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ABSTRACT

For the multiple loop feedback network with feedforward
elements constrained by an operational amplifier, rules for

writing the A and C parameters have been formulated.

A realization for a second order voltage transfer
function using a low pass type structure has been given. The
same can be used to obtain a high pass realization by the
RC : CR transformation. The sensitivity of such a realization

has been studied for a single parameter.
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CHAPTER 1

INTRODUCTION

1.1 GENERALITIES

With the advent of microminituarization and integrated
circuits and also due to the almost ideal nature of the resistance
and capacitance much effort has been directed towards the realiza-
tion of active filters using these elements. The active RC filters
as compared to the passive RC filters can realize poles located

outside the negative real axis of the s-plane and hence can obtain

higher Q factors. [1]

Many realizations have been formulated using RC elements
and an operational amplifier as the active element. Ideally, the
operational amplifier is an infinite gain d.c. amplifier with
infinite input impedance, zero output impedance, whose output
voltage is of opposite polarity to that of one of the inputs and
is of the same polarity to that of the other input terminal. 1In
practice, however, the operational amplifier is a non ideal device,
characterized by a frequency dependent voltage gain. It can be
realized with an open-loop d.c. gain of 104 or more, an input
impedance greater than 100 k ohms and an output impedance less
than 100 ohms. In addition, there exists a limitation regarding

the maximum amplitude of the input and output signals in order



that the amplifier be in the linear range.

For all analysis and synthesis, such an operational ampli-
fier is assumed to be an ideal device, since the above limitations
do not affect the overall characteristics of the circuit to any

appreciable extent over the frequency range of operation.

The main problems associated with any active network are
"stability" and "sensitivity". A passive network is inherently
stable, as the poles are always contained in the left-half of
the s-plane, irrespective of the changes in the elemental
values. But, an active network can become unstable with

variations in the elemental values.

Sensitivity is another problem which requires close
scrutiny. Variations in elemental values give rise to the
displacement of poles and zeroes from their nominal positions,
thereby altering the characteristics considerably. Therefore,
the designer must ensure that the sensitivity shall not be
high. This is the reason why any higher order transfer
function is realized by a cascade connection of an appropriate
number of filters, each of them realizing a second order

function.

1.2 SCOPE OF THIS STUDY

One of the circuits used both in active filters and



analog computers is the multiple-loop feedback network constrained

by an operational amplifier. [21,[31,[4]

The object of this study is to analyze and realize the
network shown in figure 1.1 when the amplifier gain K is finite
and infinite. (This network was considered by Sewell [2] in

another context.)

It will be noted that if Y",YZ,....Y;N are made zero the
multiple-loop feedback network mentioned in references [2], [3]
and [4]) results. The inclusion of these admittances constitutes
feedforward and hence the network is known as a multiloop feed-

back system with feedforward constrained by an operational

amplifier.

The study consists of analyzing the network of figure 1.1
to obtain the A and C parameters and also to realize voltage
transfer functions having poles and zeroes in the left half
s-plane. In addition the sensitivity and stability properties

of such a realization are examined.
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CHAPTER 2

ANALYSIS OF THE NETWORK

2.1 INTRODUCTION
In this chapter, we shall analyze the basic network to get
the A and C parameters. Also, the rules of writing the A and C

parameters are formulated.

2.2 THE A-PARAMETER

Referring to the figure 1.1, the indefinite admittance
matrix [5] will be as shown on page 6.
From this indefinite admittance matrix ?, the A parameter

is given by the equation

A = Sign (m-n) Sign (i~-j) ——

AN
Yij
where - _
determinant of the submatrix
%?? = (_l)m*n+i+j X obtained by omitting the m row
and n row, the i column and the
L j column of Y
B determinant of the submatrix h
™ = (—l)m+n+m+n X obtained by omitting the m row
mn
and n row, tBe m column and the
n column of ¥ B

As can be seen, the A parameter takes the form

K F,(2,Y) - F,(2,Y)
K F,(2,Y)

A= - (2.1)
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This form is similar to the one found by other authors [6].

