.7
) 5.72 30 L1 1.956 11.14 46.3
8 4.15 30 f 2 1.037 5.42 §9.6
9 . .60 30 ' 2 1,063 6.47 *68.9
18 188 o |1 a4 8.63 75.8
no 5.70 30 0.2 -] %630 | 7010 13.7
i 12 1.30 30 10 B4 1+ 13,09 L] 749
13 1.70 30 - 8.5 | 1.299 18.43 626 |
L] , 262 30 8 2.128 28.94 “42.3
\15 2.62 22 6.5 | 2.782 189.87 1.3
16 1.10 22 2.8 | 558 9.22 83.1
17 L7 22 6.2 | 1.792 . 31.50 50.2
18 - 2.64 22 14.8 | 1.159 9.99 66.3. .
18 5.70 22 16.6 2.231 14.75 2 40.0
. 20 3.48 22 16 1.413 10.28 59.6
21 5.74 22 20 1._;610 10.12 48.5
2> 0 1.6 cm rock »
T w = L350
. a = ,010 “
s ~ b= .o '

i T
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TasLe E,10 ’ -

-

SLOW DROP CASES - -
. : / |
/ T ’?0“ Ag ' a 3
w13 va 22 7 3
14 /’/ ' 3.0 . 22 & )
15/ s | s ‘.
)6 5.6 22 20
ats 5.8 30 2% |
‘ / 18 3.8 30 16 ]
/19 5.5 30 12 ) ‘.
20 e 0. 7 '
2 "1 30 4 _ ' ‘ ‘
2 - 1.88 38 4.5 ‘
a3 | so0 38 13 , _ b
B-7 1.8 38 8
.8 2.5 KT 10
9 5.0 3 16
10 5.3 38 14 h
no 3.6 ) ST
2 | s 30 19
13 R 30 1
14 1.7 | 5.5
15 1.7 22 4 ‘ i
16 2.85 | 22 Coas | .
7 -~ 415 .2 14 .
11 T R 21 14 j'
19 © 5.6 .o 20 - )
20 345 22. 12
. - S
‘
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TasLe E.10 - cont'D,

) - T R ho Ao
c-7 1.7 22 4
8 5.76 22 15
9 s.76 | 30 16
; 10 4.14 30 8.5
. n 2.60 30 6.
. 12 2.6 18 5.5
: 13 3.45° 18 7
Rl 5 I8 13.8
15 5.76 38 14
. D -10 5.7 I8 s
/o n 5.16 38 13.8
12 5.68 10 16.5
£-9 5.7 18 15.5
10 5.6 . 30 10.5
N 5.8 30 15
"2 5.8 | 22 16
) I-10 5.75 22 16
, 1 5.7 22 15
12 2.6 22 4.5
13 1.7 22 4
14 5.08 38 14
. 15 s.s8 | 38 14
) 16 5,7 30 9
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PHOTOGRAPHS .OF THE EAI 690 HYBRID COMPUTER i ‘
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wPENDIXF

* PHOTOGRAPHS OF THE EAI 690 RYBRLD COMPUTER

5 .

’

* This appendix is intended to familiarize the reader with the
hardware used in this study, the EAT 690 Anatog/Hybrid Computer. This
system comprises 5 digital compuger EAI 640 (Fig. f.]), and interfacigg
unit EAT 693 (Fig. F.1) and an 4109 computer EAI 680 (Fig. F.2).

The,EAI6{O can read or write on magnetic tape or paber tape
using the teletype brinter §nd octal converters-as contrg]]iné devices.

The EAI 640 can be operated as a separate unit, can bé linked with the

CDC Cyber processors within the University or connected to the EAI 680
) ¢

-

Ana1bg Computer through_the EAI 693 Interfacing UEit.u
The Analog Computér (Fig. F.3) consists basically of an analog

patch panel, digite] logic and a control panel. The control panel

- sets the mode and speed of operation, sets pots, contains a four-digit

L

accurate dibital voltmeter and indicates the logic componenfs that are.
. in operation. Theidigita],1ogic‘consists of And Gates, comparators,
‘switches, controls over certain operational amplifiers, etc. (Fig. F.4).

4 . The Analog Patch Panel (Fig. F.5)'consisés of 120 operational

3 :

amb]ifigrs that have the lcapability of performing all the basic mathema-
tical operations including ifftegration. The facility at Concordia at

present has dnly aggut.SS operational amplifie?s‘which limits the metﬁods

’
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of simulation that can be applied. A colour code helps to avoid confusion
in patching circuits. Table F.1 summarizes the functions of the various

colours. .