Furthermore it will be noted that the non-XK multiplied
portion of the numerator is nothing but the A parameter of a
passive ladder network as shown on figure 2.1 and the rules for

writing this parameter have already been given by other authors

[71.

When the amplifier gain K is made infinite, the A para-
meter reduces to the form

F2 (z,Y)

A= - 0t
Fy z,Y)

It is now essential to write the set.of rules for F2(Z,Y)
and.Fl(Z,Y). For this purpose Table 2.1 is set up. Following the
rules set down by Ramachandran and Mehrotra [6] and also by Holt
and Sewell [8] for the double ladder network without Yg, Z,....Y;N,

the A parameter for the network under consideration along with the

topological interpretation can be written as follows:

2.2.1 DENOMINATOR TERMS F1 (z,Y)

All terms in the denominator contain K as a factor and
consists of a unity factor 1, a set of two terms product of the
type ZY, a set of four terms product of the type ZZYY, a set of

six terms product of the type ZZZYYY, etc... The last term has
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N factors in Z and N factors in Y.

The terms can be written by these rules.

Set of terms with one Z and one Y

Considering any one series impedance, the preceding and
following* series impedances are short circuited. All ladder ad-
mittances YZi and Yéi are open-circuited. The product of the
series impedénce and the sum of the remaining admittances con-
stitute a term in this set. The other terms are obtained by

considering each series impedance once. The set is finally made

up of the sum of all such terms.

Set of terms with two Z and two Y

Considering any two series impedances, and Z

221-1 2k-1
where k > i, all other series impedances are short circuited. All

. . 1 1
following ladder admittances Y50 Yy 95 €tc... and Yoi0 Yoi0s
etc... are open circuited.

The set of terms is made up of the sum of all such terms,

All ZZi—l ZZk-l are multiplied by (k > 1):

* If ZZi-l is considered, 22i+1 is termed the preceding series

impedance and Z is termed the following series impedance.

2i-3
In addition, Y T Y

2 24i_9> etc... are termed the following ad-

mittances and Y21+2, etc... are termed the preceding admittances.
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(i) Yg 's ,3J<2i,jis even
(ii) the sum of Y, 's plus Y! 's plus Y" 's
L A L

2i < % <2k, 2 is even

Set of terms with three Z and three Y

Considering any three series impedances, d

Zyi-1° Loy 30
ZZp-l where i < k < p, all other series impedances are short cir-
cuited. All following ladder admittances Y2i’ Y21—2’ etCui..y

Yéi’ Yéi—z’ etc... are open circuited.

The set of terms is made up of the sum of all such terms,

All ZZi—l ZZk-l ZZp-l are multiplied by (i < k < p) :

(1) YW's, j<2i, i is even
j —

(ii) the sum of Y2 's plus Yi 's plus Y; s,
2i < 2 <2k, % is even
(1ii) the sum of Y 's plus Y' 's plus s,

m > 2p , m is even

Rules for sets of four Z and four Y, five Z and five Y, etc...
can also be written by expanding on the method given above for

N sections of the network represented in Figure 1.1.

2.2.2 NUMERATOR TERMS F2(Z,Y)

This portion of the numerator is caused by the active

device and consists of a set of two terms product of the type ZY,



a set of four terms product of the type ZZYY, a set of six terms
product of the type ZZZYYY, etc..., a last set of N factors in Z
and N factors in Y, all multiplied by the amplifier gain K. The

terms can be written by these rules.

Set of terms with one Z and one Y

Considering any one series impedance the preceding and
following series impedances are short circuited. All lower
ladder and feedforward admittances are open circuited i.e. Y',
Y". The product of the series impedance and the sum of the re-
maining admittances constitute a term in this set. The other
terms are obtained by considering each series impedance once.

This set is finally made up of the sum of all such terms.

Set of terms with two Z and two Y

Considering any two series impedances, ZZi-l and sz-l
where k > i, all other series impedances are short circuited.
A1l following feedforward admittances and lower ladder admit-

tances, Y;i, Yéi’ Y;i-z’ Yéi-Z’ etc... are open circuited.

This set of terms is made up of the sum of all such terms,

All ZZi—l ZZk—} are multiplied by (k > i):
(i) Yj 's , j £2i, j is even
(ii) the sum of Yl's plus Yi 's plus Y; 's

2i < 2 <2k, L is even



- 13 .

Set of terms with three Z and three Y

Considering any three series impedances, d

Zyi-1° Zo-1 20
Z2p—1 where i < k < p, all other series impedances are short cir-
cuited. All following feedforward admittances are open circuited

i.e. Y;i, Y;i_z etc...

This set of terms is made up of the sum of all such terms,

A1l are multiplied by (i < k < p):

291-1 Zox-1 Zop-1
(i) Yj 's ,jX2i,jis even

(ii) the sum of ¥ 's plus Y, 's plus Y} 's,
21 < % < 2k, % is even

(iii) the sum of Y 's plus Y; 's plus Y; 's (m>2p) mis even

Rules for sets of four Z and four Y, five Z and five Y, etc...
can also be written by expanding on the method given above for

N sections of the network represented by figure 1.1.

2.3 THE C PARAMETER

Knowing the A parameter for the network of figure 1.1,
the C parameter is obtained once the driving point impedance has

been determined using the method described in [5].

The C parameter takes the fcra

KF _,(Z,Y) - F_,(2,Y) -
K F, (2,Y) (2.2)




Using the table 2.1, the set of rules for FCZ(Z’Y) and
FcB(Z’Y) i.e. the numerator of C, will now be written along with

the topological interpretation.

The rules for the denominator have already been given

since the denominator of A and C parameters are the same.

2.3.1 NUMERATOR TERMS Fc2(Z’Y)

This consists of a set of terms of Y 's only, a set of
three terms product of the type ZYY, a set of five terms product
of the type ZZYYY, a set of seven terms product of the type
ZZZYYYY, etc... the last term containing (N-1) factors in Z and
N factors in Y. All factors are multiplied by the amplifier

gain K.

These terms can be written by the following rules,

Set of terms with Y only

Considering any one upper ladder admittance, YZi’ the
series impedances are short circuited. All lower ladder ad-
mittances Yéi’ are open circuited. The sum of the upper ladder

admittances, Y2i’ Y2i+2’ etc... Y onstitutes the set of terms

2§ ©

specified.

Set of terms with one Z and two Y

Considering any one series, impedance ZZi—l’ the preceding



and following series impedances are short circuited. All follow-

ing lower ladder admittances, Yéi, Yéi—z’ etc... are open cir-

cuited.

The set of terms is made up of the sum of the following

subsets:

(a) All Z are multiplied by:

2i-1

(i) Yj 's ,j<2i,jis even

(ii) the sum of Yz's plus Yi 's, &>2i,21is even

(b) All Z are multiplied by:

2i-1
(i) Yg 's ,jJ <21, 3jis even

(ii) the sum of Yz's , & from 2 through 2N , & is even

Set of terms with two Z and three Y

Considering any two series impedances, ZZi-l and ZZk—l
where k > i, all other series impedances are short circuited.
All following lower ladder admittances Yéi’ Yéi—z’ etc... are

open circuited.

This set of terms is made up of the sum of subsets list-

ed below:

(a) Ml Z,. . 2 are multiplied by (1 < k):
2i-1 "2k-1

i) Y. 's, j from 2 to 2N, j is even

(ii) YE 's , 2 <2i+1, % is even

(iii) Y; 's,2i+1<m<k,mis even
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s 1. C < LY.
(b) All ZZi—l ZZk—l are multiplied by (i < k):
(i) Yj 's , j £2i,j is even

(ii) Yz 's , 4 from 2 to 2N

(iii) the sum of ¥ 's plus Y' 's , 2i+l<m<2k , m is even
m m -

(c) All are multiplied by (i < k):

Zy3-1 Zox-1
(i) Yj 's , j from 2 to 2N

(ii) the sum of Yz 's plus Yé 's plus Yg s
>3, % is even
(1ii) the sum of Y 's plus Y; 's plus ay" 's,

m> 4, mis even

a=1,k=N
a=0,k<N
) M1 2z, | 2, ; are multiplied by (i < k):
(i) uY; 's, J <21 » jJ is even
a=1,k<N

a=0,k=N
(ii) the sum of Y, 's plus Yé 'sy, £ > j, & is even
(iii) Ym 's,m> % , mis even