/
( :

TABLE F.1 L

AY

COLOUR CODING FOR THE EAI 640 ANALOG PATCHING PANEL

\

&

. Lolour Function -
Green ‘ Input —\;
Red | : OQutput .
Black Ground
: Yellow Potentiometers o
’ Fhite ] Amplifier Control Options

Brown (Striped) Relay Switch

. Red" Positive Reference Voltage
Orange . ° Negative Reference Voltage

. .
> .
- . . e o gy vy "9" -
S T oy g
5 & 3 DT e R ge st o
. ~ ) . a7 .:‘—3.1?(: RS, r’z Lt SRR
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N Fig. F.6 — Typteal Analog Patching Tray.

e e s o W AR

[y

b e e




— -

‘ N

PRI N oo e U O -

C .
V\ 13
.
. /
Ld
(&»] @z |
—_—
= = .
a3
- (&)
wd -—
8 &
< )
-—
: . A
. T

L

R

b n




[
»~
3
v
<
.
.
BARARTE S b M1 A U +

4

- .. APPENDIX G ™ - | ?

~ | " © NOMENCLATURE L

resistance coefficients
~ .

. . - . ~
. N .

a, 4y = T
ag» ap - constants, : ' ‘ .-
Y - -constant '
Ab " = maximum amplitude 4 ‘
‘*\\\ - . . .

" byby - non;Darcy resistance coefficiénts .

B T - constant °

. ‘ l ' ﬁ?’-fx"l ‘

¢ - celerity '

c - constant , - ' o

CsDT - continuodus-space discrete-time - . - | T ¢
r‘ . - 4 J : ‘4 [z . . v

D - hydraulic depth; constant o ST e, .
"pscT - . discrete-space continuous time . o L
. . . (4R ) ‘ [ P

e
. v ,, ’ .
EDA - electronic differential analyzer
, .
© 199 -
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¢ F - - non-Darcy friction term; fast second
F-MS - fast-milli-second
fit) -~ - time depéﬁde;t function .
f(u) - square matrix of funstions * : ‘
. , " et .
g . - acce]‘eration due to :gre.wity_ ) ) . . - g )
g(x,t),G - /’//;orcjng functions 1/' » . ¢ f
R . h -+ water level e f
- //’,//,,h}— - % ' J-.
- Ah L _ numerical‘step size . ’ ' .
’ i « - hydrﬁu]ic gradient : . o )
) ig - -“ threshold_gradieyt
A < 1denti;§déétri R '
IC - initié]acondit1 n mo@e. i

i -. = index of discreyized ii:i,;a
. ' P ’

“conductivity -

. k - Lnoh-Darcy hydrauli

1 Ke - . barcy hydraulic conductivity .
C " K ;K - * scalin ‘ctors N

E 0 + s ;{‘ 2

v : .
.ﬂ‘ /’I

length of rockfill

—
4
'

" operators on functions

~

'Methbg,of Characteristics RN

g
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Ordihar;§Differentia] Equations

0DE -
op - \ Operate Mode
\l
PDE - Partial Differential Equations >
) :
' Pk - - dimensionless parameter f :
1\ &
{ i
o :
q - | macroscopic velocity; Tateral inflow ]
R - .correlation coefficient
L i
Sf - \friction or energy?line slope .
So - %hanne] bed slope’
. l\l‘ ’ : ’
t - éﬁme independent variahle . N
ty, tz,‘tc'.- . time constants
At - time increment f
ST
T - - period of oscillation
TKG - c&nstant
. \ |
u - hokizgntal pofe velocity
. . \\ . . R t
i
S b :
v - , maxﬁmum internal fall velocity
Y |
v - actual pore velocity _
V . - . . vertical velocity T
Vipax - maximum internal fall velocity
Vi - input voltage
.'Vo L ~output voltage Y
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W - vector of transformed dependent var1ab1es, d1mens1on-
i less parameter
wl, w? - adjoint eigenvectors .
T Wy W2 - characteristic independent‘yariab]es /{
1
X - space independent variable g
' Xmax - maximum distance .f g
y. - . depth of water '
Ye J - /»/ elevation of‘outcrop point movement
~ e
Ye - elevation of free water level //
’ ‘ s .
AYp /- . maximum deviation between Y. and Yr )
/v ' ‘
4 = - . input impedance
lf - feedback impedance
&' v ’
o - characteristic direction; energy coefficient;
: ' :damp1ng ratio
8 - characterlst1c d1rect1on, time scale factor )
) ‘,‘ " - constant- i
n - perturbat1on height- wrt to mean water level
0 - 1nterpo]ation factor; angle of ‘inclination of rockfll]
with the horizontal
x = vector of eigenvalues g .
X - dimensionless number : ' ‘
w” - frequency of oscillation '
Wy - undamped natural frequency of oscillation - '
~ o. .
AI ,E
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