Set of terms with three Z and four Y

Considering any three series impedances, ZZi-l’ ZZk—l’

zZp—l where i < k < p all other series impedances are short
circuited. All following lower ladder admittances Yéi’ Yéi—Z’
etc... are open circuited. This set of terms is made up of the

sum of subsets listed below:
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(b) All are multiplied by (i < k):

Z9i-1 Zox-1

(1) Yj 's , j <2i,J is even

(ii) YE 's , £ from 2 to 2N

(iii) the sum of Ym 's plus Yé 's , 2i+l<m<2k , m is even

(c) All are multiplied by (i < k):

Z94-1 Zok-1
(1) Yj 's , j from 2 to 2N

(i1)  the sum of Y, 's plus Y 's plus Yj 's ,

2 >3 » 2 is even
1 1 "
(iii) the sum of Ym s plus Ym s plus aYm S,

m> %, m is even
o=1,k=N
0=0,k<N

(d) Al are multiplied by (i < k):

L2551 2ok

(1) aY; 's, j<2i ,J is even
a=1,k<N
o=0,k=N

(ii) the sum of Y, 's plus Y£ 's, £ >3, 2 is even

(iii) Ym 's, m>4% , mis even

Set of terms with three Z and four Y

Considering any three series impedances, ZZi—l’ sz—l’

ZZp—l where i < k < p all other series impedances are short
circuited. All following lower ladder admittances Yéi’ Yéi—Z’
etc... are open circuited. This set of terms is made up of the

sum of subsets listed below:
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(a) A1l are multiplied by (i < k < p):

Zo3-1 2ok-1 Z2p-1
(1) Yj 's , § from 2 to 2N

(i) Yz , & < 2i+l , 2 is even
(iii) Y; , 2i+1 <m < 2k , m is even

(iv) Y; » 4> 2 , q is even

(b) A1l Z2i—1 ZZk—l Z2p—1 are multiplied by (i < k < p):
(i) Yj » 3 <2i, 3 is even
(ii) Y. , where 0 > j , o is even

(iii) Yz , where £ > 0 , ¢ is even

(iv) the sum of Y 's plus Yé 's when m#¢ and o=j » m is even

(¢) A1l ZZi—l sz—l ZZp-l are multiplied by (i < k < p):
(i) Y; 's, j<2i, j is even

(i1) . Yg 's ,0>3jto 2N, o is even

(ii1) Y 's , 0> j to 2N, ¢ is even

g
(iv) the sum of Y 's plus Yé 's, m#o but greater m is even
than j
(d) A1l Zyi1 ZZk—l 22p~l are multiplied by (i < k < p):

(1) Y., j= from2 to 2i , j is even
(ii) Y;, % = from 2 to 2N, % is even
(iii) The sum of Ym 's plus Y; 's ,m > 2i+l, m is even

(iv) The sum of Y 's plus Y' 's , q > 2k+l, q is even
q q 4

Rules for sets of terms of four Z and five Y, five Z and six Y,



- 18~

etc... can also be written with a similar type of topological

interpretation.

2.3.2 NUMERATOR TERMS FCB(Z’Y)

These terms consist of sets of terms similar to FCZ(Z’Y)
with the exception that the factors formed are not multiplied by
the amplifier gain K. From the indefinite admittance matrix
shown on page 5 it can be seen that the Fc3(Z,Y) is the C para-
meter of the network shown on figure 2.2. These terms can now

be written by these rules.

Set of terms with Y only

Considering N sections of the network all series impe-
dances 221_1 are short circuited, hence the feedforward admittances
” ” *
YZ;’ Y21+2, etc... are also short circuited. The sum of all

lower ladder admittances i.e. 9 €tCe.. and upper ladder

L] ]
Y21’ Yzi+
admittances ie. YZi’ Y21+2, etc... constitute the set of terms

specified.

Set of terms with one Z and two Y

Considering any one series impedance Z -1° the preceding

2i
and following series impedances are short circuited. This set
of terms is made up of subsets of such terms.

(a) All ZZi-l are multiplied by:

(i) The sum of Yj 's plus Y! 's, j <2i, jis even

3
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(ii) The sum of Yz 's plus Yé 's , 2 >2i, 4 is even

(b) All sz._1 are multiplied by:
(i) Yg 's, j< 2i , j is even

(ii) The sum of Y, 's plus Yi 's, 2=from 2 to 2N, g is even

Set of terms with two Z and three Y

Considering any two series impedances Z and 2

2i-1 2k-1

where k > i all other series impedances are short-circuited.

This set of terms is made up of subsets of terms des-

cribed below.

i i k):
(a) All zZi—l sz—l are multiplied by (i < k)
(i) Yj 's , J <N, jis even
(ii) Y; 's 5 £ < 2i+1 , 2 is even
(iii) Y; 's , 2i+l < m < 2k , m is even

: < k):
(b) A1l Zys.1 Zgy-q are multiplied by (i < k)
(i) Yg 's 3 <£2i, 3jis even
(ii) YE 's 5 21+l < 2 < 2k , & is even

(iii) The sum of Ym 's plus Y& 's sm > 2i+l , m is even

s < K)s
() ANl Zy3-1 29y are multiplied by (i < k)
(1) Yj » J <N, jis even

(ii) YE s £ <2k, 2 is even
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PRParY ] | I |
(iii) The sum of Ym s plus Ym s,

where 2i+l1 < m

but m#2N when (k < N and 2 = i)
m is even

(@ aAn ZZi—l sz—l are multiplied by (i < k): :

(1) oYy 's , 3> 21-1 a=0,k=N
a=1,k<N , j is even
(ii) The sum of Y, 's plus Yé 's , 2>3, 2 is even

(iii) The sum of Y 's plus Y; 's , m>2%,mis even

(e) All zZi—l Zyk-1 are multiplied by (i < k):

(1) afY , j < 2k , j is even

a=1,k=i+1
o=0,k#i+1
(i1) The sum of Y, 's plus Yi 's , 2i-1<2<2k-1

(iii) The sum of Ym 's plus Y; 's , m> 2%, mis even

Rules for sets of terms of three Z and four Y, four Z and five
Y, five Z and six Y, etc... can also be written in similar

fashion.

2.4 SUMMARY

In this chapter, the rules for writing the A and C
Parameters of the network shown on figure 1.1 are given, with

the aid of topological interpretation. The denominators for
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both the parameters are the same, and the numerators are bi-
linear functions. They consist of two parts, one multiplied
by the amplifier gain K and the other corresponding to an

appropriate passive network.
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CHAPTER 3

REALIZATION OF THE NETWORK

3.1 INTRODUCTION

In this chapter the properties of the A and C parameters

will be studied first.

With a knowledge of these an attempt will be made to
realize the voltage transfer function TV(S) = %u In order to
minimize sensitivity, only a second order transfer function
realization will be considered. The single parameter sensitivi-

ties of the Q factor and 0y factor will be determined.

3.2 PROPERTIES OF THE A-PARAMETER

Considering the two section network only the A-parameter

will be:
B T, 1 [}] -—‘
&[ZlY2+23(Y2+Y4)+ZlZ3Y2(Y4+Y4+Y4)]
- n 1" ] n
[l+Zl(Y2+Y2)+23(Y2~+Y2+Y4+Y4+Y4
1" L 11
_+ 2123(Y2+Y2)(Y4+Y4+Y4)]
A= - = (3.1)
1 1" " [1] ] 11
K[1+ZIY2+23(Y2+Y4)+2123Y2(Y4+Y4+Y4)]

(i) If K is made negative we see that all the terms in the

numerator and the denominator become positive.



(i)

(iii)
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By selecting the series impedances to be resistances, any
one shunt admittance to be either a parallel combination
of a capacitance and a resistance or a capacitance alone,
the rest of the admittances being capacitances only, it
can be seen that the poles and the zeroes lie only in the
left half of the s-plane provided that K remains finite.
For the purpose of this dissertation only one case will

be considered where Z, and Z3 are resistances and the rest

1
are capacitances.¥**
By open circuiting the feedforward elements Yg, Yz.... etc...
only the multiple feedback network is obtained whose low

pass realization has already been formulated [4].

3.3 PROPERTIES OF THE C-PARAMETER

Even though this parameter is not directly used in the

realization, the properties are given here for the sake of

completeness.

For the two section network the parameter will be:

** Many variations are possible but only this one is considered.
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].- " 1 1" " " —1
LY (U 0 42, V3T 42, (15 HE)

KIY,+Y,+24 Y, 1197, T23%, (0,

g " Yon
+Z3YA (Y2+Y4)+Z1Z3Y2Y2 (Y4+Y4+Y4)

iyt
+2,2,Y, Y)Y} ]

_ ' " ' "
[Y2+Y4+Y4+Zl (Y 2+Y2) (Y4+Y4)+ZlY2Y2

" 1 " ' "
+Z3Y2 (Y4+Y4)+Z3Y4 (Y2+Y4+Y4)+Z3Y2Y2

" tyun " "
+Z1Z3Y2Y2 (Y4+Y4+Y4)+Z]_23Y4Y4 (Y2+Y2)

' "
i +ZlZ3Y4Y4(Y2+Y2)] )
c= - (3.2)

" Al " TN
K[l+ZlY2+Z3 (Y2+Y4)+2123Y2 (Y4+Y4+Y4) ]

With the same selection of the different components made earlier

it can be seen that:

(i) The numerator and the denominator coefficients are all
positive. .

(ii) The poles and the zeroes lie in the left half s-plane. The
poles of A and C are the same whereas the zeroes of C are

not the same as those of A.

3.4 REALIZATIONS

As mentioned earlier only one case will be considered
and the realization is carried out by the coefficient matching

technique [5].

All series impedances are resistances and all upper
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ladder, lower ladder and feedforward admittances are capacitances.

Then the network will be as shown in figure 3.1.

From equation (3.1), the voltage transfer function TV(s)

becomes,

1" tapany o2
K[R,R,C (C4+C4+C4)S +R3(C

1y An "
18365 +C'')s+R., Clls+1]

2 74 172

Ty(s) = - F 2
K[R1R3C2(C4+C4+C4)S +R3(CZ+C4)S+R1CZS]

- 1" PRI " [l
[RlR3 (CZ+CZ) (C4+C4+C4)s +R3(C2+C +C,+C/+C")s

2 74 7474
"
| +R) (C,+Cy)s+1] J
(3.3)
which is of the form
2
bzs + bls + bo
T,(s) = vy ° (3.4)
v a 52 + a.,s + a
2 1 o
whence equating like coefficients and letting R1 = aR3
- 2 1 1] 1 1"
b2 = aR3 C2 (C4 + C& + C4) (3.5)
- " "
bl 1+ 0) R3 02 + R3 CA ‘ (3.6)
= 2 ' n 1"
a, aR3 (c4 + 04 + ca) {02 + 02 (1‘- K)} 3.7)
- '
al R3[(C4 + 04 + C'[:) + (1 + ) (02 + C'2')
- CzK 1+ a) - CQK] (3.8)
b =a =1
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Since Tv(s) is always realizable within a multiplicative constant

it is assumed that Tv(s) is given in the form

Ty(s) =

azs + als + 1

and without any loss of generalities it is further assumed

and

It is to be noted that a, = b2 when K is unity. As can
be seen we have four equations and seven unknowns and hence the

solution does not appear to be unique.

From the above equations (3.5), (3.6), (3.7) and (3.8)

these results are obtained choosing C" and R3 as arbitrary

2
variables.
by
" o_ - "
cy R, 1+ o) Cj (3.9)
c a, - b
o2 2 2
& =aT-D ( b2> (3.10)
2% 9
b, - a,R, aC! + (1+a) C"° —= 4R
c =-2_%173% 2 b, %3 (.11

K oR, C"

4 2
~ 3 2
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b a b a
2 1 1 1 2
c! = -+ (— - ——) + C"(1+a)< - ——)
4 g2cn K KR, R, 2 b.K

2
3
(3.12)
If K is less than unity C2 is always positive.
) b,
C" will be positive if C) (l+a) < ==
4 2 — Ry
Let C; (Q+a) = —— , B <1 (3.13)
R3 -

Consider the numerator for C4' If K is negative, we require

that
a
4a

=N

>1+%
- o

N

which means Tv(s) shall have negative real axis poles only, and

hence this case is not considered.

1f K lies between zero and unity, we require

a

=N

|

..1(.:_1'_
—

B~
N

a

and this is always satisfied irrespective of the value of o if

the poles of Tv(s) are complex. Hence, C4 is always positive.

Now let us consider Cz which can be arranged as

a b b a
@2+ [Zza-beguraa-io
3 3 aR3C§ 2
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It can be seen that the first term is positive, whereas
the second term is negative and in order that CA be positive we

require that

2
b2 (1 -Kx)

(3.14)

2 2 .2 .2
[6a1b1b2~b2(1-K)—B azbl-bl(l—B)Bsz]

This is always possible provided the denominator is not
zero which requires that

2
b2 - blB(azbls + albz)

2

K # 3
b, ~ bib,B(1 - 8)

(3.15)

Hence the procedure is to select a suitable B which could
be unity, in which case Cz = 0, then select a value of K and

hence o and therefore all other elements are chosen.

It has been proven earlier [4] that without feedforward
the zeroes of Tv(s) are contained only on the negative real
axis. By the introduction of only one feedforward element the

zeroes of TV(S) can be located anywhere in the left half of the

s-plane.

3.5 -Q AND W, SENSITIVITY OF THE VOLTAGE TRANSFER FUNCTION TV

The characteristics of an active network may change for
many reasons since the elements composing it are not ideal. The

changes may be due to internal as well as external conditions.
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A detrimental effect of these variations is the displacement of
poles and zeroes of the network function. The displacement can
be sufficiently large to render the circuit unstable in some

cases. Hence, a study of the sensitivity of the active network

is essential.

In this section the voltage transfer function TV is
studied for its Q-sensitivity and wo—sensitivity due to a

variation of a single parameter.

Using the classical definition

the sensitivity of Q and w, are calculated for the network

realized.

Since we know that

2y

Q= 3

1

the Q-sensitivities are as follows:

e 1 ¢, (1K) ¢, (1+a) (1-K)

Scz "2 TCre, 0T T T (Tha)C,¥C, T (L-K+C) (Ta) ]
(3.16a)

SQ 1 C; Cg(l+a)

; ) {c;+c2(1—x)} N [(C£+CZ)f{(l+a)C2+Ca}(l—K)+C;(l+a)]

(3.16b)
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Q 1 04 Ca(l—K)
Sc4 ) (CA+CZ+CZ - [(Ci+CZ)+{(1+a)C2+CA}(l—K)+C§(l+a)]
(3.16¢)
Q 1 ¢ %
. CL 2 (CA+C5+CZ) [(cz+cZ)+{(1+a)cz+ca}(1-K)+c;(1+u)]
(3.16d)
Q 1 G <
z 2 (c4+cz+c2) [(CA+CZ)+{(1+a)C2+C4}(l-K)+C§(1+a)]
(3.16e)
Q _
SR =0 (3.16f)
3
Q _
SRl =0 (3.16g)

and Sg because of the restrictive nature of K is derived here in

detail as
a!l al
52 - K‘:ﬁ—-a—l (3.17)
2 1
where a, = F¢
2 2975y
= - ' " o— .
¢, oRy (C, + C} + C}) TR (3.18a)
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da
and ai = dKl
= - Ry [Cy(1Ha)+C,] (3.18b)
from which
11} .
_ il_ ) b2 .\ CZR3(l+a) ( ) az>
- 1" - —_—
Q-x |- :_2_12___ _ K KaRgC) 1-K b,K
K 2(1—K)a2 a

Letting T, being the time constant, equal R,CJ and rearranging, we

372
get
s@=--x __3_2_-_bZ__+_l__ ®) +Bb1 l'_*_‘_p;_
K 2(1-K)a, K aKoT  1-K b.K
2 1 . 2
Let
a,-b Bb a
o2 2 1 _ "1 (.2 _
X~ 2-¥)a, tRTIX <:b2K t) (3.19)
°% .1
2(1-K)a, K
I B < (3.20)

it is seen that x > 0.

Hence,




which can be made zero by choosing

b

alKaT (3.21)

From this consideration, g shall be

a,-b,

2(1-K)a
2
b a > 1
1 2 _
(1 -K sz

Also it can be observed that

1
T x

(3.22)

59 < L,

where C is any of the capacitances used.

Now we shall consider the sensitivity of Wy e We know that

Therefore the wo—sensitivities are as follows:

w C,(1-K)
o__1 2
¢, =73 {ch+c, 1)} (3.23a)
n
W, 1 C2

Sy T2 e, a7 (3.23)



L %
2 (Cz,*Cl',*CZ)
L
I
2 (04+CA+CZ)
11}
oy %
2 (CA+C[‘++C'[;)
-1
-1
R S
2 {c;+cz(1—1<)}
" -
« Cy (az bz)
1 " (3K b,
2 a.-b
2 2
C" +C" (ﬁ)
2 2 b,
__X 327
2(1-K) a,

If K is close
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w

(3.23¢)

(3.23&)

(3.23e)

(3.23£)

(3.23g)

(3.23h)

to unity it is seen that SK0 tends to become high,

hence, it is preferable to restrict K in the region zero to one-
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half. This sets a limitation on B which has to be chosen.

3.6 SUMMARY
1f Tv(s) is given in the form

2
b2 s + bl s + b0

a2 52 + a, s+ a

1 0

it is seen that this is realizable by the network having two
series resistances and either four or five capacitances.

W
In order to keep the sensitivity SKé low, K is to be

chosen between zero and one-half. The factor B shall be chosen
to satisfy equation (3.15) and (3.22). Hence the other element

values can be found and the network is realized.

This network possesses the property that the Sg = 0 and
all the other Q-sensitivities with respect to the capacitances
are less than half while the Q-sensitivities with respect to
the resistances are zero. In addition all wo—sensitivities

have a magnitude which will be at most unity.

It is to be observed that by applying the RC : CR
transformation the same transfer function is realizable by a
similar network having two capacitances and either four or five

resistances.
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CHAPTER 4

CONCLUSIONS

A multiple loop feedback network with feedforward con-
strained by an operational amplifier has been analyzed. The A
and C parameters were evolved and a set of rules have been framed
to write them. The numerator of the A parameter is a bilinear
function of the amplifier gain K. It is shown that the terms
without K correspond to the passive part of the network shown on
figure 2.1. The amplifier gain K is a multiplying factor of the
denominator. Similarly the numerator of the C parameter is a
bilinear function of the amplifier gain K ana the terms without
K correspond to the passive part of the network shown on figure
2.2. It is also shown that the denominator is the same as that

of the A parameter.

Considering a low pass type network having resistances
in the series arm and capacitances in the rest of the arms the
properties of A and C parameters are investigated. It is found

that all zeroes and poles lie in the left-half of the s-plane.

A realization using the coefficient matching technique
has been worked out which will realize a second order voltage
transfer function containing zeroes and poles anywhere in the

left-half of the s-plane excluding imaginary axis polés. It
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is shown that all the elements are positive and they can be chosen
such that the Q-sensitivity with respect to K is always zero and
that the other Q-sensitivities are less than one-half. It is

further shown that all mo—sensitivities have a magnitude which

will be at most unity.

It is noted that, by introducing two additional elements
to the multiple feedback network in the feedforward position,
zeroes anywhere in the left-half of the s-plane (as compared to
only negative real axis zeroes without them) can be realized and
also the amplifier gain is restricted between the value zero and
one-half. Hence the poles of the operational amplifier are not

considered and it is shown that the circuit is insensitive.

By an examination of the expressions for the different
elements and the sensitivities it is seen that the spread could
be large. Therefore it is suggested for further investigation
that operational amplifiers might be introduced in suitable arms

as to increase Q and reduce the elemental spread.
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